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1 Introduction

1.1 Kisspeptins
1.1.1 The RF-Amide Family and the Discovery of Kisspeptin

The tetrapeptide FMRFamide was isolated from the ganglia of the clam as a cardi-
oexcitatory peptide approximately 30 years ago [174]. Later on, it proved to be the
first member of a family of peptides, whose members share an N-terminal sequence
homology [226]. Since then, the Arg-Phe (RF)-amide motif was found throughout
the animal kingdom and until now, a total of five RF-amide peptide genes have been
discovered in mammals. This gave rise to neuropeptides, such as the AF and FF,
prolactin releasing peptide (PrRP), RFamide-related peptides, kisspeptins and the
most recently found pyroglutamylated RFamide peptide [56]. They are widely dis-
tributed in the central nervous system (CNS), but they vary in their structure and
receptor preference [56] binding to either one or several G-protein coupled recept-
ors |16, 82] (Figure 1). The literature shows that the effects of RF-amide peptides
partially overlap but in case of some physiological parameters they exert opposite ac-
tions. Several studies show, for example, that RF-amide peptides play a prominent
role in nociception: intracerebroventricular (icv.) administration cause hyperalgesia
and inhibition of morphine-induced analgesia, which effect is shared by all RF-amide
peptides [102, 50]. Furthermore, PrRP activates the hypothalamic-pituitary-adrenal
(HPA) axis [129] and increases stereotyped locomotion [105] and pressor response
[76]. Neuropepide AF (NPAF), on the other hand, also induces the HPA axis and
locomotor activity. It causes a decrease in the heart rate and core temperature [79].
These discrepancies between the biological actions of the individual peptides may
be attributed to the difference in their receptor selectivity and/or place of release
and action. Nonetheless, in light of the above-mentioned data, other members of the
RF-amide family, more specifically the kisspeptin, might also have a wider range of
functions then so far assumed.

The discovery of the kisspeptin system started with the identification of the gene
KISS1 [107], named after its place of discovery: Hershey, Pennsylvania, home of the
Hershey’s Kisses sweets, in 1996. KISS1 over-expression was found in metastasis
suppressed melanoma cells suggesting a role for this gene in tumour progression. In
the following years the KISS1 gene’s antimetastatic effect has been investigated in
multiple tumours and the loss of function mutation of the gene associated with a
bad prognosis[]| However, as of yet the most important physiologic function of the
kisspeptin system was realised in 2003, when the inactivating mutations of the gene
encoding the receptor for kisspeptins (KISSIR or GPR54) was identified to be the

1See review [217].
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Figure 1: The RF-amide family and their respective receptors [82]

cause of some forms of the isolated hypogonadotropic hypogonadisms [44], 194]. This
observation led to an immense interest in the field to categorise the putative roles of

the kisspeptin system in neuroendocrine control.

1.1.2 Structure of Kisspeptins and Their Receptor Targets

Kisspeptin, itself, was first isolated from the human placenta as the endogenous
ligand of the orphan G-protein coupled receptor GPR54, later designated as KISS1R
[158, 148, 98]. Kisspeptins are the product of the KISS1 gene and it must be noted
that the comparison of the human, mouse and rat DNA sequences of this gene found
them to be highly homologous [217]. In humans the KISS1 gene encodes a 145 amino
acid long precursor peptide, which through multiple proteolytic steps will generate the

major product consisting of 54 amino acids (KP-54), but its alternative cleavage can

give rise to other biologically active derivatives containing 14, 13 or 10 amino acids,
christened kisspeptin-14 (KP-14), kisspeptin-13 (KP-13) and kisspeptin-10 (KP-10),
respectively [98, 94, 171] (Figure 2).

Prepro-Kisspeptin

Figure 2: Kisspeptins [171]

Of note, there is some debate in the field concerning the possible endogenous role
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of the shorter products: mainly if they are generated through different proteolytic
processes or rather they are a result of the degradation of the original KP-54 [217].
Nevertheless, the shorter derivatives maintain the same activity at the receptor level
[183]. All fragments share the C-terminal part of the KP-54, and possess the Arg —
Phe — N Hy motif distinctive of the RF-amide family [56] O8] [157]. In rodent species,
the structure of kisspeptins is very similar, however, there are slight differences: the
major product contains 52 amino acids, and also the terminal Arg — Phe — N H,
sequence is substituted to Arg — Tyr — N Hy motif [217].

The KISS1R was originally cloned in 1999 from the rat brain and identified as a
396 amino acid polypeptide with seven transmembrane domains [106]. The receptor
is coupled with Gaq signalling pathway, which through the activation of phospholi-
pase C (PLC), causes a rise of inositol-(1,4,5)-triphosphate and diacyl-glycerol, ulti-
mately leading to a biphasic intracellular C'a®" mobilisation [I57, [141]. However, cell
type-dependently other signal transduction cascades might also mediate the effect
of kisspeptins such as mitogen activated protein kinase (MAPK), calcineurin and
NFxB [25]. It must also be mentioned that recent evidence suggests that kisspeptin,
beside the KISSIR, also activates the neuropeptide FF2 receptor (NPFF2R) [26],
which have been implicated on autonomic, endocrine, behavioural and nociceptive

processes [79] [165].

1.1.3 Distribution of the Kisspeptin System in the Brain

Both kisspeptin mRNA and protein were detected in peripheral tissues and CNS
[107, 158, 148]. In the mouse and rat brain, Kissl mRNA expression is most prom-
inent in the hypothalamus: Arcuate nucleus (ARC) as well as in the anteroventral
periventricular area (AVPV) and the adjacent periventricular nucleus (PeN) [31], 20].
In addition, Kissl expression has also been found in the pre-optic area (POA), medial
amygdala (Amy) and the bed nucleus of stria terminalis (BNST) [31]. Furthermore,
reverse transcriptase polymerase chain reaction revealed expression of the KISS1 gene
in the basal ganglia of humans as well [148)].

The KISS1IR mRNA in rat has been found in different forebrain regions including
diagonal band of Broca (DBB), septum, POA, anterior and lateral hypothalamus,
dorsomedial hypothalamic nucleus [78|. Similarly, abundant expression was shown
in the hippocampus (Hpt), locus coeruleus (LC), Amy and the periaqueductal gray
(PAG). In humans expression of the receptor mRNA was detected in the basal ganglia
(CPut), Hpt, substantia nigra (SN), and, at low levels, thalamus (Th), cerebellum
(C), and corpus callosum [148, 106, 57, [72] [

2See for more details [94].
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Figure 3: Distribution of kisspeptin and its receptor in the rat brain [217]

1.1.4 The Physiological Role of Kisspeptin, and Its Pathophysiological

Implications

In 2003 it became evident that kisspeptin has an important role in reproductive bio-
logy. First of all, kisspeptin was found to stimulate gonadotropin releasing hormone
(GnRH) and ultimately luteinising hormone (LH) and follicular stimulating hormone
(FSH) secretion |78 138, 153, 62].

The majority of kisspeptin neurones are located in two distinct hypothalamic
nuclei: AVPV/PeN and ARC [31]. These project to GnRH neurones, however, these
kisspeptin neurones differ: they project to different parts of GnRH neurones [179] 37],
they display different coexpression patterns [155] and sexual dimorphism [89]. This
suggested a different role for them in the regulation of GnRH activity (Figure 4).

AVPV GnRH Neuron
Kiss1 Neuron A\
(_' . \\P_\_/‘
@ 9 Positive
Feedback
Median Eminence

GnRH
Kiss1 Neuron O'Q Negative
(=) . Feedback
Arcuate Pituitary
Sex Steroids ’ LH/FSH
(E/P and T)

Figure 4: Regulation of HPG axis by kisspeptin [157]
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For a long time it was understood that gonadal steroids exert a negative feedback
on reproductive axis, however, the exact site and mechanism was not known as
GnRH neurones do not express the necessary receptors (androgen and a-estrogen
receptors (ER)), which suggested an upstream target for the negative feedback effect.
Kisspeptin neurones in the AVPV /PeN and ARC are likely targets based on receptor
expression profile, however, sex steroids have different actions on these two population
of hypothalamic neurones. In the ARC Kissl gene expression significantly increased
after gonadectomy in mice and returned to the previous level in case of testosterone
and estradiol replacement [204, 203]. In contrast, expression of Kissl gene in the
AVPV /PeN showed the opposite [204, 203]. These findings raised the idea that
AVPV /PeN kisspeptin neurones might mediate the positive feedback effect of gonadal
steroids, more specifically the pre-ovulatory LH surge that is only present in female
mammals. This is supported by the fact that AVPV/PeN expresses ERa [203], it
shows sexual dimorphism [88] and lesion of AVPV /PeN or kisspeptin antagonism
results in blocked LH surge in female mice [92] [I72]. Furthermore, a recent human
study shows that kisspeptin administration resulted in early LH surge [§1].

Kisspeptin has also been implicated in the development of puberty. This conten-
tion is not surprising considering that KISS1R defect results in primary hypogonado-
tropic hypogonadism [44] [194] and activating mutation of KISS1R leads to precocious
puberty [216]. Puberty starts with the activation of the previously dormant GnRH
neurones [66], the question, however, remains: what is the underlying mechanism
and how is the optimal timing of puberty onset achieved. Recent evidence suggests a
prominent role for kisspeptin neurones in this process based on expression and func-
tional analysis, which include increased Kissl expression and kisspeptin secretion
[152, 67, 196, @0, a rise in the number of Kissl neuronal fibres apposing on GnRH
neurone [32], and finally increased expression of KISSIR on GnRH neurones at the
time of puberty onset [152, [67, [196]. Furthermore, kisspeptin treatment was demon-
strated to induce an early activation of the HPG (hypothalamic-pituitary-gonadal)
axis [53], whereas antagonism of kisspeptin delays puberty onset in rodents [172]. All
in all, these observations underline the prominent role of the kisspeptin system in
the control of puberty. Do kisspeptin neurones play a central component of pubertal

clock or a downstream effector is yet to be investigated.

1.2 Stress, Behaviour, Temperature, and Pain
1.2.1 The Hypothalamic-Pituitary-Adrenal Axis

Throughout life all organism are constantly challenged by actual or potential changes
in the environment that are considered a threat to homeostasis; this is defined as

stress. Adaptation to the perceived stressor requires a precisely controlled and co-
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ordinated activation of multiple systems: neuroendocrine, behavioural, immune and
autonomic nervous systems [218]. The major endocrine response to stress is the activ-
ation of the HPA axis, which will result ultimately in the secretion of glucocorticoids
(GCs), which act on multiple levels in the body to redirect energy resources [193, [135].
They are recognised by the glucocorticoid receptors (GRs) and their action is medi-
ated by genomic mechanisms modifying the transcription of key regulatory proteins
and by non-genomic mechanisms on cell signalling pathways providing a basis for
rapid homeostatic regulation [21I]. The end effects of GC action are widespread and
mostly catabolic in nature, and thus if extended over time can take a powerful toll on
the organism [2211, [133], [134]. As a consequence, precise control of GCs is essential.
The centre for the endocrine response to stress is a specific group of neurones found
in the dorsomedial parvocellular subdivision of the paraventricular nucleus (PVN)
of the hypothalamus [135, 211] [162]. These neurones produce corticotropin-releasing
hormone (CRH) that is needed for normal adrenocorticotropin hormone (ACTH)
secretion under basal and stressed conditions and is the defining phenotypic feature
of this cell type. Arginine vasopressin (AVP) is the other crucial co-expressed factor
(among other peptides and neurotransmitters) that enhances the ACTH surge by
potentiating the effect of CRH response [2].

Two distinct realms define HPA axis activity. Under unstressed conditions GC se-
cretion undergoes a daily rhythm with peak concentration occurring at the beginning
of the waking cycle in most vertebrates [I11], 87]. During the waking phase a basal
secretion of GCs is present leading to the partial occupation of GRs, which is critical
for optimising the functional tone of numerous systems [76] in the body [159] 43].
Coordination of this rhythmic activity is achieved by inputs from the suprachias-
matic nucleus, the pacemaker of numerous bodily rhythms [65]. The second domain
of HPA action is the control of corticosteroid secretion following acute and repeated
stress [3], [7].

Different stressors trigger different responses. In point of fact, many factors in-
fluence the pattern and magnitude of the responses to stress such as duration (acute
versus chronic), type (psychological or physical or both), stress context (the level
of HPA axis activity at the time of stress), developmental stage, sex and genetic
background of an organism [7, 51], 83]. Hence, it is hardly surprising that multiple
distinct neuronal populations [74] [73] and multiple stress mediators act in concert to
integrate these signals to generate an appropriate response. Various stress mediators
have already been described, these include monoamine neurotransmitters (noradren-
alin [145], dopamine [61], serotonin [142] [113]), neuropeptides (CRH family [149, 213]
and AVP [156]) and steroid hormones [43, 118], 84] (cortisol in humans, corticoster-
one in rodents), all of which have their preferred activity in time and space. The

classic stress-activated peptides are CRH and AVP, however several others have been
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implicated in mediating stress (orexin [207|, ghrelin [80], opioids [46], 4] and RF-
amides) or counteracting the stress response under some conditions (oxytocin [I56]
and neuropeptide Y [195]) or may regulate stress-associated anxiety (for example,
galanin [I70] and substance P [69]).

1.2.2 Behavioural Adaptation to Stress

The integration of the stress response in the brain involves emotional and cognitive
changes that will alter the behaviour of the animals to ensure their survival. A wealth
of data in the literature demonstrate how stress mediators influence behaviour [10].
For example, CRH, the most prominent hypophyseotropic ACTH secretagogue, and
its cognate receptors have a high expression in multiple brain regions, among them
those that are relevant for emotional and cognitive functions (central and basolat-
eral Amy, hippocampus, prefrontal cortex, locus coeruleus, BNST) [211], 220, 199].
Furthermore, central or site-specific administration of CRH results in well-defined
behavioural effects [71], 117]. Icv. injection of CRH elicits increased anxiety-like be-
haviour and arousal [97, [96], decreased food intake [109], altered locomotor activity
[210], decreased social interaction [48], reduced sexual behaviour [200] and sleep dis-
turbances. Among these the first and best described was the increased arousal and
context dependent changes in locomotor activity: in a non-stressed, familiar envir-
onment a dose-dependent rise, whereas in a novel, stressful environment a decrease
of locomotion in the open/central areas of an arena, rearing and grooming beha-
viours were found [198] 85]. To elucidate the effect of stress mediators on behaviour,
overexpression or knock-out transgenic mice models were developed, which overall
supported the previously mentioned findings |

Dysregulation of the HPA axis has been implicated in a number of stress re-
lated emotional diseases such as anxiety and depression. The current view on the
pathogenesis of mental disorders is of a complex interaction between genetic and en-
vironmental factors. Ongoing research indicate that a genetic predisposition may be
shared among mood and anxiety disorders and the clinical manifestation depends on
the interaction between these and additional environmental factors [127]. The most
important environmental factor is stress. Till now, a number of genetic variants have
been identified that pose an environmentally sensitive genotype [19, 30]. For example,
a single nucleotide polymorphism (SNP) in the gene for FK506 binding protein 51
(FKBP5), a GR regulator (co-chaperone), results in GR resistance that may alter
HPA axis sensitivity [190]. Could FKBP5 SNPs moderate the effects of environmental
trauma on the development of psychiatric disorders? Evidence so far suggest that

the FKBP5 risk allele interacts with childhood trauma in humans as early trauma

3see review for further details [213]
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and consequent activation of GRs results in long-term demethylation of FKBP5 [95]
providing an outlet for the development of an altered stress response and increased
risk for stress-related disorders [14] [13], 12, 137]. Indeed, future investigations must
focus on identifying the genetic background of these psychiatric diseases and linking
them to environmental factors and the consequent neuroendocrine, neurotransmitter
and neuroanatomical disruptions.

The known actions of the anxiolytic and antidepressant drugs and genetic studies
aiming to identify predisposing gene polymorphisms implicate several monoamin-
ergic systems in the pathogenesis of mood and anxiety disorders [168]: serotonin,
norepinephrine and dopamine, however, in the CNS classic neurotransmitters are
often wrapped and released together with neuropeptides [53], many of which are ex-
pressed in the limbic system suggesting a possible role in stress and emotionality.
Several neuropeptides have been studied and implicated, the most relevant of them
may be CRH, AVP, oxytocin, cholecystokinin, galanin, neuropeptide Y and opioids
[65], [64) 120]. Galanin, for example, is colocalised in brainstem nuclei with monoamine
and influences pain processing, feeding behaviour, other neuroendocrine and cardi-
ovascular functions. Oxytocin and vasopressin are released from hypothalamic and
limbic regions and they regulate anxiety, stress-coping and sociality. Central oxytocin
exerts anxiolytic and anti-depressive effects, vasopressin the opposite [156]. Cholecys-
tokinin was originally found in the gastrointestinal system, however, it is also widely
expressed in the CNS, particularly in limbic regions and has been implicated in panic
disorder [I§].

