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introduction

The incubation period of malaria can vary depending on the species
of parasite or the geographic regions. In particular, in endemic areas
of temperate climate (for example in Korea), the incubation period of
Plasmodium vivax shows bimodal distribution of short and long-term in-
cubation periods. Assuming fixed length for the long-term incubation
period (DDE) gives a distribution that is much closer to the empirical
distribution, than the exponentially distributed long-term incubation pe-
riod (ODE).

We compare two transmission models for P. vivax malaria, where
we model the long-term incubation period using ordinary differential
equations or delay differential equations. We identify the basic repro-
duction number R0 and show that it is a threshold parameter for the
global dynamics of the model. For the DDE model, the global analysis
is performed using persistence theory and Lyapunov functionals. We
show that, while the qualitative behaviors of the two models are similar,
the ODE model overestimates the basic reproduction number and also
the level of endemicity, compared to the DDE model. By calculating R0,
we can see that long incubation time is not beneficial to the parasite in
a constant environment, thus its presence is connected to the seasonal
mosquito activity in Korea. In contrast to the autonomous case, when
we incorporate seasonality into our model equations, the interplay of the
time delay and the periodicity results that in some situations the DDE
model predicts higher prevalence of malaria. The periodic DDE model is
also superior to periodic ODE in capturing the qualitative properties of
the observed Korean malaria time series, while its mathematical analysis
is rather challenging.

Motivated by the addressed problem, we study linear scalar delay
differential equations with a single delay and positive periodic coeffi-
cients. It is known that if the period is an integer multiple of the delay,
then there is a stability threshold expressed by the time average of the
coefficients. Under certain conditions, we generalize this principle to sit-
uations when the delay and the period do not have to be related. How-
ever, it will be shown by examples that in general, this quantity does
not determine stability. Such stability result has importance for many
systems arisen in mathematical biology.

The prolonged incubation time of P. vivax malaria in temperate re-
gion is considered to be an adaptation strategy to the seasonal environ-
ment. We present evolutionary models of the pathogen in a seasonal
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environment. By adaptive dynamics, we explore the direction of the
evolution depending on mosquito season length.

p. vivax transmission with long incubation period

To describe the transmission of P. vivax malaria, we assume SEIRS
disease dynamics for the human and SI for the mosquito population.
Exposed humans are divided into two classes by having short-term or
long-term incubation periods. If a susceptible human (sH ) is successfully
infected by a mosquito (iM ), then this individual goes through short in-
cubation period (es

H
) with probability p, or long incubation period (el

H
)

with probability 1− p; then becomes infectious (iH ) after this incubation
time and be able to infect susceptible mosquitoes (sM ). Recovered hu-
mans are in the class rH , and return to sH after their immunity wanes.
We first introduce the ODE system

dsH

dt
= ξ − αsH iM + ωrH − ξsH ,

des
H

dt
= pαsH iM − dses

H
− ξes

H
,

del
H

dt
= (1− p)αsH iM − dle

l
H
− ξel

H
,

diH

dt
= dses

H
+ dle

l
H
− riH − ξiH ,

drH

dt
= riH −ωrH − ξrH ,

dsM

dt
= µ− βsM iH − µsM ,

diM

dt
= βsM iH − µiM ,

(1)

where α := abm and β := ac. The cross-infection between mosquitoes
and humans is described by the terms abmsH iM and acsM iH , where a is
the per capita biting rate of mosquitoes with transmission efficiency b, c,
and m is the proportion of mosquito population to human population.
The terms ξ and µ are mortality rates of humans and mosquitoes, respec-
tively; r is the recovery rate and ω is the rate of loss of immunity; ds(dl)
is the rate of progression from the short (long) term exposed state to the
infectious state. With positive parameter values, the feasible domain

{(sH , es
H

, el
H

, iH , rH , sM , iM ) ∈ R7
+|sH + es

H
+ el

H
+ iH + rH = 1, sM + iM = 1}

is invariant.
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We define the basic reproduction number Ro for the ODE model by

