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SUMMARY 
 

Oxidative stress apparently plays a major role in the effect of several toxicants, including 
heavy metals, of environmental or occupational origin. It means inequilibrium between 
metabolic reactions producing reactive oxygen and nitrogen species (ROS and RNS), and the 
capacity of enzymatic and non-enzymatic reactions to neutralize these. In itself, oxidative 
stress is a side effect of oxidative energy production, which can be caused by exposure to a 
number of environmental xenobiotics, metals and others. Non-neutralized ROS and other 
radicals damage the nervous system, liver, kidneys etc. Free radicals are more and more held 
responsible for various chronic non-communicable diseases, and for aging. The central and 
peripheral nervous system is prone to oxidative damage, due to highly active mitochondrial 
energy production, to abundance of (unsaturated) structural lipids, and to low antioxidant 
defence capacity in the brain; and ROS may constitute the final common pathway for several 
neurotoxicants because oxidative damage to membrane lipids may lead to alterations of the 
membrane-bound functions crucial to the functioning of neurons. In the present thesis, the 
relationships of neurotoxicity, oxidative stress and antioxidant protection are investigated in 
case of two heavy metals with public health importance, arsenic (As) and manganese (Mn). 
Arsenic used to have numerous practical applications most of which have been discontinued 
because of the health risks. Its modern applications e.g. in semiconductors, are apparently 
safe. Increased presence of As in certain rocks may lead to human exposure by As emissions 
from mining and smelting non-ferrous metal ores or from burning coal with higher As 
content, but most importantly via drinking water. The problem of As in drinking water has 
been quite serious in several regions. According to WHO, As is among the ten most important 
chemicals of major public health concern. Arsenic occurs in various oxidation states in 
inorganic or organic compounds. Inorganic arsenite (AsIII) is more toxic that arsenate (AsV), 
and most of the organic arsenicals are practically nontoxic. Arsenite strongly binds to the –SH 
group of proteins, inactivating various enzymes including those in the citrate cycle and 
terminal oxidation, depleting ATP pool and promoting the generation of ROS in the cells. It 
also increases oxidative stress by depleting reduced glutathione and thioredoxin. The 
consequences of chronic exposure to inorganic arsenic include nervous system damage. 
Electrophysiological data on As neurotoxicity are scarce, but in As-exposed workers altered 
EEG, visual evoked potentials, and peripheral nerve activity were detected, together with 
signs of oxidative stress. 
Manganese (Mn) can have the oxidation states -3 to 7+, indicating its propensity to redox 
reactions. Mn and its compounds have numerous technical applications (steelmaking, 
welding, nanotechnology etc). It is an essential trace element, required for normal brain 
function, and acting as cofactor for several enzymes such as Mn-dependent glutamine 
synthetase or superoxide dismutase. In high amounts it is toxic, nervous system being an 
important target. The population can be exposed to food- or waterborne Mn, but neurotoxic 
manifestations are rare. Occupational Mn exposure (in Mn ore mining and smelting, 
production of alloys, welding etc.) is due to Mn-containing aerosol, including nanoparticles 
(NPs, with at least one dimension smaller than 100 nm). NPs are apparently involved in 
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various chronic non-communicable diseases of humans affecting among others the central 
nervous system. With their small size, NPs easily penetrate physiological barriers. Their huge 
and reactive surface induces generation of ROS. Mn disturbs neurotransmission 
(glutamatergic, cholinergic, dopaminergic, GABAergic), causes mitochondrial dysfunction 
and cellular energy shortage, and can inhibit voltage-gated Ca-channels in neurons. It induces 
oxidative stress via oxidation of dopamine and other catecholamines, and by mitochondrial 
inhibition. Chronic Mn exposure in humans leads to a Parkinson-like syndrome, but disorders 
with electrophysiological signs after Mn exposure also have been reported. 
Cells possess various mechanisms against oxidative stress. These include, beside enzymes 
(superoxide dysmutase, catalase etc.) small biomolecules called antioxidants. Glutathione, 
with -SH group in the cysteine moiety, can directly react with ROS, and can reduce oxidized 
tocopherole and ascorbic acid. Uric acid, final metabolite of purines, is an important 
antioxidant in the blood plasma. Further endogenous antioxidants are lipoic acid (primarily a 
cofactor of dehydrogenases) and melatonin. Exogenous antioxidants are foodborne 
micronutrients, such as the vitamins A, C and E, and various carotenoids and polyphenols. 
Their role in upkeeping and improving health is a major field of research. The antioxidants 
used in the present work were ascorbic acid, rutin, curcumin, and green tea polyphenols. 
Ascorbic acid is essential (as vitamin C) only for humans and a few other animals. It is able to 
scavenge ROS and regenerate oxidized glutathione. It is present in the brain due to active 
uptake process. It is a well-known natural substance, easily accessible for the public, present 
in various foods and drinks. Rutin is a flavonoid present in, e.g., citrus fruits and rhubarb. 
Similarly to other flavonoids, rutin acts as free radical scavenger and as metal chelator. Health 
benefits ascribed to rutin include antioxidative, anti-inflammatory, antiallergic and 
neuroprotective effects. Curcumin is present in the rhizomes of turmeric. It has multiple 
pharmacological properties including antioxidant effect, and has been effective in animal 
models of Alzheimer's dementia and neurotoxicity. Fresh leaves of the tea shrub contain 35–
40% flavonoids, and green tea brewed from leaves without fermentation is a rich source of 
these antioxidants. Tea, a popular drink worldwide, is a major source of total intake of 
flavonoids, phytochemicals with antioxidant and metal chelating activity which also activate 
transcription factors and antioxidant enzymes. 
Exposure to metals and metalloids remains a source of health damage for the population, and 
oxidative stress probably plays a significant role in the damages caused by As and Mn, 
especially in the nervous system. By supporting antioxidant defence with exogenous 
antioxidants, metal-induced nervous system damages could possibly be diminished. The 
general aim of this thesis was to observe the neuro-functional damage caused by exposure to 
arsenic and manganese and the possible protective effect of certain antioxidants of natural 
origin. The particular questions to be answered on the basis of the expected results were as 
follows: 
 Can the neurotoxic, and other toxic, effects of the used physicochemical form of As and 

Mn be investigated in identically built-up experiments or together? 
 Have the antioxidants included in the experiments any effect on the alterations induced 

by the two metals? 
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 What differences, qualitative or quantitative, can be seen between the effects of the 
antioxidants? 

 Which of the antioxidants might be an optimal choice, considering also protection of 
human health? 

 
These aims have been realized in three experiments, performed on young adult male Wistar 
rats. They were treated with Mn or As, and the natural antioxidants ascorbic acid (vitamin C), 
rutin, curcumin, and green tea brew as given in the table below. With physicochemical form 
and way of application, imitation of real life human exposure was attempted. 
 

 Experiment 1 Experiment 2 Experiment 3 

D
uration, agents, application 

4 weeks of MnO2 NPs, 4 
mg/kg b.w. intratracheal 

then 
1 week of antioxidants 

(ascorbic acid, curcumin, 
rutin or their vehicles), 100 

mg/kg b.w. by gavage 

6 weeks 
As 5 and 10 mg/kg b.w. 
(NaAsO2,) by gavage; 

and 
ascorbic acid, 1 g/L, green 
tea brew, 2.5 g/500 mL, via 

drinking fluid 

6 weeks 
As 10 mg/kg b.w. (NaAsO2,) by 

gavage; 
or  

MnO2 NPs, 4 mg/kg b.w. 
intratracheal 

and  
ascorbic acid, 2 g/L, rutin, 1 g/L,  
green tea brew, 2.5 g/500 mL, via 

drinking fluid 

Investigations 

 Body weight  
 Organ weight  
 Open field test 
 Electrophysiology 
 

 Body weight  
 Food and water 

consumption  
 Organ weight  
 Open field test 
 Electrophysiology 
 Biochemical 

measurements 
 Tissue metal level  

 Body weight  
 Food and water consumption  
 Organ weight  
 Open field test 
 Electrophysiology 
 Biochemical measurements 
 Tissue metal level  

The rats’ body weight was recorded daily in all experiments. Food and drinking fluid 
consumption were measured in Experiment 2 and 3. In the open field test, the rats’ 
spontaneous locomotor activity was measured. Electrophysiology meant recording and 
analysis of spontaneous and stimulus-evoked activity from the primary somatosensory (SS), 
visual (VIS) and auditory (AUD) cortical surface of the rats, and compound action potentials 
from the tail nerve, in urethane anesthesia. After the complete behavioral and 
electrophysiological recording, the rats were overdosed with urethane, were dissected, and 
organs were weighed. For metal level determination and biochemical measurements, whole 
brain, liver, kidneys, and 2-3 ml of red blood cells were taken from 3 randomly chosen rats 
per group. To determine heavy metal concentration, the samples were dried to constant 
weight, and were digested in 65% HNO3 at 90°C for 90 min. Measurement was done by 
inductively coupled plasma mass spectrometry at the Department of Inorganic and Analytical 
Chemistry, University of Szeged Faculty of Science and Informatics. Biochemical 
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measurements (indicators of oxidative stress: H2O2; ONOO–; TBARS) were done at the 
Department of Biochemistry and Molecular Biology, University of Szeged Faculty of Science 
and Informatics. Antioxidant power of the drinking fluids was determined by their ferric 
reducing capacity. 
General toxic effects: Both As and nano-Mn caused reduced body weight gain. This was 
paralleled partly by reduced food intake in As treatment (Experiment 2 and 3) but almost fully 
in Mn treatment (Experiment 3). Protective effect of the used antioxidants against the metals’ 
action of body weight was weak or absent, with rutin showing the relatively clearest effect. 
In rats instilled with MnO2 NPs (Experiment 1 and 3) relative weight of the lungs increased 
massively and this was not influenced by the antioxidants. Else, only the weight of the 
adrenals reacted on As and Mn exposure, with an inconsistent increase which was weakly 
influenced by the antioxidants. Elevated As level was measured in the treated rats’ red blood 
cell, cortex, liver and kidney samples (strongest in the latter organ). Antioxidants reduced As 
deposition but only moderately. In Experiment 3, also Mn was deposited in the tissues but the 
antioxidants had no effect on that. 
Open field behavioral effects: In the OF test, the antioxidants alone had no effect on 
parameters of motility. As reduced motility slightly in Experiment 2 but more significantly in 
Experiment 3, with increased local activity and immobility but decreased rearing. The OF 
effect of Mn was similar (Experiment 1 and 3). Green tea had minimal influence on the OF 
effect of either As or Mn. In Experiment 3, rutin counteracted the effect of As more clearly 
than that of Mn while ascorbic acid influenced only the OF effect of Mn. Rutin also reversed 
the Mn-dependent increased preference of the rats to the corner zones of the OF box in 
Experiment 1. 
Electrophysiological effects: The band spectrum of the electrocorticogram was influenced 
only by nano-Mn exposure, not by As. The shift to higher frequencies was moderate in 
Experiment 1 but more pronounced in Experiment 3. The decrease of low-frequency activity 
was abolished more strongly by green tea than by rutin but not at all by ascorbic acid. There 
were more marked changes in the parameters of evoked activity. Latency of the cortical 
evoked potentials was negligibly influenced by the antioxidants alone. Administration of Mn 
NPs caused significant increase of the latency in each modality, which effect was 
counteracted by rutin and green tea, less strongly by ascorbic acid, but not at all by curcumin. 
The effect of As, and the counter effects of the antioxidants on that, was similar. Slowing of 
the conduction velocity in the tail nerve, seen on treatment with both As and Mn, was 
counteracted most strongly by rutin, less by green tea and only weakly by ascorbic acid. In 
Experiment 1, curcumin also had a weak protective effect against decrease of conduction 
velocity by Mn. 
Biochemical effects: The intensity of TBARS reaction level of ONOO- were altered by 
exposure to As and Mn, and by antioxidant application, in a way which showed effect and 
counter effect. The effect of As was most clearly reversed by rutin, and that of Mn, by 
ascorbic acid. The causal relationship between inner metal doses (tissue As and Mn levels) 
and the observed neuro-functional and biochemical changes was tested searching for 
correlations. In Experiment 2 cortical and peripheral electrophysiological changes, and 
cortical TBARS level, was significantly correlated to cortical As concentration. In Experiment 
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3, body weight gain was correlated to liver level of As or Mn, while certain 
electrophysiological and behavioural parameters, and TBARS, to cortical metal levels but also 
to each other. 
In the investigated functional alterations of the treated rats’ nervous system, there were some 
general trends, such as decreased OF motility or slowed electrophysiological responses, 
indicating possible common mechanisms in the background. Oxidative stress may be one such 
mechanism, as both As and Mn, as inorganic chemical agents, are know to induce the 
generation of reactive oxygen species in living tissue, and such effect has been described also 
in exposed humans. The negative effect of oxidative stress on CNS functionality has also been 
reported for both metals. The antioxidants tested in this study had some counter effect on the 
electrophysiological and/or behavioral alterations induced by As and nano-Mn, but to a 
dissimilar extent. The effect of ascorbic acid was in most cases less than that of rutin or green 
tea brew, although the measured antioxidant capacity of ascorbic acid solution was higher. 
Protective actions, independent of direct reduction of oxidized biomolecules, of rutin and 
green tea flavonoids include first of all chelation of metal ions. 
All antioxidants tested are natural, foodborne compounds potentially available for general use 
in populations exposed to As or Mn, but also to other environmental toxicants, but the real life 
efficacy of this kind of preventive measures has not yet been verified, so the ideas like 
“functional drinks in neurodegenerative diseases” still await implementation. 
The particular questions of the study can be answered as follows: 
 

 In Experiment 3, the used physicochemical form of As and Mn were investigated in 
terms of neurotoxicity and general toxicity together in the same experiment. Identical 
but separate experiments with the two metals were not made, but the answer to the 
first question is essentially positive. 

 The antioxidants included in the experiments had some clearly detectable effects on the 
alterations induced by the two metals, regarding both nervous system effects 
(electrophysiological and behavioral) and general toxicity, but: 

 There were marked differences between the effects of the antioxidants: 1/ Curcumin had 
practically no effect. 2/ The protective effect of vitamin C was weaker than that of the 
applied flavonoids – rutin and green tea constituents. The cause of the difference was 
apparently not the antioxidant capacity but probably the metal chelating ability of the 
flavonoids and/or their better local availability in the CNS. 

 The examined antioxidants are all easily available natural compounds. As a chemically 
defined compound, rutin showed better effect than ascorbic acid. Green tea infusion 
(or an extract or concentrate) is chemically complex but the main constituents have 
been chemically identified. An “optimal” choice of antioxidant has to consider, 
beyond verified in vivo protective effect, also technical (sources, processing, 
formulation) and social (acceptance in the population to be protected) aspects, and 
requires further studies both within and outside the scope of environmental 
neurotoxicology. 
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1. INTRODUCTION 

 

1.1. Oxidative stress 

1.1.1. Definition and evolutionary aspects 

Oxidative stress can be defined as an inequilibrium between metabolic reactions producing 

so-called reactive oxygen species (ROS) and reactive nitrogen species (RNS) on one side and 

the capacity of enzymatic and non-enzymatic reactions to neutralize them on the other side 

(Valko et al., 2007). Oxidative stress and damage is a side effect of oxidative energy 

production of living organisms, the appearance of which was a fundamental event in the 

geological and biological evolution of Earth. 

