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Chapter 1

Introduction

Many European countries were endemic of malaria for many centuries. Hungary was one

of them until 1963 [67]. Medical reports of János Bolyai (1802–1860) show that he also

suffered from malaria. Enormous progress in the understanding of malaria was made in

the first half of the 20th century, which led to the successful control in many countries

[7]. The cause of malaria, a single-celled parasite named Plasmodium, was discovered in

1889. It was only in 1897 when it was confirmed that the parasites are transmitted by

mosquitoes. By this finding, the medical doctor Ronald Ross received the Nobel Prize

in Medicine [32].

Ross further translated the parasitological research to preventive action. Constructing

deterministic differential equations describing the spread of malaria between human

and mosquito populations, he deduced that malaria can be controlled by reducing the

mosquito density below a critical level. His work is regarded as introducing the concept

of threshold dynamics in disease transmission models [8]. His model also provided the

formula of the infected human population at equilibrium, expressed by epidemiological

parameters. The human endemicity is observed to increase with respect to the number of

mosquitoes, but its change becomes relatively smaller as mosquito population increases.

This could be a reason why it was hard to relate malaria to mosquitoes [4].

The analytical framework of Ross is still being applied to understand the epidemiology

of vector-borne diseases and target interventions. The threshold widely used in current

epidemiological models is the basic reproduction number, denoted by R0, which is de-

fined as the average number of secondary infections produced by a single infection in a

completely susceptible population. For many deterministic models, R0 is the threshold

quantity that determines when an infection can invade and persist in a new host pop-

ulation [24]. In those cases, R0 > 1 implies the instability of the disease-free state and

the invasion of the host population by the disease, while R0 < 1 implies the stability of

1



Chapter 1 Introduction 2

the disease-free state and hence invasion is not possible. From the magnitude of R0 we

can determine the amount of effort which is necessary either to prevent an epidemic or

to eliminate an infection from a population [16]. The threshold of a critical mosquito

population that Ross deduced corresponds to R0 = 1 in present-day terms.

Though the eradication program in the middle of the 20th century was successful in many

regions of the world, a hundred of countries or territories are still at risk of malaria [74].

Among four species of Plasmodium recognized to infect humans, Plasmodium falciparum

and Plasmodium vivax are the two major species imposing a heavy economic burden on

endemic countries. The majority of the studies to date have focused on P. falciparum,

which causes severe malaria in tropical and subtropical areas. There are several hundreds

of research publications using mathematical models to investigate various aspects, such

as immunity, spatiotemporal heterogeneities, and vector control [38]. The other main

species, P. vivax, has been overlooked due to severity of P. falciparum [41]. However,

recent research suggests that severe and complicated vivax malaria may be more common

than previously thought [52]. In addition, it is the most geographically widespread

among the four species: endemic in the Middle East, Asia, and the Western Pacific,

threatening almost 40% of the world’s population [41, 49]. It was the same species

which was responsible for malaria in Europe till the middle of last century. It is believed

that the reason why P. vivax could be widespread is that it has evolved to adapt to the

long winters across the Northern hemisphere [72].

Plasmodium has multiple developmental stages in humans and mosquitoes. While feed-

ing on humans, infected female mosquitoes inject so-called sporozoites into the blood-

stream, which infect liver cells. After the latent period in liver cells, merozoites are

released back into the bloodstream and blood then becomes infective. Some of the

merozoites mature into so-called gametocytes, which, after spreading back to feeding

mosquitoes, reproduce sexually and ultimately produce more sporozoites that can again

be transmitted to humans [3, 19]. Symptoms follow shortly after blood becomes infec-

tive [73], and in our work we consider the incubation period and the latent period to be

same.

Most of malaria models up to date are studied the transmission of P. falciparum, which

causes relatively short incubation period to hosts. However, the parasite type P. vivax,

which is common in temperate zones, can remain dormant in liver cells as a so-called

hypnozoite, leading to an increased incubation period. Incubation times of P. vivax

malaria in Republic of Korea are bimodally distributed, with a clear distinction of short-

term and long-term incubations [43, 46]. It is of our interest to capture this bimodality

in a transmission model.
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The model of Ross describes the dynamics of populations divided into susceptible hu-

mans, infectious humans, susceptible mosquitoes and infectious mosquitoes, neglecting

the incubation period [3, 56]. He assumed the rate of outflow from each population class

to be proportional to the size of the population. This leads to an ordinary differential

equations model, describing the time spent in each compartment with exponential dis-

tribution. Sharpe and Lotka [63] extended this model incorporating the latent period of

humans and mosquitoes with discrete time delays, resulting in delay differential equa-

tions. However, they neglected the mortality of mosquitoes during the latent period,

and concluded that the delay has no effect on the equilibrium [64]. Later Anderson

and May [3] studied the modified model including mortality during latent periods. It

is shown that the basic reproduction number is a decreasing function of both time de-

lays, and prolonging the incubation periods reduces the prevalence of infection. Other

researchers expressed the incubation period by exponential distribution, letting the pop-

ulation of latent individuals decay exponentially in the absence of new infection, thus

formulating the models by systems of ordinary differential equations [11, 45].

To model the observed bimodal distribution of incubation times of P. vivax in Korea,

Nah et al. [44] added two separated classes of exposed human populations, individuals

going through short-term and long-term incubation time. Both short- and long-term

incubation periods are expressed by exponential distributions. However, expressing long

incubation period with discrete delay term could better describe the clear bimodality of

incubation periods, though the resulting delay differential equations address challenge

in analyses and numerical studies.

In Chapter 2 of the present thesis, we compare two transmission models for P. vivax

malaria, where we model the long-term incubation period using ordinary differential

equations or delay differential equations. We identify the basic reproduction number R0

and show that it is a threshold parameter for the global dynamics of the model. For the

DDE model, the global analysis is performed using persistence theory and Lyapunov

functionals. We show that, while the qualitative behavior of the two models is simi-

lar, the ODE model overestimates the basic reproduction number and also the level of

endemicity, compared to the DDE model. Observing the expression of the basic repro-

duction numbers, we conclude that long incubation time is not beneficial to the parasite

in either ODE or DDE setting. We later conclude that the empirically observed presence

of long incubation time is connected to the seasonality of endemic regions.

Most of the endemic areas where the incubation period of Plasmodium vivax shows

bimodal distribution of short- and long-term incubation periods, are of temperate climate

(for example in Korea). The dynamics of the mosquito population in those regions shows

strong seasonality, and we extend our model to include a periodic environment. From
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numerical studies we show that the interplay of the time delay and the periodicity results

that in some situations the DDE model predicts higher prevalence of malaria. The result

is very much in contrast with the autonomous case when we neglected seasonal changes.

Strains of P. vivax from different geographical areas exhibit various latent periods. In

general it seems that P. vivax of the temperate zone has a longer incubation time than

its tropical counterpart. Battle et al. [6] conducted an analysis on the reports of P. vivax

relapse and latency from various geographic regions. The result showed the high relapse

frequency in tropical regions and prolonged latent periods in temperate areas, indicating

that parasites have evolved to exploit seasonal changes in vector survival and therefore

optimize transmission [6]. However, there is no convincing explanation for the regulation

of incubation time has been presented to date [26]. The conditions that allow for adaptive

diversification can be difficult to identify experimentally, but they can often be elucidated

through the use of mathematical models [14].

Adaptive dynamics is a study on the evolutionary process by means of demographic

models. In reality, demographic and evolutionary dynamics are entangled in a feed-

back loop. Adaptive traits influence the dynamics of population abundances, causing

environmental change, and subsequent selective pressure would influence the trait evo-

lution. Adaptive dynamics takes into account the feedback loop of evolutionary and

demographic changes [13]. Assuming each individual is characterized by the adaptive

traits, evolution of the traits can be studied by a resident–mutant model, describing the

competition between the resident and mutant populations. The investigation of demo-

graphic resident–mutant dynamics identifies the conditions under which a resident trait

is replaced by an invading mutation. The invasion success of a mutation is measured

by the so-called invasion fitness, which value identifies whether the mutation gives some

advantage or disadvantage to its bearers. For autonomous models, it is defined as the

initial exponential growth rate of a rare mutant population appeared in an environment

set by the resident population [20]. However, we need careful formulation of the invasion

fitness in a seasonal environment.

In Chapter 3, using the tools of adaptive dynamics, we study the evolution of latency

in a seasonal environment, assuming pathogens are capable of mutations that modify

the latent period in the infected host. This is the first theoretical work for predicting

the evolution of latent periods of parasites in hosts in seasonal environment, and it is

expected to provide an important step toward understanding the documented bimodality

in P. vivax incubation time.

We start with investigating the role of latency on the classic SEIS disease transmission

model with periodic seasonal parameters. From numerical solutions, we observe the

impact of latency on the disease dynamics in seasonal environment. Applying a recently
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developed approach, we calculate the basic reproduction number numerically. We show

that the basic reproduction number depends non-monotonically on the average latent

period in seasonal environment, in sharp contrast with the non-seasonal case.

Assuming that infected host individuals are characterized by the latent period as their

adaptive trait, we study the evolution of latency by a resident–mutant model. We de-

velop a numerical algorithm to calculate the invasion fitness and produce a pairwise

invasibility plot (PIP), which visualizes the course of trait evolution. We identify evolu-

tionary convergence and stable strategies on PIPs with various mosquito season lengths,

and conclude that the short season length leads to longer latency. We further show that

coexistence of two different traits is possible in seasonal environment. To investigate

the long-term evolutionary result of the coexistence, we calculate the invasion fitness of

mutants when the resident population is settled with two different traits.

In Chapter 2, we performed global analysis on the addressed delay differential equation

model in a constant environment, but the mathematical analysis of the model with

periodic coefficients is rather challenging. Periodic delay differential equations arise

in several mathematical models, such as neural networks, transmission dynamics of

vector-borne diseases and population growth models with seasonality [9, 10, 35, 77].

Linearization of such models often leads to the scalar periodic equation

ẋ(t) = −a(t)x(t) + b(t)x(t− 1),

where a, b are assumed to be periodic continuous real functions with a(t) ≥ 0 and

b(t) ≥ 0.

This equation has been studied in many papers, however, there is no complete answer

to the stability of the zero solution. It is known that if the delay is an integer multiple

of the period, the stability threshold is r = 0 [57], where

r :=

∫ P

0
(b(s)− a(s)) ds.

In Chapter 4, we generalize this principle to situations when the delay and the period

are not related. We prove that if b(s+ 1)− a(s) does not change sign, r is the stability

threshold. We also construct a class of equations showing that r = 0 does not work as

a stability threshold in general.



Chapter 2

P. vivax transmission with long

latent period

2.1 Modeling efforts on the spread of malaria

Malaria is one of the serious and widespread infectious diseases. According to recent

research, 104 countries or territories are at risk of malaria [74]. In addition to its health

toll, malaria imposes a heavy economic burden on endemic countries [55]. Mathematical

models have long been used for the understanding of malaria epidemiology and targeting

interventions, through analytical representations of the underlying biology [40].

Most epidemics can be described by compartmental models, which divides hosts popu-

lation into a number of compartments depending on the disease status. A typical SIR

model consists of three compartments, susceptibles (S) who might become infected if ex-

posed, infectious hosts (I) who can transmit the infection to susceptibles, and removed

individuals (R) who are immune to the infection and do not affect the transmission

dynamics [18].

The classical mathematical models for the dynamics of malaria transmission are based

on SIS–SI compartmental model for hosts and vectors (i.e. humans and mosquitoes),

using differential equations [3, 56], following the works of Ross and Macdonald. The

basic models of Ross and Macdonald used ordinary differential equations to understand

the dynamics of malaria transmission [37, 56]. The incubation period was incorporated

first by Sharpe and Lotka [63] as a discrete time delay. The delayed Ross–Macdonald

model was later modified and analyzed in [3, 37, 60]. It was concluded that prolonging

the incubation periods reduces the prevalence of the disease. Other researchers expressed

the incubation period by exponential distribution, letting the latent compartment decay

6
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Figure 2.1: Estimation of the probability density function of P. vivax incu-
bation time in Korea [43, 68].

exponentially in the absence of inflow from the infectious compartment [11, 45], thus

formulating the models by systems of ordinary differential equations.

Xiao and Zou [76] considered a general probability function P (t) describing the latency

distribution, in order to reflect the fact that the latency period varies from individual

to individual. They show that when the basic reproduction number is less than one,

the disease will eventually die out. When the basic reproduction number is greater than

one, they consider two specific forms for P (t): (i) P (t) is an exponential function; (ii)

P (t) is a step function. In both cases, when the basic reproduction number is greater

than one, they show that the disease will persist. Moreover, under additional conditions,

all admissible positive solutions converge to the unique endemic equilibrium. They have

generalized the conclusion of Ruan et al. [60] that longer incubation periods lead to

lower prevalence of the infection, regardless of the specific form of the distributions.

One of the most common types of malaria is caused by Plasmodium vivax. The parasite

P. vivax can remain dormant in liver cells in a form called hypnozoite, leading to an

increased incubation period. P. vivax strains from different regions of the world have

different length of incubation time [12]. Recent analyses of the incubation period of

P. vivax malaria in Korea have confirmed that the incubation times have a bimodal

distribution, with a clear distinction of short-term and long-term incubations [46].

Based on empirical observation of the bimodality of the incubation times of P. vivax in

Korea, Nah et al. [44] separated the exposed class in their model into short-term and

long-term exposed classes. They describe P (t) as a weighted sum of two exponential

functions. However, based on the empirical estimations of P. vivax incubation time in

Korea [43, 46], it is natural to use discrete delay for the long-term incubation period, as
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Figure 2.2: Cumulative distribution functions of incubation time. The Kan-
torovich distance between the distributions of the incubation time using DDE model
and Empirical observation was 31.4, being much smaller than the distance between

ODE model and empirical observation, which is 154.8.

a much better approximation of the empirical observation (see Figure 2.1) than the ex-

ponential distribution assumption. The cumulative distribution functions are depicted

in Figure 2.2, and one can see that assuming fixed length for the long-term incubation

period gives a distribution that is much closer to the empirical distribution in the most

common probability metrics (such as the Kantorovich metric or the Lévy metric), than

the exponentially distributed long-term incubation period. If FX and FY are the dis-

tribution functions of random variables X and Y , the Kantorovich distance is defined

by

dK(X,Y ) :=

∫ ∞
−∞
|FX(x)− FY (x)|dx,

and the Lévy distance is

dL(X,Y ) := inf{ε : FY (x− ε)− ε ≤ FX(x) ≤ FY (x+ ε) + ε}

[21]. In this sense, it is more realistic to describe P (t) as a weighted sum of an exponential

function and a step function, as it provides a better approximation of the observed

phenomenon.

In Chapter 2.2, we study P. vivax models without seasonality. In Chapter 2.2.1 and

Chapter 2.2.2, we introduce two models for P. vivax transmission dynamics where both

short and long incubation times are present. In both cases, we separate the exposed

individuals into two distinct compartments, depending on the length of their incubation

period (short-term or long-term). In the first model, we assume exponential distribu-

tion for the long-term incubation period, thus resulting a system of ordinary differential

equations (ODE). In the second model, we assume fixed length for the long-term in-

cubation period, obtaining a system of delay differential equations (DDE). In Chapter
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2.2.3 we compare the two models by means of mathematical analysis, to investigate

the qualitative and quantitative differences between the two models, and to discuss the

implications of these two approaches. In Chapter 2.2.4, we investigate global behavior

of the solutions of DDE model. It is shown that the basic reproduction number is a

threshold parameter determining the extinction or the persistence of the disease. Fur-

ther, in the special case of lifelong immunity, we prove the global stability of endemic

equilibrium when the basic reproduction number is greater than one.

Since the vector population and their contact rate with hosts has strong seasonality in

temperate regions where P. vivax is endemic, we also study the disease dynamics given

by those two models in a periodic environment in Chapter 2.3.

2.2 Study on P. vivax models without seasonality

In this section, we introduce two models for P. vivax transmission dynamics where both

short and long incubation times are present. In both cases, we separate the exposed

individuals into two distinct compartments, depending on the length of their incubation

period (short-term or long-term). In the first model, we assume exponential distribution

for the long-term incubation period, thus resulting a system of ordinary differential equa-

tions (ODE). In the second model, we assume fixed length for the long-term incubation

period, obtaining a system of delay differential equations (DDE). Our goal is to com-

pare the two models by means of mathematical analysis, to investigate the qualitative

and quantitative differences between the two models, and to discuss the implications of

these two approaches. Since the disease dynamics show strong seasonality in temperate

endemic regions, we also study the disease dynamics given by those two models in a

periodic environment.

To describe the transmission of P. vivax malaria, we assume SEIRS disease dynamics

for the human and SI for the mosquito population. If a susceptible human (SH) is

successfully infected by a mosquito (IM ), then this individual goes through incubation

period (EH), then becomes infectious (IH) after this incubation time and be able to

infect susceptible mosquitoes (SM ). Recovered humans are in the class RH , and return

to SH after their immunity wanes. A susceptible mosquito (SM ) moves to infectious class

(IM ) when successfully infected by an infectious host, and it remains to be infectious

for a lifetime. It is further assumed that all newborns are susceptible to infection and

there is no vertical transmission.
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The cross-infection between mosquitoes and humans is described by the terms abIM
SH
H

and acSM
IH
H , where a is the per capita biting rate of mosquitoes with b, c transmission

efficiency, and H is the constant human population size.

Denoting by ξ the mortality rate of the human population, the exposed human popula-

tion at time t is given by

EH (t) =

∫ ∞
0

ab
SH (t− u)

H
IM (t− u)P (u)e−ξudu,

where P : R+ → [0, 1] and P (u) denotes the probability that an individual is still being

in the exposed class u units of time after entering the exposed class, provided that

this individual survived this period, which has probability e−ξu. Taking into account

the two distinctive type of incubation periods, we separate the exposed individuals

into two distinct classes, Es
H

(t) and El
H

(t), the exposed human population with short-

term incubation period and with long-term incubation period at time t, respectively.

Denoting by p ∈ (0, 1) the probability that an exposed individual experiences short-term

incubation period upon a successful contact with an infected mosquito, each population

at time t is described by

Es
H

(t) =

∫ ∞
0

pab
SH (t− u)

H
IM (t− u)Ps(u)e−ξudu,

El
H

(t) =

∫ ∞
0

(1− p)abSH (t− u)

H
IM (t− u)Pl(u)e−ξudu,

where each term Ps(u) and Pl(u) denotes the probability that an individual is still being

in the exposed class Es
H

(u) and El
H

(u), respectively, u units of time after entering each

classes, provided that this individual survived this period. We can specify P (u) as

P (u) = pPs(u) + (1− p)Pl(u),

and it holds that

EH (t) = Es
H

(t) + El
H

(t).
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parameter description

a contact rate of a mosquito with humans
b transmission efficacy of contact

between an infected mosquito and a human individual
m proportion of mosquito population to human population
c transmission efficacy of contact

between an infected human and a mosquito
p probability of an exposed human

to experience short-term incubation period after infection
τ long-term incubation period of humans
ξ mortality rate of humans
µ mortality rate of mosquitoes

ds(dl) rate of progression from the short-term (long-term) exposed state
to the infectious state

r recovery rate of humans
ω rate of loss of immunity for humans

Table 2.1: Description of parameters

By considering the infectious and recovered class of humans, IH (t) and RH (t), and the

mosquito population dynamics, we arrive to the following model in population level,

dSH (t)

dt
= ξH − abSH (t)

H
IM (t)− ξSH (t) + ωRH (t),

Es
H

(t) =

∫ ∞
0

pab
SH (t− u)

H
IM (t− u)Ps(u)e−ξudu,

El
H

(t) =

∫ ∞
0

(1− p)abSH (t− u)

H
IM (t− u)Pl(u)e−ξudu,

IH (t) = H − SH (t)− Es
H

(t)− El
H

(t)−RH (t),

dRH (t)

dt
= rIH (t)− (ω + ξ)RH (t),

dSM (t)

dt
= µM − acSM (t)

IH (t)

H
− µSM (t),

IM (t) = M − SM (t),

(2.1)

referring to Table 2.1 for the description of the parameters. In this section, we assume

the mosquito population to be constant, having the same birth and mortality rate µ.

System (2.1) can be rescaled by introducing the new variables

sH =
SH
H
, es

H
=
EsH
H

, el
H

=
ElH
H

, iH =
IH
H
, rH =

RH

H
,

sM =
SM
M

, iM =
IM
M

and m =
M

H
.
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Population dynamics of the susceptible human population would be rescaled to

dsH (t)

dt
=

1

H

dSH (t)

dt

=
1

H

(
ξH − abSH (t)

H
IM (t)− ξSH (t) + ωRH (t)

)
= ξ − abmsH (t)iM (t)− ξsH (t) + ωrH (t),

and the dynamics of susceptible mosquito population would be rescaled to

dsM (t)

dt
=

1

M

dSM (t)

dt

=
1

M

(
µM − acSM (t)

IH (t)

H
− µSM (t)

)
= µ− acsM (t)iH (t)− µsM (t).

Note that the cross-infection terms become

abmiM sH and acsM iH .

By similar calculation, we obtain the rescaled equations

dsH (t)

dt
= ξ − αsH (t)iM (t)− ξsH (t) + ωrH (t),

es
H

(t) =

∫ ∞
0

pαsH (t− u)iM (t− u)Ps(u)e−ξudu,

el
H

(t) =

∫ ∞
0

(1− p)αsH (t− u)iM (t− u)Pl(u)e−ξudu,

iH (t) = 1− sH (t)− es
H

(t)− el
H

(t)− rH (t),

drH (t)

dt
= riH (t)− (ω + ξ) rH (t),

dsM (t)

dt
= µ− βsM (t)iH (t)− µsM (t),

iM (t) = 1− sM (t),

where α := abm and β := ac.

See Figure 2.3 for the disease transmission diagram and Tables 2.1 and 2.2 for the

description of the parameters and the variables.