The recent halt of psychiatric drug research by pharmaceutical companies reveal-
ing the failure in finding new avenues in treatment of psychiatric disorders calls for a
new approach [55]. Clearly, a better understanding of the pathomechanism of these
diseases is crucial and much more effort is needed in identifying and investigating all

factors that might influence stress-related behaviours.

1.2.3 The Hypothalamic Control of the Body Temperature

Body temperature of homeothermic animals is strictly regulated through a variety of
involuntary thermoregulatory responses, such as shivering and brown adipose tissue
thermogenesis, cutaneous vasomotion, sweating, panting, and piloerection. All these
physiological responses are controlled by brain mechanisms in an orchestrated manner
to optimise the internal thermal environment for appropriate molecular activities and
reactions by bioactive proteins. The thermoregulatory system, however, has multiple
other functions in the body: host defence from invading pathogens resulting in fever
[184], psychological stress-induced hyperthermia as part of the stress response [160]

and finally the regulation of energy consumption [103].
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The thermoregulatory system consists of three components: sensory afferent part,
integration centre, and efferent part [I50]. The information on peripheral and central
temperatures, immune signals, and other homeostatic parameters (e.g., osmolarity
in tissue fluid) is delivered to the thermoregulatory centre in the POA, which is
located in the rostral pole of the hypothalamus. Central, visceral and peripheral
thermoreceptors provide the feedforward signals through collateral fibres rising from
the spinal and trigeminal dorsal horns running to the lateral parabrachial nucleus,
which in turn innervates the median pre-optic nucleus (MnPOA) by glutamatergic
neurones. The MnPOA, in turn, provides GABAergic and glutamatergic input to
the medial pre-optic area (MPO). After integration, the centre provides command
signals to peripheral effectors through efferent neural and neuroendocrine pathways.
In case of infection, PG E, accumulation at the site of medial pre-optic area (MPO)
neurones will induce thermogenesis and shivering [150].

A variety of neuropeptides have been implicated in thermoregulatory control,
most of them seem to have a role in energy balance or stress as well and may be
responsible for integration between these homeostatic functions. A drop in core tem-
perature might be observed in case of central anabolic neuropeptides (neuropeptide Y,
orexins, melanin concentrating hormone) that stimulate food intake, whereas cent-
ral catabolic neuropeptides (melanocortins, corticotropin releasing factor, cocaine-

amphetamine regulated peptide) have the opposite action [212].

1.2.4 Pain Modulation

Pain has long been in the focus of scientific research as it is one of the key physiolo-
gical functions that protects against tissue damage, however it can be the source and
accompaniment of debilitating diseases. Charles Darwin defined pain as "homeostatic
emotion" that is essential for the survival of the species [38]. The organisation of pain
is a complex network that displays plasticity functionally and structurally at multiple
levels: molecular, synaptic, cellular, network [I00]. This provides the framework for
the dynamic changes in the neural matrix of pain, which if disrupted can progress into
characteristic pathologic states, for example hyperalgesia, paraesthesia, dysesthesias,
tactile allodynia and continuous, ongoing pain. Functional plasticity on the molecu-
lar level might involve transcriptional and post-translational modifications, synaptic
modifications might be caused by varying receptor densities. Plasticity on the level
of neurones in nociceptive pathways might be seen as an increase in the magnitude
of responses to a defined stimulus or firing after cessation of stimulus that ultimately
results in central amplification of pain (central sensitisation). Additionally, peripheral
receptive fields of neurones can expand leading to hyperalgesia in uninjured regions.

There is a tremendous potential of plasticity at system-level processing. The output
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of the system to a given peripheral stimulus may vary depending on how its wired,
processed, coordinated and finally integrated. For example, spinal dorsal horn net
output is decided by the incoming excitatory processes and the inhibition by spinal
interneurons. Structural changes in synaptic spines, axon number, astrocyte and
microglia presence further adds to the complexity of the pain network [100].

Various molecules may regulate pain processing by activating cell surface receptors
in different temporal and spatial patterns. Most important are ligand-gated ion
channels such as NMDA and AMPA-type glutamate receptors and ATP-gated P2X3-
type ion channels in the spinal cord that regulate neuronal excitability at a scale of
microseconds to seconds [230]. Second, G-protein coupled receptors (GPCRs) are
activated by multiple neurotransmitters and neuromodulators such as glutamate,
adenosine, ATP, cannabinoids, opioids, prostaglandins and RF-amide neuropeptides
among others that modulate pain over seconds to minutes. At last, receptor tyrosine
kinases (RTKs) stimulated by different growth factors can exert there effect in a scale
of minutes to hours [169]. Furthermore, by activating signalling transducers all three
types of receptors may influence gene transcription resulting in long term regulation
(see review for more details [100]).

Accumulating evidence strongly suggest a role for the RF-amide family in nocicept-
ive mechanism. NPFF and analogues were found to have analgesic, pronociceptive
and morphine modulating activities [56]. Although initially described as a solely anti-
opioid system, evidence proved otherwise and now it is believed that the nature of the
pharmacology depends on the subtype targeted, route of administration, and opioid
activity [102]. In point of fact, icv. administration of NPFF induce hyperalgesia
and /or inhibit opioid-induced analgesia [58|, whereas intrathecal injection results in
the opposite [165]. Both in vitro and in vivo pharmacological data suggest that these
effects are mediated by the activation of NPFF1R and NPFF2R receptors [102], re-
spectively. Distribution data indicate that NPFF2R is found most abundantly in
the spinal cord, whereas in the brain both receptors are highly expressed, especially
NPFFI1R [16], 114, 231]. Recent evidence suggest that all endogenous RF-amide
peptides target not only their cognate receptors, but the NPFF1R and NPFF2R re-
ceptors as well, which raise the idea that all may take a part in pain modulation [50].
It is proposed that the Arg — Phe — N Hy motif is sufficient for binding with high
affinity to both NPFF receptors [50]. Although much evidence has accumulated in
the past couple of years that ascribes a critical role for the NPFF1R and NPFF2R
receptors for the pain-modulating effects of RF-amide peptides, however, recent dis-
tribution data draws attention to other receptors, such as KISS1R and GPR10, and
their endogenous ligands that are expressed in several brain areas involved in the
control of pain [I04]. For instance, both KISSIR and kisspeptin mRNAs and pro-

teins have been detected in the dorsal horn of the spinal cord and in the dorsal root
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ganglia in rats [47, [140].

1.3 The Goal of Our Experiments

Taking into account the distribution of the kisspeptin system in the CNS and the
available literature on other RF-amide peptides we have hypothesised that kisspeptin
has a wider range of function in the CNS then so far assumed. Therefore, we have

investigated,

I if centrally administered KP-13 has any impact on the stress response and

associated behaviours, general activity and thermoregulation (in Chapter 2):

e We measured corticosterone response indicative of the endocrine HPA axis
activity. After establishing the overall effect, we set out to identify the
possible mechanism of action by applying CRH and AVP antagonist pre-
treatments as they are the most prominent activators of the endocrine

axis.

e To assess the effect of KP-13 on anxiety-related behaviour we registered
the explorative locomotor activity of animals in a novel environment (open
field (OF) test) and anxiety in the elevated plus maze (EPM) test. Again,
after determining the overall effect of kisspeptin we continued experiments
with combined treatments with antagonists (AVP receptor 1 (AVP1R)
antagonist and KISS1R antagonist) to explore how kisspeptin exerts it’s

effects on these parameters.

e We also investigated the effect of KP-13 on thermoregulation and general
activity by continuously monitoring core temperature and spontaneous

locomotor activity, both of which via a telemetric system.
IT if KP-13 influences depressive behaviour in mice (in Chapter 3):

e For this purpose we observed the swim stress-induced behavioural des-
pair in the modified forced swimming test (FST) in mice. Furthermore,
to investigate the neurotransmitters involved in mediating the effect of

kisspeptin different antagonist pretreatments were preformed.

IIT if KP-13, as a member of the RF-amide family also might play a role in pain
modulation (in Chapter 4):

e Thus, in the present experiments we have studied the effect of KP-13 on
pain sensitivity in the tail-flick test and the interaction between kisspeptin

and acute morphine actions.
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2 Kisspeptin Modulates HPA axis activity, beha-

viour and temperature of rats

2.1 Introduction

Taking the special importance of kisspeptin in the regulation of the HPG axis into
account, and the fact that recent data suggests kisspeptin neuronal projections to the
PVN [311 20|, it seems plausible that kisspeptin may take part in the control of the
HPA axis, the interaction between the two systems and may exert further integrative
activities in autonomic and endocrine control.

Therefore, in the present study, we investigated the central action of KP-13 on
the stress response, behaviour and thermoregulation, which processes are controlled
by the hypothalamus and the limbic system, where kisspeptin and its receptors are
found in abundance [20]. As an index of the activation of the HPA system the
corticosterone response was used. The spontaneous locomotion and core temperature
were monitored continuously with a telemetric system, while the exploratory and

anxiety-associated behaviour was observed in OF and EPM tests.

2.2 Materials and Methods
2.2.1 Animals

Adult male Sprague-Dawley rats (Domaszék, Hungary) weighing 150-250 g were
used at the age of 8 weeks. They were housed under controlled conditions (12/12-h
light /dark cycle, lights on from 6:00 a.m., at constant room temperature) and were
allowed free access to commercial food and tap water. The animals were kept and
handled during the experiments in accordance with the instructions of the Univer-
sity of Szeged Ethical Committee for the Protection of Animals in Research, which
approved these experiments. Approximately 160 animals in total were used in our
experiments. Every experiment was carried out separately; the same animal has

never been used for different experimental procedure.

2.2.2 Surgery

The animals were allowed 1 week to acclimatise before surgery. Subsequently, they
were implanted with a stainless steel Luer cannula (10 mm long) aimed at the right
lateral cerebral ventricle under pentobarbital (35 mg/kg, intraperitoneally (ip.)) an-
aesthesia. The stereotaxic coordinates were 0.2 mm posterior and 1.7 mm lateral
to the bregma, and 3.7 mm deep from the dural surface, according to the atlas of

Pellegrino et al. [31]. The cannula was secured to the skull with dental cement and
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acrylate. The rats were used after a recovery period of 5 days. All experiments were
carried out between 8:00 and 10:00 a.m.

For implantation of the telemetric radio transmitter (E-Mitter: a temperature-
activity transponder), the rats were anaesthetised with pentobarbital (35 mg/kg, ip.).
The abdomen was opened by making a 2-cm midline incision along the linea alba.
The E-Mitter was placed in the abdominal cavity, along the sagittal plane, in front
of the caudal arteries and veins, but dorsal to the digestive organs. The abdominal
wound was then closed with absorbable suture material, while the skin was closed
with stainless steel suture clips. After a recovery period of 5 days, the rats were
implanted with the stainless steel Luer cannula for icv. administration.

At the end of the experiments, the correct position and the permeability of the
cannula were checked. In the behavioural studies, each rat was sacrificed under
pentobarbital anaesthesia, and in the endocrinological experiments the head was
collected after decapitation. Methylene blue was injected via the implanted cannula
and the brains were then dissected. Only data from animals exhibiting the diffusion

of methylene blue in all the ventricles were included in the statistical evaluation.

2.2.3 Treatments

Administration of KP-13 (Protocol 1) Rats were injected with different doses
of KP-13 (Bachem, Switzerland) icv. in a volume of 2 ul over 30 s with a Hamilton
micro-syringe, immobilisation of the animals being avoided during handling. The
doses applied were 0.5, 1, 2 or 5 ug dissolved in 0.9% saline. Control animals re-
ceived saline alone. Thirty minutes after peptide administration, the rats were de-
capitated to obtain trunk blood for corticosterone measurement or were subjected to

behavioural testing.

Combined treatment with antagonists and KP-13 (Protocol 2) For this
experimental setting, animals were subjected to combined treatment with a receptor
blocker and KP-13. The following receptor blockers were used: AVP1R antagonist
(AVP ANT) (Bachem, Switzerland) and kisspeptin-234 (Sigma) in the EPM stud-
ies, whereas AVP1R antagonist (AVP ANT) (Bachem, Switzerland) and a-helical
CRF(9-41) (aCRF) (Bachem, Switzerland) in the corticosterone measurements. Each
antagonist was applied icv. in a concentration which per se does not affect the endo-
crine and behavioural paradigms: AVP ANT in a dose of 0.1 ug, aCRF in 1 ug and
kisspeptin-234 in 2 pug was applied. Thirty min after the antagonist pretreatment
the animals were treated with the dose of KP-13 that had proved most effective in
Protocol 1. Thirty min after peptide treatment, the rats were subjected to EPM test

or were sacrificed to obtain blood samples for corticosterone assays.
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2.2.4 Plasma Corticosterone Measurement

In order to determine plasma corticosterone concentrations, trunk blood was collected
in heparinised tubes. The plasma corticosterone concentration was measured by the
fluorescence assay described by Zenker and Bernstein [232] as modified by Purves
and Sirett [I75].

Sample Collection During the in vivo experiments trunk blood was collected from
the animals into heparinised tubes and centrifuged for 10 minutes at 3000 rpm. 200
ul of plasma were transferred to centrifuge tubes. In the case of the perfusion system

200 hundreds pl aliquots of the medium were transferred to centrifuge tubes.

Extraction A reagent blank of 200 ul of distilled water and 2 corticosterone stand-
ards of the same volume containing 25 ug or 50 ug, respectively were prepared. 5
ml of methylene chloride was delivered with an automatic pipette to each tubes
and rocked for 30 minutes to allow for complete extraction of corticosterone by the
solvent. The extract is centrifuged for 10 min at 3000 rpm. to eliminate any aqueous
phase. Approximately 3.2 ml of the lower hydrophobic phase was aspired with a glass

syringe then transferred into another centrifuge tube.

Fluorescent Reaction 4 ml fluorescent reagent [stable mixture of 2.4 volumes of
sulphuric acid and 1.0 volume of 50 % (v/v) aqueous ethyl-alcohol] was added to
the extract. The tubes were shaken vigorously for 15 min, centrifuged at 3000 rpm.
for 10 minutes and was allowed to stand at room temperature for 2 hours, which

permitted the maximum development of fluorescence from corticosterone.

Measurement Emission intensity was measured from the lower sulphuric acid layer
with Hitachi 204-A fluorescent spectrophotometer at 456 nm extinction and 515 emis-
sion wavelength. The concentration of corticosterone of the samples was calculated
from the values of the standards, and in the in vivo experiments was expressed as
pg/100 ml.

2.2.5 Telemetry

Different doses of KP-13 (1, 2 ug) or saline alone were injected icv. into conscious
rats, between 8:20 and 8:35 a.m. The animals had previously been implanted with
an E-mitter (Mini Mitter, USA), which receives power from the radio frequency field
generated by an energiser-reciever placed below the home cage. The system recorded
the motor activity and core temperature every 10 minutes, the output of which then

was processed by the VitalView program provided by the manufacturer.
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2.2.6 Open Field Test

In the OF test novelty-induced locomotor activity was assessed. The rats were re-
moved from their home cages and placed at the centre of a white wooden open field
box, the floor area of which measured 60 x 60 cm, marked into 36 10 x 10 cm squares.
The standard source of illumination was a 60 W bulb at a height of 80 cm. The ob-
served parameters were horizontal locomotion, vertical locomotion, grooming and the
number of defecations. The horizontal locomotor activity was characterised by the
total number of squares crossed during a 5-min test session (square crossing), the
vertical locomotion was determined by the number of rearings (standing on the hind
legs), and the grooming activity was established by observing face washing, forepaw
licking and head stroking. Every episode of face washing, forepaw licking and head
stroking was counted as a separate grooming session, independently of how long it

actually lasted.

2.2.7 Elevated Plus Maze Test

The EPM apparatus is a plus-shaped platform elevated 50 cm above the floor. It
consists of two opposing arms (50 cm x 10 cm each) with 10 cm high enclosing walls
(closed arms) and two arms with no walls (open arms). A 60 W light bulb at a height
of 80 cm provided the illumination. The maze was cleaned between each session with
96% ethyl-alcohol and all experiments were conducted between 8:00 a.m. and 10 a.m.
Naive rats were placed in the centre of the maze facing toward an open arm, and the
number of entries per arm and the times spent in the various arms were recorded
for a 5-min period by an observer who was blind to the experimental groups, sitting
approximately 1.5 m away from the apparatus. The test is designed to assess anxiety
based on the concept that the open arms are more aversive, and anxious rats therefore
spend less time in them [225]. In the figures the ratio of time spent in open arms
to total time spent in all arms, the ratio of entries to open arms to total number of

entries and the total number of entries into all arms are presented.

