
University of Szeged
Faculty of Science and Informatics

Department of Software Engineering

Validating Documents of

Web-based Metalanguages

Using Semantic Rules

Ph.D. Dissertation

Candidate

Miklós Kálmán

Supervisor

Prof. Tibor Gyimóthy

Submitted to the

Doctoral School of Computer Science

Szeged, 2014

To my family and all who have helped me on my path.

Foreword

It has been a long and challenging journey: I have finally written my PhD

dissertation. I started my PhD studies back in 2003. After finishing the three

year PhD program my publication activities halted for several years. I started

working, which consumed most of my time and didn’t have enough energy left

after a long day’s work.

After several years of absence from the research community I decided to

pick up where I left off and pursue my PhD again. I started searching for an

updated research area and that led me to validation. I would like to thank

Prof. Tibor Gyimóthy and Ferenc Havasi for their collaboration, guidance

and help. Furthermore I am extremely grateful for the extended support of my

brother and parents along with my good friends Péter Rosztóczy, Ottó Vas and

Gergely Molnár for believing in me and persistently guiding me through the

tough times and never giving up on me. I would also like to thank László Szabó

for his help and coaching as well as Paulina Nagy for her help in proofreading.

I hope my dissertation will inspire others to hang on and finish what they

started, since at the end it does provide a great feeling of accomplishment.

Miklós Kálmán, May 2014.

List of Tables

1 Theses of the dissertation . 2

1.1 Key differences between SRML 1.0 and 2.0 10

2.1 Validation types . 30

2.2 Key differences between SRML versions 31

2.3 Plugin comparison (ES=Empty Set, PS=Primed Set) 51

2.4 Plugin Efficiency with gradual positive training examples 53

2.5 Plugin results for Dentistry Contact form 54

4.1 Forex TradeRequest type definition and restrictions 76

4.2 Forex TradeResponse type definition and restrictions 76

iii

List of Figures

1 Evolution of SRML versions and their areas 1

1.1 A possible XML form of the expression 3 ∗ (2.5 + 4). 6

1.2 The DTD of the simple expression in Figure 1.1 7

1.3 The XSD of the simple expression in Figure 1.1 8

1.4 XML document DOM tree . 9

1.5 A simple XML example for books 9

1.6 An SRML 2.0 example for type attribute of the addexpr element 11

1.7 XML of cart example . 12

1.8 XSD of cart example . 13

1.9 Using appinfo for JAXB binding information. 14

1.10 XML validation process using SRML 16

1.11 SRML of cart Validation Requirements #1 17

1.12 SRML of cart Validation Requirements #2 18

1.13 SRML of Validation Requirements #3 19

1.14 SRML of Validation Requirements #4 19

1.15 Validating database records using SRML 20

1.16 Multi-tier validation for applications 21

1.17 Database tables of cart . 22

1.18 Table relationship using SRML 22

1.19 DOM tree of the database schemas 23

1.20 Database validation exception 24

1.21 RelaxNG example . 26

1.22 Schematron Example for value validation 26

2.1 Simple HTML of form . 29

2.2 DOM tree of the Form Example 30

2.3 jSRML snippet for in-line email validation 32

2.4 Input form . 37

2.5 Client-Side jSRML . 37

2.6 Server Side jSRML . 38

2.7 Intercepting form data and learning jSRML rules 39

2.8 jSRMLTool learning process . 40

2.9 jpRelationship Plugin . 41

iv

LIST OF FIGURES v

2.10 jpRelationship Compositional Method 42

2.11 Outdoor Activities Form . 44

2.12 jpRelationship Conditional Method 44

2.13 Sample tree in the Random Forest 46

2.14 jpRegExp Plugin . 48

3.1 Simple PB message to serialize Person messages 59

3.2 Nested PB message to serialize HouseHold messages 59

3.3 DOM representation of Figure 3.2 59

3.4 XPath query for Names of Figure 3.3 60

3.5 ProtoML rule format . 61

3.6 ProtoML definition for MemberCount 62

3.7 ProtoML definition for TotalIncome 62

3.8 ProtoML definition for Title . 63

3.9 ProtoML definition for Employed based on Age 64

3.10 ProtoMLTool workflow . 64

3.11 Proto Message Java Options . 65

3.12 ProtoMLTool Validation workflow 65

4.1 Foreign Exchange Trade transaction in XML 69

4.2 Web Service Architecture . 70

4.3 Example SOAP message of Figure 4.1 70

4.4 WSDL for the Foreign Exchange Trade service 72

4.5 Service Invocation using marshalled classes 73

4.6 Person representation in XML. 73

4.7 SRML 2.0 ruleset for Figure 4.6 73

4.8 SRML 3.0 ruleset for Figure 4.6 74

4.9 SRML rules for a Foreign Exchange Trade transaction 75

4.10 SRML rules for validating the trade id field in the response. . . 77

4.11 Native validation class generation 78

4.12 Native validation flow using wsSRML 78

4.13 Proxy based validation flow . 80

4.14 Real-time proxy flow . 80

4.15 Java source of the performTrade method in the real-time valid-

ation mode . 81

4.16 Compiled Plugin proxy flow . 81

4.17 SOAP Intercept flow . 82

Contents

List of Tables iii

List of Figures iv

Contents vi

Validation overview 1

1 Validating XML documents 4

1.1 Preliminaries . 6

1.1.1 XML . 6

1.1.2 XPath . 7

1.1.3 SRML 2.0 . 10

1.2 Validating XML Documents . 11

1.2.1 Extending XSD . 14

1.2.2 A validation example using SRML 14

1.2.3 Using SRML in the field of Databases for Dataset valid-

ation . 19

1.3 Summary . 24

1.4 Related Work . 25

2 Validating Web Forms 27

2.1 Preliminaries . 29

2.1.1 HTML and DOM . 29

2.1.2 Types of form validation 29

2.1.3 The jSRML extension 30

2.2 Extending SRML for form validation 31

2.3 Validation using jSRML . 32

2.3.1 Defining validation rules 33

2.3.2 A form validation example 35

2.4 The jSRMLTool Servlet . 38

2.4.1 Learning jSRML rules 38

2.4.2 Programatically evaluating the jSRML learning plugins . 48

2.4.3 A Real-world example: Dentistry Treatment Inquiry Form 52

vi

CONTENTS vii

2.5 Summary . 54

2.6 Related Work . 54

3 Validating Google Protocol Buffers 57

3.1 Preliminaries . 58

3.1.1 Google Protocol Buffers 58

3.1.2 DOM model . 58

3.1.3 XPath . 60

3.2 Discussion . 60

3.2.1 Validation rules for the HouseHold message 62

3.2.2 Validation rules for Member embedded message 63

3.2.3 ProtoMLTool library . 64

3.3 Summary . 66

3.4 Related Work . 66

4 Validating Web Services 67

4.1 Background . 69

4.1.1 XML . 69

4.1.2 Web Services . 69

4.1.3 SRML 3.0 . 71

4.2 Validating services . 75

4.2.1 Native validation mode 78

4.2.2 Proxy-based validation mode 79

4.3 Summary . 82

4.4 Related Work . 83

Summary in English 86

Magyar nyelvű összefoglaló 93

A Validating XML documents 100

A.1 XSD of SRML 2.0 . 100

B Validating Web Forms 105

B.1 Full XSD of jSRML . 105

B.2 Full source of example . 107

C Validating Google Protocol Buffers 113

C.1 Function List of ProtoML . 113

D Validating Web Services 115

D.1 XSD of SRML 3.0 . 115

D.2 Functions of SRML 3.0 . 117

CONTENTS viii

Bibliography 120

Validation overview 1

Validation overview

Validation has become a hotly debated topic over the years. Without valida-

tion, large systems can crumble at the hands of malicious data, whether they

were intentionally introduced into the system or not. Validation is present

in many systems as part of the business logic. When dealing with validation

we have to distinguish between structural and content-based approaches. The

structural side is responsible for ensuring that the document layout complies

with the requirements. For XML documents structural validation entails the

process of making them well-formed and ensuring that they only contain ele-

ments allowed by the domain schema. Content validation is more challenging

since the document’s whole context has to be considered and the values them-

selves validated.

My research started with the compaction of XML documents using se-

mantic rules, which yielded the conception of the SRML language. This lan-

guage and the concept of semantic rules later led me to the validation space.

This dissertation is aimed solely at the validation area with references to the

initial SRML 1.0 [36] and the SRML 1.1 [31] (XMI extension) versions of the

language.

The dissertation will demonstrate how SRML was extended to the valid-

ation space along with validation approaches for XML (SRML 2.0 [35]), Web

Forms (jSRML [33]), Google Protocol Buffers (ProtoML [32]) and Web Services

(wsSRML [34]). The solutions outlined in the document will also demonstrate

ways to correct invalid documents.

SRML 1.0 SRML 1.1

Compacting

XML XMI

Allows attributes

SRML 2.0

Validation

Expressions

ProtoML

Protocol Buffers
Function oriented

Chaining

jSRML

Form validation

XML

Databases

JavaScript based

SRML 3.0

Simplified syntax

Function oriented

Web Service validation

Chapter 1

Chapter 3

Chapter 2

Chapter 4

Figure 1: Evolution of SRML versions and their areas

The evolution of SRML can be seen in Figure 1. The dissertation is di-

vided into four theses, which are summarized in Table 1. The document starts

out by demonstrating how the SRML language was extended to the valida-

tion space based on [35] by introducing version 2.0 of the language (Chapter

1). The extension provides a way to validate both the structure and content

of XML documents. With SRML 2.0 we can define context-sensitive value

Validation overview 2

Short Thesis Title Thesis Publications

Provide a way to validate

and correct XML documents

Validating XML documents using semantic rules [35]

through the extension

of SRML 1.0.

Create a new jSRML

metalanguage, which is capable of

Validating Web Forms defining semantic rules for [33]

the validation and

correction of web forms.

Introduce a new

metalanguage (ProtoML), which can

Validating Google Protocol Buffers validate and correct [32]

the messages of Google

Protocol Buffers.

Combine the previous

metalanguages (SRML 2.0, jSRML,

Validating Web Services ProtoML) into SRML 3.0 and [34]

provide a way to

validate Web Services.

