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Introduction

My Ph. D. thesis is based on the works [3], [4], and [5]. [3] is joint work with Peter Hajnal.
The aim of the thesis is to evaluate the role of bijections as one of the special method
of enumerative combinatorics. In addition, I emphasize with this work the importance
and essence of bijective proofs. My goal is to show the beauty of bijective combinatorics
beside the usefulness of the method.

The subject of combinatorics is the study of discrete mathematical structures. One
aim of it is to reveal the connections between mathematical objects. Enumerative com-
binatorics provide quantitative characterizations. Sometimes the same number sequence
enumerates different kind of objects, but the cause of it is not obvious. These cases require
to find the characteristic common properties of the different objects in order to explain
why do the sets have the same size.

Combinatorics contributes to the understanding of connections with its special method,
the bijective proof. A bijection establishes a one–to–one correspondence between two sets
and demonstrates this way that the two sets are equinumerous. If the size of one set is
known then the bijection derives that the same formula gives the answer to the size of the
other set, too. So a bijection is an appropriate method for enumeration of a set bringing it
into connection with an other set. In addition it points out the joint structural characte-
ristic property that both sets posses and this way it gives an explanation of properties of
the number sequence also.

There are n! bijections between two sets with n elements. The enumeration of a set
often can be refined according to some special parameters. The statistical distributions
of two sets according to parameters are sometimes equal. Some bijections are suitable
to show this correspondence because some bijections reveal the finer structure and keep
the values of the parameters. So some bijections are regarded in some sense as better
and deeper. It is usual in bijective combinatorics that in the case of classical sets the
researcher publish new bijections and are seeking for bijections that satisfy a particular
purpose.

This work investigates problems from different active studied fields. It consists of new
theorems and new combinatorial proofs of known results.

After an introductory chapter the second chapter is devoted to the investigations of
combinatorial interpretations and properties of poly–Bernoulli numbers, the third chapter
to the enumeration of monotone labellings of plane trees, the fourth to inversions of 312–
avoiding permutations.

This work should be an instance of the fact that the purpose of mathematics is rather
the understanding of the world around us captured by the special abstract way of mathe-
matics than the collecting informations and formulating theorems. Because of this reason
I think that it is important to prove a theorem using different methods. I’m convinced
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that the combinatorial approach I used in my thesis contributes substantially to the un-
derstanding of the underlying structures/problems.

Poly–Bernoulli numbers

As the name indicates poly–Bernoulli numbers are the generalizations of the classical
and in many questions central Bernoulli numbers. Kaneko [14] introduced poly–Bernoulli
numbers in 1997 during the investigations of multiple zeta values or Euler Zaiger sums.
Multiple zeta values are nested generalizations of Riemann zeta functions.

Definition 1 ([14]) Let {B(k)
n }n∈N,k∈Z denote poly–Bernoulli numbers that are defined by

the next generating function:

∞∑
n=0

B(k)
n

xn

n!
=

Lik(1− e−x)

1− e−x

where

Lik(z) =
∞∑
i=1

zi

ik
.

If k ≤ 0 B
(k)
n is a positive integer.

Table 1: The poly–Bernoulli numbers
0 1 2 3 4 5

0 1 1 1 1 1 1
-1 1 2 4 8 16 32
-2 1 4 14 46 146 454
-3 1 8 46 230 1066 4718
-4 1 16 146 1066 6902 41506
-5 1 32 454 4718 41506 329462

For this case Kaneko derived a compact formula also:

Theorem 1 ([1]) For k ∈ N

B(−k)
n =

min(n,k)∑
m=0

m!

{
n+ 1
m+ 1

}
m!

