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Abstract

The roots of graph theory lead back to the puzzle of Königsberg's bridges. In 1736
Leonhardt Euler published a paper detailing this problem, and also proposed a solu-
tion for it. Since then much has been learned about the mathematical properties of
graphs, and the �eld has a long history of applications including sociology, biology
or operations research and optimization. Things changed when computers became
accessible and a�ordable to most researchers, allowing them to collect, store, share
and study large amounts of data on graphs observed in real-life. This gave rise
to the interdisciplinary �eld of network science, which is dedicated to the descrip-
tion and analysis of real-life graphs borrowing methods from mathematics, physics,
computer science and sociology. The topics of network science include the study of
the organization principles of networks, for example their degree distribution and
the formation of groups, as well as several processes taking place on the networks
themselves.

The goal of the dissertation is to provide an overview on the authors' works
focusing on three major topics of network science: overlapping community detection,
dynamic community detection and the study of infection processes. Based on our
experiences with known community detection algorithms and the works of Csizmadia
et al. we have developed an overlapping community detection method, the hub
percolation method, that is capable of handling various types of networks or discover
di�erent layers of the community structure of single network. We have tested our
method on several benchmarks including Newman's networks and Lancichinetti's
community based graph generator. We have given two real-life case-studies: one
of them examines the properties of an ownership network of Hungarian companies.
The other one compares the community structures of a Hungarian and an English
word association graph.

Motivation for examining another aspect of community detection � dynamic com-
munity detection � came from applications on other social and economic networks.
Based on the works of Palla et al. we have developed an algorithm to e�ciently
match the communities of two neighboring networks in a time series of graphs. Our
method distinguishes eleven community events, and its mechanism does not depend
on the speci�cs of the used community detection algorithm. We have evaluated our
method on two real-life networks.

The last topic of this dissertation is the study of infection processes in networks
with a focus on economic applications. A common problem of these applications is,
that the edge infection probabilities required to compute these processes are often
not available, missing values are either estimated or constants are used. In order to
provide a more systematic approach we have proposed the Inverse Infection Problem,
its task being the computation of the edge infection probabilities with the help of
observations on the beginning and the end of the process. We have proposed the
Generalized Cascade model to help with the computations required for this model, as
well as several heuristics to further improve performance. We have given a learning
method based on Particle Swarm Optimization as a solution. Finally we have tested
the performance of our solution on benchmark networks, and we have also published
a case-study dealing with the application of our method in the estimation of credit
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default in banking.

1 Basic concepts and preliminaries

The algorithms and methods in this work are de�ned on graphs, with vertex (node)
and edge sets V (G) and E(G) for a graph G. In almost all cases the graph is
considered to be undirected. The graph may contain numerical information stored
as weights on the edges, or attributes on both edges and vertices. In all cases the
graph is considered to be connected, although this might be the result of some
�ltering process not mentioned in the dissertation.

All of the graphs in the dissertation are complex networks. This term was intro-
duced to describe graphs coming from diverse real-life examples, and these networks
often contained non-trivial topological features unlike the ones that occur in the
more simple graph classes like trees or lattices. Complex networks can be divided
into several categories based on the source of the network: social networks, infor-
mation networks, technological networks, economic networks, etc. One of the most
important �ndings of network science is, that even though the source of them is
di�erent, the structure and behavior of the networks are very similar.

Community detection

A behavior observed in social interactions is, that people tend to form groups ac-
cording to their lines of interest, occupation, etc. In networks, this behavior presents
itself as a tendency for nodes forming into sets, so that the nodes inside the sets are
densely connected and the links between the sets are relatively sparse. This feature
is called community structure, and the discovery of this structure is called commu-
nity detection. This property is not only present in social networks, but many other
complex networks as well.

While the phenomenon of communities is well observed, an exact de�nition is
di�cult to �nd. Traditional community detection methods consider communities
to be disjoint vertex sets, and adopt the following intuition: they are looking for a
partitioning of the nodes, which maximizes the number of edges between the nodes
inside the sets, and minimizes them between the sets. It is also a goal to �nd mean-
ingful communities, i.e. they discard trivial solutions of the problem (like a single
community containing all of the vertices). A comprehensive review of community
detection can be found in [14].

