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1. Introduction 

Investigation of the crystal structures of pharmaceutical materials is a continuously 

increasing interest. The variety of the order of molecules in the unit cell of an active 

pharmaceutical ingredient (API) can result differences in dissolution rate, wettability, solubility 

or bioavailability. 

Amorphous or glassy materials are in the solid phase, but unlike crystalline ones they lack 

long-range order. Their lattice energy is at a minimum level, they will not have a characteristic 

melting point (Tm), but they respond to heating from low temperature by softening at a specific 

point, which is called the glass transition temperature (Tg). Below Tg amorphous materials are 

generally brittle and rigid, while above it they are rubbery or viscous. The amorphous form will 

always be thermodynamically unstable and will tend to recrystallize, as demonstrated many 

times.  

Amorphous form can appear many ways: the material can be amorphized deliberately or it 

can accidentally be converted into an amorphous form by a pharmaceutical technique. Three 

basic ways have been developed to amorphize the APIs: solvent methods, hot-melt techniques, 

and milling. Attention has nowadays started to turn to cases, when the amorphous form is not a 

particular aim, but is a result of one of the techniques used during the formulation. For that 

methods are made for prediction of the amorphization or glass-forming properties of any given 

material. Most authors calculate with the ratio of Tg and Tm. Kerč & Srčič, (1995) classified poor 

glass-formers as those with 0.7
Tm

Tg
; while for good glass-formers is 7.0

Tm

Tg
. 

When the aim is the preparation of amorphous solid, suitable excipients can be extremely 

helpful. Also excipients used in pharmaceutical technology has a high effect on amorphization of 

a material, when it is not a desired goal. 

 The methods for the investigation of amorphous materials are based on the various 

physical and physical-chemical properties: as they can differ in appearance, molecular structure, 

intra-molecular interactions and hygroscopicity, they can be investigated with a broad number of 

devices (XRPD, Thermal analysis methods, vibrational spectroscopy, nuclear magnetic resonance 

etc.)  
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2. Aims 

In present study, our primary aim was to investigate the changes in crystallinity of selected 

materials, which differ in many aspects, especially in glass-forming properties. To achieve this, we 

compiled the following steps: 

1) to establish the literature background of investigation methods which are suitable to follow 

changes in crystallinity of organic materials with small molecular weights, 

2) to find an easy and rapid method, that is able to predict the glass-forming properties of given 

materials, 

3) to select an excipient pair, which are similar chemically, but differ in crystal structure; which are 

relatively inexpensive, widely used in pharmaceutics and have different glass-forming properties. 

Mannitol and sorbitol turned out to possess these properties, 

4) to characterize the change in crystallinity of MX without any excipient and also with polymers 

(PEG, PVP) using different investigation methods, 

5) to characterize the amorphization tendency of CLP by co-grinding with an inorganic silicon 

dioxide (Aerosil 200). 

3. Materials and Methods 

3.1. Finding the model materials 

To choose the most suitable model materials for our study 30 possible materials, commonly 

used in pharmaceutics were investigated. Melting points (Tm), glass transition (Tg) and their ratio 

were measured with DSC equipment. 

Heating was first applied up to slightly over the melting point. This determined the Tm. 

After the whole amount of the sample had melted it was cooled down to below the Tg as fast as 

the device allowed (approximately 45 °C/sec), measurement was then repeated. If the crystalline 

form of the material emerged, it was considered as poor glass-former. If the amorphous form 

appeared, the ratio Tg/Tm was calculated and the glass-forming properties were concluded on this 

basis. For further investigations, we chose materials from the groups of poor and good glass-

formers. Two similar sugar-alcohols with dissimilar glass-forming properties were also chosen.  

3.2. Mannitol and sorbitol 

We first investigated the crystallinity changes of β-D-mannitol and D-sorbitol. Both are 

widely used in pharmaceutics as sweeteners, bulking agents or moisture stabilizers (Kim et al., 

1998; Maury et al., 2005). Both are stable and inert compounds, properties which make them a 

good choice as excipients during tableting, freeze-drying, capsulizing, granulating or grinding.  
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3.3. Meloxicam 

Pure crystalline meloxicam (MX) (4-hydroxy-2-methyl-N-(5-methyl-2-thiazolyl)-2H-

benzothiazine-3-carboxamide-1,1-dioxide) was purchased from EGIS Ltd. Budapest, Hungary. 