2.2.8 Statistical Analysis

Data are presented as means + SEM. Statistical analysis of the results was performed
by analysis of variance (ANOVA). For the corticosterone measurements, open field
and elevated plus maze tests, one-way ANOVA was employed, followed by the Holm-
Sidak post hoc test for multiple comparisons when the test prerequisites were fulfilled.
When the test of the homogeneity of variances was not satisfied, nonparametric AN-
OVA on ranks (Kruskal-Wallis) was performed, followed by Dunn’s test for multiple
comparisons. For the evaluation of the telemetric recordings, repeated measure AN-

OVA was performed; only the means were plotted and the pooled standard deviation
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(PSD) is provided in the Figure captions. For the assessment of the experiments
with combined treatments two-way ANOVA was used followed by the Holm-Sidak
post hoc test. A probability level of less then 0.05 was accepted as indicating a

statistically significant difference.

2.3 Results
2.3.1 Effect of KP-13 on Corticosterone Secretion

The icv. injection of KP-13 induced a dose-dependent elevation in basal plasma
corticosterone level. The corticosterone level following the 2 ug dose proved to be
statistically different from the control [F(3,31) = 3.955, p < 0.02; Figure 5|. aCRF
per se (1 pg/2 ul, icv.) did not affect the corticosterone secretion. In KP-13-treated
rats, pretreatment with the aCRF did not reverse the KP-13-induced elevation of
corticosterone [F(3,55) = 4.783, p < 0.05; Figure 6]. AVP ANT per se (0.1 ug/2 pul,
icv.) did not affect the hormone release. In the KP-13-treated rats, pretreatment with
AVP ANT resulted in a marked decrease of KP-13 evoked corticosterone elevation

[F(3,42) = 16.623, p < 0.001; Figure 7).

plasma corticosterone (pug/100 ml)

Control 05 ug KP-13 1 ug KP-13 2 ug KP-13
®) €) €)) €))

Figure 5: The effect of KP-13 on the hypothalamus-pituitary-adrenal system.®

5Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control.
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plasma corticosterone (ug/100 ml)

Control aCRF aCRF + KP-13
(14) (15) KP-13 (14) (14)

Figure 6: The effect of aCRF on KP-13-evoked activation of the hypothalamus-

pituitary-adrenal system®

plasma corticosterone (ug/100 ml)
O
|

10—
5]
0;
Control AVP ANT AVP ANT KP-13
(10) (11) +KP-13 (12) (11)

Figure 7: The effect of AVP ANT on the KP-13-induced activation of the

hypothalamus-pituitary-adrenal system *

6Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control, 1 ug aCRF.

"Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control, 0.1 ug AVP ANT, 0.1 ug AVP ANT + 2 ug KP-13.
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2.3.2 Effect of KP-13 on Spontaneous Locomotion and Core Temperat-
ure

After the KP-13 treatments between 8:20 and 8:35 a.m., increases in both locomotor
activity [F(2,30) = 5.842, p < 0.01; Figure 8] and core temperature [F(2,30) = 4.988,
p < 0.02; Figure 9] were observed in the home cages of the animals. In the case
of locomotion, this effect was present only for approximately the next hour and the
activity of the rats then returned to the level of the control animals, whereas in the
case of the core temperature the hyperthermic action of KP-13 persisted for several

hours after peptide administration.

300
treatment
g i
3 200
z — Control (12)
s 1 N 1 ug KP-13 (9)
E i -—- 2 ug KP-13 (12) «

0 T T T | T T T | T T T |
6:00 7:00 8:00 9:00
time (hour)

Figure 8: The effect of KP-13 on the spontaneous motor activity ®

38.5

temperature (°C)

J : AN : — Control (12)
37.0 : : S e 1 ug KP-13 (9) =
1 : i : -—-2ug KP-13 (12) «
: : treatment : :
T T I T T T T I T T | T T I T T I T T | T T
0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
time (hour)

Figure 9: The effect of KP-13 on the core temperature °

8Data are expressed as means. The pooled standard deviations (PSDs): 62.34 for the control,
69.34 for the 1 ug KP-13 treated group, 72.81 for the 2 pug KP-13 treated group. Numbers in
parenthesis denote the number of animals used. * p < 0.05 vs. control.
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2.3.3 Effect of KP-13 on Open Field Behaviour

KP-13 evoked a marked increase in the number of square crossings in the open field
test [F(4,41) = 3.001, p < 0.05; Holm-Sidak post hoc test: p < 0.01 vs control; Figure
10], but did not affect the other recorded parameters: rearing activity [F(4, 41) =
0.518, p = 0.723], grooming [H = 6.079, p = 0.193| or defecation [F(4, 41) = 1.225,
p = 0.315] (not shown in Figures). The effect of KP-13 administered in a 1 ug dose

on the number of square crossings proved to be statistically significant.
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Figure 10: The effect of KP-13 on exploratory locomotor activity °

2.3.4 Effect of KP-13 on Elevated Plus Maze Behaviour

KP-13 reduced both the number of entries into [F(3, 36) = 7.095, p < 0.001] and
the time spent [F(3, 36) = 3.298, p < 0.05] in the open arms (Figure 11), this action
proving to be dose-dependent. A statistically significant change in the time spent in
the open arms was caused by the 2 ug dose of KP-13, while as concerns the number
of entries into open arms, both the 1 and 2 ug doses induced significant reductions.
There was no difference in the number of total entries between the tested groups
[F(3, 36)= 0.555, p = 0.648]. AVP ANT per se (0.1 ug/2 pl, icv.) did not affect the
EPM behaviour. In KP-13-treated rats, pretreatment with the AVP ANT partially
reversed the KP-13-induced decrease in both time spent [F(3,29)=8.642, p < 0.05]
and entries [F(3,29)=3.776, p < 0.05] into open arms (Figure 12). Kisspeptin-234

9Data are expressed as means. The pooled standard deviations (PSDs): 0.40 for the control, 0.49
for the 1 ug KP-13 treated group, 0.52 for the 2 ug KP-13 treated group. Numbers in parenthesis
denote the number of animals used. * p < 0.05 vs. control.

10Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control.
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per se (2 pg/2 pl, icv.) did not affect the time spent in open arms, entries into open
arms or total entries. In the KP-13-treated rats, pretreatment with kisspeptin-234
resulted in an increase the time spent [F(3,36)=20.791, p < 0.05] and the entries
[F(3,36)=16.715, p < 0.05] into open arms (Figure 13).

&
£ 40+
2
é @ Control (10)
o 304 % (1) 0.5 ug KP-13 (10)
ks I—j I pg KP-13 (12)
2 £ 2 ug KP-13 (9)
i %
"g 20 + *
(2]
: T |
£ *
é 10 T %
< = T
: . B
(]
5 0 : : : :
time spent in entries to total entries
open arms open arms

Figure 11: The effect of KP-13 on elevated plus maze behaviour '*

@ Control (9)
40 + 5 AVP ANT (6)
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30+
20+

*
10+ L

open arm time and entries (open/total %)

time spent in entries to total entries
open arms open arms

Figure 12: The effect of the AVPIR antagonist (AVP ANT) on KP-13-induced

changes in elevated plus maze behaviour 2

Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control.
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Figure 13: The effect of kisspeptin-234 on KP-13-induced changes in elevated plus

maze behaviour 3

2.4 Discussion

In our experiments, KP-13 evoked an elevation of the corticosterone concentration.
The most important activators of the HPA axis are CRH and AVP [I82], secreted
by the parvocellular part of the PVN. Rao et al. [I80] recently reported that in
PVN-derived cell lines KP-10 generated significant increases in AVP and oxytocin
mRNA expression, whereas the CRH mRNA level was affected only at a high dose
[180]. Thus, a possible explanation for our result is that KP-13 may stimulate the
AVP-expressing neurones in the PVN, leading to activation of the HPA axis. In
point of fact, our results with the AVP antagonist revealed that AVP secretion is
necessary for kisspeptin-induced elevation of corticosterone. Furthermore, a recent
study found that kisspeptins can bind to the NPFF2R [121]. Accordingly, in our
previous experiments, NPAF, a potent NPFF2R ligand, also stimulated the HPA
axis [79]. NPAF was most effective at the dose of 0.5 pg, whereas it was the 2
g dose of KP-13 that elicited the greatest response. This might be explained by
the differences in the affinity and the efficacy of the two peptides. There is also
evidence pointing to the direct action of kisspeptin at the level of the pituitary.
Kisspeptin has been detected in ovine hypophyseal portal blood [205] and KISS1R

12Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control, AVP ANT, KP-13 + AVP ANT.

13Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control, KP-234, KP-13 + KP-234.
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has also been found in the pituitary by RT-PCR [I8]], here co-localised with ACTH
expressing cells [I78]. However, it must be noted that Rao et al. [I80] found that
ip. administered KP-10 had no effect on corticosterone secretion in mice. Recent
publications have also revealed that the activity of KP-10 is strongly dependent
on the route of administration: central injection of KP-10 inhibited food intake,
whereas ip. administration did not influence it in mice [208]. Additionally, Scott
and Brown [192] found KP-10 to be effective in increasing the firing rate of oxytocin
neurones on intravenous injection, but not on icv. administration. It is possible
that kisspeptin, like the vast majority of neuropeptides, cannot cross the blood-brain
barrier or does not reach the neuroendocrine regions relevant to the HPA axis in
sufficient concentration due to enzymatic degradation [I72]. These pharmacokinetic
problems can clearly be circumvented by properly designed analogs [44]. Another
explanation for the discrepancy between our results and that of Rao et al. [I80]
might be the use of KP-13 in our experiments instead of KP-10. Lyubimov et al.
[121] reported that the NPFF2R binding of kisspeptins depends on the length of the
peptide and the presence of the amidated C-terminal dipeptide. KP-13, therefore,
proved to be a more potent activator of NPFF2R then KP-10 [121].

Our results demonstrate that kisspeptin can influence the behaviour of rats. OF
and telemetric observations revealed that the icv. injection of KP-13 caused a marked
activation of novelty-induced and spontaneous locomotion. Increasing doses of KP-13
exhibited a bell-shaped dose-response curve. This type of response is well-known in
the literature and has been described in case of other neuropeptides [146, 22]. Since
KISS1R has been found abundantly in locomotor centres of key importance such as
the striatum and Amy [148, 98, 106], therefore it is plausible that KP-13 stimulated
these regions directly.

Furthermore, KP-13 evoked a preference for the closed arms in the EPM test,
which is indicative of an anxiogenic action of KP-13 in rats. This reinforces our
finding that KP-13 activated the HPA axis, as both CRH [97] and AVP [156] are
potent activators of stress-related behaviour. In our experiments, pretreatment with
an AVP1R antagonist diminished the anxiogenic actions of KP-13, which suggests
that central AVP release might be responsible for this effect. NPAF in a previous
study showed a similar anxiety-like behaviour, which is possibly mediated by the
NPFF2Rs. As KP-13 might be a potent activator of NPFF2R as well, these data
raise the issue if the observed effect of KP-13 is mediated through its cognate re-
ceptor, KISS1R or the NPFF2R. To address this question we have pretreated the
animals with kisspeptin-234, a potent KISS1R blocker and found that kisspeptin-234
abolished the anxiogenic action of KP-13. Hence, the effect of KP-13 on EPM may be
mediated through KISS1R signalling rather then NPFF2R. In fact, the central Amy

and the BNST, both of which have a pivotal role in generating negative emotional



Page 23

responses [39], receive input from kisspeptin neurons [106] and express KISS1Rs in
abundance.

KP-13 induced a significant elevation of core temperature that persisted for several
hours. An increased locomotor activity was also observed in these experiments,
however, this lasted only an hour suggesting that it is not the cause of the detected
changes in temperature. As kisspeptin is a well-known stimulator of GnRH [94],
GnRH might mediate the hyperthermic action of KP-13, which would be in accord
with the possible role of GnRH in thermoregulation, suggesting GnRH as a causative
factor in hot flashes [115, [41]. Other possible explanation could involve the activation
of hypothalamic prostaglandin synthesis, increased basal metabolic activity or the
stimulation of the hypothalamus-pituitary-thyroid axis.

Considering the fact that kisspeptin’s main role in the CNS is the regulation of
the HPG axis our results seem contradictory as suppression of reproductive function
in case of chronic stress is well documented in the literature [27, [110]. However, it
must recognised that coordination of HPG activity with other CNS functions is indis-
pensable, in which kisspeptin might play a crucial role. Indeed, kisspeptin recently
had been implicated in the integration of metabolic signals with that of reproduction
[17, [187]. Therefore, it is not a far-fetched idea that our results, in which KP-13
activated the HPA axis and associated behavioural paradigms, might reflect such an
integrative role of kisspeptin. Furthermore, the role of the stress system in the body
is defined as coping with any threat or actual damage to homeostasis (discussed in
detail in Introduction), therefore, signals of all homeostatic functions must be forwar-
ded to the PVN to adequately assess changes in the environment and to coordinate
a sufficient response. Kisspeptin might be one of the signals that can relay changes
in HPG activity, most specifically changes in cyclic activity. As a consequence, this
signalling can be the afferent part of a well-tuned regulatory loop, the end result of
which might be a rise in corticosterone secretion. In point of fact, in a recent pub-
lication corticosterone was found to inhibit Kissl mRNA expression in mice studies
[93], which might make up the efferent part of this regulatory loop. Nevertheless,
this is highly speculative as of yet and needs further investigation.

In conclusion, our results indicate that centrally injected KP-13 activates the
HPA axis, induces hyperthermia and stimulates behavioural paradigms such as spon-
taneous and novelty-induced locomotion. Furthermore, KP-13 seems to generate
anxiety-associated behaviour in adult rats. Our data confirm that RF-amide pep-
tides belong to those neuropeptide families that have especially important role in
neuroendocrine control. Notwithstanding, further investigations are necessary to
clarify the mediation and signal transduction of the presented physiological phenom-
ena, with special emphasis on the separation of the unique and overlapping features

in the activity profile of the different RF-amides.
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3 Kisspeptin Inhibits Depressive Behaviour in Mice

3.1 Introduction

In the central nervous system, kisspeptin is transcribed within the hippocampal dent-
ate gyrus [94]. In the present investigation, antidepressant-like effects of KP-13 were
studied and the potential involvement of the adrenergic, serotonergic, cholinergic,
dopaminergic and gabaergic receptors in its antidepressant- like effects was invest-
igated in a modified FST in mice. Mice were pretreated with a non-selective a-AR
antagonist, phenoxybenzamine, an a;/as8-AR antagonist, prazosin, an as-AR ant-
agonist, yohimbine, a [-AR antagonist, propranolol, a mixed 5 — HT1/5 — HT5
serotonergic receptor antagonist, methysergide, a nonselective 5 — H'I; serotonergic
receptor antagonist, cyproheptadine, a nonselective muscarinic acetylcholine receptor
antagonist, atropine, a D2, D3, D4 dopamine receptor antagonist, haloperidol, or a

GABA-A receptor antagonist, bicuculline.

3.2 Materials and Methods
3.2.1 Animals

CD1 (Charles Dawley) male mice were kept and handled during the experiments in
accordance with the instructions of the University of Szeged Ethical Committee for
the Protection of Animals in Research. Each animal was used in the experiments
only once. The animals were six week old, weighed between 28 and 35 g. They were
housed in cages in a room maintained at constant temperature (25 + 1°C) and on
a 12-h dark - light cycle (lights on at 06:00 - 18:00 h) with free access to tap water
and standard laboratory food. At least 1 week of recovery from surgery was allowed

before the experiments.

3.2.2 Surgery

The mice were implanted with a cannula introduced into the right lateral brain vent-
ricle in order to allow icv. administration. The polystyrene cannula was inserted
stereotaxically into the ventricle at the coordinates 0.2 mm posterior, 0.2 mm lateral
to the bregma, and 2.0 mm deep from the dural surface [167]. The cannula was se-
cured with cyanoacrylate (Ferrobond) (Budapest, Hungary). The mice were allowed

a minimum of 5 days to recover from surgery before any icv. administration.

3.2.3 Treatments

KP-13 was from Bachem (Basel, Switzerland); phenoxybenzamine hydrochloride

from Smith Kline French (Herts, UK); prazosin hydrochloride and yohimbine hy-
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drochloride from Tocris (Cologne, Germany); propranolol hydrochloride from ICI
Ltd. (Macclesfield, UK); methysergide hydrogenmaleate from Sandoz (Cologne, Ger-
many); cyproheptadine hydrochloride from Tocris (Bristol, UK); atropine sulfate
from EGYS (Budapest, Hungary); haloperidol from G. Richter (Budapest, Hun-
gary); and bicuculline methiodide from Sandoz (Basel, Switzerland). KP-13 was
lyophilized in a quantity of 10 ug per ampoule and stored at —20°C Immediately
before the experiments, the KP-13 was dissolved in sterile pyrogen-free 0.9% saline

and administered icv. via the cannula in a volume of 2 ul.