Ro =

√
αβ

(r + ξ)µ

(
p

ds

ds + ξ
+ (1− p)

dl
dl + ξ

)
,

which has the usual biological interpretation. We show that Ro works
as a threshold for the existence and stability of equilibria of system (1).
To find equilibria, we set the LHS of system (1) to zero, and solve the
algebraic equations.
Lemma 1. The disease free equilibrium (DFE) (1, 0, 0, 0, 0, 1, 0) of system (1)
always exists. An endemic equilibrium (EE) exists if and only if Ro > 1 and it
is given by the following relations:

iH =
R2

o − 1
β
µ + KoR2

o
, es

H
=

p
ds+ξ (r + ξ)

p ds
ds+ξ + (1− p) dl

dl+ξ

iH , el
H
=

1− p
dl + ξ

ds + ξ

p
es

H
,

rH =
r

ω + ξ
iH , iM =

β
µ iH

1 + β
µ iH

, sH = 1− es
H
− el

H
− iH − rH ,

and sM = 1− iM , where Ko =
p

ds+ξ +
1−p
dl+ξ

p ds
ds+ξ +(1−p) dl

dl+ξ

(r + ξ) + 1 + r
ω+ξ .

The local asymptotic stability of the DFE can be demonstrated by
standard linearization: one can compute the characteristic equation, and
show that if Ro < 1, all roots of the characteristic equation have negative
real parts and if Ro > 1, there exist a positive real root.

Theorem 1. The DFE of system (1) is locally asymptotically stable if Ro < 1
and is unstable if Ro > 1.

Now we introduce a DDE model assuming the long incubation pe-
riod has a fixed length, τ:

dsH

dt
= ξ − αsH iM + ωrH − ξsH ,

des
H

dt
= pαsH iM − dses

H
− ξes

H
,

diH

dt
= dses

H
+ (1− p)αsH (t− τ)iM (t− τ)e−ξτ − riH − ξiH ,

drH

dt
= riH −ωrH − ξrH ,

dsM

dt
= µ− βsM iH − µsM ,

diM

dt
= βsM iH − µiM .

(2)
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Note that el
H
(t) does not appear in the right hand side of the system (2)

and the state space can be specified as

Ω := C ([−τ, 0] , R)×R4 × C ([−τ, 0] , R) ,

where C ([−τ, 0] , R) is the space of real valued continuous functions
on the interval [−τ, 0]. For solutions in Ω, we introduce a notation,
xt := (sHt , es

H
(t), iH (t), rH (t), sM (t), iMt ) ∈ Ω, where sHt ∈ C ([−τ, 0] , R)

and iMt ∈ C ([−τ, 0] , R) are defined by the relations sHt (θ) = sH (t +
θ), iMt (θ) = iM (t + θ) for θ ∈ [−τ, 0]. We write ŷ for the element of
C ([−τ, 0] , R) satisfying ŷ(θ) = y for all θ ∈ [−τ, 0]. Let

Ω+ := C ([−τ, 0] , R+)×R4
+ × C ([−τ, 0] , R+) .

Following the biological interpretation of our system, we prescribe initial
condition as

x0 = φ0 ∈ Ω+. (3)

Then system (2) can be written in the abstract form

dx(t)
dt

= F (xt),

where F : Ω→ R6, with initial condition (3). We consider R6 equipped
with the L∞ norm and C ([−τ, 0] , R) equipped with the usual supre-
mum norm denoted by || · ||. Now Ω is a Banach space with the norm

|φ|Ω := max {‖ f ‖ , |q2| , |q3| , |q4| , |q5| , ‖g‖} ,

for
φ = ( f , q2, q3, q4, q5, g) ∈ Ω.