The traditional de�nition of community allows disjoint vertex sets only. Based
on the observation that in real-life networks, nodes can belong to multiple commu-
nities, Palla et al. introduced the concept of overlapping community detection and
proposed the clique percolation method [29]. The idea of �nding maximal cliques
and joining them according to some criteria is the basis of several overlapping com-
munity detection algorithms, but there are many other approaches as well [17,18,25].

Another aspect of community detection we have discussed in the dissertation is
dynamic community detection, the changing of communities in time. Dynamic com-
munity detection deals with a time series of graphs {Gi}i∈T , where T = {1, . . . , `}
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Figure 1: The community structure of a fraction of a social networking site. The
communities were created with the method of Girvan and Newman [26].

represents a discrete time set, and the task is discovering how the community struc-
ture of one graph relates to the community structures of the others in the series.
Algorithms for dynamic community detection usually consider two neighboring time
instances, and most authors begin with the de�nition of events that may occur to
communities between the instances. After the de�nition, the communities of the
two graphs are matched with some algorithm according to the de�ned community
events. The most cited algorithms can be found in [1, 28].

Infection models

Graphs serve as the basis of many processes. A signi�cant part of this dissertation
deals with the spread of economic events, which falls into the category of infection
models. These models deal with the di�usion or spread of a wide array of things:
behavior, information, in�uence, diseases, etc. These methods were studied multiple
times by many di�erent branches of science. The Independent Cascade model was
proposed in [12,19], and forms the backbone of many results in our works.

Infection models assign states to the nodes of the network corresponding to the
di�erent phases of infection. The states of the Independent Cascade model, are
the following. A node is susceptible if it is not yet infected, a node is infected, if
it is infected and may infect others, and a node is removed, if it is infected but
not infectious. Sometimes we will call these states as inactive, newly activated and
active.

Any infection model can be described as a process, that has two inputs: the �rst
one is a weighted graph, where the edge weights are real values between 0 and 1:
∀e ∈ E(G), 0 ≤ wu,v ≤ 1, these are called as edge infection values. The second input
is the set of initial infectors A0 ⊂ V (G). These nodes are considered as infected at
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the beginning of the process. The infection process happens in discrete time steps.
The process terminates at iteration t if At = ∅, and results in the set of infected
nodes A =

⋃t
i=0Ai. The original formulation of the model was for directed graphs,

but it is easy to generalize them for undirected ones by assuming, that the edge
infection values are symmetrical wu,v = wv,u.

The speci�c way one vertex infects another varies depending on the model is
the following: let Ai ⊆ V (G) be the set of nodes newly activated in iteration i. In
the next iteration i + 1, each node u ∈ Ai tries to activate its inactive neighbors
v ∈ V \ ∪0≤j≤iAj according to the edge infection probability wu,v, and v becomes
active in iteration i+1, if the attempt is successful. If more than one node is trying
to activate v in the same iteration, the attempts are made independently of each
other in an arbitrary order within iteration i+ 1. If At = ∅, the process terminates
in iteration t. It is easy to see, that the process always terminates in a �nite number
of iterations.

2 Topics of the dissertation

As we have mentioned in the abstract, the topics of the dissertation can be divided
into three major topics:

1. The development of a new high-resolution clique-based overlapping community
detection algorithm with customizable parameters and its applications.

2. The development of a dynamic community detection algorithm able to handle
large real-life networks.

3. The development of a new infection model and a methodology capable of
estimating the edge infection probabilities on bank transaction and other net-
works.

We will discuss each of these in this section.

2.1 The hub percolation method

We have created the hub percolation method with the aim to develop a versatile tool
for community detection, that is �exible enough to handle multiple applications with
di�erent requirements. It is a high-resolution clique-based overlapping community
detection algorithm for complex networks. The parameters of this method govern
the various aspects of the resulting communities, like the number and size of the
overlaps between them. This allows us to discover di�erent kinds of communities
from large, loosely overlapping groups to ones with a dense, highly overlapping
structure. The development of the hub percolation method was heavily in�uenced
by our works with the clique percolation method [29] and the N++ method in [3]
as well as several well known benchmark networks like Zachary's karate club [30]
and Newman's works [15, 27]. Much of the details of this algorithm came from
experiences gained during test runs on these networks.
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The hub percolation method has two simple ideas at its core: cliques and hubs.
Cliques are fully connected subgraphs, with a given number of nodes: a k-clique is
a fully connected subgraph with k nodes. A clique is maximal if it is not a subset
of any other cliques. Finding all maximal cliques is di�cult in arbitrary graphs,
but in complex networks the variants of the Bron-Kerbosch method perform well
enough [10,13]. A concept common in all overlapping community detection methods
is, that cliques are natural communities, we will also use this intuition. An important
observation on real-life networks is, that inside a community some members are more
important than others with respect to the role of the nodes in connecting di�erent
communities. We will denote these nodes as hubs, and we will use them to extend
and join the cliques of a given graph. The identi�cation of hubs is the task of the
hub selection strategy, we have suggested several of these in the dissertation.

