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Abbreviations 

AB   aberrant body 

BAL   bronchoalveolar lavage  

bp   base pair 

C. muridarum  Chlamydia muridarum 

C. pneumoniae Chlamydophila pneumoniae 

C. trachomatis Chlamydia trachomatis 

DC   dendritic cell 

EB   elementary body 

ELISA   enzyme-linked immunosorbent assay  

FITC    fluorescein isothiocyanate 

GM-CSF  granulocyte-macrophage colony-stimulating factor 

i.p.    intraperitoneal 

IFN-γ   interferon-γ 

IFU    inclusion forming unit  

Ig   immunoglobulin 

IL   interleukin 

KC    keratinocyte chemoattractant 

kDa   kilodalton 

LC-MS/MS   liquid chromatography-tandem mass spectrometry 

LIX    lipopolysaccharide-induced C-X-C chemokine  

LPS   lipopolysaccharide 

MIG    monokine induced by IFN-γ  

MIP-2   macrophage inflammatory protein-2 

MW   molecular weight 

NK    natural killer  

ORF    open reading frame 

PBS    phosphate-buffered saline  

pMoPn   the plasmid of C. muridarum 

PRR   pattern recognition receptors  
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RB    reticulate body 

rRNA   ribosomal RNA 

RT qPCR   quantitative reverse transcription polymerase chain reaction  

SD   standard deviation 

SFCs    spot-forming cells  

SI   stimulation index 

SPG    sucrose-phosphate-glutamic acid buffer   

Th   T helper 

TLR   Toll-like receptor 

TNF-α   tumour necrosis factor-α 
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Introduction 

 

Chlamydiae cause infections that are common throughout the world. Although antibiotics 

are effective in treating chlamydial infections, the lack of obvious symptoms has the 

consequence that many infections remain untreated potentially leading to complications 

characterised by inflammatory pathologies. The immunity to these pathogens is not effective, 

chlamydial infections display high rates of recurrence and have long-term consequences 

causing a serious public health problem. Immunisation is a desirable approach for the 

prevention and control of chlamydial disease, but despite considerable efforts there is 

currently no commercially available vaccine against chlamydiae. Understanding the basis of 

immunity to chlamydiae will provide an indispensable knowledge for the design of a vaccine 

against diseases caused by chlamydiae. The present study was designated to improve our 

current understanding of the pathological immune response to infection and re-infection with 

chlamydiae, and to provide information about the host immune responses against the different 

chlamydial plasmid proteins.  

 

Chlamydiaceae 

Chlamydiaceae is a family of Gram negative, obligate intracellular bacteria responsible 

for a wide range of diseases with clinical and public health importance. Based on the 16S and 

23S ribosomal gene sequences the Chlamydiaceae is divided into two genera: Chlamydophila 

and Chlamydia. The genus Chlamydophila is composed of six species: Chlamydophila 

pneumoniae; Chlamydophila psittaci; Chlamydophila pecorum; Chlamydophila abortus; 

Chlamydophila caviae and Chlamydophila felis. Three species belong in the Chlamydia 

genus: the human pathogen Chlamydia trachomatis; the mouse adapted Chlamydia 

muridarum and Chlamydia suis, which infects swine
1
.  

Chlamydiae undergo a unique biphasic developmental cycle, during which the bacterium 

is found in two forms, the extracellular form, called elementary body (EB), which is 

metabolically inert and infectious, and the intracellular form, the reticulate body (RB), which 

is metabolically active, replicative but non-infectious. The chlamydial developmental cycle is 
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divided into five major steps: the infectious EB attaches to and enters the host cell resulting in 

the formation of an inclusion, which creates a permissive intracellular niche for replication; 

EB differentiates into RB; RB replicates by binary fission; increasing numbers of RBs 

differentiate back to EBs; the newly formed EBs are released by lysis or extrusion from the 

host cell allowing infection of neighbouring cells (Fig. 1). The duration of the developmental 

cycle is 48-72 hours depending on the chlamydia species
2
. Over the past years increasing 

number of studies suggest that considering the chlamydial developmental cycle a biphasic 

process may underestimate its complexity. Under stress chlamydiae can enter a dormant, non-

infectious but viable state named persistence, during which they exist in an enlarged aberrant 

body (AB). Several different stimuli can induce persistence of chlamydiae in vitro: exposure 

to interferon-γ (IFN-γ) and antibiotics; heat shock; depletion of essential nutrients. Persistence 

is reversible, after the inducer is removed chlamydiae continue their productive replication
3
. 

Experimental and clinical data provide evidence for reactivation of persistent chlamydiae in 

vivo indicating that chlamydial recurrences were more likely due to the reactivations of 

persistent infections than to re-infections
4
. 

 

 

Fig. 1 General overview of the chlamydial developmental cycle
3
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Chlamydophila pneumoniae 

C. pneumoniae is a common and important respiratory tract pathogen; it causes about 

10% of community-acquired pneumonia in adults and 5% of bronchitis and sinusitis. 

However, due to the lack of obvious symptoms most of the infections caused by C. 

pneumoniae remain undiagnosed. Seroepidemiological studies shows that 75% of the 

population became infected with C. pneumoniae before the age of 20 and re-infection during 

their lifetime was very common
5
. Most of the studies regarding C. pneumoniae focus on its 

role as a cause of persistent infections in chronic diseases. The association of C. pneumoniae 

with chronic diseases was first published in 1988, when Saikku et al. revealed the role of C. 

pneumoniae in chronic coronary heart disease and acute myocardial infarction
6
. Thenceforth a 

number of studies supported the role of C. pneumoniae infections in chronic human diseases 

such as chronic bronchitis, asthma, atherosclerosis, Alzheimer’s disease, reactive arthritis and 

lung cancer 
7–11

.  

Similar to other bacteria, C. pneumoniae infections initiate the innate immune response of 

the host by recognition of the pathogen via pattern recognition receptors (PRRs). Toll-like 

receptors (TLRs) are one of the most important family of PRRs, which are expressed on 

epithelial cells, neutrophils, macrophages and dendritic cells (DCs)
12

. Moreover, the 

recognition of cell wall components or heat shock proteins by TLR2 appears to be essential 

for development of the inflammatory response to infection with C. pneumoniae
13

. Activation 

of the TLRs initiates downstream signalling, which induces transcription factors and the 

expression of inflammatory and immune response-related genes resulting in a localised 

inflammation largely mediated by polymorphonuclear and mononuclear leukocytes, which are 

recruited by different cytokines and chemokines
14

. Infection with C. pneumoniae triggers the 

production of a wide range of chemokines, including the monokine induced by IFN-γ (MIG); 

the IFN-γ-inducible protein of 10 kDa and the IFN-inducible T cell alpha chemoattractant. 

Besides the recruiting role of the chemokines, some of them act like defensins and possess 

antimicrobial activity
15

. It was earlier revealed that MIG had a dose dependent antichlamydial 

effect in vitro
16

. Thus, the MIG, which is released by non-immune cells, could directly 

inactivate C. pneumoniae, while also assisting the recruitment of neutrophils to the infected 

tissue.  
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Innate immune responses can also induce the adaptive immunity and acquired 

immunological memory. Antigen presenting cells activate naive T lymphocytes by presenting 

chlamydia-specific antigens. Those T lymphocytes, which are bearing a chlamydia-specific T 

cell receptor undergo clonal expansion and mediate effector functions
17

. According to a 

classical paradigm CD4
+
 T cells are assigned to either T helper (Th) 1 or Th2 subset based on 

the cytokines secreted by them. Th1 cells produce IFN-γ and are regulated by interleukin (IL)-

12, while Th2 cells produce the cytokines IL-4, IL-5, and IL-13
18

. Th1 cells regulate cellular 

immune response and are associated with protection against intracellular pathogens; Th2 cells 

play crucial roles in humoral immunity, and are involved in the defence against extracellular 

bacteria
19

. A murine study has recently demonstrated that the influx of activated Th1 cells and 

the effective release of IFN-γ are critical for the defence against C. pneumoniae
20

. 

The evidence of the participation of C. pneumoniae infections in chronic inflammatory 

disease comes from the fact that the primary infection elicits some protective immunity 

against re-infection, but provides no protection against inflammatory changes which may lead 

to irreversible tissue damage. Moreover, in the case of persistent infection, although C. 

pneumoniae is in a dormant state, but the 60 kDa heat shock protein is expressed and the 

release of chlamydial antigens from infected cells may provide a prolonged antigenic 

stimulation, which amplifies the chronic inflammation
21

. Studies published recently focus on 

the role of C. pneumoniae infection in allergic airway inflammation. In asthma patients the 

airway hyperresponsiveness is mainly characterised by the infiltration of neutrophils, which is 

also typical for respiratory tract infection with C. pneumoniae
22

. The mechanism, by which C. 

pneumoniae induces the influx of neutrophil granulocytes to the lung tissue and elicits allergic 

immune response in persistent infections or re-infections remains poorly understood.  

 

Th17 cells and IL-17 cytokine family  

During the last decade, researchers investigating chronic inflammatory diseases focused 

their attention on a newly identified subset of CD4
+
 lymphocytes named Th17 cells, and the 

members of the IL-17 cytokine family also became a prominent subject for investigation. 

Recent progress in studies revealed important roles for Th17 cells in the development of 

allergic and autoimmune diseases, and in protective mechanisms against bacterial and fungal 
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infections, functions previously believed to be mediated by Th1 or Th2 cells. Th17 cells 

produce IL-17A, IL-17F, IL-21 and IL-22
23

. Th17 cell differentiation from naive CD4
+
 T 

cells is controlled by transforming growth factor- IL-6 and IL-21, however IL-1 and IL-23 

are critical for survival and effector functions of Th17 cells
24

. IL-23 promotes the 

development and expansion of activated CD4
+
 T cells that produce IL-17A upon antigen-

specific stimulation
25

.  