{
k + 1
m+ 1

}
, (1)
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where
{

n
k

}
is the number of the partitions of [n] (or any set with n elements) with k

nonempty blocks, i. e. the Stirling number of the second kind.
The following question is natural: is there beyond the obvious combinatorial interpre-

tation a combinatorial problem in that these numbers arise?
First Brewbaker showed that the number of n × k lonesum matrices are exactly the

poly–Bernoulli numbers B
(−k)
n . A lonesum matrix is a 01 matrix that is uniquely recon-

structible from given row and column sums.
Though only this one interpretation becomes known my research show that there are

numerous substantially different combinatorial interpretations. Poly–Bernoulli numbers
arise in many places in mathematics. Its role is not as significant as that of Catalan
numbers. So we find often comments on internet without publications concerning poly–
Bernoulli numbers. Researcher who investigated a combinatorial problem often didn’t
have any knowledge about poly–Bernoulli numbers and so did not recognize that the
answer they found is the poly–Bernoulli number sequence.

In the second chapter in sections 4.–9. I collected and listed systematically the
interpretations that I found in the literature. However my survey is not simple a list. In
every case I explain the connections with the explicit description of a bijection or a sketch
of a bijective proof. Such analysis doesn’t exist in the literature.

My starting point is the natural interpretation of the formula (1) using basic combi-
natorial principles:

Consider two sets with elements n+ 1 and k+ 1. In both sets there is a unique special
element. Partition both sets into the same number of blocks (m). The blocks with the
special elements is a special block. Order the ordinary blocks. The formula counts the
number of the so defined ordered pairs of partitions of these two underlying sets.

This structure is reflected in the Callan permutations [7]. Let

N̂ = {0, 1 . . . , n} and K̂ = {n+ 1, . . . , n+ k, n+ k + 1}.

Consider the permutations of the set N̂ ∪ K̂ that has 0 as the first element and n+ k+ 1
as the last element. In addition, if elements that follow each other directly are of the same
set (of N̂ resp. K̂) than they are in increasing order. Permutations with this property is
called Callan permutations.

Permutations with ascending–to–max property can be regarded as the dual of Callan
permutations. These permutations play important role in the theory of suffix arrays.
There is a characterization theorem that states which restrictions a permutation has to
fulfill to be a suffix array of a word over a binary alphabet. One of these restrictions is
the Ascending–To–Max property. The original definition of this property can be modified
in a way that the value–position duality to Callan permutations become obvious.

Consider again the permutations of the set N̂ ∪ K̂. In this case we require that if two
elements with consecutive values are both in the first n + 1 positions (resp. in the last
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k+ 1 positions) then they should follow each other directly/ have consecutive positions in
the permutations. This property is called ascending–to–max property. The reformulation
and the duality proves obviously the next new theorem:

Theorem 2 ([3]) Let A(k)
n denote the permutations of the set {0, 1, 2, . . . , n+k+1} with

the ascending–to–max property. Then

|A(k)
n | = B(−k)

n .

There is another from these permutations substantially different permutation class
that is enumerated by the poly–Bernoulli numbers. The enumeration of permutations
with restriction on their image set is a general problem. One of the most natural constraint
is a bound of the distance between an element and its image. Vesztergombi [21] studied
this problem and obtained a general formula. Launois recognized that special values of
this formula coincides with poly–Bernoulli numbers.

I present a new combinatorial proof of this statement using Lovász’ method. Let V(k)
n

denote the set of permutations π ∈ Sn+k such that

−n ≤ i− π(i) ≤ k.

Then

Theorem 3 ([21],[17],[3])
|V(k)

n | = B(−k)
n

The investigation of the acyclic orientations of a graph is an active research area with
applications. The following extremal question is natural: Which graph with a given num-
ber of vertices (n) and edges (m) has the most/ the least number of acyclic orientations?

Linial answered the question concerning the minimalizations problem. Cameron [8]
investigated the problem of maximal number of acyclic orientations. He conjectured that
if m is an integer such that it is the number of the edges of the Turán graph with even
parts then this Turán graph is the one with maximal number of acyclic orientations. He
and his coauthors computed numerically the number of acyclic orientations in the case
when the Turán graph has two parts. During these investigations Cameron recognized
that the number of the acyclic orientations of the complete bipartite graph is given by
the poly–Bernoulli numbers.

This interpretation is in strong connection with the inclusion–exclusion formula (2) of
the poly–Bernoulli numbers also.