It is easy to show that F satisfies the local Lipschitz condition on each
bounded subset of Ω, from which the local existence of solutions of (2)
follows. Furthermore, it is straightforward to show that xt ∈ Ω+ for
sufficiently small t and it is easy to give an a priori bound for |xt|Ω.
Thus the solution xt is continuable on R+. Consequently, (2) with (3)
induces a continuous semiflow

Φ : R+ ×Ω+ → Ω+,

defined by
Φ (t, φ0) = xt (φ0) .

Let X ⊂ Ω+ to be

X :=

φ

∣∣∣∣∣∣∣∣∣
0 ≤ f (θ), 0 ≤ g(θ), for θ ∈ [−τ, 0],
0 ≤ qj, j ∈ {2, 3, 4, 5} ,
f (0) +

∫ 0
−τ(1− p)α f (s)g(s)eξsds + ∑4

j=2 qj = 1,
q5 + g(0) = 1.

 .
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Proposition 1. The set X is forward invariant under Φ, i.e.

Φ (t, X) ⊂ X, t ∈ R+.

In X, the fractions of the human population sum up to 1, with all hu-
man compartments (sH , es

H
, el

H
, iH , rH ) being nonnegative; and the fraction

of mosquito populations sum up to 1, with all mosquito compartments
(sM , iM ) being nonnegative. Therefore X is exactly the biologically mean-
ingful state space.

The basic reproduction number Rd of the DDE model is given by

Rd =

√
αβ

µ(r + ξ)

(
(1− p)e−ξτ + p

ds

ds + ξ

)
.

We show that Rd is a stability threshold of system (2).

Lemma 2. The disease free equilibrium (DFE) (1̂, 0, 0, 0, 1, 0̂) of system (2)
always exists. An endemic equilibrium (EE) exists if and only if Rd > 1 and it
is given by the following relations:

sH =

β
µ + Kd

β
µ + KdR2

d

, es
H
=

pξ

(1− p)(ds + ξ)e−ξτ + pds

r + ξ

ξ
iH ,

iH =
R2

d − 1
β
µ + KdR2

d

, rH =
r

ω + ξ
iH , iM =

β
µ iH

1 + β
µ iH

, sM = 1− iM ,

where Kd =

p
ds+ξ + (1− p) 1−e−ξτ

ξ

p ds
ds+ξ + (1− p)e−ξτ

(r + ξ) + 1 +
r

ω + ξ
.

Theorem 2. The DFE of system (2) is locally asymptotically stable if Rd < 1
and unstable if Rd > 1. The EE is locally asymptotically stable whenever exists,
i.e. if Rd > 1.

We study the global dynamics of the DDE model.

Theorem 3. If Rd ≤ 1, then the DFE is globally attractive in X. Furthermore,
if Rd < 1 holds, then the DFE is globally asymptotically stable in X.

The proof includes the construction of a Lyapunov functional and ap-
plication of LaSalle’s invariance principle. Next we study the persistence
of the disease for Rd > 1. Let us define

ρ :=
4

∑
i=1

ρi,
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where ρi : X → R+ for i ∈ {1, 2, 3, 4} are given by

ρ1(φ) = q2, ρ2(φ) = (1− p)α
∫ 0

−τ
f (s)g(s)eξsds,

ρ3(φ) = q3, ρ4(φ) = g(0).

Let

X̃ := {φ ∈ X|ρ(φ) > 0},
X0 := {φ ∈ X|ρ(φ) = 0} = X \ X̃,

where X0 is called the extinction space corresponding to ρ, for obvious
reasons: X0 is the collection of states where the disease is not present.

Proposition 2. The following assertions hold.

1. The set X̃ is forward invariant under Φ. Moreover, for each i ∈ {1, 2, 3, 4}
it holds that

ρi(Φ(t, φ)) > 0 for φ ∈ X̃ and t > τ.

2. The extinction space X0 is forward invariant under Φ.

The proof is based on the comparison method and the method of
steps. We now introduce some terminology of persistence theory from
[1].

Definition 1. Let X be a nonempty set and ρ : X → R+.