3.2.4 Forced swimming test

The mice were forced to swim individually in a glass cylinder 12 cm in diameter and
30 cm in height, filled with water to a height of 20 cm. The temperature of the
water was adjusted to 25 + 1°C. The water was changed between the individual
mice. A 15-min pretest session was followed 24 h later by a 5-min test session.
Phenoxybenzamine (2 mg/kg, ip.), prazosin (62.5 ug/kg, ip.), yohimbine (5 mg/kg,
ip.), propranolol (5 mg/kg, ip.), methysergide (5 mg/kg, ip.), cyproheptadine (3
mg/kg, ip.), atropine (2 mg/kg, ip.), haloperidol (10 pg/kg, ip.) or bicuculline (2
mg/kg, ip.) was administered 1 h before the test session, followed 30 min later by
KP-13 (2.0 pug/2 pl, icv.). Physiological saline was used as vehicle control. A time-
sampling technique was applied to score the durations of climbing, swimming and
immobility. Climbing time was measured when the mouse was participating in active
vertical motion with its forelegs above the water level; swimming time was recorded
when the mouse was moving horizontally on the surface of the water; and immobility
time was registered when the mouse was in a upright position on the surface with its

front paws together and making only those movements necessary to keep itself afloat.

3.2.5 Statistical analysis

Two-way ANOVA test was followed by Tukey’s test for multiple comparisons with
unequal cell size. Probability values of less than 0.05 were regarded as indicative of

significant differences.

3.3 Results
3.3.1 Effect of KP-13 on forced swimming test

Relative to the control, both the 1 ug and 2 ug dose of KP-13 significantly decreased
the immobility time [F(3,35) = 14.98: p < 0.05], significantly increased the climbing
time [F(3,35) = 7.75: p < 0.05] and swimming time [F(3,35) = 11.10: p < 0.05]. The
most effective dose of KP-13 proved to be the 2 ug dose (Figure 14).
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Figure 14: The effect of KP-13 on depressive behaviour in the modified mouse forced
swim test (FST)

3.3.2 Effect of Antagonist Treatments on the KP-13-Induced Anti de-

pressive Behaviour

Phenoxybenzamine per se (2 mg/kg, ip.) did not affect the immobility time, climb-
ing time or swimming time. In KP-13 treated mice, pretreatment with phenoxyben-
zamine partially reversed the KP-13- induced change in the immobility time, and
decreased the changes in the climbing and swimming times (Figure 15). Prazosin
per se (62.5 ug/kg, ip.) did not affect the immobility time, the climbing time or
the swimming time. In the KP-13 treated mice, pretreatment with prazosin did not
reverse the KP-13-induced changes in the immobility time, the climbing time or the
swimming time (data not shown). Yohimbine per se (5 mg/kg, ip.) did not affect the
immobility time, the climbing time or the swimming time. In KP-13-treated mice,
pretreatment with yohimbine partially reversed the immobility time, the climbing
time and the swimming time (Figure 16). Methysergide per se (5 mg/kg, ip.) did
not affect the immobility time, the climbing time or the swimming time. In the
KP-13 treated mice, pretreatment with methysergide did not reverse the immobility
time, the climbing time or the swimming time (data not shown). Cyproheptadine
per se (3 mg/kg, ip.) did not affect the immobility time, the climbing time or the
swimming time. In the KP-13-treated mice, pretreatment with cyproheptadine res-

ulted in an increased immobility time and decreased the changes in the climbing and

4Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control.
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swimming times (Figure 17). Propranolol per se (5 mg/kg, ip.) did not affect the
immobility time, the climbing time or the swimming time. In the KP-13 treated
mice, pretreatment with propranolol did not lead to an increase in the immobility
time, and did not affect the climbing time or the swimming time (data not shown).
Atropine per se (2 mg/kg, ip.) did not affect the immobility time, the climbing time
or the swimming time. In the KP-13 treated mice, pretreatment with atropine did
not affect the increased immobility time or the decreased climbing and swimming
times (data not shown). Haloperidol per se (10 pg/kg, ip.) did not affect the im-
mobility time, the climbing time or the swimming time. In the KP-13-treated mice,
pretreatment with haloperidol did not increase the immobility time, nor affect the
climbing or swimming times (data not shown). Bicuculline per se (2 mg/kg, ip.)
did not affect the immobility time, the climbing time or the swimming time. In the
KP-13 treated mice, pretreatment with bicuculline did not increase the immobility
time, the climbing time or the swimming time (data not shown).

The above results reveal that the antidepressant-like effects of KP-13 in this mod-
ified mouse FST are mediated, at least in part, by as-ARs and 5 — HT, serotonergic

receptors.
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Figure 15: The effect of a nonselective a-adrenergic receptor antagonist, phenoxy-
benzamine (POB) on KP-13-induced antidepressant-like action in modified mouse
forced swim test (FST) 1°

15Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control, POB, POB + KP-13.
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Figure 16: The effect of a nonselective a-adrenergic receptor antagonist, yohimbine

(YOH) on KP-13-induced antidepressant-like action in modified mouse forced swim

test (FST) 6
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Figure 17: The effect of a nonselective 5 — HT, serotonergic receptor antagon-

ist, cyproheptadine (CPH) on KP-13-induced antidepressant-like action in modified

mouse forced swim test (FST) 7

16Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *

p < 0.05 vs. control, YOH, YOH + KP-13.
1"Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *

p < 0.05 vs. control, CPH, CPH + KP-13.
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3.4 Discussion

Our results showed that KP-13 have an anti-depressant like effect in the modified
FST. Kisspeptin predominantly is expressed in brain regions that subserve circadian
regulation of the reproductive axis and possibly the integration of the HPG system
with other homeostatic systems [31, 20]. Icv. administration of kisspeptin results
in a robust increase in LH secretion and less prominent FSH release that ultimately
leads to the activation of the HPG axis [62, [I]. Taking this in account together with
the possible role of GnRH in mood disorder pathologies [15, [132] it is plausible that
kisspeptin exerts its effect through GnRH release. Additionally, a previous public-
ation reported that kisspeptin increases the firing rate of oxytocin neurones [192],
which could also explain the anti-depressant effect of kisspeptin as oxytocin has a
well known anxiolytic action in the brain [80]. However, in the light of our previous
data, in which kisspeptin activates the HPA axis and exerts anxiogenic behaviour
in rats, our results in the present experiments are quite contradictory. The reason
behind this discrepancy might be that the experiments were preformed in different
species. In rats we have observed a clearly increased production of corticosterone and
anxious behaviour, on the other hand, in mice kisspeptin was unable to provoke an
elevation in corticosterone level (our unpublished data). This suggests species differ-
ence at a functional level. Furthermore, KISS1R distribution in mice is confined to
GnRH neurones in the periventricular region of the hypothalamus and the dentate
gyrus of the hippocampus, but not expressed in the rostral part of the hypothalamus
[31, [72]. In contrast, rat brain expression studies showed a wider expression pattern
for the KISS1R, which includes other hypothalamic nuclei and the pituitary as well
[106] 20]. Considering these data, it is possible that the different expression patterns
of KISSIR in these species are responsible for the contrast in kisspeptin actions in
our studies. This concept also supports the idea that kisspeptin’s effect on anxiety
in rats might be mediated by the release of CRH and/or AVP in brain regions rel-
evant to mood. Nevertheless, further experiments are needed to clarify the possible
involvement of other neuropeptides in kisspeptin’s action.

To clarify the mechanism of the antidepressant-like actions of KP-13, various
receptor blockers were administered before icv. injection of KP-13. The receptor
blocker doses were selected so that the blockers per se were ineffective, but were able
to block the action of a neuropeptide as described in a previous study [158]. The
observation made with the receptor blockers indicated that the action of KP-13 is me-
diated by certain receptors. The nonselective a-AR antagonist phenoxybenzamine,
the as-AR antagonist yohimbine and the nonselective 5 — HT), serotonergic receptor
antagonist cyproheptadine prevented the effects of KP-13 on the immobility, climbing
and swimming times. The «;/f-AR antagonist prazosin, the 5-AR blocker propran-
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olol, the mixed 5 — HT,/5 — HT; serotonergic receptor antagonist methysergide,
the nonselective muscarinic acetylcholine receptor antagonist atropine, the D2, D3,
D4 dopamine receptor antagonist haloperidol and the GABA-A receptor antagonist
bicuculline had no effect on KP-13 induced anti-depressive behaviour.

Almost five decades ago was the classical monoamine hypothesis proposed to ex-
plain the therapeutical efficacy of the first anti-depressive medications such as the
tricyclic antidepressants and the monoamine oxidase inhibitors, both of which were
known to increase norepinephrine and serotonin levels in the brain [191, [0]. Since
then a great body of literature accumulated on the subject, however with mixed
results, leading to the realisation that the original hypothesis cannot answer for the
emerging evidence on the complexity and heterogenicity of depression-related neuro-
biology [75]. Nevertheless, even as it is, as of yet, unclear if the dysfunction of the
monoamine systems is a consequence or in fact a causative factor in the pathogenesis
of depression, it unarguably contributes to and exacerbates the pathological changes.
The central noradrenergic system is based in a brainstem nucleus known as locus
coeruleus, which through noradrenergic projections reach almost all brain areas and
thus influence multiple brain functions [9, [I89]. Noradrenaline released in the synapse
exerts its effect through GPCRs known as ARs [33]. as-ARs are found predominantly
in the CNS, and of the several subtypes, the as4-AR and asc-AR are implicated in
depressive behaviour [33]. In our results KP-13 evoked an anti-depressive behaviour
in the FST, which was inhibited by the non selective a-AR and the selective as-AR
blockers, whereas the a;/3-AR antagonist was not effective. These results suggest
that KP-13’s action is mediated by noradrenaline release and possibly as4-AR or
asc-AR activation. This is in accord with previous findings that indicate that agy-
AR agonists through the reduction in locus coeruleus firing activity compensate for
the depletion of noradrenaline levels [164], which is characteristic in depressive dis-
orders. Of the two subtypes of ARs, ass-AR seems to be more likely the culprit as
studies using knockout models for the two subtypes suggest opposing roles for them
in FST: as4-AR mediating anti depressive effect [165], whereas asc-AR activation
leads to depressive phenotype [166]. However, it must be noted that there are some
discrepancies in the subtype-selective studies which is possibly due to the scarcity
of them and to differences in methodology [33]. Nevertheless, our result indicate an
interaction between KP-13 and noradrenalin transmission, the how and where is yet
to be explored.

The anti depressive effect of KP-13 was also blunted by the 5 — HT; receptor
blocker. This suggests that serotonin neurotransmission mediated by 5 — HT5, re-
ceptors might be involved in KP-13’s actions in the FST. The role of the serotonin
system in depression is well known as evidenced by pharmacological and clinical ob-

servations that enhancement of serotonin function alleviates depression [116], how-
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ever, the mechanism behind it is not well understood. Our results implicate 5 — H'T5
receptors to be involved in mediating kisspeptin’s effect, which is in accord with
literature data. There are multiple 5 — HT5 receptors, of which both 5 — HTsy
and 5 — HT,¢ could mediate the effect of KP-13 on depressive behaviour supported
by, first, increased 5 — HT54 expression in the cortex have been found in patients
with depression or with depression-related personality traits [139 [197]. Second, se-
lective 5 — HT, 4 antagonists have been reported to produce anti depressive effects
in FST, sucrose preference test, social interaction test and open field exploration
[166, 164], third, co-administration with selective serotonin re-uptake inhibitors (SS-
RlIs) 5 — HT,, antagonists augment the effect of SSRIs [125]. On the other hand,
5 — HTy¢ is expressed in distinct brain regions such as the amygdala, hippocampus
and the substantial nigra among others [68] and both 5 — HT5¢ agonists and antag-
onists were found to exhibit antidepressant actions in animal models of depression
[35, 140, [45]. This discrepancy in the behavioural outcomes of the 5— HTy¢ agonist and
antagonist treatments might be explained by different mechanisms of action where
agonists exert their effect directly, whereas antagonists might act indirectly through
interaction with the dopaminergic and/or noradrenergic systems [23]. To determine
the exact mechanism behind the effect of kisspeptin on depressive behaviour further
experiments are needed.

In conclusion, our results indicate that KP-13 induces anti-depressive behaviour
in mice, which effect might come about, at least in part, by the interaction of as-

adrenergic and 5 — HT5, serotonergic receptors.
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4 Kisspeptin Modulates Pain Sensation in Mice

4.1 Introduction

Kisspeptin is a member of the RF-amide family, which have been previously implic-
ated in nociception control [56]. NPFF and analogues were found to have analgesic,
pronociceptive and antinociceptive, and furthermore morphine modulating activit-
ies. Evidence suggests that these effects are mediated by the activation of NPFF1R
and NPFF2R receptors, respectively [102, 165]. Additionally, all endogenous RF-
amide peptides seem to target not only their cognate receptors, but the NPFF1R
and NPFF2R receptors as well, which argue for their role in pain modulation [50].
Although much evidence has accumulated in the past couple of years that ascribes a
critical role for the NPFF1R and NPFF2R receptors for the pain-modulating effects
of RF-amide peptides, however, recent distribution data draws attention to other
receptors, such as KISSIR and GPR10, and their endogenous ligands that are ex-
pressed in several brain areas involved in the control of pain [I04]. For instance, both
KISS1R and kisspeptin mRNAs and proteins have been detected in the dorsal horn
of the spinal cord and in the dorsal root ganglia in rats [47, 140].
Therefore, in the present study we investigated the possible interaction of kisspeptin

with the acute effects of morphine on nociception and the potential involvement of

kisspeptin in acute morphine tolerance and withdrawal in adult male CFLP mice.

4.2 Materials and methods
4.2.1 Animals

Male CFLP white mice (304 5g of weight) of an outbred strain (Domaszék, Hungary)
were used. They were kept under a standard light - dark cycle (lights on between
07.00 and 19.00 h) with food and water available ad libitum. The animals were kept
and treated according to the rules of the Ethical Committee for the Protection of

Animals in Research (Faculty of Medicine, University of Szeged, Hungary).

4.2.2 Surgery

For icv. cannulation, the mice were anaesthetised with an ip. injection of Sodium
Pentobarbital (Euthasol, Phylaxia-Sanofi, Budapest, Hungary; 50 mg/kg), and a
polyethylene cannula was inserted into the right lateral cerebral ventricle and cemen-
ted to the skull with cyanoacrylate-containing instant glue. The experiments were
started 4 days after icv. cannulation. Upon conclusion of the experiments, 10 pul of
methylene blue were injected into the cerebral ventricle of the decapitated animals

and the position of the cannula was inspected visually. The spread of methylene blue
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throughout the ventricular space indicated that the whole amount of kisspeptin got
into the ventricles. Mice with improper cannula placement were excluded from the

final statistical analysis.

4.2.3 Treatments

Mice were injected with different doses of KP-13 (Bachem Ltd., Switzerland) icv.
in a volume of 2 ul over 30 s with a Hamilton microsyringe, immobilization of the
animals being avoided during handling. The doses applied were 0.5, 1, or 2 ug
dissolved in 0.9% saline. For experiments testing the effect of morphine, subcutan
(sc.) morphine HCI (Sigma-Aldrich) and naloxone HCI (Sigma-Aldrich) injections

were used. Control animals received saline alone.

4.2.4 Tail-Flick test

Kisspeptin effect on morphine-evoked analgesic response was tested by the tail-flick
system (IITC Life Science, California, USA) described by [36]. All experiments were
started with an initial tail-flick latency measurement, then pain sensitivity was meas-
ured 15, 30, and 60 min after peptide challenge in acute dose-response experiments
and 60, 90, and 120 min after the test morphine treatment. For tail-flick measure-
ment, animals were habituated to the experimental room at least 30 min prior to
testing. During the measurement, they were loosely restrained and the tail was posi-
tioned so that the light beam focused on the tail approximately 1-2 cm from the base.
Tail stimulation was delivered at different sites in consecutive measures to prevent

tissue damage. The analgesic effect was expressed according to following equation:

analgesic effect(%) = (T'F'n — TFO0)/(T Fmaxz — TF0)z100,

where TFO is the tail-flick latency in the preliminary test mentioned above or (in
tolerance studies) before morphine injection. TFn is the value of a repeated corres-
ponding measurement n (15, 30, 60 or 60, 90, 120 min) after KP-13 or/and morphine
injection, and TFmax indicates the cutoff (20 s).

The following experiments were carried out: The effect of KP-13 on pain sensit-
ivity were measured. In experiments with KP-13 on the acute antinociceptive effect
of a single dose of morphine, the peptide was administered 30 min prior to the test
dose of morphine (2.4 mg/kg sc.), and the pain sensitivity was measured 30 and 60
min later. In acute tolerance studies, animals were pretreated with KP-13 and 60
min later a tolerance-inducing dose of morphine (60 mg/kg sc.) was administered,
24 h after of which a test dose of morphine (4 mg/kg sc.) were injected to assess the

antinociceptive effect. In acute withdrawal studies, 30 min after KP-13 pretreatment
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a tolerance-inducing dose of morphine (60 mg/kg) was administered, 3 h after of
morphine injection animals received naloxone to precipitate withdrawal signs. The
precipitated abstinence syndrome was assessed by scoring the latency of the stereo-
typed jumping from a circular platform with a diameter of 35 cm placed 70 cm high.
A cut-off time of 900 s was applied. Meanwhile, body temperature and weight of the
animals were measured before naloxone treatment, 15 min, 30 min and 60 min after,

of which the changes were calculated.

