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1 INTRODUCTION 

 

Since cancerous disorders are the second leading cause of death worldwide, following 

cardiovascular diseases, improvement of the efficacy of their treatment is currently one of the 

greatest challenges. A survey of epidemiological data from 184 countries suggested that the 

global burden of cancer will increase to 23.6 million new cases each year by 2030, an increase 

of 68% compared with 2012 (Bray et al., 2012).  

 

1.1 Role of steroids as potential anticancer agents 

Steroids are a group of endogenous compounds that play versatile roles as anticancer 

agents. In hormone-dependent tumors such as breast, uterine, ovarian, prostate and 

endometrial cancers, the overexpression of steroid receptors is involved in enhanced cell 

proliferation. Different approaches have been devised to reduce the growth-stimulating 

hormonal response of such cancer cells. Enzyme inhibitors reduce the biosynthesis of 

endogenous hormones such as steroid sulfatase inhibitors, aromatase inhibitors (AIs) and 17β-

hydroxysteroid dehydrogenase inhibitors, and ligands compete with endogenous hormones for 

estrogen receptor (ER) such as antiestrogens. These compounds are classified as steroidal 

antihormonal/antiproliferative anticancer agents. Nowadays the following agents are used as 

anti-estrogen therapy such as selective estrogen-receptor modulators (SERMs): tamoxifen, 

selective estrogen-receptor downregulators (SERDs): fulvestrant and aromatase inhibitors: 

anastrozole, letrozole and exemestane. Tamoxifen, a non-steroidal agent and a most used 

antiestrogen in the therapy of breast cancer, binds to the estrogen receptor and acts as an 

estrogenic and anti-estrogenic agent depending on the origin of the organ. It has an estrogen 

antagonist effect in breast and an estrogen agonist effect in bone and endometrium. The 

anticancer effect of this agent depends on the amount of the ER. The selective estrogen-

receptor down-regulator fulvestrant is a pure antiestrogen that binds to the ER and inhibits its 

dimerization and increases its degradation because of the long side chain at the 7α position. 

AIs are a class of drugs that inhibit the aromatase enzyme, which is responsible for the 

conversion of androstenedione and testosterone to estrogens, estrone and estradiol. These 

drugs can be classified as first- (aminoglutetimid), second- (formestan), and third generation 

(anastrozol, letrozol, exemestan) AIs, or according to the mechanism of action they can be 

also classified as type 1 (steroidal AIs) and type 2 (non-steroidal AIs) AIs. Type 1 AIs such as 

formestane and exemestane are steroidal analogs of androstenedione and bind irreversibly to 



 

7 
 

the aromatase enzyme but type 2 AIs have a non-steroidal structure and bind reversibly to the 

aromatase enzyme (Brunton et al., 2011).  

Additionally, a broad variety of steroidal molecules have either been isolated from 

natural sources or rationally designed and synthetized, and have been reported to exhibit 

efficacy against cancer cells through nonhormonal mechanisms. Cytotoxic steroids exert their 

actions on various molecular targets (e.g. microtubules or topoisomerase), usually leading to 

cell cycle blockade and apoptosis (Gupta et al., 2013).  

Estrogens are widely recognised as factors for tumor growth, mainly in breast cancer. 

The natural product 2-methoxyestradiol (2ME) is a major estradiol metabolite, the process of 

the metabolism of estradiol is the same in males and females and it is catalysed by catechol-

O-methyltransferase. 2ME has no estrogenic activity and numerous studies showed its 

anticancer properties (antiproliferative, proapoptotic and cytotoxic activities) and possible 

cardiovascular benefits. The mechanism of action of 2ME is based on the inhibition of tubulin 

polymerization. 2ME has been tested in clinical setting but it has a short half-life and poor 

bioavailability and is not optimal for direct drug development, which indicates the 

modifications of the pharmacokinetic profile of the parent compound and the introduction of 

novel synthetic 2ME analogues (Peyrat et al., 2012).  

Plants are among the most varied and promising sources of new anticancer agents and 

steroids can also be found in them. Natural products are playing a rapidly increasing role in 

finding new lead candidates for the development of chemotherapeutic agents. They offer a 

valuable source of compounds with a wide variety of chemical structures with biological 

activities, and provide important prototypes for the development of novel drugs. Cardiac 

glycosides are natural steroids, derived from digitalis species. Cardiotonic steroids contain 

three structural elements: a steroid nucleus, an unsaturated lactone and a carbohydrate. The 

main cardiac effects of cardenolides are mediated through inhibition of the sodium potassium 

ATPase that results in increased contractility of cardiac myocytes. Cardiac glycosides like 

digoxin and digitoxin have been used in the treatment of atrial fibrillation, some types of heart 

failure and supraventricular tachycardia. Besides the cardiologic activities of digitoxin and 

digoxin, these steroids also have an anticancer activity. In recent years, additional effects of 

cardiac glycosides on cancer cells have been described. Cardenolides also have well known 

antiproliferative effects on tumor cells. Non-toxic concentrations of digitoxin and digoxin 

inhibit growth and induce apoptosis in different human malignant cell lines, whereas highly 

proliferating normal cells are not affected. Although these compounds have no use as 
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anticancer agents because of the cardiac side effects, the structure of these compounds can be 

used for the development of novel anticancer agents (Mijatovic and Kiss, 2013).  

Different analogs of estrone and androstane derivatives modified in D-ring were tested 

in the Department of Pharmacodynamics and Biopharmacy, University of Szeged. The 

antiproliferative effects of D-homo- and D-secoestrones, normal and 13-epi-D-homoestrone 

and their 3-methyl ethers, estrone-16-oxime ethers and steroidal 17-2’-(1’,3’,4’)-oxadiazoles 

were tested on human cancer cell lines in vitro. These compounds have antiproliferative 

activities on cancer cell lines, induce apoptosis and disturbance in cell cycle and show 

selective toxicity as evidenced by means of testing them on MRC5 cell line (Minorics et al., 

2012, Berényi et al., 2013, Kovács et al., 2014, Mernyák et al., 2014).  

Based on these preliminary results design, synthesis and investigation of 

antiproliferative steroidal agents containing triazolyl building blocks have been initiated.  

Compounds containing triazole ring represent a wide range of biological and 

pharmacological properties such as anticancer, antifungal, antibacterial, antitubercular, 

antiviral, anti-inflammatory and analgesic, anticonvulsant, antiparasitic, antidiabetic, anti-

obesitic, antihistaminic, anti-neuropathic and antihypertensive properties. The triazole ring 

can be found in many biologically active compounds used in therapy such as trazodone, 

rizatriptan, hexaconazole and alprazolam. Most of all triazole derivatives have strong 

pharmacological activity, high bioavailability and favorable pharmacokinetics property 

(Buckle et al., 1986, Alvarez et al., 1994, Genin et al., 2000, Zhou and Wang, 2012, Sahu et 

al., 2013).  

The introduction of a triazole ring at position 3 of the natural triterpene betulinic acid 

resulted in a set of compounds with considerable antiproliferative potency and proapoptotic 

capacity (Majeed et al., 2013). The introduction of a triazole moiety into the podophyllotoxin 

skeleton yielded conjugates with significant topoisomerase-II-inhibiting activity, and some of 

these new compounds proved more potent than the clinically used etoposide (Liu et al., 

2013).  