The IL-17 cytokine family consists of six members designated as IL-17A, IL-17B, IL-

17C, IL-17D, IL-17E (also called IL-25) and IL-17F (Table 1). Th17 cells are the main 

source of IL-17A and IL-17F, but CD8
+
 cells, γδ T cells and natural killer (NK) cells can also 

produce these cytokines. IL-17A and IL-17F share the strongest homology, they bind to the 

same receptor, which suggests that they exhibit similar biological activities. Both IL-17A and 

IL-17F induce expression of genes encoding pro-inflammatory cytokines and chemokines 

such as keratinocyte chemoattractant (KC), lipopolysaccharide (LPS)-induced C-X-C 

chemokine (LIX), and macrophage inflammatory protein-2 (MIP-2) in fibroblasts, endothelial 

and epithelial cells. IL-17A plays a crucial role in innate immune response against pathogens 

by promoting granulocyte-macrophage colony-stimulating factor (GM-CSF) mediated 

granulopoiesis and recruiting neutrophils to the sites of inflammation
26,27

. Besides combating 

microbial infections, a most prominent function associated with IL-17A is the regulation of 

autoimmunity, and dysregulation of Th17 cells leads to severe disease such as multiple 

sclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and 

psoriasis
28–32

. In addition, numerous studies suggest pathological role of IL-17A in allergic 

responses and in promotion of disease progression in atopic dermatitis and asthma. Although, 

the exact function of Th17 cells in the development of asthma remains to be elucidated. The 

functions of IL-17B, IL-17C and IL-17D are largely elusive.  

IL17E, also known as IL-25 appears to be involved in Th2 immune response and in host 

defence against nematodes by inducing immunoglobulin (Ig) E production and eosinophilia. 

IL-17E is mainly produced by Th2 cells, mast cells and eosinophils, but alveolar 

macrophages, endothelial and epithelial cells can also be the sources of IL-17E
33

. Several 

allergens can induce the expression of IL-17E mRNA in lung epithelial cells suggesting an 

important role of IL-17E in the pathogenesis of allergic lung disease
34

. It seems that the 

regulation of IL-17E is as critical as that of IL-17A in the development of allergic diseases: 
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however, IL-17E induces eosinophilia, while IL-17A recruits neutrophils to the inflammatory 

site. The mechanism, which have role in polarization of the immune response against C. 

pneumoniae towards either type of immunity is unknown.    

 

Cytokine 

Homology 

with 

human (%) 

Source Known function 

IL-17A 63 

Th17 cells; 

CD8
+
 cells; 

γδ T cells; 

NK cells 

induction of pro-inflammatory 

cytokines and chemokines; 

promoting neutrophil recruitment 

IL-17B 88 
chondrocytes; 

neurons 

induction of proliferation of 

chondrocytes; 

promoting neutrophil recruitment 

IL-17C 83 

CD4
+
 cells; DCs; 

macrophages; 

keratinocytes 

promoting neutrophil recruitment 

IL-17D 78 

CD4
+
 cells; B cells; 

skeletal muscle; 

adipose tissue 

stimulating production of IL-6, IL-8 

and GM-CSF by endothelial cells 

IL-17E 

(IL-25) 
81 

CD4
+
 and CD8

+
 cells; 

epithelial and 

endothelial cells; 

eosinophils; mast cells 

promoting Th2 differentiation; 

inducing Th2 cytokines; 

eosinophil recruitment; 

suppression of Th1 and Th17 cell 

responses 

IL-17F 77 

Th17 cells; CD8
+
 cells; 

γδ T cells; epithelial 

cells 

inducing pro-inflammatory cytokines 

and chemokines; 

promoting neutrophil recruitment 

 

Table 1 Members of mouse IL-17 cytokine family
26,33

  

 

 

Chlamydia trachomatis and Chlamydia muridarum 

C. trachomatis is currently divided in 19 serovars, according to the antigenic 

characteristics of the major outer membrane proteins. Different serovariants of C. trachomatis 

cause a wide range of diseases, including blinding trachoma (serovars A-C), urogenital tract 

infections leading to urethritis, cervicitis and proctitis (serovars D-K), and systemic 



 13 

lymphogranuloma venereum disease (serovars L1-L3)
35

. Sexually transmitted C. trachomatis 

infection has an important public-health concern, because in most cases these infections 

produce few or no symptoms and most of them remain undetected and without treatment they 

have adverse effects on reproduction. In women, infection with C. trachomatis causes pelvic 

inflammatory disease, and persistent or repeated infections lead to chronic inflammation 

characterised by scarring of the fallopian tubes and ovaries. Chronic pelvic inflammation has 

long term consequences such as ectopic pregnancy, infertility or chronic pelvic pain
36

. 

Current programmes for the control of C. trachomatis infections are not affordable especially 

in developing countries and might have an inherent weakness; therefore vaccine development 

has been identified as essential measures for the control of infection with C. trachomatis.  

C. muridarum (formerly the C. trachomatis agent of mouse pneumonitis) is a murine 

pathogen that was originally isolated from the lungs of mice. Infection of mice with C. 

muridarum provides a useful model of C. trachomatis infection in humans
37

. The genomes of 

C. muridarum and C. trachomatis serovar D display notable similarity in the content and 

order of genes, with the exception of a region of 50 kb from the origin of termination, deemed 

the plasticity zone
38

. Studies of infection with C. muridarum have revealed that the murine 

innate and adaptive immune responses to infection are closely similar to the immune 

responses in women infected with C. trachomatis
39

. Elucidation of the immunobiology of C. 

muridarum infection of mice helps to guide the interpretation of immunological findings in 

studies of human C. trachomatis infection. Identification of the antigens, which elicit immune 

responses and protection against the pathogen, is an important priority in C. trachomatis 

research.  

Animal models have clearly disclosed that T cells, especially the IFN-γ-producing CD4
+
 

cells have a crucial role in the resolution of C. trachomatis infection. By contrast, B cells and 

antibodies are probably important for resistance to secondary infection
40

. Host genetic factors 

appear to be important in determining the outcome of C. trachomatis infections. It has been 

reported that the increased incidence of chlamydia-induced chronic diseases, such as scarring 

trachoma and tubal infertility, correlates with the carriage of certain human leukocyte antigen 

haplotypes and the polymorphism of genes encoding tumour necrosis factor-α (TNF-α), IL-10 

and CD14
41–44

. Similarly to humans, inbred mouse strains with different haplotypes, such as 

C3H/HeN, C57BL/6N, BALB/c and DBA/2 mice, respond differently to respiratory 
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chlamydial infections
45–47

. C3H/HeN mice are more susceptible to C. muridarum lung 

infection, with more severe morbidity and higher mortality compared to C57BL/6N mice, 

even though both strains display similar Th1-like response
45

.  

 

The chlamydial cryptic plasmid 

Bacterial plasmids bear genes considered to be non-essential for host cell survival, but 

confer selective advantages for survival in specific environments
48

. Several Chlamydia 

species harbour a highly conserved plasmid with an approximate size of 7.5 kb
49

. The plasmid 

of C. trachomatis encodes both noncoding RNAs and eight open reading frames (ORFs), 

while the plasmid of C. muridarum (pMoPn) possesses seven ORFs, designated TCA01-07 

(Fig. 2). All plasmid-borne genes are transcribed and translated. TCA04 and TCA05 encode 

the proteins pGP3 and pGP4, respectively
50

. Naturally occurring plasmid-deficient clinical 

isolates are extremely rare
51

. Studies with plasmid-deficient C. trachomatis and C. muridarum 

have implicated the chlamydial plasmid as a key virulence factor in vivo, because infection 

with plasmid-deficient organisms are either asymptomatic or exhibits significantly reduced 

pathology
52,53

.   

Putative functions for several ORFs have been assigned on the basis of homology to 

known proteins in the public databases: pGP1 a DnaB like helicase; pGP7 and -8 

integrase/recombinase homologues; pGP5 homologue to partitioning protein ParA
54

. The 

usage of deletion mutagenesis and chlamydial transformation was recently described as a new 

possibility for the genetic characterisation of the function of plasmid ORFs
55

. According to 

this, the ORFs can be grouped into two sets: essential ORFs (pGP1, -2, -6 and -8) and non-

essential ORFs (pGP3, -5 and -7) for stable plasmid maintenance in tissue culture. In addition, 

the plasmid functions as a transcriptional regulator of various chromosomal genes, which may 

play important roles in chlamydial pathogenicity, and pGP4 has been demonstrated to be the 

protein that positively regulates the transcription of plasmid-encoded pGP3 and multiple 

chromosomal genes during C. trachomatis infection and pGP5 is the negative regulator of the 

same set of chromosomal genes
56–58

.  

The roles of the plasmid-encoded or regulated proteins in either chlamydial pathogenesis 

or protective immunity remain largely unknown, but the plasmid-mediated virulence is linked 



 15 

to enhanced pro-inflammatory cytokine stimulation by the activation of TLRs in a murine 

model
59

. pGP3, the most intensively studied plasmid protein, has been found to be secreted 

into the host cell cytosol during chlamydial infections; it has been implicated as a potential 

TLR agonist, because purified pGP3 induced both TNF-α and IL-8 production in 

macrophages in vitro
60

. pGP3 is an immunodominant antigen in women infected with C. 

trachomatis in the urogenital tract; it is recognized by human antibodies in enzyme-linked 

immunosorbent assay (ELISA)
61

. Although, the human antibody recognition of pGP3 is 

dependent on the native conformation of the protein: pGP3 trimerisation is required for the 

recognition of pGP3 by human antibodies
62

. DNA immunisation with the plasmid expressing 

pGP3 of C. trachomatis was demonstrated to inhibit the spread of C. trachomatis infection 

from the lower to the upper genital tract in C3H/HeN mice
63

.  