4.2.5 Statistical Analysis

Data are presented as means + SEM. Statistical analysis of the results was performed
by ANOVA. For the effect of KP-13 on pain sensitivity and jumping latency in the
acute withdrawal study one-way ANOVA was employed, followed by the Holm-Sidak
post hoc test for multiple comparisons when the test prerequisites were fulfilled.
When the test of the homogeneity of variances was not satisfied, nonparametric AN-
OVA on ranks (Kruskal-Wallis) was performed, followed by Dunn’s test for multiple
comparisons. For the evaluation of the tail flick, weight and temperature recordings
with combined treatments two-way ANOVA was performed followed by Holm-Sidak
test for multiple comparisons. A probability level of less then 0.05 was accepted as

indicating a statistically significant difference.

4.3 Results
4.3.1 Effect of KP-13 on Tail-Flick Latency

Icv. injection of KP-13 dose dependently decreased the tail-flick latency of CFLP
mice, of the different doses applied the 1 ug proved to be the most effective (Figure
18). The action of kisspeptin on nociception was observed both 30 [F(3,36) = 6.04,
*p < 0.05] and 60 min [H = 8.139, * p < 0.05] after peptide administration.
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Figure 18: The effect of KP-13 on pain sensitivity in the tail-flick test 8

4.3.2 Effect of KP-13 on Challenge Dose of Morphine

A single dose of 2.4 mg/kg sc. morphine induced an appr. 80 % analgesia. KP-13 in
a 1 ug dose significantly lowered the analgesic effect of morphine 30 [H = 34.850, p
< 0.05] and 60 min |F(3,26) = 45.604, p < 0.05] after the narcotic challenge (Figure
19).
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Figure 19: The effect of KP-13 on morphine-induced analgesia in the tail-flick test

8Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control.



Page 36

4.3.3 Effect of KP-13 on Acute Morphine Tolerance

Acute tolerance was observed 24 h after a tolerance inducing dose of morphine was
applied sc. Our results showed that KP-13 treatment 30 min before tolerance in-
duction prevents the development of acute morphine tolerance. The KP-13-treated
animals that received the tolerance inducing dose of morphine showed a significantly
higher antinociceptive effect then tolerant animals both 30 min [F(3,22) = 78.333, p
< 0.05], 60 min [F(3,22) = 28.853, p < 0.05] and 120 min [F(3,22) = 13.188, p <
0.05] after injection of the 4 mg/kg sc. test dose of morphine (Figure 20).
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Figure 20: The effect of KP-13 on acute morphine tolerance in the tail-flick test 2°

4.3.4 Effect of KP-13 on Naloxone-Precipitated Acute Morphine With-

drawal

In the naloxone-precipitated withdrawal studies KP-13 caused a marked decrease in
the jumping latency [F(3,39) = 19.995, p = 0.008; Figure 21| of animals from the
platform.

The two-factor analysis of variance on weight changes revealed a significant main
effect for the treatments factor [F(3,118) = 36.746, p < 0.001]| and a significant main
effect for the time factor [F(2,118) = 7.445, p < 0.001], however the interaction
between treatments and time was not significant [F(6,118) = 0.245, p = 0.96], so the

19 Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control. + p < 0.05.

20Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control. + p < 0.05.
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effect of different levels of treatments does not depend on what level of time is present.
The two-way ANOVA on body temperature changes yielded a significant main effect
for the treatments factor [F(3,118) = 140.576, p < 0.001] and a significant main effect
for the time factor [F(2,118) = 45.568, p < 0.001], however the interaction between
treatments and time was not significant [F(6,118) = 1.431, p = 0.209], the effect
of different levels of treatments does not depend on what level of time is present.
Morphine tolerant mice showed a significant reduction in both weight (data not
shown) and temperature (Figure 22) within the different levels of time (15 min, 30
min and 60 min) [p < 0.001], however the KP-13-treated morphine tolerant group did
not differ significantly from the morphine tolerant group. Only a slight tendency for
KP-13 to further reduce the weight loss and hypothermia was observed. Of note is the
result that KP-13 alone caused a marked elevation in body temperature compared

to the control animals within all levels of time [p < 0.001] (Figure 22).

jumping latency (min)

Control withdrawal withdrawal + KP-13
(10) (10) KP-13 (10) (10)

Figure 21: The effect of KP-13 on jumping behaviour in naloxone-precipitated

morphine withdrawal. 2!

2IMean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control. + p < 0.05.
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Figure 22: The effect of KP-13 on the hypothermia induced by naloxone-precipitated

morphine withdrawal 22

4.4 Discussion

Central administration of KP-13 cause a marked hyperalgesia in the tail-flick test.
This is in accordance with previous findings in hot plate and formalin tests conducted
by Spampinato et al. [206] and recent results that of Elhabazi et al [50]. In our exper-
iments no linear dose-response curve, but rather an inverted bell-shaped response was
observed, which is well known in the literature, and has already been described in case
of endomorphins [22] and other neuropeptides [146]. Possible mechanism for this phe-
nomenon could be homologous desensitization by G-protein coupled receptor kinases
that phosphorylate already activated receptors thus lowering the responsiveness of
the cell specifically to ligands of those receptors [54], [I73]. Activation of less-specific
inhibitory receptors at higher concentrations [77] or postsynaptic down-regulation of
the receptor itself [6] might also explain such a dose - response relationship. The effect
of KP-13 on pain sensitivity may be mediated through its cognate receptor, KISS1R,
or the NPFF1 and NPFF2 receptors. In support of KISS1R mediation stands several
results. First, kisspeptin and KISS1R are expressed in neuronal structures involved
in nociception signalling such as dorsal root ganglia and the dorsal horn lamina I
and II of the spinal cord as well as brain regions such as hippocampus, amygdala
and periaqueductal grey [94, 47, [140]. This pattern of expression suggests a func-
tion in pain modulation. Second, in chronic inflammatory pain model kisspeptin and

KISS1R up-regulation was detected at the level of the dorsal root ganglia and dorsal

22Mean and SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p < 0.05 vs. control.
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horn neurones [I40]. Third, Spampinato et al. reported that the KISSIR antagonist,
kisspeptin-234 exhibits a clearly analgesic effect in formalin test [206]. Fourth, the
NPFFR agonist, NPFF in numerous studies caused analgesia when the route of ad-
ministration was intrathecal instead of icv. [I65]. Based on the fact, that kisspeptin
showed to lower pain sensitivity in case of intrathecal and intraplantar injections, it
is plausible that the effect of kisspeptin is mediated by the KISS1R and not by the
NPFFRs. However, in the face of the above mentioned data, Elhabazi et al. in a
recent publication reported that RF9, a selective NPFFR antagonist, suppressed the
hyperalgesic and anti-morphine activity of icv. administered kisspeptin [50]. In this
study the route of administration compared to the study conducted by Spampinato
et al. differed as animals received kisspeptin icv. and not peripherally. Additionally,
receptor binding data and two different functional assays provide further support,
in which all RF-amide peptides were found to target NPFF1R and NPFF2R in a
nanomolar concentration range [50]. Furthermore, both NPFF1R and NPFF2R have
been previously indicated in the modulation of pain [I02]. Hence, these results in-
dicate NPFFR involvement, at least, in the central kisspeptin actions rather then
KISS1R mediation. However, it must be noted that a recent publication raises the
possibility that RF9 might not be a true selective antagonist of NPFF receptors as
it was unable to reverse the anorectic effect of a NPFF analogue and alone displayed
an anorectic effect as well [I122]. Undoubtably, results from these studies have been
inconclusive and further investigation must be conducted to clarify the receptors
involved in kisspeptin’s pain modulatory effect.

The present results revealed an interaction between centrally injected kisspeptin
and morphine. KP-13 showed a clear anti-morphine activity as it blunted the anal-
gesic effect of a single injection of morphine. This result is in concert with previous
publication in which KP-10 reversed morphine analgesia as well, the effect of which
have been blocked by RF9. Thus, this effect may also be mediated by the NPFF sys-
tem, rather then the KISS1IR as NPFF receptors are highly co-localised with opioid
receptors [50]. Furthermore, in our experiments KP-13 inhibited the development of
acute tolerance to morphine. Short-term tolerance, an exposure to morphine up to 1
day, can be due to multiple adaptive and/or counter adaptive mechanisms. Adapt-
ive mechanisms refer to regulatory processes that directly decrease opioid response
or sensitivity: agonist stimulation of p opioid receptor (MOR) results in rapid de-
sensitisation and impaired resensitisation together with reduced recycling of MOR
receptors to the surface [29, 229]. On the other hand, counter adaptive mechanisms
engaging opposing or compensatory regulatory mechanisms might also contribute to
the development of tolerance [70]. As an example, multiple neuropeptides have been
implicated to have opioid modulating actions in the CNS: orphanin FQ/nociceptin,
Tyr-MIF-1, calcitonin gene-related peptide and NPFF [70]. As kisspeptin has been



Page 40

previously demonstrated to bind and activate NPFF receptors [121], it is plausible
that its effect on acute morphine tolerance is mediated by the NPFF system. Results
of several experiments suggest that NPFF might play a role in morphine tolerance
and dependence. First, antibodies against the peptide can reverse morphine tol-
erance [I01]. Second, NPFF was found to induce withdrawal-like symptoms [123].
Last, more recent publications have reported that the tolerance inducing effect of
NPFF might be mediated by GRK2-dependent phosphorilation of MOR induced by
NPFF receptor activation in cell cultures, which will ultimately lead to a decrease
in the number of functional MOR with no associated internalisation of the recept-
ors [147]. However, based on the above mentioned data, NPFF receptors induce
tolerance rather then inhibit it, which is in contrast with our results with KP-13.
This discrepancy might be explained by the difference in treatment protocols used
in previous publications with NPFF compared to our experiments. In other studies
NPFF was co-administered with morphine, however in our study the animals received
KP-13 60 min before morphine treatment. It is possible that kisspeptin already re-
duced the number of functional MORs on the cell surface by the time of morphine
treatment, thus blunting the tolerance-inducing effect of morphine [I85]. Another
possible reason behind our results might be that the tolerance-inhibiting action of
KP-13 was mediated not by NPFFRs but the KISS1R. This is further supported
by the distribution data of KISS1R expression and the diverse signal transduction
cascades mobilised in case of receptor activation [94] 24].

Our results also demonstrate that KP-13 aggravates naloxone-precipitated ab-
stinence syndrome. However, it must be noted that a significant change was only
detected in escape behaviour (jumping latency), significant change in temperature
and weight between the morphine withdrawal and the KP-13 treated morphine with-
drawal groups was not found, only a tendency was observed. As previously men-
tioned, the NPFF system as an opioid-modulating system involved in homeostasis
counteracts the action of opioids contributing possibly to the development of tol-
erance [70]. In withdrawal studies NPFF was able to produce some signs of a
withdrawal syndrome in morphine-dependent rats [123]. Furthermore, the immun-
oneutralisation of NPFF or injection of antisense oligonucleotides to the precursor
proNPFFA decreased the intensity of withdrawal signs in morphine-tolerant animals
[58, 101], 124]. This suggests that NPFF system might play a role in the mediation
of the withdrawal syndrome. Taking these data into consideration it is possible that
the effect of KP-13 on withdrawal is mediated by the NPFF system.

Another interesting observation of our experiments was that KP-13 induced a
hyperthermia in the animals revealed by the temperature recordings in the acute
withdrawal study. 1 pug of KP-13 caused a marked elevation of body temperature 15,

30 and 60 minutes after peptide treatment compared to control mice. This underlies
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our previous results in rats, in which both 1 pg and 2 pg of KP-13 induced a lasting
(appr. 6 h long) hyperthermia. Thus, it seems that the hyperthermic action of KP-13
is shared among the two species.

In conclusion, our results indicate that centrally injected KP-13 reduces the
pain threshold in the tail-flick test, reverses morphine analgesia and reduces acute
morphine tolerance. Furthermore, KP-13 seems to worsen the withdrawal signs pre-
cipitated by naloxone in adult mice. Our data confirm and provide further support
to the concept that all RF-amide peptides might play a modulatory role in pain
sensation and raises the idea that with their diverse neuroendocrine functions they
might be important for the integration of neuroendocrine and nociceptive processes.
In point of fact, several lines of evidence suggest an interaction between the repro-
ductive axis and pain sensitivity, therefore kisspeptin might be an additional factor

relaying information about reproductive state to nociceptive centres.
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5 Conclusion

The thesis was set out to explore if kisspeptins have a more widespread function in
the CNS then the regulation of the HPG axis. We have proposed a role for kisspeptin
in the organisation of the stress response and stress-associated behaviours. The study
has also sought to know whether kisspeptin, similarly to other RF-amide peptides
can modulate pain sensitivity and can impact the acute actions of morphine on
nociception. The main findings were presented and evaluated within the respective
empirical sections: Section 2: Kisspeptin Modulates HPA Axis Activity, Behaviour
and Temperature of Rats; Section 3: Kisspeptin Inhibits Depressive Behavior in
Mice; Section 4: Kisspeptin Modulates Pain Sensation in Mice. This section will
synthesise these findings and attempt to provide a conceptual framework by which

these results could be interpreted.

5.1 Kisspeptin and the Stress Response

Our findings are in complete harmony with the growing body of evidence suggesting
that kisspeptin may play a more general role in autonomic, neuroendocrine and
behavioural regulation. The peptide takes part in cardiovascular [I36] and metabolic
[17] functions, pregnancy [II] and cognitive processes [3], 215]. Clearly, the control
of the aforementioned processes necessitates integration with gonadal activities. The
gender-dependent nature of the stress response, stress tolerance and longevity, the
interactions between the HPG axis and the HPA system have been well described
in the literature |27, 110} Q9] 223] 228]. Sexual steroids influence the expression of
CRH and AVP in the hypothalamus [I86], 222|, whereas chronic stress suppresses
the reproductive function [27], 110]. However, a series of experiments demonstrate
that glucocorticoid release from the adrenal gland, in actuality, preserves the HPG
activity during stress [I31, 130]. In light of this and the effect of kisspeptin, a
prominent stimulator of GnRH release, on the HPA axis activity, the concept on
the interplay between the HPG and HPA axises needs to be revisited in order to
truly understand how integration between them is managed. Kisspeptin has also
already been implicated in sensing and relaying information about energy stores to
the HPG axis [42]. Animal studies revealed reduced expression of Kissl mRNA
and gonadotrophin secretion in fasting states [25], 119, 86, 126]. Also, leptin may
signal metabolic state of the body through kisspeptin neurones. Leptin as a critical
adipose hormone is secreted in proportion to fat stores and is known to be essential
for pubertal onset and fertility [28]. GnRH neurones do not have leptin receptor,
however kisspeptin neurones in the mice ARC do express it [I77, §]. Smith et al.
demonstrated that leptin-deficient ob/ob mice had a reduced expression in the Kissl

mRNA expression, which was partially reversible by leptin treatment [202]. In a
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rat model of diabetes mellitus, similarly, a decreased hypothalamic Kissl mRNA
expression with low levels of circulating sex steroids were found that was reversed by
kisspeptin administration [26]. Furthermore, a number of other metabolic modulators
have been linked with kisspeptin neuronal activity directly or indirectly like insulin
[176], ghrelin [128] and central hypothalamic regulators [42]. All of these findings
point to the possibility that changes in kisspeptin signalling might be responsible for
the compromised fertility in altered energy balance. Taking these phenomena and
the versatile physiological functions of kisspeptin into account, it is apparent that,
besides the well-characterised PrRP [112, 214} 161], further members of the RF-amide
family may play integrative roles in the harmonisation of the HPG and HPA activity.

5.2 Kisspeptin and Nociception

On another note, sex differences in pain sensitivity and variations in pain threshold
and pain tolerance over the menstrual cycle as well as the overrepresentation of
characteristic pain syndromes such as fibromyalgia, migraine, tension headache, tri-
geminal neuralgia, carpal tunnel syndrome and temporomandibular disorders in wo-
men point toward the involvement of the reproductive system in pain modulation
[219, 52, 163]. Of additional interest are the changes occurring with the onset of
menopause. It has been shown that after menopause a decrease in endogenous opioid
production occurs, which have been associated with the symptomatology of post men-
opause and hormone replacement therapy restored opioid levels [59] [I5T]. Clearly,
there is a connection between the HPG axis and the regulation of pain sensation,
however, the underlying mechanism is not well understood and many of the pub-
lished studies, both animal and human, experimental and clinical reported, at least,
partly contradictory results. Gonadal hormones including estrogens and progesterone
have been implicated in affecting pain sensitivity, however again results are contra-
dictory as a clear anti or pronociceptive effect could not be demonstrated for either
[143, 209, 63, 227, B4]. Our results taken together with the above mentioned data
raises the possibility that kisspeptin might provide a link between the reproductive

and pain modulatory systems.