In the following two sections, we consider two models: the short-term incubation time

has an exponential distribution in both models, but the distributions of long-term in-

cubation time are different. The first model assumes exponential distribution for long

incubation time, as in previous research. In the second model, individuals going through

long-term incubation time have the same length of incubation time, i.e. long-term incu-

bation time has Dirac-delta distribution. The second model better describes the observed
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variable description

sH susceptible human proportion
eH exposed human proportion
es
H

exposed human proportion having a short-term incubation period
el
H

exposed human proportion having a long-term incubation period
iH infectious human proportion
rH recovered human proportion
sM susceptible mosquito proportion
iM infectious mosquito proportion

Table 2.2: Description of the dynamical variables. Each variable denotes a
fraction of the population so that s

H
+ (es

H
+ el

H
) + i

H
+ r

H
= 1 and s

M
+ i

M
= 1 hold.

sH iH 

el
H 

es
H 

sM 

Human population!

Mosquito population!

rH 

Infection: Mosquito!Human!

Infection: Human!Mosquito!

iM 

eH!

Figure 2.3: Diagram for the disease transmission. The exposed class of humans
is separated into two distinct classes according to the length of incubation period.

distribution of long-term incubation time than the first one (see Figures 2.1 and 2.2),

however, the second model is more difficult to analyze mathematically.

2.2.1 ODE model with exponentially distributed incubation periods

For the ODE model, we assume exponential distribution for both the short and the

long incubation period, with mean 1/ds and 1/dl, resp. In specific, with the following

probability distribution

Ps(u) := e−dsu, Pl(u) := e−dlu,
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And we obtain

es
H

(t) =

∫ ∞
0

pαsH (t− u)iM (t− u)Ps(u)e−ξudu

=

∫ ∞
0

pαsH (t− u)iM (t− u)e−(ds+ξ)udu,

el
H

(t) =

∫ ∞
0

(1− p)αsH (t− u)iM (t− u)Pl(u)e−ξudu

=

∫ ∞
0

(1− p)αsH (t− u)iM (t− u)e−(dl+ξ)udu.

One can differentiate both sides with respect to t to get the ordinary differential equations

des
H

(t)

dt
= pαsH (t)iM (t)− (ds + ξ) es

H
(t),

del
H

(t)

dt
= (1− p)αsH (t)iM (t)− (dl + ξ) el

H
(t).

The fraction of human population progressing to the infectious class per unit of time at

time t, after experiencing either the short- or long-term incubation period, is given by

dse
s
H

(t) + dle
l
H

(t).

Thus, the dynamics of the fraction of the infective human population is captured by the

following differential equation:

diH
dt

= dse
s
H

+ dle
l
H
− riH − ξiH .

Consequently, we obtain the ODE system

dsH
dt

= ξ − αsH iM + ωrH − ξsH ,

des
H

dt
= pαsH iM − dse

s
H
− ξes

H
,

del
H

dt
= (1− p)αsH iM − dle

l
H
− ξel

H
,

diH
dt

= dse
s
H

+ dle
l
H
− riH − ξiH ,

drH
dt

= riH − ωrH − ξrH ,

dsM
dt

= µ− βsM iH − µsM ,

diM
dt

= βsM iH − µiM .

(2.2)
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Model (2.2) is modified from the model of Nah et al. [44], and assumes that individuals

leave the exposed compartments at constant rate. The feasible domain{
(sH , e

s
H
, el

H
, iH , rH , sH , iM ) ∈ R7

+ | sH + es
H

+ el
H

+ iH + rH = 1, sM + iM = 1
}

(2.3)

is clearly invariant.

The basic reproduction number is defined as the expected number of secondary cases

produced by a single infection in a completely susceptible population. For many de-

terministic models, R0 is the threshold quantity that determines when an infection can

invade and persist in a new host population [24]. More precisely, R0 > 1 implies the

instability of the disease-free state and the invasion of the host population by the dis-

ease, while R0 < 1 implies the stability of the disease-free state and hence invasion is

not possible.

We define the basic reproduction number Ro for the ODE model by

Ro =

√
αβ

(r + ξ)µ

(
p

ds
ds + ξ

+ (1− p) dl
dl + ξ

)
, (2.4)

where we adapted the convention of taking the square root as reproduction requires

two epidemiological generations. The term α describes the successful contacts infectious

mosquitoes have with humans per unit time, 1
µ is the length of the infectious period of

mosquitoes. Since p ds
ds+ξ

+(1−p) dl
dl+ξ

is the probability that an infected human survives

the exposed state and becomes infectious, β is the number of valid contacts infectious

humans have with mosquitoes per unit time and 1
r+ξ is the length of the infectious period

of a human; We show that Ro works as a threshold for the existence and stability of

equilibria of system (2.2).

Lemma 2.1. The disease-free equilibrium (DFE) (1, 0, 0, 0, 0, 1, 0) of system (2.2) always

exists. An endemic equilibrium (EE) exists if and only if Ro > 1 and it is given by the

following relations:

i∗
H

=
R2
o − 1

β
µ +KoR2

o

, es∗
H

=

p
ds+ξ

(r + ξ)

p ds
ds+ξ

+ (1− p) dl
dl+ξ

i∗
H
, el∗

H
=

1− p
dl + ξ

ds + ξ

p
es∗
H
,

r∗
H

=
r

ω + ξ
i∗
H
, i∗

M
=

β
µ i
∗
H

1 + β
µ i
∗
H

, s∗
H

= 1− es∗
H
− el∗

H
− i∗

H
− r∗

H

and s∗
M

= 1− i∗
M

, where Ko =
p

ds+ξ
+ 1−p
dl+ξ

p ds
ds+ξ

+(1−p) dl
dl+ξ

(r + ξ) + 1 + r
ω+ξ .
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Proof. To find equilibria, we set the left-hand side of system (2.2) to zero, and obtain

0 = pαs∗
H
i∗
M
− (ds + ξ)es∗

H
, (2.5)

0 = (1− p)αs∗
H
i∗
M
− (dl + ξ)el∗

H
, (2.6)

0 = dse
s∗
H

+ dle
l∗
H
− (r + ξ)i∗

H
, (2.7)

0 = ri∗
H
− ωr∗

H
− ξr∗

H
, (2.8)

0 = βs∗
M
i∗
H
− µi∗

M
. (2.9)

If either i∗
H

= 0 or i∗
M

= 0, we have a DFE, (s∗
H
, es∗

H
, el∗

H
, i∗
H
, r∗
H
, s∗

M
, i∗
M

) = (1, 0, 0, 0, 0, 1, 0).

Consider the case i∗
H
> 0 and i∗

M
> 0. Adding three equations, (2.5) multiplied by ds

ξ+ds
,

(2.6) multiplied by dl
ξ+dl

, and (2.7),

α

(
p

ds
ξ + ds

+ (1− p) dl
ξ + dl

)
s∗
H
i∗
M

= (r + ξ)i∗
H
. (2.10)

By (2.9),

βs∗
M
i∗
H

= µi∗
M
. (2.11)

Multiplying each side of (2.10) and (2.11), and dividing by (r + ξ)µi∗
H
i∗
M

,

R2
0s
∗
H
s∗
M

= 1. (2.12)

Multiplying β
(r+ξ)µ to (2.10) gives

R2
os
∗
H

(1− s∗
M

) =
β

µ
i∗
H
. (2.13)

By (2.12) and (2.13), we get

s∗
H

=
1

R2
o

+
β

R2
oµ
i∗
H
. (2.14)

Comparing (2.5) and (2.10), we have

es∗
H

= αs∗
H
i∗
M

p

ds + ξ
=

p
ξ+ds

(r + ξ)

p ds
ξ+ds

+ (1− p) dl
ξ+dl

i∗
H
. (2.15)

Comparing (2.6) and (2.10), we have

el∗
H

= αs∗
H
i∗
M

1− p
dl + ξ

=

1−p
ξ+dl

(r + ξ)

p ds
ξ+ds

+ (1− p) dl
ξ+dl

i∗
H
. (2.16)

By (2.8),

r∗
H

=
r

ω + ξ
i∗
H
. (2.17)
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By (2.15), (2.16) and (2.17),

s∗
H

= 1− es∗
H
− el∗

H
− i∗

H
− r∗

H

= 1−

(
p

ξ+ds
+ 1−p

ξ+dl

)
(r + ξ)

p ds
ξ+ds

+ (1− p) dl
ξ+dl

i∗
H
− i∗

H
− r

ω + ξ
i∗
H

= 1−Koi
∗
H
.

(2.18)

By (2.14) and (2.18), we get i∗
H

= R2
o−1

β
µ

+KoR2
o

, which exists when Ro > 1.

Theorem 2.2. The DFE of system (2.2) is locally asymptotically stable if Ro < 1 and

is unstable if Ro > 1.

Proof. Consider the linearized system of (2.2) at an equilibrium:

des
H

dt
= pαs∗

H
iM − pαi

∗
M

(es
H

+ el
H

+ iH + rH )− (ds + ξ)es
H
,

del
H

dt
= (1− p)αs∗

H
iM − (1− p)αi∗

M
(es
H

+ el
H

+ iH + rH )− (dl + ξ)el
H
,

diH
dt

= dse
s
H

+ dle
l
H
− (r + ξ)iH ,

drH
dt

= riH − (ω + ξ)rH ,

diM
dt

= βs∗
M
iH − βi

∗
H
iM − µiM .

The characteristic function F (λ) is∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+ ds + ξ +A A A A −pαs∗
H

B λ+ dl + ξ +B B B −(1− p)αs∗
H

−ds −dl λ+ r + ξ 0 0

0 0 −r λ+ ω + ξ 0

0 0 −βs∗
M

0 λ+ µ+ βi∗
H

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where A = pαi∗
M

, B = (1− p)αi∗
M

. After simplification,

F (λ) = (λ+ r + ξ)(λ+ ω + ξ)(λ+ µ+ βi∗
H

)[(λ+ ds + ξ)(λ+ dl + ξ)

+ αi∗
M
{(1− p)(λ+ ds + ξ) + p(λ+ dl + ξ)}] + αi∗

M
(λ+ µ+ βi∗

H
)

× {(λ+ ω + ξ) + r}{(1− p)dl(λ+ ds + ξ) + pds(λ+ dl + ξ)}

− αβs∗
H
s∗
M

(λ+ ω + ξ){(1− p)dl(λ+ ds + ξ) + pds(λ+ dl + ξ)}.
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At the DFE, it reduces to

F (λ) = (λ+ ω + ξ){(λ+ ds + ξ)(λ+ dl + ξ)(λ+ r + ξ)(λ+ µ)

− (1− p)dlαβ(λ+ ds + ξ)− pdsαβ(λ+ dl + ξ)}.

Now assume Ro < 1. Suppose there exists a root of F (λ) = 0 with non-negative real

part. Then, ∣∣∣∣ λ

ds + ξ
+ 1

∣∣∣∣ ∣∣∣∣ λ

dl + ξ
+ 1

∣∣∣∣ ∣∣∣∣ λ

r + ξ
+ 1

∣∣∣∣ ∣∣∣∣λµ + 1

∣∣∣∣
≤ αβ

(r + ξ)µ

(
(1− p) dl

dl + ξ

∣∣∣∣ λ

ds + ξ
+ 1

∣∣∣∣+ p
ds

ds + ξ

∣∣∣∣ λ

dl + ξ
+ 1

∣∣∣∣)
≤
∣∣∣∣ λ

ds + ξ
+ 1

∣∣∣∣ ∣∣∣∣ λ

dl + ξ
+ 1

∣∣∣∣R2
o,

which contradicts to Ro < 1. Therefore, the roots of F (λ) = 0 have negative real part,

implying that the DFE is locally asymptotically stable if Ro < 1. Now, assume Ro > 1.

Note that F (λ) = 0 has at least one real root. Since F (λ)→∞ for real λ→∞ and

F (0) = (ω + ξ)(ds + ξ)(dl + ξ)(r + ξ)µ(1−R2
o) < 0,

F (λ) = 0 has a positive real root. Therefore, the DFE is unstable.

2.2.2 DDE model with fixed length of latency

For the ODE model in section 2.2.1, exponential distribution was assumed for the long

incubation period, with mean 1/dl. In this section, we introduce a DDE model assuming

the long incubation period has a fixed length, τ . Then we have

Ps(u) := e−dsu, Pl(u) :=

1, u ∈ [0, τ ] ,

0, u ∈ (τ,∞) ,

and we obtain

es
H

(t) =

∫ ∞
0

pαsH (t− u)iM (t− u)Ps(u)e−ξudu

=

∫ ∞
0

pαsH (t− u)iM (t− u)e−(ds+ξ)udu,

el
H

(t) =

∫ ∞
0

(1− p)αsH (t− u)iM (t− u)Pl(u)e−ξudu

=

∫ τ

0
(1− p)αsH (t− u)iM (t− u)e−ξudu. (2.19)
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By differentiating both sides of (2.19) with respect to t, one can obtain

del
H

(t)

dt
= (1− p)αsH (t)iM (t)− (1− p)αsH (t− τ)iM (t− τ)e−ξτ − ξel

H
(t). (2.20)

The fraction of human population progressing to the infectious class per unit of time at

time t, after experiencing either the short- or long-term incubation period, is given by

dse
s
H

(t) + (1 − p)αsH (t − τ)iM (t − τ)e−ξτ . The following differential equation captures

the dynamics of the fraction of the infective human population iH (t):

diH (t)

dt
= dse

s
H

(t) + (1− p)αsH (t− τ)iM (t− τ)e−ξτ − (r + ξ) iH (t).

By considering

el
H

= 1− sH − e
s
H
− iH − rH ,

we arrive to the DDE model

dsH
dt

= ξ − αsH iM + ωrH − ξsH ,

des
H

dt
= pαsH iM − dse

s
H
− ξes

H
,

del
H

dt
= (1− p)αsH iM − (1− p)αsH (t− τ)iM (t− τ)e−ξτ − ξel

H
,

diH
dt

= dse
s
H

+ (1− p)αsH (t− τ)iM (t− τ)e−ξτ − riH − ξiH ,

drH
dt

= riH − ωrH − ξrH ,

dsM
dt

= µ− βsM iH − µsM ,

diM
dt

= βsM iH − µiM .

(2.21)

To guarantee that solutions remain in the feasible domain, compared to the ODE model

here we need the additional condition that the initial functions satisfy

el
H

(0) ≥ (1− p)α
∫ 0

−τ
sH (u)iM (u)e−ξudu.

The basic reproduction number Rd of the DDE model is given by

Rd =

√
αβ

µ(r + ξ)

(
(1− p)e−ξτ + p

ds
ds + ξ

)
, (2.22)

being defined in the same manner as Ro. Comparing with Eq. (2.4), the term

(1− p)e−ξτ + p
ds

ds + ξ
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is the only different part, which is the probability that a human will survive the exposed

state to become infectious. Rd is a stability threshold of system (2.21).

Lemma 2.3. The disease-free equilibrium (DFE) (1, 0, 0, 0, 0, 1, 0) of system (2.21) al-

ways exists. An endemic equilibrium (EE) exists if and only if Rd > 1 and it is given

by the following relations:

i∗
H

=
R2
d − 1

β
µ +KdR

2
d

, es∗
H

=
pξ

(1− p)(ds + ξ)e−ξτ + pds

r + ξ

ξ
i∗
H
,

el∗
H

=
(1− p)(ds + ξ)(1− e−ξτ )

pξ
es∗
H
, r∗

H
=

r

ω + ξ
i∗
H
, i∗

M
=

β
µ i
∗
H

1 + β
µ i
∗
H

,

s∗
H

= 1− es∗
H
− el∗

H
− i∗

H
− r∗

H
and s∗

M
= 1− i∗

M
, where

Kd =

p
ds+ξ

+ (1− p)1−e−ξτ
ξ

p ds
ds+ξ

+ (1− p)e−ξτ
(r + ξ) + 1 +

r

ω + ξ
.

Proof. We put LHS of the system (2.21) to be zero and obtain the following equations

0 = pαs∗
H
i∗
M
− (ds + ξ)es∗

H
, (2.23)

0 = (1− p)αs∗
H
i∗
M
− (1− p)αs∗

H
i∗
M
e−ξτ − ξel∗

H
, (2.24)

0 = dse
s∗
H

+ (1− p)αs∗
H
i∗
M
e−ξτ − (r + ξ)i∗

H
, (2.25)

0 = ri∗
H
− (ω + ξ)r∗

H
, (2.26)

0 = acs∗
M
i∗
H
− µi∗

M
. (2.27)

If either i∗
H

= 0 or i∗
M

= 0, we have a DFE

(s∗
H
, es∗

H
, el∗

H
, i∗
H
, r∗
H
, s∗

M
, i∗
M

) = (1, 0, 0, 0, 0, 1, 0)

Consider the case i∗
H
> 0 and i∗

M
> 0. Adding two equations, (2.23) multiplied by ds

ξ+ds
,

and (2.25), one has (
(1− p)e−ξτ + p

ds
ξ + ds

)
αs∗

H
i∗
M

= (r + ξ)i∗
H
. (2.28)

By (2.27),

βs∗
M
i∗
H

= µi∗
M
. (2.29)

Multiplying both sides of (2.28) and (2.29), and dividing by (r + ξ)µi∗
H
i∗
M

,

R2
ds
∗
H
s∗
M

= 1. (2.30)



Chapter 2 P. vivax transmission with long latent period 21

Meanwhile, multiplying β
(r+ξ)µ to (2.28),

R2
ds
∗
H

(1− s∗
M

) =
β

µ
i∗
H
. (2.31)

By (2.30) and (2.31), we get

s∗
H

=
1

R2
d

+
β

R2
dµ
i∗
H
. (2.32)

Comparing (2.23) and (2.28), we have

es∗
H

= αs∗
H
i∗
M

p

ds + ξ
=

p
ξ+ds

(r + ξ)

(1− p)e−ξτ + p ds
ξ+ds

i∗
H
. (2.33)

Comparing (2.24) and (2.28), we have

el∗
H

= αs∗
H
i∗
M

(1− p)(1− e−ξτ )

ξ
=

(1−p)(1−e−ξτ )
ξ (r + ξ)

(1− p)e−ξτ + p ds
ξ+ds

i∗
H
. (2.34)

By (2.26),

r∗
H

=
r

ω + ξ
i∗
H
. (2.35)

By (2.33), (2.34) and (2.35),

s∗
H

= 1− es∗
H
− el∗

H
− i∗

H
− r∗

H

= 1−
p

ξ+ds
+ (1− p)1−e−ξτ

ξ

(1− p)e−ξτ + p ds
ξ+ds

(r + ξ)i∗
H
− i∗

H
− r

ω + ξ
i∗
H

= 1−Kdi
∗
H
.

(2.36)

By (2.32) and (2.36), we get i∗
H

=
R2
d−1

β
µ

+KdR
2
d

, which exists when Rd > 1.

Theorem 2.4. The DFE of system (2.21) is locally asymptotically stable if Rd < 1 and

is unstable if Rd > 1.
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Proof. Consider the linearized system of (2.21) at an equilibrium:

des
H

dt
= − pαi∗

M
(es
H

(t) + el
H

(t) + iH (t) + rH (t)) + pαs∗
H
iM (t)− (ds + ξ)es

H
(t),

del
H

dt
= − (1− p)αi∗

M
(es
H

(t) + el
H

(t) + iH (t) + rH (t)) + (1− p)αs∗
H
iM (t)

+ (1− p)αi∗
M

(es
H

(t− τ) + el
H

(t− τ) + iH (t− τ) + rH (t− τ))e−ξτ

− (1− p)αs∗
H
iM (t− τ)e−ξτ − ξel

H
(t),

diH
dt

= − (1− p)αi∗
M

(es
H

(t− τ) + el
H

(t− τ) + iH (t− τ) + rH (t− τ))e−ξτ

+ dse
s
H

(t) + (1− p)αs∗
H
iM (t− τ)e−ξτ − riH (t)− ξiH (t),

drH
dt

= riH (t)− ωrH (t)− ξrH (t),

diM
dt

= βs∗
M
iH (t)− βi∗

H
iM (t)− µiM (t).

The characteristic function F (λ) is the determinant of the matrix

λI +



ds + ξ +A A A A −pαs∗
H

B ξ +B B B −(1− p)αs∗
H

(1− e−ξτ−λτ )

−ds + C C r + ξ + C C −(1− p)αs∗
H
e−ξτ−λτ

0 0 −r ω + ξ 0

0 0 −βs∗
M

0 µ+ βi∗
H


,

where A = pαi∗
M

, B = (1 − p)αi∗
M

(1 − e−ξτ−λτ ), and C = (1 − p)αi∗
M
e−ξτ−λτ . After

simplification,

F (λ) = (λ+ µ+ βi∗
H

)(λ+ ω + ξ)(λ+ ξ + αi∗
M

)(λ+ ds + ξ)(λ+ r + ξ)

− ωrαi∗
M
{pds + (1− p)e−ξτ−λτ (λ+ ds + ξ)}(λ+ µ+ βi∗

H
)

− αβs∗
H
s∗
M
{pds + (1− p)e−ξτ−λτ (λ+ ds + ξ)}(λ+ ω + ξ)(λ+ ξ).

At the DFE, it reduces to

F (λ) = (λ+ ω + ξ)(λ+ ξ){(λ+ ds + ξ)(λ+ r + ξ)(λ+ µ)

− (λ+ ds + ξ)(1− p)αβe−ξτ−λτ − pαβds}.

Assume that Rd < 1. Suppose there exists a root for F (λ) = 0 with non-negative real

part. Then,

|(λ+ ds + ξ)(λ+ µ)(λ+ r + ξ)| = |(λ+ ds + ξ)(1− p)αβe−ξτ−λτ + pαβds|.
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Dividing both sides by (ds + ξ)µ(r + ξ) gives∣∣∣∣ λ

ds + ξ
+ 1

∣∣∣∣ ∣∣∣∣λµ + 1

∣∣∣∣ ∣∣∣∣ λ

r + ξ
+ 1

∣∣∣∣
=

αβ

µ(r + ξ)

∣∣∣∣( λ

ds + ξ
+ 1

)
(1− p)e−ξτ−λτ + p

ds
ds + ξ

∣∣∣∣
≤
∣∣∣∣ λ

ds + ξ
+ 1

∣∣∣∣R2
d,

which contradicts to Rd < 1. Therefore, every root of F (λ) = 0 has negative real part,

implying the DFE is locally asymptotically stable if Rd < 1.