Theorem 4 ([14])

B(−k)
n = (−1)n

n∑
m=0

(−1)mm!

{
n

m

}
(m+ 1)k (2)
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I presented a new proof of this theorem using the well known fact that the number of
acyclic orientations of a graph is equal to the absolute value of the chromatic polynomial
of the graph evaluated at −1.

The main result of this chapter, section 10. is the presentation of a new combina-
torial interpretation. This new interpretation is the only one that gives a transparent
explanation for the recursive formula of poly–Bernoulli numbers.

Definition 2 Let G(k)
n be the set of n×k 01 matrices in that none of the following matrices

appear as submatrices. (
1 1
1 0

)
,

(
1 1
1 1

)
We call these matrices Γ–free matrices.

The restriction means that in the matrix there are no three 1s in positions that create
a Γ. (NE, NW and SE). The study of such matrices appeared in extremal combinatorics.
Füredi and Hajnal [10] established the number of 1s in Γ–free matrices. In the case of an
n×k matrix it is n+k−1. This means that Γ–free matrices differ from lonesum matrices
since the set of lonesum matrices includes for instance the all 1 matrix, too. In spite of
this the size of the sets of lonesum and Γ–free matrices are equal.

Theorem 5 ([3])
|G(k)

n | = B(−k)
n .

The proof that I present in [3] is of bijective nature, but the bijection is not between
the sets of these two matrix classes. In the previous cases the correspondences with the
standard set (the obvious interpretation) is more or less simple. In the case of the Γ–free
matrices our bijection is more complicated and includes technical parts. The advantage
of the theorem is that for Γ–free matrices it is natural to give a recursion.

Actually I could prove combinatorially every known combinatorial property of the
poly–Bernoulli numbers.

Theorem 6 ([14])

B(−k)
n = B

(−n)
k .

The symmetry is trivial according to any set corresponding to the poly–Bernoulli
numbers. This proof of combinatorial nature is underlined already in Brewbakers work
[6].

The next theorem was derived during the analytical investigations of poly–Bernoulli
numbers.
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Theorem 7 ([2], [11])

B(−k)
n = B(−(k−1))

n +
n∑

i=1

(
n

i

)
B

(−(k−1))
n−(i−1) . (3)

The proof of Kaneko does not explain the simple form of the formula. My combina-
torial proof provides a satisfying explanation.

Through the study of the table of the poly–Bernoulli numbers one can easily recognize
the following identity. It is possible to derive it using algebraic manipulations. I use the
combinatorial approach: interpret it combinatorially and prove it by a bijection.

Theorem 8 ([3]) ∑
n,k∈N

n+k=N

(−1)nB(−k)
n = 0.

The combinatorial content of this theorem is that among the Callan permutations of
N(= n + k) the number of those in that n is even and those in that n is odd are equal.
In order to demonstrate this fact I formulate a bijection between these two sets.

There are many open problems that are related to poly–Bernoulli numbers. At the
end of this chapter I mention some open questions, to that my work may contribute.

On one hand - because of the strong connections to multiple zeta values - researcher
defined various generalizations algebraically, on the other hand in the combinatorial in-
terpretations parameters appear that lead to natural ge- neralizations. An interesting
problem is to find nontrivial connections between these generalizations.

Hamahata and Masubuchi defined algebraically the multi–poly–Bernoulli numbers and
introduced the special multi–poly–Bernoulli numbers [12]. The combinatorial nature of
the formulas require combinatorial interpretations.

The relation of the Stirling numbers of the second kind and first kind and the inter-
esting properties of poly–Bernoulli numbers inspired Komatsu to define analogously the
poly–Cauchy numbers [16]. At specific parameters the poly–Cauchy numbers are natural
numbers also. Komatsu derived numerous identities between poly–Cauchy and poly–
Bernoulli numbers and asked for combinatorial interpretation of poly–Cauchy numbers.