Oxygen-emitting photosynthetic activity of primitive cyanobacteria raised the O2-content of 

the lower atmosphere to the level we know today ca. 2.4 billion years ago (Buick, 2008). For 

all organisms which had developed in the previous oxygen-free environment – the ones called 

today anaerobic – free oxygen was poisonous and induced the development of antioxidative 

defence mechanisms. It was only a later step of evolution when “purposeful” biological 

oxidation as the most efficient way of biological energy production appeared. Thanks to the 

strongly positive standard redox potential of O2 (vs. H2O), biological oxidation provides for a 

high rate of energy production – but at the risk of oxidative damage of biomolecules due to 

the by-products of the reactions. That is why all living organisms have various antioxidant 

protective mechanisms which, however, had originally the role to protect ancient anaerobic 

cells against the new, oxygen-rich environment (Kiss et al., 2007). 

 

1.1.2. Oxidative species: normal cellular metabolism and the effect of xenobiotics 

In the absence of exogenous harmful substances, most of the ROS originates from cellular 

respiration, from the mitochondrial electron transport chain. Complete reduction of an O2 

molecule requires four electrons but these are transported along the electron transport chain 

(complexes I to IV in the inner mitochondrial membrane) one by one. So, a part of oxygen 

can remain partially reduced if some electrons “leak” from the transport chain (mostly at 

complex I) too early and react directly with the O2 molecule (Valko et al., 2007). The 

immediate product is the superoxide anion (O2
-), leading (in further reactions with free 

protons and electrons) to generation of hydroxyl (OH) and hydroperoxyl (HOO) radicals. 

Reactive nitrogen species (RNS) are also known, the most prominent being nitrogen 

monoxide (NO) an important signal molecule involved in vascular tone regulation, generated 
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from L-arginine by NO synthase. Also certain ROS have signal or effector functions, e.g. in 

the immune response (oxidative burst in macrophages), erythropoetin production, or 

programmed cell death (Dröge, 2002). 

This natural production of ROS and RNS in the cells causes normally no manifest oxidative 

stress because various antioxidant mechanisms (see 1.1.3.) eliminate the surplus of dangerous 

molecules, but exposure to a number of environmental substances or xenobiotics can tip over 

this oxidant-antioxidant balance. 

Many of the metals, present in the residential or workplace environment and exposing humans 

by inhalation, ingestion and other routes, can be involved in oxidative stress. Some of the 

notable metal xenobiotics, like Mn (for details, see 1.3.2.) but also Fe, Co, Cu and others, can 

undergo redox cycling and participate in ROS generating processes such as the Fenton 

reaction. Others, including As (for details, see 1.3.1.) and Cd, inactivate certain compounds 

that act as antioxidants in the cells (Valko et al., 2005). The resulting imbalance between pro-

oxidant and antioxidant processes leads to generation of reactive oxygen, carbon, sulfur and 

nitrogen radicals. The outcomes at systemic level include neurotoxicity, hepatotoxicity and 

nephrotoxicity in humans and animals (Flora et al., 2008). 

The primary consequence of the presence of ROS and RNS in the cells is damage to various 

biomolecules. Amino acid side chains in proteins can be oxidized, so presence of carbonyl 

groups in proteins is a good measure of oxidative damage. Peroxidation of lipids – first of all 

unsaturated fatty acids, important constituents of membrane lipid bilayer – not only destroys 

the original molecules and impedes the functions bound to their intact state, but generates 

further reactive radicals, and finally malondialdehyde (Valko et al., 2007). It is a measurable 

indicator of lipid peroxidation (by means of the thiobarbiturate reaction: Flora, 2011) and also 

a reactive molecule, itself generating covalent adducts with DNA bases. 

It is being realized more and more that in all major chronic non-communicable diseases, such 

as malignant tumors, cardiovascular diseases, chronic inflammations or diabetes, ROS and 

RNS are involved in the pathomechanism. The free radical theory of aging states that 

existence and action of free radicals in the organism, left unneutralized due to inadequate 

antioxidant capacity, is a leading cause of the gradual decay of all body functions (Harman, 

1956). 

For the present thesis, oxidative damages to the nervous system are the most important. 

Central and peripheral parts of the nervous system are both prone to oxidative damage, due to 

highly active mitochondrial energy production because of the high energy demand, to 

abundance of (unsaturated) structural lipids, and to low antioxidant defence capacity in the 
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brain (Guerra-Araiza et al., 2013). Reactive oxygen species may constitute the final common 

pathway of effect of several neurotoxicants (LeBel and Bondy, 1991) and oxidative damage 

to membrane lipids in axons and neuronal cell bodies may lead to changes of fluidity and 

probably to alterations of those membrane-bound functions which are crucial to the 

functioning of neurons (Coyle and Puttfarcken, 1993). 

 

1.1.3. Protective antioxidant mechanisms of the cells 

Under normal conditions, the oxidative species generated in cellular metabolism are 

neutralized by several biochemical reactions, both enzymatic and non-enzymatic. 

Superoxide is converted to H2O2 by the superoxide dysmutases; the molecule is then either 

reduced by glutathione peroxidase to water or decomposed by catalase to water and oxygen 

(is made harmless in both ways), or can undergo the Fenton reaction with suitable 

endogenous or exogenous transition metal ions to produce OH which, being a free radical, is 

a more reactive ROS than H2O2. 

The small biomolecules involved in antioxidant defence are collective called “antioxidants”. 

 

1.2. Antioxidants 

 

There exist several – not fully compatible – definitions of antioxidants, depending on the 

actual approach (more chemical or more biological, in vitro or in vivo, etc). 

In a purely chemical approach, an antioxidant is a reducing agent that is oxidized instead of 

another molecule which is to be protected, or reverts that from its oxidized form. In a more 

biological view, antioxidants can inhibit or prevent the oxidation of oxidizable cell 

constituents by scavenging free radicals and reducing oxidative stress (Kim and Lee, 2004). 

The definition given by Dröge (2002) “substances that are able, at relatively low 

concentrations, to compete with other oxidizable substrates and, thus, to significantly delay or 

inhibit the oxidation of these substrates” is supposed to include both chemical antioxidants 

and antioxidant enzymes. Frequently a distinction is made between endogenous (enzymes and 

small molecules synthesized by the organism) and exogenous (foodborne factors like vitamin 

E, vitamin C for primates, flavonoids etc.) factors acting against oxidative stress, and the term 

“antioxidant” is used only for the latter. It has to be considered also that, depending on the 

actual redox conditions, the same compound can act as a reducing (antioxidant) or an 

oxidizing (pro-oxidant) agent.  
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1.2.1. Endogenous antioxidant molecules of the human and animal organism 

The two most important endogenous small antioxidant molecules are glutathione and uric 

acid. 

Glutathione is a tripeptide: gammaglutamyl-cysteinyl-glycine. It can be synthetized in every 

cell but the main site of generation is the liver. The active part of the molecule is the –SH 

group of the cysteine moiety. It can directly react with the OH radical and singlet oxygen, 

and can reduce the oxidized forms of tocopherole and ascorbic acid. As an enzyme cofactor, it 

works with glutathione peroxidase (breaking down H2O2 and organic peroxides) and 

glutathione transferase (linking the tripeptide to xenobiotic molecules to facilitate their 

elimination) (Valko et al., 2007). 

Uric acid is the final metabolite of purines, a product of xanthine oxidoreductase (an enzyme 

producing also certain ROS). Uric acid is an important antioxidant, especially in the blood 

plasma (Valko et al., 2007). It has been supposed that uric acid replaced ascorbic acid in those 

primates (including humans) who lost both the ability to synthesize ascorbic acid and to 

further metabolize uric acid to allantoin (Proctor, 1970). Consequently, for nearly all other 

animal and plant species, ascorbic acid (vitamin C) is an endogenous antioxidant. 

Further endogenous molecules with antioxidant activity include lipoic acid and melatonin. 

Lipoic acid is synthetized and used in the cells in covalently protein-bound form and is 

primarily a cofactor of dehydrogenases. According to some sources, lipoic acid can directly 

act as antioxidant (Valko et al., 2007) while others state it is more an activator of cellular 

antioxidant mechanisms (Shay et al., 2008). Melatonin, a serotonin derivative produced in the 

pineal gland, is, beside its chronobiological function, also a powerful antioxidant (Tan et al., 

1993), scavenging ROS directly and interacting with other antioxidants. 

 

1.2.2. Exogenous (dietary) antioxidants 

These are micronutrients required to be present in food in sufficient amounts. Some are 

considered essential, with known recommended daily intake and known health consequences 

of insufficient or absent supply (Rodler, 2005). 

Vitamin A (retinol) molecules have a terpenoid-like structure, and this is the basis of the 

antioxidant activity of this nutrient, which is independent of its other, more specific effects. Its 

major sources include liver, eggs and dairy products. 

Vitamin C (ascorbic acid) is, as mentioned above, an essential nutrient only for a few species 

including humans. The best known sources are citrus fruits, green peppers, sea buckthorn etc. 
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It is one of the antioxidants used in the experiments performed for this thesis that is why it is 

presented more in detail in 1.4.1. 

The word vitamin E refers to a group of lipids (tocopheroles and tocotrienes) chemically 

related to carotenoids but without conjugated double bonds. The principal antioxidant 

function vitamin E, found e. g. in vegetable oils and egg yolk, is to scavenge lipid peroxyl 

radicals, linked via a redox reaction chain to glutathione and ascorbic acid (Wefers and Sies, 

1988). 

Carotenoids represent a large family of natural lipophylic compounds of tetraterpene structure 

found in fruits ad vegetables, mostly in those with more intense yellow or red colors. Their 

antioxidant potency is due to free radical scavenging, and that, to the double bonds in the 

hydrocarbon backbone. Carotenoids can cooperate with other antioxidants including 

tocopherol, ascorbic acid, uric acid and some polyphenols, and certain carotenoids are 

provitamins of vitamin A (Krinsky and Johnson, 2005). 

Polyphenols are a group of organic molecules containing one or more aromatic rings with 

phenolic hydroxyl groups. Most of them are of plant origin, and are produced in the secondary 

metabolism of the plants as protective agents (against predators and ultraviolet light) and as 

signal molecules (Lattanzio et al., 2006). They are present, to various degrees, in foods and 

beverages obtained from fruits and vegetables. The antioxidant property of polyphenols 

results from their oxidation to quinon structure and reducing thereby the reaction partner. 

Among them, flavonoids are the largest group. Rutin, another antioxidant used in our 

experiments (see 1.4.2.), is the glycoside of quercetin which is a flavonoid, more precisely a 

flavonol (Formica and Regelson, 1995). Various flavonoid-type polyphenols, mainly 

catechins, are found in the infusion of green tea leaves (that is, the tea drink; Hodgson, 2006; 

see 1.4.3.). Curcumin (1.4.4.), likewise involved in the experiments performed for this thesis, 

is just another plant-derived phenolic compound with antioxidant and chelator properties 

(Kunchandy and Rao, 1990). 

 

1.2.3. Health effects of antioxidants: what is known, supposed and hoped 

In the last decade, interest in the potential health benefits of exogenous antioxidants, first of 

all those of plant origin, has been increasing. Epidemiological studies suggested that long 

term consumption of diets rich in plant polyphenols can protect against chronic non-

communicable diseases such as cancers, cardiovascular diseases, diabetes, osteoporosis and 

neurodegenerative diseases (Pandey and Rizvi, 2009). Flavonoids have known anti-

inflammatory and antioxidative effects, and they have been described as neuroprotective and 
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able to reduce damage in CNS diseases, with a number of benefits especially in maintaining 

cognitive function and memory capacity (Mandel et al., 2005). Ideas have been published to 

create “functional drinks” rich in antioxidants (vitamin C and E, polyphenols) to prevent or 

treat neurodegenerative diseases (Zafrilla et al., 2009). However, the beneficial effects 

observed in cell cultures and experimental animals have been verified in humans, by now, 

only to a rather limited extent (Albarracin et al., 2012). It is also a question how efficiently the 

antioxidant content of foods etc. is absorbed and reaches the desired site of action (Pandey 

and Rizvi, 2009). 

 

1.3. Metals, heavy metals, arsenic and manganese 

 

The use of metals by humans commenced about four thousand years ago and has been 

increasing since then. Due to that, the level of various metals has been also increasing, and in 

case of several metals not only in the immediate workplace environment but globally. It is 

possible that continuous exposure to metals creates a “silent pandemic” in modern societies, 

being responsible for a decrease in IQ, increased risk of antisocial behavior, 

neurodevelopmental disorders and brain dysfunctions (Rodríguez-Barranco et al., 2013). 

Most of the metals known to be toxic are so-called heavy metals. The meaning of this term 

has been a matter of debate (Duffus, 2002). Newly, heavy metals are defined on the basis of 

their place in the periodic table; and so transition metals (d-block elements), post-transition 

metals and metalloids (found in the p-block) as well the lantanoids and actinoids are regarded 

as heavy metals (Appenroth, 2010). The place of these elements in the periodic table 

determines their chemical properties. The biologically most relevant two properties are the 

existence of more than one oxidation states in many of these metals (promoting their 

participation in redox reactions) and the tendency for making coordinate bonds (in enzymes 

working with metal cofactor – but also in the denaturation of proteins by heavy metal ions and 

enzyme inhibition by false cofactors). 

The two heavy metals included in this thesis are arsenic (As) and manganese (Mn). 

 

1.3.1. Arsenic 

As a chemical element, arsenic is the 20th most abundant element in the Earth’s crust and is 

ubiquitous in trace amounts. Its increased presence in certain rocks may lead to environmental 

contamination and human exposure by As emissions from mining and smelting non-ferrous 

metal ores (Rosado et al., 2007) and from burning coal with higher arsenic content (Bencko et 
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al., 2009). Arsenic used to have numerous practical applications (pigments, wood 

preservatives, pesticides, even medicines) most of which have been discontinued by now 

because of the health risks (ATSDR, 2000). Its modern applications e.g. in semiconductor 

manufacturing, are apparently safe. 

The most important source of human As exposure is drinking water. The presence of As in 

subsurface waters used for drinking is due to geochemical factors: arsenic had been bound in 

ferric oxide-hydroxide containing layers in the geological past, at the time of sediment 

formation, and is being released when the local redox conditions in the bedrock aquifer are 

changed, typically because of human interference resulting from drilling deep wells and 

drawing water (Duker et al., 2005). The problem of As in drinking water has been quite 

serious in regions of Asia (Bengal Basin in India/Bangladesh: up to 3.000 µg/L) and South 

America (Argentina: up to 10.000 µg/L) (Nordstrom, 2002). In the Carpathian Basin, more 

exactly in South-East Hungary (Börzsönyi et al., 1992) and the adjacent Romanian and 

Serbian regions (Lindberg et al., 2006), the problem has become less severe by now, but 

municipal drinking waters with As concentration above the European Union limit value of 10 

µg/L (Council Directive 98/83/EC, 1998) are still found. 

Arsenic is defined in some literature sources as a micronutrient (12-25 µg/day may be 

required for the metabolism of methionine: Nielsen, 1991) while other sources (Guidelines..., 

2011) deny the essentiality of this element. In any higher amount than that mentioned above, 

however, As is poisonous. According to the WHO, As is among the ten most important 

chemicals of major public health concern (Preventing Disease through Healthy Environment, 

WHO, 2010). 