Increased knowledge of the role of the cryptic plasmid in biology and pathogenesis will 

enhance our understanding of chlamydial growth and development, and will be important for 

guiding the design of a vaccine for the prevention of chlamydial disease.  

 

Fig. 2 Graphics of C. muridarum Nigg and C. trachomatis D plasmid created with CLC Sequence Viewer 6.4 

software
64
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Aims 

The present study was designed to address the following aims:  

 

Aim 1. To determine the roles of IL-17 cytokines in pathological immune response to C. 

pneumoniae and C. muridarum infection and re-infection in BALB/c mice 

 

Aim 2. To describe the transcriptional pattern of pMoPn genes in C. muridarum-infected 

BALB/c and C57BL/6N mice 

 

Aim 3. To compare the host immune response against pGP3 and pGP4 after C. muridarum 

infection and re-infection in BALB/c and C57BL/6N mice 
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Materials and methods 

 

Propagation of chlamydial strains and culturing of chlamydiae from the lungs of mice 

C. pneumoniae CWL029 (purchased from the American Type Culture Collection) and C. 

muridarum strain Nigg (a kind gift from H.D. Caldwell, Hamilton, MT, USA) were 

propagated on HEp-2 and McCoy cells, respectively, and purified, as described earlier
65

. The 

purified and concentrated EBs were aliquoted and stored at -80 °C until use. The titre of the 

infectious EBs was determined by indirect immunofluorescence assay. Serial dilutions of the 

EB preparation were inoculated onto cell monolayers and, after 24 or 48 h culture, cells were 

fixed with acetone and stained with monoclonal anti-Chlamydia LPS antibody (AbD Serotec, 

Oxford, UK) and fluorescein isothiocyanate (FITC)-labelled anti-mouse IgG (Sigma, Saint 

Louis, MO, USA). The number of chlamydial inclusions was counted under a UV 

microscope, and the titre was expressed in inclusion forming unit (IFU)/ml. A mock 

preparation was prepared from uninfected cells processed in the same way as the infected 

cells. Lung homogenates from each mouse were centrifuged (10 min, 400g), serial dilutions 

of the supernatants were inoculated onto cell monolayers, and the titre of C. pneumoniae or C. 

muridarum was determined. 

 

Experimental animals 

Specific pathogen-free 6-8-week-old female BALB/c and C57BL/6N mice were obtained 

from INNOVO Kft. (Budapest, Hungary). The mice were maintained under standard 

husbandry conditions at the animal facility of the Department of Medical Microbiology and 

Immunobiology, University of Szeged, and were provided with food and water ad libitum. All 

experiments fully complied with the University of Szeged Guidelines for the Use of 

Laboratory Animals. 
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Model of infection and re-infection with C. pneumoniae 

Before infection, BALB/c mice were mildly sedated with an intraperitoneal (i.p.) 

injection of 200 l of sodium pentobarbital (7.5 mg/ml); they were then infected intranasally 

with 5×10
5 

IFU of C. pneumoniae in 25 l of sucrose-phosphate-glutamic acid (SPG) buffer. 

Control mice were also mildly sedated but left uninfected. After inoculation, mice were 

anaesthetized and sacrificed on days 1, 2, 4, 7, 14 or 28, 7 animals at each time point. Sera 

were taken by cardiac puncture. The lungs were removed and homogenized mechanically. 

Half of the homogenized lungs was processed for quantitative reverse transcription 

polymerase chain reaction (RT qPCR), while the other half was suspended in 1 ml of SPG 

buffer for the detection of viable C. pneumoniae, and for cytokine and chemokine 

measurements. Spleens were destroyed with a cell strainer, and the spleen cells were kept in 

foetal bovine serum medium containing dimethyl sulfoxide at -80 °C until use.  

In a separate experiment, BALB/c mice were infected intranasally 3 times with viable C. 

pneumoniae (5×10
5
 IFU) or with heat-inactivated C. pneumoniae (concentrated EBs were 

kept at 90 °C for 30 min) at 4-week intervals. Another group of mice were initially infected 

with viable C. pneumoniae and then infected twice with heat-inactivated C. pneumoniae at 4-

week intervals. Groups of 7 mice were sacrificed at 2 or 4 weeks after each infection and the 

lungs were processed as mentioned above. 

 

Model of infection and re-infection with C. muridarum 

Before infection, BALB/c mice were mildly sedated with an i.p. injection of 200 μl of 

sodium pentobarbital (7.5 mg/ml); they were then infected intranasally with 1×10
3
 IFU of C. 

muridarum in SPG buffer; half of the mice were re-infected 28 days after the first infection. 

Seven mice at each time point were anaesthetized and sacrificed on each of days 1, 7, 14, 28, 

29, 35, 42 and 56 after the first infection. Sera were taken by cardiac puncture. The lungs 

were removed and homogenized. One half of the homogenized lungs was processed for RT 

qPCR, while the other half was suspended in 1 ml of SPG for the detection of viable C. 

muridarum. Lungs of three mice from each group were removed, frozen and kept at -80 °C 

for immunofluorescent staining.  
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In a separate experiment BALB/c and C57BL/6N mice were infected intranasally with C. 

muridarum 3 times at 4-week intervals. Groups of 7 mice were sacrificed at 2 weeks after 

each infection. Sera were taken by cardiac puncture. Spleens were dissected and homogenized 

by pressing through a nylon mesh into complete growth medium for testing of cell-mediated 

immunity. 

 

mRNA extraction from the lungs of mice and RT qPCR 

Total RNA was extracted from the lung suspensions by using the TRI Reagent (Sigma). 

During purification, all samples were treated with DNase 1, Amplification Grade (Sigma) to 

remove genomic DNA contamination. The RNA was quantified by spectrophotometric 

analysis and the RNA integrity was confirmed by agarose gel electrophoresis. First-strand 

cDNA was synthesized by using 2 g of total RNA with Superscript III (Invitrogen Carlsbad, 

CA, USA) and 20 pmol of random hexamer primers in 20 l of reaction buffer. The cDNA 

product was diluted 1/30, and the qPCR was conducted with the diluted cDNA, primers (10 

pmol/μl) and SYBR® Green JumpStart
TM

 Taq ReadyMix
TM

 (Sigma) in a total volume of 20 

l, with a CFX96 Touch real-time PCR detection system (Bio-Rad, Hercules, CA, USA). 

Primer sequences used for qPCR are given in Table 2, all primers were synthesized by 

Integrated DNA Technologies Inc. (Montreal, Quebec, Canada). Thermal cycling was 

initiated with a denaturation step of 10 min at 95 °C, followed by 40 cycles each of 5 sec at 95 

°C, 20 sec at 60 °C and 25 sec at 72 °C. Dissociation curves were recorded after each run to 

ensure primer specificity. Cycle threshold (Ct) values were determined by automated 

threshold with Bio-Rad CFX Manager Software version 1.6. The lowest cycle number at 

which the various transcripts were detectable, referred to as Ct, was compared with that of -

actin in the case of different IL-17 transcripts, the difference being referred to as ΔCt. The 

lowest cycle number at which the transcripts of pMoPn were detectable was compared with 

that of 16s rRNA of C. muridarum, as this gene was previously shown to be an accurate 

normalizing gene for gene expression analysis in C. trachomatis
66

. The relative expression 

level was given as 2
-(ΔΔCt)

, where ΔΔCt = ΔCt for the experimental sample minus ΔCt for the 

control sample. Mice sacrificed 4 h after infection with C. pneumoniae or C. muridarum 

served as controls. We defined a threshold value, i.e. increases greater than 2-fold in the 
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amount of transcripts relative to control samples were considered significant. Each sample 

was assayed in triplicate, and each experiment was performed at least twice. 

 

Target gene 

(Gene ID) 
Forward primer (5’-3’) Reverse primer (5’-3’) 

IL-17A 
mRNA 

(16171) 

AAGGCAGCAGCGATCATCC 
GGAACGGTTGAGGTAGTCTGA

G 

IL-17C 
mRNA 

(234836) 

TGCTGAGGAATTATCTCAC

GGCCA 

ACTGTGTTCCAGCTAGAGGTCC

TT 

IL-17D 
mRNA 

(239114) 

CAAGCACATCACACACATC

CCGTT 

TTAGTAAGCTTGGGCCACAGG

AGA 

IL-17E 
mRNA  

(140806) 

CAGGTGTACCATCACCTTG

CCAAT 

ACAACAGCATCCTCTAGCAGC

ACA 

IL-17F 
mRNA 

(257630) 

AGCAAGAAATCCTGGTCCT

TCGGA 

CTTGACACAGGTGCAGCCAAC

TTT 

IL-23 p19 
mRNA 

(83430) 

CCTGCTTGACTCTGACATC

TTC 
TGGGCATCTGTTGGGTCTC 

-actin 
mRNA 

(11461) 

TGGAATCCTGTGGCATCCA

TGAAA 

TAAAACGCAGCTCAGTAACAG

TCCG 

TCA01 

(1245522) 

GCTTCGGAGCGCAATGACA

ACTAA 

ACAGAAGAGTTCCCGCCAGAA

CAA 

TCA02 

(1245521) 