Now assume Rd > 1. Note that F (λ) = 0 has at least one real root. Since F (λ) → ∞
for real λ→∞ and

F (0) = (ds + ξ)µ(r + ξ)(1−R2
d) < 0,

F (λ) = 0 has a positive real root. Therefore the DFE is unstable.

2.2.3 Comparison of ODE and DDE models

In Section 2.2.1 and 2.2.2, we have shown that for both ODE and DDE models there

exists a threshold value determining the existence and stability of equilibria. Now we

compare these threshold values and also the endemic equilibria of the two models.

Proposition 2.5. When all parameters are fixed, the basic reproduction number Ro of

the ODE model is greater than the basic reproduction number Rd of the DDE model.

Moreover, when Rd > 1, i∗
H

of the ODE model (denoted by io) is greater than i∗
H

of the

DDE model (denoted by id).

Proof. Comparing (2.4) and (2.22), we obtain

Ro =

√
αβ

(r + ξ)µ

(
p

ds
ds + ξ

+ (1− p) 1

1 + ξτ

)

>

√
αβ

(r + ξ)µ

(
p

ds
ds + ξ

+ (1− p) 1

eξτ

)
= Rd,
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parameter value reference

ξ 0.00004 human life span
µ 0.2 [0.1,0.24] [53]
b 0.5 [60]
c 0.5 [60]
a 0.3 [0.25,0.5] [29]
ds 0.04 [43, 46]
dl 0.003 [43, 46]
r 0.07 [0.005,0.5] [29, 33, 39]
p 0.25 [68]
ω 1/365

Table 2.3: Baseline parameter values for simulations

because eξτ > 1 + ξτ . To compare the equilibria, consider

io − id =
(R2

o − 1)
(
β
µ +KdR

2
d

)
− (R2

d − 1)
(
β
µ +KoR

2
o

)
(
β
µ +KoR2

o

)(
β
µ +KdR

2
d

)
=

β
µ(R2

o −R2
d) + (Kd −Ko)R

2
oR

2
d(

β
µ +KoR2

o

)(
β
µ +KdR

2
d

) .

Since Ro > Rd, it is sufficient to show Kd > Ko in order to conclude io > id. Since

eξτ > 1 + ξτ , e−ξτ < 1
1+ξτ . Recall that τ = 1/dl, hence

e−ξτ <
dl

dl + ξ
. (2.37)

Thus, 1− e−ξτ > 1− 1
1+ξτ = ξ

dl+ξ
, implying

1− e−ξτ

ξ
>

1

dl + ξ
. (2.38)

By (2.37) and (2.38), we find

p
ds+ξ

+ (1− p)1−e−ξτ
ξ

p ds
ds+ξ

+ (1− p)e−ξτ
>

p
ds+ξ

+ 1−p
dl+ξ

p ds
ds+ξ

+ (1− p) dl
dl+ξ

which is equivalent to Kd > Ko.

In conclusion, the ODE model gives a larger basic reproduction number than the DDE

model, because of the higher probability of surviving the incubation period. Figure 2.4

and Figure 2.5 show numerical solutions. Figure 2.4 shows the case Ro > 1 and Rd > 1,

when iH (t) converges to the endemic equilibrium for both models. Figure 2.5 shows a

particular case when Ro > 1 but Rd < 1. Despite that all parameters are the same, here
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Figure 2.4: Ro > 1 and Rd > 1. For both models, i
H

(t) converges to endemic
equilibrium with io > id. To clearly show the difference of io and id, we set ξ = 0.004
and m = 10. Other parameter values are as indicated in Table 2.3. Initial condition
for ODE model is (s

H
, es

H
, el

H
, i

H
, r

H
, s

M
, i

M
)(0) = (0.91, 0, 0, 0.09, 0, 0, 0.01). For sake

of convenience, initial condition of DDE model is set to be s
H

(t) = 1 and s
M

(t) = 1
for t < 0, introducing infectious mosquito at t = 0, (s

H
, es

H
, el

H
, i

H
, r

H
, s

M
, i

M
)(0) =

(0.91, 0, 0, 0.09, 0, 0, 0.01).
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Figure 2.5: Ro > 1 and Rd < 1. For the ODE model, i
H

(t) converges to EE,
while it converges to DFE for the DDE model. To compare with Figure 2.4, we used
parameter value m = 1.5. Other parameter values and initial condition are same as the

one in Figure 2.4.

iH (t) of ODE model converges to the endemic equilibrium, and iH (t) of DDE model

converges to the disease-free equilibrium, thus the two models provide very different

predictions.

To investigate the robustness of the basic reproduction number with respect to the

long-term incubation time, in Figure 2.6 we compared

∂Ro
∂τ

=
−1

2Ro

αβ

µ(r + ξ)

(1− p)ξ
(1 + ξτ)2
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Figure 2.6: Sensitivity of the basic reproduction number to the long-term
incubation time. For τ being in reasonable range, |∂Ro

∂τ | < |
∂Rd

∂τ |. Parameter values
are as in Table 2.3 with m = 20.
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Figure 2.7: Relation of m and i∗
H

. Change of i∗
H

is more drastic at smaller mosquito
population. Parameter values are as in Table 2.3.

and
∂Rd
∂τ

=
−1

2Rd

αβ

µ(r + ξ)
(1− p)ξe−ξτ .

The magnitude of ∂Ro
∂τ is smaller than ∂Rd

∂τ when τ is in the reasonable range, so the

basic reproduction number is more sensitive to the long-term incubation time in the

DDE model.

In Figure 2.7, the infectious human component of the endemic equilibrium is plotted for

various mosquito populations. As expected from Proposition 2.5, the infectious human

equilibrium for the ODE model is greater than for the DDE model. Moreover, we can

see that a small change in the mosquito population affects the level of endemicity more

significantly when the mosquito population is relatively small.
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2.2.4 Global dynamics of DDE model

In this section, we study the global dynamics of the DDE model presented in Section

2.2.2. Note that elH(t) does not appear in the right-hand side of the system (2.21) and

it can reduced to the system

dsH (t)

dt
= ξ − αsH (t)iM (t)− ξsH (t) + ωrH (t), (2.39a)

des
H

(t)

dt
= pαsH (t)iM (t)− (ds + ξ) es

H
(t), (2.39b)

diH (t)

dt
= dse

s
H

(t) + (1− p)αsH (t− τ)iM (t− τ)e−ξτ − (r + ξ) iH (t), (2.39c)

drH (t)

dt
= riH (t)− (ω + ξ) rH (t), (2.39d)

dsM (t)

dt
= µ− βsM (t)iH (t)− µsM (t), (2.39e)

diM (t)

dt
= βsM (t)iH (t)− µiM (t). (2.39f)

Let C ([−τ, 0] ,R) be the space of real valued continuous functions on the interval [−τ, 0],

and consider

Ω := C ([−τ, 0] ,R)× R4 × C ([−τ, 0] ,R) .

Assuming that the solution exists in Ω, it is convenient to introduce a standard notation

from the theory of functional differential equations, see e.g. [23, 65]:

xt := (sHt , e
s
H

(t), iH (t), rH (t), sM (t), iMt) ∈ Ω,

where sHt ∈ C ([−τ, 0] ,R) and iMt ∈ C ([−τ, 0] ,R) are defined by the relations

sHt(θ) = sH (t+ θ), iMt(θ) = iM (t+ θ) for θ ∈ [−τ, 0] .

In what follows, we write ŷ for the element of C ([−τ, 0] ,R) satisfying ŷ(θ) = y for all

θ ∈ [−τ, 0]. Let

Ω+ := C ([−τ, 0] ,R+)× R4
+ × C ([−τ, 0] ,R+) .

Following the biological interpretation of our system, we prescribe the initial condition

as

x0 = φ0 ∈ Ω+. (2.40)

Then system (2.39) can be written in the abstract form

dx(t)

dt
= F(xt),
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where F : Ω→ R6, with initial condition (2.40). We consider R6 equipped with the L∞

norm and C ([−τ, 0] ,R) equipped with the usual supremum norm denoted by ‖ · ‖. Now

Ω is a Banach space with the norm

|φ|Ω := max {‖f‖ , |q2| , |q3| , |q4| , |q5| , ‖g‖} ,

for

φ = (f, q2, q3, q4, q5, g) ∈ Ω.

Then it is easy to show that F satisfies the local Lipschitz condition on each bounded

subset of Ω, from which the local existence of solutions of (2.39) follows, see also Theo-

rem 3.7 in Chapter 3 in [65]. Furthermore, it is straightforward to show that xt ∈ Ω+ for

sufficiently small t and it is easy to give an a priori bound for |xt|Ω. Thus the solution

xt is continuable on R+. Consequently, (2.39) with (2.40) induces a continuous semiflow

Φ := R+ × Ω+ → Ω+,

defined by

Φ (t, φ0) = xt (φ0) .

Let

X :=


φ

∣∣∣∣∣∣∣∣∣∣∣

0 ≤ f(θ), 0 ≤ g(θ), for θ ∈ [−τ, 0],

0 ≤ qj , j ∈ {2, 3, 4, 5} ,
f(0) +

∫ 0
−τ (1− p)αf(s)g(s)eξsds+

∑4
j=2 qj = 1,

q5 + g(0) = 1.


⊂ Ω+. (2.41)

Proposition 2.6. The set X is forward invariant under Φ, i.e.

Φ (t,X) ⊂ X, t ∈ R+.

Proof. Let φ0 ∈ X. By Theorem 3.4 in [65], one can show that each component of xt(φ0)

is nonnegative for all t ≥ 0. Adding (2.39e) and (2.39f), we have s′M + i′M = 0, thus

sM (t)+ iM (t) is a constant function. Since sM (0)+ iM (0) = 1, we have sM (t)+ iM (t) = 1

for all t ≥ 0. Let

n(t) := sH (t) + es
H

(t) + iH (t) + rH (t) +

∫ τ

0
(1− p)αsH (t− a)iM (t− a)e−ξada.
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Note that from (2.19) and (2.20) we have

d

dt

∫ τ

0
(1− p)αsH (t− a)iM (t− a)e−ξada

=
d

dt
el
H

(t)

= (1− p)αsH (t)iM (t)− (1− p)αsH (t− τ)iM (t− τ)e−ξτ

− ξ
∫ τ

0
(1− p)αsH (t− a)iM (t− a)e−ξada.

Adding (2.39a)–(2.39d) and (2.20), one obtains

dn(t)

dt
= ξ − ξn(t)

with n(0) = 1. Thus n(t) = 1 for all t ≥ 0, and the conclusion follows.

The variables in (2.39) represent fractions of either the human population or the mosquito

population. Thus, in X, the fractions of the human population sum up to 1, with all hu-

man compartments (sH , e
s
H
, el

H
, iH , rH ) being nonnegative; and the fractions of mosquito

population sum up to 1, with all mosquito compartments (sM , iM ) being nonnegative.

Therefore X is exactly the biologically meaningful state space. In Sections 2 and 3 we

consider the dynamics of system (2.39) in X.

The result on the existence of equilibria follows from the previous Chapter 2.2.2. Recall

(2.22) for the definition of Rd.

Proposition 2.7. If Rd ≤ 1, then system (2.39) has a unique equilibrium (1̂, 0, 0, 0, 1, 0̂)

in X, the DFE . If Rd > 1, there exist exactly two equilibria in X, the DFE and the EE,

where each component is positive.

Theorem 2.8. The DFE of system (2.39) is locally asymptotically stable if Rd < 1

and unstable if Rd > 1. The EE is locally asymptotically stable whenever exists, i.e. if

Rd > 1.

Proof. The result on the DFE is in the previous section 2.2.2. Assume Rd > 1. Then, the

characteristic equation F (λ) = 0 from (2.37) has at least one real root. Since F (λ)→∞
for real λ→∞ and

F (0) = (ds + ξ)µ(r + ξ)(1−R2
d) < 0,

F (λ) = 0 has a positive real root. Therefore the DFE is unstable.
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Suppose that the EE is not locally asymptotically stable. Then there exists a charac-

teristic root λ with nonnegative real part. For the EE,

s∗
H
s∗
M

= 1/R2
d

holds and the characteristic equation can be re-written as

µ(r + ξ)
pds + (1− p)e−ξτ−λτ (λ+ ds + ξ)

(1− p)e−ξτ + p ds
ds+ξ

(λ+ ω + ξ)(λ+ ξ)

= (λ+ µ+ βi∗
H

)(λ+ ω + ξ)(λ+ ξ + αi∗
M

)(λ+ ds + ξ)(λ+ r + ξ)

− ωrαi∗
M
{pds + (1− p)e−ξτ−λτ (λ+ ds + ξ)}(λ+ µ+ βi∗

H
).

Dividing both sides by

µ(r + ξ)(ds + ξ)(ω + ξ)ξ

gives

p ds
ds+ξ

+ (1− p)e−ξτ−λτ ( λ
ds+ξ

+ 1)

(1− p)e−ξτ + p ds
ds+ξ

(
λ

ω + ξ
+ 1

)(
λ

ξ
+ 1

)
=

(
λ

µ
+ 1 +

βi∗
H

µ

)[(
λ

ω + ξ
+ 1

)(
λ

ξ
+ 1 +

αi∗
M

ξ

)(
λ

ds + ξ
+ 1

)(
λ

r + ξ
+ 1

)
− ω

ω + ξ

r

r + ξ

αi∗
M

ξ

{
p

ds
ds + ξ

+ (1− p)e−ξτ−λτ
(

λ

ds + ξ
+ 1

)}]
.

Then,∣∣∣∣λµ + 1 +
βi∗

H

µ

∣∣∣∣ ∣∣∣∣ λ

ω + ξ
+ 1

∣∣∣∣ ∣∣∣∣λξ + 1 +
αi∗

M

ξ

∣∣∣∣ ∣∣∣∣ λ

ds + ξ
+ 1

∣∣∣∣ ∣∣∣∣ λ

r + ξ
+ 1

∣∣∣∣
=

∣∣∣∣∣p
ds
ds+ξ

+ (1− p)e−ξτ−λτ ( λ
ds+ξ

+ 1)

(1− p)e−ξτ + p ds
ds+ξ

(
λ

ω + ξ
+ 1

)(
λ

ξ
+ 1

)
+

ω

ω + ξ

r

r + ξ

αi∗
M

ξ

{
p

ds
ds + ξ

+ (1− p)e−ξτ−λτ
(

λ

ds + ξ
+ 1

)}(
λ

µ
+ 1 +

βi∗
H

µ

)∣∣∣∣
=

∣∣∣∣∣p
ds
ds+ξ

+ (1− p)e−ξτ−λτ ( λ
ds+ξ

+ 1)

(1− p)e−ξτ + p ds
ds+ξ

∣∣∣∣∣
∣∣∣∣( λ

ω + ξ
+ 1

)(
λ

ξ
+ 1

)
+

ω

ω + ξ

r

r + ξ

αi∗
M

ξ

{
(1− p)e−ξτ + p

ds
ds + ξ

}(
λ

µ
+ 1 +

βi∗
H

µ

)∣∣∣∣
≤
∣∣∣∣ λ

ds + ξ
+ 1

∣∣∣∣ ∣∣∣∣( λ

ω + ξ
+ 1

)(
λ

ξ
+ 1

)
+

ω

ω + ξ

r

r + ξ

αi∗
M

ξ

{
(1− p)e−ξτ + p

ds
ds + ξ

}(
λ

µ
+ 1 +

βi∗
H

µ

)∣∣∣∣
≤
∣∣∣∣ λ

ds + ξ
+ 1

∣∣∣∣ (∣∣∣∣ λ

ω + ξ
+ 1

∣∣∣∣ ∣∣∣∣λξ + 1

∣∣∣∣+
αi∗

M

ξ

∣∣∣∣λµ + 1 +
βi∗

H

µ

∣∣∣∣)
<

∣∣∣∣ λ

ds + ξ
+ 1

∣∣∣∣ ∣∣∣∣ λ

ω + ξ
+ 1

∣∣∣∣ ∣∣∣∣λξ + 1

∣∣∣∣ ∣∣∣∣λµ + 1 +
βi∗

H

µ

∣∣∣∣ (1 +
αi∗

M

ξ

)
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which is a contradiction, hence the EE is locally asymptotically stable.

First we prove the global attractivity of the disease-free equilibrium for R0 ≤ 1. Let us

define a subset of X by

G := {φ ∈ X | f(0) > 0, q5 > 0} .

It is easy to see that

Φ(t,X) ⊂ G, t > 0.

To prove the global attractivity, we construct a Lyapunov functional, for what we use,

as a building block, the function

h(x) := x− 1− lnx for x ∈ R+ \ {0} . (2.42)

Note that h(x) ≥ 0 for x ∈ R+ \ {0} and that h(x) = 0 if and only if x = 1.

Theorem 2.9. If Rd ≤ 1, then the disease-free equilibrium is globally attractive in X.

Furthermore, if Rd < 1 holds, then it is globally asymptotically stable in X.

Proof. Consider the following functional V : G→ R+:

V (φ) :=c1h(f(0)) + c2q2 + q3 + c3h(q5) + c3g(0) + c4

∫ 0

−τ
f(s)g(s)ds,

where

c1 :=
µ(r + ξ)

αβ
, c2 :=

ds
ds + ξ

, c3 :=
r + ξ

β
, c4 := (1− p)αe−ξτ .

We differentiate V with respect to t along solutions of (2.39):

d

dt
V (xt) = c1(ξ − αsH (t)iM (t) + ωrH (t)− ξsH (t))

+ c1

(
− ξ

sH (t)
+ αiM (t)− ωrH (t)

sH (t)
+ ξ

)
+ c2(pαsH (t)iM (t)− (ds + ξ)es

H
(t))

+ dse
s
H

(t) + (1− p)αsH (t− τ)iM (t− τ)e−ξτ − (r + ξ)iH (t)

+ c3(µ− βsM (t)iH (t)− µsM (t)) + c3

(
− µ

sM (t)
+ βiH (t) + µ

)
+ c3(βsM (t)iH (t)− µiM (t))

+ c4(sH (t)iM (t)− sH (t− τ)iM (t− τ))

= c1ξ

(
2− sH (t)− 1

sH (t)

)
+ c3µ

(
2− sM (t)− 1

sM (t)

)
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+ c1ωrH (t)

(
1− 1

sH (t)

)
+ (c2pα+ c4 − c1α)sH (t)iM (t)

+ (ds − c2(ds + ξ))es
H

(t) + (c1α− c3µ)iM (t) + (c3β − (r + ξ))iH (t)

+ ((1− p)αe−ξτ − c4)sH (t− τ)iM (t− τ)

= c1ξ

(
2− sH (t)− 1

sH (t)

)
+ c3µ

(
2− sM (t)− 1

sM (t)

)
+ c1ωrH (t)

(
1− 1

sH (t)

)
+ (c2pα+ c4 − c1α)sH (t)iM (t).

Since Rd ≤ 1 is assumed, one can get

c2pα+ c4 − c1α =
µ(r + ξ)

β
(R2

d − 1) ≤ 0.

Therefore we have d
dtV (xt) ≤ 0. For a given solution, we define a set

G := {ϕ ∈ G | V (ϕ) ≤ V (xt0)} ,

for some t0 > 0. One can see that G is closed and positively invariant. Thus the closure

of G is itself and G contains xt for all t ≥ t0 > 0. Since V is continuous on G, V is a

Lyapunov functional on G, see Chapter 5.3 in [23]. We define the set

E :=
{
ϕ ∈ G | V̇(2.39)(ϕ) = 0

}
,

and one finds that

E =
{
φ ∈ G | f(0) = 1, q5 = 1

}
.

Let M be the largest subset in E that is invariant with respect to (2.39). By LaSalle’s

invariance principle, the solution tends to M , see Theorem 3.2, Chapter 5.3 in [23]. We

show that M consists of only the disease-free equilibrium. From the invariance of M ,

for φ ∈M one has

xt(φ) ∈M ⊂ E for t > 0.

Then sM (t) = 1 and iH (t) = 0 follow. From (2.39f), we obtain limt→∞ iM (t) = 0. Then

one can see that

lim
t→∞

(
es
H

(t), iH (t), iM (t)
)

= (0, 0, 0)

and limt→∞ sH (t) = 1. Thus, M consists of only the disease-free equilibrium. Hence,

every solution converges to the disease-free equilibrium. The local asymptotic stability

of the disease-free equilibrium can be demonstrated by standard linearization: one can

compute the characteristic equation (see [23, 66]), and show that if R0 < 1, then all roots

of the characteristic equation have negative real parts. Here we omit the calculations.

Thus the disease-free equilibrium is globally asymptotically stable for R0 < 1.
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Next we prove the persistence of the disease for R0 > 1. Let us define

ρ :=
4∑
i=1

ρi,

where ρi : X → R+ for i ∈ {1, 2, 3, 4} are given by

ρ1(φ) = q2, ρ2(φ) = (1− p)α
∫ 0

−τ
f(s)g(s)eξsds,

ρ3(φ) = q3, ρ4(φ) = g(0).

Let

X̃ := {φ ∈ X | ρ(φ) > 0}, (2.43)

X0 := {φ ∈ X | ρ(φ) = 0} = X \ X̃, (2.44)

where X0 is called the extinction space corresponding to ρ, for obvious reasons: X0 is

the collection of states where the disease is not present.

Proposition 2.10. The following assertions hold.

1. The set X̃ is forward invariant under Φ. Moreover, for each i ∈ {1, 2, 3, 4} it holds

that

ρi(Φ(t, φ)) > 0 for φ ∈ X̃ and t > τ. (2.45)

2. The extinction space X0 is forward invariant under Φ.

Proof. One can prove the first part by a comparison method and a contradiction argu-

ment, thus here we only prove the second part. Let φ ∈ X0. For t ∈ [0, τ ] one can see

that

(1− p)αsH (t− τ)iM (t− τ)e−ξτ = (1− p)αf(t− τ)g(t− τ)e−ξτ = 0.