Arsenic occurs in four oxidation states (-3, 0, +3, +5) and in inorganic or organic forms. 

Inorganic trivalent arsenite (AsIII) is more toxic than pentavalent arsenate (AsV), and most of 

the organic arsenicals are practically nontoxic (Ratnaike, 2003). Arsenite strongly binds to the 

–SH group of proteins, inactivating various enzymes including those in the citrate cycle and 

terminal oxidation, depleting ATP pool and promoting the generation of ROS in the cells. It 

also increases oxidative stress by depleting reduced glutathione and thioredoxin, by 

generating H2O2 in connection with oxidation of arsenite to arsenate, and by liberating iron 

(which then will exert its own ROS-generating effects) from ferritin (Jomova et al., 2011). 

Arsenate, if not reduced to arsenite, interferes with phosphate in glucose phosphorylation and 

ATP synthesis. Methylation of AsIII prevents these effects and promotes excretion in the 

kidneys, but increases carcinogenicity (Chouhan and Flora, 2010). 
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The mostly described consequences of chronic exposure to inorganic arsenic include 

cardiovascular, hepatic and renal diseases, and skin cancer (Ratnaike, 2003), but nervous 

system damage is also known. High-As water of a private well caused encephalopathy (with 

headaches, motor weakness, mental confusion and finally coma) in a family (Armstrong et al., 

1984). In schoolchildren exposed to As emitted by a smelter in Mexico, problems of cognitive 

development were significantly associated with elevated urinary arsenic excretion (Rosado et 

al., 2007). In Bangladesh, where extreme As levels occur in drinking water (see above) 

association between children’s exposure and motor disorders were found (Parvez et al. 2011) 

– both reports suggest functional damage of the central nervous system. In children exposed 

to As by nearby non-ferrous smelters in Europe, altered dopaminergic biomarkers were found 

(de Burbure et al., 2006). 

Electrophysiological data on As neurotoxicity are scarce, but in As-exposed workers of a 

copper smelter altered EEG, visual evoked potentials, and peripheral nerve activity were 

detected (Halatek et al. 2009). In the same subjects, signs of oxidative stress were also found 

and both that and the extent of the electrophysiological alterations were correlated to the 

internal As burden. Some of the functional neurotoxic effects of As have been modelled in 

animal experiments (Rodríguez et al., 2001; García-Chávez et al., 2007) including earlier 

works of the Department (Schulz et al., 2002; Szabó et al., 2006). 

 

1.3.2. Manganese 

Manganese (Mn) can have oxidation states from -3 to 7+, indicating its propensity to 

participate in oxidation-reduction reactions. This, along with the tendency to form complexes, 

has biological and toxicological relevance (Aschner et al., 2007). Manganese and its 

compounds have had numerous technical applications, starting with mineral MnO2 used in 

glassmaking in the middle ages through using it as alloy component in steelmaking since the 

19th century up to its present-day high-tech applications such as contrasting agents for MR 

imaging (Eschenko et al., 2010) and nanostructures for supercapacitors (Chen et al., 2005). 

Mn is an essential trace element for plants, animals and humans. The human body contains 

about 10 mg Mn, stored mainly in the liver and kidneys, and a daily intake of 2-4 mg is 

sufficient for adults (ATSDR, 2008). Mn is required for normal brain function in all mammals 

(Erikson and Aschner, 2003; Keen et al., 2000). It is a cofactor for several enzymes such as 

Mn-dependent glutamine synthetase (localized in astrocytes and involved in the turnover of 

glutamate as neurotransmitter) superoxide dismutase (protecting mitochondria against 

oxidative stress), as well as arginase or pyruvate carboxylase (Erikson and Aschner, 2003; 
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Normandin and Hazell, 2002). Despite its essentiality, Mn in high amounts will be toxic, and 

the nervous system is an important target of Mn toxicity (ATSDR, 2008). 

The population can be exposed to Mn in several ways when there is an elevated level of Mn 

in the soil, and therefore in plants, food (cereals) and drinking water. Typical neurotoxic 

manifestations are rare, occurring only where the Mn content of drinking water is abnormally 

high (e.g. in Greece, naturally: Kondakis et al., 1989; in the USA, possibly due to pollution: 

Woolf et al., 2002; or in Japan, due to pollution: Kawamura et al., 1941). A Mn-based anti-

knock petrol additive, methylcyclopentadienyl Mn tricarbonyl (MMT), had been developed to 

replace tetraethyl lead. It was in use in a few countries but has been withdrawn due to the risk 

of population-level inhalational exposure by the exhaust gases (Davis, 1998). 

Occupational Mn exposure is primarily inhalational, and occurs mostly in the metal industry 

(Mn ore mining and smelting, production of alloys, welding by use of rods with a Mn-

containing coating) but also in the manufacturing of zinc-carbon and alkaline dry cells 

(ATSDR, 2008; Bader et al., 1999). Two Mn-based fungicides (Maneb, Manzoceb) also may 

cause job-related exposure (Ferraz et al., 1988). Chronic nervous system damage by Mn was 

first described 150 years ago in workers who, grinding black oxide of Mn (MnO2, pyrolusite), 

developed muscular weakness and unsteady gait (Couper, 1837). Today we know that Mn can 

disturb neurotransmission (glutamatergic, cholinergic, dopaminergic, GABAergic), can cause 

mitochondrial dysfunction and cellular energy shortage, and can inhibit voltage-gated Ca-

channels in neurons (Aschner et al., 2009). Mn induces oxidative stress via the oxidation of 

dopamine and other catecholamines, as Mn is accumulated in dopamine-rich brain regions, 

especially in the basal ganglia (Erikson et al., 2004); and by mitochondrial damage (inhibition 

of complex II: Malecki, 2001; and complex III: Zhang et al., 2003). Also, the activity of Mn-

SOD and glutathion peroxidase is decreased if there is a local overdose of Mn (Hamai and 

Bondy, 2004). 

Oxidative stress is involved in the toxicity, including neurotoxicity, of Mn (Aschner, 1997). 

The ability of Mn-containing welding fumes to induce oxidative stress was proven in vivo 

(inflammation markers in the bronchoalveolar lavage fluid) and in vitro (depletion of 

glutathione) by McNeilly et al. (2004). In rats after one month of oral Mn exposure, increased 

lipid peroxidation and decreased motility was seen (Avila et al., 2008); and the manifestations 

of oxidative stress in Mn-exposed rats could be reduced by the natural antioxidant, silymarin 

(Chtourou et al., 2010). Preliminary results of earlier experiments at the Department also 

indicated that antioxidative substances may reduce the functional alterations in Mn-exposed 

rats (Nagy et al., 2011). 
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The typical human neurological disorder caused by Mn, manganism, represents a Parkinson-

like syndrome (Normandin et al., 2004) although the two are partly dissimilar. Disorders with 

electrophysiological signs after Mn exposure include myoclonus in welders (Ono et al., 2002) 

and epileptic activity in an accidentally exposed child (Hernandez et al., 2003). In young 

shipyard workers, EEG and visual evoked potential alterations were observed (Halatek et al., 

2005). These subjects had blood Mn levels up to 14 g/L (compared to 5-7 g/L in reference 

groups: Bader et al., 1999). EEG and evoked potential disturbances following occupational 

Mn exposure were also reported by Sinczuk-Walczak et al. (2001) and Sjögren et al. (1996), 

and were modelled in animals, among others in works done at the Department (Pecze et al., 

2004; Vezér et al., 2005). 

The mentioned inhalational Mn exposure in workplace settings is due to the presence of 

aerosol particles containing Mn. It has been discovered relatively recently that nanoparticles 

(NPs, with at least one dimension smaller than 100 nm, also called ultrafine dust or submicron 

particles) are of especial concern in terms of health hazard. NPs are supposed to be involved 

in various chronic non-communicable diseases of humans affecting the central nervous 

system, the circulatory system and other body parts (Buzea et al., 2007). 

Welding fumes are rich in Mn-containing NPs (Antonini, 2003). These not only form an 

extremely stable aerosol (not removed by sedimentation for days) but have several 

characteristics in their interactions with living organisms which are not seen with particles in 

the micrometer range (Oberdörster et al., 2005). Inhaled NPs are either deposited in the 

nasopharynx or get down to the alveoli (ICRP, 1994). Their entrance into and mobility within 

the organism is facilitated by their small size, enabling them to easily penetrate physiological 

barriers like the alveolar, capillary or even blood-brain barrier (Kreyling et al. 2006). After 

nasal deposition, they can directly reach the CNS by translocation through the olfactory 

pathway (Elder et al., 2006) and they are less efficiently removed than larger particles by the 

macrophage clearance mechanisms. Their huge (relative to particle mass) and reactive surface 

induces generation of ROS, and as a consequence, pro-inflammatory mediators (Stone et al., 

2007). The relationship between Mn exposure and neurologic-neuropsychiatric dysfunctions 

has been established both in massive workplace exposures (Bowler et al., 2007) and in 

chronic low-level exposure among workers and in the general public (Lucchini et al., 2007, 

2009). Motor and olfactory dysfunction, as well as oppositional and hyperactive behavior plus 

IQ drop, was observed among schoolchildren exposed to high environmental concentration of 

Mn (Michalke and Fernsnebner, 2014). 
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1.4. Antioxidants used in this work 

 

1.4.1. Ascorbic acid 

Vitamin C (ascorbic acid) is a hexose derivative. It is a vitamin (essential factor) only for 

humans, other primates, and a few more mammalian species while all other living creatures 

are able to synthesize it. At physiological pH, ascorbate monoanion is the dominant form and 

acts as effective antioxidant, that is, electron donor. It shows an auto-oxidation tendency 

which is strongly pH dependent and is accelerated by catalytic metals (Du et al., 2012). 

Ascorbic acid is able to scavenge reactive oxygen species such as superoxide radical anion, 

singlet oxygen and hydroxyl radical (Kim and Lee, 2004). It can improve mitochondrial 

functions by neutralizing the above mentioned byproducts of terminal oxidation, and can so 

prevent ROS mediated damage to liver and kidney; and is capable of protecting membrane 

constituent lipids. Ascorbic acid also improves GSH status by recycling oxidized glutathione 

(Valko et al., 2007), and it has been reported that ascorbic acid was protective against 

depletion of GSH and cellular damage in As-exposed rats (Singh and Rana, 2010). Its 

oxidized forms, ascorbate radical and dehydroascorbate, generated in the reactions described 

above, are regenerated by several mechanisms which help to maintain the cellular pool of this 

valuable substance (Du et al., 2012). Intestinal uptake, by Na+-dependent vitamin C 

transporters (SVCT) for the intact molecule and by glucose transporters for the fully oxidized 

form (dehydroascorbate), is limited and apparently depends on the actual need (Du et al., 

2012). Uptake into the brain is also an active (SVCT2-dependent) process (Harrison and May, 

2009). Depending on the immediate chemical environment, ascorbate can also have pro-

oxidant effect – first of all if certain transition metals are present, because it can reduce e.g. 

Fe3+ to Fe2+ in a one-electron transition. Fe2+ can readily react with O2, reducing it to 

superoxide radical, or can react with H2O2 to generate Fe3+ and oxidizing hydroxyl radical 

(Fenton reaction). Ascorbate allows recycling of Fe3+ back to Fe2+, promoting the rise of 

highly reactive oxidants (Du et al., 2012). 

Vitamin C is a well-known and well-described natural substance, and is easily accessible for 

the public. It is present in various foods and drinks – typically those of fresh plant (citrus 

fruits, green pepper etc.) origin – and is commonly recognized as a leading natural nutrient 

and antioxidant. 
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1.4.2. Rutin 

Rutin (quercetin-3-rutinoside) is a flavonoid present in various in plants. The number one 

source of natural rutin is buckwheat (Fagopyrum esculentum; Kim et al., 2005). Citrus fruits 

and rhubarb are also rich in rutin (Formica and Regelson, 1995). The relevant part of the rutin 

molecule in terms of antioxidant effect is quercetin, the aglycone, a flavonol. Similarly to 

other flavonoids, it acts both as free radical scavenger and as chelator for metals prone to act 

as pro-oxidants (e.g. iron and copper; Kim and Jang, 2009). Health benefits and 

pharmacological properties ascribed to rutin include antioxidative, anti-inflammatory, 

antiallergic, antiviral, anticarcinogenic and anti-hypertensive effects. Rutin is also used in 

animal feed, cosmetics, as a natural colorant, food preservative, and UV absorbent (Javed et 

al., 2012). It is also known, however, that bioavailability of rutin – or, more exactly, of 

quercetin – is limited due to poor intestinal absorption and to degradation by the gut 

microflora both in humans and in experimental animals (Formica and Regelson, 1995). The 

neuroprotective effect of rutin has been documented in animal models of brain ischemia 

(Gomes-Rodrigues et al., 2013) and Alzheimer disease (Javed et al., 2012). 

 

1.4.3. Green tea phenolics 

In the weight of fresh leaves of the tea shrub, Camellia sinensis, ca. 35–40% are given by 

flavonoids, first of all catechins (Hodgson, 2006). Green tea is prepared by brewing the 

harvested but not or minimally fermented leaves. No fermentation means that the leaves’ 

natural phenol oxydases are inactivated by heat treatment, instead of letting them work as in 

processing of black tea, so that green tea leaves and the drink made from them is rich in 

flavonoids. Tea is a popular drink worldwide and is a major contributor to total flavonoid 

intake in many populations. The neuroprotective effect of catechins is based on antioxidant 

and metal chelating activity; but beyond acting directly as radical scavengers, they also 

activate transcription factors and antioxidant enzymes. Regarding the prevalence of chronic 

degenerative central nervous diseases and the popularity of tea, this protective effect has been 

extensively studied (Weinreb et al., 2004) The major component of green tea, (–)-

epigallocatechin-3-gallate (EGCG), is held responsible for the – as yet only partially proven – 

beneficial effects of green tea such as anticancer, antioxidant and cardiovascular protective 

function improvement via anti-inflammatory properties (Mandel et al., 2005). 
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1.4.4. Curcumin 

Curcumin (diferuloylmethane) is a yellow substance was isolated from the rhizomes of 

turmeric (Curcuma longa). It has been extensively used in food preparation as spice, 

preservative and coloring agent in different parts of the world. Curcumin has multiple 

pharmacological properties such as anti-inflammatory, anti-carcinogenic, anti-mutagenic, 

anti-ischemic, hypotensive and antioxidant effects, and also has been found effective in 

animal models of Alzheimer's dementia and chemically induced neurotoxicity (Yadav et al., 

2009). Curcumin is a powerful scavenger of O2
-, OH and NO2, and has metal binding 

property (El-Demerdash et al., 2009). Being lipophylic, curcumin easily crosses the blood 

brain barrier and reduces amyloid deposition in vivo and in vitro (Yadav et al., 2011). Co-

administration of curcumin diminished lipid peroxidation in rats subacutely treated with Cd 

and Pb, and the hippocampal neuronal damage caused by the latter (Daniel et al., 2004). 