AGAGCGTGCATGAACTTCT

GAGGA 

ACTATGCTGCAAGGAGGTAAG

CGT 

TCA03 

(1245519) 

TGGGAAGAGCTGTTAAGAA

GGCGT 

CGTATGCGAAATAGGCCTGAG

CTT 

TCA04 

(1245520) 

ACTTGGGACATCGACAACT

CCTGT 

CCATCAAAGATTTGGTCGCCAA

GC 

TCA05 

(1245517) 

CACCCTTAGAACTCTACCA

CAAGAG 

TCTAGACAGAATAAGCATAAT

CAACGCT 

TCA06 

(1245518) 

AGCATCGAAGGCAACCATA

AAGGC 

AACAGCCGTAAATTGCTGCTTG

GG 

TCA07 

(1245523) 

ACAACACGTGCTCCTTCTT

GGAGA 

AGCCAACGCATTATAGGCGGA

TGA 

16s rRNA 

(444439667) 

CATGCATATGACCGCGGCA

GAAAT 

ACCCTAAGTGCTGGCAACTAA

CGA 
 

Table 2 Primer sequences used for qPCR 
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Cytokine and chemokine measurements  

The supernatants of the lung homogenates were centrifuged (5 min, 12 000g) and assayed 

for the concentrations of IL-17A, KC, LIX and MIP-2 with different Quantikine® mouse 

chemokine/cytokine kits (R&D Systems, Minneapolis, MN, USA), while the quantity of IL-

17E was determined with Ready-SET-Go! kit (eBioscience Inc., San Diego, CA, USA). The 

sensitivities of the IL-17A, KC, LIX, MIP-2 and IL-17E measurements were in the ranges 

10.9-700 pg/ml, 15.6-1000 pg/ml, 15.6-1000 pg/ml, 7.8-500 pg/ml and 31.2-2000 pg/ml, 

respectively. The clarified supernatants were tested in duplicate in accordance with the 

manufacturer’s instructions. 

 

ELISPOT assay 

ELISPOT assays were performed to determine the number and phenotype of the IL-17A-

producing spleen cells isolated from BALB/c mice 2 weeks after C. pneumoniae infection, 

uninfected mice served as controls. To determine the phenotype of the IL-17A-producing 

cells, the spleen cell suspensions were depleted of CD4
+
 and CD8

+
 cells, respectively, by 

using micro-beads coated with the respective antibody [α-CD4 (L3T4) or α-CD8a (Ly-2), 

Miltenyi Biotec, Bergisch Gladbach, Germany] and applying the magnetic cell sorting system 

of Miltenyi Biotec. The outcome of the procedure was controlled by flow cytometry after 

direct staining of the depleted cells with α-CD4-TC and α-CD8-rPE antibodies (Caltag 

Laboratories, Burlingame, CA, USA). The numbers of left-over CD4
+
 and CD8

+
 cells after 

the depletion process were <1%. Spleen cells were re-stimulated in vitro with heat-inactivated 

C. pneumoniae EBs at a multiplicity of infection of 0.2, or with an equivalent amount of 

mock preparation. To determine the number of IL-17A-producing cells, IL-17A ELISpot kit 

(R&D Systems) was used. Stimulated spleen cells (5×10
5
) were distributed into each well in 

triplicate in accordance with the manufacturer’s instructions. The mean number of spots 

counted in triplicate wells under a dissecting microscope was used to calculate the number of 

spot-forming cells (SFCs) per 1 million spleen cells. 
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In vivo neutralization of IL-17A in mice and bronchoalveolar lavage fluid collection 

Groups of 14 female BALB/c mice were treated i.p. with 100 g/mouse of either anti-IL-

17A (MAB421, R&D Systems) or an isotype control antibody (R&D Systems) 24 h before 

and 1 and 2 days after C. pneumoniae infection. The mice were sacrificed on day 1 or day 4 

after infection and the lungs of 7 mice from each group were lavaged with 1 ml of phosphate-

buffered saline (PBS). 50 l of a 5×10
5
 cells/ml cell suspension was placed into a chamber 

which was attached to cytospin slides, and then centrifuged at 800 rpm for 3 min. The cells 

were examined morphologically and counted after staining with May-Grünwald-Giemsa 

solution. The lungs of 7 mice from each group were removed and chlamydial burden was 

determined as mentioned above. 

 

Lung histopathology 

Four weeks after C. muridarum infection and re-infection BALB/c mice were 

anaesthetized and then sacrificed by exsanguination through cardiac puncture. Uninfected 

mice were used as controls. The lungs were removed in toto and immersed in frozen tissue 

matrix, OCT (Sakura Finetek Europe, Alphen aan den Rijn, the Netherlands). For the 

detection of IL-17E antigen by immunofluorescence test, lungs were cut into 5-m sections. 

The sections were stained with IL-17E antibody (Acris Antibodies GmbH, Herford, Germany) 

as primary antibody for 45 min at room temperature, followed by staining for 30 min with 

FITC-labelled anti-mouse IgG antibody (Sigma).  

 

Cloning and over-expression of plasmid genes 

723 and 309 bp DNA fragments containing TCA04 and TCA05 (GenBank ID 

10957566:4703-5425, Locus tag TCA04 and GenBank ID 10957566:5494-5802, Locus tag 

TCA05) were amplified by PCR, C. muridarum Nigg strain DNA being used as template. The 

PCR was performed in a GeneAmp II (Applied Biosystems, Foster City, CA, USA) 

thermocycler with Advantage GC cDNA polymerase (Clontech, Mountain View, CA, USA), 

under the amplification conditions recommended by the manufacturer. The amplicon was 

digested with NdeI and EcoRI and inserted into the p6HisF-11d (icl) pET vector
67

 by 
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digesting it with the same enzymes and replacing the icl gene. For overexpression, 

Escherichia coli HB101 (Invitrogen) cells carrying this plasmid were grown and treated 

according to the method of Tabor and Richardson
68

. Briefly, cells containing the plasmids 

were grown at 32 °C on Luria-Bertani agar plates in the presence of the required antibiotics. 

Over-expression of these proteins was induced by shifting the temperature to 42 °C for 20 

min. After induction, the temperature was shifted down to 37 °C for an additional 90 min, 

cells were harvested by centrifugation, and the pellet was kept at -20 °C until use. 

 

Purification of plasmid proteins 

Cell lysates from E. coli were prepared by suspending the frozen cells in CelLytic B-II 

(Sigma) with protease inhibitors. Recombinant protein was purified by using TALON 

CellThru Resin (Clontech) according to the manufacturer's instructions. 

 

Western blot 

Purified pGP3, pGP4 and C. muridarum EBs were boiled for 5 min in 4x Dual Color 

Protein Loading Buffer (Fermentas GmbH, St. Leon-Rot, Germany), and 2 µg of proteins 

were separated by sodium dodecyl sulfate-10% polyacrylamide gel electrophoresis. The 

separated proteins were blotted onto a polyvinylidene difluoride membrane (SERVA, 

Heidelberg, Germany). The membranes were blocked overnight at 4 °C with 5% skim milk 

and 0.05% Tween 20 (Sigma) containing PBS. Membranes were probed with a pool of 

uninfected mice sera or sera obtained from C. muridarum-infected BALB/c or C57BL/6N 

mice (1:50 dilution in 5% skim milk and 0.05% Tween 20 containing PBS). After washings, 

the filter was incubated with HRP-conjugated anti-mouse IgG (Sigma), and the colour was 

developed with diaminobenzidine tetrahydrochloride (Sigma–Aldrich Chemie GmbH, 

Steinheim, Germany) with hydrogen peroxide in 10 mM Tris, pH 7.5. 
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Identification of proteins by mass spectrometry 

The gel slices containing the polypeptides of corresponding proteins which were 

recognized by the sera of C. muridarum-infected BALB/c mice in the blot assay were cut out 

from the gel and analysed by mass spectrometry. Briefly, protein bands were diced and 

washed with 25 mM NH4HCO3 in 50% (v/v) acetonitrile/water. Disulphide bridges were 

reduced with dithiothreitol, and free sulfhydryl groups were alkylated with iodoacetamide. 

Proteins were digested with modified porcine trypsin (Promega, Madison, WI, USA) for 4 h 

at 37 °C. Samples were analysed by liquid chromatography-tandem mass spectrometry (LC-

MS/MS). The raw LC-MS/MS data were converted into a Mascot generic file with Mascot 

Distiller software (v2.1.1.0). The resulting peak lists were searched by using the Mascot 

Daemon software (v2.2.2) against the NCBI non-redundant database without species 

restriction (NCBInr 20080718, 6833826 sequences). Monoisotopic masses with a peptide 

mass tolerance of ±0.6 Da and a fragment mass tolerance of 1 Da were submitted. 

Carbamidomethylation of Cys was set as a fixed modification, and acetylation of protein N-

termini, Met oxidation, and pyroglutamic acid formation from peptide N-terminal Gln 

residues were permitted as variable modifications. Acceptance criteria were at least 2 

individual peptides with a minimum peptide score of 55 per protein. 

 

Lymphocyte proliferation assay 

Single-cell suspensions from 2 spleens of triple C. muridarum-infected or uninfected 

BALB/c and C57BL/6N mice were pooled and re-suspended in the complete growth medium. 

The proliferative responses of 5×10
5
 spleen cells in 3 parallel wells to 2 μg/ml of pGP3 or 

pGP4 recombinant protein, purified heat-inactivated C. muridarum EBs (1 μg/ml), or the 

similarly treated mock preparation were detected after incubation for 3 days. The proliferation 

was determined by MTT assay (Boehringer Mannheim Biochemica, Mannheim, Germany) 

according to the manufacturer's instructions. Stimulation indices (SIs) were calculated by 

dividing the optical density measured for protein-, mock- or EB-stimulated spleen cells by the 

optical density measured for non-stimulated spleen cells.  