MX is a non-steroidal anti-inflammatory drug that is mainly applied in therapy as an anti-

inflammatory and strong analgetic agent. MX is practically insoluble in water, while it displays a 

relatively high permeability through cell membranes. It was chosen as model compound because 

it is capable of hydrogen-bond to other materials. 

3.4. Clopidogrel bisulphate 

Pure polymorphic form II clopidogrel bisulphate (CLP) (methyl (+)-(S)-alpha-(2-

chlorophenyl)-6,7-dihydrothieno[3,2-c]pyridine-5(4H)-acetate sulphate) was obtained from EGIS 

Ltd., Budapest, Hungary.  

CLP is an oral antiplatelet drug, which is often used in the treatment of coronary artery 

disease, peripheral vascular disease and cerebrovascular disease. The amorphous and 

polymorphic forms of CLP has been prepared and described in the literature. 

3.5. Additives 

Polyvinylpyrrolidone (PVP C30, with a molecular weight of 58,000), obtained from BASF 

(Ludwigshafen, Germany) and polyethylene glycol (PEG 6,000) from Sigma-Aldrich Chemie 

GmbH, (München, Germany), were used as grinding excipients. Aerosil 200 (colloidal SiO2, with 

hydrophilic properties) was purchased from Nippon Aerosil Co., Japan. 

4. Methods of sample preparation 

Physical mixtures of the crystalline sugar-alcohols (mannitol and sorbitol) and stabilizer 

polymer additives (PVP C30 and PEG 6,000) were prepared and charged into a hard polyamide 

mortar. Equal amounts of agate balls were also placed into the chamber. The mass ratio of the 

mixtures was in all cases 1:1. The grinding processes were carried out with a Fritsch - 

Pulverisette® planetary ball mill. Mixtures were ground at 120 min on 400 rpm. Samples were 

withdrawn for investigation after 20, 40, 60, 80, 100 and 120 min. 

Physical mixtures of MX, as API, and the grinding (stabilizer) polymer (PEG 6 000 or  

PVP C30) were prepared and charged into the stainless steel jar of a planetary ball mill 

containing 10 stainless steel balls (Retsch PM 100, Retsch GmbH & Co., Haan, Germany). The 

mass ratios were based on previous work, so as to give nanoparticles (200-600 nm). For the 

PVPs, the drug-excipient mass ratio was 1:1, while for the PEGs it was 1:2. Mixtures were 
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ground for 140 min, samples being withdrawn for investigation after 20, 40, 60, 80, 100, 120 and 

140 min. During the grinding process, the temperature of the mortar was measured with an 

infrared thermometer immediately before sample withdrawal. The temperature of the mortar was 

not higher than 56 °C throughout milling. 

The co-grinding of the mixture of CLP and Aerosil 200 was performed in a planetary ball 

mill (Retsch PM 100, Retsch GmbH & Co., Germany). The mass ratio of CLP and Aerosil 200 

was 7:3. This ratio was based on a previous work by our team (Jójárt-Laczkovich, 2011). The 

maximum grinding time was 240 min. Samples were withdrawn for investigation after 15, 30, 45, 

60, 90, 120, 150, 180 and 240 min. 

5. Methods of investigation 

5.1. X-ray powder diffraction (XRPD) 

XRPD analysis was performed with Bruker D4 and Bruker D8 Advance diffractometer (Bruker 

AXS GmbH, Karlsruhe, Germany) systems with Cu K λI radiation (λ = 1.5406 Å). The samples were 

scanned at 40 kV and 40 mA from 3° to 40° 2θ, at a scanning speed of 0.05°s-1 and a step size of 0.010°. 

All manipulations of diffractograms and the calculation of area under curves were performed with 

DIFFRACTplus EVA software. 

In the case of MX samples, we used an internal standard method to avoid the problems caused by 

the particle size reduction and randomly oriented particles. 

5.2. Differential scanning calorimetry (DSC) 

DSC data were recorded with a Netzsch STA-409 (Selb, Germany) and a Mettler-Toledo DSC 821e 

instruments with intercoolers. 4.5-5.5 mg samples were crimped in aluminium pans with two holes and 

were examined in temperature interval 25-200 °C under an argon gas flow at 100-150 ml min-1, at heating 

rates of 10 and 20 °C min-1. 

5.3. Thermogravimetry (TG) 

TG curves were obtained with a TGA/DSC1 (Mettler-Toledo, Switzerland). 4.5-5.5 mg of the 

samples were crimped in aluminium pans with two holes and were examined in the temperature interval 

25-200 °C. Heating rate was 20 °C min-1. 