 

1.5. Summary and Aims 

 

Exposure to metals and metalloids remains a source of health damage for the population, let 

the source of exposure be natural or technical, and the exposure situation, job related or 

general. It follows from the chemical properties of arsenic and manganese, and from the 

reactions of the cell constituents and biomolecules of the exposed organism, that oxidative 

stress plays a significant role in the mechanism of metal-induced damages, especially in the 

nervous system which has limited capacity to counteract an oxidative attack. By supporting 

antioxidant defence via supplying the exposed organism with exogenous antioxidants, metal-

induced nervous system damages could possibly be diminished. Based on that, the general 

aim of this thesis was to observe, in experiments done in subacutely treated rats, the neuro-

functional damage caused by exposure to arsenic and manganese (in doing that, we could rely 

on previous results of the Department: Szabó et al., 2006; Vezér et al., 2007; Oszlánczi et al., 

2010), and the possible protective effect of certain antioxidants of natural origin.  

The particular questions to be answered on the basis of the expected results were as follows: 

 Can the neurotoxic, and other toxic, effects of the used physicochemical form of As and 
Mn be investigated in identically built-up experiments or together? 

 Have the antioxidants included in the experiments any effect on the alterations induced 
by the two metals? 

 What differences, qualitative or quantitative, can be seen between the effects of the 
antioxidants? 

 Which of the antioxidants might be an optimal choice, considering also protection of 
human health? 
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2. MATERIALS AND METHODS 

 

The aims described in 1.5. have been realized in altogether three experiments. The two 

environmental heavy metals given to the rats were manganese and arsenic; and the natural 

antioxidants, as putative protecting agents, were ascorbic acid (vitamin C), rutin, curcumin, 

and green tea infusion (Table 1). Details of the particular experiments (treatment groups, 

doses, administration, combinations, etc.) will be given later on. 

 
Table 1 Schemes of treatments 
Experiments Experiment 1 Experiment 2 Experiment 3 

Duration 

4 weeks of treatment with 
MnO2 nanoparticles 

(or vehicle)  
+ 

1 week of treatment with 
antioxidants (ascorbic 

acid, curcumin, rutin or 
their vehicles) 

 
 

6 weeks of simultaneous 
treatment with NaAsO2 

and antioxidants 
(ascorbic acid, green tea) 

 
 

6 weeks of simultaneous 
treatment with NaAsO2 
or MnO2 nanoparticles 

and antioxidants 
(ascorbic acid, green tea, 

rutin) 

Investiga-
tions 

 Body weight  
 Organ weight  
 Open field test 
 Electrophysiology 
 

 Body weight  
 Food and water 

consumption  
 Organ weight  
 Open field test 
 Electrophysiology 
 Biochemical 

measurements 
 Tissue metal level  

 Body weight  
 Food and water 

consumption  
 Organ weight  
 Open field test 
 Electrophysiology 
 Biochemical 

measurements 
 Tissue metal level  

 

2.1. Experimental animals, substances and ways of administration 

 

Young adult, ca. 6 weeks old, male Wistar rats were used for all experiments, obtained from 

Toxi-Coop (Budapest, Hungary). The animals were housed with three or four rats in one cage 

(polypropylene, floor 27 x 39 cm, height 19 cm) under GLP equivalent conditions (22±1ºC, 

40-60% relative humidity, 12-h light/dark cycle with light on at 06:00), and had free access to 

standard rodent pellet and drinking fluid (plain tapwater or a treatment solution, see Tables 2, 

3 and 4). 

For Experiment 1, MnO2 NPs were produced at the Department of Physical Chemistry and 

Materials Science, University of Szeged Faculty of Science and Informatics. Synthesis was 

done in wet reaction in aqueous alkaline medium containing polyacrylic acid (PAA; MW 

5000) and ethanol (as reducing agent). KMnO4 solution was dripped into this medium under 
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stirring, and a sol containing MnO2 NPs of 25-30 nm diameter was generated. It was 

administered to rats after adjustment of concentration and pH. Vehicle control animals got the 

starting medium which was completed with KOH and NaOH, and pH was set to 7.5. The 

chemical purity of the nanoparticles was checked by X-ray diffraction, and their particle size, 

by X-ray diffraction and transmission electron microscopy. 

For Experiment 3, the MnO2 NPs were synthesized at the Department of Applied Chemistry, 

University of Szeged Faculty of Science and Informatics. Aqueous KMnO4 solution was 

mixed with ethylene glycol and sonicated with an ultrasound device. The resulting dark 

suspension was heated at 200 ºC for 16 hour in a Teflon-lined autoclave oven and then 

allowed to cool to room temperature naturally. The brownish precipitate formed was filtered 

and washed with 80 ºC preheated distilled water, and dried at 100 ºC for 1 hour. Chemical 

purity and particle size (25-30 nm) were checked as above. For administration, the MnO2 NPs 

were suspended in 1% hydroxyethyl cellulose (HEC) dissolved in phosphate buffered saline 

(PBS; pH=7.4). This vehicle slowed the aggregation of the NPs. The suspension was 

intensively sonicated as it was made, and again before each administration. 

The applied dose of MnO2 NPs was, both in Experiment 1 and 3, 4 mg/kg b.w., instilled 

intratracheally (it.), and the administration volume was 1 ml/kg b.w. The vehicles of MnO2 

NPs in the two experiments were not the same, but both were toxicologically inert and could 

be safely applied. PAA is often used in biomedical applications like immunological studies, 

drug delivery, or enzyme immobilization; it is even a potential candidate as vaccine 

component (Topuzogullari et al., 2013). 

For treatment of the rats with arsenic, crystalline NaAsO2 was purchased from Sigma Aldrich, 

Hungary. This inorganic form of As was dissolved in distilled water (8.67 or 4.34 mg/mL to 

obtain 10 or 5 mg/mL As level, respectively) and was administered by gavage (2 mL/kg b.w.). 

Vitamin C (ascorbic acid) in solid crystalline form was purchased from the Central Pharmacy 

of the University of Szeged; while rutin powder (rutin hydrate) and curcumin was bought 

from Sigma Aldrich, Hungary. The green tea used was a commercially available kind 

(Chunmee China Green Tea 9366, non-fermented, Fujian Tea Import & Export Company Ltd, 

China). 

For administration to the rats, antioxidants were formulated in different ways in the 

experiments. In Experiment 1, the antioxidants were given by gavage once a day for 1 week; 

ascorbic acid was dissolved in distilled water while rutin and curcumin were dissolved in 

sunflower oil. The dose of each antioxidant was 100 mg/kg, given in 1 ml/kg b.w volume. In 

Experiments 2 and 3, antioxidants were administered via drinking water for 6 weeks. This 
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way, a more natural route of administration was attempted, and use of oil as vehicle, requiring 

a vehicle control group, was avoided. For dissolving vitamin C (to 1 g/L [Exp. 2] and 2g/L 

[Exp. 3] in drinking water) tapwater was boiled and cooled to room temperature to eliminate 

dissolved chlorine and oxygen. The pH was set to 7.5 by adding NaHCO3 (in 540 [Exp. 2] or 

1080 [Exp. 3] mg/L amount) to diminish breakdown of ascorbic acid (which is strongly pH-

dependent with ca. 10 times faster decay at around pH 5 than at physiological pH: Golubitskii 

et al., 2007). In Experiment 3, for complete dissolution of rutin, the powdered substance was 

added to the prepared tapwater (1 g/L) under moderate stirring, then NaHCO3 was added until 

pH9.8 where the suspended rutin particles completely dissolved leaving a clear solution. 

Finally 20% acetic acid (food grade) was added to bring back pH to 7.8 where rutin remained 

in solution and pH value was not far from neutral. Tea polyphenols, as antioxidants, were 

used in Experiments 2 and 3, administered via drinking water. Green tea infusion was 

prepared by brewing 2.5 g tea leaves in 500 ml boiled tapwater. After 10 minutes, the infusion 

was filtered and was cooled to room temperature. 

The ways of administration used in the experiments were oral (by gavage or via drinking 

water) and intratracheal (it.). For gavage, a slightly bent thin, polished glass tube was attached 

to a 1 ml syringe. The rats were held firmly by the neck skin under the ears, and the tube was 

lowered to the stomach as soon as possible without damage of the throat and oesophagus. Due 

to the low level of discomfort caused to the rats, treatment by gavage needed no anesthesia. 

For it. instillation – imitating inhalation of workplace metal fumes, the tyipcal way of NP 

exposure – rats needed a short anesthesia with diethyl ether, achieved in a glass jar with air-

tight lid, saturated with ether vapor. The completely anesthetized rat was suspended on a 

board tilted to 60º from horizontal, by hanging its upper incisors in a wire loop. Keeping this 

way the rat in place and its mouth open, the trachea was illuminated transdermally by means 

of a fibre optic light guide through the animal’s neck. The tongue was pulled forward with a 

pair of non-traumatic forceps, and a custom-made laryngoscope was used to gain access to the 

glottis. The nanoparticle suspension was instilled into the trachea by means of a 1 ml syringe 

and 1.2 mm diameter plastic tubing, inserted between the vocal chords. Before taking up the 

materials, an equal quantity of air was drawn into the syringe and was pushed out after the 

suspension to assure that the whole amount was emptied from the syringe and tube and 

delivered into the trachea (Oka et al., 2006). Treatment was performed under an exhaust hood 

to remove ether vapors. 



 

 

17 

2.2. Experiments 

 

Experiment 1: Subacute intratracheal nano-manganese treatment followed by 1-week 

antioxidant administration  

During the experiment, 4 mg/kg b.w. MnO2 was administered by intratracheal instillation. 

Instillation was done once a day, 5 days a week for 4 weeks. Then, an open field (OF) test 

was done, and one of three antioxidants – vitamin C (ascorbic acid), curcumin, and rutin – 

was administered orally by gavage for further 1 week to see if they can influence, or 

counteract, the effects of MnO2 NPs (groups Mn [without antioxidant], MnC, MnK, MnR; see 

Table 2). After the 5th week, another OF test was done to see the effect of antioxidants.  

 

Table 2 Description of Experiment 1 

Body weight at start  210-230 g 

Duration 4 weeks of treatment 
with MnO2 (or vehicle) 

+ 1 week of treatment with 
antioxidants  (or vehicle) 

Substance, dose, application Groups and group codes 
Week 1-4 Week 5 

Con Untreated control 
- - 

VCon  Vehicle control  PAA, 1 ml/kg b. w., it. - 

OCon  Vehicle control, oil  PAA, 1 ml/kg b. w., it. Sunflower oil, 1 ml/kg b. w., po. 
by gavage 

VitC Ascorbic acid PAA, 1 ml/kg b. w., it. Ascorbic acid, 100 mg/kg b.w.  
per os by gavage 

Kur Curcumin PAA, 1 ml/kg b. w., it. Curcumin, 100 mg/kg b.w.,  po. 
by gavage 

Rut Rutin PAA, 1 ml/kg b. w., it. Rutin, 100 mg/kg b.w., po. by 
gavage 

Mn Manganese 
nanoparticles 

MnO2, 4 mg/kg b.w. in  
PAA, it. - 

MnC 
Manganese 

nanoparticles 
+ ascorbic acid 

MnO2, 4 mg/kg b.w. in  
PAA, it. 

Ascorbic acid, 100 mg/kg b.w.  
po. by gavage 

MnK 
Manganese 

nanoparticles 
+ curcumin 

MnO2, 4 mg/kg b.w. in  
PAA, it. 

Curcumin, 100 mg/kg b.w., po. 
by gavage 

MnR 
Manganese 

nanoparticles 
+ rutin 

MnO2, 4 mg/kg b.w. in  
PAA, it. 

Rutin, 100 mg/kg b.w., po. by 
gavage 

Investigations 
 Continuous: Body weight measurement 
 End of 4th and 5th week: open field test 

 Final: Body weight measurement, electrophysiological recording 
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Control group consumed clear tap water (with 30 g/L manganese content as stated by the 

municipal waterworks) for 5 weeks (Con). For vehicle control groups and parallel antioxidant 

control groups, see Table 2. Treated groups consisted of 8 animals at start while in the control 

group there were 6 rats. Body weight change was measured daily during the whole 

experiment. After the whole administration period, electrophysiological investigations were 

done and organ weights of the animals were measured. 

 

Experiment 2: Subchronic oral arsenic treatment combined with antioxidants 

The scheme of the experiment is seen in Table 3. There were 8 groups of rats with 10 animals 

each at start and the treatment period lasted 6 weeks. Arsenic was given to the rats by gavage, 

to model drinking water borne exposure; and a more realistic way of antioxidant treatment, 

via drinking water, mimicking human uptake from foods and drinks, was used. So in this 

experiment all the animals were treated simultaneously per os by gavage and via drinking 

water to see the continuous counterbalancing effect of antioxidants to the effect of As. 

 

Table 3 Description of Experiment 2 

Body weight at start 200-220 g 

Duration 6 weeks of simultaneous treatment with NaAsO2 (or vehicle) 
and antioxidants (or vehicle) 

Substance, dose, application Group codes and 
group name Po. by gavage Via drinking water 

Con Control Distilled water Tapwater 

VitC Ascorbic acid Distilled water Ascorbic acid, 1000 mg/L  

Tea Green tea Distilled water Green tea, 2.5 g tea leaves 
brewed in 500 ml water 

AsL Low dose arsenic NaAsO2,  
5 mg/kg b.w. Tapwater 

AsH High dose arsenic NaAsO2,  
10 mg/kg b.w. Tapwater 

AsLC Low dose arsenic 
+ ascorbic acid 

NaAsO2,  
5 mg/kg b.w. 

Ascorbic acid, 1000 mg/L  
 

AsHC High dose arsenic  
+ ascorbic acid 

NaAsO2,  
10 mg/kg b.w. 

 

Ascorbic acid, 1000 mg/L  
 

AsHT High dose arsenic 
+ green tea 

NaAsO2,  
10 mg/kg b.w. 

 

Green tea, 2.5 g tea leaves 
brewed in 500 ml water  

 

Investigations 

 Continuous: Body weight, food and water consumption 
 Final: Open field test, electrophysiological recording, organ 

weight and tissue As level measurements, measurement of 
oxidative stress indicators 
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Ascorbic acid solution and green tea brew were given via the drinking fluid (groups VitC and 

Tea); these rats were gavaged with distilled water concurrently. Control rats (Con) received 

plain tapwater for drinking (with 7 µg/L arsenic content as stated by the municipal 

waterworks) and distilled water by gavage. 10 mg/kg b.w. (AsH) and 5 mg/kg b.w. (AsL) 

NaAsO2 was given once a day for 5 days a week. In groups AsLC, AsHC and AsHT arsenic 

treatment was combined with administration of the antioxidants. The rats received fresh 

antioxidant solution every two days (measurements showed that antioxidant activity was not 

lost during this period). 

 

Experiment 3: Subchronic per os arsenic and intratracheal manganese treatment combined 

with antioxidants 

In this experiment per os arsenic (As) and intratracheal manganese (Mn) treatment were both 

used, combined with antioxidants (ascorbic acid [AsC, MnC], green tea [AsT, MnT] and rutin 

[AsR, MnR]) administered via drinking water simultaneously. In this experiment, only those 

antioxidants were included which were proven effective in the previous experiments (see 

Results, 3.1. and 3.2.). There were 11 groups of rats with 6 (control groups: VitC, Tea, Rutin) 

or 10 (treated groups) animals each at start. The treatment period lasted for 6 weeks. Open 

field test was carried out before and after the treatment period. All along the administration 

period body weight and food/water consumption was measured daily. Electrophysiological 

investigation was done after the treatment period. Finally organ weights, tissue arsenic levels 

and oxidative stress indicators were measured. The treatment scheme is given in Table 4. 