Table 1: Theses of the dissertation

requirements for XML documents. This allows more fine-grained rule defini-

tions. The system also provides a way to correct the contents of the document,

which is a very useful feature for domains where data integrity is crucial. We

also demonstrate how the language can be used in a database context using

H2 and triggers.

Chapter 2 details how the jSRML [33] extension of SRML 1.0 can be used

to validate web forms. The jSRML language and its engine can validate web

forms in a non-obtrusive way. It also details the several modes of validation

ranging from real-time to server-side. The chapter also demonstrates ways

to learn jSRML validation rules using decision trees and other machine learn-

ing algorithms. This branch of SRML was created parallel to the SRML 2.0

specification and has a different syntax.

Following this the dissertation presents a way to validate Google Protocol

Buffers using a new metalanguage ProtoML [32]. This language is also a

parallel development to SRML, which paved the way for the final 3.0 version.

It introduces concepts like chained functions and simplified rule definitions.

The final chapter of the document focuses on the validation of Web Services

using wsSRML [34] and SRML 3.0. The validation engine can run in native or

proxy modes. The latter one allows black-box systems to receive a validation

aspect even when the source code is not available. There may be similarities

in the language elements of ProtoML, SRML and jSRML since they were all

aimed at validation and used SRML 1.0 as their starting points (ProtoML

only used the concept of semantic rules). These language branches are com-

bined into SRML 3.0, taking the knowledge and seasoned functionalities of all

languages to create a compact yet descriptive validation language.

Validation overview 3

The views and findings expressed in this dissertation are based on my re-

search and may sometimes feel subjective. However, I believe that the findings

are strong enough to stand on their own. Throughout the dissertation I will

also be using ”we” as self-reference to credit the co-authors of some of the

articles used as the basis of this dissertation.

Chapter 1

Validating XML documents

Thesis: Provide a way to validate and correct XML documents

using semantic rules through the extension of SRML 1.0.

Introduction

Data exchange has evolved considerably over the years. Distributed systems

share vast amounts of information in a matter of seconds. The most commonly

used format for-text based (non-binary) information exchange is XML [15].

There are many advantages to this format. However, it does have its short-

comings. One of these is that since it is text-based there is a possibility that

the data it contains is not valid. The structure is completely free and there is

no restriction on what elements (text nodes) the user can enter. To provide

a structural description the XSD [59] schema was introduced. This schema

allows the domain owners of the XML to define the structural requirements.

It defines which elements the document can contain, and what the attribute

types are.

Examining the exploits against sites and their databases, most of them

target the weakest point of these systems: data integrity and validity. Lots

of the sites use XML for SOAP [13] operations or data exchange and as such

validation is a very important aspect. Most validators can read the XSD file

and use it to validate the XML document. This will find most of the struc-

tural errors. However, it cannot describe more complex relationships between

nodes that may be needed for validation. In an earlier article we introduced

the SRML [36] language, which allowed semantic rules to be defined for at-

tribute relationships. The metalanguage was primarily used to compact XML

documents based on the rules. Version 1.1 [31] extended the compaction to

XMI documents. This opened up a plethora of possibilities in terms of de-

scribing relationships between attributes. We decided to extend this language

and create an extension to the XSD format that allows these types of rules to

be used during XML validation. In the process of this extension support was

4

Validating XML documents 5

added for element-based rules, thus simplifying the reference of nodes using

the power of XPath [18]. In the earlier definition of the language, referencing

nodes within the context yielded unnecessary complications as it was not pos-

sible to reference all nodes and attributes. One of the most pressing issues

we were faced with was how to store the rules without obstructing the XSD

validation itself. The solution used was to bundle the SRML rules into the

appinfo section of the XSD, which is mostly used by JAXB [54] (Java XML

Broker) for marshalling and unmarshalling meta information. We have exten-

ded the standard Java XSD validator using a Spring project. The validator

first runs the normal XSD validation using its XSD file. This validator ensures

that the XML is well-formed [60]. It then reads the appinfo and validates

the XML using the embedded SRML rules. This way we get the best of both

worlds. The normal XML validator will filter out the nodes/attributes which

do not conform syntactically, ensure that the XML is well-formed, and perform

a type-check on the document domain. After these steps the SRML rules will

validate the actual content of the nodes. This way both structure and content

validation becomes possible on XML documents.

Schematron [58] uses a similar approach to perform the validation by bund-

ling the rules in the appinfo area. One of the biggest advantages our approach

has over this leading validation engine is that ours allows for the data to be

corrected besides just being validated. This can be very useful in environments

where the validation rules can also define how to correct the input and data

loss or corruption is not an option. This allows for the input to be validated,

and if some items are not valid, however, have corresponding correction rules

defined, the data can be sanitized and corrected, thus allowing the data to be

transmitted instead of dropping the results due to an invalid input.

We took the idea a step forward by applying the SRML validator to a

database context. As most RDBMS tables and records can be represented

in XML, it made sense to provide a way for data validation using SRML.

This approach enabled us to write the validator in a way that it can be used

to validate records on insert/delete/update operations. The solution had its

challenges, as we could not just apply the rules to the whole database, as that

would warrant a massive memory requirement. The answer to the problem

was to load parts of the records into DOM [2] trees depending on what the

context of the CRUD operation was working on. This meant only parts of the

records were transferred to memory and permitted the construction of a mini

XML tree from the records. After the tree was built, the SRML rules could

be applied on it just as if it was a standalone XML document.

The following sections will first provide some background information on

the technologies as well as a brief introduction to our SRML metalanguage.

We will then demonstrate the use of the new validator through an example.

This example will be used in the database validation section as well to make

Validating XML documents 6

it easier to follow.

1.1 Preliminaries

This section is dedicated to providing some color on the technologies and con-

cepts used. We will introduce the XML format, along with the XSD schema

definitions and the SRML language. These concepts are essential to under-

stand the later sections of this chapter.

1.1.1 XML

The first concept that must be introduced is the XML format. A more thor-

ough description of the XML documents can be found in [15] and [25]. XML

documents are very similar to HTML files, as they are both text-based. The

components in both are called elements, which may contain further elements

and/or text, or they may be left empty. Elements may have attributes like the

a attribute of href elements. Figure 1.1 demonstrates an example for storing a

numeric expression in XML format. This example has an additional attribute

called ”type”, which stores the type of the expression. The values can be int

or real.

<expr> <multexpr op="mul" type="real">

<expr type="int"><num type="int">3</num></expr>

<expr type="real">

<addexpr op="add" type="real">

<expr type="real"><num type="real">2.5</num></expr>

<expr type="int"><num type="int">4</num></expr>

</addexpr>

</expr>

</multexpr> </expr>

Figure 1.1: A possible XML form of the expression 3 ∗ (2.5 + 4).

DTD and XSD

It is possible to define the syntactic structure of XML documents using DTD

[49] (Document Type Definition) files and XSD [59] (XML Schema Definition)

schemas. DTD files can only provide the basic structure of XML files (lim-

ited to elements and attributes). Taking an XML file containing a numeric

expression of Figure 1.1 we can define the DTD schema in Figure 1.2.

XSD is a newer format and can do everything a DTD can, along with

additional restriction definitions. The second advantage XSD schemas have

over DTDs is that they are also XML based, meaning they are easier to parse

and display in a hierarchic manner. XSD documents describe the elements

and their attributes just like the DTD. However, they also specify the type

Validating XML documents 7

<!ELEMENT num (#PCDATA) >

<!ATTLIST num type (real | int)#REQUIRED >

<!ELEMENT expr (num | multexpr | addexpr) >

<!ATTLIST expr type(real | int) #IMPLIED >

<!ELEMENT multexpr (expr , expr) >

<!ATTLIST multexpr op (mul |div) #REQUIRED type (real | int) #IMPLIED >

<!ELEMENT addexpr (expr , expr) >

<!ATTLIST addexpr op (add |sub) #REQUIRED type (real | int) #IMPLIED >

Figure 1.2: The DTD of the simple expression in Figure 1.1

of content that the elements can have, detail the order in which elements can

appear or provide a choice of elements for a given context (Figure 1.3). The

XSD schema can define the format of the nodes or attributes using regular

expressions (e.g.: ISBN numbers or an IP address). We will detail the XSD

format in more detail when we present how we extend its functionality.

Parsing XML documents

To analyze and validate XML files they must be parsed. There are two ways

of parsing XML files: one is based on the DOM [2] (Document Object Model)

tree, while the other is a sequential parser called SAX [44].

A DOM tree is a tree containing all the tags and attributes of an XML

document as leaves and nodes (Figure 1.4 is the DOM tree of Figure 1.1).

This DOM tree is used by the XML processing library for internal data repres-

entation. The DOM model is a platform- and language-independent interface

that allows the dynamic accessing and updating of the content and structure

of XML documents. When DOM tree parsing is used, it makes the XML doc-

ument handling easier, but it requires more memory to accomplish this, since

it creates a tree of the XML in the memory. This method is quite effective on

smaller XML documents.

The SAX parser can handle large input XML files, but since it is a file-based

parser it can be quite slow, especially when trying to access attributes that

are not in the current element. The memory requirements of this method are

constant and not in direct proportion to the size of the input XML document.

1.1.2 XPath

Before detailing how the validation works, one more technology has to be

noted: XPath [18] (XML Path language). The XPath language is based on the

DOM (tree) representation of the XML document. It provides an easy way to

query for nodes and attributes using expressions. It is widely used in CSS and

HTML selectors as well. Our validation engine leverages this language heavily

as it allows us to extend SRML to make element and attribute reference much

easier.

Validating XML documents 8

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="expr">

<xsd:complexType>

<xsd:choice>

<xsd:element name="multexpr" minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="addexpr" minOccurs="0" maxOccurs="unbounded" />

</xsd:choice>

<xsd:attribute name="type" use="optional">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="int" />

<xsd:enumeration value="real" />

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

<xsd:element name="multexpr">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="expr" minOccurs="2" maxOccurs="2"/>

</xsd:sequence>

<xsd:attribute name="type" use="optional">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="int" />

<xsd:enumeration value="real" />

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

<xsd:element name="addexpr">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="expr" minOccurs="2" maxOccurs="2"/>

</xsd:sequence>

<xsd:attribute name="type" use="optional">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="int" />

<xsd:enumeration value="real" />

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Figure 1.3: The XSD of the simple expression in Figure 1.1

The most important kind of expression in XPath is the location path. Each

path is comprised of a sequence of location steps. A step element has three

components: an axis, a node test and zero or more predicates. The expression

path is evaluated from left to right. The axis specifier describes the context of

the navigation element (e.g.: child).