The synthesis of steroidal heterocycles has also attracted considerable interest in view 

of their valuable pharmacological activities (Wölfling et al., 2004, Wölfling et al., 2006). 

Steroidal azoles have been described as potent inhibitors of 17α-hydroxylase-C17,20-lyase 

(CYP17), which can block androgen synthesis at an early stage, and may therefore be of use 

in the treatment of prostatic carcinoma (Hofmeister et al., 1992, Brodie and Njar, 1999). 

Furthermore, some heterocyclic derivatives have been found to exert strong inhibitory effects 

on 5α-reductases (Salvador et al., 2013). 
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Banday et al. recently reported the syntheses of some 21-triazoles of pregnenolone as 

potent anticancer agents through a ″click″ chemistry approach (Banday et al., 2010). In this 

regard, we have demonstrated that a number of triazolyl androstanes can exert direct 

cytostatic effects on human cancer cell lines in vitro (Kádár et al., 2011a, Kádár et al., 

2011b). Although the introduction of substituted triazole rings at position 17 of the estrane 

skeleton has so far met with only limited success as concerns the antiproliferative activity, the 

synthetic modification of compounds in the estrone series still seems to provide excellent 

possibilities in the search for novel derivatives with noteworthy biological effects (Frank and 

Schneider, 2013). 

A triazole ring has been successfully utilized as a linker for the preparation of 

estradiol-containing agents based on anticancer natural products. The most active conjugate 

inhibited the growth of cancer cell lines at submicromolar concentrations, exerted disruption 

of the microtubule network, and disturbed the cell cycle distribution of MCF7 cells and the 

induction of apoptosis. These properties were explained by the downregulation of cyclin-

dependent kinase 1 (CDK1) and the upregulation of crucial tumor suppressors (p21 and p53) 

(Kamal et al., 2011). 

 

1.2 Overview of apoptosis and G2/M transition 

Apoptosis or programmed cell death is a normal component of the development of a 

multicellular organism. During apoptosis cells die in a controlled manner and apoptotic cells 

can be recognized by morphological changes. These changes include blebbing, cell shrinkage, 

nuclear fragmentation, chromatin condensation and DNA fragmentation and finally the cell 

fragmented into membrane enclosed structures called apoptotic bodies. In contrast to necrosis, 

in which uncontrolled cell death leads to cell lysis and inflammatory responses, the apoptotic 

bodies are engulfed by macrophages and are removed from the tissue without causing an 

inflammatory response. Apoptosis can be activated by various signals from outside and inside 

the cell, and caspases play a crucial role in this process. Caspases are proteins that are highly 

conserved, cysteine-dependent aspartate-specific proteases. Proapoptotic caspases can be 

divided into two groups, the group of initiator caspases: 2, 8, 9 and 10, and the group of 

executioner caspases: 3, 6 and 7. Caspase-8 plays a crucial role in the extrinsic pathway of 

apoptosis, in which the apoptosis inducing signal derives from death receptors. The intrinsic 

pathway of apoptosis involves caspase-9 apoptosis triggered by signals derived from the 

mitochondrion. The activation of initiator caspases requires binding to specific activator 
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protein. Effector caspases are then activated by these active initiator caspases through 

proteolytic cleavage for the execution of apoptosis (Kumar, 2007). 

The G2/M signalling pathway plays an important role in the cell cycle because this 

checkpoint regulates the entering of cells to mitosis (M-phase). If the cells have a defective 

G2/M checkpoint, the cells can enter mitosis before repairing the DNA damage and this leads 

to uncontrolled cell division with genetic failure. The cell cycle is regulated by cyclins and 

cyclin dependent kinases (CDKs), and in the case of G2/M checkpoint by the cyclinB-cdc2 

(CDK1) complex. The activity of CDK1 is regulated by cyclinB1, cyclinB2 and the 

phosphorylation of the specific residue is also very important. CDK1 is maintained inactive 

during most of the cell cycle through phosphorylation by Wee1 and Myt1 kinases. When 

CDK1 activity becomes required for the progression into the M phase, cdc25 phosphatase 

dephosphorylates the CDK1-containing complex. DNA damage leads to ATM/ATR kinase 

activation, resulting in the inactivation of cyclinB/CDK1 complex through the activity of Chk 

kinase, which phosphorylates and inactivates cdc25, which has an important role in the 

activation of CDK1 by dephosphorylation (Boutros et al., 2007). 
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2 SPECIFIC AIMS 

 

The aim of the present study was to determine the antiproliferative properties of novel, 

D-ring modified steroid derivatives containing triazole substituent:  

 

2.1 Investigation of antiproliferative effects and determination of structure – activity 

relationship of newly synthesized estranes or androstanes containing substituted triazole ring 

at position 15, 16, 17 in vitro using human adherent cancer cell lines.  

 

2.2 The most effective compounds were selected for additional in vitro experiments in order 

to characterize the possible mechanism of action. These further investigations included cell 

cycle analysis by flow cytometry, morphological study by fluorescent microscopy after HOPI 

double staining, caspase-3, -8 and -9 enzyme activity and the expression of cell cycle 

regulating factors by RT-PCR technique and Western blot study. 

 

2.3 Characterizing the cancer selectivity of the selected agents by determining their action on 

the viability of human fibroblast.  
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3 MATERIALS AND METHODS 

3.1 Chemical structures of novel, D-ring substituted steroid derivatives containing 

triazole moiety 

3.1.1 Derivatives with 17α-triazolyl function 

The first set of the investigated compounds contained 17α-triazolyl steroid analogues. 

The tested agents possessed estrone or androstane skeleton and in both series a triazole ring 

was attached to ring D at position 17. The compounds were substituted with different 

functions on the triazol ring. All of the investigated compounds were designed and 

synthetized by the staff in the Institute of Organic Chemistry, University of Szeged. 
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Figure 1. Structures of 17α-triazolyl steroid analogues 
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3.1.2 15β-Triazolyl derivatives with 5α-androstane skeleton 

The second set of the investigated compounds included 15β-triazolyl-5α-androstane 

analogues. The tested agents possessed androstane skeleton in which ring A was substituted 

with acetoxy functions at position 3. The differences between the analogues are the –OH and 

=O groups at position 17. A triazol ring was attached to ring D at position 15. The compounds 

were substituted with different functions on the triazol ring.  
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Figure 2. Structures of 15β-triazolyl-5α-androstane analogues 

 

3.1.3 16-Triazolyl derivatives with estrone skeleton  

The third set of the investigated compounds was composed of 16-triazolyl estrone 

epimers. The tested agents possessed estrone skeleton in which ring A was substituted with 

methoxy function at position 3. A triazol ring was attached to ring D at position 16. The 

compounds were substituted with different functions on the triazole ring.  
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Figure 3. Structures of 16-triazolyl steroid analogues 

 

3.2 Tumor cell lines and cell culture 

  Human cell lines were purchased from ECACC (Salisbury, UK). HeLa (cervix 

adenocarcinoma), A431 (skin epidermoid carcinoma), MCF7 (breast adenocarcinoma) and 

noncancerous MRC-5 fetal lung fibroblast cells were cultivated in minimal essential medium 

supplemented with 10% fetal bovine serum, 1% non-essential amino acids and an antibiotic-

antimycotic mixture. All media and supplements were obtained from PAA Laboratories 

GmbH (Pasching, Austria).  
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3.3 Determination of antiproliferative effects of the tested compounds 

  Near-confluent cancer cells were seeded onto a 96-well microplate (5000/well) and 

attached to the bottom of the well overnight. On the second day, 200 µL of new medium 

containing the tested compound (at 10 or 30 µM) was added. After incubation for 72 h at 

37 ºC in humidified air with 5% CO2, the living cells were assayed by the addition of 20 µL of 

5 mg/mL MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] solution. 