1. A semiflow Φ : R+ × X → X is called uniformly weakly ρ-persistent, if
there exists some ε > 0 such that

lim sup
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

2. A semiflow Φ is called uniformly (strongly) ρ-persistent, if there exists
some ε > 0 such that

lim inf
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

3. A set M ⊂ X is called weakly ρ-repelling if there is no x ∈ X such that
ρ(x) > 0 and Φ(t, x)→ M as t→ ∞.

For a function f : R→ R, we use the notation

f∞ = lim inf
t→∞

f (t).
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By Proposition 2 and a contradiction argument, we can easily show that
the DFE is weakly ρ-repelling when Rd > 1. Together with the obvious
statement ∪φ∈X0 ω(φ) = (1̂, 0, 0, 0, 1, 0̂), one can see that Φ is uniformly
weakly ρ-persistent using Theorem 8.17 in [1]. Since Φ has a compact
global attractor on X, we can apply Theorem 4.5 in [1] to conclude the
following:

Theorem 4. If Rd > 1, then the semiflow Φ is uniformly ρ-persistent.

Using Theorem 4 and the Fluctuation method, we can show that Φ
is weakly ρ4 -persistent. Uniform persistence follows from Theorem 4.5
in [1]. By similar steps, one can also prove Theorem 6.

Theorem 5. If Rd > 1, then Φ is uniformly ρ4 -persistent.

Theorem 6. If Rd > 1, then Φ is uniformly ρ3 -persistent.

From the first equation of (2), one can see that:

Lemma 3. There exists T > 0 such that sH (t) >
1
2

ξ
α+ξ for all t ≥ T.

By Proposition 2, together with Theorem 5 and Lemma 3, we obtain
lower estimation for es

H∞
. Theorem 8 can be shown in a similar way.

Theorem 7. If Rd > 1, then Φ is uniformly ρ1 -persistent.

Theorem 8. If Rd > 1, then Φ is uniformly ρ2 -persistent.

Combining Theorems 5, 6, 7, 8 and Proposition 2.1, we obtain:

Corollary 1. If Rd > 1, there exists ε > 0 such that

es
H∞

> ε, el
H∞

> ε, iH∞ > ε and iM∞ > ε

for every φ0 ∈ X̃, i.e. the disease uniformly persists in each infected compart-
ments of the human and the mosquito populations.

In the special case of ω = 0, which means that individuals acquire
permanent immunity after recovering from the infection, we have a re-
sult on the global stability of the EE. The proof is rather elaborative, and
includes the construction of a Lyapunov functional and the application
of LaSalle’s invariance principle.

Theorem 9. Assume that ω = 0. If Rd > 1, then the EE is globally asymptot-
ically stable in X̃.

So far, we have shown that for both ODE and DDE models there
exists a threshold value determining the existence and stability of equi-
libria. Now we compare these threshold values and also the endemic
equilibria of the two models.
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Figure 1: Dynamics of the infectious human population proportion. a,
Non-seasonal case with constant biting rate. When Ro > 1 and Rd > 1,
iH (t) converge to endemic equilibrium with io > id. Parameter values
are: µ = 0.2, b = 0.5, c = 0.5, a = 0.3, ds = 0.04, dl = 0.003, r = 0.07, p =
0.25, ω = 1/365, ξ = 0.004 and m = 10. b, Seasonal case with periodic
biting rate. In both models, iH (t) converges to a periodic attractor. The
DDE model has a higher peak of infection, moreover, its annual average
is also greater than that of the ODE model. Parameter values are m = 2,
P = 365, L = 365/2, as = 0.3, ξ = 0.00004, and the other values are the
same as in Figure 1a.

Proposition 3. When all parameters are fixed, the basic reproduction number
Ro of the ODE model is greater than the basic reproduction number Rd of the
DDE model. Moreover, when Rd > 1, i∗

H
of the ODE model (denoted by io) is

greater than i∗
H

of the DDE model (denoted by id).