 



 25 

Statistical analysis 

Statistical analysis of the data was carried out with SigmaPlot for Windows Version 11.0 

software, using the Wilcoxon–Mann–Whitney two-sample test. Differences were considered 

statistically significant at p<0.05.  
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Results 

 

Aim 1. To determine the roles of IL-17 cytokines in pathological immune response to C. 

pneumoniae and C. muridarum infection and re-infection in BALB/c mice 

 

C. pneumoniae infection induces the expression of IL-17A and IL-17F mRNA in the lungs 

of BALB/c mice 

In order to investigate the production of different IL-17 cytokines during C. pneumoniae 

infection, BALB/c mice were infected intranasally with C. pneumoniae. On days 1, 2, 4, 7, 14 

or 28 after infection, mice were sacrificed and their lungs were removed for the determination 

of C. pneumoniae titres, the expression of the different IL-17 (IL-17A, C, D, E, F) and IL-23 

mRNA, and the IL-17A protein content in the individual lungs. 

The infectious bacterial titre was below the level of detectability at 24 h after infection, 

but it had increased by day 2. The peak titre of C. pneumoniae was observed on day 7, while 

on day 14 after infection the titre had decreased and no viable C. pneumoniae was detected on 

day 28 (App. I. Fig. 1a). The expression of IL-17A mRNA was increased as early as on day 

2, but the highest level of expression (26.1-fold) was detected on day 7 after infection. It then 

decreased continuously, but the expression level was still rather high relative to the control on 

day 28 (Fig. 3A). The expression of IL-17F mRNA was highest on day 4 (16.25-fold) and 

then decreased during the observation period. The expression of IL-17C, IL-17D and IL-17E 

mRNA did not change during the course of C. pneumoniae infection. The mRNA expression 

of IL-23, the main inducer of IL-17A production, was observed on the first day, and peaked 

on day 2 at 62-fold (Fig. 3B). The kinetics of IL-17A protein production correlated with the 

mRNA expression: it increased from day 2, with the highest concentration on day 7 (App. I. 

Fig. 1d). 
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Fig. 3 Expression of different IL-17 mRNA (A) and IL-23 mRNA (B) in lung suspensions from C. pneumoniae-

infected BALB/c mice. The line denotes a threshold value, which was set at a 2-fold increase in transcripts. Data 

are normalized for -actin RNA content and plotted as fold change over the results for the control mice. Bars 

denote mean ± SD of the results on 7 mouse lungs. 

 

 

CD4
+
 cells are the main source of IL-17A in C. pneumoniae-infected BALB/c mice 

To define the phenotype and the number of peripheral cells which release IL-17A, 

ELISPOT assay was carried out with the spleen cells of C. pneumoniae-infected mice after 

the depletion of CD4
+
 or CD8

+
 cells and in vitro re-stimulation with heat-inactivated C. 

pneumoniae or mock preparation. Spleen cells of uninfected mice served as controls.  

C. pneumoniae infection caused a significant increase in the number of IL-17A-

producing cells after in vitro re-stimulation of the spleen cells with heat-inactivated C. 

pneumoniae, as compared with the spleen cells of uninfected mice (data not shown). In vitro 

re-stimulation of spleen cells isolated from C. pneumoniae-infected mice with heat-

inactivated C. pneumoniae significantly enhanced the number of IL-17A-producing cells as 

compared with spleen cells re-stimulated with mock preparation (Fig. 4). The depletion of 

CD8
+
 cells did not result in a reduction in the number of IL-17A-producing cells, whereas the 

depletion of CD4
+
 cells resulted in a significant reduction in the number of SFCs in in vitro 

re-stimulated spleen cells isolated from C. pneumoniae-infected mice. These results indicate 

that the CD4
+
 cells are the main source of IL-17A during C. pneumoniae infection in BALB/c 

mice. 
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Fig. 4 The number of IL-17A-producing cells isolated from C. pneumoniae-infected mice and tested after 

depletion of CD4
+
 and/or CD8

+
 cells and in vitro re-stimulation with heat-inactivated C. pneumoniae or mock in 

ELISPOT assay. Bars indicate mean ± SD of SFCs per million spleen cells, counted in triplicate wells 

(*p<0.001). 

 

 

In vivo neutralization of IL-17A resulted in higher bacterial burden in the lungs of C. 

pneumoniae-infected BALB/c mice  

To investigate the role of IL-17A in acute C. pneumoniae infection, mice were treated 24 

h before, and 24 and 48 h after the infection with anti-IL-17A monoclonal antibodies or with 

isotype control antibodies. Mice were sacrificed on day 1 or 4 after infection. The numbers of 

lymphocytes, macrophages and neutrophil granulocytes in the BAL fluid of the mice were 

determined. From the homogenized lungs, C. pneumoniae was cultured and the levels of 

different cytokines were determined by ELISA. 

The in vivo anti-IL-17A treatment led to a significantly reduced IL-17A content in the 

BAL fluid on day 4 as compared to that in the control mice. The numbers of neutrophil cells 

in the anti-IL-17A-treated group on days 1 and 4 were significantly lower than those for the 

control. Neutralization of IL-17A did not influence the numbers of macrophages and 

lymphocytes in the BAL fluid (App. I. Table 1). The number of viable chlamydiae in the 

lung suspension of the anti-IL-17A-treated group on day 4 was significantly higher than the 

C. pneumoniae content of the lungs of control mice (Fig. 5A). The levels of KC and MIP-2 on 
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day 4 were significantly lower than the chemokine levels in the lungs of the control mice (Fig. 

5B). 

 

Fig. 5 The number of viable C. pneumoniae (A) and the levels of KC, MIP-2 and LIX (B) in the lungs of anti-IL-

17A-treated and control mice on day 4 after infection. Bars denote mean ± SD of the results on 7 mouse lungs 

(*p<0.05). 

 

 

C. pneumoniae re-infection triggers the production of IL-17A and IL-17E in BALB/c mice 

In order to study the role of IL-17A and IL-17E in chronic chlamydial infection, BALB/c 

mice were infected intranasally with C. pneumoniae 3 times at 4-week intervals, and were 

sacrificed at 14 or 28 days after each infection, their lungs were collected for the 

determination of C. pneumoniae titres, the expression of IL-17A and IL-17E mRNA, and the 

IL-17A/E protein content in the individual lungs. 

After the first infection, the quantity of recoverable C. pneumoniae was similar to that in 

the previous experiment. After the second and third infections, C. pneumoniae was not 

detected in the lungs of the mice at the examined time points (data not shown). The re-

infection of the mice with C. pneumoniae induced the production of IL-17A and the 

expression pattern was similar to that measured after the first infection, but the expression 

levels were higher, in spite of the absence of viable chlamydiae in the lungs of mice. The 

expression of IL-17E mRNA was not increased after a single infection, but after the second 

and third infections its expression increased dramatically. The expression level of IL-17E 

mRNA 4 weeks after the third C. pneumoniae infection was still 400 times higher than that in 

the control lungs (Fig. 6A).  
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To clarify whether viable C. pneumoniae is needed to induce IL-17A/E mediated 

pathological immune response or only the chlamydial antigens are sufficient, mice were first 

infected intranasally with viable or heat-inactivated C. pneumoniae then infected twice with 

heat-inactivated C. pneumoniae at 4-week intervals. The mice were sacrificed at 2 or 4 weeks 

after infection and the expression of IL-17A and IL-17E mRNA was determined.  

We observed a significant increase in the expression of IL-17A mRNA in the lungs of 

mice infected first with viable C. pneumoniae and then with heat-treated C. pneumoniae on 

the second and third occasions (App. I. Fig. 4b). However, the expression of IL-17E mRNA 

was not detectable in the lungs of these mice. We found that the infection and re-infection of 

mice with heat-inactivated C. pneumoniae did not influence the expression of IL-17A and IL-

17E mRNA in the lungs of the mice (data not shown). 

Fig. 6 The expression of IL-17A and IL-17E mRNA in the lungs of BALB/c mice infected and re-infected with 

C. pneumoniae (A) or C. muridarum (B). ↓ denotes the time of re-infection. The line denotes a threshold value, 

which was set at a 2-fold increase in transcripts. 

 

 

C. muridarum infection and re-infection induce the expression of IL-17A and IL-17E 

mRNA in the lungs of BALB/c mice 

In order to investigate the production of IL-17A and IL-17E during C. muridarum 

infection, BALB/c mice were infected intranasally with C. muridarum, and re-infected on day 

28 after the first infection. On days 1, 7, 14, 28, 29, 35, 42 and 56 after the first infection, 

mice were sacrificed and their lungs were removed for the determination of bacterial burden, 

mRNA levels and protein contents of the IL-17A and IL-17E cytokines in individual lungs. 
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The course of chlamydial burden in the lungs of mice was similar to that detected during 

C. pneumoniae infection: the number of C. muridarum increased by day 1, peaked on day 7, 

and then decreased by day 28 after infection. On day 29, one day after the re-infection the 

bacterial titre was increased but at later time points, viable C. muridarum was not detected in 

the lungs of the re-infected mice (App. II. Fig. 1).   