 

2.3. General toxicological investigations 

 

Observations during the treatment period: The rats’ body weight was registered, as well as 

their general health state observed, daily in all experiments. Food and water consumption 

were also measured in Experiment 2 and 3. Body weight data were used to determine the 

daily dose of directly (gavage or instillation, see above) administered substances for each rat, 

and to graphically demonstrate the effects on weight gain. Drinking fluid consumption was 

measured during the experiment to calculate the antioxidant intake. Besides, any signs of 

toxicity (e.g. rough fur, hunched back, unusual aggressive behavior) were observed and noted. 

Final observations: After all behavioral and electrophysiological recordings (see below) had 

been done, the rats were sacrificed by an overdose of urethane, and were dissected. The 

animals were transcardially perfused with 500 ml PBS to remove blood from the organs.  
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Table 4 Description of Experiment 3 

Body weight at start 200-220 g 

Duration 6 weeks simultaneous treatment with NaAsO2 or MnO2 and 
antioxidants 

Group 
codes Substance(s) Dose Application 

VitC Ascorbic acid 2000 mg/L in drinking w. Via drinking water 

Tea Green tea 2.5 g tea in 500 ml drinking w. Via drinking water 

Rutin Rutin 1000 mg/L in drinking w. Via drinking water 

As Arsenic 10 mg/kg b.w. NaAsO2 in distilled w. Per os by gavage 

AsC 
Arsenic 

+ 
ascorbic acid 

10 mg/kg b.w. NaAsO2 in distilled w. 
+ 

2000 mg/L in drinking w. 

Per os by gavage 
+ 

Via drinking water 

AsT 
Arsenic 

+ 
green tea 

10 mg/kg b.w. NaAsO2 in distilled w. 
+ 

2.5 g tea in 500 ml drinking w. 

Per os by gavage 
+ 

Via drinking water 

AsR 
Arsenic 

+ 
rutin 

10 mg/kg b.w. NaAsO2 in distilled w. 
+ 

1000 mg/L in drinking w. 

Per os by gavage 
+ 

Via drinking water 

Mn Manganese 
nanoparticles 4 mg/kg b.w. in viscous m.  Instilled it. 

MnC 

Manganese 
nanoparticles 

+ 
ascorbic acid 

4 mg/kg b.w. in viscous m.  
+ 

2000 mg/L in drinking w. 

Instilled it. 
+ 

Via drinking water 

MnT 

Manganese 
nanoparticles 

+ 
green tea 

4 mg/kg b.w. in viscous m.  
+ 

2.5 g tea in 500 ml drinking w. 

Instilled it. 
+ 

Via drinking water 

MnR 

Manganese 
nanoparticles 

+ 
rutin 

4 mg/kg b.w. in viscous m.  
+ 

1000 mg/L in drinking w. 

Instilled it. 
+ 

Via drinking water 

Investigations 

 Continuous: Body weight, food and water consumption 
 Before and after the treatment period: Open field test 

 Final: Open field test, electrophysiological recording, organ 
weight and tissue As level measurements, measurement of oxidative 

stress indicators  
 

Organs were removed and weighed, and the relative organ weight (a generally used indicator 

of toxicity) of the brain, liver, lungs, heart, kidneys, spleen, thymus and adrenal glands was 

calculated, related to 1/100 of body weight or to the brain weight. Due to the effect of the 

treatments on body weight, brain-based relative organ weights were mostly the more reliable 
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(in accordance with Schärer, 1977). During dissection, abnormalities were searched for and 

noted. 

 

2.4. Chemical and biochemical measurements 

 

For metal level determination and biochemical measurements, tissue samples were taken from 

only 3 randomly chosen rats per group, due to financial issues. Whole brain, as well as liver, 

kidneys, and 2-3 ml of red blood cells (RBCs, separated from the freshly drawn heparinised 

blood by centrifugation) were shock-frozen in liquid nitrogen, and stored at -20°C. 

To determine heavy metal concentration, the blood and tissue samples were dried at 80°C to 

constant weight, and were digested in 65% HNO3 at 90°C for 90 min (4 mL acid per gram 

wet tissue), and the digested matter was diluted as needed with distilled water. Measurement 

was done by inductively coupled plasma mass spectrometry (Pröfrock and Prange, 2012) at 

the Department of Inorganic and Analytical Chemistry, University of Szeged Faculty of 

Science and Informatics. In Experiment 2, As level was determined from cerebral cortex, 

RBCs, liver and kidneys in groups Con, AsH, AsHC and AsHT. In Experiment 3, As and Mn 

level measurement was done from the same animals taken form control (that is, receiving an 

antioxidant only) and metal-treated groups. 

Biochemical measurements were done at the Department of Biochemistry and Molecular 

Biology, University of Szeged Faculty of Science and Informatics. The indicators of oxidative 

stress were determined from cerebral cortex and RBCs, from the same samples as metal level 

were, in Experiment 2 and 3. 

Protein content (for calculation basis) was measured – after haemolysing of the RBCs, 

homogenizing the brain samples, and diluting them as appropriate – by the method of Lowry 

et al. (1951). The primary oxidative insult was assessed by measuring the ROS hydrogen 

peroxide (H2O2; method by Villegas and Gilliland, 1998) and RNS peroxynitrite anion 

(ONOO–; method by Huie and Padmaja, 1993). The level of thiobarbituric acid-reactive 

substances (TBARS) is regarded as an appropriate indicator of lipid peroxidation caused by 

toxic metals (Nogueira et al., 2003). The TBARS assay used was published by Serbinova et al. 

(1992). 

The antioxidant power of the drinking fluids was determined by their ferric reducing capacity, 

using the modified method of Kampfenkel et al. (1995), based on deteection of Fe2+ ions by 

α,α’-dipyridyl. For calibration, a series of L-ascorbic acid solutions was used, and the 

antioxidant power was expressed in ascorbic acid equivalents.
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2.5. Behavioral investigation: open field test 

 

The rats’ spontaneous motility was tested in an open field (OF) apparatus (Conducta 1.3 

System; Experimetria Ltd., Budapest). This is a standard method to test spontaneous, 

exploratory motor activity in experimental animals and its changes upon action of exogenous 

chemicals (Pryor et al. 1983), also included in the OECD guideline for neurotoxicity testing 

(OECD, 2004). The OF test was usually done on the day following the last treatment (in 

Experiment 1, also one week before the end of treatment period). 

After 20-30 min adaptation in the test room, the animals were put into the centre of the box 

one by one for a 10 min session. This box was 48x48x40 cm size, equipped with two arrays of 

infrared beam gates at floor level and at 12 cm height. From the beam interruptions, event 

counts and summed time of the basic activity forms (ambulation, local activity, rearing, 

immobility), as well as run length of ambulation, were computed using the following criteria: 

more than 40 mm shift in the location of interrupted beams at the floor level (i.e., the location 

of the animal) during a time unit of 1 s was interpreted as horizontal activity; less shift, as 

local activity; and no shift at all, as immobility. Rearing was recorded if beams at floor level 

and at the higher level were interrupted simultaneously. This test protocol has been 

successfully used in the investigation of heavy metal effects on the rats’ motor behavior 

(Vezér et al., 2007). It was also calculated how much of the total session time the rats spent in 

the corner, side and central zones of the OF box (the whole box area was divided to 9 equal 

quadratic subfields; the 4 subfields with contact to two adjacent walls were defined as “corner 

zones”, the 4 with one wall contact as “side zones” and the remaining one was the “central 

zone”). 

 

2.6. Electrophysiological investigation 

 

2.6.1. Preparation 

The electrophysiological measurement was done on the day following the last open field test. 

The rats were anesthetized by intraperitoneal injection of 1000 mg/kg b.w. urethane (Maggi 

and Meli, 1986). The efficiency of the anesthesia was checked by toe pinching; if there was 

no movement, the animal was ready for surgery. 

The head was fixed in a holder frame, the skin on the skull was opened by a mid-sagittal cut, 

and the muscles and connective tissues adhering to the top face of the skull were removed. 
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Finally the left hemisphere was exposed by removing the temporal bone along the inner 

circumference by means of a mini drill. Wounds were sprayed with 10 % lidocaine and the 

exposed cortex was covered with a thin layer of petroleum jelly. The animals were wrapped in 

a warm cloth to maintain body temperature. After at least 30 min recovery, the rat was placed 

into the stereotaxic frame of the electrophysiological apparatus. During the measurement, the 

animals’ body temperature was stabilized by a thermostated (+36.5oC) base plate. 

Ball-tipped silver recording electrodes were positioned on the dura over the primary 

somatosensory (SS) projection area of the whisker pad (barrel field), and over the primary 

visual (VIS) and auditory (AUD) area. These regions were determined on the base of a 

somatotopic map (Zilles, 1984). A stainless steel clip was attached to the cut skin edge as an 

indifferent electrode. SS stimulation was done by a pair of needles inserted into the 

contralateral whiskery part of the nasal skin, delivering square electric pulses. VIS stimulation 

was performed by flashes from a high-luminance white LED, positioned to the contralateral 

eye of the rat. For acoustic stimulation, sound clicks were applied into the ear of the rat 

through the hollow ear bar of the stereotaxic frame. 

To record compound action potential of the tail nerve, a pair of stimulating needle electrodes 

was inserted at the base of tail (delivering similar electric stimuli as used to stimulate the 

whiskers), and the compound action potentials were recorded distally by another pair of 

needles at a distance of 50 mm. 

 

2.6.2. Recording and evaluation 

The recording sequence started with six minutes recording of spontaneous activity 

(electrocorticogram, ECoG) from the three sensory cortical areas. From the ECoG records, the 

relative spectral power by frequency bands: delta, 0.5-4 Hz; theta, 4-7 Hz; alpha, 8-13 Hz; 

beta1, 13-20 Hz; beta2, 20-30 Hz; gamma, 30-50 Hz (Kandel and Schwartz, 1985) was 

determined by the software used. To describe the basal activity of the cortex with a single 

value, ECoG-index was calculated (Dési and Nagymajtényi, 1999) which is the power ratio of 

the slow and the fast waves (ECoG index = [delta + theta] / [beta1 + beta2]). 

Evoked potentials (EPs) were recorded from the same cortical areas via the same surface 

electrodes. All stimuli were set and applied as of just supramaximal strength (meaning that, 

e.g., the stimulus voltage was increased until the evoked response reached maximal amplitude 

and ca. 5% was added) and well above background. Electrical stimulation of the whiskers 

(and the base of tail, see below) was done by delivering rectangular electric stimuli (3-4 V, 

0.05 ms). The intensity of the visual stimulation was ca. 60 lux, and that of the auditory 
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stimuli, 40 dB. Trains of 50 stimuli were applied in all three sensory modalities (SS, VIS, 

AUD) and the EPs were recorded. The frequency of stimulation was 1 Hz in all modalities, 

plus 2 and 10 Hz for SS stimulation in order to observe frequency-dependent changes. 

For compound action potentials (CAP) of the tail nerve, 10 single stimuli were applied first at 

1 Hz rate to determine action potential latency, and at higher rates to see the frequency 

dependence of the latency and amplitude. Then, double stimuli with different inter-stimulus 

intervals were given, for refractory period calculation (see below). 

The complete recording and evaluation was done by the software NEUROSYS 1.11 

(Experimetria Ltd, Hungary). The cortical responses and tail nerve action potential were 

averaged automatically, and latency and duration of the responses was measured manually by 

means of screen cursors of the software. 

 

 

On the somatosensory EP, onset latency was measured between the stimulus artefact (0 in 

Fig.1A) and onset of the first peak (A in Fig.1A). Duration of the EP was calculated as the 

difference of the 0-D and 0-A times. In case of the visual and auditory EPs, onset latency and 

duration was measured the same way. The tail nerve CAP had also a biphasic shape. There, 

onset latency was defined as shown in Fig. 1B. Tail nerve conduction velocity was calculated 

from the onset latency and the distance of electrodes. From double-pulse records (Fig. 1C), 

relative and absolute refractory periods were determined, based on the relationship of the 

 A    B     C 

0

A

B

C

D

10 ms

2 mV

5 m s

3 m V

  
Figure 1. Typical records of evoked electrical responses and explanation of the measurements. A, 

somatosensory evoked potential with the specific measuring points – onset latency was measured 
between the point marked 0 and A. B, compound action potential of the tail nerve – onset latency 
was measured between the arrow-marked point and the stimulus artefact, and the 
amplitude, peak-to-peak. C, for determining the refractory period, onset latencies of the 
double action potential were measured between the stimulus onset (arrow) and the points 
marked L1 and L2. 
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latency of the second and first action potential (ratio of L2/L1 in Fig. 1C; Dési and 

Nagymajtényi, 1999). 

 

2.7. Statistical analysis of the data 

 

The distribution of data was checked for normality by means of the Kolmogorov-Smirnov test. 

Analysis was done by parametric one-way ANOVA using SPSS 17.0. Post hoc analysis of 

group differences was performed by Scheffe’s test, with probability level at p<0.05. Linear 

correlations between tissue metal levels and neurotoxicological parameters were checked by 

the “linear fit” function of MS Excel. 

 

The procedures used in the experiments were approved by the Ethical Committee for the 

Protection of Animals in Research of the University (licenses No. XXI./02039/001/2006 and 

XXI./151/2013). During the whole procedure, the regulations of the Hungarian Act No. 

XXVIII of year 1998 on protection and care of animals were strictly followed. 

 



 

 

26 

3. RESULTS 

 

3.1. Experiment 1: Manganese and three antioxidants 

 

3.1.1. General toxicity 

Intratracheal instillation of MnO2 NPs reduced body weight gain in the treated groups. 

Regarding that in week 1 to 4 the groups Mn, MnC, MnK and MnR had identical treatment, 

their body weight data for these weeks were lumped up into a grand average (Mn gr.) in Fig. 2. 

By the 4th week, a considerable weight gain deficit developed under the influence on Mn NPs. 

In the 5th week, this was counteracted minimally by ascorbic aid, a bit more strongly by rutin, 

but not at all by curcumin, whereas the same antioxidants alone had no effect on body weight 

(Fig. 2, top panel). The data of weekly body weight gain (Monday to Monday, bottom panel 

in Fig. 2) show the same effects more clearly. 
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Figure 2 Top: Body weight of the control and treated rats in the course of Experiment 1. Bottom: 

Weekly body weight gain data of the same rat groups. See insert for group coding. 
Mean+SD, n=6 (Con) or n=8 (all other groups) 
*, **: p<0.05, 0.01 s. Con; #: p<0.05 vs. VCon; +: p<0.05 vs. the same antioxidant alone. 
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As the final (5th week) body weight was considerably influenced by the treatments, organ 

weights related to brain weight were chosen for evaluation. Most of the measured organ 

weights showed no clear trend (Table 5). In all groups instilled with Mn NPs, lung weight 

increased significantly vs. both Con and VCon, and vs. the corresponding antioxidant-only 

groups. There were significant changes also in the relative weight of the adrenals in the 

combination groups, but there the effect of Mn and the antioxidants could not be clearly 

separated. 