5.4. Fourier transform infrared (FT IR) spectroscopy 

FT IR spectra were recorded with a Bio-Rad Digilab Division FTS-65A/896 FT IR spectrometer 

(Bio-Rad Digilab Division FTS-65A/869, Philadelphia, USA) between 4000 and 400 cm−1, at an optical 

resolution of 4 cm−1; operating conditions: Harrick’s Meridian SplitPea single reflection, diamond, ATR 
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accessory. Thermo Scientific GRAMS/AI Suite software (Thermo Fisher Sciencific Inc., Waltham, USA) 

was used for the spectral analysis. 

For FT IR determinations, the ATR method was chosen, because with this there is no need for 

sample preparation, such as particle size reduction or KBr tableting, which would expose the samples to 

further physical stress. 

5.5. Scanning electron microscopy (SEM) 

The morphology of the MX particles was examined by SEM (Hitachi S4700, Hitachi Scientific 

Ltd., Tokyo, Japan). A sputter coating apparatus (Bio-Rad SC 502, VG Microtech, Uckfield, UK) was 

applied to induce electric conductivity on the surface of the samples. The air pressure was 1.3-13.0 mPa. 

Briefly, the samples were sputter-coated with gold–palladium under an argon atmosphere, using a gold 

sputter module in a high-vacuum evaporator and the samples were examined at 10 kV and 10 μA. MX 

particle diameter distributions were obtained by analyzing several SEM images with the ImageJ software 

environment. 

6. Results 

6.1. Investigation of sugar-alcohols 

6.1.1. Determination of crystallinity of mannitol  

The DSC measurements indicated that the ratio Tg/Tm (K/K) for pure β-D-mannitol (Tg: 

285.75 K Tm: 440.05 K) is lower than 0.7, suggesting that this compound has only a low tendency 

to exist in amorphous form.  

DSC measurements demonstrated that the raw mannitol did not suffer any loss in 

crystallinity during the grinding process. The mannitol samples made with polymer additives 

behaved similarly to pure mannitol: the amorphous PVP has no peak in the DSC curve, while the 

semi-crystalline PEG had a broad melting peak at around 338 K; the mannitol in the mixtures 

displayed identical melting action to that without polymers. 

XRPD measurements were performed on each of the raw materials and samples (Figure 1). 

Amorphous PVP exhibited a halo with no specific peaks in the diffractogram, while PEG, as a 

semi-crystalline polymer gave a few broad peaks in the investigated range. Pure mannitol 

displayed peaks characteristic of the β-D form.  

After 120 min of grinding, the same peaks were found in the curve. No shifts were 

observed, no peaks disappeared and no new peaks appeared. The areas under peaks at 9.5-11° 2θ; 

13.7-15.5° 2θ and 17.7-19.9 ° 2θ were calculated for each sample that was withdrawn. This 
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revealed that, although some peaks decreased to an irrelevant extent, no fundamental change in 

crystallinity occurred during grinding (Figure 1). 

 

Figure 1 Crystallinity change of mannitol and mannitol ground with polymer additives (PVP and PEG) as a 

function of the milling time 

Same grinding and investigation method was applied in the presence of the polymer 

additives. The samples containing PEG gave the peaks characteristic of mannitol and the broad 

peak relating to PEG at around 22-24° 2θ. Crystallinity determination (based on the same peaks 

as utilized in the case of raw mannitol) proved that minor amorphization took place after 40 min 

of milling. No polymorph transition was observed: no peaks underwent a shift or disappeared and 

no new peaks were detected. Slightly different behaviour was observed for the samples 

containing PVP. The peaks were specific for mannitol, but the areas under the curves decreased 

with increasing grinding duration. 

6.1.2. Crystallinity determination of sorbitol 

The ratio Tg/Tm (Tg and Tm in K) measured for D-sorbitol was 0.75 (Tg: 273.92 K Tm: 

364.55 K), which predicted this material is a good glass-former. 

The DSC measurements showed that the sorbitol used was a mixture of the epsilon (Tm: 

364.55 K) and gamma (372.05 K) polymorphs. During the grinding process the proportions of the 

polymorphs changed. The pure material contained a predominance of the epsilon form. The 

milling led to a decrease in the amount of the epsilon form, while the amount of the gamma 

polymorph slightly increased (Figure 2). This means that the mechanical energy broke down the 
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crystal structure of the crystalline epsilon sorbitol. Some of the amorphous material recrystallized 

due to the mechanical impact. 