A node test will return all nodes in the document matching the path. Pre-

dicates allow further filtering of the results. To better demonstrate how XPath

Validating XML documents 9

type=real

type=real op=mul expr expr

multexpr

expr

type=int
num

op=addtype=real3 expr

num

2.5type=real

type=real type=int num

expr

4type=int

type=int

addexprtype=real

Figure 1.4: XML document DOM tree

can be employed consider the example in Figure 1.5. Normally the author at-

tribute would be an element, but we wanted to show attribute references as

well to allow better understanding of the XPath topic.

<books>

<book author="J.R.R. Tolkien">

<title>Lord of the Rings</title>

</book>

<book author="J.R.R. Tolkien">

<title>The Hobbit</title>

</book>

<book author="Jules Verne">

<title>Around the world in 80 days</title>

</book>

<book>

<title>Anonymous</title>

</book>

</books>

Figure 1.5: A simple XML example for books

When using //book/title as the XPath query, all title nodes will be

returned. Adding a /text() will only show the text content of those nodes. If

we only want to query for example all books by “Jules Verne” we would add the

[@author=“Jules Verne”] predicate. If the predicate is supplied with a value

then the expression will filter all nodes matching the given attribute. If only

the attribute is specified then all nodes matching the expression where that

attribute is defined will be returned. For example //book[@author=‘‘Jules

Verne’’]/title/text() will return “Around the World in 80 days”.

It is also possible to query nodes that have the given attribute regardless

of their value. For example //book[@author]/title will return all titles

of books, which have the author attribute defined. XPath can also contain

regular expressions and has a lot of in-built functions.

Validating XML documents 10

1.1.3 SRML 2.0

The first version of SRML (version 1.0) was described in [36]. We have ex-

tended this format with XPath support along with additional features. This

chapter describes the new aspects of SRML 2.0 that were introduced to enable

the validation of XML documents as well as database reference descriptions.

The key differences between SRML 1.0 and 2.0 can be seen in Table 1.1. The

first definition of SRML focused on compaction and the theoretical descrip-

tion of the rules. However, nowadays this significance was replaced by the

importance of data validation and security.

For the validation area we decided to simplify and clean up the language

to allow easier rule descriptions without sacrificing flexibility. The new format

can be used for data correction as well. The full XSD of the new format can

be found in Appendix A.1.

Property SRML 1.0 SRML 2.0

Main Focus Compaction/Decompaction Validation/Correction

Rule reference level Attributes Element and Attributes

Potential Application Area XML Documents XML and Databases

Rules based on Attribute Grammars AG and XPath

Rule Definition Complex Simplified with XPath

Numeric Expression Rules Much overhead Simplified, inner expression engine

Rule dependencies and storage DTD and separate SRML file Encapsulated in the XSD

Table 1.1: Key differences between SRML 1.0 and 2.0

Figure 1.6 shows how the addexpr section of the XML in Figure 1.1 can

be described in SRML 2.0. The rule definition format covers the type attribute

results as well. By default, DTDs and XSDs can not describe how the type

attribute changes during a multiplication of an int and a real. With the help

of SRML 2.0 we are able to describe the type change easily. Defining indexed

child references is also easier, for example ../expr[1]/@type refers to the

first expr sibling’s type attribute. The ../ is an extension to XPath allowing

the upward navigation and reference.

The new version of SRML allows and aids the XML validation process,

containing several enhancements from which the following should be noted:

XPath support: Using XPath it is now easier to reference attributes and

elements in the XML context. Previously it was a tedious job to reference

specific attribute instances.

Numeric expressions: The new format also allows numeric expressions to

be used during the rule context, making it easier to describe expressions

and use them in the rule definitions.

Element and attribute references: It is now possible to reference both at-

tributes and elements. Previously SRML only operated on an attribute

level.

Validating XML documents 11

<rules-for root="addexpr">

<rule-def name="@type">

<rule-instance>

<expr>

<if-expr>

<expr>

<binary-op op="or">

<expr>

<binary-op op=equal>

<expr><value-ref path="../expr[1]/@type" /></expr>

<expr><data>real</data></expr>

</binary-op>

</expr>

<expr>

<binary-op op="equal">

<expr>value-ref path="../expr[2]/@type" /></expr>

<expr><data>real</data></expr>

</binary-op>

</expr>

</binary-op>

</expr>

<expr><data>real</data></expr>

<expr><data>int</data></expr>

</if-expr>

</expr>

</rule-instance>

</rule-def>

</rules-for>

Figure 1.6: An SRML 2.0 example for type attribute of the addexpr element

Multiple rules for the same context: With this new feature, multiple rules

can be defined for the same context. This is important for validation,

as it is possible for the document to be considered valid if any of the

validation rules for that context is fulfilled.

Node relationship for tables: SRML 2.0 introduced the option to describe

database tables and thus extend the scope of the rules to the database

space as well.

1.2 Validating XML Documents

XML validation plays a very important role in the life of the document. In

many cases it is vital to ensure that an XML document is both syntactically

and semantically correct. As with many text-based formats, errors can arise

from invalid documents. A document has to be both well-formed and valid

to pass validation. The term well-formed [60] refers to the fact that all tag-

s/elements have matching pairs, there are no overlapping elements nor do the

elements/tags contain invalid characters. Once a document is well-formed, the

contents can be validated. XSD allows several ways of defining which parts

of the document have restrictions and what the document has to conform to.

Validating XML documents 12

We will use an example to demonstrate what an XSD would look like for a

bookstore example. This example will then be used throughout the remaining

sections to allow a better comparison.

Consider the following use-case: we have a bookstore that sells books using

a shopping cart. Each item in the shopping cart is a book, which has an

author attribute, a title, an ISBN number, a price and a cover attribute that

can be either digital or hardcover. The item also contains the quantity of the

books in the cart and the subtotal for the given entry as well a discount. This

is a simplified example as normally one would define an item with a book

reference and store the quantity on that level, however, to save space and

avoid complexity in the example we merged these two elements into a single

one. The ISBN number has to be a specific format and price can only be a

number. The XML of the example can be seen in Figure 1.7.

<cart xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="cart.xsd" hasDiscount="false">

<book cover="hardcover">

<author>J.R.R. Tolkien</author>

<title>Lord of the Rings</title>

<isbn>1-12345-123-1</isbn>

<qty>5</qty>

<price>100</price>

<discount>0</discount>

<tax>25</tax>

<total>625</total>

<region>0</region>

</book>

<book cover="digital">

<author>William Shakespeare</author>

<title>Macbeth</title>

<isbn>1-12-654321-1</isbn>

<qty>1</qty>

<price>100</price>

<discount>10</discount>

<tax>35</tax>

<total>121.5</total>

<region>1</region>

</book>

</cart>

Figure 1.7: XML of cart example

In order to ensure that all documents that get entered into our shopping

cart system are valid we have to define an XSD schema for this domain. The

XSD of the example can be found in Figure 1.8. The XSD schema defines what

the structure of the cart XML files needs to look like. It needs to contain a

root (cart) element. This element has an attribute called hasDiscount and

contains book child items. The book element definition details the elements

that a book can have, along with their types and requires an attribute called

cover. This attribute can take on two values: “digital” and “hardcover”. The

book has an ISBN number whose format is defined as a regular expression. This

Validating XML documents 13

ensures that all text entered into the ISBN node will need to be in the same

format. Once we have the XSD document we can run a document validator

on it.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="cart">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="book" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

<xsd:attribute name="hasDiscount" type="xsd:boolean" use="optional"/>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="ISBN-type">

<xsd:restriction base="xsd:string">

<xsd:pattern

value="\d{1}-\d{5}-\d{3}-\d{1}|\d{1}-\d{3}-\d{5}-\d{1}|\d{1}-\d{2}-\d{6}-\d{1}" />

</xsd:restriction>

</xsd:simpleType>

<xsd:element name="book">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="author" type="xsd:string" />

<xsd:element name="title" type="xsd:string" />

<xsd:element name="isbn" type="ISBN-type" />

<xsd:element name="qty" type="xsd:integer" />

<xsd:element name="price" type="xsd:integer" />

<xsd:element name="discount" type="xsd:integer" />

<xsd:element name="tax" type="xsd:integer" />

<xsd:element name="total" type="xsd:float" />

<xsd:element name="region" type="xsd:integer" />

</xsd:sequence>

<xsd:attribute name="cover">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="paperback" />

<xsd:enumeration value="hardcover" />

<xsd:enumeration value="digital" />

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Figure 1.8: XSD of cart example

Throughout the dissertation we used Java as the primary language, as it is

platform-independent and has a powerful function set. In Java one of the ways

of validating against an XSD is achieved by using the Java XML validation

API. This validation will filter out invalid results and ensure that all elements

are in their proper position and the types of the fields are correct. However,

there is no way to describe more complex validation rules. Suppose there are

additional rules that need to be satisfied in order for a cart to be valid. For

example: the tax on digital books should always be 0 or if the number of

Validating XML documents 14

items in the cart is more that two then the hasDiscount attribute has to be

true. The current XSD format does not provide a way to describe or validate

against these types of conditions. This is where the power of SRML 2.0 comes

in. In the next section we will show how we can extend the XSD format to

allow more complex validation rules.

1.2.1 Extending XSD

When trying to extend a format that is widely used, one has to be careful

not to break legacy systems that are dependent on it. We had to figure out

a way to stay compliant with the original XSD schema, but also allow the

description and processing of SRML based validation rules. To overcome this

challenge, we opted to use the appinfo meta section of the XSD document.

This section is usually used for application-specific meta information storage.

An example for this would be JAXB (Figure 1.9) marshalling meta overrides.

JAXB [54] is Java’s XML Broker, which is an API used to marshal classes

to and from XML. This section seemed like a viable part of the document to

insert the SRML rules. We will continue to use the bookstore cart example in

the further sections to provide a consistent overview.

<xsd:annotation>

<xsd:appinfo>

<jaxb:globalBindings collectionType="java.util.Vector"/>

<jaxb:schemaBindings>

<jaxb:package name="com.flutebank.custompackage"/>

</jaxb:schemaBindings>

</xsd:appinfo>

</xsd:annotation>

Figure 1.9: Using appinfo for JAXB binding information.