5.3 Kisspeptin and Circadian Rhythm

The dense expression of kisspeptin in the ARC and the innervations of the suprac-
hiasmatic nucleus [31] underlines our findings and argues for the role of the peptide
in the circadian regulation of metabolic processes, core body temperature, pain sen-
sation and hormone production. In point of fact, the basal HPA activity shows a
circadian rhythm that is provided by input from the suprachiasmatic nucleus, lead-

ing to the pulsatile secretion of CRH [144] 224]. The role of kisspeptin in circadian
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control is further supported by recent publications establishing the kisspeptin system
as an important relay centre for the integration of environmental cues and the precise
timing of puberty [154], the pre-ovulatory LH surge [91], 201], and structural plasti-
city in seasonal reproduction [I08|. Similarly, the observed effect in our experiments
on motor paradigms [I88] and pain sensation [60] can also be attributed to a plaus-
ible regulatory role in circadian activity, sleep-wake cycle, arousal and autonomic
regulation suggested by the expression of kisspeptin neurones in the suprachiasmatic

nucleus [31] and the pre-optic nucleus of the hypothalamus [32].

5.4 Limitations of the Study and Implications for the Future

Limitations of the studies on which this thesis was based on must be addressed as
well. The interpretation of the above presented results need careful consideration.
First, the seemingly contradictory results on anxiety and depressive behaviour in
rats and mice draw attention to the differences among animal species. Second, this
study did not investigate and therefore could not distinguish if the observed effects
of kisspeptin are truly that of KISS1IR mediation and not of the more general effects
of other RF-amide peptides due to NPFF receptor activation. As a consequence,
further investigations are necessary to clarify the mediation and signal transduction
of the presented physiological phenomena, with special emphasis on the separation
of the unique and overlapping features in the activity profile of the different RF-
amides. Furthermore, the mode of kisspeptin administration, as with most of pep-
tides, provides quite a challenge and thus there is a need for the development of
non-peptidergic analogues [49]. With these it might be possible to further elaborate
the true spectrum of its physiological actions and may provide a new avenue for the
development of novel strategies for reproductive endocrine disorders. In point of fact,
there are multiple clinical trials underway to investigate kisspeptin’s possible effect
and therapeutic value in post menopause, diabetes mellitus, disorders of puberty
and infertility. The potential ability of kisspeptin to influence pain sensitivity, re-
sponse to analgesic treatment and mood cannot be disregarded and must be further

investigated in both animals and humans.
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6 Summary

The objective of this dissertation was to explore if kisspeptins have a more wide-
spread function in the CNS then the regulation of the reproductive axis. Kisspeptin,
a member of the RF-amide family, is an endogenous neurohormone responsible for
the organisation of the HPG axis. As the product of the Kiss-1 gene it is present
in four biologically active forms consisting of 54, 14, 13 and 10 amino acids. Both
the distribution data of the peptides and its cognant receptor, both the already well-
established function of related RF-amide peptides in nociception and neuroendocrine
processes, as well as the emerging evidence associating kisspeptins with metabolic
integration underlies the need for further studies. Therefore, we have investigated if
centrally injected kisspeptin has any role in the organisation of the stress response
and stress-associated behaviours, general activity and thermoregulation. We have
also sought to know whether kisspeptin, similarly to other RF-amide peptides can
modulate pain sensitivity and can impact the acute actions of morphine on nocicep-
tion.

KP-13 was administered icv. in different doses to adult male Sprague-Dawley
rats, the behaviour of which was then observed by means of telemetry, OF and EPM
tests. Additionally, plasma concentrations of corticosterone were measured in order
to assess the influence of KP-13 on the HPA system. The effects on core temperature
were monitored continuously via telemetry. To assess the mediation of KP’s effect
on EPM behaviour AVP1R or KISS1R antagonists were administered 30 min before
peptide treatment, whereas in the corticosterone measurements AVP1R antagonist
and a-helical CRF(9-41) pretreatments were applied.

In another set of experiments antidepressant-like effects of KP-13 were studied and
the potential involvement of the adrenergic, serotonergic, cholinergic, dopaminergic
and gabaergic receptors in its antidepressant-like effects was investigated in a modified
FST in mice. The mice were pretreated with a non-selective a-adrenergic receptor
(AR) antagonist, phenoxybenzamine, an oy /as8-AR antagonist, prazosin, an as-AR
antagonist, yohimbine, a a-AR antagonist, propranolol, a mixed 5 — HT1/5 — HT;
serotonergic receptor antagonist, methysergide, a nonselective 5 — H'T; serotonergic
receptor antagonist, cyproheptadine, a nonselective muscarinic acetylcholine receptor
antagonist, atropine, a D2, D3, D4 dopamine receptor antagonist, haloperidol, or a
v-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline.

Finally, in the third study we have endeavoured to shed light on the possible
interaction of kisspeptin with morphine on nociception in adult male mice. Following
the icv. administration of KP-13, the pain sensitivity was measured by a heat-radiant
tail flick test. To assess the effect of KP-13 on acute morphine analgesia, the most

effective dose was injected 30 minutes before a single subcutaneous dose of morphine
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(2.4 mg/kg). Furthermore, acute morphine tolerance was evaluated by giving a bolus
injection of morphine (60 mg/kg) 24 h before the pain sensitivity to a challenge
dose of morphine (4 mg/kg) was measured. To evaluate if KP-13 has an effect on
withdrawal signs, 3 h after the development of acute morphine tolerance naloxone-
precipitated withdrawal was inducted and stereotyped jumping behaviour, weight
and body temperature changes were observed.

Our results demonstrated that KP-13 stimulated the horizontal locomotion in the
OF test and decreased the number of entries into and the time spent in the open
arms during the EPM tests, which was blocked by both the AVP1R and KISS1R
antagonists. The peptide also caused marked elevations in the spontaneous locomotor
activity and the core temperature recorded by the telemetric system, and significantly
increased the basal corticosterone level, the last of which was prevented by again the
AVPI1R blocker.

The FST revealed that KP-13 reversed the immobility, climbing and swimming
times, suggesting antidepressant-like effects. Phenoxybenzamine, yohimbine and
cyproheptadine prevented the effects of KP-13 on the immobility, climbing and swim-
ming times, whereas prazosin, propranolol, methysergide, atropine, haloperidol and
bicuculline did not modify the effects of KP-13.

Furthermore, our results showed that KP-13 significantly decreased the pain
threshold. Peptide treatment also depressed the acute nociceptive effect of morphine
and attenuated the development of morphine tolerance. In the withdrawal experi-
ment KP-13 was found to exacerbate withdrawal signs, however our results were not
significant.

In conclusion, our data indicate that icv. administered KP-13 stimulates the HPA
axis through the release of AVP, induces hyperthermia, activates motor behaviour
and causes anxiety in rats by the activation of KISS1R and by AVP secretion. Our
results also demonstrate that the antidepressant-like effects of KP-13 in a modified
mouse FST are mediated, at least in part, by an interaction of the as-adrenergic and
5 — HT, serotonergic receptors. Finally, our data underlies kisspeptin’s hyperalgesic
effect and suggest that central KP-13 administration can modify the acute effects of

morphine.
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7 Osszefoglalas

A kisspeptin egy Arg-Phe (RF)-amid csaladba tartozo neurohormon, melynek els6d-
leges szerepe a gonadélis tengely kozponti szabalyozasdban van. Az RF-amidok egy
viszonylag ijonnan megismert peptid csalad tagjai, melyek elsGsorban a nocicepcio
és neuroendokrin folyamatok szabélyozasdban vesznek részt. A kisspeptin rendszer
szerepe mér igazolt bizonyos human korképekben (hypogonadotrop hypogonadizmus,
pubertas praecox), melyek kapcsan felmeriilt lehetséges terapias célpontként is, igy
fontos lehet minden szervezetben betoltott funkcivjanak a megismerése.

A kisspeptin a Kiss-1 gén terméke, négy bioldgiailag aktiv formaban létezik: 54,
14, 13 és 10 aminosav szekvenciaval. A peptid és receptora szamos helyen kimutatha-
t6 a kozponti idegrendszerben, tobbek kozott a limbikus rendszerben, stridtumban,
hipofizisben és a hipotalamusz paraventrikularis magjaban, mely a stressz tengely
kozpontja. A kisspeptin nemcsak a kisspeptin receptorhoz (KISS1R), hanem a ne-
uropeptid FF2 receptorhoz is kotddik, melynek neuroendokrin folyamatok szabalyo-
zésaban betoltott szerepe mar igazolt. Az RF-amid peptideknek kiilonbozik a ha-
tasspektrumuk. A PrRP, példaul aktivalja a hipotalamusz-hipofizis-mellékvesekéreg
(HHM) tengelyt, fokozza a sztereotip viselkedést, valamint presszor hatast valt ki.
Ugyanakkor, a neuropeptid AF csokkentette a szivirekvenciat, mig a stressz tengely-
re, ill. lokomociéra stimulalé hatast fejtett ki. Fontos még kiemelni, hogy szamos
tagjuk részt vesz a fajdalomérzet modulalasaban, azonban hatésuk, gy tiinik a re-
ceptor szelektivitasuktol, valamint az anyagbeadas helyétsl (centralis, ill. periférias)
is fiigg. Tovabba, korabban kimutattak a kisspeptin receptor jelenlétét a gerinc-
vel§ hatso szarvaban, ill. fajdalom kiiszobot csokkentd hatasat. Figyelembe véve
ezen eredményeket, kisérleteink sorédn a kisspeptin hatasat vizsgaltuk a HHM ten-
gely miikodésére és a stressz kivaltotta viselkedésre, a termoreguléciora, valamint a
fajdalomérzet szabélyozasara.

Kisérleteinket him Sprague-Dawley patkanyokon és him egereken in vivo és in
vitro rendszerek segitségével végeztiik. Patkany kisérleteinkben a peptidet intrace-
rebroventrikularisan (icv.) adagoltuk, majd 30 perccel késGbb torzsvért nyertiink a
plazma kortikoszteron meghatarozasahoz vagy megfigyeltiik az allatok viselkedését
a nyilt tér, ill. a megemelt keresztpallo tesztben a szorongas-szerii tiinetek felmé-
réséhez. Telemetria rendszer segitségével vizsgaltuk a kisspeptin hatasat a spontan
mozgasaktivitasra és a maghdmérsékletre. Hogy tisztédzzuk milyen mediatorok felels-
sek a kisspeptin kortikoszteron szintre és szorongésra gyakorolt hatasanak medialasé-
ban, el6kezelést alkalmaztunk receptor antagonistakkal: nem szelektiv CRF receptor
antagonistaval (a-helikalis CRF(9-41)), szelektiv vasopressin 1 receptor (AVPI1R)
blokkol6val, valamint KISS1R blokkoloval.

Tovabbé, hogy felmérjiik a kisspeptin hatasat depresszios magatartasra, icv. kis-
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speptin beadast kovet&en erdltetett tiszas tesztet végeztiink CD1 egereken. Nem-
szelektiv a-adrenerg receptor (AR) (phenoxybenzamin), o /aef-AR (prazosin), ao-
AR (yohimbin), a-AR (propranolol), kevert 5 — HT} /5 — HT; szerotoninerg receptor
(methysergid), nem-szelektiv 5 — HT5 szerotoninerg receptor (cyproheptadin), nem-
szelektiv muszkarin tipust acetilkolin receptor (atropin), D2, D3, D4 dopamin recep-
tor (haloperidol), és végiil y-aminovajsav A alegység (GABA-A) receptor (bicucullin)
antagonistakkal szeretnénk feltérképezni milyen mediatorok kozvetitésével valtja ki
hatasat.

Végiil, a kisspeptin nocicepciora kifejtett hatasat termonociceptiv farokvisszahu-
zasos teszt segitségével vizsgaltuk CFLP egerekben. A peptid icv. beadésat kdvetGen
mértiik a farokvisszahuzas latenciat 30, 60 és 120 perc utan. Ezenkiviil, mértiik a
kisspeptin hatésat akut morfin kivaltotta antinocicepciéra, valamint az akut tole-
rancia kialakulasara. Ez utobbi kapcsan kisspeptin kezelés utdn 60 perccel az al-
latok egy toleranciat indukald dozisa morfint kaptak szubkutan (sc.), majd 24 o6ra
mulva teszt-dozisi morfin utdn mértiik az antinociceptiv hatast. Az akut morfin
megvonas tlineteire gyakorolt hatasat az egerekre jellemzd sztereotip ugrasi latencia
meghatarozasaval, valamint a testhGmérséklet és testsuly folyamatos regisztralasaval
igyekeztiink felmérni.

Eredményeink azt mutattak, hogy a kisspeptin stimulélta a kortikoszteron szekré-
ciot és az exploratoros lokomociot a nyilt tér tesztben, valamint szignifikinsan csok-
kentette a patkanyok nyitott karban eltoltott idejét a megemelt keresztpallo tesztben.
Telemetrias eredményeink szerint a kisspeptin fokozta a spontdn mozgasaktivitast és
a maghdmérsékletet. Az antagonista elkezelések koziil az a-helikalis CRF(9-41) nem
hatott szignifikinsan a kisspeptin altal kivaltott HHM tengely aktivaciora, valamint
szorongasra; ellenben a AVP1R blokkol6 mindkét kisérletben kivédte azt. A KISS1R
blokkol6 szintén csokkentette a kisspeptin kivaltotta szorongast. Ugyanakkor, CD1
egereken végzett kisérleteink eredményeképpen a kisspeptin antidepressziv hatésa
igazolodott, melyet a phenoxybenzamin, a yohimbin, valamint a cyproheptadin els-
kezelés kivédett. Farokvisszahiizésos kisérletekben a kisspeptin csokkentette a fajda-
lomkiiszobot és az akut morfin kivaltotta analgéziat. Tovabba, kisspeptin kezelésre
csOkkent a morfin akut toleranciat kivaltéo hatésa, ill. a megvonasban tapasztalt
ugrasi latencia.

Eredményeink alapjan elmondhatjuk, hogy a kisspeptin szerepet jatszhat a stressz
valasz szabalyozasaban és szorongast valt ki patkdnyban, mig egérben antidepressziv
hatasinak bizonyult. Antagonista kezeléseink igazolték, hogy az el6bbi feltehetGen
KISS1R aktivacio és AVP centralis felszabadulasan keresztiil jon 1étre, mig az utobbi
as-AR és 5 — HT; receptorok interakcidja révén kévetkezhet be. Ugyanakkor mind
patkdnyban, mind egérben a kisspeptin emelte a testhdmérsékletet. Emellett, hi-

peralgéziat okoz és befolyéassal bir a morfin kivaltotta akut analgéziara, toleranciara
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és megvonéasra. Végiil, ezen disszertacio alapjat képez6 kutatas ramutat arra, hogy
nemcsak a tobbi RF-amid peptid rendelkezik szélesebb hatasspektrummal, hanem
a kisspeptin is. Ennek hatterében allhat cirkadian ritmus szabalyozasban feltétele-
zett szerepe, melyre tobbek kozott utal kifejezddése a cirkadian ritmus generalasaért
felels agyi strukturakban, valamint a mar ismert szerepe a menstruacios ciklus és

pubertas kialakulasaban.
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Kisspeptin is a mammalian amidated neurohormone, which belongs to the RF-amide peptide family and
is known for its key role in reproduction. However, in contrast with the related members of the RF-
amide family, little information is available regarding its role in the stress-response. With regard to the
recent data suggesting kisspeptin neuronal projections to the paraventricular nucleus, in the present
experiments we investigated the effect of kisspeptin-13 (KP-13), an endogenous derivative of kisspeptin,
on the hypothalamus-pituitary-adrenal (HPA) axis, motor behavior and thermoregulatory function. The
peptide was administered intracerebroventricularly (icv.) in different doses (0.5-2 p.g) to adult male
Sprague-Dawley rats, the behavior of which was then observed by means of telemetry, open field and
elevated plus maze tests. Additionally, plasma concentrations of corticosterone were measured in order
to assess the influence of KP-13 on the HPA system. The effects on core temperature were monitored
continuously via telemetry. The results demonstrated that KP-13 stimulated the horizontal locomotion
(square crossing) in the open field test and decreased the number of entries into and the time spent in
the open arms during the elevated plus maze tests. The peptide also caused marked elevations in the
spontaneous locomotor activity and the core temperature recorded by the telemetric system, and sig-
nificantly increased the basal corticosterone level. In conclusion, our data indicate that icv. administered
KP-13 stimulates the HPA axis, induces hyperthermia, activates motor behavior and causes anxiety in
rats.
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1. Introduction

Kisspeptin, classified as a member of the Arg-Phe (RF)-amide
family [1], is a C-terminally amidated neurohormone and is a key
regulator of the hypothalamic-pituitary-gonadal (HPG) axis [2-4].
The kisspeptin related peptides are neuropeptide FF and AF, pro-
lactin releasing peptide (PrRP), RFamide-related peptides, and the
most recently found, pyroglutamylated RFamide peptide [1]. They
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all share an N-terminal sequence homology and are widely dis-
tributed in the CNS, but they vary in their structure and receptor
preference [1] binding to either one or several G-protein cou-
pled receptors [5]. Literature shows that the effects of RF-amide
peptides partially overlap, but in case of some physiological param-
eters they exert opposite actions. For example, PrRP activates the
hypothalamic-pituitary-adrenal (HPA) axis [6], increases stereo-
typed locomotion [7] and pressor response [8]. Neuropepide AF
(NPAF) also induces the HPA axis and locomotor activity, how-
ever, it causes a decrease in heart rate and core temperature
[9]. Thus, in light of the above-mentioned data, kisspeptin might
also have a wider range of function then so far assumed and
may influence the same biological parameters as other RF-amide
peptides.
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Kisspeptin, itself, was first isolated from the human placenta
as the endogenous ligand of the orphan G-protein coupled recep-
tor GPR54, later designated as KISS1R [10,11]. Kisspeptin is the
product of the KiSS-1 gene; the peptide consists of 54 aminoacids
(KP-54), but its cleavage can give rise to biologically active deriva-
tives containing 14, 13 or 10 aminoacids, christened kisspeptin-14
(KP-14), kisspeptin-13 (KP-13) and kisspeptin-10 (KP-10), respec-
tively [2,10]. Kisspeptin and its receptor are abundant in the
central nervous system (CNS), especially in the limbic system, the
striatum, the pituitary and the hypothalamus, including the para-
ventricular nucleus (PVN) [10,12-14]. Recent evidence suggests
that kisspeptin, beside the KISS1R, also activates the neuropeptide
FF2 receptor [15], which mediates autonomic, endocrine, behav-
ioral and nociceptive processes [9,16].