 

Table 5 Relative organ weights in the control and treated rats in Experiment 1 

 Lungs Adrenals 

Con 0.8009±0.2421 0.0396±0.0051 

VCon 1.0103±0.1620 0.0302±0.0038 

OCon 0.9393±0.0869 0.0302±0.0039 

VitC 1.0116±0.2048 0.0350±0.0063 

Kur 0.9676±0.0662 0.0317±0.0067 

Rut 0.9521±0.0839 0.0253±0.0046 

Mn 1.5241±0.2393**°°+++ 0.0313±0.0044 

MnC 1.3187±0.1169***°°## 0.0311±0.0008*°#& 

MnK 1.2437±0.0870**°+++###& 0.0392±0.0064***°°°###&&& 

MnR 1.4703±0.0973***°°°+++### 0.0402±0.0023**°#& 

Mean±SD, n=6 (Con) or n=8 (all other groups) 
*, **. ***: p<0.05, 0.01, 0.001 vs. Con; °, °°, °°°: p<0.05, 0.01, 0.001 vs. VCon; +++: p<0.001 vs. 
OCon; #, ##, ###¨p<0.05, 0.01, 0.001 vs. the corresponding antioxidant-only group; &, &&&: p<0.05, 
0.001 vs. Mn. 
 

3.1.2. Effect on open field behavior 

The relative share of the four basic activity forms (ambulation, local activity, immobility, 

rearing) in the total 10 min time of the OF sessions showed that the antioxidants alone – in the 

5th week – had no effect on OF motility (Fig. 3). In the Mn NP-treated groups, rearing 

decreased significantly in the 4th week while both immobility and local activity increased. 

One week application of the antioxidants (groups MnC, MnK, MnR) resulted in nearly 

complete reversal of Mn effects in case of rutin, but ascorbic acid and curcumin were without 

effect. 
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 It was also noteworthy that in group Mn the changes became more pronounced compared to 

those in the 4th week even if in the 5th week there was no Mn NP application. 

 

The changes from the 4th to the 5th week were quantified by calculating the ratio [5th week:4th 

week] for the OF time data. In all groups without Mn treatment, these ratios indicated the 

typical age-dependent trend of decreasing motility. In group Mn, the decrease of ambulation, 

and especially rearing, was much more pronounced (significant difference, see Fig. 4). The 

same calculation in the groups treated with Mn NPs for 4 weeks and an antioxidant for the 5th 

week verified that rutin abolished the motility-reducing effect of Mn while under ascorbic 

acid and curcumin the trend towards less and less motion went on (Table 6). 

By the zone-based evaluation of OF data (Table 7) it could be shown whether treatment for 4 

weeks with Mn and 1 week with an antioxidant influenced the rats’ preference to the corners 

and dispreference to the center of the OF box. The rats’ tendency to stay in one of the corner 

zones and avoid the central zone, an indicator of decreased motivation to explore, was 

diminished only by rutin. 
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Figure 3 Time share of the OF activity forms in the control and treated rats after the 4th and 5th 

week of Experiment 1. 
*, **: p<0.05, 0.01 vs. VCon; #, ##: p<0.05, 0.01 vs. Mn. 
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Table 6 Ratios of the OF time data in the 4th and 5th week. 

 

Groups  

Ambulation 

time 

Local activity 

time 

Immobility 

time 

Rearing 

time 

Con 0.8882±0.1809 1.1293±0.2364 2.6698±1.0875 0.8968±0.2782 

VitC 0.9349±0.1693 1.1186±0.3768 2.0776±0.8293 0.9361±0.1996 

Cur 0.8258±0.1853 1.1124±0.5044 3.1481±1.1404 1.0016±0.3873 

Rut 0.8548±0.3249 1.4232±0.1811 2.2580±0.7301 0.7903±0.1533 

Mn 0.7742±0.2314 1.2274±0.1819 1.8616±0.2867 0.5709±0.1276 

MnC 0.7613±0.3752 1.1746±0.2145 1.9250±1.9185 0.6690±0.7187 

MnK 0.7898±0.4195 1.2477±0.3242 1.7990±0.8479 0.5306±0.8570 

MnR 1.0896±0.3298 0.8037±0.2976 0.5422±0.2063*# 1.4465±0.4791 

Mean±SD, n=6 (Con) or n=8 (all other groups). 
*: p<0.05 vs. Con; #: p<0.005 vs. Mn. 

 

Table 7 Distribution of the presence time of the rats in the various zones of the OF 
box during the 10 min session. 
Groups  Corner zones Side zones Central zone 

MnC 
4th week 
5th week 

0.5223±0.1167 
0.7307±0.1991 

0.3853±0.0799 
  0.2375±0.0433* 

0.0924±0.1072 
0.0317±0.0252 

MnK 
4th week 
5th week 

0.5908±0.1163 
0.6937±0.1527 

0.3349±0.0324 
0.2764±0.0497 

0.0743±0.0453 
  0.0299±0.0374* 

MnR 
4th week 
5th week 

0.4551±0.0559 
0.3889±0.0461 

0.4663±0.0532 
0.5196±0.0533 

0.0786±0.0202 
  0.0915±0.0491* 

Mean±SD, n=8. 
*: p<0.05 5th week vs. 4th week 

 

 

3.1.3. Electrophysiological effects 

In the spontaneous cortical activity (ECoG), the changes caused by Mn NP exposure were 

similar to those seen in earlier experiments (shift to higher frequencies: Oszlánczi et al., 2010) 

but were slight and below significance. Hence, any additional effect of the antioxidants could 

not be identified. 

There were, however, marked changes in the parameters of the EPs. Latency of the SS EP 

(Fig. 4, top panel) was negligibly influenced by the antioxidants alone. Administration of Mn 

NPs caused significant increase of the latency, which effect was not influenced by curcumin 

but was to a large extent abolished by both ascorbic acid and rutin. Further, the frequency 

dependence of the SS EP was more expressed under the effect of Mn and this change was also 

normalized by the mentioned two antioxidants. 
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The trend of changes in the VIS and AUD responses (Fig. 4, bottom panel) was similar to that 

seen in the SS EPs, but only rutin had significant effect on the Mn-induced lengthening 

(totally nullified in the VIS, but only partially in the AUD, EP). 

The CAPs of the tail nerve also had increased latency in group Mn, indicating decreased nerve 

conduction velocity. A shown in Fig. 5, conduction velocity and relative refractory period had 

an approximately antiparallel trend, and the changes caused by Mn treatment were reversed 

by rutin, partly by curcumin (only the relative refractory period) but not by ascorbic acid. 
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Figure 4 Latency of the somatosensory (top graph) and the visual and auditory (bottom graph) 

evoked potentials. 
Mean+SD, n=6 (Con) or n=8 (all other groups) 
*, **: p<0.05, 0.01 vs. Con; #,##,####: 0.05, 0.01, 0.001 vs. Mn; 
°, °°: p<0.05, 0.01 vs. 1 Hz stimulation in the same group. 
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Figure 5 Tail nerve conduction velocity and relative refractory period. 

Mean+SD, n=6 (Con) or n=8 (all other groups) 
*, **: p<0.05, 0.01 vs. Con 
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Neither tissue metal levels nor parameters of oxidative stress, as a presumed common cause of 

the observed general toxic and neurotoxic effects, were measured in Experiment 1. A 

common background could, all the same, be inferred from the correlations of the measured 

changes. The linear correlation of OF rearing time and SS EP latency (indicating functional 

neurotoxicity) to body weight gain (indicating general toxicity) was not too robust (Fig. 6) but 

supported somewhat the existence of such a background. 
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Figure 6 Correlation diagrams between the individual rats’ body weight gain with somatosensory 

evoked potential latency (top) and open field rearing time (bottom). 
Yellow trend line: groups VCon, VitC, Mn and MnC; green trend line: groups VCon, OCon, 
Rut, Mn and MnR. Outline of the equation boxes is the same color as the corresponding trend 
line. 
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3.2. Experiment 2: Arsenic with ascorbic acid and green tea 

 

3.2.1. General toxicity 

Orally applied inorganic arsenic caused diminished body weight gain. Top panel in Fig. 7 

shows that the mean body weight in groups AsL and AsH was, from the 2nd week on, clearly 

less than in any of the groups without As exposure (Con, VitC, Tea). The difference became 

more and more pronounced, and in the groups with high As dose significant, towards the end 

of the treatment period; this is demonstrated also by the average weekly body weigh gains in 

the bottom panel in Fig. 7. This graph also shows food intake data, and a comparison of the 

two sets of values indicated that the differences in body weight gain were only partly due to 

differences in food intake. 

The relative organ weight data showed no clear effect of As or the antioxidants (not shown). 
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Figure 7 Top: Body weight of the control and treated rats in the course of Experiment 2. Bottom: 

Data of weekly body weight gain and food intake in the same rat groups. See insert for group 
coding. 
Mean+SD, n=10. 
*, **, ***: p<0.05, 0.01, 0.001 vs. Con 
#, ##, ###: p<0.05, 0.01, 0.001 vs. the corresponding antioxidant-only group. 
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3.2.2. Effects on open field behavior 

 

The OF results of Experiment 2 were inconclusive. All observed changes were slight and well 

below significance. Their direction, however, was similar to that observed both in the later 

Experiment 3, and in an earlier behavioral experiment with As exposure (Sárközi et al., 2012). 

Treatment with As increased the time spent by the rats in the OF activity forms indicating 

reduced motility (local activity and immobility) and ascorbic acid and green tea partially 

reversed this change. 

 

3.2.3. Electrophysiological effects 

The band power spectrum of ECoG was not influenced by oral application of arsenic – in 

contrast to what was observed with manganese. 
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Figure 8 Latency of the somatosensory (top graph) and the visual and auditory (bottom graph) 

evoked potentials. 
Mean+SD, n=10. 
*, **, ***: p<0.05, 0.01, 0.001 vs. Con; #, ##, ###: p<0.05, 0.01, 0.001 vs. AsH 
 °, °°, °°°: p<0.05, 0.01, 0.001 vs. 1 Hz stimulation in the same group. 
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The numerical parameters of cortical evoked activity were, however, markedly changed. Fig. 

8 shows the significant lengthening of EP latency of effect of the higher dose of As in all 

three modalities (SS, VIS, AUD) investigated. In group AsL, on the contrary, the change was 

weak, similarly to the body weight effect shown in Fig. 7, and was hence not further analyzed. 

Ascorbic acid and green tea infusion had, on their own, no effect on latency, but significantly 

reduced the lengthening caused by As whereby the ameliorating effect of green tea appeared 

to be higher than that of ascorbic acid. The frequency-dependent latency increase of the SS 

EP was significant only at 10 Hz vs. 1 Hz but this also was increased by As and again 

decreased by the antioxidants. 

The CAPs recorded from the tail nerve indicated decreased conduction velocity in group As 

vs. Con (Fig. 9). Similarly to the cortical EPs, the effect was counteracted by both 

antioxidants, more efficiently by green tea than by ascorbic acid. The frequency dependence 

of the conduction velocity was, unlike with the cortical EPs, not much altered by As and/or 

the antioxidants. 

 

 

3.2.4. Tissue arsenic levels and biochemical indicators of oxidative stress 

Oral application of inorganic As by gavage for 6 weeks corresponded to the total As doses 

given in Table 8 (both Table 8 and Table 9 include those groups only for which the complete 

set of As level determination and biochemical measurement has been made). The amounts of 

As shown resulted in greatly elevated tissue As levels; 4- to 6-fold the control level in RBCs 

and in cortex and liver samples, but ca. 40-fold in the kidneys, the most important site of 

0

5

10

15

20

Con AsH VitC AsHC Tea AsHTGroups

Cond. vel., m/s
1 Hz 20 Hz 50 Hz 100 Hz

**

**
* #

##

**
* #

##
**

#

*

**
*#

#

**
* #

#

 
Figure 9 Tail nerve conduction velocity in the rat groups of Experiment 2. 

Mean+SD, n=10. 
*, **, ***: p<0.05, 0.01, 0.001 vs. Con; #, ##, ###: p<0.05, 0.01, 0.001 vs. VitC. 
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deposition of this element. The only noteworthy effect of the antioxidants on the tissue As 

levels was a marked, but not significant, reduction in the liver. 

 

Table 8 Summed As amounts received by the rats and As levels in the tissue samples. 

Groups  

Con As AsHC AsHT 

Summed external 
As dose, mg/rat --- 89.0±6.2 88.2±5.4 97.3±19.2 

 

RBCs 194.83± 11.04 1325.06± 44.22*** 1338.41± 72.56*** 1299.22± 268.11** 

Cortex 3.92±3.20 29.14± 11.88* 24.22± 4.81* 26.01± 5.99* 

Liver 4.94±3.02 19.84±13.03 23.10±7.59* 12.38±7.29 

Tissue As 
(mg/kg 
dry 
weight) 

Kidneys 10.09±7.64 396.61± 98.45* 467.49± 38.24** 432.97± 32.43** 

Mean±SD, n=10 (external As dose) or n=3 (tissue As levels). 
*, **, ***: p<0.05, 0.01, 0.001 vs. Con. 

 
To achieve comparability, the summed amount of antioxidants given to the rats was 

calculated in activity – ascorbic acid equivalents – instead of milligrams of the corresponding 

substance. The summed volume of fluid consumed by the rats, and the mean of the 

antioxidant activity measured in the ascorbic acid solution and the green tea infusion in fresh 

state and after using them in the watering bottles for 48 hours, were used for the calculation, 

and the results are given in Table 9 (for the not included groups VitC and Tea, the value was 

1044.21±174.04 and 461.5±49.6 mg/rat, respectively). According to these data, rats in group 

AsC consumed more antioxidant activity than those in AsT but the effects of As were 

apparently more strongly reduced in the latter group. 

Table 9 also shows the measured oxidative stress indicators. The increase caused by As in 

lipid peroxidation was more significant than that in H2O2 and ONO2
- (oxidative agents 

induced by As and contributing to lipid peroxidation). Significant reduction of any of these 

parameters from the As-induced elevated level was achieved only by green tea, not by 

ascorbic acid, which was in parallel to the two agents’ effects seen on evoked cortical and 

peripheral nervous activity. 
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Table 9 Summed antioxidant doses and oxidative stress indicators. 

  Groups 

  Con As AsHC AsHT 

Summed dose of 
antioxidant, in 
ascorbic acid 
equivalents, mg/rat 

--- --- 998.52±166.42 444.30±63.47 

RBCs 1.780±0.890 2.057±0.558 1.564±0.591 1.287±0.241# H2O2 
(µmol/m
g protein) Cortex 0.595±0.027 0.656±0.052 0.543±0.065 0.665±0.060 

RBCs 1.645±0.083 2.122±0.287* 2.434±0.565* 1.756±0.354 ONO2
– 

(nmol/mg 
protein) Cortex 1.937±0.136 2.231±0.225 2.231±0.202 2.141±0.088 

RBCs 0.219±0.035 0.298±0.063* 0.318±0.047* 0.230±0.010 TBARS 
(nmol/mg 
protein) Cortex 0.315±0.017 0.350±0.006* 0.360±0.050 0.300±0.015# 

Mean±SD, n=10 (summed antioxidant dose) or n=3 (oxidative stress indicators). 
*: p<0.05 vs. Con; #: p<0.05 vs. As 

 

3.2.5. Correlations of various kinds of data in Experiment 2 

The causal relationships of As, ascorbic acid and green tea infusion to the investigated neuro-

functional and biochemical alterations, suggested by the data presented so far, was further 

tested by means of plotting data pairs of rats in correlation diagrams. The R2 values 

(determination coefficients) belonging to the fitted lines in the correlation plots shown in Fig. 