Therefore, for t ∈ [0, τ ], (2.39b), (2.39c) and (2.39d) are respectively reduce to

des
H

(t)

dt
= pαsH (t)iM (t)− (ds + ξ) es

H
(t),

diH (t)

dt
= dse

s
H

(t)− (r + ξ) iH (t),

diM (t)

dt
= βsM (t)iH (t)− µiM (t)

(2.46)

with es
H

(0) = iH (0) = iM (0) = 0. Since (es
H
, iH , iM ) = (0, 0, 0) is an equilibrium of

(2.46), we get that

es
H

(t) = iH (t) = iM (t) = 0, t ∈ [0, τ ],
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therefore∫ 0

−τ
sHt(s)iMt(s)e

ξsds =

∫ t

t−τ
sH (s)iM (s)e−ξ(t−s)ds

=

∫ 0

t−τ
f(s)g(s)e−ξ(t−s)ds+

∫ t

0
sH (s)iM (s)e−ξ(t−s)ds

= 0, t ∈ [0, τ ].

Hence we obtain ρ(Φ(t, φ)) = 0 for t ∈ [0, τ ]. By the method of steps, we arrive to the

conclusion that ρ(Φ(t, φ)) = 0 holds for all t ∈ R+, i.e. ρ(Φ(t, φ) ∈ X0 for all t ∈ R+.

We now introduce some terminology of persistence theory from Chapters 3.1 and 8.3 in

[66].

Definition 2.11. Let X be a nonempty set and ρ : X → R+.

1. A semiflow Φ: R+×X → X is called uniformly weakly ρ-persistent, if there exists

some ε > 0 such that

lim sup
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

2. A semiflow Φ is called uniformly (strongly) ρ-persistent, if there exists some ε > 0

such that

lim inf
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

3. A set M ⊂ X is called weakly ρ-repelling if there is no x ∈ X such that ρ(x) > 0

and Φ(t, x)→M as t→∞.

Theorem 2.12. If Rd > 1, then the semiflow Φ is uniformly ρ-persistent.

Proof. We apply Theorem 4.5 and Theorem 8.17 in [66]. First, we show that (1̂, 0, 0, 0, 1, 0̂)

is weakly ρ-repelling. Suppose that there exists ψ0 ∈ X such that ρ(ψ0) > 0 with

lim
t→∞

Φ(t, ψ0) = (1̂, 0, 0, 0, 1, 0̂). (2.47)

We denote by

(sHt , e
s
H

(t), iH (t), rH (t), sM (t), iMt )

the solution at time t with initial state ψ0. Since we have (2.47), there exists T > 0 such

that

sH (t) >
1

Rd
and sM (t) >

1

Rd
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for all t > T . Let us define

U(t) :=
ds

ds + ξ
es
H

(t) + (1− p)αe−ξτ
∫ 0

−τ
sHt (s)iMt (s)ds+ iH (t) +Rd

r + ξ

β
iMt (0).

Since ρ(ψ0) > 0, by Proposition 2.10.1, U(T ) > 0. We compute

U ′(t) =
ds

ds + ξ
(pαsH (t)iM (t)− (ds + ξ)es

H
(t))

+ (1− p)αe−ξτ (sH (t)iM (t)− sH (t− τ)iM (t− τ))

+ dse
s
H

(t) + (1− p)αe−ξτsH (t− τ)iM (t− τ)− (r + ξ)iH (t)

+Rd
r + ξ

β
(βsM (t)iH (t)− µiM (t))

=

(
pα

ds
ds + ξ

+ (1− p)αe−ξτ
)
sH (t)iM (t)

− (r + ξ)iH (t)−Rd
(r + ξ)µ

β
iM (t) +Rd(r + ξ)sM (t)iH (t)

= Rd
(r + ξ)µ

β
iM (t)(R0sH (t)− 1) + (r + ξ)iH (t)(RdsM (t)− 1)

≥ 0

for t > T . Since U is increasing for t > T and U(T ) > 0, U(t) does not converge to zero

as t → ∞. Thus, there is no ψ0 ∈ X such that ρ(ψ0) > 0 and (2.47) holds. Therefore,

(1̂, 0, 0, 0, 1, 0̂) is weakly ρ-repelling.

By Proposition 2.10.1, together with the obvious statement

∪φ∈X0ω(φ) = (1̂, 0, 0, 0, 1, 0̂),

one can see that Φ is uniformly weakly ρ-persistent using Theorem 8.17 in [66]. Since

Φ has a compact global attractor on X, we can apply Theorem 4.5 in [66] to conclude

that Φ is uniformly ρ-persistent.

For a function f : R→ R, we use the notation

f∞ = lim sup
t→∞

f(t) and f∞ = lim inf
t→∞

f(t).

Theorem 2.13. If Rd > 1, then Φ is uniformly ρ4-persistent.

Proof. Let ψ ∈ X with ρ4(ψ) > 0. Since ρ(ψ) ≥ ρ4(ψ) > 0, by Theorem 2.12, there

exists ε > 0 such that lim inft→∞ ρ(Φ(t, ψ)) > ε. Thus, one has

lim sup
t→∞

ρi(Φ(t, ψ)) > ε
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for some i ∈ {1, 2, 3, 4}.

First, assume that es∞
H

> ε. By the Fluctuation method [65], we can take a sequence

{tj}∞j=1 such that

es′
H

(tj)→ 0, es
H

(tj)→ es∞
H

as j →∞.

From (2.39b), we get

lim
j→∞

sH (tj)iM (tj) = lim
j→∞

(
1

pα
es′
H

(tj) +
ds + ξ

pα
es
H

(tj)

)
and then

i∞
M
≥ lim

j→∞
sH (tj)iM (tj) =

ds + ξ

pα
es∞
H

>
(ds + ξ)ε

pα
, (2.48)

thus we obtain the conclusion. Next we assume that el∞
H

> ε. Then we have a sequence

{tm}∞m=1 satisfying

el′
H

(tm)→ 0, el
H

(tm)→ el∞
H

as m→∞.

From (2.20), we have

lim
m→∞

(
sH (tm)iM (tm)− sH (tm − τ)iM (tm − τ)e−ξτ

)
= lim

m→∞

(
1

(1− p)α
el′H(tm) +

ξ

(1− p)α
el
H

(tm)

)
.

Then we deduce that

i∞
M
≥ lim sup

m→∞
sH (tm)iM (tm)− lim inf

m→∞
sH (tm − τ)iM (tm − τ)e−ξτ

≥ lim sup
m→∞

(
sH (tm)iM (tm)− sH (tm − τ)iM (tm − τ)e−ξτ

)
=

ξ

(1− p)α
el∞
H

>
ξε

(1− p)α
.

(2.49)

Finally we assume that i∞
H
> ε. Then there is a sequence {tl}∞l=1 such that

i′
H

(tl)→ 0, iH (tl)→ i∞
H

as l→∞.
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From (2.39c), one has

lim
l→∞

(
ds
α
es
H

(tl) + (1− p)sH (tl − τ)iM (tl − τ)e−ξτ
)

= lim
l→∞

(
1

α
i′
H

(tl) +
r + ξ

α
iH (tl)

)
.

(2.50)

Moreover,

i∞
M
≥ pi∞

M
+ (1− p)e−ξτ i∞

M
. (2.51)

Since inequality (2.48) implies

i∞
M
≥ ds + ξ

pα
es∞
H
,

by (2.51),

i∞
M
≥ ds + ξ

α
es∞
H

+ (1− p)e−ξτ lim sup
l→∞

sH (tl − τ)iM (tl − τ)

≥ ds
α
es∞
H

+ (1− p)e−ξτ lim sup
l→∞

sH (tl − τ)iM (tl − τ)

≥ lim
l→∞

(
ds
α
es
H

(tl) + (1− p)sH (tl − τ)iM (tl − τ)e−ξτ
)
.

By (2.50), we get

i∞
M
≥ r + ξ

α
i∞
H
>
r + ξ

α
ε.

Therefore, Φ is uniformly weakly ρ4-persistent. From the uniformly weak persistence,

the uniform persistence follows by Theorem 4.5 in [66].

Theorem 2.14. If Rd > 1, then Φ is uniformly ρ3-persistent.

Proof. Let ψ ∈ X with ρ3(ψ) > 0. Since ρ(ψ) ≥ ρ3(ψ) > 0, by Theorem 2.12, there

exists ε > 0 such that lim inft→∞ ρ(Φ(t, ψ)) > ε. Then,

lim sup
t→∞

ρi(Φ(t, ψ)) > ε for some i ∈ {1, 2, 3, 4}.

Assume that i∞
M
> ε. By (2.39f), with a sequence {tk}∞k=1 such that

i′
M

(tk)→ 0, iM (tk)→ i∞
M

as k →∞,

we have

lim
k→∞

sM (tk)iH (tk) = lim
k→∞

(
1

β
i′
M

(tk) +
µ

β
iM (tk)

)
.
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This implies

i∞
H
≥ lim

k→∞
sM (tk)iH (tk) =

µ

β
i∞
M
>
µ

β
ε. (2.52)

Next we assume that es∞
H

> ε. Similar as in (2.48), we get

i∞
M
≥ ds + ξ

pα
es∞
H
. (2.53)

By (2.52) and (2.53), we find

i∞
H
≥ µ

β
i∞
M
≥ µ

β

ds + ξ

pα
es∞
H

>
µ

β

ds + ξ

pα
ε.

Next we assume that el∞
H

> ε. Similar as in (2.49), we get

i∞
M
≥ ξ

(1− p)α
el∞
H
. (2.54)

By (2.52) and (2.54), one has

i∞
H
≥ µ

β
i∞
M
≥ µ

β

ξ

(1− p)α
el∞H >

µ

β

ξ

(1− p)α
ε.

From uniformly weak persistence, the uniform persistence follows by Theorem 4.5 in

[66].

Lemma 2.15. There exists T > 0 such that

sH (t) >
1

2

ξ

α+ ξ
for all t ≥ T.

Proof. From the first equation of (2.39), we have

s′
H

= ξ − αsH iM + ωrH − ξsH ≥ ξ − αsH − ξsH

and thus sH∞ ≥
ξ

α+ξ > 0.

Theorem 2.16. If Rd > 1, then Φ is uniformly ρ2-persistent.

Proof. Let ψ ∈ X with ρ2(ψ) > 0. By Proposition 2.10.1, there exists t∗ > τ such that

ρ4(xt∗(ψ)) > 0.

Then, by Theorem 2.13, there exists ε > 0 such that

lim inf
t→∞

ρ4(Φ(t, ψ)) = lim inf
t→∞

ρ4(Φ(t, xt∗(ψ))) > ε.
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From now on, we denote by (sHt , e
s
H

(t), iH (t), rH (t), sM (t), iMt ) the solution with initial

state ψ. There exists T1 > 0 such that

iMt (0) >
1

2
ε for all t ≥ T1.

Take T2 > 0 such that

sHt (0) >
1

2

ξ

α+ ξ
for all t ≥ T2.

Then, ∫ 0

−τ
sHt (s)iMt (s)e

ξsds >
1

4

ξ

α+ ξ
ε

∫ 0

−τ
eξsds

for all t > max{T1, T2}+ τ . Therefore,

lim inf
t→∞

(1− p)α
∫ 0

−τ
sHt (s)iMt (s)e

ξsds ≥ 1

4
(1− p)α ξ

α+ ξ
ε

∫ 0

−τ
eξsds > 0.

Theorem 2.17. If R0 > 1, then Φ is uniformly ρ1-persistent.

Proof. Let ψ ∈ X with ρ1(ψ) > 0. By Proposition 2.10.1, there exists t∗ > τ such that

ρ4(xt∗(ψ)) > 0. Then, by Theorem 2.13, there exists ε > 0 such that

lim inf
t→∞

ρ4(Φ(t, ψ)) = lim inf
t→∞

ρ4(Φ(t, xt∗(ψ))) > ε.

From now on, we denote by (sHt , e
s
H

(t), iH (t), rH (t), sM (t), iMt ) the solution with initial

state ψ. There exists T1 > 0 such that

iH (t) >
1

2
ε for all t ≥ T1.

Take T2 > 0 such that

sH (t) >
1

2

ξ

α+ ξ
for all t ≥ T2.

Then,

d

dt
es
H

(t) = pαsH (t)iM (t)− (ds + ξ)es
H

(t)

≥ 1

4
pα

ξ

α+ ξ
ε− (ds + ξ)es

H
(t)

for all t > max{T1, T2}, thus

es
H∞ ≥

pαξε

4(ds + ξ)(α+ ξ)
.
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Combining Theorems 2.13, 2.14, 2.16, 2.17 and Proposition 2.10.1, we immediately

obtain the following result.

Corollary 2.18. If R0 > 1, there exists ε > 0 such that

es
H∞ > ε, el

H∞ > ε, iH∞ > ε and iM∞ > ε

for every φ0 ∈ X̃, i.e. the disease uniformly persists in each infected compartments of

the human and the mosquito populations.

In the special case of ω = 0, which means that individuals acquire permanent immunity

after recovering from the infection, we show that the endemic equilibrium is indeed

globally asymptotically stable, provided that the basic reproduction number is greater

than one.

Theorem 2.19. Assume that ω = 0. If R0 > 1, then the endemic equilibrium is globally

asymptotically stable in X̃.

Proof. First we define a subset of X as

G̃ :=

{
φ ∈ X

∣∣∣∣∣ f(θ) > 0, g(θ) > 0, θ ∈ [−τ, 0] ,

qj > 0, j ∈ {2, 3, 4, 5}.

}
.

From Proposition 3 one can see that

Φ(t, X̃) ⊂ G̃, t > τ.

To prove the theorem we construct a Lyapunov functional on G̃. Let us denote by

(
sH , e

s
H
, iH , rH , sM , iM

)
the endemic equilibrium of (2.39), where each component is strictly positive. We define

c1 :=
1

αiM
(k1 + k2) , c2 :=

(
αsH iM
es
H

)−1 ds
ds + ξ

, c3 :=

(
αsH iM
iH

)−1

,

c4 :=
1

βiH
(k1 + k2) , c5 :=

(
βsM iH
iM

)−1

(k1 + k2) ,

where k1 and k2 are constants defined as

k1 := p
ds

ds + ξ
, k2 := (1− p) e−ξτ .
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For φ = (f, q2, q3, q4, q5, g) ∈ G̃, we consider the following functional:

Ve(φ) := c1h

(
f(0)

sH

)
+ c2h

(
q2

es
H

)
+ c3h

(
q3

iH

)
+ c4h

(
q5

sM

)
+ c5h

(
g(0)

iM

)
+ k2Ue(φ),

where

Ue(φ) :=

∫ 0

−τ
h

(
f(s)g(s)

sH iM

)
ds

and h is defined as in (2.42) in Section 3. We differentiate Ve with respect to t along the

solution of (2.39). Since one has

ξ = αsH iM + ξsH

from the first equation of (2.39), we compute

d

dt
h

(
sH (t)

sH

)
=

1

sH

(
1− sH

sH (t)

)
(αsH iM + ξsH − αsH (t)iM (t)− ξsH (t))

=
1

sH

(
1− sH

sH (t)

){
αsH iM

(
1− sH (t)iM (t)

sH iM

)
+ ξsH

(
1− sH (t)

sH

)}
=

1

sH

{
αsH iM

(
1− sH

sH (t)

)(
1− sH (t)iM (t)

sH iM

)
+ ξsH

(
1− sH

sH (t)

)(
1− sH (t)

sH

)}
= αiM

(
1− sH (t)iM (t)

sH iM
− sH
sH (t)

+
iM (t)

iM

)
+ ξ

(
1− sH

sH (t)

)(
1− sH (t)

sH

)
. (2.55)

From (2.39b), one has

0 = pαsH iM − (ds + ξ) es
H
, (2.56)

hence

ds + ξ =
pαsH iM
es
H

.

Then

d

dt
h

(
es
H

(t)

es
H

)
=

1

es
H

(
1−

es
H

es
H

(t)

)(
pαsH (t)iM (t)− pαsH iM

es
H

(t)

es
H

)
= p

αsH iM
es
H

(
1−

es
H

es
H

(t)

)(
sH (t)iM (t)

sH iM
−
es
H

(t)

es
H

)
= p

αsH iM
es
H

(
sH (t)iM (t)

sH iM
−
es
H

(t)

es
H

−
es
H

es
H

(t)

sH (t)iM (t)

sH iM
+ 1

)
. (2.57)

From (2.39c), one can get

r + ξ =
1

iH

{
dse

s
H

+ (1− p)αe−ξτsH iM
}
.
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Then we obtain

diH (t)

dt
= dse

s
H

(
es
H

(t)

es
H

− iH (t)

iH

)
+ (1− p)αe−ξτsH iM

(
sH (t− τ)iM (t− τ)

sH iM
− iH (t)

iH

)
.

We compute

d

dt
h

(
iH (t)

iH

)
=

1

iH

(
1− iH

iH (t)

){
dse

s
H

(
es
H

(t)

es
H

− iH (t)

iH

)
+ (1− p)αe−ξτsH iM

(
sH (t− τ)iM (t− τ)

sH iM
− iH (t)

iH

)}
=
dse

s
H

iH

(
1− iH

iH (t)

)(
es
H

(t)

es
H

− iH (t)

iH

)
+ (1− p) αe

−ξτsH iM
iH

(
1− iH

iH (t)

)(
sH (t− τ)iM (t− τ)

sH iM
− iH (t)

iH

)
.

From (2.56), one finds that

dse
s
H

= pαsH iM
ds

ds + ξ
= αsH iMk1.

Therefore

d

dt
h

(
iH (t)

iH

)
=
αsH iM
iH

{
k1

(
1− iH

iH (t)

)(
es
H

(t)

es
H

− iH (t)

iH

)
+k2

(
1− iH

iH (t)

)(
sH (t− τ)iM (t− τ)

sH iM
− iH (t)

iH

)}
=
αsH iM
iH

{
k1

(
es
H

(t)

es
H

− iH (t)

iH
− iH
iH (t)

es
H

(t)

es
H

+ 1

)
+k2

(
sH (t− τ)iM (t− τ)

sH iM
− iH (t)

iH
− iH
iH (t)

sH (t− τ)iM (t− τ)

sH iM
+ 1

)}
.

We now use µ = βsM iH + µsM from (2.39e). Then

d

dt
h

(
sM (t)

sM

)
=

1

sM

(
1− sM

sM (t)

)
(βsM iH + µsM − βsM (t)iH (t)− µsM (t))

=
1

sM

(
1− sM

sM (t)

){
βsM iH

(
1− sM (t)iH (t)

sM iH

)
+ µsM

(
1− sM (t)

sM

)}
= βiH

(
1− sM (t)iH (t)

sM iH
− sM
sM (t)

+
iH (t)

iH

)
+ µ

(
1− sM

sM (t)

)(
1− sM (t)

sM

)
. (2.58)
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Finally, from (2.39f) one has 0 = βsM iH − µiM , thus

µ =
βsM iH
iM

follows. Then

d

dt
h

(
iM (t)

iM

)
=

1

iM

(
1− iM

iM (t)

)
(βsM (t)iH (t)− µiM (t))

=
1

iM

(
1− iM

iM (t)

)(
βsM (t)iH (t)− βsM iH

iM (t)

iM

)
=
βsM iH
iM

(
1− iM

iM (t)

)(
sM (t)iH (t)

sM iH
− iM (t)

iM

)
=
βsM iH
iM

(
sM (t)iH (t)

sM iH
− iM (t)

iM
− iM
iM (t)

sM (t)iH (t)

sM iH
+ 1

)
. (2.59)

Finally, we can compute that

d

dt
Ue(xt) = h

(
sH (t)iM (t)

sH iM

)
− h

(
sH (t− τ)iM (t− τ)

sH iM

)
=
sH (t)iM (t)

sH iM
− ln

(
sH (t)iM (t)

sH iM

)
− sH (t− τ)iM (t− τ)

sH iM
+ ln

(
sH (t− τ)iM (t− τ)

sH iM

)
=
sH (t)iM (t)

sH iM
− sH (t− τ)iM (t− τ)

sH iM
+ ln

(
sH (t− τ)iM (t− τ)

sH (t)iM (t)

)
. (2.60)

From (2.55)–(2.60) we get

d

dt
Ve(xt) = (k1 + k2)

ξ

βiM

(
1− sH

sH (t)

)(
1− sH (t)

sH

)
+ (k1 + k2)

µ

βiH

(
1− sM

sM (t)

)(
1− sM (t)

sM

)
+ (k1 + k2)C0(t) + k1C1(t) + k2C2(t),

where

C0(t) =

(
1− sH (t)iM (t)

sH iM
− sH
sH (t)

+
iM (t)

iM

)
+

(
1− sM (t)iH (t)

sM iH
− sM
sM (t)

+
iH (t)

iH

)
+

(
sM (t)iH (t)

sM iH
− iM (t)

iM
− iM
iM (t)

sM (t)iH (t)

sM iH
+ 1

)
,

C1(t) =

(
sH (t)iM (t)

sH iM
−
es
H

(t)

es
H

−
es
H

es
H

(t)

sH (t)iM (t)

sH iM
+ 1

)
+

(
es
H

(t)

es
H

− iH (t)

iH
− iH
iH (t)

es
H

(t)

es
H

+ 1

)
,
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and

C2(t)

=

(
sH (t− τ)iM (t− τ)

sH iM
− iH (t)

iH
− iH
iH (t)

sH (t− τ)iM (t− τ)

sH iM
+ 1

)
+

(
sH (t)iM (t)

sH iM
− sH (t− τ)iM (t− τ)

sH iM
+ ln

(
sH (t− τ)iM (t− τ)

sH (t)iM (t)

))
.

One can respectively simplify C0,1,2(t) as

C0(t) =

(
1− sH (t)iM (t)

sH iM
− sH
sH (t)

)
+

(
1− sM

sM (t)
+
iH (t)

iH

)
+

(
− iM
iM (t)

sM (t)iH (t)

sM iH
+ 1

)
, (2.61)

C1(t) =

(
sH (t)iM (t)

sH iM
−

es
H

es
H

(t)

sH (t)iM (t)

sH iM
+ 1

)
+

(
− iH (t)

iH
− iH
iH (t)

es
H

(t)

es
H

+ 1

)
, (2.62)

C2(t) =

(
sH (t)iM (t)

sH iM
− iH (t)

iH
− iH
iH (t)

sH (t− τ)iM (t− τ)

sH iM
+ 1

)
+ ln

(
sH (t− τ)iM (t− τ)

sH (t)iM (t)

)
. (2.63)

From (2.61)–(2.63) one can compute

(k1 + k2)C0(t) + k1C1(t) + k2C2(t)

= (k1 + k2)

{(
1− sH

sH (t)

)
+

(
1− sM

sM (t)

)
+

(
− iM
iM (t)

sM (t)iH (t)

sM iH
+ 1

)}
+ k1

{(
−

es
H

es
H

(t)

sH (t)iM (t)

sH iM
+ 1

)
+

(
− iH
iH (t)

es
H

(t)

es
H

+ 1

)}
+ k2

(
− iH
iH (t)

sH (t− τ)iM (t− τ)

sH iM
+ 1 + ln

(
sH (t− τ)iM (t− τ)

sH (t)iM (t)

))
.