The hub-percolation method can be divided into the following steps:

1. Find the set of all maximal cliques of size greater or equal than 3.

2. Select the set of hubs according to a hub selection strategy. The strategy may
have a parameter q.

3. Identify the k-cliques formed by hubs and extend them with a limited perco-
lation rule.

4. Join communities with the same hubs.

The hub-percolation method [4] provides several ways to �ne-tune its results.
One of them is the �ltering parameter k of phase 3, another is the hub selection
strategy and its possible parameter q. This allows our method to handle diverse
real-life networks. We have measured the e�ect these parameters have on the results
of the method in several ways: the number of communities, the community size
distribution, the average overlap between the communities and the number of nodes
left without communities. We have used the benchmark networks of Newman for
this purpose [15,27].

Evaluation and case-studies

We have evaluated the performance of our method in several ways. We have used the
community based graph generator of Lancichinetti and Fortunato [23] to compare
the results of our method to the clique percolation method of Palla et al. [29].
We have used the mutual information metric [24] to compare the results of these
methods with the natural community structure of the generated networks1. We have
shown, that our method has better performance if the network has a high number
of overlapping nodes.

We have also presented two case-studies. We examined the communities of an
economic network constructed from the Hungarian company register. We examined
three aspects of the companies: the geographical location of them, the industrial
sector they belong to and the age of the companies. The observed companies were

1These were given by the graph generator.
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Figure 2: The communities of Zachary's karate club network [30]. Hubs are marked
as diamond shapes. Nodes with multiple colors indicate overlapping nodes. The
median hub selection strategy was used with k = 2. Nodes 9, 3, 33 form an additional
community and node 9 belongs to three communities.

of a special kind (Ltd), so that the communities formed by them are geographically
close to each other and typically belong to the same industrial sector. The age of
these companies however show a noticeable deviation.

In a more detailed case-study we have compared the community structure of an
English and a Hungarian word association graph [9]. We have identi�ed the words
central to the formation of the communities, these are category names, common
adjectives or collective nouns. Some of these are present in both graphs, these words
representing basic needs, everyday activities and common adjectives, but there is
considerable di�erence between the networks.

2.2 Dynamic community detection

Out motivation for creating a dynamic community detection method [6] came from
applications. The networks we were dealing with had several requirements, that
none of the available methods were able to satisfy simultaneously. The �rst one was
simply the speed. The graphs to be examined were large real-life networks. They
had the properties of complex networks, but they also had many vertices and edges,
and it became necessary to develop a method capable of handling such graphs.

The second di�erence in our approach was in the selection of the static detection
algorithm. We have decided on using overlapping community detection methods,
but we were not satis�ed with the clique percolation method for several reasons
discussed in the dissertation. Since the dynamic community detection method of
Palla et al. in [28] uses a special property of this method, it was also inapplicable
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to us. In the end we chose the N++ method [3].
The last di�erence was the kinds of events communities go through during the

temporal dynamics of the network. We have also found that the basic events Palla
et al. used are not enough to explain the events that occur in the networks we were
observing.

Our approach is based on the one proposed by Palla et al., but we made several
modi�cations, that improve the usefulness of the method. We extended the number
of community events, and we gave a di�erent matching algorithm, that does not
depend on the speci�c properties of the used community detection method.

Our dynamic community detection algorithm can be divided into the following
steps. It works by comparing two subsequent graphs in a time series, G1 and G2.