In temperate regions, the transmission of P. vivax malaria shows sea-
sonal variation and we incorporate temporal variation into the biting
rate, replacing the constant a by

a(t) =

{
as kP ≤ t < kP + L,

0 kP + L ≤ t < (k + 1)P,

where k is an integer, L is the length for a mosquito season and P is the
natural period (one year).

In contrast to the autonomous case, when we incorporate seasonality
into our model equations, the interplay of the time delay and the peri-
odicity results that in some situations the DDE model predicts higher
prevalence of malaria, see Figure 1. The periodic DDE model is also
superior to periodic ODE in capturing the qualitative properties of the
observed Korean malaria time series, while its mathematical analysis is
rather challenging.
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study of ẋ( t) = −a( t)x( t) + b( t)x( t − 1)

We investigate the scalar periodic delay-differential equation

ẋ(t) = −a(t)x(t) + b(t)x(t− 1), (4)

where a, b are assumed to be P-periodic continuous real functions with
a(t) ≥ 0 and b(t) ≥ 0.

Let Ω := C([−1, 0], R) be the Banach space of real valued continuous
functions on [−1, 0] with the usual supremum norm. For any φ ∈ Ω, a
unique solution x(t; φ) exists for all t ≥ 0 with

x(θ) = φ(θ), −1 ≤ θ ≤ 0.

From the non-negativity of the coefficients, it follows that the non-negative
cone Ω+ := C([−1, 0], R+) is positively invariant, and non-negative so-
lutions remain non-negative. We use the notation xt = xφ

t ∈ Ω for the
function xt(θ) = x(t + θ), θ ∈ [−1, 0]. Let U : R+ ×R×Ω → Ω be the
solution operator of (4). That is,

U (t, σ, φ) = xt+σ,

where xt+σ is the solution of the initial value problem

ẋ(t) = −a(t)xt(0) + b(t)xt(−1), t ≥ σ

xσ = φ

at time t + σ. We now define the Poincare operatorM : Ω→ Ω as

M(ψ) = U (P, 0, ψ).

The stability of zero is determined by the spectral radius of M. Here
we derive the explicit threshold formula, determining the stability of
zero for (4) using a direct approach. Using a Lyapunov functional and
comparison method, we obtain the following results.
Theorem 10. Let

r :=
∫ P

0
(b(s)− a(s))ds.

For Equation (4), the following holds if the sign of b(u + 1)− a(u) does not
change:

(i) if r > 0, zero is unstable;
(ii) if r = 0, zero is stable, but not asymptotically stable;
(iii) if r < 0, zero is asymptotically stable.
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We present a particular example showing that the assumption in
Theorem 10 is critical. Consider a special case with constant function
a(t) = α and a continuous function b(t) such that{

b(t) = 0 if kP ≤ t ≤ kP + L, k = 0, 1, 2, · · ·
b(t) > 0 elsewhere,

(5)

where 1 ≤ L < P < L + 1.

Lemma 4. Consider b(t) in (5). Let

A :=

ψ ∈ Ω

∣∣∣∣∣ψ(θ) =


ψ(−1)e−α(1+θ) for θ ∈ [−1, L− P],

ψ(−1)e−α(1+θ)
(

eα
∫ θ

L−P b(s)ds + 1
)

for θ ∈ (L− P, 0].

 .

Then,M(Ω) ⊂ A. Consequently, A is forward invariant underM.

Theorem 11. The zero solution of (4) is stable if and only if γ ≤ 0, where

γ := −α +
1
P

ln
(

eα
∫ 0

L−P
b(s)ds + 1

)
,

with b(t) defined in (5).

We now address an example where the sign of r does not always
coincide with the sign of γ. Consider the special case of (5),

b(t) =

0 if kP ≤ t ≤ kP + L
4β

P−L

(
−
∣∣∣t− P+L

2

∣∣∣+ P−L
2

)
if kP + L ≤ t ≤ (k + 1)P,

(6)

where k = 0, 1, 2, · · · . In this case,

γ = −α +
1
P

ln (eαβ(P− L) + 1)

and
r = β(P− L)− αP.