1.2.2 A validation example using SRML

This section will demonstrate validation scenario of the shopping cart example.

Validation Requirement #1: The cart’s hasDiscount attribute is true if

there are more than 2 books in the cart.

Validation Requirement #2: All books by ”J.R.R. Tolkien” should receive

a 20% discount.

Validation Requirement #3: All digital books should be tax free.

Validation Requirement #4: The total entry of the book is calculated by

multiplying the quantity, price and discount values.

Validating XML documents 15

The above validation conditions would not be possible with the standard

XSD format. We will now demonstrate the rules that allow the description of

the validation requirements. To embed rules into the XSD, first we have to

define the appinfo element in the annotation the the following way:

<xsd:annotation>

<xsd:appinfo xmlns:srml=http://www.sed.inf.u-szeged.hu/SRMLSchema"

srml:schemaLocation="srml.xsd">

Based on the SRML XSD the top-level definition element is the srml-def

node. This element contains one or more rules-for elements. The rules-for

elements define the context root of the rule:

<srml:srml-def>

<srml:rules-for root="cart" >

Each rules-for element has one or more rule-def entry. This specifies

the target attribute or element that will be validated. For example the follow-

ing will target the cart’s hasDiscount attribute:

<srml:rule-def name="@hasDiscount" mode="correct" match="any" >

The mode attribute in the above example tells the validator what to do

with the results. The possible values are “validate” and “correct”. The first

mode will perform the validation based on the rule and report any failures

it encounters. The second mode (“correct”) will perform the validation and

if it fails it will then attempt to alter the value based on the expected value

defined in the rule. This is an important feature, as it will ensure that the data

is correct even when the validation fails. In many cases this mode can recover

the XML document and make it valid again. In our example the hasDiscount

attribute value is automatically corrected if its validation fails.

The “match” attribute informs the validation engine what to do with mul-

tiple rule-def elements. If the match attribute is marked as “any” that means

that the given validation rule returns true if any of the srml-instance rules

are matched. Each rule-def can contain one or more rule-instance ele-

ments. These elements can define different rules for the same context. This is

useful when a node can be considered valid when any of the listed rules return

successfully.

Every rule-instance has a validation-error and an expr element. The

validation-error element is used to pass in the string that is used when the

rules in the instance fail. This string is returned to the user as a validation er-

ror, which is more descriptive than throwing a validation exception. The expr

tag contains the validation rule. Figure 1.10 shows the validation procedure.

Taking the cart example given earlier, we will present the logic for the

rules of each major validation requirement we mentioned along with their cor-

responding rule snippets.

Validating XML documents 16

Check if XML is

well-formed

Has more

validation

rules?

Read SRML

rules

Find all nodes

for rule

Valid?Report Errors

For each node

NO

NO

XML Valid

YES

YES

Figure 1.10: XML validation process using SRML

Validation Requirement #1

Requirement: The cart’s hasDiscount attribute is true if there are more than

2 books in the cart.

The SRML rule for this can be seen in Figure 1.11. The rule is rather

straightforward; the root is defined as cart and contains a rule-def name

of @hasDiscount. The @ sign denotes that it is referencing an attribute.

As all paths are converted to XPath, this will reference all cart.hasDiscount

attributes. The rule uses “correct” as the primary validation mode, meaning

even if the cart’s hasDiscount attribute is incorrect the system will attempt to

correct it using the expected value based on the rule definition. We can describe

the validation rule in the following pseudo-form: Validate the hasDiscount

attribute of cart: Count the number of children elements with “book” as their

name. If this is greater than two then return true as the validation result,

otherwise return false. If the attribute is invalid then correct it based on the

rule description.

Validation Requirement #2

Requirement: All books by “J.R.R. Tolkien” should receive a 20% discount.

This validation requirement needs to reference the discount child node of

all book elements. Since the target of the rule is not an attribute, the @ sign

is left out of the reference. The SRML rule for this validation requirement can

be seen in Figure 1.12.

In this example all discount elements are validated that are beneath the

book elements. The binary-op operation is used with an equal comparator.

The value-ref element refers to a value returned by the expression in the

path attribute (../author). This means that it is a sibling (named author)

of the current element. The ../ path identifier will go up one level and take

the element named in the second part of the path. As our current context is

Validating XML documents 17

<srml:rules-for root="cart" >

<srml:rule-def name="@hasDiscount" mode="correct" match="any" >

<srml:rule-instance>

<srml:validation-error>Discount value incorrectly set for cart

</srml:validation-error>

<srml:expr>

<srml:if-expr>

<srml:expr>

<srml:binary-op op="greater">

<srml:expr>

<srml:count-children name="book" />

</srml:expr>

<srml:expr>

<srml:data>2</srml:data>

</srml:expr>

</srml:binary-op>

</srml:expr>

<srml:expr>

<srml:data>true</srml:data>

</srml:expr>

<srml:expr>

<srml:data>false</srml:data>

</srml:expr>

</srml:if-expr>

</srml:expr>

</srml:rule-instance>

</srml:rule-def>

</srml:rules-for>

Figure 1.11: SRML of cart Validation Requirements #1

book/discount the value compare needs to take book/author. This is not

a standard XPath identifier, but we decided to implement this to allow easier

reference. The pseudo form of the rule is as follows: Validate the book/discount

element content. If the content of the author sibling element is equal to “J.R.R

Tolkien” then the discount has to be 20%. If the author is different simply use

the discount written in the document.

In this example the instance-value element provides values for the else

branches of the conditional nodes. This is important since if the validation

condition does not match, the actual value should be returned for the attrib-

ute/element value in question.

Validation Requirement #3

Requirement: All digital books should be tax-free

This validation rule will reference the tax element of the book. The con-

dition is that if the cover attribute is digital then the tax value has to be 0,

otherwise the actual value will be used. The rule snippet can be seen in Figure

1.13. The figure also shows how the value-ref element references an attribute

value. The example’s path of ../cover refers to the parent’s cover attribute.

Since the mode is set to “correct” the validation rule will replace the attribute

value of tax with 0 if the cover attribute of the book is “digital”.

Validating XML documents 18

<srml:rules-for root="book">

<srml:rule-def name="discount" mode="validate" match="any">

<srml:rule-instance>

<srml:validation-error>This book is by J.R.R. Tolkien and does not

have the discount set to 20 percent</srml:validation-error>

<srml:expr>

<srml:if-expr>

<srml:expr>

<srml:binary-op op="equal">

<srml:expr>

<srml:value-ref path="../author" />

</srml:expr>

<srml:expr>

<srml:data>J.R.R. Tolkien</srml:data>

</srml:expr>

</srml:binary-op>

</srml:expr>

<srml:expr>

<srml:data>20</srml:data>

</srml:expr>

<srml:expr>

<srml:instance-value />

</srml:expr>

</srml:if-expr>

</srml:expr>

</srml:rule-instance>

</srml:rule-def>

</srml:rules-for>

Figure 1.12: SRML of cart Validation Requirements #2

Validation Requirement #4

Requirement: The total entry of the book is calculated by multiplying the quant-

ity, price and discount values

The final validation rule defines the total value of the book. The new

SRML 2.0 library was extended with a regular expression evaluator engine

that allows a more precise and less verbose description for this type of rule. In

the earlier version of the SRML language a calculation like the above would

have taken several lines of if-expr and binary-op elements and would have

seriously degraded the readability. By extending SRML with the reg-eval

element it is now possible to define mathematical expressions much more easily

than before. The snippet for this requirement can be seen in Figure 1.14. The

validation rule for total uses #{..}markers. These inform the expression engine

to evaluate the node value with the path expression inside. It is also possible

to reference attributes by using the @ marker in the path value. The engine

looks up the node/attribute values and replaces them in the expression after

which it will evaluate the results.

Validating XML documents 19

<srml:rules-for root="book">

<srml:rule-def name="tax" mode="correct" match="any">

<srml:rule-instance>

<srml:validation-error>The tax value is not correct as digital books

are tax free!

</srml:validation-error>

<srml:expr>

<srml:if-expr>

<srml:expr>

<srml:binary-op op="equal">

<srml:expr>

<srml:value-ref path="../@cover" />

</srml:expr>

<srml:expr>

<srml:data>digital</srml:data>

</srml:expr>

</srml:binary-op>

</srml:expr>

<srml:expr>

<srml:data>0</srml:data>

</srml:expr>

<srml:expr>

<srml:instance-value />

</srml:expr>

</srml:if-expr>

</srml:expr>

</srml:rule-instance>

</srml:rule-def>

</srml:rules-for>

Figure 1.13: SRML of Validation Requirements #3

<srml:rules-for root="book">

<srml:rule-def name="total" mode="validate" match="all">

<srml:rule-instance>

<srml:validation-error>The total value is not correct!</srml:validation-error>

<srml:expr>

<srml:reg-eval>

#{../qty}*#{../price}*(1-#{../discount}/100)*(1+#{../tax}/100)

</srml:reg-eval>

</srml:expr>

</srml:rule-instance>

</srml:rule-def>

</srml:rules-for>

Figure 1.14: SRML of Validation Requirements #4

1.2.3 Using SRML in the field of Databases for Dataset

validation

Another large area where the new version of SRML and its validation engine

can be leveraged is the field of databases. Nowadays database validation is

almost as important as validating the data transmitted from one system to

another. Normally semantic validation is done by type-forcing table columns.

This means that if one tries to insert a string into an INT column then the

database engine will report an error. Database tables use pre-defined schemas

Validating XML documents 20

to ensure that they always contain all fields that are required. One may notice

similarities between how RDBMS systems handle and store data to what we

outlined with the XSD section of this chapter.

Databases can use triggers to perform input validation. A trigger is a

function stored inside the database that takes the input parameters of the

actual select/insert/update/delete operation and performs an operation on

them. Triggers are usually used in creating audit trails for data modification

or used to change the content upon insertion. With triggers, however, it is

very complicated to define validation type rules on what the value of the data

should be in context to the already existing records.

We decided to dynamically build up a context tree (mini XML) for the

given record and allow SRML rules to be executed on it, including XSD type

restrictions. This opened up a plethora of possibilities with data modeling

and validation. As we have written our validator engine SRMLXsd in Java,

it made sense to choose a database platform, which allows the utilization of

the codebase created for our XML validator. We chose H2 [3] as it is a high

performance RDBMS database written purely in Java. It has all the features

of major RDBMS systems, but has the benefit of allowing Java classes to be

defined as Triggers. Figure 1.15 shows the validation procedure for databases.