Let us define

L(t) := (k1 + k2)

(
ln

(
sH
sH (t)

)
+ ln

(
sM
sM (t)

)
+ ln

(
iM
iM (t)

sM (t)iH (t)

sM iH

))
+ k1

(
ln

(
es
H

es
H

(t)

sH (t)iM (t)

sH iM

)
+ ln

(
iH
iH (t)

es
H

(t)

es
H

))
+ k2

(
ln

(
iH
iH (t)

sH (t− τ)iM (t− τ)

sH iM

)
− ln

(
sH (t− τ)iM (t− τ)

sH (t)iM (t)

))
.

We claim that L(t) = 0 holds. Indeed, one can calculate

L(t) = (k1 + k2) ln

(
sH
sH (t)

iM
iM (t)

iH (t)

iH

)
+ k1 ln

(
sH (t)iM (t)

sH iM

iH
iH (t)

)



Chapter 2 P. vivax transmission with long latent period 45

+ k2

{
ln

(
iH
iH (t)

)
+ ln

(
sH (t)iM (t)

sH iM

)}
= k2

{
ln

(
sH
sH (t)

iM
iM (t)

iH (t)

iH

)
+ ln

(
iH
iH (t)

)
+ ln

(
sH (t)iM (t)

sH iM

)}
= 0.

Therefore, we obtain

(k1 + k2)C0(t) + k1C1(t) + k2C2(t)

= (k1 + k2)C0(t) + k1C1(t) + k2C2(t) + L(t)

= − (k1 + k2)

{
h

(
sH
sH (t)

)
+ h

(
sM
sM (t)

)
+ h

(
iM
iM (t)

sM (t)iH (t)

sM iH

)}
− k1

{
h

(
es
H

es
H

(t)

sH (t)iM (t)

sH iM

)
+ h

(
iH
iH (t)

es
H

(t)

es
H

)}
− k2h

(
iH
iH (t)

sH (t− τ)iM (t− τ)

sH iM

)
≤ 0.

Thus it follows that
d

dt
Ve(xt) ≤ 0.

If x0 is the function identically equal to the endemic equilibrium, then obviously xt =(
ŝH , e

s
H
, iH , rH , sM ,

ˆiM

)
for t > 0. Let’s assume that xt is not identically equal to the

endemic equilibrium. Then there exists c > 0 such that c = Ve(xt0) for some t0 > τ . We

define

Gc :=
{
φ ∈ G̃ |Ve(φ) ≤ c = Ve(xt0)

}
.

We see that Gc is closed and positively invariant, thus the closure of Gc is itself and Gc

contains xt for all t ≥ t0. Since Ve is continuous on Gc, Ve is a Lyapunov functional on

Gc, see Chapter 5.3 in [23]. We define the set

Σ :=
{
φ ∈ Gc|V̇e(2.39)(φ) = 0

}
.

We obtain

Σ =

φ
∣∣∣∣∣∣ f(0) = sH , q5 = sM ,

q2
es
H

= q3
i
H

= g(0)
i
M

= f(−τ)g(−τ)
s
H
i
M

 .

Let L be the largest subset in Σ that is invariant with respect to (2.39). One can see

that L is the set of initial functions satisfying

0 =
dsM (t)

dt
= µ− βsM iH (t)− µsM ,
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for any t, thus one can identify the element (f, q2, q3, q4, q5, g) ∈ L as q3 = iH . Then we

get q2 = es
H

and g(0) = iM . Next one can see that

dsH (t)

dt
= ξ − αsH iM − ξsH = 0,

diM (t)

dt
= βsM iH − µiM = 0,

thus f(θ) = sH and g(θ) = iM for every θ ∈ [−τ, 0]. Then, by LaSalle’s invariance

principle, see Theorem 3.1 in [23], we conclude that the solution tends to the endemic

equilibrium of (2.39). Since for every solution we can choose such a c, the positive

equilibrium is globally attractive. Similarly as we mentioned in the proof of Theorem 2.9,

for the stability of the endemic equilibrium, one can compute the characteristic equation

and show that if R0 > 1 and ω = 0 hold, then all roots of the characteristic equation have

negative real parts. Thus the endemic equilibrium is globally asymptotically stable.

2.3 Study on P. vivax models with seasonality

So far, we have investigated the qualitative and quantitative differences of the two models

in non-seasonal environment. In temperate regions, mosquito populations and their

activity show seasonal variation, and so the transmission of P. vivax malaria is seasonal

as well. In this section, we study the disease dynamics given by those two models in a

periodic environment.

We consider the seasonal variation in mosquito population

M ′(t) = (µ(t)− d(t))M(t), (2.64)

where the term M(t) represents the number of female adult mosquitoes at time t, and

µ(t) and d(t) represent the birth and death rate of mosquitoes at time t. To account

for seasonal activity of mosquitoes, a year is divided into an on-season, during which

the mosquitoes search for bloodmeals and the parasite is transmitted to hosts via the

mosquito bites, and an off-season, during which mosquitoes go to hibernate and no new

infection occurs. Let L be the length of on-season and P be the natural period (one

year). Thus we consider the temporal variation of the biting rate, replacing the constant

a by

a(t) =

 as kP ≤ t < kP + L,

0 kP + L ≤ t < (k + 1)P,
(2.65)
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where k is an integer and L ≤ P . The following is the transmission dynamics on the

population level considering seasonality:

dSH (t)

dt
= ξH − a(t)b

SH (t)

H
IM (t)− ξSH (t) + ωRH (t),

Es
H

(t) =

∫ ∞
0

pa(t)b
SH (t− u)

H
IM (t− u)Ps(u)e−ξudu,

El
H

(t) =

∫ ∞
0

(1− p)a(t)b
SH (t− u)

H
IM (t− u)Pl(u)e−ξudu,

IH (t) = H − SH (t)− Es
H

(t)− El
H

(t)−RH (t),

dRH (t)

dt
= rIH (t)− (ω + ξ)RH (t),

dSM (t)

dt
= µ(t)M(t)− a(t)cSM (t)

IH (t)

H
− d(t)SM (t),

IM (t) = M(t)− SM (t).

(2.66)

We rescale the system (2.66) with time-varying mosquito population (2.64) and constant

human population, by introducing new variables

sH (t) =
SH(t)

H
, es

H
(t) =

EsH(t)

H
, el

H
(t) =

ElH(t)

H
, iH (t) =

IH(t)

H
,

rH (t) =
RH (t)

H
, sM (t) =

SM (t)

M(t)
, iM (t) =

IM (t)

M(t)
and m(t) =

M(t)

H
.

The population dynamics for a susceptible mosquito population would be rescaled to

dsM (t)

dt
=

d

dt

(
SM (t)

M(t)

)
=
S′
M

(t)M(t)− SM (t)M ′(t)

M2(t)

=
1

M(t)

(
µ(t)M(t)− a(t)cSM (t)

IH (t)

H
− d(t)SM (t)

)
− sM (t)

M ′(t)

M(t)

= µ(t)− a(t)csM (t)iH (t)− d(t)sM (t)− sM (t)(µ(t)− d(t))

= µ(t)− a(t)csM (t)iH (t)− µ(t)sM (t).
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From the similar calculation for other variables, we generalize the autonomous ODE

system (2.2) to

dsH (t)

dt
= ξ − a(t)bm(t)sH (t)iM (t) + ωrH (t)− ξsH (t),

des
H

(t)

dt
= pa(t)bm(t)sH (t)iM (t)− dsesH (t)− ξes

H
(t),

del
H

(t)

dt
= (1− p)a(t)bm(t)sH (t)iM (t)− dlelH (t)− ξel

H
(t),

diH (t)

dt
= dse

s
H

(t) + dle
l
H

(t)− riH (t)− ξiH (t),

drH (t)

dt
= riH (t)− ωrH (t)− ξrH (t),

dsM (t)

dt
= µ(t)− a(t)csM (t)iH (t)− µ(t)sM (t),

diM (t)

dt
= a(t)csM (t)iH (t)− µ(t)iM (t),

(2.67)

with time-varying coefficients a(t), µ(t) and m(t).

Similarly, the DDE model in a constant environment (2.21) would be generalized to

dsH (t)

dt
= ξ − a(t)bm(t)sH (t)iM (t) + ωrH (t)− ξsH (t),

des
H

(t)

dt
= pa(t)bm(t)sH (t)iM (t)− dsesH (t)− ξes

H
(t),

del
H

(t)

dt
= (1− p)a(t)bm(t)sH (t)iM (t)

− (1− p)a(t)bm(t)sH (t− τ)iM (t− τ)e−ξτ − ξel
H

(t),

diH (t)

dt
= dse

s
H

(t) + (1− p)a(t)bm(t)sH (t− τ)iM (t− τ)e−ξτ

− riH (t)− ξiH (t),

drH (t)

dt
= riH (t)− ωrH (t)− ξrH (t),

dsM (t)

dt
= µ(t)− a(t)csM (t)iH (t)− µ(t)sM (t),

diM (t)

dt
= a(t)csM (t)iH (t)− µ(t)iM (t).

(2.68)

To describe a mosquito dynamics within one period, we use a Gaussian type function

M(t) = e

(
ν
η

)2
e
−
(
t/7−ν
η

)2
+M0 for 0 ≤ t < P. (2.69)

The literature [44] provides parameters for the function (2.69), by fitting to the monthly

prevalence data of A. sinensis mosquitoes, the main vector of P. vivax malaria in Korea.

Figure 2.8 presents the modelled mosquito population dynamics.
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Figure 2.8: Gaussian function describing mosquito dynamics. Parameters
ν = 13.26 and η = −3.328 and M0 = 10000 are from the literature [44]. Time t = 0

corresponds to May 1st, when mosquito population starts growing.
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Figure 2.9: Birth function µ(t) and death function d(t) of mosquitoes described
in equations (2.70) and (2.71), respectively. Parameters values are δ = 6.26, κ = −4.16

and ρ = 1.6.

The birth rate µ(t) in (2.64) depends on a variety of factors, such as oviposition rate,

survival probability of eggs, and adolescent stages of mosquitoes. Those factors are

highly seasonal dependent. For example, the parous rate fluctuated from 0.0% to 92.9%

during summer season [47]. For simplicity, we consider a Gaussian type birth function

µ(t) = ρe
−
(
t/7−δ
κ

)2
for 0 ≤ t < P, (2.70)

with the position of the center of the peak δ to be less than ν considering a maturation

time. Figure 2.9 shows the birth function and the corresponding death function obtained

from the equation

d(t) = µ(t)− M ′(t)

M(t)
. (2.71)

The death function described in Figure 2.9 matches with the empirical observation of

the mosquito survival rate increasing during August and September [47].
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Assuming the annual population dynamics of mosquitoes is homogeneous with its inter-

annual change, we extend the domain of functions

M(t+ kP ) := M(t) and µ(t+ kP ) := µ(t),

where k is an integer. The inter-annual functions M(t) and µ(t) presented in Figure 2.9

and Figure 2.8 could be extended on real line keeping its continuity.

Results of numerical simulations are shown in Figures 2.10, 2.11 and 2.12 (compare to

Figure 2.4, Figure 2.5). With such a periodic coefficients, iH(t) converges to a periodic

attractor, instead of a steady state. Generally, the DDE model shows larger oscillations

and predicts higher peaks and lower yearly bottoms of malaria prevalence. In contrast to

the non-seasonal case, in some situations the DDE model even has higher annual average

of infectious humans (Figure 2.11) than its ODE counterpart. In addition, in some cases

the DDE model predicts the persistence of the disease even though the infection dies

out for the ODE model with the same parameter values (Figure 2.12). In other cases,

the DDE predicts lower average prevalence (as in the autonomous case), depending on

the particular choice of parameters (Figure 2.10). To illustrate this striking behavior,

we prepared Figure 2.13, where we plotted these domains on the L− τ parameter plane

(length of mosquito season and long incubation period).

2.4 Implication of the results

The exact mechanism governing the development of malaria parasites from dormancy to

activation is not known [25]. Motivated by the empirical estimations of the incubation

times in Korea, we compared two models having different distribution of long-term

incubation time, resulting an ODE and a DDE system. For both models we identified

the basic reproduction number as a threshold value determining the stability of the

disease-free equilibrium and the existence of the endemic equilibrium. We did further

investigation on the global behavior of DDE model. When R0 ≤ 1, it was shown that

the disease-free equilibrium is globally attractive, which means the disease dies out.

When R0 > 1, the disease uniformly persists. Moreover, in the special case of lifelong

immunity, the endemic equilibrium is globally asymptotically stable. We observe from

numerical simulations that the solutions converge to the endemic equilibrium also in the

case without the specific assumption of lifelong immunity.

We show that, while the qualitative behaviors of the two models are similar, the ODE

model overestimates the basic reproduction number and also the level of endemicity,

compared to the DDE model. By calculating R0, we can see that long incubation time
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Figure 2.10: Dynamics of the infectious human population proportion in
system (2.67) and system (2.68), together with periodic biting rate (2.65) and seasonal
mosquito dynamics in Figure2.8. In both models, i

H
(t) converges to a periodic attrac-

tor. While the DDE model has a higher peak of infection, its annual average is smaller
than that of the ODE model. Parameter values are P = 365, L = 180 and as = 0.3
and H = 10000, in addition to the values present in 2.3. Initial condition is the same

as the one used for Figure 2.4.
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Figure 2.11: To compare with Figure 2.10, we used the parameter value H = 1400000.
Other parameter values and initial condition are the same as in Figure 2.10. The DDE
model has a higher peak of infection, just as in Figure 2.10, however, its annual average

is also greater than that of the ODE model.
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Figure 2.12: For comparison, we use H = 2000000. Here i
H

(t) dies out in the ODE
model, however, it converges to a periodic attractor in the DDE model.
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Figure 2.13: Differences between the yearly average number of infections
for the ODE and the DDE model (2.67) and (2.68), respectively, as a function
of length of incubation period τ and on-season length L. To observe the influence of
the on-season length in explicit way, with single parameter L, we incorporate seasonal
biting rate (2.65), but consider other seasonal factors as a constant function m(t) = 2
and µ(t) = 0.2. Blue (red) areas represent a parameter region where the DDE (ODE)

model predicts higher prevalence of malaria.

is not beneficial to the parasite in a constant environment, thus its presence is connected

to the seasonal mosquito activity in Korea. From (2.22), we observe that R0 increases

with respect to p if ds
ds+ξ

> e−ξτ , and decreases with respect to p otherwise. In reality,

it is natural to assume that the average short incubation time is less than the length of

long-term incubation time, i.e. 1
ds
< τ . With this restriction, we have

ds
ds + ξ

=
1

1 + ξ
ds

>
1

1 + ξτ
> e−ξτ ,

which leads to the conclusion that R0 is an increasing function of p. Note that R0 will

be overestimated if we ignore long-term incubation period in the modeling. It further

indicates that for the parasites, inducing long-term incubation period in humans is not

beneficial for their reproduction. The observed bimodality of the incubation periods

suggests that an another underlying mechanism plays a role, possibly seasonal effects,

which are relevant in malaria transmission in Korea [46].

In contrast to the autonomous case, when we incorporate seasonality into our model

equations, the interplay of the time delay and the periodicity results that in some situ-

ations the DDE model predicts higher prevalence of malaria. It is known that periodic

delay differential equations can produce unexpected behavior, such as resonances [58],

and their dynamics is not completely understood even in the scalar case [51]. In the

present situation, the time periodic DDE results larger annual oscillations than the ODE
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(i.e. higher peaks and lower bottoms); as expected in the case of time delays. However,

due to the complicated interplay of the time delay and periodicity, in some situations

the DDE model predicts a higher number of infections throughout a year than the ODE,

in contrast with the autonomous case. In other cases, the DDE predicts lower average

prevalence (as in the autonomous case), depending on the particular choice of param-

eters. The results stress the importance of future work incorporating both delay and

seasonality into P. vivax models in temperate regions.

It is known that hypnozoites are responsible for late relapses in P. vivax infections as

well as long incubation. Some previous studies considered relapse in the transmission

model [1, 34, 48]. For future works on more realistic P. vivax transmission modeling,

the effect of multiple blood stage infections and seasonality is a natural next step to

be investigated. However, both have its inherent difficulties (such as analysis of time-

periodic delay differential equations). Our study shows that it is possible to perform a

rigorous mathematical analysis when the basic malaria transmission model is extended

to include short- and long-term incubation in humans, thus it is a step toward more

realistic P. vivax models in the future.



Chapter 3

Latent period as an adaptation

strategy to seasonal forcing

3.1 Motivation of the study

Many infectious diseases exhibit seasonal dynamics. Several biologically distinct mech-

anisms contribute to the seasonal dynamics of disease transmission, such as fluctuating

vector population densities, yearly behavioral and contact patterns of hosts, seasonal

changes in pathogen transmission rate, varying immune status of hosts, etc. [2]. Host–

parasite interactions provide a good platform for evolution, given the short reproduction

times and high mutation rates of pathogens. For several infectious diseases in temperate

climates (such as malaria [6]), we observe long latent periods up to ten months.

From an evolutionary point of view, a prolonged latent period seems problematic, as

one would normally expect the pathogen to reproduce as soon as it can, especially when

competing with other strains for the available susceptible hosts. Delaying the onset

of the disease involves the risk that the host dies before transmitting the pathogen to

other hosts (a similar problem arises in regard of seed dormancy, see [54]). Hence, one

might ask under which conditions the evolution of long latent periods is favored. Under

seasonal forcing, one expects that pathogens are adapted to their seasonal environment

in numerous ways. Adaptation of the transmission rate and virulence has been studied

in Koelle [28] and recently in Donnelly [17]. One of the potential adaptation methods

of parasites to unfavorable seasonal conditions is developing liver or deep tissue stages

[42, 50, 62]. The dormant stage of the parasite manifests in a prolonged latent period,

and starting the infectious period at a suitable part of the year can help to maximize

the transmission potential of the pathogen.

54
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In this chapter, we consider pathogens capable of evolving a trait, expressed by a single

parameter, that determines the average length of the latent period in the infected host,

as a response to seasonal variability. We introduce a theoretical framework, based on

adaptive dynamics, for predicting the evolution of latent periods of parasites in hosts in

seasonal environments. Climate change affects the seasonality of environmental factors,

thus having a large impact on the evolution of the pathogens and consequently on the

dynamics of infectious diseases. Recently, some tropical diseases have recently spread

to more temperate climates, for example, dengue, see [61], where seasonality plays and

important role together with the latent period because of the seasonality in vector ac-

tivity. Our model also provides a framework for examining these effects on pathogen

evolution and the associated disease dynamics, as well as for the geographic variance in

latent periods of various diseases, such as malaria [6].

3.2 Introduction to adaptive dynamics

The evolutionary process is a sequence of mutations, reproduction and selection. The

spread of a mutation influences the dynamics of a population, and eventually the envi-

ronment itself. Change of the fitness landscape may give possibilities for new mutations

to spread. Adaptive dynamics studies the phenotypic evolution by deterministic demo-

graphic models, taking into account the feedback loop of demographic and evolutionary

changes. It assumes that individuals are characterized by their phenotypic values which

are asexually inherited, with the possibility of small mutations. When mutation is a rare

event, genotypic change by sexual reproduction can be ignored on long-term time scale,

because the effect of genetical inheritance on the distribution of traits following after

mutation average out on a relatively short time scale. That is to say, adaptive dynamics

assumes that the variability of traits is generated by mutations [13].

The resident–mutant models of the adaptive dynamics literature describe the com-

petition between resident and mutant populations. The model is useful in studying

frequency-dependent selection, the case when the reproductive success of an individ-

ual not only depends on its own trait, but also depends on the population abundance.

As an example, when the selection gives an advantage to rare phenotypes, mutants

with smaller baseline fitness than that of the residents may also invade the population,

which in some cases leads to the evolutionary coexistence of different traits. When

frequency-dependent selection plays a role, evolution does not necessary choose the trait

with maximal fitness. In this case, the demographic dynamics with a single trait is not

sufficient for predicting long-term dynamics.
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We now introduce the basic concepts of resident–mutant dynamics based on the book

[13]. Let nr , nm and N be the population abundances of the resident, mutant and other

population in the community. Parameters xr and xm refer to the traits of residents and

mutants, respectively, and X is an environmental parameter. Then, the demographic

dynamics is described by

dN

dt
= F (N,nr , nm , X, xr , xm)

dnr

dt
= nrf(N,nr , nm , X, xr , xm)

dnm

dt
= nmg(N,nr , nm , X, xr , xm).

(3.1)

with

g(N,nr , nm , X, xr , xm) = f(N,nm , nr , X, xm , xr).

In the absence of the mutant dynamics, the resident–mutant model (3.1) is reduced to

the so-called resident model

dN

dt
= F (N,nr , 0, X, xr , · )

dnr

dt
= nrf(N,nr , 0, X, xr , · ).

(3.2)

Assume that the system (3.2) has only one stable and strictly positive equilibrium,

(N̄ , n̄r). Then, the invasion success of mutants is determined by the stability of the

mutant-free equilibrium (N̄ , n̄r , 0) of system (3.1). Linearizing (3.1) at (N̄ , n̄r , 0), we

obtain the Jacobian matrix

J :=



∂F

∂N

∂F

∂nr

∂F

∂nm

nr

∂f

∂N
nr

∂f

∂nr

+ f nr

∂f

∂nm

nm

∂g

∂N
nm

∂g

∂nr

nm

∂g

∂nm

+ g



∣∣∣∣∣∣∣∣∣∣∣∣∣
(N̄,n̄r ,0,X,xr ,xm )

.

Since (N̄ , n̄r) is the strictly positive equilibrium of (3.2), f(N̄ , n̄r , 0, X, xr , xm) = 0.