MTT was converted by intact mitochondrial reductase and precipitated as blue crystals during 

a 4-h contact period. The medium was then removed and the precipitated crystals were 

dissolved in 100 µL of DMSO during a 60-min period of shaking at 25 ºC. Finally, the 

reduced MTT was assayed at 545 nm, using a microplate reader; wells with untreated cells 

were utilized as controls (Mosmann, 1983). For the most effective compounds, the assays 

were repeated with a set of dilutions, and sigmoidal dose–response curves were fitted to the 

measured data in order to determine the IC50 values by means of GraphPad Prism 4.0 

(GraphPad Software; San Diego, CA, USA). All in vitro experiments were carried out on two 

microplates with at least five parallel wells. Cisplatin was used as positive control. Stock 

solutions of the tested substances (10 mM) were prepared with DMSO. The highest DMSO 

content of the medium (0.3%) did not have any substantial effect on the cell proliferation. 

 

3.4 Cell cycle analysis by flow cytometry 

  Cellular DNA content was determined by means of flow cytometric analysis, using a 

DNA-specific fluorescent dye, propidium iodide (PI). The cells were plated in a six-well plate 

and cultured for 24 h. The cultured cells were treated with various concentrations of the tested 

compounds for 24 or 48 h, after which the medium was removed, and the cells were washed 

with phosphate-buffered saline (PBS) and trypsinized. The harvested cells were suspended in 

medium and centrifuged at 1,700 rpm for 15 min at 4 °C. The supernatant was then removed 

and the cells were resuspended in 1 mL of PBS. After the second centrifugation, 1 mL of –20 

°C 70% EtOH was added dropwise to the cell pellet. The cells were stored at –20 °C until the 

day of DNA staining. On the day of DNA staining, the samples were washed with PBS and 

suspended in 1 mL of DNA staining buffer containing PI, ribonuclease-A, Triton-X and 

sodium citrate. After incubation for 1 h at room temperature, protected from light, the samples 

were analyzed by FACStar. For each experiment 20,000 events were counted, and the 

percentages of the cells in the different cell-cycle phases (subG1, G1, S and G2/M) were 

determined by means of winMDI 2.8 (Vermes et al., 2000). 
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3.5 Double staining with Hoechst 33258 and PI 

  Cells were seeded into a 96-well plate and incubated with various concentrations of 

the tested compounds for 24 h. The medium was then removed and 100 µL of medium with 

10 µL of staining solution was added to the cells. The final concentrations of Hoechst 33258 

and PI were 5 and 3 µg/mL, respectively. After incubation for 60 min at 37 °C, the cells were 

examined on a Nikon Fluorescence Microscope equipped with a Digital Sight Camera 

System, including appropriate filters for Hoechst 33258 and PI (Ribble et al., 2005, Minorics 

et al., 2011). 

 

3.6 Caspase-3 assay 

  Caspase-3 activity was determined by using a colorimetric assay kit (Sigma-Aldrich 

Ltd., Budapest, Hungary), Ac-DEVD-pNA serving as substrate. During the assay, the peptide 

substrate was cleaved by caspase-3, resulting in the release of pNA (p-nitroaniline), which 

was measured by a microplate reader at an absorbance wavelength of 405 nm. Caspase-3 

activity was determined in the presence and absence of a selective inhibitor for caspase-3. 

HeLa cells were treated with the tested compounds at 3, 10 and 30 µM for 24 h; untreated 

cells were used as controls. The treated cells were scraped and incubated on ice with cell lysis 

buffer in proportion to the cell number for 15 min. The cell lysate was next centrifuged for 15 

min at 17,000 g and the supernatant was collected and assayed by means of the microplate 

reader. Results were expressed in fold increase of caspase-3 activity compared with the 

control result (Molnár et al., 2013). 

 

3.7 Caspase-8 assay 

  Caspase-8 activity was determined by using a colorimetric assay kit (Sigma-Aldrich 

Ltd., Budapest, Hungary), Ac-IETD-pNA serving as substrate. During the assay, the peptide 

substrate was cleaved by caspase-8, resulting in the release of pNA, which was measured on a 

microplate reader at an absorbance wavelength of 405 nm. All further conditions were 

identical with those of the caspase-3 assay. 
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3.8 Caspase-9 assay 

  Caspase-9 activity was determined by using a colorimetric assay kit (Invitrogen; 

Carlsbad, CA, USA), with Ac-LEHD-pNA as substrate. During the assay the peptide 

substrate was cleaved by caspase-9, resulting in the release of pNA, which was measured on a 

microplate reader at an absorbance wavelength of 405 nm. All further conditions were 

identical with those of the caspase-3 assay. 

 

3.9 Reverse transcription-polymerase chain reaction (RT-PCR) studies 

  The effects of the tested compounds on the mRNA expression pattern of the markers 

of apoptosis, such as Bax, Bcl-2, cyclin-dependent kinase 1 (CDK1), cdc25B, cyclin B1 and 

cyclin B2, which play a crucial role in the transition from the G2 to the M phase, were 

determined by RT-PCR in HeLa cells. After a 24-h incubation period, the total RNA was 

isolated from the cells (4×105) through the use of TRIzol Reagent, in accordance with the 

instructions of the provider (Csertex Ltd; Budapest, Hungary). The pellet was resuspended in 

100 µL of DNase- and RNase-free distilled water. The RNA concentrations of the samples 

were determined from their absorbances at 260 nm. The RNA (0.5 µg) was mixed with 

DNase- and RNase-free distilled water and 20 µM oligodT (Invitrogen; Carlsbad, CA, USA), 

in a final reaction volume of 10 µL, and the mixture was incubated at 70 °C for 5 min. After 

the mixture had been cooled to 4 °C, 20 U of RNase inhibitor (Promega, Madison, WI, USA), 

20 U of MMLV reverse transcriptase (Promega, Madison, USA), 200 µM dNTP (Sigma-

Aldrich; Budapest, Hungary) in 50 mM Tris-HCl, pH 8.3, 75 mM KCl and 5 mM MgCl2 in a 

final reaction volume of 10 µL were added. The mixture was incubated at 37 °C for 60 min. 

The PCR was carried out with 5 µL of cDNA, 12.5 µL of GoTaq Green Master Mix, 2 µL of 

20 pM sense and the antisense primers of Bax, Bcl-2, CDK1, cdc25B, cyclin B1, cyclin B2 

and 3.5 µL of DNase- and RNase-free distilled water. Human glyceraldehyde 3-phosphate 

dehydrogenase (hGAPDH) primers were used as internal control in all samples (Table 1). The 

PCR was performed with an ESCO SWIFT MAXI thermal cycler (Esco Technologies; 

Philadelphia, PA, USA) and the products were separated on 2% agarose gels, stained with 

ethidium bromide and photographed under a UV transilluminator. Semiquantitative analysis 

was performed by densitometric scanning of the gel with a Kodak IMAGE STATION 2000R 

(Csertex; Budapest, Hungary). 
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Table 1. Primers and PCR conditions of the determined genes, the Genebank access numbers 

and the length of PCR products 

Name: Primer sequence Gene ID 

Product 

size  

(bp) 

Coupling 

temp.  