1. The communities of G1 and G2 are computed by a community detection
method.

2. The union of the two graphs GU is computed, and the community structure
of this new network is computed as well.

3. The communities of G1 and G2 are matched to the ones of GU .

4. The results of these matchings are summarized resulting in the community
events, that happen between G1 and G2.

We have used our method to evaluate the dynamics of the community structures
of two real-life networks. Our �ndings indicate, that there is a signi�cant di�erence
between these datasets. One of the networks is more stable, but looses communities
steadily, the other network is more dynamical, but maintains its community number.
We have also examined the changes in community structure in relation with the sizes
of the involved communities.

2.3 Inverse infection

The idea of the Inverse Infection Problem comes from the previous work of Csernen-
szky et al. [11] published in 2009. This work focused on the possible applications
of infection models on bank transaction networks. A conclusion of this work was,
that the precision of current methods for the prediction of credit default can be
improved by taking into account the e�ect members of the network have on each
other. This is the so-called network e�ect: the probability of a node in�uencing each
of its neighbors. This led to idea, that these in�uence values should be estimated
somehow, and over time, to the formulation of the Inverse Infection Problem [8].

Our approach to the prediction of the in�uence (or infection) probabilities be-
tween nodes is di�erent from the ones existing in literature [16,22], although the �eld
is scarcely studied. Compared to these methods, ours does not require information
on the individual steps of the infection process. Instead it builds on the experi-
ences gained from the previously mentioned work on bank transaction networks,
such as the use of estimations of the default probabilities for individual companies
and additional information characterizing the connections between them.
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The development of the Inverse Infection Problem required the creation of addi-
tional methods and algorithms, starting with the generalized infection framework,
the Generalized Cascade Model [7]. Based on the Independent Cascade Model, this
generalized model uses a probabilistic framework to describe the inputs and outputs
of an infection process.

The Generalized Cascade Model

In the Generalized Cascade (GC) model each vertex is assigned a real value pv be-
tween zero and one, that represents the probability of infection before the beginning
of the process. We refer to these values as the a priori distribution. Vertices may
become infected independently from each other before the beginning of the process
according to their a priori infection probability pv. The a priori distribution will
be the equivalent of the initial infectors of the Independent Cascade model. The
GC model is capable of summarizing the e�ect of the a priori infections and the
e�ect of these infections transmitted through the network. Similarly to the a priori
distribution, the output of the model is given as an a posteriori distribution, where
values p′v indicate the probability of being infected during the process for all v ∈ V .
The actual way a vertex infects another is the same as in the IC model, although it
is possible to use other infection models in the terms of the GC model.

We can de�ne the Generalized Cascade model in the following way:

The Generalized Cascade Model: Given an appropriately weighted graph G and the
a priori infection distribution pv, the model computes the a posteriori distribution
p′v for all v ∈ V (G).

The computation of the GC model is di�cult, so we have proposed four heuristics
methods of it in [5].

• Complete Simulation is the direct adaptation of the method in [20] for the GC
model.

• The Edge Simulation method is a combination of both simulation and exact
computations that decreases the standard deviation appearing in other simu-
lations.

• If the infection probabilities are small, then the infections typically do not
travel far from the source of infection. Neighborhood Bound Heuristics exploits
this property.

• The Independent Cascade model itself can be substituted for a similar, but a
computationally more tractable model, the ALE model.

The Inverse Infection Problem

The de�nition of the Inverse Infection Problem [8] is very similar to the GC model:

Inverse Infection Problem: Given an unweighted graph G, the a priori and the a
posteriori probability distributions pv and p′v, compute the edge infection probabil-
ities we for all e ∈ E(G).
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Independently estimating all edge weights of a network is both underdetermined
and computationally unfeasible, even if the number of edges is small. Instead, we
assume the edge probabilities can be expressed as (normalized) functions of some
properties of the edges or nodes that are available in the form of attributes. This way
we only have to estimate the coe�cients of these functions, and since the number
of attributes and coe�cients is limited, the problem becomes tractable.

We can de�ne a learning method based on the formulation above.

• The problem de�nition states, that the a posteriori distribution is required as
an input of any algorithm. In the case of a learning algorithm, it is considered
to be a test or reference dataset.

• Then the initial coe�cients for the edge attribute functions are chosen from
reasonable bounds.

• Given these attribute functions, the coe�cients and the a priori distribution
we can compute an a posteriori distribution corresponding to the chosen coef-
�cients.