 

Figure 2 DSC curves of pure sorbitol grinding, and sorbitol ground with PVP C30 

A similar phenomenon was observed in the DSC curves of sorbitol co-ground with PVP. 

The melting point of the sorbitol was lowered by the polymer excipient. Both polymorphs gave 

characteristic DSC curve. Similarly as when no additive was present, the epsilon polymorph 

amount decreased during the milling. In this case, the content of gamma polymorph also 

decreased, as demonstrated by the decrease of the area under the curve. The bulk part of the 

system lost its well-defined long-range order of the crystal structure.  

The DSC investigation of sorbitol samples containing PEG did not show any significant 

change in crystallinity. 

To investigate the change in crystallinity of the co-ground sorbitol and to calculate the 

extent of amorphization, XRPD method was also carried out on the samples.  

The peaks of X-ray diffractograms of pure sorbitol were mostly characteristic of the epsilon 

form, though the peaks of the gamma form were also present. During the milling process the 

areas under the peaks relating to the epsilon form noticeably decreased with milling time. In 

parallel the peaks of the gamma polymorph became slightly larger at a similar rate. A similar 

polymorph transition took place during the grinding of sorbitol with PVP. During the milling 

process, the areas under the peaks characteristic of the epsilon form decreased markedly (Figure 

3).  
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Figure 3 Crystallinity change of sorbitol and sorbitol ground with polymer additives as a function of milling 

time. 

From the areas under the peaks of the epsilon form at 9.5-11° 2θ, 23.15-24.53° 2θ and 28.2-

29.6° 2θ, the degree of reduction in crystallinity was measured. During the first 40 min, the 

system lost about 50% of its well-defined crystal structure. After 40 min there was an apparent 

lag phase. At the end of the milling, slightly more than 30% of the sorbitol remained in the 

epsilon polymorph form. Most of the remaining 70% had lost its well-defined order of molecular 

packing and a minor part had been transformed into the gamma polymorph. 

Only the peak at 11.5-12.1° 2θ is clearly related to the gamma form. All the other peaks 

were characteristic either of epsilon form or of both polymorphs. This gamma sorbitol peak was 

used to evaluate the polymorphic transition. All the changes observed are indicative of a constant 

crystallinity decrease as the milling time becomes longer, some of the sorbitol recrystallizing and 

changing into the gamma polymorphic form during the process. 

The samples containing PEG displayed different behaviour during mechanical activation. 

The degree of crystallinity changed by around 100% during the overall procedure.  

6.2. Investigation of crystallinity changes of meloxicam 

MX was selected as model API because it has only a low tendency to occur in amorphous 

phase: Tg/Tm (K/K) is 0.63. The polymers were PVP and PEG.  
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Amorphization of MX samples are illustrated in Figure 4, which shows the crystallinity 

changes based on the areas under the peaks. The samples made with PEG did not undergo any 

amorphization. The long-range order of molecular packing remained. The diversity of the values 

may be caused by the variation in particle size, and the orientation of the larger particles. Samples 

involving the use of PVP as grinding material lost their well-defined molecular conformation. 

The areas under the peaks decreased on increase of the grinding time. For PVP C30 12.23% of 

the MX remained in crystalline form at the end of the grinding process.  

 

Figure 4 Crystallinity changes of MX mixed with PEG 6000 and PVP C30. 

To determine whether any decomposition occurred during the grinding process and to 

search for any possible bonding between the API and the polymers, FT-IR spectroscopy was 

carried out. No measurable changes were observed in the case of the products made with the 

PEGs. No shifts, no changes in band shape and no new bands were detected in the curves. 

The samples made with the PVP polymers exhibited several changes in the spectra during 

the grinding process, most significantly in the interval 3725-2600 cm-1. At 3400-3500 cm-1, the 

intensity of the associated νOH mode increased with increasing grinding time. A similar increase 

was observed in the range of CH and NH valence vibrations, between 3000 and 2800 cm-1. The 

separation of the two ranges is impracticable. 

The most significant changes for both excipients are related to the secondary amide group 

of MX. Increases in intensity can be observed at around 1620 cm-1 (νCONH) and between 1550 

m-1 and 1530 cm-1 (νNH). Further, the intensity relating to a hybrid stretching mode at around 

1440 cm-1 is increased and a shoulder grows around 1390 cm-1. 
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All these alterations point to the presence of weak bonding between the carboxyl group of 

MX and the polymers, which is able to help the molecules to separate from each other and keep 

them in this (not well-defined) conformation. 