(°C) 

CDK1 
F: ACTGGCTGATTTTGGCCTTGCC 

R: TGAGTAACGAGCTGACCCCAGCAA 
983 118 62 

cyclin B1 
F: AATAAGGAGGGAGCAGTGCG 

R: GAAGAGCCAGCCTAGCCTCAG 
891 51 60 

cyclin B2 
F: GCGTTGGCATTATGGATCG 

R: TCTTCCGGGAAACTGGCTG 
9133 51 60 

Cdc25B 
F: CACGCCCGTGCAGAATAAGC 

R: ATGACTCTCTTGTCCAGGCTACAGG 
994 417 60 

Bax 
F: TGGCAGCTGACATGTTTTCTGAC 

R: CGTCCCAACCACCCTGGTCT 
581 195 53 

Bcl-2 
F: GACTTCGCCGAGATGTCCAG 

R: CAGGTGCCGGTTCAGGTACT 
596 225 51 

hGAPDH 
F: ACCCAGAAGACTGTGGATGG 

R: TGCTGTAGCCAAATTCGTTG 
2597 415 55 

 

3.10 Western blotting studies 

  To investigate the actions of the most potent compounds on the functions of 

phosphorylated and total stathmin, protein expression was determined by using Western blot 

analysis. HeLa cells were harvested in 60-mm dishes at a density of 2 x 105 cells/mL and 

treated with the tested agents for 48 h. Whole-cell extracts were prepared by washing the cells 

with PBS and suspending them in lysis buffer (50 mM Tris, 5 mM EDTA, 150 mM NaCl, 1% 

NP-40, 0.5% deoxycholic acid, 1 mM sodium orthovanadate, 100 µg/mL PMSF and protease 

inhibitors) (Lee et al., 2007). 10 µg of protein per well was subjected to electrophoresis on 4–

12% NuPAGE Bis–Tris Gel in XCell SureLock Mini-Cell Units (Invitrogen, Carlsbad, CA, 

USA). Proteins were transferred from gels to nitrocellulose membranes, using the iBlot Gel 

Transfer System (Invitrogen, Carlsbad, CA, USA). Antibody binding was detected with the 

WesternBreeze Chemiluminescent Western blot immunodetection kit (Invitrogen, Carlsbad, 

CA, USA). The blots were incubated on a shaker with stathmin (Op18: rabbit polyclonal 
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antibody raised against amino acids 1-149 representing full-length human protein), 

phosphorylated stathmin (p-Op18: rabbit polyclonal antibody raised against a short amino 

acid sequence containing phosphorylated Ser25 of human protein) and β-actin polyclonal 

antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) 1:200 in the blocking buffer. 

Each sample was prepared in three parallels and the experiments were repeated twice. 

Semiquantitative analysis was performed by densitometric scanning of the blot with Kodak 

IMAGE STATION 2000R (Eastman Kodak Co., Rochester, NY, USA). All determined 

optical density values were normalized to the optical density value of β-actin.  

 

3.11 Statistical analysis 

Statistical analyses were carried out by analysis of variance (ANOVA), followed by 

the Dunnet post-test. Western blott data were analyzed by ANOVA, followed by the Neuman-

Keuls post-test using GraphPad Prism version 4.0 for Windows (GraphPad Software, San 

Diego, CA, USA). 
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4 RESULTS 

4.1 Antiproliferative properties of 17α-triazolyl derivatives 

4.1.1 Determination of the antiproliferative effects of 17α-triazolyl derivatives 

In order to determine the antiproliferative effect of the prepared 17α-triazolyl 

derivatives, the steroids were tested on human cancerous cell lines (HeLa, A431 and MCF7) 

by means of the MTT assay. Two final concentrations (10 and 30 µM) were applied for all 

compounds. The estrone derivatives (1a–j) have a moderate effect, these compounds elicited 

less than 60% inhibition of cell proliferation even at higher concentration. The corresponding 

androstane series (2a–j) were generally more effective on the cell proliferation (Table 2). 

Derivatives with an unsubstituted phenyl ring (2a) and those containing simple substituents 

(2b–c) or cycloalkyl groups (2i–j) and the introduction of a carbon chain (ethyl) exerted 

moderate action. However, the extension of the carbon chain on the phenol ring (propyl; 2f) 

and the introduction of cycloalkyl group (2h) on the aromatic moiety resulted in increased 

activities. Since most of these analogs exerted a moderate antiproliferative action, no 

additional experiments were performed.  

 



 

21 
 

Table 2 Antiproliferative properties of 17α-triazolyl derivatives 

Inhibition % ± SEM 
Compound 

Conc. 

(µM) HeLa MCF7 A431 

1a 10 <25 <25 34.86 ± 1.0 

 30 <25 <25 30.2 ± 1.0 

2a 10 45.9 ± 0.8 33.9 ± 1.3 36.9 ± 0.9 

 30 72.4 ± 0.5 47.2 ± 0.7 58.4 ± 0.9 

1b 10 28.0 ± 2.4 <25 43.9 ± 1.8 

 30 41.2 ± 1.8 32.6 ± 1.3 48.3 ± 2.0 

2b 10 52.0 ± 1.2 41.8 ± 1.7 53.1 ± 1.3 

 30 53.7 ± 1.4 52.9 ± 1.6 62.3 ± 1.6 

1c 10 <25 <25 <25 

 30 27.9 ± 1.9 <25 26.8 ± 0.9 

2c 10 44.4 ± 0.3 55.1 ± 1.4 55.2 ± 1.7 

 30 62.8 ± 1.1 78.8 ± 0.5 75.2 ± 0.7 

1d 10 <25 <25 <25 

 30 36.2 ± 1.4 27.6 ± 0.1 34.5 ± 1.7 

2d 10 32.8 ± 1.8 <25 30.7 ± 1.4 

 30 53.4 ± 1.7 39.0 ± 1.9  48.9 ± 1.0 

1e 10 <25 <25 <25 

 30 <25 <25 33.5 ± 2.2 

2e 10 30.0 ± 0.7 <25 <25 

 30 67.5 ± 0.7 47.3 ± 1.6 51.2 ± 1.5 

1f 10 <25 <25  <25  

 30 26.6 ± 1.8 <25 27.2 ± 1.9 

2f 10 59.7 ± 1.0 34.9 ± 1.6  68.7 ± 0.8 

 30 78.6 ± 0.4 53.3 ± 0.5 81.1 ± 0.1 

1g 10 <25 <25 34.8 ± 1.9 

 30 <25 <25 29.9 ± 1.7 

2g 10 27.0 ± 0.7 <25 30.5 ± 1.4  

 30 46.1 ± 0.9 30.4 ± 1.7  48.2 ± 0.6 

1h 10 47.0 ± 1.8 34.6 ± 1.5  47.8 ± 1.9 

 30 43.2 ± 2.0 41.9 ± 1.0 49.8 ± 2.0 

2h 10 52.4 ± 1.4 30.4 ± 1.9 <25 
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 30 98.4 ± 0.1 92.0 ± 0.7 82.2 ± 0.8  