The ideas and processes outlined in this section are applicable to all RDBMS

systems that allow code to be executed as triggers (e.g.: H2, Oracle, Sybase,

Microsoft SQL Server).

For each rule node

Has

More

rules?

Return aggregated

validation results

Find all input

DOM entries

using XPath

Validate

entries and

Calculate

Rules

Compare values

with input XML

Store partial

validation results

Figure 1.15: Validating database records using SRML

There were several challenges during the implementation. One of them

was how to extend the rule schema to describe the table relationships and

hierarchy. Most database tables have references to other tables and columns

(foreign key relationships) that can be modeled using the database, tables,

table, references, reference tags. With this extension SRML can de-

scribe a multi-tier validation scenario (similar to Figure 1.16). We will describe

Validating XML documents 21

the extensions first in short before proceeding further in order to provide a bet-

ter understanding how they can be used to convert a flat database record into

a DOM like tree.

database : The database section stores database-related relationships and

definition information. It contains a tables and a references element.

tables : This element contains table elements that can describe the keys of

the tables.

table : The table element defines the keys of the tables. They contain a name

and key attribute. These are used to identify the nodes and map them

to tables and aid the creation of the DOM tree.

references : This element contains one or more reference element. It is used

to store the reference relationships between tables.

reference : The reference element has a root, root key, child, child key at-

tribute used to map out the relationship between records of multiple

tables. The keys defined in the table section are used to match the

child key entries. This is a form of a foreign key mapping resolution.

Application

Internal Validation

Trigger

SRMLXsd

Engine

XSD/SRML

DB

Figure 1.16: Multi-tier validation for applications

Using the above elements it is possible to build up a DOM tree context for a

given table row. This is a very powerful addition as it allows references to other

tables and their columns using SRML rules. Database related SRML rules

have one restriction: as tables have columns and no hierarchic datasets, all

rule-def references need to use attribute contexts (attrname). For example

the book/author path maps to a book table’s author column. Using the

previous bookstore example, we will demonstrate how SRML rules can be

defined as triggers on CRUD operations.

Defining table relationships

In the cart example we had 2 elements: cart and book. Each element had

several children and attributes. For the database example these elements were

flattened into two tables, as visible in Figure 1.17.

Validating XML documents 22

book

+ID

#CART_ID

 cover

 cover

 author

 title

 isbn

 qty

 price

 discount

 tax

 total

 region

cart

+ID

 hasDiscount

Figure 1.17: Database tables of cart

The SRML definition of the table relationship for the cart example can

be seen in Figure 1.18. We define the primary key of cart and book and a

foreign key relationship between book.CART ID and cart.ID. First we have to

define the tables that will take part in the context along with their primary

keys. This is done with the srml:table element. In our example we have a

cart and book table, both with ID as their primary keys. The next section

of the definition is the srml:references element that defines the foreign key

relationship between the cart and book tables. The root is the referred table

containing the KEY that creates the relation, allowing a DOM tree to be

built from the resulting dataset. The generic query that builds this DOM

tree would look like: SELECT * FROM book WHERE book.CART ID=cart.ID.

The resulting columns are loaded as attributes along with their values into the

DOM tree. This is important to mention, as only the required context will be

loaded during the validation. As the CRUD operation is affecting a single row

at a time (even if it is part of a transaction), the context will only load the

required records into the XML DOM tree.

<srml:database>

<srml:tables>

<srml:table name="cart" key="ID" />

<srml:table name="book" key="ID" />

</srml:tables>

<srml:references>

<srml:reference root="cart" root_key="ID" child="book"

child_key="CART_ID" />

</srml:references>

</srml:database>

Figure 1.18: Table relationship using SRML

Setup Trigger and store in database

We defined a class that can be used as the trigger for all update, select, insert,

delete operations to leverage the SRML rule engine for data validation. This

Validating XML documents 23

class implements a Trigger interface and has an overridden function that gets

called with the old and new rows that the CRUD operation is being performed

on. The trigger’s classes along with all related classes are packaged into a JAR

file and placed on the database engine’s classpath so that it is accessible during

runtime.

Store SRML XSD inside database

In order for the rules to be accessible by the triggers, they need to be stored

in a local table in the database. To achieve this, the XSD file is persisted into

a table. This XSD not only contains the SRML rules but also any other XSD

restriction we may want to place on the operations. This is useful as we can

define what values a given column can take on using standard XSD restrictions

and use the engine to validate them during the row validation. This opens up

many possibilities, as normal RDBMS systems do not have a way to restrict

the actual values a field can have (e.g.: set of values).

Perform row validation using the engine

When all the pre-requisites are in place, the validation is handled automatically

with the trigger hook. During CRUD operations (we can define exactly what

type of operations the trigger should fire on) the database system will invoke

the trigger class and pass in the previous row and the new row from the

operation. The previous row is passed in when an update is being done or

when a delete occurs. When the system is performing an insert, then the

previous row is null. Based on the rows, we look up any affecting validation

rules from the SRML set and construct the DOM tree using the reference

elements. This DOM tree is assembled using multiple select operations with

the reference elements defined (foreign keys). The resultset is then converted

into a DOM tree where the attributes of each element are the columns of the

table and the nodes themselves are the rows. Taking the rows from the tables

in Figure 1.17, the system will build a DOM tree described in Figure 1.19.

author=J.R.R.Tolkien

title=Lord of the Rings

isbn=1-12345-123-1

region=0

qty=5 price=100 discount=0 tax=25 total=625

ID=1

CART_ID=1

cover=hardcover

book

author=William Shakesp.

title=Macbeth

isbn=1-65432101

region=1

qty=2 price=100 discount=10 tax=0 total=90

ID=2

CART_ID=1

cover=digital

book

cartID=1 hasDiscount=true

Figure 1.19: DOM tree of the database schemas

Validating XML documents 24

After the DOM tree is constructed from the resultset context, the validation

proceeds as previously described. If the resultset is not valid an exception is

thrown with the text defined in the validation-error element. This allows

the user of the database system to see what the validation error was, similar

to the one in Figure 1.20. If the rules had a mode of “correct” then the values

are corrected instead of reporting an error. This allows High Availability and

Data Oriented systems to retain as much data as possible by correcting input.

Data corruption can also happen during network related transmission, making

this approach a viable candidate for validation in those fields as well.

Error: Validation Error. Message=[The total value is not correct!].

Found=[1625.0]. Expecting=[1125.0]; SQL statement:

insert into BOOK (CART_ID,COVER,AUTHOR,TITLE,ISBN,QTY,PRICE,DISCOUNT,TAX,TOTAL)

VALUES(1,’hardcover’,’J.R.R. Tolkien’,’Lord of the Rings’,

’1-12345-123-1’,5,100.0,0,125.0,1625.0) [0-169]

SQLState: null

ErrorCode: 0

Figure 1.20: Database validation exception

1.3 Summary

We have shown how the SRML language was extended into the validation space

and showed a way to augment the XSD format to allow for both structural and

content validation. The aspects of the new SRML format can be summarized

the following way:

1. Permits both attribute and element references.

2. Integrates into the appinfo section of the XSD, making it easier to de-

ploy.

3. The new format focuses on XML validation in contrast to its predecessor,

which focused on making the XML documents smaller.

4. The new validator engine leverages the Java XML Validator, which en-

sures the well-formedness of the input files aside from the additional

validation rules that can be defined on the context of the content itself.

5. Leverages XPath to reference nodes and their values.

6. Makes it possible for the definition of complex validation rules, including

regular expressions.

7. Allows the XML document to be corrected using the new SRML rules.

Validating XML documents 25

8. Potentially usable in an RDBMS environment. This allows the datasets

to be validated using SRML prior to being inserted into the database,

using triggers. The datasets and their contexts are built up using a mini-

DOM tree permitting the SRML rules to be applied to them. This allows

dataset references to existing rows and columns as well.

1.4 Related Work

XML validation has always been a topic of heated discussion amongst the

community. There are several advances in the field of XML validation. Most

validators, however, only concentrate on semantic validation and do not offer

rule based validation scenarios. Currently there are two major pattern/rule

based validation projects available that resemble our SRML based approach.

Most of the approaches are very well defined and we could have taken one of

them as the basis for our extension. The main reason behind going with our

SRML 2.0 format was that we have defined the language previously and it

has a potential to become a complete solution for both XML validation and

correction.

The first project to mention is RelaxNG [39]. It can be considered as the

one of the earliest of schema validators. It has a compact syntax and the doc-

ument is well-defined. It contains non-deterministic content models, however,

it does not provide any datatype support and has no support for the XSD

numeric occurrence constraints (in XSD it is possible to specify the minOc-

curs/maxOccurs attribute, which will inform the validator of the quantitative

property). In RelaxNG the attributes are defined as part of the content model,

providing a homogeneous view of the XML tree, similarly to how the DOM tree

represents the XML tree. RelaxNG was a merge between Relax and TREX

(Tree Regular Expressions for XML). Figure 1.21 shows a simple rule definition

of a simplified book-cart example in RelaxNG format. The definition is similar

to how XSD defines the structure. However, does not offer data correction out

of the box, making the SRML a better option for this purpose.

One of the best known pattern based validators available is the Schemat-

ron [58] project, which was also recorded under ISO/IEC 19757-3:2006. The

authors of this project initially started out by extending the Word UML format

used by Microsoft products [45] [46] and introduced a language to model the

relationships. This approach allows many types of structures to be represented

and enables the developer to perform reporting and assertions on them. The

project can also use XPath for finding nodes. This approach is focused on

validating XML files using rules and assertions. It is very powerful, but lacks

the option to correct the document. Our approach not only validates using

rules, but also allows the XML document to be corrected if the rule definitions

specify it. The subset of the example (total value calculation) in Schematron

Validating XML documents 26

<start>

<element name="cart">

<zeroOrMore>

<ref name="book_entity"/>

</zeroOrMore>

</element>

</start>

<define name="book_entity">

<element name="book">

<attribute name="cover" > <text/></attribute>

...

</element>

</define>

Figure 1.21: RelaxNG example

can be seen in Figure 1.22.