The expression of IL-17A mRNA displayed similar kinetics as after infection and re-

infection with C. pneumoniae, it was highest on day 7, then decreased continuously. The fold 

increase in IL-17A transcripts was higher after re-infection than it was after the primary 

infection. Unlike that of IL-17A mRNA, the expression of IL-17E mRNA did not 

demonstrate a parallel change with the level of bacterial burden in the lungs of the mice. The 

expression started to increase on day 7, and the highest level was detected on day 28 after the 

first infection. On day 29 (one day after re-infection), the expression of IL-17E mRNA 

decreased dramatically, but after that it increased again and was highest 28 days after re-

infection, when the experiment was terminated (Fig 6B). In the lungs of the infected and the 

re-infected mice the kinetics of IL-17A and IL-17E protein production was similar to that of 

the expression of IL-17A and IL-17E mRNA, respectively (App. II. Fig. 2b). 

 

 

The epithelial cells of the lung are responsible for the production of IL-17E after C. 

muridarum infection and re-infection  

To reveal which cells are responsible for the production of IL-17E in the later stage of C. 

muridarum infection and re-infection, the lungs of infected, re-infected and uninfected mice 

were sectioned and stained with monoclonal antibody to IL-17E as primary, and FITC-

labelled anti-mouse IgG as a secondary antibody.  

No fluorescence was seen in the lung sections of the uninfected mice (Fig. 7A). 

Production of IL-17E was observed in the lungs of the infected and re-infected mice four 

weeks after infection. The IL-17E-positive cells were situated especially among the epithelial 

cells of the bronchi, and only a few positive cells were found in the interstitium of the lungs 

(Fig. 7B and C). 
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Fig. 7 The production of IL-17E in the lungs of uninfected (A), C. muridarum-infected (B) and re-infected mice 

(C). The lung sections were stained with IL-17E-specific monoclonal antibody and with FITC-labelled anti-

mouse IgG. 

 

 

 

Aim 2. To describe the transcriptional pattern of pMoPn genes in C. muridarum-infected 

BALB/c and C57BL/6N mice 

 

The pMoPn genes displayed divergent transcriptional pattern in BALB/c mice and in 

C57BL/6N mice  

In order to compare the susceptibility of BALB/c mice and C57BL/6N mice to C. 

muridarum infection, mice were infected intranasally with 1×10
3
 IFU of C. muridarum and 

sacrificed 1, 7, 14, 28 or 56 days after infection, and the chlamydial burden was determined in 

the lungs of mice.  

From the first day after the infection, the BALB/c mice displayed more clinical 

symptoms than did the C57BL/6N mice, as indicated by ruffled fur, passivity, a lack of 

appetite and weight loss. In BALB/c mice, the infectious C. muridarum titre was increased on 

day 1, peaked on day 7, and then decreased continuously. On day 28 after infection, the viable 

C. muridarum titre was 3×10
1
 IFU/lung, but there was no detectable C. muridarum on day 56 

after infection. In C57BL/6N mice, the peak titre of C. muridarum was also detected on day 7. 

However, by day 28 post-infection, all of the C57BL/6N mice were culture-negative, whereas 

all of the BALB/c mice remained culture-positive (App. III. Fig. 1).  

A B C 
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To compare the transcriptional pattern of pMoPn genes in BALB/c and C57BL/6N mice 

during C. muridarum infection, RT qPCR was carried out with total RNA isolated from the 

lungs of infected mice.  

Increased levels of expression of different plasmid genes were observed in the BALB/c 

mouse lungs on day 7 after infection. The expression of TCA01, TCA02, TCA03, TCA06 and 

TCA07 was 3-5-fold higher on day 7 relative to that in the control sample, and increased 

further to 5-7-fold on day 14. Interestingly, the increases in the expression of TCA04 and 

TCA05 in the BALB/c mice were each 3-fold on both day 7 and day 14 (Fig. 8A). In 

C57BL/6N mice, the expression of pMoPn genes was delayed. However, on day 14 the 

expression levels of the plasmid genes in C57BL/6N mice were higher (7-47-fold) than those 

in BALB/c mice (Fig. 8B). There was no plasmid-encoded gene expression on day 28 after C. 

muridarum infection in either mouse strain. 
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Fig. 8 Expression levels of pMoPn genes in the lungs of BALB/c mice (A) and C57BL/6N mice (B). The line 

denotes a threshold value, which was set at a 2-fold increase in transcripts.  
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Aim 3. To compare the host immune response against pGP3 and pGP4 after C. 

muridarum infection and re-infection in BALB/c and C57BL/6N mice 

 

Infection and re-infection with C. muridarum induced the production of pGP3- or pGP4-

specific antibodies in C57BL/6N mice but not in BALB/c mice 

To clarify whether pGP3 and pGP4 are able to induce the production of specific 

antibodies or not in C. muridarum-infected mice, BALB/c and C57BL/6N mice were infected 

with C. muridarum 3 times at 4-week intervals. Mice were sacrificed 14 days after infection, 

sera were taken, and Western blot analysis was performed. Recombinant, purified pGP3 or 

pGP4 protein or C. muridarum EBs served as antigens, and sera collected from uninfected 

mice were used as controls. 

In C57BL/6N mice, a single infection with C. muridarum was sufficient to induce the 

production of pGP3-specific antibodies (Fig. 9A panel b-d). No pGP4-specific antibody 

production was detected in mice infected once or twice, but this antibody appeared after the 

3rd infection (Fig. 9A panel d). Contrarily, the sera of C. muridarum-infected and re-infected 

BALB/c mice did not react with the pGP3 and the pGP4 (Fig. 9B panel b-d). The sera of 

uninfected mice did not contain pGP3-, pGP4- or C. muridarum-specific antibodies (Fig. 

9A,B panel a). Sera of C. muridarum-infected mice reacted with the lysate of concentrated C. 

muridarum EBs.  
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Fig. 9 Production of pGP3- and pGP4-specific antibodies in C57BL/6N mice (A) and in BALB/c mice (B) 

infected 1-3 times with C. muridarum as tested in Western blot assay. Purified C. muridarum EBs or pGP3 or 

pGP4 were loaded onto a denaturing polyacrylamide gel. After electrophoresis, the gel was blotted onto a PVDF 

membrane for Western blot detection with pooled sera of mice infected 1 (panel b), 2 (panel c) or 3 times 

(panel d) with C. muridarum. A serum sample pooled from uninfected mice was used as a negative control 

(panel a).  

 

 

Sera of C. muridarum-infected BALB/c mice recognized only the trimeric form of pGP3  

 Although the sera of C. muridarum-infected and re-infected BALB/c mice did not react 

with the 28 kDa pGP3, but they reacted with an additional protein with 80-85 kDa (Fig. 9B 

panel b-d). As it was reported earlier that the pGP3 plasmid protein exists in trimeric or 

dimeric form
69

, the gel samples containing the band recognized by the infected mouse sera 

were subjected to further analysis. The result of the LC-MS/MS showed that the protein 

which was reacted with the sera of C. muridarum-infected BALB/c mice was the trimeric (84 
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kDa) form of pGP3 (App. III. Fig. 4B). The sera of C. muridarum-infected C57BL/6N mice 

did not show any reactivity with the trimeric form of pGP3 (App. III. Fig. 3B). 

 

 

Re-infection with C. muridarum induced the production of pGP3-specific cellular immune 

response in both mouse strains 

For comparison and quantitation of pGP3- and pGP4-specific T cell reactivity following 

C. muridarum infection in the two mouse strains, spleen cells isolated from C. muridarum re-

infected mice were in vitro re-stimulated with recombinant pGP3 or pGP4 protein, purified 

heat-inactivated C. muridarum EBs, or the similarly treated mock preparation; the 

proliferative responses of the re-stimulated spleen cells were detected after incubation for 3 

days. Uninfected mice served as controls.  

Spleen cells isolated from triple C. muridarum-infected C57BL/6N mice reacted with 

pGP3 after in vitro re-stimulation. In addition, spleen cells of C57BL/6N mice also responded 

with proliferation to pGP4 (Fig. 10A). The spleen cells of C. muridarum-infected BALB/c 

mice did not show reactivity to the recombinant pGP4 protein after in vitro re-stimulation, but 

they recognized and responded with proliferation to the pGP3 protein (Fig. 10B). 

Lymphocytes of both mouse strains showed proliferation after re-stimulation with heat-

inactivated C. muridarum EBs. 

Fig. 10 pGP3- and pGP4-specific cellular immune response in triply C. muridarum-infected C57BL/6N mice 

(A) and BALB/c mice (B), as tested in MTT test. Spleen cells of mice were re-stimulated in vitro with 

recombinant pGP3 or pGP4 protein; heat-inactivated C. muridarum EBs or mock antigens. Uninfected mice 

served as controls. The data are the means ± SD of the SIs of triplicate assays (*p<0.05). 
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Discussion 

 

Aim 1. Members of the IL-17 cytokine family can aggravate the pathology of 

autoimmune and allergic diseases, but they have a beneficial role during infection caused by 

different pathogens
33

. We have demonstrated here that C. pneumoniae induced the expression 

of IL-17A and IL-17F mRNA in BALB/c mice, with peak levels on day 7 and day 4, 

respectively, whereas the expression of IL-17C, IL-17D and IL-17E mRNA did not change 

after a single infection with the pathogen. The expression of IL-23 mRNA, which expands 

and stabilizes Th17 cells to produce IL-17A and IL-17F, preceded the production of IL-17A.  

The involvement of IL-17A in protective immunity against intracellular pathogens such 

as C. pneumoniae is rather controversial. In the event of mycobacterial infection, IL-17A 

exerts an impact on inflammation and the formation of granulomas, but it is not required for 

overall protection
70,71

. Differences in the role of IL-17A have been observed for different 

Salmonella species: IL-17A is not required for the protection against S. enterica, but the 

depletion of Th17 cells in the intestines dramatically increases the frequency of bacteraemia 

in the case of S. Typhimurium infection in monkeys infected with simian immunodeficiency 

virus
72,73

. IL-17A is important in protective immunity at an early stage of infection with 

Listeria monocytogenes in the liver because IL-17A-deficient mice exhibited a reduced 

protective response
74

. The over-expression of IL-17A after a challenge with Klebsiella 

pneumoniae resulted in the local induction of TNF-, IL-1 and MIP-2, augmented 

polymorphonuclear leukocyte recruitment, and enhanced bacterial clearance and survival
75

. 