• Finally, an error function calculates the di�erence between the reference set
and the newly calculated infection values. The process aims to minimize this
error function by repeatedly adjusting the coe�cients.

This is a typical task for global optimization, and after several tries we have
selected the Fully Informed Particle Swarm method of Kennedy and Mendes [21].

We have used arti�cial infection scenarios to explore the boundaries of our
method. We have tested the stability and accuracy of the optimization, we have
given a general approach to choose the correct attribute functions, we have exam-
ined the implications of choosing between the heuristics of the GC model and we
have tested our method in low-quality inputs as well. The learning method is able
to accurately predict the edge infection probabilities in a small number of iterations
while the number of attributes and the shape of the attribute functions have only a
small e�ect on this even if the quality of the inputs is low.

Finally, we have presented a case-study of the Inverse Infection Problem on
a bank transaction network [2]. The goal of this application was to improve the
e�ciency of existing models for the prediction of short-time credit default events.
Since the creation of IIP was heavily in�uenced by banking applications, it was quite
suited to handle this task. Our model has better predictive power than traditional
methods: it can identify the companies where default is most probable better than
the previously used models of the bank. Our model was implemented in August
2013 into the OTP Bank of Hungary's credit monitoring process.

3 Summary of the results of the dissertation

The results presented in the dissertation are the following.
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3.1 Overlapping community detection

Our �rst goal was the development of a high-resolution clique-based overlapping com-
munity detection algorithm with customizable parameters with several applications.

1. We have given a detailed description of the hub percolation method and sev-
eral hub selection strategies including one that is able to handle weighted
networks in a natural way. We have examined how the hub selection strat-
egy and the �ltering parameter in�uences the community structure found by
the algorithm, and we have demonstrated this e�ect on several of Newman's
benchmark networks [15, 27].

2. We have used the community based graph generator of Lancichinetti et al. [25]
to compare the performance of our method to a very popular clique-based
method, the Clique Percolation Method [29].

3. We have used our method to examine the community structure of an economic
ownership network constructed from the Hungarian company register.

4. We have provided a case-study on the community structure of an English and
a Hungarian word association graph.

The hub percolation method itself, its evaluation on benchmark networks and
the economic case-study (1-3) was submitted for publication in an international
journal [4] and is yet to appear. The case-study on word association graphs (4) was
accepted for publication in the proceedings of an international conference [9].

3.2 Dynamic community detection

The second topic was the development of a dynamic community detection algorithm
able to handle large real-life networks.

1. We have introduced the eleven community events our method can detect. We
provided a detailed description of the dynamic community detection method,
and elaborated on its time complexity.

2. We have used our method to evaluate the dynamics of the community struc-
tures of two real-life networks.

All of our works in this topic was published in a journal paper [6].

3.3 Inverse Infection

The �nal topic of the dissertation was the development of a new infection model
and a methodology capable of estimating the edge infection probabilities on bank
transaction and other networks.

1. The Generalized Cascade model is an infection model and a generalization of
the Independent Cascade Model. The Inverse Infection Problem is based on
this model.
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2. The computation of the GC model is #P-hard, therefore we have proposed
four heuristic methods for it: Complete Simulation, Edge Simulation, Neigh-
borhood Bound Heuristics and the Aggregated Linear E�ect model.

3. We have proposed the Inverse Infection Problem: Given an unweighted graph
G, the a priori and the a posteriori probability distributions pv and p′v, compute
the edge infection probabilities we for all e ∈ E(G).

4. We can de�ne a learning method based on the formulation above which reduces
the problem to global optimization.

5. We have used arti�cial infection scenarios to explore the boundaries of our
method. We have tested the stability and accuracy of the optimization, we
have given a general approach to choose the correct attribute functions, we
have examined the implications of choosing between the heuristics of the GC
model and we have tested our method in low-quality inputs as well.

6. Finally, we have presented a case-study of the Inverse Infection Problem on a
bank transaction network.

Our preliminary works (1, 3) on inverse infection and the GC model was pub-
lished as an extended abstract in an international journal [7]. After this, we have
given a thorough examination of the GC model and proposed four heuristics for it
(1, 2) in another journal publication [5]. The inverse infection problem itself, the
learning method and the arti�cial infection scenarios (3-5) appeared in the proceed-
ing of an international conference [8]. The banking application (6) was accepted for
publication in a well-known international journal [2].
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