The first biological action associated with kisspeptin was the
suppression of metastasis in melanoma [17], but recently a num-
ber of publications [4,18,19] has demonstrated the pivotal role of
the kisspeptin system in the regulation of the reproductive axis.
Kisspeptin is necessary for the normal secretion of gonadotropin
releasing hormone (GnRH) [20,21] and subsequently luteinizing
hormone (LH) and follicle-stimulating hormone (FSH) [21], mean-
while, it may also control the onset of puberty [20,22] through its
activity on the biological clock of the CNS [23,24]. These seem-
ingly disparate activities can be attributed to the ability of the
peptide to stimulate diverse intracellular signal transduction cas-
cades involving the activation of phospholipase C (PLC), mitogen
activated protein kinase (MAPK), calcineurin and NFkB [25]. These
pathways can influence hormone secretion, chemotaxis, and the
organization of the cytoskeleton, neuronal activity and plasticity
[24-26].

Taking the special importance of kisspeptin in the regulation of
the HPG axis into account, and the fact that recent data suggests
kisspeptin neuronal projections to the PVN [13,27], it seems plau-
sible that kisspeptin may take part in the control of the HPA axis,
the interaction between the two systems and may exert further
integrative activities in autonomic and endocrine control.

Therefore, in the present study, we investigated the central
action of KP-13 on the stress response, behavior and thermore-
gulation, which are processes controlled by the hypothalamus and
the limbic system, where kisspeptin and its receptors are found in
abundance [13]. As an index of the activation of the HPA system
the corticosterone response was used. The spontaneous locomo-
tion and core temperature were monitored continuously with a
telemetric system, while the exploratory and anxiety-associated
behavior was observed in open field and elevated plus maze tests.

2. Materials and methods
2.1. Animals

Adult male Sprague-Dawley rats (Domaszék, Hungary) weighing 150-250g
were used at the age of 8 weeks. They were housed under controlled conditions
(12/12-h light/dark cycle, lights on from 6:00 a.m., at constant room temperature)
and were allowed free access to commercial food and tap water. The animals were
kept and handled during the experiments in accordance with the instructions of the
University of Szeged Ethical Committee for the Protection of Animals in Research,
which approved these experiments. Approximately 160 animals in total were used
in our experiments. Every experiment was carried out separately; the same animal
has never been used for different experimental procedure.

2.2. Surgery

The animals were allowed 1 week to acclimatize before surgery. Subsequently,
they were implanted with a stainless steel Luer cannula (10 mm long) aimed at
the right lateral cerebral ventricle under pentobarbital (35 mg/kg, intraperitoneally)
anesthesia. The stereotaxic coordinates were 0.2 mm posterior and 1.7 mm lateral
to the bregma, and 3.7 mm deep from the dural surface, according to the atlas of
Pellegrino et al. [28]. The cannula was secured to the skull with dental cement and
acrylate. The rats were used after a recovery period of 5 days. All experiments were
carried out between 8:00 and 10:00 a.m.

For implantation of the telemetric radio transmitter (E-Mitter: a temperature-
activity transponder), the rats were anesthetized with pentobarbital (35 mg/kg,
intraperitoneally). The abdomen was opened by making a 2-cm midline incision
along the linea alba. The E-Mitter was placed in the abdominal cavity, along the sag-
ittal plane, in front of the caudal arteries and veins, but dorsal to the digestive organs.
The abdominal wound was then closed with absorbable suture material, while the
skin was closed with stainless steel suture clips. After a recovery period of 5 days, the
rats were implanted with the stainless steel Luer cannula for intracerebroventricular
(icv.) administration.

At the end of the experiments, the correct position and the permeability of
the cannula were checked. In the behavioral studies, each rat was sacrificed under
pentobarbital anesthesia, and in the endocrinological experiments the head was
collected after decapitation. Methylene blue was injected via the implanted cannula
and the brains were then dissected. Only data from animals exhibiting the diffusion
of methylene blue in all the ventricles were included in the statistical evaluation.

2.3. Treatment

Rats were injected with different doses of KP-13 (Bachem Ltd., Switzerland)
icv. in a volume of 2 nl over 30s with a Hamilton microsyringe, immobilization
of the animals being avoided during handling. The doses applied were 0.5, 1, 2 or
5 ng dissolved in 0.9% saline. Control animals received saline alone. Thirty minutes
after peptide administration, the rats were decapitated to obtain trunk blood for
corticosterone measurement or were subjected to behavioral testing.

2.4. Plasma corticosterone measurement

In order to determine plasma corticosterone concentrations, trunk blood was
collected in heparinized tubes. The plasma corticosterone concentration was mea-
sured by the fluorescence assay described by Zenker and Bernstein [29] as modified
by Purves and Sirett [30].

2.5. Telemetry

Different doses of KP-13 (1, 2 pg) or saline alone were injected icv. into con-
scious rats, between 8:20 and 8:35 a.m. The animals had previously been implanted
with an E-mitter (Mini Mitter, USA), which recieves power from the radiofrequency
field generated by an energizer-reciever placed below the home cage. The system
recorded the motor activity and core temperature every 10 min, the output of which
then was processed by the VitalView program provided by the manufacturer.

2.6. Open field test

In the open field test novelty-induced locomotor activity was assessed. The rats
were removed from their home cages and placed at the center of a white wooden
open field box, the floor area of which measured 60 cm x 60 cm, marked into 36
10cm x 10 cm square. The standard source of illumination was a 60 W bulb at a
height of 80 cm. The observed parameters were horizontal locomotion, vertical loco-
motion, grooming and the number of defecations. The horizontal locomotor activity
was characterized by the total number of squares crossed during a 5-min test session
(square crossing), the vertical locomotion was determined by the number of rearings
(standing on the hind legs), and the grooming activity was established by observ-
ing face washing, forepaw licking and head stroking. Every episode of face washing,
forepaw licking and head stroking was counted as a separate grooming session,
independently of how long it actually lasted.

2.7. Elevated plus maze test

The elevated plus maze apparatus is a plus-shaped platform elevated 50 cm
above the floor. It consists of two opposing arms (50 cm x 10 cm each) with 10cm
high enclosing walls (closed arms) and two arms with no walls (open arms). A 60 W
light bulb at a height of 80 cm provided the illumination. The maze was cleaned
between each session with 96% ethyl-alcohol and all experiments were conducted
between 8:00 a.m. and 10 a.m. Naive rats were placed in the center of the maze facing
toward an open arm, and the number of entries per arm and the times spent in the
various arms were recorded for a 5-min period by an observer who was blind to
the experimental groups, sitting approximately 1.5 m away from the apparatus. The
test is designed to assess anxiety based on the concept that the open arms are more
aversive, and anxious rats therefore spend less time in them [31]. In the figures the
ratio of time spent in open arms to total time spent in all arms, the ratio of entries to
open arms to total number of entries and the total number of entries into all arms
are presented.

2.8. Statistical analysis

Data are presented as means + SEM. Statistical analysis of the results was per-
formed by analysis of variance (ANOVA). For the corticosterone measurements, open
field and elevated plus maze tests, one-way ANOVA was employed, followed by the
Holm-Sidak post hoc test for multiple comparisons when the test prerequisites were
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Fig.1. The effect of KP-13 on the hypothalamus-pituitary-adrenal system. Mean and
SEM are expressed. Numbers in parenthesis denote the number of animals used. *
p<0.05 vs control.

fulfilled. When the test of the homogeneity of variances was not satisfied, nonpara-
metric ANOVA on ranks (Kruskal-Wallis) was performed, followed by Dunn’s test
for multiple comparisons. For the evaluation of the telemetric recordings, repeated
measure ANOVA was performed; only the means were plotted and the pooled
standard deviation (PSD) is provided in the figure captions. A probability level of
less then 0.05 was accepted as indicating a statistically significant difference.

3. Results
3.1. Effects of KP-13 on corticosterone secretion

The icv. injection of KP-13 induced a dose-dependent elevation
in basal plasma corticosterone level. The corticosterone level fol-
lowing the 2 g dose proved to be statistically different from the
control [F(3,31)=3.955, p <0.02; Holm-Sidak post hoc test: p<0.01
vs control; Fig. 1].

3.2. Effects of KP-13 on spontaneous locomotion and core
temperature

After the KP-13 treatments between 8:20 and 8:35a.m.,
increases in both locomotor activity [F(2,30)=5.842, p<0.01;
Holm-Sidak post hoc test: p<0.05 for 1 wg and 2 ug KP-13 vs
control; Fig. 2] and core temperature [F(2,30)=4.988, p<0.02;
Holm-Sidak post hoc test: p <0.01 for 2 pg KP-13 vs control; Fig. 3]
were observed in the home cages of the animals. In the case of
locomotion, this effect was present only for approximately 1 h after
injection and the activity of the rats then returned to the level of
the control animals, whereas in the case of the core temperature

A

300
g
2 200-|
; — Control (12)
Z i 1 pg KP-13 (9) =
2 - 2pg KP-13(12) *
100 -
] T
6:00 12:00

time (hour)

Fig. 2. The effect of KP-13 on the spontaneous motor activity. Data are expressed
as means. The pooled standard deviations (PSDs): 62.34 for the control, 69.34 for
the 1 g KP-13 treated group, 72.81 for the 2 pg KP-13 treated group. Numbers in
parenthesis denote the number of animals used. * p <0.05 vs control.

time (hour)

Fig. 3. The effect of KP-13 on the core temperature. Data are expressed as means.
The pooled standard deviations (PSDs): 0.40 for the control, 0.49 for the 1 ug KP-13
treated group, 0.52 for the 2 pg KP-13 treated group. Numbers in parenthesis denote
the number of animals used. * p <0.05 vs control.

the hyperthermic action of KP-13 persisted for several hours after
peptide administration.

3.3. Effects of KP-13 on open field behavior

KP-13 evoked a marked increase in the number of square cross-
ingsin the open field test [F(4,41)=3.001, p <0.05; Holm-Sidak post
hoc test: p<0.01 vs control; Fig. 4], but did not affect the other
recorded parameters: rearing activity [F(4,41)=0.518, p<0.723],
grooming [H=6.079, p=0.193] or defecation [F(4,41)=1.225,
p=0.315] (not shown in figures). The effect of KP-13 administered
in a 1 g dose on the number of square crossings proved to be
statistically significant.

3.4. Effects of KP-13 on elevated plus maze behavior

KP-13 reduced dose-dependently the number of entries into
[F(3,36)=7.095, p<0.001; Holm-Sidak post hoc test: p<0.05 for
1 g and p<0.001 for 2 g KP-13 vs control] and the time spent
[F(3,36)=3.298, p<0.05; Holm-Sidak post hoc test: p<0.01 vs con-
trol] in the open arms (Fig. 5). A statistically significant change in
the time spent in the open arms was caused by the 2 g dose of KP-
13, while as concerns the number of entries into open arms, both
the 1 and 2 pg doses induced significant reductions. There was no
difference in the number of total entries between the treatments
groups [F(3,36)=0.555, p=0.648].
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Fig. 4. The effect of KP-13 on exploratory locomotor activity. Mean and SEM are

expressed. Numbers in parenthesis denote the number of animals used. * p <0.05 vs
control.
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Fig. 5. The effect of KP-13 on elevated plus maze behavior. Mean and SEM are
expressed. Numbers in parenthesis denote the number of animals used. * p<0.05
vs. control.

4. Discussion

In our experiments, KP-13 evoked an elevation of the corticoste-
rone concentration. The most important activators of the HPA axis
are corticotropin releasing factor (CRF) and arginine vasopressin
(AVP) [32], secreted by the parvocellular part of the PVN. Rao et al.
[33] recently reported that in PVN-derived cell lines KP-10 gener-
ated significant increases in AVP and oxytocin mRNA expression,
whereas the CRF mRNA level was affected only at a high dose [33].
Thus, a possible explanation for our result is that KP-13 may stim-
ulate the AVP-expressing neurons in the PVN, leading to activation
of the HPA axis. Furthermore, a recent study found that kisspeptins
can bind to the NPFF2R [15]. Accordingly, in our previous exper-
iments, NPAF, a potent NPFF2R ligand, also stimulated the HPA
axis [9]. NPAF was most effective at the dose of 0.5 g, whereas it
was the 2 pg dose of KP-13 that elicited the greatest response. This
might be explained by the differences in the affinity and the efficacy
of the two peptides. There is also evidence pointing to the direct
action of kisspeptin at the level of the pituitary. Kisspeptin has been
detected in ovine hypophyseal portal blood [34] and KISS1R has also
been found in the pituitary by RT-PCR [14], here co-localized with
ACTH expressing cells [35]. However, it must be noted that Rao
et al. [33] found that ip. administered KP-10 had no effect on cor-
ticosterone secretion in mice. Recent work has also revealed that
the activity of KP-10 is strongly dependent on the route of admin-
istration in mice: central injection of KP-10 inhibited food intake,
whereas ip. administration did not influence it [36]. Additionally,
Scott and Brown [37] found KP-10 to be effective in increasing the
firing rate of oxytocin neurons on intravenous injection, but not
on icv. administration. It is possible that kisspeptin, like the vast
majority of neuropeptides, cannot cross the blood-brain barrier or
do not reach the neuroendocrine regions relevant to the HPA axis, in
sufficient concentration, due to enzymatic degradation [38]. These
pharmacokinetic problems can clearly be circumvented by prop-
erly designed analogs [38]. Another explanation for the discrepancy
between our results and that of Rao et al. [33] might be the use of
KP-13 in our experiments instead of KP-10. Lyubimov et al. [15]
reported that the NPFF2R binding of kisspeptins depends on the
length of the peptide and the presence of the amidated C-terminal
dipeptide. KP-13, therefore, proved to be a more potent activator
of NPFF2R then KP-10 [15].

Our results demonstrate that kisspeptin can influence the
behavior of rats. Open field and telemetric observations revealed
that the icv. injection of KP-13 caused a marked activation of
novelty-induced and spontaneous locomotion. Increasing doses of
KP-13 exhibited a bell-shaped dose-response curve. This type of
response is well-known in the literature and has been described in

case of other neuropeptides [39,40]. Since KISS1R has been found
abundantly in locomotor centers of key importance such as the
striatum and amygdala [10,12,41], it is plausible that KP-13 stimu-
lated these regions directly.

Furthermore, KP-13 evoked a preference for the closed arms in
the elevated plus maze test, which is indicative of the anxiogenic
action of KP-13 in rats. This reinforces our finding that KP-13 acti-
vated the HPA axis, as both CRF [42] and AVP [43,44] are potent
activators of stress-related behavior. In fact, the central amygdala
and the bed nucleus of stria terminalis, both of which have a pivotal
role in generating negative emotional responses [45], receive input
from kisspeptin neurons [41]

KP-13 induced a significant elevation of core temperature that
persisted for several hours. An increased locomotor activity was
also observed in these experiments, however, this lasted only an
hour suggesting that it is not the cause of the detected changes
in temperature. As kisspeptin is a well-known stimulator of GnRH
[2], GnRH might mediate the hyperthermic action of KP-13, which
would be in accord with the possible role of GnRH in thermo-
regulation, suggesting GnRH as a causative factor in hot flashes
[46,47]. Other possible explanation could involve the activation of
hypothalamic prostaglandin synthesis, increased basal metabolic
activity or the stimulation of the hypothalamus-pituitary-thyroid
axis.