1i 10 46.1 ± 1.5 25.9 ± 1.5 32.3 ± 1.2  

 30 52.4 ± 2.0 39.1 ± 1.1 38.6 ± 1.9 

2i 10 40.3 ± 1.7 <25 39.1 ± 1.4 

 30 67.1 ± 1.3 62.5 ± 2.1 55.7 ± 1.8 

1j 10 34.8 ± 1.5 <25 <25 

 30 38.3 ± 1.6 26.1 ± 2.1 27.6 ± 1.0 

2j 10 52.0 ± 1.7 23.8 ± 1.6 28.7 ± 2.2 

 30 71.4 ± 0.4 54.5 ± 1.0 70.8 ± 1.4 

Cisplatin 10 42.6 ± 2.3 53.0 ± 2.3 88.6 ± 0.5 

 30 99.9 ± 0.3 86.9 ± 1.2 90.2 ± 1.8 

 

 

4.2 Antiproliferative properties of 15β-triazolyl-5α-androstanes 

4.2.1 Determination of the antiproliferative effects of 15β-triazolyl-5α-androstanes 

The activities were determined by using three malignant adherent cell lines (HeLa, 

A431 and MCF7) in the microplate-based MTT colorimetric assay in a two-step procedure 

(Table 3). Two final concentrations (10 and 30 µM) were first applied for all compounds. 

Although there is no generally accepted threshold for efficacy, a substance exhibiting less 

than 60% inhibition of cell growth at 30 µM cannot be considered a promising lead 

compound. A set of dilutions were prepared (1, 3, 10 and 30 µM) and the most effective 

compounds were tested again and a sigmoidal dose-response curve was fitted to the measured 

points in order to determine the IC50 values. 

Although not consequently, the 17-keto function seemed to be favored over the 17-

hydroxy group. The results of the MTT assays led to the selection of 3a–c, 4a and 4b for 

additional experiments in an attempt to elucidate the mechanism of their action. 
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Table 3. Antiproliferative properties of 15β-triazolyl-5α-androstanes 

IC50 values (µM)* 

 

HeLa cells MCF-7 cells A431 cells 

3a 7.70 19.24 20.69 

3b 9.40 10.28 22.43 

3c 6.52 >30 >30 

3d >30 >30 >30 

4a 9.16 1.69 9.69 

4b 10.27 2.68 10.66 

4c 15.01 8.40 >30 

4d 10.96 3.39 16.03 

* Mean value from two independent determinations with five parallel  

wells, standard deviation less than 15%. 

 

 

4.2.2 Effects of 15β-triazolyl-5α-androstanes on cell cycle 

Treatment of HeLa cells with 3 and 10 µM of the selected agents for 24 or 48 h was 

followed by flow cytometric cell cycle analysis. The 24-h treatment with each of these 

compounds resulted in a concentration-dependent decrease in the number of cells in the G1 

phase, and also in an accumulation of the G2/M population (Fig 4). Compound 3c did not 

exert any effect on the G2/M phase, but increased the proportion of cells in the synthetic (S) 

phase. Agents 3a–c and 4a also resulted in modest but statistically significant increases in the 

number of hypodiploid (subG1) cells, which are generally regarded as an apoptotic 

population. This apoptotic proportion became more pronounced after incubation for 48 h. 

This finding suggests that, after treatment with these 5α-androstane derivatives, the cells 

cannot complete the S-G2/M phases of the cell cycle and this blockade may initiate the 

apoptotic machinery. 
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Figure 4. Effects of compounds 3a-c and 4a-b on HeLa cell cycle distribution after 

incubation for 24 and 48h. Columns represent mean values from three determinations. *and 

** indicate p<0.05 and p<0.01, respectively, as compared with the control cells. 
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4.2.3 Morphological studies with 15β-triazolyl-5α-androstanes 

The programmed cell death-inducing capacities of the tested agents were confirmed by 

detection of the cell morphology and membrane integrity. Separate pictures were taken, 

illustrating Hoechst 33258 and propidium iodide (PI) fluorescence as morphological markers. 

After incubation for 24 h, concentration-dependent increases in nuclear condensation and cell 

membrane permeability were generally detected, indicated by blue and red fluorescence, 

respectively (Figure 5).  

 

 

Figure 5. Fluorescence microscopy images of HOPI double staining. Two separate pictures 

from the same field have been recorded for the two markers. HeLa cells were treated with 

vehicle (control), or with 3a–c and 4a–b at 3, 10 and 30 µM. The blue fluorescence indicates 

HO, and the red coloration is a result of cellular PI accumulation. The bar in the HO control 

picture indicates 100 µm. 
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4.3 Antiproliferative properties of 16α-triazolylestrone derivatives 

4.3.1 Determination of the antiproliferative effects of 16α-triazolylestrone derivatives 

The antiproliferative properties of the prepared 16α-triazolylestrone derivatives were 

determined on a panel of human cancerous cell lines (HeLa, A431 and MCF7) by means of 

the MTT assay in a two-step procedure. Two final concentrations (10 and 30 µM) were first 

applied for all compounds. For agents exhibiting a growth of inhibition at least 60% against 

any of the cell lines, further assays with lower concentrations were performed and the IC50 

values were calculated. The cancer selectivities of these compounds were additionally 

determined by the same MTT assay against the noncancerous normal lung fibroblast cell line 

MRC5 (Table 4). Derivatives with an unsubstituted phenyl ring (5a and 6a) and those 

containing simple substituents (5b–d and 6b–d) or cycloalkyl groups (5j–l and 6j–l) also 

exerted moderate action. The introduction of a carbon chain (ethyl, propyl or isobutyl) on the 

aromatic moiety, however, resulted in increased activities, and these molecular elements 

combined with 17β-hydroxy groups generated the most potent members of the current set (6f–

h). The m-aminophenyl-substituted heteroaromatic ring resulted in another effective 

compound, but in this case the 17α-hydroxy epimer (5i) proved to be more potent. On the 

basis of their antiproliferative effects, compounds 5i and 6f–h were selected for further 

experiments, including characterization of the cancer selectivity. All four steroids exerted 

limited action on the proliferation of noncancerous fibroblast MRC5. In the cases of 5i and 

6h, 50% inhibition was not elicited up to 30 µM. 
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Table 4. Antiproliferative properties of the synthetized compounds 

Inhibition % ± SEM 

[Calculated IC50 value]a Compound 
Conc. 

(µM) 
HeLa MCF7 A431 MRC5 

5a 10 37.44 ± 2.44 – 34.92 ± 0.58 n.d. 

 30 68.28 ± 0.54 49.93 ± 0.63 47.92 + 1.24  

  [10.21 µM] [>30 µM] [>30 µM]  

5b 10 – – – n.d. 

 30 – – –  

5c 10 – – – n.d. 

 30 – – –  

5d 10 – – – n.d. 

 30 45.45 ± 0.84 28.79 ± 1.51 26.13 ± 2.30  

5e 10 51.34 ± 0.62 34.13 ± 2.14 41.87 ± 1.92 n.d. 