The hook formula

The third chapter of my thesis is devoted to the enumeration of the monotone labellings
of plane trees. The tree structure is basic, it plays for instance a central role in computer
science. The knowledge of the combinatorial pro- perties of special tree classes are often
necessary in analysis of algorithm.
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Plane trees are rooted trees in which the order of the subtrees is essential. This
structure defines naturally a partial order on the set of nodes. It is a basic question, how
many ways can this partial order extended to linear order? In other words, how many
monotone labellings of the nodes are there? (A monotone labelling is a labelling where if
the node v is a descendant of u then the label of v is greater than the label of u.) Let fT

denote this number. The following theorem is a classical result of Knuth.

Theorem 9 ([15])

fT =
n!∏

v∈V (T ) hv

, (4)

where hv is the number of descendants of v, including itself. The combinatorial nature
of the formula becomes conspicuous by multiplying both sides with the denominator.

fT ×
∏

v∈V (T )

hv = n!

This identity can be proven with a bijection between the permutations of [n] and pairs
(S,H), where S is a monotone labelling of the nodes of T and H is a hook function on
the set of nodes. A hook function is a function that maps to each node a positive integer
at most the number of the descendants of the node.

In my work I present two bijective proofs of the theorem 9.
Hook formulas has a long story. Frame, Robinson and Thrall discovered first the hook

formula investigating standard Young tableaux [9]. Many authors presented different
proofs of this result. Novelli, Pak and Stoyanovskii presented a bijective proof [19]. This
method can be used to prove the formula for the case of shifted Young tableaux. My first
bijective proof of theorem 9. is in the spirit of this method.

I define the bijection in the form of an algorithm. I fix a total order on the nodes of
the tree. The algorithm visits the nodes in this order and - if its necessary - changes the
label of the actual node. The procedure is similar to the concept of ,,jeu de taquin”, the
well known concept in the theory of Young tableaux. The moves of the labels are coded
in the hook function.

Theorem 10 ([5]) The algorithm terminates after visiting all nodes of the tree and its
output is a unique pair of a monotone labelling of the nodes and of a hook function.

My second bijection uses the special tree structure, instead of following the method
of Novelli, Pak and Stoyanovskii.

I fix a total order in this case also, in that this algorithm visits the nodes. This
algorithm moves the actual node in the poset of its descendants. The hook function
determines the necessary moves.
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Theorem 11 ([5]) The algorithm terminates and assigns a unique permutation to a
given pair of a monotone labelling and a hook function on the nodes of the tree.

During the enumerations of the classes of trees new hook formulas are discovered. At
the end of this chapter I mention some actual new results that are not well understood
from combinatorial point of view. I think that my work contributes to the combinatorial
proofs of these identity.

312–avoiding permutations

The subject of the fourth chapter fits into the research about Catalan numbers. The
Catalan number sequence is basic in combinatorics. More than 200 objects are known
that are enumerated by these sequence.

The main result of this chapter is a bijection between the 312–avoiding permutations
and the triangulations of a polygon. This bijection does not appear in the literature and
reveals deeper correspondences between the two sets.

The triangulation of a polygon is the dissection of the polygon into triangles by non-
intersecting diagonals. We call a π = π1π2 · · · πn permutation 312–avoiding iff there are
no πi, πj, πk elements with i < j < k but πj < πk < πi.

Let {P0, . . . , Pn+1}/{0, 1 . . . , n+1} be the vertices of the polygon. Then every triangle
in the dissection has a ,,middle” vertex.

Lemma 12 ([4]) In each triangulation, for every i ∈ {1, 2, . . . , n} there is exactly one
triangle where the middle vertex is i.

I define an algorithm w that visits the vertices of the triangulated polygon in clockwise
order and records the labels of the triangles which meet the actual vertex with its third
vertex.

Lemma 13 ([4]) The word w(T ) is a 312–avoiding permutation of [n] (we consider per-
mutations as words).