Evaluating the Jacobian matrix at the equilibrium, we have the following block triangular

matrix
∂F

∂N
(N̄ , n̄r , 0, X, xr , xm)

∂F

∂nr

(N̄ , n̄r , 0, X, xr , xm)
∂F

∂nm

(N̄ , n̄r , 0, X, xr , xm)

n̄r

∂f

∂N
(N̄ , n̄r , 0, X, xr , xm) n̄r

∂f

∂nr

(N̄ , n̄r , 0, X, xr , xm) n̄r

∂f

∂nm

0 0 g(N̄ , n̄r , 0, X, xr , xm)

 .
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Figure 3.1: A Pairwise Invasibility Plot of resident–mutant dynamics.

Since (N̄ , n̄r) is a stable equilibrium of (3.2), the eigenvalues of the upper diagonal

matrix 
∂F

∂N
(N̄ , n̄r , 0, X, xr , xm)

∂F

∂nr

(N̄ , n̄r , 0, X, xr , xm)

n̄r

∂f

∂N
(N̄ , n̄r , 0, X, xr , xm) n̄r

∂f

∂nr

(N̄ , n̄r , 0, X, xr , xm)


have negative real parts. Therefore, the stability of the mutant-free equilibrium (N̄ , n̄r , 0)

in resident–mutant dynamics would be determined by the growth rate of the mutant

population at the equilibrium, more specifically by the sign of

ω(xr , xm , X) := g(N̄(xr , X), n̄r(xr , X), 0, X, xr , xm),

which is called invasion fitness. When g(N̄ , n̄r , 0, X, xr , xm) is a matrix, invasion fitness

is defined as the spectral abscissa of the matrix (largest real part of eigenvalues).

By the invasion fitness obtained from local stability analysis, we can identify whether

the given mutants can invade the environment manifested by the residents. One needs

to study the global dynamics in order to know whether the invaded mutants population

further grows to substitute resident population. However, if we allow only small steps

of mutation, successful invasion generally leads to the substitution of the residents (see

the Tube theorem in Appendix B of [13]).

The information concerning the course of the trait evolution can be shown graphically

in a so-called PIP, a Pairwise Invasibility Plot (Figure 3.1). The color at a point (xr , xm)

in PIP is determined by the sign of the invasion fitness ω(xr , xm , X). The pair of traits

(xr , xm) lying in a white region corresponds to negative invasion fitness and the pair lying

in a gray corresponds to positive invasion fitness. Points on the diagonal line of xr =
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xm corresponds to the monomorphic state. When mutants appear in a monomorphic

population, a point on the diagonal line jumps to the vertical direction. If the point

jumps to the white region, mutants cannot invade the resident, and the point jumps back

to the point on the diagonal line. Nevertheless, when a point in a diagonal line jumps

to the gray region, mutants can successfully invade. If the invasion further leads to the

substitution, the point in a gray region would now move horizontally to the diagonal

line, and population would again settle down to the monomorphic state with the invader

trait.

We call a trait an Evolutionarily Stable Strategy (ESS) if no mutants with rare and

small mutation can invade when the majority of the population has this trait. A trait

is called Convergence Stable Strategy if it is an evolutionary attractor, which means, its

nearby resident traits evolve towards the convergence strategy by a sequence of small

mutations and substitutions. A Convergence Stable ESS is called as a Continuously

Stable Strategy (CSS). A red point in Figure 3.1 is CSS. Allowing only small mutations,

a CSS would be the locally stable evolutionarily attractor.

3.3 Classic SLIS model with seasonality

In this chapter, we investigate the role of latency on the classic SLIS disease transmission

model with periodic seasonal parameters.

3.3.1 Model description

We consider a host–pathogen system in which the pathogen is a (micro)parasite that

generates a latent period in the host. Assuming no or very short-term immunity upon re-

covery, the population dynamics is governed by susceptible–latent–infectious–susceptible

compartmental model (SLIS). Seasonal diseases can be driven by multiple extrinsic

drivers, but for simplicity, we assume that the seasonal driver affects only the trans-

mission rate of the pathogen. The dynamics is governed by the system

dS(t)

dt
= b(1− S(t))− β(t)S(t)I(t) + rI(t),

L(t) =

∫ t

−∞
β(u)S(u)I(u)F (t− u)e−b(t−u)du,

I(t) = 1− S(t)− L(t),

(3.3)

where S(t), L(t), I(t) denote the susceptible, latent and infectious compartments, re-

spectively, parameter r is the recovery rate. We consider a constant host population

(normalized to 1), and b represents both birth and mortality rate.
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Seasonality is incorporated into the transmission term by assuming β(t) = β(t+P ) with

some period P (usually one year). In the literature, typically a sinusoid forcing

β(t) = β0(1 + β1 cos(2πt/P ))

is used (Figure 3.2). Here we use a square wave approximation. To investigate the

robustness of our results, a triangular wave (tent function) approximation is also used

(Figure 3.3). In both approximations, each year is divided into an on-season, during

which the pathogen can be transmitted, and an off-season, during which no new infec-

tions can occur.

Let λ be the length of on-season, with P being the sum of the lengths of the on-season and

the off-season. The time t = kP , where k is an integer, corresponds to the beginning

of each on-season. In the square wave approximation, the transmission function is a

piecewise constant periodic function, taking the value zero or β∗, which represents on-

and off-seasons:

β(t) =

β∗ kP ≤ t < kP + λ

0 kP + λ ≤ t < (k + 1)P,
(3.4)

where λ ≤ P . Similarly, the tent map is defined by

β(t) =


β∗

(
1− 1

λ
|2t− (2kP + λ)|

)
for kP ≤ t < kP + λ,

0 for kP + λ ≤ t < (k + 1)P.

While the square wave and tent function approximations are somewhat oversimplified,

they have the advantage that the on-season length is explicitly given by a single param-

eter λ, thus the influence of the on-season length on the disease dynamics as well as on

the direction of the evolution of the latent period when on-season length is changing is

more easily tractable. Also, we can now compare different shapes of the seasonal driver.

We introduce the latency distributions as described in [76]. The term F (t− u) denotes

the probability that a latent host individual which entered the latent class at time u still

remains in the latent class by time t, without taking into account a mortality. Assuming

the probability depends only on the duration of time an individual spent in the latent

class, not on the particular point of time individual entered or left, we let F : R→ [0, 1]

a piecewise continuous function satisfying F (t) = 0 for t < 0, non-increasing for t > 0,

F (0+) = 1, limt→∞ F (t) = 0 with
∫∞
−∞ F (t)dt positive and finite. The following is a

special case with

F (t) = e−θt, (3.5)
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Figure 3.2: Sinusoid fitting to the average monthly temperature in Seoul from
1971 to 2000, South Korea [30].
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Figure 3.3: Least square fitting of vector abundance to square wave and
triangular wave functions. Vector abundance is a monthly data of A. sinensis

mosquitoes collected at Gunsan, Republic of Korea, 2007 [27].

which is commonly studied in many literatures.

dS(t)

dt
= b(1− S(t))− β(t)S(t)I(t) + rI(t),

dL(t)

dt
= β(t)S(t)I(t)− θ−1L(t)− bL(t),

dI(t)

dt
= θ−1L(t)− (r + b)I(t),

(3.6)

Model (3.6) assumes that the lengths of the latent period are exponentially distributed,

which is unrealistic [36, 46]. To avoid artifacts arising from this distribution, we consider

a more general distribution, namely the Gamma distribution

g(s) =
αksk−1e−αs

Γ(k)
. (3.7)

When k = 1, it is just an exponential distribution, but when k is large enough, the
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Figure 3.4: A conceptual diagram of the model (3.10)

Gamma distribution has much less variance than the exponential distribution. When

k is a natural number, the distribution is called an Erlang distribution. The Erlang

distribution can be easily be incorporated into a system of differential equations using

so called linear chain trick [65]: we divide the latent compartment L with several sub-

compartments Ljs, j = 1, 2, . . . , n, defined as

L1(t) :=

∫ t

−∞
αβ(u)S(u)I(u)e−α(t−u)e−b(t−u)du,

Lj(t) :=

∫ t

−∞
αLj−1(u)e−α(t−u)e−b(t−u)du, j = 2, . . . , n,

(3.8)

Note that the probability distribution of lengths of stay in each compartments Lj are

the same as

fj(l) := αe−αl.

Considering the latent compartment

L(t) := L1(t) + L2(t) + · · ·+ Ln(t),

the probability distribution of latent period f(s) is

f(s) =

∫ s

0
. . .

∫ l3

0

∫ l2

0
f1(l1)f2(l2) . . . fn(s− l1 − l2 − · · · − ln−1)dl1dl2 . . . dln−1

= αn
∫ s

0
. . .

∫ l3

0

∫ l2

0
e−αl1e−αl2 . . . e−α(s−l1−l2−···−ln−1)dl1dl2 . . . dln−1

= αne−αs
∫ s

0
. . .

∫ l3

0

∫ l2

0
dl1dl2 . . . dln−1

=
αne−αssn−1

(n− 1)!
.

(3.9)

Note that f(s) is the special case of (3.7) with integer k. We put α := nθ−1, so that

the average of the two distributions of latent period f(s) in (3.9) and F (s) in (3.5) to
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Figure 3.5: Infectious host dynamics (3.10) in seasonal environment with
different average length of latent periods, which shows sharp peak for short
latency, extinction for intermediate latency, and moderate oscillation for long latency.

Parameter values used in all simulations are as indicated in Table 3.1.

Parameter Description Value

P sum of on-season and off-season lengths 365
b birth rate 1/1000
r recovery rate 1/30
n number of sub-compartments for latent class 3
β∗ transmission rate during on-season 0.3
θ average length of latent period –
λ length of on-season –

Table 3.1: Parameter values for simulations

be same. Finally, differentiation of both sides of equations (3.8) and

I(t) :=

∫ t

−∞
αLn(u)e−r(t−u)e−b(t−u)du

yields the the system

dS(t)

dt
= b(1− S(t))− β(t)S(t)I(t) + rI(t),

dL1(t)

dt
= β(t)S(t)I(t)− nθ−1L1(t)− bL1(t),

dLj(t)

dt
= nθ−1Lj−1(t)− nθ−1Lj(t)− bLj(t), j = 2, . . . , n,

dI(t)

dt
= nθ−1Ln(t)− (r + b)I(t).

(3.10)

Figure 3.5 presents numerical solutions corresponding to three different average lengths

of latent periods. In this example, the disease sustains either with short or long latency,

but not with intermediate one. To examine this behavior in more detail, we consider the

basic reproduction number, R0, the stability threshold of the disease-free equilibrium.
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Usually, R0 = 1 is the bifurcation point between eradication and persistence of the

disease [15, 70]. More precisely, R0 > 1 implies the instability of the disease-free state

and the invasion of the host population by the disease, while R0 < 1 implies the stability

of the disease-free state and hence invasion is not possible.

In the case of a constant environment (when β(t) = β0 for all t), the basic reproduction

number R0 of (3.10) is given as the product of the transmission rate, the length of

infectious period and the probability of surviving the latent period, that is

R0 =
β0

r + b

(
nθ−1

nθ−1 + b

)n
. (3.11)

The term β0 describes transmission rate,
(

nθ−1

nθ−1+b

)n
is the probability that an infected

human survives the exposed state and becomes infectious, and 1
r+b is the length of

infectious period.

Proposition 3.1. Consider system (3.10) with a constant transmission function β(t) =

β0. The disease-free equilibrium (1, 0, . . . , 0) is locally asymptotically stable if R0 < 1,

and unstable if R0 > 1.

Proof. To find a stability threshold, we follow a method described in [69]. Linearization

of the system (3.10) with constant transmission function β(t) = β0 at the disease free

equilibrium leads to

dS(t)

dt
= −bS(t)− β0I(t) + rI(t),

dL1(t)

dt
= β0I(t)− nθ−1L1(t)− bL1(t),

dLj(t)

dt
= nθ−1Lj−1(t)− nθ−1Lj(t)− bLj(t), j = 2, . . . , n,

dI(t)

dt
= nθ−1Ln(t)− (r + b)I(t).

We rewrite the linear system restricted to the infected compartments as

x′(t) = (F − V )x(t),

where F and V are matrices representing reproduction of new infections and transition

between compartments by other means. When n = 3 (and similarly for any other n),
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they take the form

F =


0 0 0 β0

0 0 0 0

0 0 0 0

0 0 0 0

 and V =


3θ−1 + b 0 0 0

−3θ−1 3θ−1 + b 0 0

0 −3θ−1 3θ−1 + b 0

0 0 −3θ−1 r + b

 .

By Theorem 2 of [69], the spectral radius of

FV −1 =


β0
r+b

(
3θ−1

3θ−1+b

)3
β0
r+b

(
3θ−1

3θ−1+b

)2
β0
r+b

(
3θ−1

3θ−1+b

)
β0
r+b

0 0 0 0

0 0 0 0

0 0 0 0


becomes a stability threshold of the disease-free equilibrium. Since

det(FV −1 − zI) =

∣∣∣∣∣∣∣∣∣∣∣

β0
r+b

(
3θ−1

3θ−1+b

)3
− z β0

r+b

(
3θ−1

3θ−1+b

)2
β0
r+b

(
3θ−1

3θ−1+b

)
β0
r+b

0 −z 0 0

0 0 −z 0

0 0 0 −z

∣∣∣∣∣∣∣∣∣∣∣
= z3(z −R0),

there exist only two characteristic roots, R0 and zero. Since R0 is positive with positive

parameters, the spectral radius of FV −1 is equal to R0.

Note that R0 defined in (3.11) can be rewritten as

R0 =
β0

(r + b)(1 + bn−1θ)n
,

and it is observable that R0 in constant environment is monotone decreasing in θ, the

average length of latent period. Now, we would like to study the relation between R0 and

θ in a periodic environment. For some special cases of periodic disease models, R0 can

be simply obtained by replacing β by its time average 1
P

∫ P
0 β(u)du [59, 71]. However, in

this way, R0 is monotonically decreasing with respect to θ, and it contradicts with what

we have observed from Figure 3.5. The precise concept of R0 in seasonal environment

is more complicated as it should be defined as the spectral radius of a suitable operator

[5, 70, 75]. Here, we use a recently developed general approach [70] to compute R0.
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3.3.2 The basic reproduction number in seasonal environment

First we rewrite the linearized system at the disease free equilibrium restricted to the

infected compartments as

x′(t) = (F (t)− V (t))x(t),

where F (t) and V (t) are time periodic matrix valued functions representing reproduction

of new infections and transition between compartments by other means, respectively,

analogously to the autonomous case (see [69]). For system (3.10) with n = 3 (and

similarly for any other n), they take the form

F (t) =


0 0 0 β(t)

0 0 0 0

0 0 0 0

0 0 0 0

 ,

V (t) =


3θ−1 + b 0 0 0

−3θ−1 3θ−1 + b 0 0

0 −3θ−1 3θ−1 + b 0

0 0 −3θ−1 r + b

 .

The work in Bacaër and Guernaoui [5] and Wang and Zhao [70] develops a general

approach that ties the fundamental matrix solution of the above linear system and the

growth or decay rate of infected population to the evolution operator Y (t, s), defined

by y′(t) = −V (t)y(t) for t ≥ s with Y (s, s) = I, where I is the (n + 1) × (n + 1)

identity matrix. In our case V (t) = V is time invariant so Y (t, s) = e(t−s)V . To

relate to the basic reproduction number, we let CP denote the collection of all possible

initial infected populations distributed over the period [0, P ], the space of all continuous

periodic functions from [0, P ] to Rn+1, equipped with the supremum norm. For a fixed

initially introduced infected population distribution φ ∈ CP , F (s)φ(s) is the rate at

which new infections are generated by infected individuals introduced at time s, and

Y (t, s)F (s)φ(s) represents how many of them are still in the infected compartments at

time t ≥ s. This naturally leads to the linear operator L : CP → CP given by

Lφ(t) =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a)da

for t ∈ R and φ ∈ CP . It then follows from [70] that L is the next generation operator,

and the basic reproduction number is R0 = ρ(L), the spectral radius of L.

It is known that the explicit formula for R0 can be derived only for some special cases,

when both the matrix of new infection rate F (t) and the matrix of transition V (t) are
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diagonal, or when both matrix functions are constant [70]. Though our model is none

of the special cases, we could use a theorem of Wang and Zhao [70], which characterizes

R0, further enabling to estimate R0 numerically.

Theorem 3.2 ([70]). Consider the linear P -periodic system

dw

dt
=

(
−V (t) +

1

λ
F (t)

)
w

with parameter λ ∈ (0,∞). Let W (t, λ), t ≥ 0 be the standard fundamental matrix of

the system with W (0, λ) = I. If R0 > 0, λ = R0 is the unique solution of

ρ(W (P, λ)) = 1. (3.12)

We solve (3.12) by the method of nested intervals. In each iteration step, we numerically

estimate the eigenvalues of ρ(W (P, λ)) for a given λ by integratingW ′(t, λ) =
(
−V (t) + 1

λF (t)
)
W (t)

W (0, λ) = I

Figure 3.6 illustrates the dependence of R0 on the length of latent period. We observe

two possible profiles depending on seasonal forcing and model parameters: (i) R0 mono-

tonically decreases with latency; (ii) R0 has a bimodal shape. Profile (i) is observed in

a non-seasonal environment, when the length of on-season is approximately equal to the

period. In other cases, we observe profile (ii), the non-monotonicity of R0 with respect

to the length of latent period. In some cases, it leads to die-off intervals of latency: the

disease can sustain with short or long latent periods, but not with the medium range

of latent periods as in the example of Figure 3.5. We also observe that solutions with

different θ can look dissimilar even though their R0s are the same.

3.4 Evolutionary model with seasonality

As we discussed in Chapter 3.1, pathogens are suspected to change their latent period

in hosts in order to increase their reproducibility in response of heterogeneous seasonal

environment, such as a seasonal fluctuation in vector abundance. Our goal is to char-

acterize evolutionary traits driven by the selective pressure for invasion. We consider

the average latent period θ to be a trait of a strain, capable of evolving via a series of

mutations.
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Figure 3.6: Qualitatively distinct (θ,R0)-graphs with various on-season
length, λ. (i) When λ = 365, R0 monotonically decreases with θ. (ii) R0 has a
bimodal shape when λ = 60, λ = 75 and λ = 200. When λ = 75, there exists a die-off
interval of latent period. R0 corresponding to θ = 200 (red) is 0.732, and infectious
human solution in Figure 3.5 goes extinct. R0s corresponding to θ = 5 (blue) and
θ = 288 (green) are same as 1.013, so that the infectious human solutions persist. We
see from Figure 3.5 that solutions with different θ can look dissimilar even though R0s

are the same.

Invasibility of a mutant strain depends on the environment already manifested by a

resident strain. To be more specific, the environment refers to Sr(t), the susceptible

population component of the periodic attractor with absence of invaders. By periodic

attractor, we mean the periodic solution which is observed to attract all solutions in the

numerical simulations.

Figure 3.7 illustrate environments settled by resident strains with trait value θ = 18

and θ = 140, respectively. Figure 3.8 shows the corresponding transmission potential

for invaders, β(t)Sr(t). We observe that the pool of susceptibles generated by θ =

18 dominates the one generated by θ = 5. Therefore, the resident strain with θ =

18 provides “better environment” than the resident strain with θ = 5, to any type

of invaders. We also observe that resident strain of θ = 140 is favorable to invaders

compared to the one with θ = 300. However, comparison between θ = 18 and θ = 140

is not straightforward. Which of the two strains generates better environment could
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Figure 3.7: Seasonal environments (temporal variation of the pool of sus-
ceptibles) generated by resident strains with two different length of latent

periods, θ = 18 and θ = 140. On-season length, λ, is 150.
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Figure 3.8: Effect of the resident’s latency on the environment for invaders.
Transmission potential β(t)Sr(t) with various resident strains. On-season length, λ, is

150.
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depend on the traits of invaders. This example shows a limitation of single-strain models

in studying evolutionary processes. In the following chapter, we study resident–mutant

models, a type of multi-strain models.

3.4.1 Resident–mutant system

In this chapter, we introduce resident–mutant dynamics. We characterize infected host

individuals by the length of latency, which is the adaptive trait of the parasite that caused

the infection. This way, the evolution of latency can be studied via a resident–mutant

model, describing the competition between the resident and mutant populations. Lower

index r stands for resident strain, m for invader mutant strain. Resident and mutant

populations are differentiated by their traits, θ−1
r and θ−1

m . The equations read as

dS(t)

dt
= b(1− S(t))− β(t)S(t) (Ir(t) + Im(t)) + r(Ir(t) + Im(t)),

dLr,1(t)

dt
= β(t)S(t)Ir,1(t)− nθ−1

r Lr,1(t)− bLr,1(t),

dLr,j(t)

dt
= nθ−1

r Lr,j(t)− nθ−1
r Lr,j(t)− bLr,j(t), j = 2, . . . , n

dIr(t)

dt
= nθ−1

r Lr,n(t)− (r + b)Ir(t),

dLm,1(t)

dt
= β(t)S(t)Ii,1(t)− nθ−1

m Lm,1(t)− bLi,1(t),

dLm,j(t)

dt
= nθ−1

m Lm,j−1(t)− nθ−1
m Lm,j(t)− bLm,j(t), j = 2, . . . , n

dIm(t)

dt
= nθ−1

m Lm,n(t)− (r + b)Im(t).

(3.13)

When the mutation is a rare event, we may assume that the resident population is

already settled at a periodic attractor. Linearizing the entire system of (3.13) around

the mutant-free attractor, we have a decoupled system for the invaders:

dLm,1(t)

dt
= β(t)Sr(t)Im,1(t)− nθ−1

m Lm,1(t)− bLm,1(t)

dLm,j(t)

dt
= nθ−1

m Lm,j−1(t)− nθ−1
m Lm,j(t)− bLm,j(t), j = 2, . . . , n

dIm(t)

dt
= nθ−1

m Lm,n(t)− (r + b)Im(t),

(3.14)

where Sr(t) is the susceptible component of the periodic attractor. We define the invasion

fitness as the stability threshold of the linear periodic system (3.14). According to the

Floquet theory, for a fundamental matrix X(t), there exists non-singular matrix C such

that X(t + P ) = X(t)C for all t. The stability of zero is determined by the Floquet

multipliers, which are the eigenvalues of the matrix C. Using X(P ) = X(0)C, we can

find C numerically. In detail,
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1. Obtain Sr(t) by solving the resident–mutant system (3.13) numerically with an

initial condition satisfying

Lm,1(0) = · · · = Lm,j(0) = Im(0) = 0.