 30 71.39 ±1.17 64.39 ± 1.15 55.47 ± 0.79  

  [14.80 µM] [17.78 µM] [22.76 µM]  

5f 10 47.07 ± 1.06 61.87 ± 2.59 – n.d. 

 30 97.30 ± 0.49 96.36 ± 0.44 29.21 ± 2.76  

  [10.68 µM] [8.07 µM] [>30 µM]  

5g 10 – – – n.d. 

 30 51.62 ± 2.04 – –  

5h 10 – – – n.d. 

 30 92.85 ± 0.41 66.63 ± 1.19 42.59 ± 1.14  

  [11.68 µM] [11.58 µM] [>30 µM]  

5i 10 47.24 ± 2.13 – 26.98 ± 0.87 – 

 30 98.38 ± 0.15 82.48 ± 0.85 94.70 ± 0.46 25.74 ± 2.94 

  [13.85 µM] [14.88 µM] [11.75 µM] [>30 µM] 

5j 10 – 30.96 ± 1.71 35.79 ± 1.53 n.d. 

 30 51.49 ± 1.92 43.48 ± 1.30 49.96 ± 1.43  

5k 10 25.33 ± 2.54 – – n.d. 

 30 38.09 ± 2.03 47.94 ± 1.15 –  

5l 10 – – – n.d. 

 30 34.44 ± 2.14) 33.29 ± 2.51 26.92 ± 1.75  

6a 10 – – – n.d. 

 30 34.63 ± 2.14 39.95 ± 1.96 52.94 ± 0.70  
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6b 10 40.54 ± 0.74 – 44.29 ± 0.73 n.d. 

 30 50.06 ± 1.13 – 44.71 ± 1.63  

6c 10 – – – n.d. 

 30 36.57 ± 1.08 44.20 ± 1.54 58.09 ± 0.21  

6d 10 37.41 ± 1.16 26.05 ± 2.73 – n.d. 

 30 46.76 ± 2.95 37.10 ± 2.35 49.14 ± 2.13  

6e 10 31.65 ± 2.53 – – n.d. 

 30 40.81 ± 2.35 – –  

6f 10 90.47 ± 0.53 73.15 ± 1.39 72.94 ± 0.87 32.75 ± 2.49 

 30 95.17 ± 0.27 78.94 ± 0.55 70.98 ± 0.86 68.32 ± 0.76 

  [5.08 µM] [7.88 µM] [6.77 µM] [17.64 µM] 

6g 10 85.62 ± 0.75 44.84 ± 2.19 47.32 ± 1.02 33.74 ± 1.74 

 30 95.55 ± 0.62 60.60 ± 1.97 73.60 ± 0.46 68.61 ± 1.22 

  [8.69 µM] [10.78 µM] [10.68 µM] [17.07 µM] 

6h 10 75.26 ± 1.57 32.80 ± 2.59 43.15 ± 1.87 21.01 ± 1.58 

 30 86.44 ± 0.57 36.30 ± 1.26 51.76 ± 1.52 20.44 ± 1.29 

  [12.11 µM] [>30 µM] [>30 µM] [>30 µM] 

6i 10 – – – n.d. 

 30 24.55 ± 2.69 64.62 ± 1.71 –  

6j 10 – – – n.d. 

 30 40.47 ± 2.39 – –  

6k 10 26.28 ± 1.23 – – n.d. 

 30 34.55 ± 1.61 – –  

6l 10 – – – n.d. 

 30 26.54 ± 2.16 – –  

Cisplatin 10 42.61 ± 2.33 53.03 ± 2.29 88.54 ± 0.50 72.30 ± 2.30 

 30 99.93 ± 0.26 86.90 ± 1.24 90.18 ± 1.78 70.65 + 1.34 

  [12.43 µM] [9.63 µM] [2.84 µM] [4.51 µM] 
a Mean value from two independent determinations with five parallel wells, standard 

deviation less than 15%. b Inhibition values <25% are not presented for clarity. c n.d.: not 

determined 
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4.3.2 Effects of 16α-triazolylestrone derivatives on cell cycle  

HeLa cells were treated with the tested compounds at 3 and 10 µM for 24 and 48 h, 

and the phase distribution of the treated cells was determined (Fig. 6). Treatment with the 

selected estrane analogs resulted in a concentration-dependent increase of subG1 phase cells, 

which was more pronounced after incubation for 48 h. At the same time, the G1 populations 

decreased substantially, while the synthetic and G2/M phases exhibited modest, but 

significant increases. Though compound 6f proved to be the most potent inducer of the 

hypodiploid cell population, no substantial differences were evidenced in the cell cycle 

distributions of the treated cells.  



 

30 
 

 

Figure 6. Effects of compounds 6f, 6g, 6h and 5i on the HeLa cell cycle distribution after 

incubation for 24 (left panels) and 48 h (right panels). Grey and black columns indicate 3 and 

10 µM, respectively. * and ** denote p<0.05 and p<0.01, respectively, as compared with the 

control cells. 

 

 



 

31 
 

4.3.3 Morphological studies with 16α-triazolylestrone derivatives 

HeLa cells were treated with the steroids in concentrations of 3, 10 and 30 µM and 

then incubated for 24 h and stained with the fluorescent DNA markers HO and PI in order to 

evaluate the morphological markers of the effects induced by the tested compounds. Two 

separate pictures from the same field were taken for the two fluorescent dyes. Morphological 

changes such as nuclear condensation, the appearance of apoptotic bodies and increase of the 

cell membrane permeability were recognized in a concentration-dependent manner as 

evidence of apoptosis and necrosis (Fig. 7). All four selected steroids (5i, 6f, 6g and 6h) in a 

concentration of 3 µM induced early apoptosis, as confirmed by nuclear condensation without 

increased membrane permeability. The gradual impairment of the membrane function was 

detected by more frequent PI staining on increase of the applied concentration, which may be 

evidence of late apoptosis or necrosis. Treatment with 30 µM of these compounds resulted in 

disturbed membrane permeability, without the corresponding nuclear condensation indicating 

the necrosis-inducing capacity of the agents.  

Since two of the selected steroids (6f and 6g) elicited substantial antiproliferative 

effects on MRC5 cells too, the staining was extended to these noncancerous cells with 

identical concentrations and incubation period (Fig. 8). Sparse nuclear condensation was 

evidenced in fibroblast cells treated with higher concentrations (10 or 30 µM), without 

marked PI staining. 
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Figure 7. Fluorescent microscopy images of HO-PI double staining. Two separate pictures 

from the same field were taken for the two markers. HeLa cells were treated with vehicle 

(control), or treated with 6f, 6g, 6h and 5i at the indicated concentrations. The blue 

fluorescence (left panels) indicates HO and the red fluorescence (right panels) is a 

consequence of PI accumulation. The bar in the PI control picture indicates 100 µm.  
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Figure 8. Fluorescent microscopy images of Hoechst 33258-PI double staining. Two separate 

pictures from the same field were taken for the two markers. MRC5 cells were treated with 

vehicle (control), or with 6f and 6g at the indicated concentrations. The blue fluorescence (left 

panels) indicates Hoechst 33258, and the red fluorescence (right panels) is a consequence of 

PI accumulation. The bar in the PI control picture indicates 100 µm.  
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4.3.4 Caspase-3, caspase-8 and caspase-9 assays 

Based on the results of cell cycle analysis and HO-PI double staining, the effects of 

two selected agents (6f and 6g) on the activities of the apoptotic key enzymes caspase-3, 

caspase-8 and caspase-9 were determined. Both steroid analogs activated the executive 

caspase-3 in a concentration-dependent way during a 24-h incubation (Fig. 9). Agent 6g 

exerted more pronounced action in this respect. The activity of the initiator caspase-9 was also 

significantly increased by both agents, though the extents were less pronounced. 24 h of 

exposure to agent 6f resulted in similarly elevated enzyme activities in the concentration 

range 3–30 µM, while agent 6g caused concentration-dependent caspase-9 activation. On the 

other hand, none of the tested agents elicited significant activation of caspase-8. 