<pattern name="Book Total value check">

<rule context="book">

<assert test="total != qty * price * (1- discount /100)*(1+ tax/100)">

Total Mismatch

</assert>

</rule>

</pattern>

Figure 1.22: Schematron Example for value validation

Another project that should be mentioned is CAM [1], which is short for

Content Assembly Mechanism. CAM is different from other approaches as it

does not define complex grammars, but rather approaches the validation from

a structural pattern-matching front. The language allows business rules to be

defined using XPath references and corresponding actions (e.g.: condition :

string − length(.) < 11 action : setDateMask(Y Y Y Y −MM − DD)). It

also allows cross- and current-node conditional validation (e.g.: quantity needs

to be between 1 and 100). The rule definition is more compact than SRML,

however it still lacks the data correction feature our approach allows.

Chapter 2

Validating Web Forms

Thesis: Create a new jSRML metalanguage, which is capable of

defining semantic rules for the validation and correction of web

forms.

Introduction

During the initial design of SRML 2.0 we branched another metalanguage

from SRML 1.0 called jSRML. This language takes its origins from SRML

1.0 and has some basic similarities to the SRML 2.0 language as well. The

jSRML language was re-written from ground up to provide a powerful way to

describe validation rules for web forms. In this chapter we will demonstrate

how it can be used to create a versatile validation approach, and how it can

be leveraged to learn validation rules based on form inputs. We decided to

investigate the HTML [48] space as its documents are very similar to that of

the XML documents. HTML forms contain fields that are filled out by the

users, which are subsequently submitted to the server for processing. The

server then processes this information and returns the results or performs an

operation with the submitted data. These web forms can range from simple

user login forms all the way to online tax returns containing and exchanging

sensitive information. Unfortunately this is one of the weakest links in the

whole systems, which many hackers try to exploit. The most common form

of attacks against web forms is DoS [27] (Denial of Service), which basically

means that small automated scripts perform constant form posting against

sites trying to exploit the data or cause the service to slow down or even crash.

This can potentially compromise the site, granting the malicious script access

to protected resources. This type of exploit is also used to spam forums and

news portals. Even if the data transmission itself is protected using a secure

channel (e.g.: SSL) the data entered still needs to be validated prior to per-

forming the processing. Another common exploit method is the notorious SQL

injection attack [14]. This method is based on the assumption that the fields

27

Validating Web Forms 28

of the forms are eventually inserted into the database. If the form processor

does not filter the input (e.g.: by using prepared statements, or by filtering

the fields for SQL commands) then it is very possible to issue SQL commands

against the processing database (for example DROP TABLE). Besides a secur-

ity point, data validity is a crucial aspect as well. Consider a lead generation

form where users need to fill in their contact information in order to receive

special offers from the provider. If the data entered is incorrect then it can

cause a potential lead to be lost causing the owner monetary damage.

One of the most common types of validation scenarios is the user registra-

tion form. Here the user fills in his personal information, along with an email

and password and submits it for processing. The email address has to be valid,

otherwise the provider cannot communicate with the user, the passwords have

to conform to some security restrictions...etc. All these requirements can be

handled by using some kind of form validation method. The most common is

asynchronous validation using JavaScript [19]. Using this approach the author

of the page writes JavaScript code, which checks the fields of the form, provid-

ing visual output to the user (e.g.: if the email has an invalid format then the

field may be highlighted). This type of validation can be very powerful and is

handled on the client side, which means the user will not experience any lag

during the submission. The biggest drawback, however, is that by adding more

fields to the form the JavaScript code processing logic becomes more difficult.

The second type of form validation is Server-side validation. This basically

means that the form data is posted to the server, which then processes the

content and returns an error if the form was invalid, or saves the data if

it was valid. This is a good approach, however it will cause an overhead

when the user has to re-enter the form contents due to a mistype in one of

the fields unless the owner explicitly codes the retry logic. The process will

not happen asynchronously, meaning the page will be reloaded during the

submission (excluding cases when this is handled with an AJAX [23] call).

To provide a solution to these issues, we have created a jQuery [43] based

validator called jSRMLTool, which leverages the SRML 2.0 language. This was

extended to allow form based validation rules. With our new jSRML extension,

users will be able to define SRML rules for web forms and their fields, describe

relationships and requirements for their content. The engine can be used in any

HTML page simply by including the script file in the document and defining

the validation rules. This approach ensures that the HTML content is not

encumbered with JavaScript code. The jSRML rules need to be placed after

each field that is to be validated and the engine will handle the rest. We will

detail how this approach works in a later section of this chapter.

An off-site asynchronous implementation of the jSRML engine was also

created using Servlets capable of validating forms that employ unique identifi-

ers and jSRML rules. This is a separate service running on a remote machine

Validating Web Forms 29

using stored rules to validate the form and return with any potential validation

errors. Our approach also allows another powerful feature: data correction.

Thanks to the nature of the jSRML language, it is possible to define self-

correcting form validation rules. These rules correct the field values based

on the rule definitions, wherever applicable, making the form submission suc-

ceed. The Servlet also has provisions to learn potential jSRML rules using the

submitted form data and machine learning.

2.1 Preliminaries

Before we introduce our new method, we should cover a few topics in order to

make the chapter easier to understand. We will not detail each technology in

depth, rather just cover the parts that are relevant to the later sections.

2.1.1 HTML and DOM

Forms are described using the HTML [48] language. These documents have a

similar hierarchic structure to XML where each node can contain attributes or

additional child nodes. This hierarchic tree-like representation is also known

as the DOM model (described earlier in Section 1.1.1 of Chapter 1). Figure 2.1

shows a simple HTML form source with a field. The DOM tree representation

of Figure 2.1 is shown in Figure 2.2.

<html>

<head><title>Hello World</title></head>

<body>

<h1>Hello World!</h1>

<form method="post" action="process.php">

<label for="username">Name:</label><input type="text" name="username" />

<input type="submit" value="Submit" />

</form>

</body>

</html>

Figure 2.1: Simple HTML of form

2.1.2 Types of form validation

There are four major types of form validation: Client-side, Server-side, Real-

time and Hybrid. The difference between them lies where the data is validated

and processed.The different types of form validation are summarized in Table

2.1.

Validating Web Forms 30

html

head body

title body

My Title Hello World!

form

label input

input

for="username"

type="text"

type="submit"

name="username"

value="Submit"

Figure 2.2: DOM tree of the Form Example

Type Trigger Processing Validation logic Advantage Disadvantage

Returned to Validation Validation

Server Form Sequential browser for logic changes

Side Submit display of hidden require

results from server

user updates

Shown in Fast, since Validation

Client OnClick Client side browser using no data logic

Side intercept JavaScript is sent visible

to to users

server

Direct call Field values More traffic

Real Field Either to client and/or validated required,

change Server real-time prior harder to

validation to form update

submission

Direct calls Allows two More

Hybrid Field change Either with round-trip stage validation, complex to

and Submit to server pre-filtering implement

results prior to and

sending to server maintain

Table 2.1: Validation types

2.1.3 The jSRML extension

The previous SRML rule engine implementation used the DOM tree of the

XML to perform its operations. Since HTML forms can be considered as

DOM [2] trees, it made sense to attempt to apply SRML to this area as well.

In this chapter we introduce an extension of SRML (called jSRML) which

allows its use in the form validation space. We have created a new rule engine

for this purpose using jQuery where the processing is performed in the browser.

The new jSRML language, although being an extension of SRML, is not

completely identical to its predecessor as it was rebuilt from ground up taking

the positive traits of the previous language version and molding it to become

an ideal candidate for describing form validation rules. Table 2.2 shows the

differences between the different versions of SRML.

Validating Web Forms 31

Property SRML 1.0 jSRML

Main Focus Compaction Validation/Correction

Reference level Attributes Form Field values

Application Area XML Documents HTML Forms

Rules based on Attribute Grammars XPath and DOM

Rule Definition Complex Simplified

Rule Locations DTD and SRML file Inline, external, server

Rule Processing Application side Client-,Server-side, Mixed

Table 2.2: Key differences between SRML versions

2.2 Extending SRML for form validation

In this section we will present how the SRML language can be extended to aid

the validation process. Most Client-side validators are simplistic and perform

format validation only. If we wanted to create a validation rule that condi-

tionally compared two fields then it would require a larger block of JavaScript.

Trying to achieve this on the server would require the validation logic to be

implemented there. If for some reason the conditions needed to change then

the server code would need to be updated, which can be difficult in production

environments.

We took the positive traits of the original SRML 1.0 language and compac-

tion engine (SRMLTool) and rebuilt it from the ground up in JavaScript using

jQuery to allow exceptional browser performance. We decided to name the ex-

tension jSRML and the new rule engine jSRMLTool to denote the JavaScript

relationship. Previously SRML rules were stored in a separate file, which had

its advantages and disadvantages. The advantage was that all the rules were

in one location, however, this also meant that it was harder to understand the

rules when trying to find a ruleset for a given node context. In the jSRML

approach we allow the rules to be defined in-line after each field as well as

externally, making it easier to define validation rules.

The second advantage of jSRML is that it is non-obtrusive. In order to

use it, only a simple script include is required. When the validation rules need

to be updated the rule engine itself will not change, only the rules, reducing

the possibility of error. This is a very large benefit compared to the pure

JavaScript approaches. If the validation rules need to change then only the

affected field rules need to change, no coding experience is needed to perform

the update. In case of in-line jSRML, the rules are defined as jSRML snippets.

The full XSD of the new jSRML language can be found in Appendix B.1.

The jSRML engine can also correct the field values if the rule definition

specifies it. This is a huge advantage over other rule- or JavaScript-based

validators as it allows the form to correct the errors and still allows the form

submission to succeed. A good example would be spell checking in a form prior

to submission, which can be accomplished by the using functions in the rule

definition. This makes jSRML more versatile as more seasoned developers can

Validating Web Forms 32

extend the engine with additional methods besides the standard operation set

that the engine provides.

We have also created a Server-side implementation of the jSRML engine

using Java Servlets [30], allowing the form to be validated asynchronously

against a service. The service code does not change no matter what the rule

definitions are. This is accomplished by storing the ruleset on the server-

side and performing the validation based on a lookup using a unique form

identifier. This Servlet can be used to validate thousands of different forms

spanning multiple domains as long as the rules were uploaded beforehand. This

allows the engine to be leveraged in an on-demand validation service scenario.