The bijection is based on the properties of inversions of 312–avoiding permutations.
We call a (πi, πj) pair inversion if i < j and πi > πj. The s–vector of a permutation is
s = (s1, . . . , sn), where sk is the number of elements in the permutation, that are greater
than k and precede k in the permutation.

sk = |{πi|πi > k = πj and i < j}|.
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Observation 14 ([4]) The inversion table of a 312–avoiding permutation π = π1π2 · · · πn

satisfies the following condition:

sk+i ≤ sk − i for 1 ≤ k ≤ n− 2 and 1 ≤ i ≤ sk.

Furthermore for an inversion table with this additional property the corresponding permu-
tation is a 312–avoiding permutation.

The next observation underlines the relation between the s–vector and the correspon-
ding triangulation.

Observation 15 ([4]) Let T be a triangulation. Take the triangle labelled by i. Its
[Bi, Ci] side determines the i–th condition of the s–vector of the permutation w(T ):

si = l(Ci)− l(Bi)− 1.

This observation allows to build a corresponding triangulation to a 312–avoiding per-
mutation according the s–vector of the permutation.

These observations and lemmas lead to the main theorem of the third chapter of my
thesis.

Theorem 16 ([4]) The map w is a bijection between the set of triangulations of a convex
(n+ 2)-gon and the set of 312-avoiding permutations of [n].

My bijection has more advantages. I mention first the possibility of a generalization
to the case of k–triangulations.

A k–triangulation is a maximal set of diagonals in a polygon, such that there are
no k + 1 diagonals that mutually intersect. A k–triangulation can be viewed also as a
union of (2k + 1)–stars. I supplement this point of view with the observation that the
2k+ 1–stars can be labelled, for instance by the position of their middle vertex. Similarly
to my bijection an algorithm can be defined that by visiting the vertices of the polygon
records the labels of the stars. This way we can order to a k–triangulation a permutation
of the multiset {1k2k · · ·nk}. Through the understanding of this permutation we can
investigate k–triangulations in a bijective way. Unfortunately this program covers many
open questions.

My bijection underlines the central role of inversions in a permutation. It brings new
ideas to combinatorial solutions of further enumeration results. I work out one instance
of it in details in my thesis.

The inversions of a permutation can be recorded basically in two different ways. The
one is, that I call s–vector, the other that I call c–vector. A c–vector is a vector of non-
negative integers (c1, . . . , cn), where ck is the number of the elements in the permutation
that is less than k, but appears after k in the permutation.
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ck = |{πi : πi < k = πj and i > j}|.

I define an inversion diagram in order to visualize the special conditions and the
relations of these two vectors corresponding to a 312–avoiding permutation. The posets
that are defined by the natural order on these two vectors are the well known Tamari
resp. Dyck lattice.

I mention in my work some combinatorial problems, that are enumerated by the
intervals of these lattices. It is an open question whether there are simple bijections
between these combinatorial objects and pairs of 312–avoiding permutations. I close the
third chapter of my work with a description of one example.

The problem of pattern avoidance was generalized in many ways. Researcher inves-
tigated perfect matchings on ordered graphs without appearing of special patterns. (A
perfect matching on an ordered graph is a graph where there’s is a total order on the nodes
and the degree of each node is exactly one.) The 312–avoiding permutations are strongly
connected with perfect matchings without the pattern abccab (see Figure 1.).

e e e u u u
1
a

2
b

3
c

4
c

5
a

6
b

Figure 1: The pattern abccab

Let Mn(abccab) denote these perfect matchings. Then

Theorem 17 ([13])

|Mn(abccab)| =
∣∣∣∣ Cn Cn+1

Cn+1 Cn+2

∣∣∣∣ (5)

I present a new combinatorial proof of this theorem. It is well known that (5) is the
number of intervals in the Dyck lattice. I identify an interval with a pair of 312–avoiding
permutations (π, σ), such that the c–vectors of the permutations fulfill the condition:
c(π) ≤ c(σ). I define a map that order to a perfect matching two permutations.

Lemma 18 The two permutations π and σ that the map order to a perfect matching is
unique, avoid the pattern 312 and it is true that c(π) ≤ c(σ).

This theorem proves Theorem 17. I think my bijection is in some sense very natural.
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