10 were rather low, but this was, at least partly, due to the low number of data pairs the reason 

for which was given in Materials and Methods. 

However, even these weak correlations were found significant by the F-test included in the 

“linear fit” function of MS Excel used for these correlation plots, so that the above mentioned 

relationships were confirmed indeed. 
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Figure 10 Correlation diagrams of data on electrophysiological (A, evoked potential latency; B, 

nerve conduction velocity) and biochemical (C, lipid peroxidation in the cortex) effects of As 
exposure and cortical As levels. 
*: p<0.05 for the correlation. 
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3.3. Experiment 3: Involving both metals and the three antioxidants 

 

3.3.1. General toxicity 

The effect of orally applied As on body weight developed gradually, similarly to what was 

seen in Experiment 2. Significant weight deficit appeared by the end of the 3rd week (Fig. 11, 

top panel). Each applied antioxidant apparently diminished the body weight deficit, with rutin 

showing the best effect. The data of weekly body weight gain (Fig. 11, bottom panel) were 

more scattered but indicated the body weight effect of As application earlier, while the line 

graphs in the same panel showed that the body weight effect may have resulted partly from 

reduced food intake (just as in Experiment 2) because from the 4th week on the values for 

groups receiving or not receiving As were clearly separated. 
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Figure 11 Top: Body weight of the control and As-treated rats in the course of Experiment 3. 

Bottom: Data of weekly body weight gain (bars) and food intake (line) in the same rat groups. 
See insert for group coding. Mean+SD, n=9. 
C, R: significant difference (p<0.05) of the marked bar’s value vs. group VitC or Rut, 
respectively. 
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The body weight effect of intratracheally applied nano-Mn was massively present from early 

on in the course of exposure (Fig. 12, top panel). The cause could be partly the application 

procedure itself (see Methods 2.1.) similarly to the data of group VCon in Experiment 1 – first 

of all the drop of food intake from the 1st to 2nd week (Fig 12, bottom panel) could have 

resulted from that. Later on, food intake was partly normalized (but remained clearly below 

that of Mn-free groups) the body weight deficit, however, did not vanish and was not 

influenced by co-administration of any of the antioxidants. 

 

 

Of all organ weights, that of the adrenals (relative weight to brain weight) was increased by 

both metals. To facilitate the detection of significant changes, a “Control grand average” (Con 

gr.) was obtained from the organ weight data of the groups VitC, Tea and Rut (which received 

only an antioxidant). This calculation, similar to Mn gr. in Experiment 1, was possible 
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Figure 12 Top: Body weight of the control and Mn-treated rats in the course of Experiment 3. 

Bottom: Data of weekly body weight gain (bars) and food intake (line) in the same rat groups. 
See insert for group coding. 
Mean+SD, n=9. 
C, T, R: significant difference (p<0.05) of the marked bar’s value vs. group VitC, Tea or Rut, 
respectively. 
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because it was seen in the outcomes of Experiment 1 and 2 that none of the antioxidants, 

given alone, had any noteworthy effect on body and organ weights. For As, the increase vs 

Con gr. was significant and so was the counter effect of rutin (Con gr.: 0.0310±0.0068, As: 

0.0408±0.0031, AsR: 0.0295±0.0037, p<0.05 for both). Similar changes were found also with 

Mn (Con gr.: 0.0310±0.0068, Mn: 0.0362±0.0028, MnR: 0.0334±0.0027, p<0.05 for both). 

The Mn-caused decrease of relative weight of the liver (Con gr.: 7.206±1.403, Mn: 

5.927±1.051, p<0.05) was only slightly reversed by any of the antioxidants. 

 

3.3.2. Effects on open field behavior 

Both metals had some significant effects on open field behavior. The effect of As (Fig. 13, top 

panel) was seen mostly as increased local activity and immobility, and decreased rearing. 

These changes were much more clear-cut than in Experiment 2, and were in their majority 

significant. Mn-treatment (Fig. 13, bottom panel) caused decreased ambulation while local 

activity and immobility increased. Most of these effects were also significant, but were partly 

at variance with Experiment 1 where rearing was more affected than ambulation. 
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Figure 13 Time share of the OF activity forms in the rat groups of Experiment 3 treated with 

antioxidants and As (top) and antioxidants and Mn (bottom). 
Co, C, T, R, Mn: significant difference (p<0.05) vs. group Con gr., VitC, Tea, Rut or Mn, 
respectively. 2Mn: p<0.01. 
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Green tea had no major influence on the OF effect of either As or Mn. In case of As, only 

rutin had a significant counter effect, while in case of Mn ascorbic acid reversed the OF time 

values approximately to those of group VitC, and rutin increased ambulation but did not 

significantly change the other activity forms (MnR vs. Mn).  

To see the changes caused by the various treatments more clearly, the ratio of identical OF 

parameters before and at the end of treatment (that is, in the 6th and 0th week) was calculated. 

In group As, the 6th/0th week ratio of ambulation distance was significantly lower (i.e., 

indicated more marked decrease) than in Con gr. or Tea (As: 0.6008±0.1111, Tea: 

0.7733±0.0855, Con gr.: 0.7473±0.1207, p<0.05 for both); and the overall speed of 

ambulance – summed distance covered divided by summed ambulation time – behaved 

similarly (As: 0.8172±0.1133, VitC: 0.9126±0.0587, Con gr.: 0.9291±0.1762, p<0.05 for 

both). In the combinations, ascorbic acid partly reversed the effect of As and Mn (values in 

AsC and MnC were between those of the corresponding metal-only groups and VitC, not 

differing significantly from either. 

 

3.3.3. Electrophysiological effects 

The ECoG band spectrum was not altered by As, in agreement with the findings in 

Experiment 2. Mn administration caused a moderate shift in the ECoG to higher frequencies.  

Fig. 14 (top panel) shows the spectrum of ECoG in various treatment groups from the SS area. 

Here and also in the two other recorded areas (VIS and AUD) decrease of slow activity in 

group Mn was observed which was abolished more strongly by green tea than by rutin but not 

at all by ascorbic acid. The ECoG index (Fig. 14 bottom panel) changed accordingly. 

The latency of the cortical EPs was strongly lengthened by both metals. The SS EP in arsenic-

treated rats (group As in Fig. 15, top panel) had significantly increased latency at every 

stimulation frequency, vs. each antioxidant-only group (VitC, Tea, Rut), and the frequency-

dependent extra lengthening was also more pronounced. 

On the VIS and AUD EP (Fig. 15, bottom panel) As-induced latency lengthening was almost 

completely reduced by rutin and green tea but only partly by ascorbic acid. The effects seen 

on the duration of the EPs were similar but less clear-cut and were therefore not further 

analyzed. 
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Figure 15 Latency of the somatosensory (top graph) and the visual and auditory (bottom graph) 

evoked potentials in rat groups treated with As and the antioxidants. Mean+SD, n=9. 
Significant inter-group differences marked as in Fig. 12 and 13; 2 and 3 marks mean p<0.01 
and p<0.001. For the SS EPs, significant frequency-dependent differences  marked as in Fig. 4. 
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Figure 14 Top: Band spectrum of somatosensory cortical activity (ECoG) in the groups treated 

with antioxidants and Mn. Bottom: ECoG index of the same groups. Significance marking as 
in Fig. 12 and 13. 
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Each antioxidant could significantly diminish the As-caused increase of SS EP latency but the 

effect of rutin was the most profound: the latency difference in AsR vs. Rut was not significant 

while by green tea and ascorbic acid latency was brought to a level between that in group As 

and the corresponding antioxidant-only group (i.e, the effect of As was only partially 

abolished). 

The effect of Mn on the latency of SS EP was nearly as strong as that of As, but the 

frequency-dependent lengthening did not become more significant (Fig. 16, top panel). The 

Mn-induced latency increase was significantly reduced by green tea and rutin while ascorbic 

acid had only a partial effect (shown by the lack of significance both vs. As and vs. VitC). 

The EP latency in the two other modalities (Fig. 16, bottom panel) was more strongly 

lengthened by Mn than by As. The counter effect of ascorbic acid was moderate (significant 

only on the AUD EP), that of rutin was more pronounced, and of green tea, nearly complete 

(VIS EP) or ca. as strong as with rutin (AUD EP). 

 

 

6

7

8

9

10

VitC Tea Rut Mn MnC MnT MnR
Groups

SS EP lat., ms 1 Hz
2 Hz
10 Hz

°°°°°
C
2T 
R

2C 
2T 
2R

2C 
2T 
2R

°°

°°°

3Mn

3Mn
3Mn

°°°

Mn
Mn

°°

0

10

20

30

40

50

60

70

C.vit Tea Rutin Mn MnC MnT MnR
Groups

EP lat., ms VIS
AUD

3C 
3T 
3R

3C 
3T 
3R C 

2C  
Mn

2T  
2Mn

2R  
2Mn

R
3Mn3Mn

 
Figure 16 Latency of the somatosensory (top graph) and the visual and auditory (bottom graph) 

evoked potentials in rat groups treated with Mn and the antioxidants. 
Mean+SD, n=9. 
Significance marking as in Fig. 15. 
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Conduction velocity of the tail nerve was significantly reduced both by As and by Mn (Fig. 

17) but the effect of As was somewhat stronger. Rutin normalized this significantly in case of 

both metals, and green tea in case of Mn, while the effect of ascorbic acid was weak. All the 

same, the velocity values in all groups treated with a metal and an antioxidant were 

significantly lower than in the corresponding antioxidant-only group which meant that even 

the best counter effect of any antioxidant was only partial. The relative refractory period was 

substantially increased by As and this effect was significantly reduced by the antioxidants. In 

case of Mn, both the metal effect and the counter effects were less clear. 

 

3.3.4. Tissue metal levels and biochemical indicators of oxidative stress 

Both orally applied water soluble As and it. applied nanoparticulate Mn caused massive 

internal load in the treated rats’ organs (Table 10). As level increase was highest in the 

kidneys. The table also shows the calculated total amount of As or Mn (i.e., the external load) 

the rats received during the 6 weeks of exposure. The antioxidants had some lowering effect 

on internal As doses but no such effect (or even an opposite effect) was seen with Mn.  
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Figure 17 Tail nerve conduction velocity and relative refractory period in the groups treated with 

As and the antioxidants (top) and Mn and the antioxidans (bottom) 
Mean+Sd, n=9. 
Significance marking as in Fig. 15. 
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Table 10 Summed metal doses and tissue metal levels in Experiment 3.  
 
 
  Treatment groups 

Arsenic treatment  Con gr. As AsC AsT AsR 

Summed external As dose, mg/rat --- 92.08±16.77 95.84±17.45 94.11±17.33 99.04±18.60 

       

Tissue As (mg/kg dry 

weight) 

RBCs 
14.420± 1.3432 1565.12± 53.42*** 1488.16± 15.87*** 1429.49±15.72*** 1385.85±99.52***# 

 Cortex 1.0539±0.699 71.767±17.716* 43.825±6.966**# 50.725±21.526*# 29.561±9.149***### 

 Liver 1.4389±1.179 27.992±5.868** 22.299±16.880* 12.588±2.887**# 9.493±3.093*### 

 Kidney 6.2076±3.6143 388.945±62.458 416.927±38.298 405.372±114.206*** 390.643±54.041*** 

       

Manganese treatment  Con gr. Mn MnC MnT MnR 

Summed external Mn dose, mg/rat --- 36.12±6.61 34.95±6.54 35.51±6.76 35.00±6.37 

       

Tissue Mn (mg/kg dry 

weight) 

RBCs 
0.8007±0.1045 1.3653±0.2089 1.7114±0.6293 1.5316±0.3979 1.3295±0.1201 

 Cortex 20.935±6.962 46.403±2.386** 44.614±6.962** 54.040±2.565***## 51.802±3.004**# 

 Liver 7.934±0.514 10.266±0.505* 9.268±0.592* 10.672±1.884 10.227±1.377* 

Mean+SD, n=3 
*, **, ***: p<0.05, 0.01, 0.001 vs. Con gr. 
#, ##, ###: p<0.05, 0.01, 0.001 any combination group vs. the corresponding metal-only group (As or Mn) 
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Table 11 Summed antioxidant doses and biochemical indicators of oxidative stress. 
  Treatment groups 
Arsenic 
treatment 

 VitC Tea Rut As AsC AsT AsR 

Summed antioxidant dose, 
mg vitamin C eq./rat 

1756.13±319.46 997.14±376.93 1005.40±256.40 --- 1165.29±476.48 769.20±311.25 986.49±387.60 

         
RBCs 1.7330±0.3781 1.9313±0.2241 1.7789±0.4501 1.5928±0.2862 1.4404±0.0610 1.7375±0.3468 1.7697±0.2658 H2O2 (µmol/mg 

protein) Cortex 0.5755±0.0696 0.5941±0.05783 0.5891±0.0620 0.5549±0.0732 0.6002±0.0702 0.5495±0.0437 0.6541±0.0525 
         

RBCs 2.467±1.290 1.250±0.2241 1.406±0.2756 2.5438±0.7714 3.8058±0.4214 2.6513±0.8727 2.1744±0.3560 ONO2
– 

(nmol/mg 
protein) 

Cortex 2.0428±1.5625 1.9472±0.3425 1.9406±0.2984* 2.4442±0.1253 2.1575±0.2587 2.6188±0.2165 2.0746±0.3123# 

         
RBCs 0.2346±0.0423 0.2635±0.0356 0.2182±0.0501* 0.2809±0.0728 0.2895±0.0173 0.2144±0.0229# 0.2148±0.0573# TBARS 

(nmol/mg 
protein) 

Cortex 0.4021±0.0396 0.3380±0.0413 0.2994±0.0348 0.3437±0.0374 0.3612±0.0410 0.3367±0.0296 0.2853±0.0323# 

         
Manganese 
treatment 

 VitC Tea Rut Mn MnC MnT MnR 

Summed  antioxidant 
dose, mg vitamin C eq./rat 

1756.13±319.46 997.14±376.93 1005.40±256.40 --- 1025.27±329.49 721.11±207.36 741.43±179.64 

         
RBCs 1.7330±0.3781 1.9313±0.2241 1.7789±0.4501 1.6611±0.2100 1.7375±0.1118 1.8052±0.0909 2.7302±0.0710 H2O2 (µmol/mg 

protein) Cortex 0.5755±0.0696 0.5941±0.0452 0.5891±0.0621 0.5722±0.0272 0.5660±0.0365 0.6560±0.0569 0.6031±0.0638 
         

RBCs 2.467±1.290 1.250±0.2241** 1.406±0.2756* 3.8685±0.7618 2.8864±0.7918 4.1058±0.5801 2.6591±0.3180 ONO2
– 

(nmol/mg 
protein) 

Cortex 2.0428±1.5625 1.9472±0.1724* 1.9406±0.2314 2.4603±0.35311 2.0324±0.2541 2.7406±0.3049 2.6822±0.1765 

         
RBCs 0.2346±0.0423* 0.2635±0.0356 0.2182±0.0501* 0.3166±0.0457 0.2941±0.0190 0.2760±0.0185 0.3384±0.0670 TBARS 

(nmol/mg 
protein) 

Cortex 0.4021±0.0396 0.3380±0.0427 0.2994±0.0312 0.3023±0.0281 0.2375±0.0195# 0.2757±0.0274 0.2924±0.03021 

Mean+SD, n=3 
*, **: p<0.05, 0.01 any antioxidant-only group vs. the corresponding metal-only group (As or Mn) 
#,: p<0.05 any combination group vs. the corresponding metal-only group (As or Mn) 
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The summed antioxidant doses and the measurements results on biochemical indicators of 

oxidative stress are given in Table 11.  