The jSRMLTool servlet also has an option to learn the validation rules based

on the form inputs using extensible machine learning methods. This provides

a powerful tool for the owner as it can also ”mine” the input and gradually

adjust the rules based on what users entered.

2.3 Validation using jSRML

We will show how to define jSRML rules using simple snippets. The current

language format allows two ways of defining rules : in-line and external. The

in-line mode allows the user to insert the validation rules right below the

affected field. This makes the code more readable as the validation rule fol-

lows the field itself. Figure 2.3 shows a simple example of providing an email

validation rule using in-line jSRML.

...

<input type="text" id="email" class="row-item" />

<!--[SRML]

<validate-input id="email" form="myform" mode="validate">

<error-text>Invalid email format!</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

<conditions>

<expr>

<text-format value="email" />

</expr>

</conditions>

</validate-input>

-->

...

Figure 2.3: jSRML snippet for in-line email validation

To initialize the engine for in-line (default) validation mode, the following

steps would be needed:

• Include the jSRMLTool.js file at the start of the document.

• Augment the fields with their proper in-line rules.

Validating Web Forms 33

In-line validation rules are contained in a comment block following the field.

The comment starts with the [SRML] tag. The advantage of using comments

for the rule storage is that they are non-obtrusive and can be accessed within

the DOM model using XPath [18] expressions.

For external includes we use jQuery to load an XML document containing

the rules into a DOM object and use that as the source for the engine. As

this is not the default mode that the engine uses, there is some extra setup

required for this mode to be used. To use external rules the following steps

need to be taken:

• Create a script segment with the following contents :

var external_rule = http://location-of-srml-rules;

• Include the jSRMLTool.js file.

The major difference between external and in-line is that there is an extra

step required. The presence of an external rule variable informs the jSRMLTool

engine to load the rules from that location using AJAX during the page load.

The rules are then pushed into a rule DOM object for easier access. From this

point on the validation process is identical to the in-line approach.

2.3.1 Defining validation rules

After demonstrating the two ways to define rules, we will now describe how a

rule is built up and how to define more complex ones.

Every jSRML rule definition starts with the validate-input tag. This

element specifies what the scope of the given rule is using the id attribute.

The form attribute defines which form the rules belong to. This way the

external and in-line rules can both use the same format, making it easy to

switch between them. The third parameter is the mode, which can have a

value of ”validate” or ”correct”. The first mode will validate the rule and return

accordingly. The ”correct” mode allows the form input field to be corrected by

the actual rule calculation result. This means that if the validation fails, then

the field value will be replaced by a pre-defined or calculated value (Expected

value) allowing the validation to potentially finish successfully.

The validate-input element has 4 child nodes. These can be in any order,

but they must exist for the validation to yield proper results. These elements

are as follows:

• error-text: This element contains the validation message that will be

displayed to the user. This message is put in a dynamic div element

that is created after the field that is being validated. A div is an HTML

element which can have an id, name and class attribute. Divs are used in

modern web pages to provide table-less layouts and define specific regions

Validating Web Forms 34

of the page. For the scope of this chapter it is enough to consider them

as containers that can be manipulated similarly to other DOM elements.

• css: The css element allows the author to define what CSS classes should

be amended to the input field in case of an error and what class the newly

created error div should be. CSS [42] stands for Cascading Style Sheets

and is widely used in styling web pages. It defines a set of styles and

classes, which can be applied to elements in the document.

• action: This element allows the definition of additional functions that

will be invoked in case of a validation error or success. This allows more

extensive callbacks to experienced users who wish to perform custom

operations, depending on the output of the form validation results.

• conditions: This element stores all of the validation rules.

The condition tag contains one or more expr tags. The validation suc-

ceeds or fails based on the result of these expressions. It is possible to define

more conditions for the same field using multiple expr nodes. There are several

expression types defined in jSRML. We will detail the most important ones

along with a brief description.

• binary-op: This defines a binary operation. In jSRML we only allow a

subset of binary-op types on the top level expression, more specifically

ones that return a true/false value. Currently these are limited to: gte, gt,

lte, lt, date-lte, date-lt, date-equals, date-gt, date-gte, equals, not-equals,

contains, not-contains,begins-with and ends-with. The specification also

allows the keywords and and or to enable proper logical operations. We

have introduced the reg-eval element which, allows references to nodes

and most binary operations (+, -, /, *). A binary-op contains two

expr expressions. The operation is performed between the two expres-

sions. The expressions within can also be other binary-ops or one of the

expression types described in this chapter.

• text-length: The text-length element returns the length of the actual

field that the rule is defined for.

• field-length: This element is similar to text-length, however, it also

has an attribute called id that identifies the specified field whose length

needs to be returned.

• text-value: This expression will return the value of the actual field that

the rule’s definition was for.

• field-value: Similar to text-value but allows the reference of another

field’s value by id.

Validating Web Forms 35

• data: The data element allows literals or constants to take part in an

expression. An example for this would be when the length of a field has

to be larger than 100. In this case the 100 would be added as a data

tag.

• text-format: The text-format expression returns true or false based

on the type of field value it is matched against. The value attribute can

be date, numeric, email or regexp. This allows easier validation against

standard field types used in forms, such as emails, dates or numbers. The

regexp type allows the definition of a regular expression defined in the

expression attribute. This allows powerful pattern matching for fields

(e.g ISBN number validation).

• reg-eval: This expression type allows operations to be defined on more

fields at the same time. For example if the field value is only valid if it

is the sum of other two fields then a reg-eval expression can be used.

To reference the value of fields in the expression, one simply needs to

enclose the id of the fields in brackets (e.g.: [{fieldName}]).

• if-expr: The if-expr element allows conditional results to be returned.

It takes 3 expr expressions. If the result value of the first expression

is true then the result of the if-expr will be that of the second expr,

otherwise it will be the third expr.

• has-value: This element allows a simple check of the field contents. If

the field referenced by id is empty this element will return false, otherwise

it will return true.

The jSRML language allows the form values to be corrected based on the

rules. The engine will find the rules for the actual field and if the value of the

field is different than the expected value defined then it will use the result of

the rule as the actual value. This allows forms to be corrected based on the

rule values, making it a very powerful tool in the form validation space.

2.3.2 A form validation example

After introducing the jSRML language and how powerful it can be for form

validation, we will provide a summary example to demonstrate how it can be

used for form validation.

Consider the form in Figure 2.4. This form has multiple fields to better

demonstrate how jSRMLTool works. The full source of the HTML page can

be found in Appendix B.2. The following shows some summarized validation

rules for the form:

Validating Web Forms 36

• Field01 has a minimum length of 5 characters: the text-length

element is used, which returns the length of the actual field (in this case

the length of field01). We then compare this to a constant value of 5

defined in a data element. To perform the comparison logical operator,

we use a gte binary op. This will return true if the first expression’s

value is larger than the second.

• Field04 has to be an ISBN number: This is a special text-format

case as it is using the reg-exp type to define a requirement of an ISBN

number. The expression attribute defines the actual regular expression

that the field’s value will be validated against.

• Field06 has to be the sum of Field02 and Field05: For this rule

we use reg-eval, which is coupled with an ”equals” binary-op against

the actual text value.

• Field11 is ‘‘legs’’ if field10 is ‘‘cat’’, ‘‘wings’’ if field10

has a value of to ‘‘bird’’ and can be anything otherwise :

The validation rule contains an if-expr to match the value of the other

field value against “cat”. If the value was “cat” then the validation result

will return the value “legs” as the required field value. Otherwise the

results will be the text-value of the node and will perform an ”equals”

binary-op on it. This is a simple trick to convert the machining of

fields to booleans, since if the value matched then we return the current

field value and compare that against itself (which will always be true),

otherwise we would return “legs”.

The jSRMLTool engine supports all three types of validation described

earlier (Client, Server, Real-time). This provides the most versatile and power-

ful approach since the user is not bound to a single solution.

The following summarizes how the different modes operated in jSRMLTool:

• Client-side: In this mode the validation is completed using the in-

cluded jSRMLTool.js file. The rules are extracted using XPath con-

ditions. All in-line rules are contained in comments which start with

[SRML]. A hook is installed on the onClick action of the submit but-

ton. When the button is pressed the engine will validate the fields. If

the validation is successful (or corrected based on the expected values)

then the form is submitted to its original location defined by the “ac-

tion” attribute of the form. Figure 2.5 shows the flow of the Client-side

validation.

• Server-side: The engine handles the Server-side mode using a sep-

arate servlet (called jSRMLToolServlet). This servlet uses a unique

Validating Web Forms 37

identifier to associate the rules to each form. This allows multiple forms

from different domains to be submitted/validated against the same ser-

vlet. To put the validation engine into server mode a variable called

server validator needs to be defined with the URL of the servlet. The

flow in this case is similar to the Client-side. However, all fields are

pushed over to the servlet along with the unique identifier. The servlet

then performs the validation/correction and returns the data back to the

client. The Server-side validation flow is shown in Figure 2.6.

• Real-time and Hybrid: Every rule has a “method” attribute. This is

not a mandatory attribute and has a default value of “standard”. When

this attribute is set to “focus” then a hook is automatically installed on

the onBlur event of every field where this attribute is set. This results in

a focus change validation trigger. The third allowed value for the method

attribute is “real-time”. This installs a keydown listener and performs

the validation on every character input. This mode is useful for example

in case of password length checks.

Figure 2.4: Input form

Page Load Find All

Forms

Read SRML

rules

Bind to submit

button

Create DOM

HTML Display onClick Submit

Perform Client Side

Validation

More Fields

to validate?

Validate Field Error?

Form

Processor

Store

Results

Display

Error

No

No

Yes

Yes

Figure 2.5: Client-Side jSRML

Validating Web Forms 38

Figure 2.6: Server Side jSRML

2.4 The jSRMLTool Servlet

After introducing the jSRML language and the jSRMLTool engine we will now

discuss the Server-side validation mode in more detail. The jSRMLTool servlet

has two major roles: Server-side form validation and learning jSRML rules.

The first role allows a powerful way to provide a service for validating forms

across multiple domains. The jSRML rules are stored in the database and are

retrieved using unique identifiers. The form is passed in to the Servlet, which

performs the validation internally and returns the results to the calling client.

This approach hides the rules from the client side, yet still allows powerful

validation using jSRML.