Our findings are in complete harmony with the growing body
of evidence suggesting that kisspeptin may play a more general
role in autonomic, neuroendocrine and behavioral regulation. The
peptide takes part in cardiovascular [48] and metabolic [49] func-
tions, pregnancy [50] and cognitive processes [51]. Obviously, the
control of the aforementioned processes necessitates integration
with gonadal activities. The gender-dependent nature of the stress
response, stress tolerance and longevity, the interactions between
the HPG axis and the HPA system have been well described in
the literature [52-56]. Sexual steroids influence the expression of
CRF and AVP in the hypothalamus [57,58], whereas chronic stress
suppresses the reproductive function [53,54]. However, a series
of experiments demonstrate that glucocorticoid release from the
adrenal gland, actually, preserves the HPG activity during stress
[59,60]. Taking these phenomena and the versatile physiological
functions of kisspeptin into account, it is apparent that, besides the
well-characterised PrRP [61-63], further members of the RF-amide
family may play integrative roles in the harmonization of the HPG
and HPA activity.

Similarly, the dense expression of kisspeptin in the arcuate
nucleus and the innervations of the suprachiasmatic nucleus [27]
underlines our findings and argues for the role of the peptide in the
circadian regulation of metabolic processes, core body tempera-
ture and hormone production. Indeed, the basal HPA activity shows
a circadian rhythm that is provided by input from the suprachi-
asmatic nucleus, leading to the pulsatile secretion of CRF [64,65].
The role of kisspeptin in circadian control is further supported by
recent work establishing the kisspeptin system as an important
relay center for the integration of environmental cues and the pre-
cise timing of puberty [22], the preovulatory LH surge [19,24], and
structural plasticity in seasonal reproduction [26]. Similarly, the
observed effect on motor paradigms can also be attributed to a
plausible regulatory role in circadian activity and sleep-wake cycle
suggested by the expression of kisspeptin neurons in the suprachi-
asmatic nucleus [27] and the preoptic nucleus of the hypothalamus
[66].

In conclusion, our results indicate that centrally injected KP-
13 activates the HPA axis, induces hyperthermia and stimulates
spontaneous and novelty-induced locomotion. Furthermore, KP-
13 seems to generate anxiety-associated behavior in adult rats. Our
data confirm that RF-amide peptides belong to those neuropeptide
families that have especially important role in neuroendocrine
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control. Notwithstanding, further investigations are necessary to
clarify the mediation and signal transduction of the presented phys-
iological phenomena, with special emphasis on the separation of
the unique and overlapping features in the activity profile of the
different RF-amides.
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Kisspeptins are G protein-coupled receptor ligands originally identified as human metastasis suppressor gene
products that have the ability to suppress melanoma and breast cancer metastasis and which have recently
been found to play an important role in initiating the secretion of gonadotropin-releasing hormone at puberty.
In the brain, the gene is transcribed within the hippocampal dentate gyrus. Kisspeptin-13, one of the endogenous
isoforms, consists of 13 amino acids. In this work, antidepressant-like effects of kisspeptin-13 were studied and
the potential involvement of the adrenergic, serotonergic, cholinergic, dopaminergic and gabaergic receptors in
its antidepressant-like effects was investigated in a modified forced swimming test (FST) in mice. The mice were
pretreated with a nonselective a-adrenergic receptor antagonist, phenoxybenzamine, an «;/a;p-adrenergic
receptor antagonist, prazosin, an o,-adrenergic receptor antagonist, yohimbine, a 3-adrenergic receptor antag-
onist, propranolol, a mixed 5-HT;/5-HT, serotonergic receptor antagonist, methysergide, a nonselective 5-HT,
serotonergic receptor antagonist, cyproheptadine, a nonselective muscarinic acetylcholine receptor antagonist,
atropine, a D,,D3,D, dopamine receptor antagonist, haloperidol, or a y-aminobutyric acid subunit A receptor
antagonist, bicuculline.
The FST revealed that kisspeptin-13 reversed the immobility, climbing and swimming times, suggesting
antidepressant-like effects. Phenoxybenzamine, yohimbine and cyproheptadine prevented the effects of
kisspeptin-13 on the immobility, climbing and swimming times, whereas prazosin, propranolol, methyser-
gide, atropine, haloperidol and bicuculline did not modify the effects of kisspeptin-13.
The results demonstrated that the antidepressant-like effects of kisspeptin-13 in a modified mouse FST are
mediated, at least in part, by an interaction of the o,-adrenergic and 5-HT, serotonergic receptors.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Kisspeptin (KP), formerly known as metastin, was originally identi-
fied as a human metastasis suppressor that inhibits the metastasis of
melanoma and breast cancer [1]. This G protein-coupled receptor ligand
was recently found to play an important role in the maturation and func-
tion of reproductive axis, including the sexual differentiation of the brain,
the timing of puberty, the regulation of gonadotropin-releasing hormone
(GnRH) at puberty, and the control of fertility by metabolic and environ-
mental cues [2]. In the central nervous system, KP is transcribed within
the hippocampal dentate gyrus. KP-13, one of the endogenous isoforms,
consists of 13 amino acids [3]. Little is known concerning the mecha-
nisms and pathways of the action of KP-13 on the brain functions.

In the present investigation, antidepressant-like effects of KP-13 were
studied and the potential involvement of the adrenergic, serotonergic,
cholinergic, dopaminergic and gabaergic receptors in its antidepressant-
like effects was investigated in a modified forced swimming test (FST)
in mice. Mice were pretreated with a non-selective a-adrenergic

* Corresponding author at: Semmelweis 1, Szeged, Hungary. Tel.: 436 62 545797;
fax: 436 62 545710.
E-mail address: telegdy@patph.szote.u-szeged.hu (G. Telegdy).

0167-0115/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.regpep.2012.08.017

receptor antagonist, phenoxybenzamine, an o /x;e-adrenergic recep-
tor antagonist, prazosin, an ap-adrenergic receptor antagonist, yohim-
bine, a B-adrenergic receptor antagonist, propranolol, a mixed 5-HT,/
5-HT, serotonergic receptor antagonist, methysergide, a nonselective
5-HT, serotonergic receptor antagonist, cyproheptadine, a nonselective
muscarinic acetylcholine receptor antagonist, atropine, a D,,D3,D4 do-
pamine receptor antagonist, haloperidol, or a <y-aminobutyric acid
subunit A (GABA,) receptor antagonist, bicuculline.

2. Materials and methods
2.1. Animals

CD; (Charles Dawley) male mice were kept and handled during the
experiments in accordance with the instructions of the University of
Szeged Ethical Committee for the Protection of Animals in Research.
Each animal was used in the experiments only once. The animals
were six week old, weighed between 28 and 35 g. They were housed
in cages in a room maintained at constant temperature (25+1 °C)
and on a 12-h dark-light cycle (lights on at 06:00-18:00 h) with free
access to tap water and standard laboratory food. At least 1 week of
recovery from surgery was allowed before the experiments.
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2.2. Surgery

The mice were implanted with a cannula introduced into the right
lateral brain ventricle in order to allow intracerebroventricular (i.c.v.)
administration. The polystyrene cannula was inserted stereotaxically
into the ventricle at the coordinates 0.2 mm posterior, 0.2 mm lateral
to the bregma, and 2.0 mm deep from the dural surface [4]. The cannula
was secured with cyanoacrylate (Ferrobond) (Budapest, Hungary). The
mice were allowed a minimum of 5 days to recover from surgery before
any i.c.v. administration.

2.3. Materials

KP-13 was from Bachem (Basel, Switzerland); phenoxybenzamine
hydrochloride from Smith Kline & French (Herts, UK); prazosin hydro-
chloride and yohimbine hydrochloride from Tocris (Cologne, Germany);
propranolol hydrochloride from ICI Ltd. (Macclesfield, UK); methyser-
gide hydrogenmaleate from Sandoz (Cologne, Germany); cyprohepta-
dine hydrochloride from Tocris (Bristol, UK); atropine sulfate from
EGYS (Budapest, Hungary); haloperidol from G. Richter (Budapest, Hun-
gary); and bicuculline methiodide from Sandoz (Basel, Switzerland).

KP-13 was lyophilized in a quantity of 10 pug per ampoule and
stored at —20 °C. Immediately before the experiments, the KP-13
was dissolved in sterile pyrogen-free 0.9% saline and administered
i.c.v. via the cannula in a volume of 2 pl.

2.4. Forced swimming test

The modified mouse FST was conducted as reported previously [5,6].
The mice were forced to swim individually in a glass cylinder 12 cm in
diameter and 30 cm in height, filled with water to a height of 20 cm.
The temperature of the water was adjusted to 2541 °C. The water
was changed between the individual mice. A 15-min pretest session
was followed 24 h later by a 5-min test session. Phenoxybenzamine
(2 mg/kg, i.p.) (N=20), prazosin (62.5 pg/kg, i.p.) (N=40), yohimbine
(5 mg/kg, i.p.) (N=40), propranolol (5 mg/kg, i.p.) (N=40), methyser-
gide (5 mg/kg, i.p.) (N=40), cyproheptadine (3 mg/kg, i.p.) (N=59),
atropine (2 mg/kg, i.p.) (N=10), haloperidol (10 pg/kg, i.p.) (N=40)
or bicuculline (2 mg/kg, i.p.) (N=40) was administered 1 h before the
test session, followed 30 min later by KP-13 (2.0 pg/2 p, ic.v.) [7-12].
Physiological saline was used as vehicle control. A time-sampling tech-
nique was applied to score the durations of climbing, swimming and
immobility. Climbing time was measured when the mouse was partici-
pating in active vertical motion with its forelegs above the water level,
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swimming time was recorded when the mouse was moving horizontal-
ly on the surface of the water; and immobility time was registered
when the mouse was in a upright position on the surface with its
front paws together and making only those movements necessary to
keep itself afloat.

2.5. Statistical analysis

The analysis of variance (two-way ANOVA) test was followed by
Tukey's test for multiple comparisons with unequal cell size. Probabil-
ity values (P) of less than 0.05 were regarded as indicative of signifi-
cant differences.

3. Results

Relative to the vehicle control, KP-13 (2.0 ug/2 pl)-administered mice
exhibited a significantly decreased immobility time [F (3.35) =14.98:
P<0.05], a significantly increased climbing time [F (3.35)=7.75:
P<0.05] and a significantly increased swimming time [F (3.35)=11.10:
P<0.05] (Fig. 1).

Phenoxybenzamine per se (2 mg/kg, i.p.) did not affect the immo-
bility time, climbing time or swimming time. In KP-13-treated mice,
pretreatment with phenoxybenzamine partially reversed the KP-13-
induced change in the immobility time, and decreased the changes in
the climbing and swimming times (Fig. 2).

Prazosin per se (62.5 pg/kg, i.p.) did not affect the immobility time,
the climbing time or the swimming time. In the KP-13-treated mice,
pretreatment with prazosin did not reverse the KP-13-induced
changes in the immobility time, the climbing time or the swimming
time (data not shown).

Yohimbine per se (5 mg/kg, ip.) did not affect the immobility
time, the climbing time or the swimming time. In KP-13-treated
mice, pretreatment with yohimbine partially reversed the immobility
time, the climbing time and the swimming time (Fig. 3).

Methysergide per se (5 mg/kg, i.p.) did not affect the immobility
time, the climbing time or the swimming time. In the KP-13-treated
mice, pretreatment with methysergide did not reverse the immobility
time, the climbing time or the swimming time (data not shown).

Cyproheptadine per se (3 mg/kg, i.p.) did not affect the immobility
time, the climbing time or the swimming time. In the KP-13-treated
mice, pretreatment with cyproheptadine resulted in an increased im-
mobility time and decreased the changes in the climbing and swim-
ming times (Fig. 4).

[ immobility
climbing
[ swimming

control

05pg2pul 1.0 pg/2 pl kisspeptin-13

Fig. 1. The antidepressant-like effects of kisspeptin-13 in modified mouse forced swim test (FST). Control (N =12), kisspeptin-13 0.5 pg/2 pl, i.c.v. (N=6), kisspeptin-13 1.0 pg/2 pl,
i.c.v. (N=12), kisspeptin-13 2.0 pg/2 pl, i.c.v. (N=5). x: P<0.05 vs. control (N: the number of animals, P: probability).
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Fig. 2. The effect of a nonselective a-adrenergic receptor antagonist, phenoxybenzamine (POB) in kisspeptin-13-induced antidepressant-like action in modified mouse forced swim
test (FST). Control (N=5), kisspeptin-13 2.0 pg/2 pl, i.c.v. (N=5), phenoxybenzamine (POB) 2.0 mg/kg, i.p. (N=5), phenoxybenzamine (POB) 2.0 mg/kg, i.p. + kisspeptin-13

2.0 pg/2 pl, i.c.v. (N=5). x: P<0.05 vs. control (N: the number of animals, P: probability).

Propranolol per se (5 mg/kg, i.p.) did not affect the immobility
time, the climbing time or the swimming time. In the KP-13-treated
mice, pretreatment with propranolol did not lead to an increase in
the immobility time, and did not affect the climbing time or the
swimming time (data not shown).

Atropine per se (2 mg/kg, i.p.) did not affect the immobility time, the
climbing time or the swimming time. In the KP-13-treated mice,
pretreatment with atropine did not affect the increased immobility
time or the decreased climbing and swimming times (data not shown).

Haloperidol per se (10 pg/kg, i.p.) did not affect the immobility
time, the climbing time or the swimming time. In the KP-13-treated
mice, pretreatment with haloperidol did not increase the immobility
time, nor affect the climbing or swimming times (data not shown).

Bicuculline per se (2 mg/kg, i.p.) did not affect the immobility
time, the climbing time or the swimming time. In the KP-13-treated
mice, pretreatment with bicuculline did not increase the immobility
time, the climbing time or the swimming time (data not shown).

The above results reveal that the antidepressant-like effects of
KP-13 in this modified mouse FST are mediated, at least in part, by
ax-adrenergic receptors and 5-HT, serotonergic receptors.

4. Discussion

In the central nervous system KP-expressing neurons are located in
the anteroventral periventricular nucleus (AVPV), the periventricular
nucleus (PVN), the anterodorsal preoptic nucleus and the arcuate
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nucleus (Arc) [13]. In close relationship with the PVN, the neurons
of the AVPV and Arc project fibers into the preoptic area rich in
GnRH cell bodies. It is now known that KP stimulates the secretion
of GnRH, which is sensitive to steroid levels [14]. Previous studies
have shown that the luteinizing hormone-releasing hormone antago-
nist cetrorelix and the growth hormone releasing-hormone antagonist
MZ-4-71 exert antidepressant-like effects in a modified mice FST,
suggesting close relationships between growth hormone regulation
and the alleviation of mood disorders [15-18].

In the present study, KP-13 proved to display antidepressant-like
effects in a modified FST.

To clarify the mechanisms of the antidepressant-like actions of
KP-13, various receptor blockers were applied before KP-13 adminis-
tration. The receptor blocker doses were selected so that the blockers
per se were ineffective, but were able to block the action of a neuro-
peptide as described in a previous study [19]. The observation made
with the receptor blockers indicated that the action of KP-13 is medi-
ated by certain receptors.

The nonselective  «a-adrenergic receptor antagonist
phenoxybenzamine, the oi;-adrenergic receptor antagonist yohim-
bine and the nonselective 5-HT, serotonergic receptor antagonist
cyproheptadine prevented the effects of KP-13 on the immobility,
climbing and swimming times. The a;/az-adrenergic receptor an-
tagonist prazosin, the [3-adrenergic receptor antagonist propranolol,
the mixed 5-HT;/5-HT, serotonergic receptor antagonist methysergide,
the nonselective muscarinic acetylcholine receptor antagonist atropine,
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Fig. 3. The effect of a nonselective a-adrenergic receptor antagonist, yohimbine (YOH) in kisspeptin-13-induced antidepressant-like action in modified mouse forced swim test
(FST). Control (N=10), kisspeptin-13 2.0 pg/2 pl, i.c.v. (N=10), yohimbine (YOH) 5.0 mg/kg, i.p. (N=10), yohimbine (YOH) 5.0 mg/kg, i.p. + kisspeptin-13 2.0 pg/2 pl, i.c.v.

(N=10). x: P<0.05 vs. control (N: the number of animals, P: probability).
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Fig. 4. The effect of a nonselective 5-HT, serotonergic receptor antagonist, cyproheptadine (CPH) in kisspeptin-13-induced antidepressant-like action in modified mouse forced
swim test (FST). Control (N=14), kisspeptin-13 2.0 pg/2 pl, i.c.v. (N=15), cyproheptadine (CPH) 3.0 mg/kg, i.p. (N=15), cyproheptadine (CPH) 3.0 mg/kg, i.p. + kisspeptin-13

2.0 pg/2 pl, i.c.v. (N=15). x: P<0.05 vs. control (N: the number of animals, P: probability).

the D,,D3,D4 dopamine receptor antagonist haloperidol and the GABA
receptor antagonist bicuculline did not modify the effects of KP-13.
The results demonstrated that the antidepressant-like effects of
KP-13 in this modified mouse FST are mediated, at least in part, by
an interaction of the a;-adrenergic and 5-HT, serotonergic receptors.
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