The intensity of thiobarbiturate reaction (indicating lipid peroxidation) and the level of 

peroxinitrite were altered by exposure to the two metals and by antioxidant application in a 

way which showed effect and counter effect. The data also showed that the effect of As was 

most clearly reversed by rutin, and that of Mn, by ascorbic acid. All the same, the data were 

rather scattered with wide error ranges (standard deviations), precluding any firm conclusion. 

 

3.3.5. Correlations 

Correlation plots made of data on functional alterations and chemical or biochemical 

measurements in Experiment 3 were, however, more informative (which indicated also that 

the unfavorable error ranges mentioned above resulted more from inter-individual variation of 

the rats and less from measurement errors). 

Body weight gain during the exposure period (an indicator of general toxicity manifested 

among others in metabolic disturbances) was most strongly related to As load of the liver (the 

central metabolic organ; Fig. 18). Parameters related to functional neurotoxicity, like OF local 

activity time or SS EP latency, but also the parameter for lipid peroxidation (TBARS), had 

stronger correlation to the As load of the CNS, and the correlation of the measured 

biochemical and neuro-functional damage (lipid peroxidation and OF local activity) was not 

less strong either. The location of the points in the plots, determined by the data pairs, showed, 

in agreement with Table 10, that the antioxidants, first of all rutin, reduced both internal As 

load and its functional consequences. 

Similarly to As exposure, body weight gain during the exposure period was most strongly 

related to Mn load of the liver. The OF and electrophysiological indicators of neuro-

functional damage included in Fig 19 were better correlated to Mn load of the brain (more 

exactly, the cortex). Correlation between the functional and biochemical effect of the toxic 

metal could be demonstrated also for Mn. The distribution of the data pair points suggested 

further that mainly green tea (in case of EP latency and OF ambulation distance) but also rutin 

(in case of ambulation distance) could diminish the extent of functional damage without 

reducing brain Mn level. 
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Figure 19 Correlation plots of the data on internal Mn exposure and its consequences. 

The same display as in Fig. 19. 
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Figure 18 Correlation plots of the data on internal As exposure and its consequences. A, body 

weight gain and liver As load; B, C, D, neuro-functional and biochemical alterations and cortex 
As load; E, neuro-functional and biochemical effects. In the group marking (insert in A), Antiox 
denotes data from any of the antioxidant-only groups. 
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4. DISCUSSION 

 

The data in Results, and the background literature, permit the statement that the applied way 

of modelling human exposure to arsenic and manganese was realistic and efficient. In case of 

As, the main way of human exposure is oral, via drinking water (Nordstrom, 2002). Direct 

modelling of that is possible and has been used in several reports but dosing by gavage was 

deemed safer for the staff and the actual amounts applied to the rats were more accurate. The 

most important measure of internal load – As level in the cerebral cortex – was in the same 

order of magnitude with those in comparable experiments (10 mg/kg b.w As by gavage for 4 

weeks by gavage, ca. 10 mg/kg As in the brain: Rodríguez et al., 2001; or 1.2 mg/kg As in the 

brain after only 2 mg/kg b.w. for 4 weeks: Yadav et al., 2012). Direct comparison with human 

data is difficult because the mostly used biological exposure index is urinary (and not blood) 

As level. In Lahore (Pakistan) humans who drank water with ca. 2.4 mg/l As had ca. 1.3 g/l 

As in blood (Bibi et al., 2015). For a 70 kg human drinking 2 L water a day, these data would 

mean ca. 0.07 mg/kg b.w. dose; our rats in Experiment 2 and 3 received 100x higher daily 

doses but developed 1000x higher blood levels. 

With manganese, most intoxications affecting the nervous system are seen in occupational 

exposure to Mn-containing metal fumes (Antonini, 2003; ATSDR, 2008). This was 

successfully modelled by instillation of suspended NPs in previous studies of the Department 

(e.g., Oszlánczi et al., 2010; Takács et al., 2012). In heavily exposed workers, ca. 14 g/L 

blood Mn was found (Bader et al., 1999; Halatek et al., 2005) vs. 5–7 g/L in reference 

groups (Bader et al., 1999). In our present work, and in the previous ones cited above, blood 

Mn levels were much higher but this was equally true for rats being or not being administered 

Mn, so that the difference in magnitude cannot be ascribed solely to the doses. Moreover, the 

difference between blood Mn of exposed and non-exposed rats was ca. twofold, similar to that 

of exposed and non-exposed humans reported in Bader et al. (1999). By assuming daily 

ventilation volume of 0.5 m3/kg b.w. for the rats (based on physiological data in Strohl et al., 

1997) the it. dose of 4 mg/kg MnO2 NPs corresponds to ca. 24 mg/m3 for 8 hours per day. In a 

survey published by Korczynski (2000), the maximal Mn level in workplace air polluted by 

welding fumes was around 5 mg/m3. 

Reduced body weight gain in the treated rats indicated that the internal As and Mn load took 

effect. Rutin was the only antioxidant with a noteworthy effect on the weight gain reduction 

caused by Mn (Experiment 1) and by As (Experiment 2) – however, in Experiment 3 (albeit 
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with dissimilar timing and administration of the antioxidants) this was not verified. Reduced 

food consumption as a cause was more pronounced in Mn-treated rats in Experiment 3 than in 

As-treated ones in Experiment 2 and 3, but any noteworthy correlation between food 

consumption and weight gain was seen only in a few cases – most notably in the 2nd week of 

Experiment 3 in the rats treated with nano-Mn. Other reasons of body weight gain reduction 

include organ damage – liver is attacked by both metals – and oxidative stress (ROS interfere 

with normal metabolism: Merry, 2002). 

In the investigated functional alterations of the treated rats’ nervous system, there were some 

general trends, such as decreased OF motility of the treated rats or slowed 

electrophysiological responses, indicating possible common mechanisms in the background. 

That oxidative stress may be one such mechanism was suggested, besides a number of papers 

(“final common pathway”: LeBel and Bondy, 1991), also by earlier results of the Department 

(Oszlánczi, 2011). Both As and Mn, as inorganic chemical agents, are known to induce the 

generation of ROS in living tissue (Mn: Hamai and Bondy, 2004; As: Jomova et al., 2011), 

and this was seen also in the present study (Tables 9 and 11). 

Induction of oxidative stress by Mn-containing welding fumes (in which NPs are always 

found: Antonini, 2003) has been proven in animal experiment in vivo (inflammation markers 

in the bronchoalveolar lavage fluid) and in vitro (depletion of glutathione) by McNeilly et al. 

(2004). Concerning As, biochemical signs of oxidative stress were found in occupationally 

exposed humans (Halatek et al., 2009) and in animal experiments (Yadav et al., 2009). 

The negative effect of oxidative stress on CNS functionality has been repeatedly described for 

both metals. In Mn-exposed rats’ brains, ROS generation and membrane lipid peroxidation 

was seen (Avila et al., 2008). For As, similar effects were described by Flora (2011), and 

García-Chávez et al. (2006). Damage to membrane lipids results, in turn, in changes of 

fluidity and probably in altered neuronal membrane functions. Lipid peroxidation is in fact 

present in those human CNS diseases (Farooqui and Horrocks, 1998) where the role of 

oxidative stress in the pathomechanism has been supposed (Valko et al., 2007; Chaturvedi 

and Beal, 2013). 

Cortical evoked potentials are those electrophysiological phenomena, recorded and analyzed 

in this thesis, which reflect alterations in synaptic transmission (a likely consequence of 

membrane damage, see above) the most directly. Increased latency observed in our rats 

treated with As or nano-Mn might be, at least partly, due to decreased synaptic efficiency. 

The parallel dependence of cortical TBARS level and SS EP latency on the local dose of both 

As and Mn (Figs. 18 and 19) in Experiment 3 suggested such a relationship. In other rat-based 
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disease models involving oxidative stress (induced hypertension: Göcmen et al., 2014; sulfite 

exposure: Derin et al., 2009) TBARS level and visual EP latency increased in correlation, and 

in the latter report protection by lipoic acid, an antioxidant, was demonstrated. Synaptic 

damage appears to be present also in chronic human CNS diseases, like Parkinson’s or 

Alzheimer’s disease. Products of lipid peroxidation, such as 4-hydroxy-nonenal (Valko et al., 

2007) may be responsible for damages of synaptic structure and function (LoPachin et al., 

2008). Besides synaptic transmission, regenerative nerve pulse conduction also depends on 

normal membrane functioning which explains why the pattern of changes of EP latency and 

tail nerve conduction velocity were similar. 

The above mechanistic explanation is, of course, by far not exclusive. There are further ways 

for both As and Mn to influence neuronal activity. Mn2+ (released from phagocyted NPs: 

Lundborg et al., 1985) can block Ca-channels in presynaptic endings but can also activate 

maze. In As-treated guinea pigs, neuronal apoptosis resulted from ROS-induced Ca influx via 

voltage-gated L-type Ca-channels and concomitant mitochondrial damage (Pachauri et al., 

2013). So, abnormal intracellular Ca level probably causes not only synaptic dysfunction but 

also oxidative stress. 

Significant changes in open field motor behavior were seen only in Experiment 1 and 3, but 

the general effect of As and nano-Mn was similar: decreased ambulation and rearing, that is, 

motor hypoactivity. Motivation, determining spontaneous locomotion in the OF, is regulated 

by mesolimbic/mesocortical dopaminergic structures (Alexander et al., 1990). Dopaminergic 

neurons are especially vulnerable to oxidative stress due to the auto-oxidizing tendency of 

dopamine and to the presence of monoamine oxidase producing hydrogen peroxide (Alexi et 

al., 2000). Rodríguez et al. (2001) described hypomotility in rats after subacute oral exposure 

to inorganic As in doses comparable to ours. A human analogue of that might be impaired 

motor control and body coordination in Bangladeshi schoolchildren with elevated internal As 

load (Parvez et al., 2011). In case of Mn, reduced motility observed in Experiment 1 and 3 

might be analogous to that in welders with manganism (Bowler et al., 2007). 

Each antioxidant used in this study had some counter effect on the electrophysiological and/or 

behavioral alterations induced by As and nano-Mn, but to a dissimilar extent. The effect of 

ascorbic acid was in most cases less than that of rutin or green tea brew, although the 

measured antioxidant capacity of ascorbic acid solution was higher (Tables 9 and 11). 

Protective actions, other than reduction of oxidized biomolecules, of rutin and green tea 

flavonoids include first of all chelation of metal ions. Metal chelating ability of tea flavonoids 

(Weinreb et al., 2004) may act directly on the exogenous toxicants – here: As, or Mn set free 
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form NPs – or on endogenous reaction partners like Fe released from ferritin by methylated 

As (Jomova et al., 2011). Rutin, and its aglycone quercetin, also bind transition metal ions and 

reduce so oxidative load (Omololu et al., 2011). This may explain that, in Experiment 3, As 

levels in cortex and liver in groups AsR and AsT were significantly lower than in group As 

(Table 10). In the nano-Mn treated rats, no such effect was seen, however. Flavonoids, 

including rutin and EGCG, were shown also to enhance endogenous antioxidant defense 

including activity of superoxide dismutase and catalase, and anti-inflammatory pathways 

(Mandel et al., 2005). 

Local bioavailability of the agents can influence the observed protective effect. Uptake of 

flavonoids to human plasma (Nakagawa et al., 1997) and to the brain of animals is promoted 

by the somewhat lipophilic character of the molecules (Mandel et al., 2005) providing easier 

(and, theoretically, unlimited) access to the CNS. Vitamin C, on the contrary, is brought to the 

brain by regulated active transport which depends on local demand but not on supply via 

blood (Harrison and May, 2009). But if these “protective” agents are to be given orally, 

intestinal absorption comes into play. For rutin and quercetin, poor intestinal absorption, and 

degradation by the gut microflora, was reported (Formica and Regelson, 1995) – all the same, 

rutin was found neuroprotective in animal experiments (Javed et al., 2012; Gomes-Rodrigues 

et al., 2013). Absorption of green tea polyphenols was also low (0.2 to 2%) in humans 

consuming dosed amounts of tea extract, but was sufficient to provide antioxidant defence 

(Nakagawa et al., 1997). 

That curcumin had virtually no effect in Experiment 1 (except on nerve conduction, see Fig. 

5) was a bit of odd, in view of the literature data (Kunchandy and Rao, 1990; Daniel et al., 

2004; El-Demerdash et al., 2009; Yadav et al., 2009, 2011). Our dose was in the same range 

as in the mentioned papers, so an explanation might be that sunflower oil, used as vehicle in 

Experiment 1, dissolved curcumin well but also impeded its intestinal absorption. 

Regarding the body of literature on the protective effect of antioxidants both in vitro and in 

vivo, the easy availability of many such agents as food ingredients or additives, and the 

number of humans subject to oxidative challenge due to heavy metal (As, Mn and others) 

exposure, it is surprising that there have been apparently no studies testing the putative 

protective effect of antioxidants in exposed populations, and only a few studies on the 

neuroprotective effect of antioxidants altogether (Albarracin et al., 2012). Ideas like 

“functional drinks in neurodegenerative diseases” (Zafrilla et al., 2009) still await 

implementation, although millions are exposed to As via drinking water and Mn via 

workplace air pollution – not to mention other exposures leading to CNS damage by a 
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mechanism involving oxidative stress – and chronic degenerative brain diseases represent a 

huge and growing problem. However, it must not be forgotten either that outcome of studies 

in which protective factors from “healthy diets” were given in pure form was often 

disappointing. 

Based on the results, and keeping the above mentioned problems in mind, the particular 

questions set in 1.5. can be answered as follows: 

 

 In Experiment 3, the used physicochemical form of As and Mn were investigated in 
terms of neurotoxicity and general toxicity together in the same experiment. Identical 
but separate experiments with the two metals were not made, but the answer to the 
first question is essentially positive. 

 The antioxidants included in the experiments had some clearly detectable effects on the 
alterations induced by the two metals, regarding both nervous system effects 
(electrophysiological and behavioral) and general toxicity, but: 

 There were marked differences between the effects of the antioxidants: 1/ Curcumin had 
practically no effect. 2/ The protective effect of vitamin C was weaker than that of the 
applied flavonoids – rutin and green tea constituents. The cause of the difference was 
apparently not the antioxidant capacity but probably the metal chelating ability of the 
flavonoids and/or their better local availability in the CNS. 

 The examined antioxidants are all easily available natural compounds. As a chemically 
defined compound, rutin showed better effect than ascorbic acid. Green tea infusion 
(or an extract or concentrate) is chemically complex but the main constituents have 
been chemically identified. An “optimal” choice of antioxidant has to consider, 
beyond verified in vivo protective effect, also technical (sources, processing, 
formulation) and social (acceptance in the population to be protected) aspects, and 
requires further studies both within and outside the scope of environmental 
neurotoxicology. 
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