IL-17A promotes neutrophilic inflammation through the induction of KC, LIX and MIP-2 

production by a variety of target cells
27

. We found that the quantities of KC and MIP-2 in the 

anti-IL-17A antibody-treated mice were reduced 4 days after C. pneumoniae infection. 

Moreover, the neutralization of IL-17A significantly reduced the number of neutrophil 

granulocytes in the BAL fluid relative to that for the isotype antibody-treated mice. The in 

vivo neutralization of IL-17A resulted in an increased pathogen burden at an early stage of 

infection; the amount of recoverable C. pneumoniae was increased 3-fold as compared with 

the isotype-treated controls, suggesting that the decreased release of KC and MIP-2 in 

response to anti-IL-17A treatment was associated with decreased lung neutrophil recruitment 
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and attenuated bacterial clearance. Based on these results we assumed that IL-17A exerts an 

indirect antimicrobial effect during C. pneumoniae infection. A similar antibacterial effect of 

IL-17A was seen in the case of extracellular K. pneumoniae
75

. It has recently been reported 

that IL-17A does not exert a direct antimicrobial effect, because it does not affect the growth 

of either C. muridarum or C. trachomatis L2 in the L-929 cell line
76

.  

As revealed by ELISPOT, the main source of the IL-17A after C. pneumoniae infection 

in BALB/c mice is the CD4
+
 cells. Although, most of the recent studies focused on IL-17A 

produced by CD4
+
 Th 17 cells,  T cells are potent contributors to the immune responses 

following infections by intracellular pathogens, such as L. monocytogenes, Mycobacterium 

tuberculosis and M. bovis
74,77,78

. Moreover, other cell types, e.g. CD8
+
 T cells and NK cells 

have been demonstrated to be IL-17A-producing cells
79

. In our experiments the depletion of 

CD8
+
 cells did not influence the number of IL-17A-producing cells in the ELISPOT assay.  

Immunopathological mechanisms of chlamydial infections have been widely studied by 

using animal models of repeated infections. Multiple episodes of re-infections with C. 

trachomatis elicit some protective immunity, but the limited growth of chlamydia induces a 

severe inflammation that may lead to irreversible tissue changes
21

. Moreover, a primary C. 

pneumoniae infection conferred a partial resistance to re-infection in a mouse model, but 

provided no protection against inflammatory changes, as an equally strong inflammatory 

response was observed after re-infection
80

. Our mouse model of repeated infections revealed 

that the re-infection increased the expression of IL-17A and IL-17E mRNA in the lungs of 

mice relative to that in mice infected only once. The production of both cytokine was still 

elevated when viable C. pneumoniae was not present in the lungs, suggesting a role of IL-17A 

and IL-17E in the chronic inflammatory process. Our results suggest that in recurrent 

chlamydial infections the synthesis and release of chlamydial antigens from repeatedly 

infected mucosal epithelial cells or alveolar macrophages may provide a prolonged antigenic 

stimulation, which strongly amplifies chronic inflammation. This is an interesting finding in 

the light of the reported putative role of respiratory pathogens such as Chlamydia and 

Mycoplasma in the activation of asthma
81

. On the basis of our results, viable pathogen is 

needed for the expression of IL-17E mRNA, because there was no increase in IL-17E mRNA 

expression after the infection and re-infection of the mice with heat-inactivated C. 

pneumoniae, not even when the mice were inoculated with viable C. pneumoniae first and 
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subsequently treated twice with killed C. pneumoniae. The pattern of expression of IL-17A 

mRNA was different from that of IL-17E mRNA. We observed an increased expression of IL-

17A mRNA in the lungs of mice infected first with viable C. pneumoniae and then twice with 

heat-treated C. pneumoniae.  

We demonstrated that infection with another member of the Chlamydiaceae family – 

with C. muridarum, which belongs not in the Chlamydophila, but in the Chlamydia genus – 

can also induce the production of IL-17A and IL-17E in BALB/c mice. The kinetics of IL-

17A mRNA expression in our experiment was similar to that observed by Zhou et al. after a 

single infection with C. muridarum
82

. Concordant with our earlier results regarded to the re-

infection of mice with C. pneumoniae, the quantity of IL-17E increased four weeks after C. 

muridarum-infection and re-infection. It is noteworthy that the re-infection of mice with C. 

muridarum resulted in acutely decreased levels of expression and production of IL-17E. We 

speculate that the strong Th1 cytokine IFN- can inhibit the expression of IL-17E during the 

early stages of C. muridarum infection.  

It was reported earlier that the production of IL-17E by T cells, mast cells and other 

haematopoietic immune cells is not essential for the development of Th2-type/eosinophilic 

airway inflammation, suggesting that the IL-17E produced by non-immune cells such as 

airway epithelial cells, is crucial for its development
83

. We found that the epithelial cells of 

the lung are responsible for the production of IL-17E in the later stages of pulmonary C. 

muridarum infection.  

Aim 2. The cryptic plasmid of chlamydiae is considered to be a virulence factor, because 

plasmid-free variants have been found to be less invasive and to cause pathologies of 

relatively low severity
53

. Loss of the plasmid from C. muridarum impacts two virulence-

associated phenotypes, infectivity and TLR2 activation, and also the ability of chlamydiae to 

accumulate glycogen
84

. The kinetics of the expression of plasmid genes has not been 

examined earlier in different mouse strains.  

Our experimental findings confirmed the results of Jiang et al. that the chlamydia burden 

is higher in BALB/c mice than in C57BL/6N mice
85

. In C57BL/6N mice, the expression of 

the plasmid genes was not increased in the early phase of the infection, but by day 14 it was 

more pronounced than in the BALB/c strain. The expression levels of the plasmid genes in the 

BALB/c mice rather followed the kinetics of the pathogen burden. A further interesting 
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finding was that the levels of expression of TCA04 and TCA05, which encode pGP3 and 

pGP4, respectively, were uniformly elevated 3-fold in the BALB/c mice on day 7 and day 14 

suggesting that these 2 genes are closely related, or interdependent. It was very recently 

reported by Song et al. that pGP4 is the gene that regulates the transcription of plasmid- 

encoded pGP3 and multiple chromosomal genes during Chlamydia trachomatis infection
57

. 

Moreover, a sequence of 30 or more nucleotides in the pGP3 gene was required for the 

optimal expression of pGP4
86

. 

Aim 3. Our Western blot experiment showed that the sera of C. muridarum-infected 

C57BL/6N mice reacted with the monomeric form of pGP3 (28k Da). Moreover, the sera of 

the mice infected 3 times with C. muridarum reacted with the recombinant pGP4 protein. In 

contrast, the sera of multiply C. muridarum-infected BALB/c mice did not recognize the 

monomeric form of pGP3 in Western blot assays, but the sera did react with a protein band 

with higher molecular weight (80-85 kDa). Since the pGP3 plasmid protein has been reported 

to exist in trimeric form, the sample corresponding to the recognized 80-85 kDa protein was 

subjected to further analysis. The results of the LC-MS/MS analysis clearly demonstrated that 

the protein recognized by the sera of the C. muridarum-infected BALB/c mice was the 

trimeric form of pGP3. Li et al. demonstrated that the trimeric form of pGP3 is secreted into 

the host cell cytosol, and their results indicated that human antibodies recognized trimeric, but 

not monomeric pGP3, suggesting that pGP3 is presented to the human immune system as the 

trimer during C. trachomatis urogenital infection
60

. However, others have found that 

seropositive human sera react with the monomeric form of pGP3 in the Western blot assay
87

. 

Moreover, we detected strong monomeric pGP3-specific antibody production after a single 

inoculation with C. muridarum in C57BL/6N mice. Our results lead us to suppose that the 

genetic background of the host can determine whether the monomeric or the trimeric pGP3 is 

recognized.  

The finding that the sera of triply C. muridarum-infected mice recognized the pGP4 

protein suggests that re-infection leads to the increased pGP4-specific antibody production 

which was detected in our Western blot assay after the third infection. Moreover, an 

increasing pGP4-specific humoral immune response was observed not only in the pooled sera 

of mice, but in each individual mouse serum, suggesting that the processes of presentation and 

recognition of the pGP4 epitopes are similar in each C57BL/6N mouse.  
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Furthermore, we described for the first time that the infection of mice with C. muridarum 

can elicit a cellular immune response to plasmid proteins. We observed that the SIs of spleen 

cells collected from multiply C. muridarum-infected C57BL/6N mice were significantly 

higher after in vitro re-stimulation with pGP3 or pGP4 than the SIs of the lymphocytes of 

uninfected mice. The spleen cells of C. muridarum-infected BALB/c mice did not respond 

with proliferation to the recombinant pGP4 protein, but they were able to respond with 

proliferation to the pGP3 antigen after in vitro re-stimulation for 3 days. Further experiments 

are needed to clarify the roles of pGP3 and pGP4 in the initiation of the cellular and humoral 

immune responses of the host in different mouse strains. 