2. For each j = 1, . . . , n + 1, find the numerical solution of the decoupled invader

system (3.14) at t = P with initial condition x(0) = ej . It gives an estimation of

j-th column of the matrix C.

3. Find eigenvalues of the matrix C numerically.

4. Estimate the invasion fitness by the spectral radius of C minus one.

Now we produce PIP by calculating invasion fitnesses for each given parameter pair

(θr, θm). We designate white color for the parameter region with negative invasion fitness,

and dark gray color for the region with positive invasion fitness. For the parameter region

where resident go extinct, light gray color is designated.

Figure 3.9 shows distinct profiles of PIPs: (i) In the harsh environment (λ = 60), only the

residents with short latency can survive. Shortest latency θ = 0 is evolutionarily stable

and convergence strategy (CSS); (ii) In a less harsh environment (λ = 75), residence

population with intermediate latency cannot survive. We identify two distinct CSSs,

one short and the other long; (iii) When the on-season length is long enough (λ = 200),

residence population survives with any latency. Two distinct CSSs exist; (iv) In non-

seasonal environment (λ = 365), any type of resident survives. There exists only one

CSS, the short one.

3.4.2 Dependence of CSS on the on-season length

We investigate the dependence of the location of CSS on the on-season length. Figure

3.10 shows PIPs with two distinctive CSSs. Note that these type of PIPs are observed

only with intermediate on-season length. Figure 3.11 plot CSSs with various on-season

length. The longer the on-season, the shorter the gap between two CSSs. When on-

season length is long enough so that almost the whole year is season, two CSSs eventually

converges to the short CSS.

3.4.3 The road to frequency dependent selection

To find out if there is a frequency dependent selection for our model, we draw so called

pairwise R0 plots in Figure 3.12, in comparison with PIPs in Figure 3.9. Pairwise R0
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Figure 3.9: Qualitatively distinct PIPs with various on-season length. Each
of area colored with light gray, white and dark gray represents where residents go
extinct, resident settled but invadable, and resident non-invadable, respectively. (i)
When λ = 60, resident go extinct, except for those with short latency. Short latency
θ = 0 becomes CSS. (ii) When λ = 75, resident population with intermediate latency
cannot survive. There exist two CSSs, with one short and another long. (iii) When
λ = 200, any type of resident survives. Two CSSs exist. (iv) When λ = 365, there

exists only the short CSS.

plot was produced by comparing R0s of θr and θm. On the parameter region of resident

trait and mutant trait, we designate dark gray color for the region where θm induces

higher R0 than θr, and white color for vise versa. Right gray color is designated for

regions with θr < 1. If there is no frequency dependent selection, a pairwise R0 plot in

Figure 3.12 should be exactly the same as its PIP counterpart in Figure 3.9.

Though the effect seems very small, the result shows that the selection is frequency

dependent. A PIP with λ = 200 in Figure 3.9 is asymmetric, different from the corre-

sponding one in Figure 3.12. The frequency dependent selection is necessary to explain

the coexistence of two different traits.
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Figure 3.10: The long on-season leads to the short latency. PIPs with on-
season length λ = 200, λ = 250 and λ = 300.
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Figure 3.11: Location of CSSs depending on λ. CSSs are plotted with blue
line. Black dot corresponds to the (residence) trait which allows invasion of any local
mutants. The longer the on-season, the shorter the gap between two CSSs, which

eventually converges to θ = 0.

3.4.4 Coexistence and the evolutionary state of dimorphism

If we overlap the second PIP in Figure 3.10 with its reflected image over the main

diagonal, there exist a region where it is gray in both plots. The region is shown in

Figure 3.13 with black color. Two different traits from the region can mutually invade

each other and consequently coexist. Figure 3.14 is a solution showing coexistence of

two strains with short and long latent periods.

We investigate if the observed dimorphism is either evolutionarily stable (protected

dimorphism) or just a temporary phase leading to monomorphism (converging dimor-

phism). Consider the residence population with two different coexisting traits, θr,1 and

θr,2. By similar methods presented in Chapter 3.4.1, we define resident–mutant system

with two resident strains and numerically calculate the invasion fitness F (θr,1, θr,2, θm).

Figure 3.15 presents the invasion fitness F (θr,1, θr,2, θm) when a residence population have

two coexisting traits (θr,1, θr,2). In the upper figure, resident population is dimorphic
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Figure 3.12: Pairwise R0 plots with various on-season length, each is compa-
rable with PIPs in Figure 3.9. Discrepancy of two plots observed from the case λ = 200

indicates the existence of a frequency dependent selection.

with two traits θ = 100 and θ = 260. The mutant trait which lies between the two

resident traits can invade either of the resident traits. Repeating this, the distance

between the two traits narrows. In the lower figure, two resident traits are θ = 20 and

θ = 300. A mutant trait with slightly smaller value than one of the two resident traits

can invade.

Figure 3.16 distinguishes the parameter region of coexistence depending on their quali-

tative shape of the corresponding invasion fitness. A pair of resident traits in red region

induces the qualitatively same invasion fitness graph as in the upper figure of Figure

3.15, and a pair lies in the green region has similar invasion fitness to the graph in the

lower figure. Consider a dimorphic population with a pair of resident traits in a red area.

Successful mutants are those having trait values in-between two resident traits. Thus,

the evolution would move the original pair either upward or leftward, while the point

remains in the coexistence region. Once it leaves the coexistence region, it is observable

from the PIP 3.13 that a sequence of small mutations and selections would lead to the

long CSS. Similarly, a point in a green region moves either downwards or leftwards while
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Figure 3.13: PIP with coexistence region. A pair of trait from the black region
are mutually invadable and coexist. For other strains, either one of the two strains can

invade the other strain but not vice versa.

Time,  t

In
fe

ct
io

us
 h

os
ts

λ = 250, θ
r
 = 300, θ

m
 = 20

 

 

1.2 1.4 1.6 1.8

x 10
4

0.1

0.2

0.3
 I

r
(t)

 I
m

(t)

Figure 3.14: Infectious human dynamics of the resident–mutant sys-
tem (3.13) with initial condition is (S,Lr,1, Lr,2, Lr,3, Ir, Lm,1, Lm,2, Lm,3, Im)(0) =
(0.95, 0, 0, 0, 0.0495, 0, 0, 0, 0.0005). Two different strains with each of trait value θ = 20

and θ = 300 can coexist.

it remains in the coexistence region. If it leaves the region, the evolution would choose

the short CSS.

In conclusion, the observed coexistence is the converging dimorphism. Depending on the

values of the coexisting traits, they will either converge to the long CSS or short CSS

after long-term evolutionary process. Coexisting traits in green region would converge

to long CSS, and traits in red region converge to short CSS.
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Figure 3.15: Dependence of the invasion fitness F (θr,1, θr,2, θm) on mutant
trait θm when a residence population have two coexisting traits (θr,1, θr,2).
In the upper figure, mutant trait in-between the two resident traits can invade either
of the resident trait. In the lower figure, mutant trait with smaller value than any of

two resident traits can invade the resident trait.

Figure 3.16: Classification of the parameter region of coexistence depending
on their qualitative shape of the corresponding invasion fitness. A pair of
resident traits in red region induces the qualitatively same invasion fitness graph with
the upper figure of Figure 3.15, and a pair lies on the green region has similar invasion
fitness with the lower figure. Coexisting traits in green region of would converge to long

CSS, while the traits in red region converge to short CSS.
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3.5 Robustness of results

In all previous numerical simulations, we used a square wave transmission function to

incorporate seasonality. To show the robustness of the results, we present analogous

results with a triangular wave transmission function defined by

β(t) =


2β∗

(
1− 1

λ
|2t− (2kP + λ)|

)
for kP ≤ t < kP + λ,

0 for kP + λ ≤ t < (k + 1)P.

The shape of both square and triangular waves are presented in Figure 3.3. Figure 3.17 is

the R0 graph depending on the length of latent period, with the two types of transmission

functions. Though there exists a quantitative difference between two results, but they

are qualitatively very similar. The non-monotonicity of R0 with respect to θ in the

seasonal case is also observed with triangular wave transmission function. We observe

from Figure 3.18 that PIPs corresponding to both functions have the similar shapes

including the region of coexistence, and the evolutionary consequences on the region is

also the same.

3.6 Interpretation of the results

Pathogens are expected to have been adapted to their seasonal environment in numerous

ways. The prolonged incubation time of P. vivax malaria in temperate regions is one

example. In order to investigate the role of latency in a seasonal environment, we con-

sidered the classic SLIS disease transmission model with periodic seasonal parameters.

Applying a recently developed approach, we calculated R0 numerically. In seasonal envi-

ronment, R0 depends non-monotonically on the average latent period, in sharp contrast

with the non-seasonal case.

We characterize infected host individuals by the length of latency, which is the adaptive

trait of the parasite that caused the infection. This way, the evolution of latency can be

studied via a resident–mutant model, describing the competition between the resident

and mutant populations. Using theories of adaptive dynamics, we explored the direction

of the evolution depending on the length of the mosquito season, and predict the result

of the long-term evolution process by subsequent invasions and substitutions. Based on

Floquet theory, we developed a numerical algorithm to calculate the invasion fitness.

Using the algorithm, we produced pairwise invasibility plots (PIPs) to visualize the

course of trait evolution.
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Figure 3.17: R0 dependence on θ with two types of seasonal function, a square wave
function and a triangular wave function. λ = 250. Two graphs have similar non-

monotonicity, with quantitative difference.

Figure 3.18: Our result is robust with a triangular wave type of seasonal
function. b, PIP with triangular wave seasonal function, λ = 250. Region of coex-
istence is observed as we observe from the PIP with a square wave seasonal function
(Figure 3.13a). c, Distinction of the coexistence region depending on their evolution-
ary fate. Coexisting traits in green and red regions converge to long and short CSS,

respectively.

We could observe from PIP that the shortest latent period is always a convergence stable

strategy (CSS), a local attractor of the adaptive dynamics. In seasonal environment,

there can exist one more CSS with long latent period, which decreases as on-season length

increases. Though we identified the two CSSs, we note that the short CSS (θ = 0) would

not be realized in practice, because there may be physiological difficulties for a non-zero

latent period to be established.

We show that two distinctive strains of short and long latent periods can possibly coexist,

matching the observations from Korea and other temperate regions. Our results explain

how longer latent periods can sustain in temperate regions. However, the observed
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coexistence of short- and long-latency strains is predicted to be evolutionarily unstable,

though it is epidemiologically stable. P. Vivax in Korea may persist (or appear to

persist) because of the influx of two types of strains from adjacent larger geographical

pools.

The knowledge of the latent period is important in disease control. Our research helps

understanding the relation between seasonality and latent period. It also allows to

predict the change of latent period as a consequence of climate change, for example, if

climate change leads to prolonged on-season, evolution would lead the latent period to

be shorter.



Chapter 4

Study of

ẋ(t) = −a(t)x(t) + b(t)x(t− 1)

4.1 Motivation of the study

In this chapter, we investigate the scalar periodic delay-differential equation

ẋ(t) = −a(t)x(t) + b(t)x(t− 1), (4.1)

where a, b are assumed to be P -periodic continuous real functions with a(t) ≥ 0 and

b(t) ≥ 0. Equation (4.1) has been studied as a linear variational equation of

x′(t) = g(t, x(t), x(t− 1)),

where g(t, 0, 0) = 0 and g(t, ξ, η) = g(t+P, ξ, η) for all t, ξ, η ∈ R. Similarly, for a smooth

nonlinearity f(x, y), the linearization of

u′(t) = f(u(t), u(t− 1))

around a periodic orbit p(t) is

u′(t) = fx(p(t), p(t− 1))u(t) + fy(p(t), p(t− 1))u(t− 1),

having the same form as (4.1). Such equations arise in several mathematical models;

such as neural networks [10], or transmission dynamics of vector-borne diseases [9] and

population growth models [35, 77] with seasonality, where the non-negativity assump-

tions on the coefficients a(t) and b(t) are biologically natural. One example is the SEIS

79
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model (3.3) introduced in the previous chapter, with a probability function

F (s) :=

1, s ∈ [0, θ] ,

0, s ∈ (θ,∞) ,

which expresses that the latent period has fixed length θ, and the system (3.3) can be

written as

dS(t)

dt
= b(1− S(t))− β(t)S(t)I(t) + rI(t),

dL(t)

dt
= β(t)S(t)I(t)− β(t− θ)S(t− θ)I(t− θ)e−bθ − bL(t)

dI(t)

dt
= β(t− θ)S(t− θ)I(t− θ)e−bθ − rI(t)− bI(t).

(4.2)

Linearizing (4.2) around the disease-free equilibrium (1̂, 0, 0̂), we obtain a decoupled

equation for I(t),

dI(t)

dt
= β(t− θ)I(t− θ)e−bθ − rI(t)− bI(t),

a special case of (4.1), after rescaling time.

Let Ω := C([−1, 0],R) be the Banach space of real valued continuous functions on [−1, 0]

with the usual supremum norm. For any φ ∈ Ω, a unique solution x(t;φ) exists for all

t ≥ 0 with

x(θ) = φ(θ), −1 ≤ θ ≤ 0.

From the non-negativity of the coefficients, it follows that the non-negative cone Ω+ :=

C([−1, 0],R+) is positively invariant, and non-negative solutions remain non-negative.

We use the notation xt = xφt ∈ Ω for the function xt(θ) = x(t + θ), θ ∈ [−1, 0]. Let

U : R+ × R× Ω→ Ω be the solution operator of (4.1). That is,

U(t, σ, φ) = xt+σ,

where xt+σ is the solution curve of the initial value problem

ẋ(t) = −a(t)xt(0) + b(t)xt(−1), t ≥ σ

xσ = φ

at time t+ σ. We now define the Poincaré operator M : Ω→ Ω as

M(ψ) = U(P, 0, ψ).

The stability of zero is determined by the spectral radius of M.
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In the special case when a(t) = a∗ and b(t) = b∗ are constants, the sharp stability

condition a∗ ≥ b∗ is very well known. The periodic case was addressed in [22], where it

was shown that the solution x = 0 of Equation (4.1) is uniformly asymptotically stable

if maxt∈[0,P ] b(t) < a(t) − ε for some ε > 0. For P = 1, the characteristic equation

was derived in [57] using Floquet theory, and the stability threshold in this case is∫ 1
0 (b(s)− a(s)) ds, see also [77]. More recently, the special case of a(t) being a constant

function, but P is arbitrary, was considered by Chen and Wu [10]. Using a discrete

Lyapunov functional and the variation of constants formula, they found that for any

b(t) > 0 there is a critical a+ > 0 that is the stability threshold. Some estimates were

provided for a+, but the exact value was not determined.

In this paper, we derive the explicit threshold formula, determining the stability of zero

for (4.1), using an elementary approach, which is valid for any P (generalizing [77]), and

for any P -periodic a(t) ≥ 0, b(t) ≥ 0 of which b(t + 1) − a(t) does not change its sign.

Our theorem provides some new results compared to [22], since following example does

not fit there but covered in this chapter:

a(t) = t(P − t) + 1, 0 ≤ t ≤ P,

b(t+ 1) = t(P − t) + 1− ε, 0 ≤ t+ 1 ≤ P,

where a, b are extended to the real line periodically, so that they are P -periodic functions

with P > 1 and ε < P−1. Moreover, our stability threshold is given explicitly, improving

[10].

4.2 Stability theorem

Without the loss of generality, we can assume P > 1. Define

r :=

∫ P

0
(b(s)− a(s)) ds. (4.3)

Theorem 4.1. For Equation (4.1), the following holds if the sign of b(u + 1) − a(u)

does not change:

1. if r > 0, zero is unstable;

2. if r = 0, zero is stable, but not asymptotically stable;

3. if r < 0, zero is asymptotically stable.
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Proof. Proof of 1: It is sufficient to show that limt→∞ x(t;φ) = ∞ for φ ∈ Ω+ with

φ(θ) > 0 for all θ ∈ [−1, 0]. We first prove that lim supt→∞ x(t;φ) > 0. For a simplicity,

we write x(t) for x(t;φ). Suppose lim supt→∞ x(t) = 0. It implies

lim
t→∞

x(t) = 0 (4.4)

by non-negativeness of x(t). We define a function V : R→ R by

V (t) =

∫ t

t−1
b(u+ 1)x(u)du+ x(t). (4.5)

The boundedness of b(t) and (4.4) imply

lim
t→∞

V (t) = 0. (4.6)

One can see from (4.5) that V̇ (t) = (b(t+ 1)− a(t))x(t) and

V (t) = V (0) +

∫ t

0
(b(u+ 1)− a(u))x(u)du. (4.7)

For any integer n ≥ 1,

V (nP ) = V (0) +

n∑
k=1

∫ kP

(k−1)P
(b(u+ 1)− a(u))x(u)du (4.8)

= V (0) +

n∑
k=1

x(u∗k)

∫ kP

(k−1)P
(b(u+ 1)− a(u)) du

= V (0) +

n∑
k=1

x(u∗k)

∫ P

0
(b(u+ 1)− a(u)) du

= V (0) + r

n∑
k=1

x(u∗k) (4.9)

for u∗k ∈ ((k − 1)P, kP ). Positiveness of x(t) and r > 0 implies {V (nP )}n∈N is strictly

increasing with V (0) ≥ 0, which contradicts to (4.6). Hence, x∞ > 0.

Now we will show that limt→∞ x(t) =∞. Non-negativity of x(t) on (4.1) implies

ẋ(t) ≥ −a(t)x(t)

for all t ≥ 0. By the comparison method described in Theorem 3.6 of [65],

x(t) ≥ x(0)e−
∫ t
0 a(u)du.
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Since x(t) is continuous, it has a minimum mk and a maximum Mk on each interval

[(k − 1)P, kP ], k = 1, 2, . . . . One can easily see that

mk+1 ≥Mke
−
∫ (k+1)P
(k−1)P

a(u)du
= Mke

−2
∫ P
0 a(u)du, (4.10)

and

lim sup
k→∞

mk ≥ lim sup
k→∞

Mke
−2
∫ P
0 a(u)du = x∞e−2

∫ P
0 a(u)du > 0. (4.11)

Since {V (nP )}n∈N is strictly increasing, either it converges or limn→∞ V (nP ) = ∞. If

it converges, by (4.9), x(u∗k) → 0 as k → ∞, which contradicts to (4.11). Therefore,

limn→∞ V (nP ) =∞. Applying t = nP to (4.5), we have

V (nP ) =

∫ nP

nP−1
b(u+ 1)x(u)du+ x(nP )

= x(t∗n)

∫ nP

nP−1
b(u+ 1)du+ x(nP )

≤Mn

(
1 +

∫ P

P−1
b(u+ 1)du

)
for t∗n ∈ [nP − 1, nP ] ⊂ [(n − 1)P, nP ]. Boundedness of b(t) and limn→∞ V (nP ) = ∞
implies limn→∞Mn = ∞. It follows from (4.10) that limn→∞mn = ∞, implying

limt→∞ x(t) =∞.

Proof of (ii): Assume that r = 0. By the following equality

0 =

∫ P

0
(b(u)− a(u)) du =

∫ P

0
(b(u+ 1)− a(u)) du,

together with the assumption that b(u+ 1)− a(u) does not change its sign, we conclude

b(u+ 1)− a(u) = 0 for all u ∈ R.

By (4.7), we obtain

V (t) = V (0) for all t. (4.12)

If φ ≥ 0, by (4.5),

0 ≤ x(t) ≤ V (t) = V (0) ≤ (bmax + 1)‖φ‖.

If φ ≤ 0, by (4.5),

0 ≥ x(t) ≥ V (t) = V (0) ≥ −(bmax + 1)‖φ‖.
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Now, for any φ ∈ Ω, let initial functions ξ ≥ 0 and ψ ≤ 0 s.t. ψ < φ < ξ. By comparison

method,

−(bmax + 1)‖φ‖ ≤ x(t;ψ) ≤ x(t;φ) ≤ x(t; ξ) ≤ (bmax + 1)‖φ‖.

Therefore, the zero is stable. One can easily see that zero is not asymptotically stable

by (4.12) and (4.5).

Proof of 3: It is sufficient to prove that limt→∞ x(t;φ) = 0 for any φ ∈ Ω. We first prove

it when φ ≥ 0, and we show that it also holds for φ ≤ 0. Finally we prove it for general

φ.

If φ ≥ 0, since r < 0, one can see from (4.9) that {V (nP )}n∈N is decreasing with lower

bound 0. Therefore, {V (np)} is converging, implying x(u∗k) → 0 as k → ∞. In a

meanwhile,

x(u∗k+1) ≥ mk+1 ≥Mke
−2
∫ P
0 a(u)du,

which implies Mk → 0 as k →∞. Hence, x(t)→ 0 as t→∞.

Consider the case with non-positive φ. One can see from (4.1) that x(t;−φ) = −x(t;φ)

and

lim
t→∞

x(t;φ) = − lim
t→∞

(−x(t;φ)) = − lim
t→∞

x(t;−φ) = 0.

Now, for any φ ∈ Ω, let initial functions ξ ≥ 0 and ψ ≤ 0 s.t. ψ < φ < ξ. By comparison

method,

x(t;ψ) ≤ x(t;φ) ≤ x(t; ξ).

We know that limt→∞ x(t; ξ) = 0 = limt→∞ x(t;ψ). Therefore, limt→∞ x(t;φ) = 0.

4.3 Case of r not being a stability threshold

In this section, we present the particular example showing that the assumption in The-

orem 4.1 is critical.

Consider a special case a(t) = α and b(t) continuous function such thatb(t) = 0 if kP ≤ t ≤ kP + L, k = 0, 1, 2, . . .

b(t) > 0 elsewhere,
(4.13)

where 1 ≤ L < P < L+ 1.
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Lemma 4.2. Let

A :=

ψ ∈ Ω

∣∣∣∣ψ(θ) =

ψ(−1)e−α(1+θ) if θ ∈ [−1, L− P ]

ψ(−1)e−α(1+θ)
(
eα
∫ θ
L−P b(s)ds+ 1

)
if θ ∈ (L− P, 0].