Based on SEM photos the PEG is locally melted by the impact and friction of the balls in 

the mortar. Reduced-sized MX particles can be observed in the melt of the polymer. These 

particles are in the nano range. 

PVPs are amorphous polymers, and did not melt during the milling process. The 

temperature was locally higher than the Tg of the excipients, so the polymers softened and coated 

the amorphized MX. These MX particles more or less preserved their contour while they were 

decreased to the nano level. 

6.3. Investigation of crystallinity change of clopidogrel bisulphate 

CLP was chosen as a model API, as it has a relatively high melting point, and did not melt 

in the milling chamber and it has a really high tendency to exist in amorphous form. Its Tg/Tm 

(K/K) ratio is 0.80. Aerosil 200 was used as carrier because of its amorphous properties. 

As thermal analysis techniques are widely used in the characterization of the amorphous 

form, the intact CLP, Aerosil 200 and the prepared samples were investigated by DSC. The curve 

of the raw CLP gave a characteristic sharp peak at 181.20 °C, corresponding to the melting point 

of the material. No other changes were observed on the curve. The Aerosil 200 did not exhibit 

any thermal signal. 

The curves of the samples indicated the endothermic peak of the melting point of CLP in 

each case, except that at 240 min. The area of the peak decreased with increasing grinding time 

until it practically disappeared after 240 min of grinding. The peak of the physical mixture was 

similar to the peak of the raw CLP, but with a smaller area. This indicates the decreasing 

crystallinity of the CLP, which was finally converted into the amorphous phase. The peaks are 

shifted slightly to lower temperatures during the grinding while a peak was observed at 80 °C 

after 120 min of grinding. 

The X-ray pattern of the raw CLP exhibits characteristic high-intensity diffraction peaks, 

which demonstrates the crystalline nature of the unprocessed API. 

The typical peaks of the CLP emerged clearly in the diffractograms of the ground products. 

The intensities of these peaks were lower than those of the peaks for the raw API, corresponding 

to the concentrations of the materials in the samples.  The amorphous Aerosil 200 did not exhibit 

any further reflection. The intensities of these peaks decreased with increasing grinding time and 
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practically disappeared after co-grinding for 240 min. The diffractogram of the last sample 

displayed the amorphous halo. During the co-grinding process, no other polymorphic form of the 

CLP appeared, no shifting of the peaks occurred, and no any new peaks were observed in the 

pattern. Quantification of the crystallinity was also made (Figure 5). 

 

Figure 5 Crystallinity changes during grinding. First function shows the area under the curves decreasing 

with increasing grinding time; the second function is the linearization of the first. 

The curves of the samples ground for more than 120 min demonstrated an endothermic 

peak at 80 °C. The area under this peak increased and sharpened with increasing grinding time. 

To identify the source of the peaks, the last sample (ground for 240 min) was investigated by TG 

and hot-humidity stage XRPD. 

The TG curve revealed that the product was thermodynamically stable and a mass decrease 

of only 3.33% was detected up to the melting point of the CLP. At 80 °C, the determination did 

not show a salient mass decrease, which means that the peak observed in the DSC pattern did not 

involve dissolution or solvent evaporation. Neither was any major decrease observed at 100 °C, 

which means that the sample was sufficiently dry. 

The last sample (ground for 240 min) was determined by XRPD, using the hot-humidity 

chamber. The diffractograms showed an amorphous halo in all three cases, so this peak did not 

relate to any change in crystallinity. 

 FT IR spectroscopy is a suitable method for the investigation of interactions between 

pharmaceutical materials and polymers. 

FT IR determination showed that the grinding process caused several small changes in the 

spectra of the samples. One of the most spectacular changes was seen at 1752 cm-1, the region of 

the νC=O valence vibration of CLP. These peaks of the samples ground for more than 120 min 

expanded, shifted to lower wavenumbers, and slightly increased in intensity with increase of the 

grinding time. 
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Another change was observed at 865 cm-1 where a band with high intensity started to 

decrease after 120 min of grinding, while a double peak at 858 cm-1 and 838 cm-1 fused into one 

peak with a higher intensity (Figure 6). These changes proportionally followed the changes at 

1752 cm-1. The same phenomenon was observed between 1200 cm-1 and 1135 cm-1: the peak at 

1188 cm-1 decrease, while the peak at 1150 cm-1 slightly increased parallel after 120 min of co-

grinding. 