 

 

The following of our results are considered novel 

 

 

 C. pneumoniae infection induces the expression of IL-17A and IL-17F mRNA in the 

lungs of BALB/c mice  

 C. pneumoniae re-infection triggers the production of IL-17A and IL-17E in BALB/c 

mice 

 C. muridarum infection and re-infection induce the expression of IL-17A and IL-17E 

mRNA in the lungs of BALB/c mice 

 The epithelial cells of the lung are responsible for the production of IL-17E after C. 

muridarum infection and re-infection in BALB/c mice 

 The pMoPn genes display divergent transcriptional pattern in BALB/c mice and in 

C57BL/6N mice  

 Infection with C. muridarum induces the production of pGP3-specific antibodies in 

both mouse strains, but the recognition of pGP3 is dependent on the native 

conformation of the protein 

 Re-infection with C. muridarum induces the pGP4-specific humoral and cellular 

immune responses in C57BL/6N mice but not in BALB/c mice  

 Re-infection with C. muridarum induces the production of pGP3-specific cellular 

immune response in both mouse strains 
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Summary 

Chlamydiae are obligate intracellular bacteria that cause infections which are common 

throughout the world. Chlamydophila pneumoniae is an important respiratory tract pathogen; 

it causes community-acquired pneumonia, bronchitis and sinusitis. Different serovariants of 

Chlamydia trachomatis cause a wide range of diseases, including blinding trachoma, 

urogenital tract infections leading to urethritis, cervicitis and proctitis, and systemic 

lymphogranuloma venereum disease. Although antibiotics are effective in treating chlamydial 

infections, the lack of obvious symptoms has the consequence that many infections remain 

untreated potentially leading to complications characterised by inflammatory pathologies. The 

immunity to these pathogens is not effective, chlamydial infections display high rates of 

recurrence and have long-term consequences causing a serious public health problem. 

Understanding the immunological basis of immunity to chlamydiae will provide an 

indispensable knowledge for the design of a vaccine against diseases caused by these 

pathogens.  

Several Chlamydia species harbour a cryptic plasmid, but the roles of the plasmid-

encoded or regulated proteins in either chlamydial pathogenesis or protective immunity 

remain largely unknown. Growing evidence indicates that the immune responses mediated by 

different IL-17 cytokines play a critical role in the protective mechanisms against bacterial 

and fungal infections, and in the development of allergic and autoimmune diseases.  

The present study was designated to improve our current understanding of the 

pathological immune response to infection and re-infection with chlamydiae, and to provide 

information about the host immune responses against the different chlamydial plasmid 

proteins.  

We have demonstrated that infection with C. pneumoniae induced the expression of IL-

17A and IL-17F mRNA in BALB/c mice, whereas the expression of IL-17C, IL-17D and IL-

17E mRNA did not change after a single infection with the pathogen. The in vivo 

neutralization of IL-17A significantly reduced the number of neutrophil granulocytes and 

increased the pathogen burden in the lungs of C. pneumoniae-infected mice. We have 

revealed that the main source of the IL-17A after C. pneumoniae infection in BALB/c mice is 

the CD4
+
 cells.  
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Our mouse model of repeated infections revealed that re-infection increased the 

expression of IL-17A and IL-17E mRNA in the lungs of mice relative to that in mice infected 

only once. Infection with C. muridarum can also induce the production of IL-17A and IL-17E 

in BALB/c mice. The production of both cytokines was still elevated when viable chlamydiae 

were not present in the lungs, suggesting a role of IL-17A and IL-17E in the chronic 

inflammatory process.  

Infection of BALB/c and C57BL/6N mice with C. muridarum revealed that BALB/c 

mice are more susceptible to C. muridarum infection than C57BL/6N mice. The chlamydial 

plasmid genes displayed divergent transcriptional pattern in BALB/c and in C57BL/6N mice, 

and the immune response to pGP3 and pGP4 plasmid proteins was also different in the two 

mouse strains. The sera of C. muridarum-infected C57BL/6N mice reacted with the 

monomeric form of pGP3 in Western blot assay. In contrast, the sera of multiple-infected 

BALB/c mice did not recognize the monomeric form of pGP3, but the sera did react with an 

additional protein band which was proved to be the trimeric form of pGP3. These results 

suggest that recognition of pGP3 is dependent on the native conformation of the protein, and 

the genetic background of the host can determine whether the monomeric or the trimeric form 

is recognized. Triple infection with C. muridarum elicited pGP4-specific humoral immune 

response in C57BL/6N, but not in BALB/c mice. Spleen cells isolated from C. muridarum-

infected C57BL/6N mice reacted with proliferation after in vitro re-stimulation with pGP3 

and pGP4. The spleen cells of C. muridarum-infected BALB/c mice did not show reactivity to 

the recombinant pGP4 protein after in vitro re-stimulation, but they responded with 

proliferation to the pGP3 protein.  
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Összefoglalás 

A Chlamydiaceae család tagjai obligát intracelluláris baktériumok, melyek által okozott 

betegségek az egész világon elterjedtek. A Chlamydophila pneumoniae egy jelentős légúti 

patogén, a közösségben szerzett tüdőgyulladás, a bronchitis és a sinusitis gyakori kórokozója. 

A Chlamydia trachomatis szerovariánsok különböző betegségeket okoznak, többek között a 

trachomát, urogenitális traktus fertőzéseit (urethritis, cervicitis, proctitis) és a szisztémás 

lymphogranuloma venereumot. Az antibiotikumok hatásosak ugyan a chlamydia fertőzések 

kezelésében, de a jellegzetes tünetek gyakori hiánya miatt a fertőzések legtöbbször 

kezeletlenek maradnak, mely komoly gyulladásos szövődmények kialakulásához vezethet. A 

chlamydiák ellen kialakult immunológiai védelem nem maradandó, ezért gyakoriak a 

visszatérő fertőzések, melyeknek a hosszú távú következményei jelentős közegészségügyi 

problémát jelentenek. Ennek megoldására a leghatékonyabb módszer egy vakcina 

kifejlesztése lenne, melyhez nélkülözhetetlen a chlamydiák ellen kialakult immunválasz 

részletes megismerése.  

Néhány chlamydia faj hordoz egy plazmidot, mely fontos virulencia faktor, azonban a 

plazmidon kódolt fehérjék szerepe a fertőzések pathomechanizmusában ill. a chlamydiák által 

kiváltott immunválaszban még nem teljesen tisztázott. Az immunrendszer baktériumok és 

gombák ellen irányuló védelmében egyre nagyobb jelentőséget tulajdonítanak a különböző 

IL-17 citokinek által mediált immunfolyamatoknak, melyek fontos szerepet játszanak az 

allergiás és az autoimmun betegségek kialakulásában is.  

A kutatásunk célja a chlamydia fertőzések által indukált gyulladásos 

immunfolyamatokról megszerzett ismereteink további bővítése, továbbá a plazmidon kódolt 

fehérjékre kialakult immunválasz vizsgálata a fertőzés során.  

 Kísérleteink során kimutattuk, hogy a C. pneumoniae-vel való fertőzés indukálja a 

BALB/c egerekben az IL-17A és IL-17F mRNS kifejeződését, miközben az IL-17C, IL-17D 

és IL-17E mRNS szintje egyszeri fertőzés hatására nem változik. Az IL-17A in vivo 

neutralizációja szignifikánsan csökkenti a neutrophil granulocyták számát és növeli a 

visszatenyészthető chlamydia mennyiségét a C. pneumoniae-vel fertőzött egerek tüdejében. 

Bebizonyítottuk, hogy BALB/c egerek C. pneumoniae fertőzése során a CD4
+ 

sejtek
 
a 

felelősek az IL-17A termeléséért.  
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Az ismételt chlamydia fertőzések gyulladásra gyakorolt hatásának vizsgálata során 

kimutattunk, hogy az IL-17A és az IL-17E mRNS mennyisége a reinfekciók hatására 

jelentősen megemelkedik az egerek tüdejében az első fertőzés után mérthez képest. A fertőzés 

késői szakaszában, amikor már élő kórokozót nem tudtunk kimutatni az egerek tüdejéből, 

mindkét citokin szintje jelentősen megemelkedett, mely felveti annak lehetőségét, hogy az IL-

17A és IL-17E szerepet játszik a krónikus gyulladásos folyamatokban.  

A C. trachomatis modelljeként használt egérpatogén C. muridarum-mal végzett 

kísérleteink alapján elmondhatjuk, hogy a BALB/c egerek sokkal érzékenyebbek C. 

muridarum-mal szemben, mint a C57BL/6N egerek. A plazmid gének kifejeződési mintázata 

eltérő a két egértörzsben és emellett két plazmidfehérjére, a pGP3-ra és a pGP4-re kialakult 

immunválasz is különbözik.  Western blot során a C. muridarum-mal fertőzött C57BL/6N 

egerek széruma felismeri a monomer pGP3 fehérjét. Ezzel szemben a többször C. muridarum-

mal fertőzött BALB/c egerek széruma nem reagál a pGP3 monomerjével, de felismer egy 

másik fehérjét, melyről további vizsgálat során bebizonyosodott, hogy a pGP3 trimer formája. 

Ezek az eredmények arra utalnak, hogy a pGP3 felismerése függ a fehérje natív 

konformációjától és a gazdaszervezet genetikai hátterétől. A többszöri C. muridarum fertőzés 

csak a C57BL/6N egerekben indukálja a pGP4 specifikus immunválasz kialakulását. Az in 

vitro restimulációt követően a C. muridarum-mal fertőzött C57BL/6N egerek lépsejtjei 

reagáltak mind a pGP3, mind pGP4 fehérjékre, míg a C. muridarum-mal fertőzött BALB/c 

egerek lépsejtjei nem ismerték fel a pGP4-et, de a pGP3 fehérjére proliferációval válaszoltak.  
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