 .

Then, M(Ω) ⊂ A. Consequently, A is forward invariant under M.

Proof. Let ψ ∈ Ω. Then M(ψ) = U(P, 0, ψ) = xP where xP is the solution of

ẋ(t) = −αxt(0) + b(t)xt(−1), t ≥ 0

x0 = ψ

For P − 1 ≤ t < L, x′(t) = −αx(t) and

x(t) = x(P − 1)e−α(t−(P−1))

Therefore, for −1 ≤ θ < L− P ,

xP (θ) = xP (−1)e−α(θ+1).

For L ≤ t < P , 0 ≤ t− 1 < L and we have

x(t− 1) = x(P − 1)e−α(t−P ).

Therefore,

x′(t) = −αx(t) + b(t)x(P − 1)e−α(t−P ),

and the solution is

x(t) = x(P − 1)e−α(t+1−P )

(
eα
∫ t

L
b(s)ds+ 1

)
.

Therefore, for L− P ≤ θ < 0,

xP (θ) = xP (−1)e−α(1+θ)

(
eα
∫ θ

L−P
b(s)ds+ 1

)
. (4.14)

Theorem 4.3. Let

γ := −α+
1

P
ln

(
eα
∫ 0

L−P
b(s)ds+ 1

)
.

The solution x = 0 of the equation (4.13) is stable if and only if γ ≤ 0.
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Proof. From the calculations of the proof of Lemma (4.2), we find that for any φ ∈M,

x(P ;φ) = x(0;φ)eγ = φ(0)eγ .

Inductively, for any n, we have

x(nP ;φ) = φ(0)eγn.

If there exists a K > 0 such that, for any solution, xnP (θ) ≤ Kx(n−1)P (0) for all

θ ∈ [−1, 0], the stability result follows and γ < 0 gives asymptotic stability. For

(n− 1)P ≤ t < nP − 1 < (n− 1)P + L,

x′(t) = −αx(t) and

x(nP − 1) = x((n− 1)P )e−α(P−1)

By (4.14), for L− P ≤ θ < 0,

xnP (θ) = xnP (−1)e−α(1+θ)

(
eα
∫ θ

L−P
b(s)ds+ 1

)
= x(n−1)P (0)e−α(P−1)e−α(1+θ)

(
eα
∫ θ

L−P
b(s)ds+ 1

)
≤ x(n−1)P (0)e−α(P−1)e−α(1+L−P )

(
eα
∫ 0

L−P
b(s)ds+ 1

)
= x(n−1)P (0)e−αL

(
eα
∫ 0

L−P
b(s)ds+ 1

)
,

so we can choose K = e−αL
(
eα
∫ 0
L−P b(s)ds+ 1

)
.

We now address an example where the sign of r does not always coincide with the sign

of γ. Consider the special case of (4.13),

b(t) =

0 if kP ≤ t ≤ kP + L

4β
P−L

(
−
∣∣t− P+L

2

∣∣+ P−L
2

)
if kP + L ≤ t ≤ (k + 1)P,

(4.15)

where k = 0, 1, 2, . . . . In this case,

γ = −α+
1

P
ln (eαβ(P − L) + 1)

and

r = β(P − L)− αP.
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There would be four possible cases: (i) r > 0, γ > 0 (Unstable) (ii) r < 0, γ > 0

(Unstable), (iii) r > 0, γ < 0 (Unstable) and (iv) r < 0, γ < 0 (Stable). Figure 4.1 shows

the parameter sets of each cases. The area with γ < 0 but r > 0, and the area with

γ > 0 but r < 0 are the regions where r in (4.3) does not work as a stability threshold.

4.4 Implication of the results

Proving stability, we restricted initial function φ[σ−1,σ] with σ = 0. We can easily

generalize the result for σ ∈ R by considering a shift in periodic coefficients ã(t) :=

a(t− σ) and b̃(t) := b(t− σ).

In a biological context, r can be interpreted as an averaged Malthusian parameter, and

R0 =
∫ P
0 b(s)ds∫ P
0 a(s)ds

can be interpreted as an averaged reproduction number, and then R0 > 1

is equivalent to r > 0.
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Figure 4.1: Special case of (4.13) with function b(t) as in (4.15) with P = 1.2
and L = 1.1. Distinctive α − β parameter regions are determined by the signs of γ

and r.
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Figure 4.2: Solution with parameters α = 17 and β = 250, which implies
r > 0 but γ < 0. Zero solution is stable. Initial function is given by φ(θ) = 1 for all

θ ∈ [−1, 0].
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Figure 4.3: Solution with parameters α = 10 and β = 100, which implies
r < 0 but γ > 0. Zero solution is unstable. Initial function is given by φ(θ) = 1 for

all θ ∈ [−1, 0].



Chapter 5

Summary

The incubation period of malaria can vary depending on the species of parasite or the

geographic regions. In particular, in endemic areas of temperate climate (for example in

Korea), the incubation period of Plasmodium vivax shows bimodal distribution of short

and long-term incubation periods. Assuming fixed length for the long-term incubation

period gives a distribution that is much closer to the empirical distribution, than the

exponentially distributed long-term incubation period. In Chapter 2, we compare two

transmission models for P. vivax, where we model the long-term incubation period using

ordinary differential equations (ODE) (2.2) or delay differential equations (DDE) (2.39).

From the mathematical analysis of the two models in non-seasonal environment, we have

the following results:

• The basic reproduction number of the ODE model is derived based on the epidemi-

ological interpretation (2.4). We showed that the basic reproduction number works

as a threshold for the existence and stability of equilibria (Lem. 2.1, Thm. 2.2).

• We identified the feasible domain of the DDE model in the infinite dimensional

phase space, and showed that it is forward invariant (Prop. 2.6).

• The basic reproduction number of the DDE model is defined (2.22). We showed

that the basic reproduction number works as a threshold for the existence and

stability of equilibria (Prop. 2.7, Thm. 2.8).

• It is further shown that the basic reproduction number of DDE model, Rd, is a

threshold parameter for the global dynamics. If Rd ≤ 1, the disease goes extinct,

while the disease uniformly persists in the human and mosquito populations when

Rd > 1 (Thm. 2.9, Cor. 2.18). In the special case of lifelong immunity, we proved

the global stability of endemic equilibrium when Rd > 1, by constructing a non-

trivial Lyapunov functional (Thm. 2.19).
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• While the qualitative behaviors of the two models are similar, the ODE model

overestimates the basic reproduction number and also the level of endemicity,

compared to the DDE model (Prop. 2.5, Fig. 2.4, Fig. 2.5).

• Observing the expression of the basic reproduction numbers of the ODE and the

DDE models, we conclude that long incubation time is not beneficial to the parasite

in a constant environment, thus its presence is connected to the seasonal mosquito

activity in Korea.

We compare two P. vivax transmission models in a periodic environment, (2.67) and

(2.68), with seasonal variation of mosquito population and biting rate. We observe the

followings by numerical studies:

• The periodic DDE model showed lager oscillations and predicts higher peaks and

lower yearly bottoms of malaria prevalence (Fig. 2.10, Fig. 2.11, Fig. 2.12).

• In contrast to the autonomous case, when we incorporate seasonality, the interplay

of the time delay and the periodicity results that in some situations the DDE model

predicts higher prevalence of malaria (Fig. 2.11, Fig. 2.12).

Pathogens are expected to have been adapted to their seasonal environment in numer-

ous ways. The prolonged incubation time of P. vivax malaria in temperate region is

considered to be an adaptation strategy to the seasonal environment as well. Assuming

that pathogens are capable of mutations that modifying a latency in the infected host,

in Chapter 3, we consider the length of the latent period as a single trait expressed by

a single parameter, and study its evolution in a seasonal environment. Using theories

of adaptive dynamics, we explore the direction of the evolution depending on the length

of the mosquito season, and predict the result of the long-term evolution process by

subsequent invasions and substitutions. This is the first theoretical work for predicting

the evolution of latent periods of parasites in hosts in seasonal environment, and it is

expected to provide a important step toward understanding the documented bimodality

in P. vivax incubation time.

In order to investigate the role of latency in a seasonal environment, we first consider the

classic SEIS disease transmission model with periodic seasonal parameters. To express

various distributions of latency, we incorporate multiple latent compartments (3.10).

The main results are the following:

• Latency has a significant impact on the disease dynamics. The infectious host

dynamics in seasonal environment shows sharp peaks for short latency, extinction

for intermediate latency, and moderate oscillation for long latency (Fig. 3.5).
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• Applying a recently developed approach, we calculate R0 numerically. A key

finding is that in seasonal environment, R0 depends non-monotonically on the

average latent period, in sharp contrast with the non-seasonal case (Fig. 3.6).

We characterize infected host individuals by the length of latency, which is the adaptive

trait of the parasite that caused the infection. This way, the evolution of latency can be

studied via a resident–mutant model, describing the competition between the resident

and mutant populations (3.13). We investigate which mutant population has the poten-

tial to spread and later replace the resident population. When the mutation is a rare

event, we may assume that the resident population is already settled at an equilibrium

or a periodic attractor. To calculate the invasion fitness, we linearize the entire system

(3.13) around the periodic attractor of the resident strain, and compute the stability

threshold of the decoupled periodic system of invaders (3.14).

• Based on Floquet theory, we developed a numerical algorithm to calculate the

invasion fitness.

• Using the algorithm, we produced pairwise invasibility plots (PIPs) to visualize

the course of trait evolution.

• From each PIP having various season lengths, we identify at most two evolution-

arily stable and convergence strategies (CSSs), the short CSS and the long CSS.

In non-seasonal environment, there exists only a short CSS, while there exist two

CSSs in seasonal environment (Fig. 3.9).

• As the season length decreases, the magnitude of long CSS increases (Fig. 3.10,

Fig. 3.11). The biological interpretation of this is that short season length leads

to longer latency.

• We found that two different traits could coexist in seasonal environment, similar

to what we observed from Korea (Fig. 3.14). On PIP we identified the region of

coexistence, the set of trait piars which could coexist (Fig. 3.13).

We investigate the long-term evolutionary result of the coexistence, by studying an

invasion fitness of mutants when the resident population is settled with two different

traits.

• The coexistence of short and long latency strains is predicted to be evolutionary

unstable, though it is epidemiologically stable (Fig. 3.16).
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A related mathematical problem we study is a linear scalar delay differential equation

with a single delay and positive periodic coefficients:

ẋ(t) = −a(t)x(t) + b(t)x(t− 1),

where a, b are assumed to be P -periodic continuous real functions with a(t) ≥ 0 and

b(t) ≥ 0. It has been studied in many papers, however, still there is no complete answer

to the stability of the zero solution. It is known that if the delay is an integer multiple

of the period, the stability threshold is r = 0, where

r :=

∫ P

0
(b(s)− a(s)) ds.

In section 4, we generalize this principle to situations when the delay and the period are

not related. We also construct an example showing that r does not work as a stability

threshold in general.

• We proved that r is the stability threshold if b(u + 1) − a(u) does not change its

sign (Thm. 4.1).

• We constructed a class of equations of which r fails to be a stability threshold

without the condition b(u+1)−a(u) keeping its sign (Thm. 4.3, Fig. 4.2, Fig. 4.3).

The dissertation is based on the following publications of the author:
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• K. Nah and G. Röst, Stability threshold for scalar linear periodic delay differential

equations (Submitted)
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Chapter 6

Összefoglalás

A malária lappangási ideje parazitafajonként, illetve földrajzi régiónként különböző

lehet. A mérsékelt égövi endemikus régiókban (pl. Koreában) a Plasmodium vivax lap-

pangási ideje bimodális eloszlást követ hosszú és rövid távú lappangási idővel. Ha a

hosszú lappangási idő tartamát állandónak feltételezzük, akkor olyan össześıtett eloszlást

kapunk, amely sokkal jobban approximálja az empirikus eloszlást, mint ha exponenciális

eloszlást feltételeznénk a hosszú távú lappangási időre. A 2. fejezetben a Plasmodi-

um vivax terjedésének két modelljét hasonĺıtjuk össze, amelyekben a hosszú lappangási

időszakot közönséges (2.2), illetve késleltetett differenciálegyenletekkel (2.39) ı́rjuk le. A

két modell vizsgálata alapján a következő eredményeket kapjuk állandó környezetben.

• A közönséges differenciálegyenletes modellben a reprodukciós számot a modell

járványtani interpretációja alapján (2.4) vezettük le. Megmutattuk, hogy a rep-

rodukciós szám küszöbszám az egyensúlyi helyzetek létezésére és stabilitására vo-

natkozóan (2.1. Lemma, 2.2. Tétel).

• Meghatároztunk egy alkalmas tartományt a funkcionál-differenciálegyenletes mo-

dell végtelen dimenziós fázisterében, ami tartalmazza a biológiailag értelmes meg-

oldásokat, és megmutattuk róla, hogy pozit́ıv invariáns (2.6. Álĺıtás).

• Megadtuk a funkcionál-differenciálegyenletes modell reprodukciós számát (2.22).

Megmutattuk, hogy a reprodukciós szám küszöbszám az egyensúlyi helyzetek lé-

tezésére és stabilitására vonatkozóan (2.7. Álĺıtás, 2.8. Tétel).

• Megmutattuk, hogy a funkcionál-differenciálegyenletes modell reprodukciós száma,

Rd, küszöbparaméter a globális dinamikára vonatkozóan. Ha Rd ≤ 1, a betegség

kihal, mı́g erősen egyenletesen perzisztens mind az emberi, mind a szúnyogpopu-

lációban, amikor Rd > 1 (2.9. Tétel, 2.18. Következmény). Abban a speciális eset-

ben, ha a betegségből való felgyógyulás életre szóló védettséget ad, egy nemtriviális
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Ljapunov-függvény seǵıtségével beláttuk az endemikus egyensúlyi helyzet globális

stabilitását Rd > 1 esetén (2.19. Tétel).

• Mı́g a két modell kvalitat́ıv viselkedése hasonló, a közönséges differenciálegyenletes

modell a funkcionál-differenciálegyenletes modellel összevetve túlbecsüli a repro-

dukciós számot és az endemicitás mértékét is (2.5. Álĺıtás, 2.4. ábra, 2.5. ábra).

• A reprodukciós számra a közönséges, illetve a funkcionál-differenciálegyenletes mo-

dell esetén adott formulákat összevetve megállaṕıtottuk, hogy az állandó környezet-

ben élő paraziták számára a hosszú lappangási idő nem kedvező, ı́gy a Koreában

megfigyelt hosszú lappangás a szúnyogok szezonális aktivitásához köthető.

Összehasonĺıtunk két modellt ((2.67) és (2.68)), amelyek a P. vivax terjedését ı́rják le pe-

riodikusan változó környezetben, a szúnyogpopuláció és a cśıpések számának szezonális

változása mellett. Numerikus vizsgálatok seǵıtségével a következő megfigyeléseket tettük.

• A periodikus funkcionál-differenciálegyenletes modell nagyobb oszcillációt muta-

tott, a malária prevalenciájának nagyobb maximumát és alacsonyabb éves mini-

mumát mutatta (2.10. ábra, 2.11. ábra, 2.12. ábra).

• Az autonóm esettel ellentétben, ha a szezonalitást is figyelembe vesszük, a késlelte-

tés és a periodicitás kölcsönös hatása azt eredményezi, hogy bizonyos esetekben

a funkcionál-differenciálegyenletes modell a malária magasabb prevalenciáját jelzi

(2.11. ábra, 2.12. ábra).

A patogének többféle módon alkalmazkodtak a szezonálisan változó környezethez. A

P. vivax maláriának a mérsékelt égövben megfigyelhető megnövekedett lappangási idejét

a szezonális környezethez való alkalmazkodási stratégiának is tekinthetjük. Feltéve,

hogy a patogének képesek olyan mutációkra, amelyek megváltoztatják a lappangási

időt a fertőzött gazdaszervezetben, a 3. fejezetben a lappangási idő hosszát egy egy

paraméter által meghatározott tulajdonságnak tekintjük, és e tulajdonság evolúcióját

vizsgáljuk szezonálisan változó környezetben. Az adapt́ıv dinamika elméletét használva

meghatározzuk az evolúció irányát a moszkitószezon hosszának függvényében, és előre-

jelzéseket teszünk a hosszú távú evolúciós folyamatokra. Ez az első olyan elméleti munka,

amely a paraziták lappangási idejének evolúcióját vizsgálja, és reményeink szerint fontos

lépést jelent a P. vivax megfigyelt bimodális lappangási idejének megértésében.

A lappangási idő szezonálisan változó környezetben betöltött szerepének tanulmányo-

zására először egy klasszikus SEIS betegségterjedési modellt tekintünk periodikus sze-

zonális együtthatókkal. A lappangási idő különböző eloszlásainak flexibilis léırására
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modellünkben több, láncszerűen összekapcsolt látens osztályt tekintünk (3.10). Fő

eredményeink a következők.

• A lappangási időszak jelentős hatással van a betegség dinamikájára. Bizonyos

paramétertartományban a fertőző kompartment dinamikája a szezonálisan változó

környezetben rövid lappangási idő esetén éles csúcsokat mutat, közepesen hosszú

lappangási idő esetén kihalást, hosszú lappangási idő esetén pedig mérsékelt osz-

cillációt (3.5. ábra).

• Egy nemrég kidolgozott módszer seǵıtségével numerikusan meghatároztuk az R0

értékét a periodikus rendszerben. Fő eredményünk, hogy szezonálisan változó

környezetben R0 nemmonoton módon függ a lappangási időszak átlagos hosszától,

ami éles ellentétben áll a nemszezonális esettel (3.6. ábra).

A lappangási idő evolúcióját egy rezidens–mutáns modell (3.13) seǵıtségével vizsgáljuk,

amely a rezidens és a mutáns populáció közti versengést ı́rja le, azzal a feltevéssel, hogy a

fertőzött gazdaegyedeket a fertőzés lappangási idejének hossza karakterizálja adapt́ıv tu-

lajdonságukként. Megvizsgáljuk, hogy melyik mutáns populáció képes elterjedni, majd

később a rezidens populáció helyére lépni. Ha a mutáció ritka esemény, feltehetjük, hogy

a rezidens populáció már egyensúlyi helyzetbe vagy periodikus attraktorba állt be. Az

inváziós fitnesz kiszámı́tásához a teljes (3.13) rendszert linearizáljuk a rezidens törzs

periodikus attraktora körül, és kiszámı́tjuk az invaźıv populációra vonatkozó periodikus

rendszer (3.14) stabilitási küszöbszámát.

• A Floquet-elméletet felhasználva kidolgoztunk egy numerikus algoritmust az invá-

ziós fitnesz kiszámı́tására.

• Az algoritmust alkalmazva páronkénti inváziós diagramot (pairwise invasibility

plot, PIP) késźıtettünk a tulajdonság evolúciójának vizualizálására, ami az összes

rezidens–mutáns páros viselkedését kirajzolja.

• A különböző szezonhosszúságokkal számı́tott PIP-k alapján minden esetben legfel-

jebb két konvergenciastabil stratégiát (CSS) találtunk, a rövid CSS-t és a hosszú

CSS-t. Nemszezonális környezetben csak egy, rövid CSS van, mı́g szezonális

környezetben két CSS létezik (3.9. ábra).

• A szezon hosszának csökkenésével a hosszú CSS-hez tartozó lappangási periódus

hossza növekszik (3.10. ábra, 3.11. ábra). Ennek az a biológiai jelentése, hogy

rövidebb szezon hosszabb látens periódushoz vezet.

• Azt tapasztaltuk, hogy szezonális környezetben két különböző tulajdonság is együtt-

élhet, hasonlóan ahhoz, ahogy azt Koreában megfigyelték (3.14. ábra). A PIP-n
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meghatároztuk a koegzisztencia paramétertartományát, vagyis azoknak a tulaj-

donságpároknak a halmazát, amelyekre az együttélés lehetséges (3.13. ábra).

• Számı́tásaink a rövid és hosszú távú lappangási idő együttes létezését evolúciósan

instabilnak, de epidemiológiailag stabilnak mutatják. (3.16. ábra).

Mint a fentiekhez kapcsolódó matematikai problémát, a következő lineáris skaláris kés-

leltetett differenciálegyenletet vizsgáltuk egy diszkrét késleltetéssel és pozit́ıv, periodikus

együtthatókkal:

ẋ(t) = −a(t)x(t) + b(t)x(t− 1),

ahol a, b P -periodikus valós függvények, és a(t) ≥ 0, b(t) ≥ 0. Ezt az egyenletet

már számos cikkben vizsgálták, azonban még mindig nem született teljes válasz a nulla

egyensúlyi helyzet stabilitását illetően. Ismert, hogy ha a késleltetés a periódus egész

számú többszöröse, akkor a stabilitási küszöbszám r = 0, ahol

r :=

∫ P

0
(b(s)− a(s)) ds.

A 4. fejezetben ezt az elvet általánośıtjuk olyan esetekre, amikor a késleltetés és a pe-

riódus között nem áll fenn a fenti kapcsolat. Konstruálunk egy példát is, amely megmu-

tatja, hogy r általában nem működik stabilitási küszöbszámként.

• Beláttuk, hogy r stabilitási küszöbszám, ha b(u+ 1)− a(u) jeltartó (4.1. Tétel).

• Definiáltunk egy egyenletosztályt, amelyre r nem működik stabilitási küszöbpa-

raméterként a b(u + 1) − a(u) kifejezés jeltartóságára vonatkozó feltevés nélkül

(4.3. Tétel, 4.2. ábra, 4.3. ábra).

A disszertáció a szerző következő publikációin alapul:

• K. Nah, G. Röst és Y. Kim. Modelling malaria dynamics in temperate regions with
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• K. Nah, Y. Nakata és G. Röst. Malaria dynamics with long incubation period in

hosts. Computers and Mathematics with Applications, 68(9):915–930, 2014.

• K. Nah és G. Röst, Stability threshold for scalar linear periodic delay differential

equations (benyújtva).

• K. Nah, R. Mazzucco, G. Röst, U. Dieckmann, és Å. Brännström. Seasonality-

driven evolution of incubation periods of infectious diseases (kézirat).
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