 

Figure 6 Bands of Aerosil 200, CLP and 9 samples ground for from 15 min to 240 min. The area under the 

peak at 865 cm-1 decreased after 120 min of grinding, while the double peak at 858 cm-1 and 838 cm-1 fuse into 

one peak with a higher intensity. 

The described changes can refer to the following processes: the CLP first temporarily melts 

forming a molecularly disperse system. After 120 min of grinding, a weak secondary bond 

appears between CLP and the silanol groups of the CLP. This bond is strong enough to keep the 

CLP in amorphous phase. The work of our team (Jójárt-Laczkovich, 2011), demonstrated that 

this secondary bond is a hydrogen-bond. 

7. Summary, novelty and practical relevance 

1) Our first aim, to establish the literature background of investigation methods which are 

suitable to follow changes in crystallinity of organic materials with small molecule weights was 

accomplished: all of the widely used investigation methods were learnt and practiced. Those that 

were most suitable for our aims were chosen and used. 

2) An easy and rapid method, which is able to predict the glass-forming properties of given 

materials were applied: DSC method was carried out, with only a small amount of material and 

two heatings were needed to determine the glass-forming properties of each material. It was 

therefore quite simple to choose between the possible substances: two sugar-alcohols, which are 
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widely used in pharmaceutics, were selected: although they are chemically equivalent, they have 

different tendencies to exist in amorphous form. Interesting APIs were investigated: MX, 

although considered poor glass-former readily occurs in amorphous form, and CLP with its 

relatively high Tg/Tm ratio needed a long-term grinding with Aerosil to amorphize completely. 

The method used, which was suitable to decrease the degree of crystallinity of the chosen 

materials was relatively cheap. Its most important advantage was it repeatability and feasibility. 

3) First, two chemically equivalent sugar-alcohols (mannitol and sorbitol) as model materials 

were subjected to milling both alone and in the presence of polymer excipients (PVP C30 and 

PEG 6000) to accentuate the differences in behavior of analogous materials. As a poor glass-

former, mannitol did not exhibit any decrease in crystallinity when it was milled alone or together 

with PEG. In the presence of PVP, the crystal structure of mannitol was slightly lost. When 

ground alone or together with PVP, sorbitol suffered amorphization and it underwent polymorph 

transformation when co-ground: the initial, mostly epsilon form was transformed continuously 

into the gamma form, while parallel lost more than 70% of its crystallinity. PEG preserved the 

well-ordered molecular packing of sorbitol and stabilized the crystal structure so that the sorbitol 

could not amorphize. It can be concluded that these sugar alcohols, which have the same 

chemical structure, demonstrated different rates of crystallinity loss. 

4) A similar effect of polymers was proved by the grinding of MX: the work demonstrated 

that the polymers used to reduce the grinding energy during co-grinding to nanoparticles can 

decrease the crystallinity of MX. These polymers have different abilities to convert the drug into 

amorphous form. XRPD measurements confirmed that the PEG did not have a significant effect 

on the crystallinity of MX, while the PVP decreased it drastically. Weak secondary bonding 

between MX and the PVPs was found by FT IR. The SEM images confirmed the major particle 

size decrease and the differences in crystal behaviour of the samples made with the different 

polymers. 

5) Raw, crystalline CLP was amorphized by co-grinding. It was found that the crystallinity 

decreased sigmoidally with increasing co-grinding time. XRPD and DSC examinations 

confirmed that the product had become totally amorphous after a relatively long time, 240 min of 

grinding. No polymorphic conversion was observed in the samples. TG proved that no major 

mass reduction occurred during the procedure. FT-IR changes indicated the formation of a 

secondary bond between CLP and Aerosil 200, which is able to keep the drug in the amorphous 

phase. 
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Finally it can be concluded, that so similar molecules as two chemically equivalent sugar-

alcohols can behave completely different on effect of grinding. The study also revealed the 

possibility of polymorph transition, which can lead to issues in physical appearance, dissolution 

or stability.  

It was proven, that organic APIs, which amorphization inclination were predicted as 

different, can react similarly to a high energy intake: two material with dissimilar tendency to 

present in amorphous form exhibited comparable reaction to the co-grinding process. 

Important properties of excipients used as co-grinder additives were revealed too. Some of 

the materials can support amorphization by decreasing the energy devoted to grinding or 

stabilizing the molded amorphous dispersion. Meanwhile some of them can prevent the API from 

crystallinity loss by coating the particles and protect their structure from breaking down. 
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