There would be four possible cases: (i) r > 0, γ > 0 (Unstable) (ii)
r < 0, γ > 0 (Unstable), (iii) r > 0, γ < 0 (Unstable) and (iv) r < 0, γ < 0
(Stable). Figure 2 shows the parameter sets of each cases. The area with
γ < 0 but r > 0, and the area with γ > 0 but r < 0 are the regions where
r in (10) does not work as a stability threshold.
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Figure 2: Special case of (5) with function b(t) as in (6) with P = 1.2
and L = 1.1. Distinctive α− β parameter regions are determined by the
signs of γ and r.

latent period as an adaptation strategy to seasonal

forcing

We consider a host-pathogen system in which the pathogens are ca-
pable of changing a trait, namely the length of the latent period in the
infected host, as a response to seasonal variability. In order to investigate
the role of latency in a seasonal environment, we first consider the clas-
sic SLIS disease transmission model with periodic seasonal transmission
parameter:

dS(t)
dt

= b(1− S(t))− β(t)S(t)I(t) + rI(t),

dL1(t)
dt

= β(t)S(t)I(t)− nθ−1L1(t)− bL1(t),

dLj(t)
dt

= nθ−1Lj−1(t)− nθ−1Lj(t)− bLj(t), j = 2, . . . , n,

dI(t)
dt

= nθ−1Lm(t)− (r + b)I(t),

(7)

where S, L and I denote the susceptible, latent and infectious compart-
ments, respectively. To express various distributions of latency in a flex-
ible way, we incorporate multiple latent sub-compartments L1, . . . , Ln.
Such a linear chain represents an Erlang distribution with average θ.
Parameters r and b represent the recovery rate and the mortality rate,
respectively. We assume that the seasonal driver affects the transmission
rate of the pathogen β(t) with period P, usually one year. Each year is
divided into an on-season, during which the pathogen can be transmit-
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Figure 3: Infectious host dynamics (7) in seasonal environment with
different average length of latent periods, which shows sharp peak
for short latency, extinction for intermediate latency, and moderate os-
cillation for long latency. Parameter values used in all simulations are
P = 365, b = 1/1000, r = 1/30, n = 3 and β∗ = 0.3.

ted, and an off-season, during which no new infections can occur. We
consider a piecewise constant transmission function,

β(t) =

{
β∗ kP ≤ t < kP + λ

0 kP + λ ≤ t < (k + 1)P,
(8)

where λ is the length of on-season, with P being the sum of the lengths
of the on-season and the off-season. The time t = kP, where k is an
integer, corresponds to the beginning of each season.

Figure 3 shows numerical solutions corresponding to three different
average lengths of latent periods. In this example, the disease sustains
either with short or long latency, but not with intermediate one.

Figure 4 presents numerically calculated R0, by applying a recently
developed approach [2]. We observe two possible profiles depending on
seasonal forcing and model parameters: (i) R0 monotonically decreases
with latency; (ii) R0 has a bimodal shape. Profile (i) is observed in a non-
seasonal environment, when the length of on-season is approximately
equal to the period. In other cases, we observe profile (ii), the non-
monotonicity of R0 with respect to the length of latent period. In some
cases, it leads to die-off intervals of latency: the disease can sustain with
short or long latent periods, but not with the medium range of latent
periods as in the example of Figure 3. We also observe that solutions
with different θ can look dissimilar even though their R0s are the same.