 

 

Figure 9. Induction of caspase-3, caspase-8 and caspase-9 activities after incubation with 

compounds 6f and 6g for 24 h. White, gray and black columns denote 3, 10 and 30 µM of the 

given agent. * and ** denote p < 0.05 and p < 0.01, respectively, as compared with the control 

condition. 
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4.3.5 RT-PCR studies 

The expressions of the cell cycle regulator factors of the G2–M transition (CDK1, 

cyclin B1, cyclin B2 and cdc25B) and factors that play key roles in the mitochondrial 

pathway of apoptosis (Bax and Bcl-2) were determined at the mRNA level by means of RT-

PCR. From the results of cell cycle analysis and caspase-3 and caspase-9 assays, the effects of 

the two most effective compounds at 3 and 10 µM on these mRNA sequences were 

determined following a 24-h incubation. Two well-characterized proteins responsible for the 

regulation of outer mitochondrial membrane permeability, Bax and Bcl-2, did not exhibit 

substantial differences (data not presented). However, under otherwise the same conditions, 

the ratio Bax/Bcl-2 was significantly higher at the higher concentration for both compounds 

(Fig. 10). This indicates activation of the mitochondrial pathway of apoptosis.  

All four selected factors responsible for the G2–M transition were decreased after 

treatment with the higher concentration (10 µM). Moreover, the expression of cyclin B1 at the 

mRNA level was significantly reduced even after treatment with 3 µM of 6g (Fig. 11).  

 

Figure 10. Effects of compounds 6f and 6g on the Bax/Bcl-2 ratio after incubation of HeLa 

cells for 24 h. * and ** denote p<0.05 and p<0.01, respectively, as compared with the control 

condition. 
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Figure 11. Expression of CDK1, cyclin B1, cyclin B2 and cdc25B at the mRNA level after 

incubation with 3 (grey columns) or 10 (black columns) µM of compounds 6f or 6g. *, ** and 

*** denote p<0.05, p<0.01 and p<0.001, respectively, as compared with the control condition. 
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4.3.6 Western blotting studies 

In response to a 48-h exposure to 10 µM 6f or 6g, the protein expression of 

phosphorylated stathmin, a microtubule destabilizing protein, was significantly increased 

severalfold as compared to untreated control cells (Fig. 12). On the other hand, the total 

amount of stathmin did not display any significant alteration indicating a change in the 

phosphorylation state of the protein. 

 

 

Figure 12. Effects of 6f and 6g (10 µM) on the expression of phosphorylated (upper panel) 

and total (lower panel) stathmin protein in HeLa cells after incubation for 48 h, determined by 

Western blot analysis. Results are mean values ± SEM of the data on two separate 

measurements, n = 6. *** indicates p < 0.001 as compared with the untreated control cells. 
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5 DISCUSSION 

 

Compounds with a steroidal skeleton may exert an extremely broad variety of 

pharmacological activities in spite of the conserved chemical structure. The steroid backbone 

can therefore be utilized for the design and synthesis of a wide range of drug candidates.  

A convincing amount of evidence has accumulated concerning the anticancer efficacy 

of natural steroids isolated from plants and their synthetic analogs. The cancer-preventing 

properties of cardiotonics (e.g. digoxin and digitoxin) traditionally used in the treatment of 

congestive heart failure have been recognized in retrospective epidemiological analyses 

(Stenkvist, 1999). These findings suggested the extension of the field of indication of the 

currently utilized digitaloids, and intensive research has therefore been initiated to develop a 

digitalis-based, novel class of antitumor agents (Mijatovic et al., 2007). 

The antiproliferative action of a set of solanidine analogs against HeLa cells was 

reported recently. Some of these steroids substantially inhibited the outflow of rhodamine-123 

from murine lymphoma cells, mediated by the ABCB1 transporter (Zupkó et al., 2014). 

Many steroidal alkaloids, including α-tomatidine and solanidine, inhibited the growth 

of human cancer cell lines at reasonable concentrations, whereas this action was less 

pronounced for their aglycones tomatidine and solanidine, respectively, indicating that the 

attractive properties of the steroid scaffold can be improved by an appropriately selected 

smaller substituent (Lee et al., 2004). This concept was utilized in our current work, in which 

a substituted triazolyl ring was introduced onto the estrane core.  

The triazole ring is a five-membered heterocycle containing three nitrogen atoms. It 

has aromaticity and an electron rich system and because of this it enables triazole derivatives 

to bind with a variety of enzymes and receptors. Triazole compounds such as anastrozole, 

letrozole are very important antihormonal drugs and a large number of triazole compounds 

have been exploited as anticancer drugs or candidates in recent years. The structural 

modification of known anticancer drugs leads to the development of new structural triazole 

compounds as anticancer agents. N-Aryltriazole by the introduction of a 1,2,3-triazole ring 

into doxifluridine, used in the clinical practice, exhibited the higher anticancer activity against 

three human cell lines (Vero, MT-4, and HeLa) and it has no cytotoxic activity even at a high 

concentration of 300 µmol/L. Natural artemisinin used in antimalarial therapy showed no 

anticancer activity. Artemisinin inhibits cell proliferation of different malignant cells in the 

case of the introduction of a triazole ring at the position of carbonyl moiety (Zhou and Wang, 

2012). Based on these data, the triazole ring can be regarded as a pharmacophoric moiety. 



 

39 
 

Estrogens are generally regarded as cellular proliferation-potentiating factors, and this 

is especially true for some malignancies of gynecological origin. Of the many estrane-related 

antiproliferative compounds recently described, the most widely investigated (and even 

subjected to clinical trial) is an endogenous metabolite of estrone, 2-methoxyestradiol, which 

exerts its anticancer effect by eliciting an imbalance of the microtubule dynamics and the 

direct inhibition of neoangiogenesis (Kambhampati et al., 2012, Peyrat et al., 2012).  

A set of estrone-16-oxime ethers was recently synthetized and tested for anticancer 

properties. The most potent analogs inhibited DNA synthesis in Hela cells, changed the 

expression of endogenous factors regulating the G1–S transition (retinoblastoma protein, 

CDK4 and p16) and induced apoptosis (Berényi et al., 2013).  

Since most, if not all, of the currently used anticancer agents possess the ability to 

initiate programmed cell death by modifying the balance between apoptotic and antiapoptotic 

signaling, the demonstration of apoptosis induction is a critical step in the development of an 

anticancer drug candidate (Tolomeo and Simoni, 2002). Treatment with each of the four 

selected molecules (5i, 6f, 6g and 6h) for 24 h, even at the lowest concentration (3 µM), 

resulted in nuclear condensation with minimal or no disruption in membrane permeability, 

which is a morphological marker of apoptosis. Flow cytometry was utilized for a quantitative 

description of the cell cycle distribution of the treated cells. The most effective agents 

increased the hypodiploid (subG1) population in a concentration- and time-dependent manner. 

The reduced DNA stainability is considered to be a consequence of the progressive loss of 

DNA due to activation of endonuclease and the elimination fragments as part of the self-

decomposition during apoptosis (Vermes et al., 2000).  

Since the present compounds contain an estrane skeleton, interaction with estrogenic 

receptors seems a possible mechanism of action. Additionally, their potential estrogenic 

activity is a reasonable question. On the basis of a well-established structure–activity 

relationship, any action mediated through estrogenic receptors can be excluded (Anstead et 

al., 1997). The 3-OH group of estradiol is needed as an H-bond donor in its interaction with 

its receptors, and the 3-methyl ether of estradiol exhibits less than 1% relative binding affinity. 

A bulky 16-α substituent is another structural feature which abolishes the estrogenic activities 

of estranes. 

Caspases are cysteinyl aspartate proteinases present in almost all intact cells as 

inactive precursors which become activated by proteolytic cleavage upon receiving apoptotic 

stimuli. In mammals, 18 caspases have been identified and are classified into initiator and 

executioner caspases according to their role in the apoptotic machinery (Kumar, 2007). In 
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spite of the fact that both caspase-3 and caspase-9 have been implicated in non-apoptotic 

functions, the activation of these enzymes in cancer cell cultures can still be regarded as an 

indication of apoptotic execution and initiation of its intrinsic pathway, respectively (Connolly 

et al., 2014). From the aspect of the caspase activation pattern of the two selected compounds, 

it may be pointed out to that they induce apoptosis via the intrinsic pathway. The activation of 

caspase-9 seems less pronounced, which is not unusual in view of the fact that this enzyme is 

the first element in a cascade, while caspase-3 is a terminal element and therefore a product of 

amplification.  

Since the mitochondria maintain the capacity to initiate the controlled cellular 

decomposition upon receiving appropriate signals, they serve as a central hub in the 

regulation of the apoptosis–survival balance. The mitochondrial pathway of apoptosis is 

induced by the permeabilization of its outer membrane, resulting in cytochrome c release and 

the subsequent formation of the apoptosome, a multiprotein complex acting as a scaffold for 

successive events of apoptosis. The permeabilization of the outer mitochondrial membrane is 

therefore a crucial event and strictly regulated by the members of the Bcl-2 protein family. 

Although an antiapoptotic subfamily, including Bcl-2, Bcl-xl and Mcl-1, maintains a balance 

with some proapoptotic proteins (Bax and Bak), Bcl-2 and Bax are frequently investigated 

representative members of the two subgroups (Brinkmann and Kashkar, 2014). Their relation 

is generally regarded as a marker of the apoptotic–survival balance (Xu et al., 2014). The 

higher concentrations of both selected compounds (6f and 6g) resulted in a significant 

increase in the ratio Bax/Bcl-2, reinforcing the mitochondrial origin of the detected apoptosis.  

Cell division is a highly complex procedure involving an incompletely described array 

of regulatory steps, most of which are controlled by reversible protein phosphorylation. 

Specifically, the activity of the cyclin B–CDK1 complex is pivotal in regulating the G2–M 

phase transition, and especially in the initiation of chromosome condensation (Lindqvist et 

al., 2005). CDK1 is maintained inactive during most of the cell cycle through phosphorylation 

by Wee1 and Myt1 kinases. When CDK1 activity becomes required for the progression into 

the M phase, cdc25 phosphatase dephosphorylates the CDK1-containing complex. In 

mammals, three isoforms of cdc25 have been identified: cdc25A, cdc25B and cdc25C. The 

overexpression of CDC25A and CDC25B is reported to be involved in carcinogenesis and is 

associated with poor prognosis (Boutros et al., 2007). The functional differences between 

these isoforms have not been fully elucidated, but the normal development of CDC25B and 

CDC25C double knockout mice indicates that CDC25A is capable of performing all the 

essential operations (Ferguson et al., 2005). CDC25B was proposed to be responsible for the 
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initial activation of cyclin B–CDK1 complex during G2–M phase transition in HeLa cells 

(Gabrielli et al., 1996). This led us to select the most terminal executive regulators of cell 

cycle transition for determination of their expression at the mRNA level. Since the activity of 

the cyclin B–CDK1 complex is regulated in part by phosphorylation, and CDC25B is also 

phosphorylated by the complex itself, the mRNA level expression appears to be inadequate 

for a complete description of the tested steroids on the regulatory network. In spite of the 

limitations of the applied PCR technique, it seems relevant that the expressions of all four 

regulating factors were significantly decreased, indicating that the intervention in the cell 

cycle machinery is likely to occur at upstream levels. 

Stathmin or oncoprotein 18 is a highly conserved oncoprotein frequently 

overexpressed in cancer cells, which plays a crucial role in the early phase of mitosis, 

destabilizing the microtubules (Cassimeris, 2002). It is regulated by phosphorylation on four 

serine residues after turning off its destabilizing activity, and the cell can enter mitosis. Upon 

increased phosphorylation of stathmin, therefore, the accumulation of cells in the G2/M phase 

could be expected. This consideration is in agreement with the presented results and published 

findings. Treatment with an innovative formulation of paclitaxel resulted in a pronounced 

increase of gastric cancer cells in the G2/M phase and also the increased phosphorylation of 

stathmin (Zhang et al., 2013). Since this phosphorylation can be effected by a broad set of 

kinases, including CDK1 and CDK2, calmodulin-dependent protein kinase, and cAMP and 

cGMP dependent protein kinases, the exact enzyme responsible for the action of the presented 

steroids remains unclear. 

Cancer selectivity is one of the most crucial parameters determining the decision as to 

the further development of a drug candidate. A viability assay and fluorescent staining on 

intact human fibroblast cells can certainly not be regarded as a complete toxicological 

evaluation. However, it is clearly promising that two of the four selected molecules (6f and 

6g) exhibited higher calculated IC50 values against noncancerous than against malignant cells, 

and did not elicit substantial membrane damage up to 30 µM. A further one of the selected 

agents (5i) did not lead to 50% inhibition of fibroblast growth up to 30 µM, and the fourth 

(6h) proved selective for HeLa cells.  

 

 

 



 

42 
 

6 SUMMARY 

 

A diverse set of innovative compounds with steroidal skeleton bearing the 

pharmacophore triazole ring on different positions of ring D have been tested for 

antiproliferative activity. While 17α-triazolyl derivatives exerted limited activities, 15- and 

16-triazolyl steroids exhibited substantial actions deserving further investigations. 

 

Some of them exhibited in vitro potencies comparable to that of the clinically utilized 

reference agent cisplatin. The most potent analogs were subjected to additional investigations 

in order to describe the mechanisms of their effects. Activation of the intrinsic pathway of 

apoptosis was evidenced by biochemical and morphological markers. Cell cycle blockade at 

the G2–M transition was additionally proved. The presented data demonstrate that estrone 

may be regarded as a suitable skeleton for the design of innovative antiproliferative drug 

candidates.  
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