We characterize infected host individuals by the length of latency,
which is the adaptive trait of the parasite that caused the infection. This
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Figure 4: Qualitatively distinct (θ,R0)-graphs with various on-season
length, λ. (i) When λ = 365, R0 monotonically decreases in θ. (ii) R0 has
a bimodal shape when λ = 75, and there exists a die-off interval of latent
period. R0 corresponding to θ = 200 (red) is 0.732, and infectious human
solution in Figure 3 goes extinct. R0s corresponding to θ = 5 (blue) and
θ = 288 (green) have the same value 1.013, so that the infectious human
population persists.

way, the evolution of latency can be studied via a resident-mutant model,
describing the competition between the resident and mutant popula-
tions:

dS(t)
dt

= b(1− S(t))− β(t)S(t) (Ir(t) + Im(t)) + r(Ir(t) + Im(t)),

dLr,1(t)
dt

= β(t)S(t)Ir,1(t)− nθ−1
r Lr,1(t)− bLr,1(t),

dLr,j(t)
dt

= nθ−1
r Lr,j(t)− nθ−1

r Lr,j(t)− bLr,j(t), j = 2, . . . n

dIr(t)
dt

= nθ−1
r Lr,n(t)− (r + b)Ir(t),

dLm,1(t)
dt

= β(t)S(t)Ii,1(t)− nθ−1
m Lm,1(t)− bLi,1(t),

dLm,j(t)
dt

= nθ−1
m Lm,j−1(t)− nθ−1

m Lm,j(t)− bLm,j(t), j = 2, . . . n

dIm(t)
dt

= nθ−1
m Lm,n(t)− (r + b)Im(t),

(9)

with lower index r standing for resident strain, m for invader mutant
strain. We investigate which mutant population has the potential to
spread and later replace the resident population. When the mutation



14

Figure 5: The long on-season leads to the short latency. PIPs with on-
season length λ = 200, λ = 250 and λ = 300. The longer the on-season,
the shorter the gap between two CSSs.

is a rare event, we may assume that the resident population is already
settled at an equilibrium or a periodic attractor. To calculate the invasion
fitness, a measure of invasion success, we linearize the entire system (9)
around the periodic attractor of the resident strain, and compute the
stability threshold of the decoupled periodic system of invaders:

dLm,1(t)
dt

= β(t)Sr(t)Im,1(t)− nθ−1
m Lm,1(t)− bLm,1(t)

dLm,j(t)
dt

= nθ−1
m Lm,j−1(t)− nθ−1

m Lm,j(t)− bLm,j(t), j = 2, . . . n

dIm(t)
dt

= nθ−1
m Lm,n(t)− (r + b)Im(t),

(10)

where Sr(t) is the susceptible component of the periodic attractor. Based
on Floquet theory, we develop a numerical algorithm to calculate the
invasion fitness. Then we produce PIP by calculating invasion fitnesses
for each given parameter pair (θr, θm). We designate white color for
the parameter region with negative invasion fitness, and dark gray color
for the region with positive invasion fitness. For the parameter region
where residents go extinct, light gray color is designated.

From each PIP having various season lengths, we identify at most
two evolutionarily stable and convergence strategies (CSSs), the short
CSS and the long CSS. As the season length decreases, the magnitude of
long CSS increases, see Figure 5. The biological interpretation of this is
that short season length leads to longer latency.

If we overlap the second PIP in Figure 5 with its reflected image over
the main diagonal, there exist a region where it is gray in both plots. The
region is shown in Figure 6a with black color. Two different traits from
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Figure 6: Two different trait can coexist as a temporal phase of evo-
lutionary process leading to monomorphism. a, A pair of traits from
the black region is mutually invadable and coexist. b, Classification of
the parameter region of coexistence depending on their long-term evolu-
tionary outcome. Coexisting traits in the green region would converge
to long CSS, while the traits in the red region converge to short CSS.

this region can mutually invade each other and consequently coexist.
We investigate the long-term evolutionary result of the coexistence, by
studying an invasion fitness of mutants when the resident population is
settled with two different coexisting traits, θr,1 and θr,2.

Figure 6b distinguishes the parameter region of coexistence depend-
ing on their long-term evolutionary outcome. The coexisting traits in
the green region would converge to long CSS, while the traits in the red
region converge to short CSS. In conclusion, the observed coexistence of
short and long latency strains is predicted to be evolutionarily unstable,
though it is epidemiologically stable.
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