2.4.1 Learning jSRML rules

The second role of the jSRMLTool engine is learning jSRML rules. This is a

powerful addition since it attempts to learn from the form submissions and can

propose jSRML rules based on machine learning techniques. In order to learn

jSRML rules, the engine has to be put into learning mode using the following

steps:

1. Create a JavaScript variable called server mode with a value of ”learn”.

This will put the engine into learning mode. The default value of this

variable is ”normal” .

2. Create a variable called server validator with the location of the valida-

tion servlet.

3. Include the jSRMLTool.js file into the header of the form’s file similarly

to the client or server-side modes.

Validating Web Forms 39

4. Augment the form with a hidden variable called srml unique. The value

of the variable should be the identifier that will be used to group the

form submissions together.

Figure 2.7 demonstrates how the form is intercepted and analyzed. The

initial steps are similar to how the Server-side validation is handled. A hook

will be installed on the form’s submit event and will re-route the call to the

jSRML Servlet location. The major difference here is that there is no actual

jSRML ruleset on the Server-side. It is merely used to intercept any submis-

sions and store the form-value pairs. These values are then analyzed by the

learning module and possible jSRML rules are generated. The flow is returned

to the client and the form data is pushed to the original target for the form

submission. This means that the form operation is not hindered but the traffic

is intercepted, saved and submission relayed to its original target.

Form Intercept Form Submit
using the installed Hooked

jSRMLTool
servlet

Identify Form
Save Form

Fields
Post to original
Target location

Figure 2.7: Intercepting form data and learning jSRML rules

The learning module has several plugins that process form submissions and

adjust the proposed rules accordingly, making the learning a gradual process.

Currently the engine has the following learning plugins: jpFormat, jpLength,

jpCopyContent, jpRelationship, jpRange, jpPredefinedName, jpRegExp.

Each plugin has a confidence factor and a target ratio that is set by the

administrator of the system. If a plugin has a high confidence value it means

that almost every time the plugin breaches the target ratio threshold a rule

will be generated. Sometimes it is possible that multiple plugins provide rules

for the same field. In cases like this the system chooses the solution with the

highest confidence factor which surpassed the target ratio. The target ratio

denotes what the minimum expected matching ratio is, which means that if

the actual match is lower than this ratio the rule will not be considered as a

match. In practice this means the ratio of inputs that match the given rule

conditions.

The plugins keep track of their historical form submissions along with their

field values. The learning module goes through all the plugins and collects the

partial jSRML rule proposals. Once all the plugins are executed the weighed

results are analyzed and stored. Figure 2.8 demonstrates how the learning

module works. To increase the efficiency of the learning process it is usually

helpful to start a new ruleset with a supervised learning scenario. During this

Validating Web Forms 40

the owner of the form ”teaches” the engine by providing valid sample inputs.

The tool also has an import feature which is able to import a CSV file of

valid sample data to prime the initial rules. Since the learning module is very

extensible, new plugins can be added easily, increasing the learning efficiency

of the system.

Form Read Form UID jSRMLTool
Save Field

Values ForEach Field

ForEach Plugin

more

Build Context Tree

Retrieve Historical

values

Execute on 50% of

historical data
Persist Field Values

Validate against remainder

50% of historical data

Above

Ratio

Store jSRML

proposal

Check Results above

ratio

Check confidence

factor

Persist final jSRML

ruleset

No

Yes

Yes

No

Figure 2.8: jSRMLTool learning process

jpFormat Plugin

This plugin tries to match the type of a given field. It works on a simple

approach that every field is a string as the weakest type match. It then tries

to cast to date, email and numeric. The matching is done by casting and

regular expression pattern matching. The results are stored on a fieldname

level along with the statistics of the match. The decision adopts over time since

it is possible that not all submissions are valid. The plugin has a high success

rate at identifying the formats, since the more positive/negative examples it

receives the higher probability the match will be.

jpLength and jpRange Plugins

The jpLength plugin matches on the length of the fields. Both minimum and

maximum lengths are collected and analyzed. The operation is pretty straight-

forward thanks to the historical data collected. The jpRange plugin works

similarly, however, with the actual numerical value of the fields. The range,

min and max values are adjusted after each positive result. These plugins are

dynamic in nature and adjust their values based on the submissions.

Validating Web Forms 41

jpCopyContent

This plugin is a simple comparator between two fields. It is mostly used in the

password, email fields when there is a second field which requires the user to

re-type the value to ensure he didn’t make a mistake. The operation of this

plugin goes through all (Fj, Fk) field pairs and checks what the matching ratio

is between them.

jpRelationship

The relationship plugin is aimed at finding relationships between fields and

their values. The steps of the plugin are demonstrated in Figure 2.9. The

learning starts out by extracting the context of the form submissions. Since

the context tree has only two levels (including the root) every field is a sibling.

This plugin has two sub-modes: compositional and conditional.

The compositional mode finds potential compositions between the other

sibling elements. The current version works off sets of two concurrent fields

at a time (using more fields would increase the complexity), each field with a

minimum length of 3. Based on the possible combinations we build a statistical

table to show each field in relation to two other siblings. For composition we

check against: begins-with, ends-with, contains. If field01 is the field the

plugin is targeting and field02 and field03 are in the current context set then

the value is compared against: [field02][field03], [field03][field02], *[field02],

[field03], [field02][field03], [field03]*[field02]. The plugin will go through

every field as the target field. It then takes the remainder (n-1) siblings and

splits them into groups of two based on those fields whose lengths are above 3

characters. These combinations are then compared to the historical values of

the plugin. Based on the confidence factor and ratio provided a jSRML rule

is created. Figure 2.10 shows the compositional method of the plugin.

Execute

Compositional

Mode

Above

Ratio?

Conditional

Mode

Above

Ratio?

Propose

jSRML

Propose

jSRML

Return jSRML with

higherRatio

Yes

Yes

Select

sub-mode

Figure 2.9: jpRelationship Plugin

The second mode of the jpRelationship plugin is the conditional mode

(Figure 2.12). This method finds relationships between field values using con-

ditional logic and applying statistical machine learning [28]. The plugin uses

Validating Web Forms 42

Compositional
Split (n-1) fields into

Groups of two (F2,F3)

ForEach Group (F2,F3)

Compare F1

F1 = [F2]*[F3]

F1 = [F3]*[F2]

F1 = *[F2]* F1 = *[F3]*

more
Match against 50%

historical

Above

Ratio?

Propose

jSRML

Yes

Yes

Figure 2.10: jpRelationship Compositional Method

50 percent of all historical data as the learning set. The plugin initially se-

lects the most descriptive field Fk where k=1,...,n and bags its context (the

remainder n-1 fields) clustering them into groups of three randomly. These

clusters will form a set of decision trees that are focused on learning Fk using a

simplified Random Forest [16] approach. It should be noted that the size of the

clusters is an experimental value based on the average number of form fields

per submission. The term “most descriptive field” refers to the field with the

lowest entropy in the results (the field whose values are least random across

submissions). This is used to better split the values of the results into smaller

chunks, which are then used in the later nodes of the tree. Every tree will have

a maximum depth of 3 (as the selected field’s bag has 3 other fields that have

to be analyzed). Each node’s content contains the actual values of targeted

field Fk and its top three values (Fk was selected at the start of the algorithm).

Every node will select the most descriptive field and its value in the current

context. The context is unique to each node and the path that it was created

by. This means that every field’s possible values in the current node are in-

fluenced by the previously selected classifiers leading to the node. We will be

using Xi to denote the filter context of a node in each iteration step whose

value is unique to the node’s path in the tree. Let Xi := Fk[Fr = Vs(Fm[Xi−1]

where Vr(Fs[Xi]) denotes the rth most descriptive value of field Fs filtered by

the context defined in Xi. Let C(Fr[Xi]) mark the classifier that is selected

for field Fr whose values are filtered by the context defined in Xi. During each

node the field (Fr) with the most descriptive trait is selected as the classifier

(every level of the tree reduces the number of fields to chose from by one).

This field’s values are then used to create the nodes children ordered by their

descriptiveness. Each child node will fix the value of Fr based on the branch

Validating Web Forms 43

they are in V1(Fr[Xi]), ..., Vn(Fr[Xi]). The main Fk field values and their oc-

currences are recalculated based on the context in each node. Every node will

reduce the possible values of the fields as the context is generalized more going

downward in the tree. It is possible that some field values are not discrete, but

rather continuous numerical occurrences. To solve this scenario, Wm(Fs[Xi])

marks the weighed values of Fs filtered by Xi with a relation of m (possible

values ≤, >). The algorithm chooses a weighed average of numeric values

(to ensure that they are not offset too much). For these classifiers the values

will partition the results into two sets. The first branch will contain values

less than or equal to the classifier value, the second branch will contain values

larger than the value. This function is analogous to the Vm(Fn[Xi]) value and

can be used in the classifier filtering accordingly. However, here the value is

not based on the level of descriptiveness but rather the weighed average of the

field and its filter chain.

As mentioned earlier each node contains the top three values of the analyzed

field (Fk) with their occurrence ratio. The possible values of the fields are

influenced by the previously selected classifier values. Before selecting a new

classifier the algorithm checks the values of Fk in the nodes. Any node which

does not have at least one Fk value above the ratio (currently set to 50%) is

ignored from then on and will no longer be processed. The iterations continue

until the context bag is not empty or all nodes have terminated without a

possible selection. The algorithm only works off the top three values of each

field classifier, which may cause an efficiency decrease overall. However, based

on the introduced ratio values the margin for extra error can be safely ignored.

To demonstrate the algorithm consider the following example: users answer

a set of questions regarding their activities and weather conditions (activ-

ity [F1], wind [F2], weather [F3], temperature[F4] where the brackets contain the

Field index). The form data was acquired using an online survey using the

help of SurveyMonkey [55]. The fields wind and weather allow multiple values

to be selected (the form can be seen in Figure 2.11). When the user selects

multiple values for these fields the form post is handled as multiple submissions

to fit the model correctly. The plugin uses 50 percent of the historical data

(in our case 2000 submissions) and analyses each field one-by-one. We will

demonstrate the activity field relationship learning briefly. Figure 2.13 shows

the resulting tree for activity (note we only have 4 fields in this form, so it will

only need one tree per field. However, the algorithm works on multiple trees as

described earlier). The plugin collects the distinct historical values and their

counts selecting the top 3 values. In case of activity these top 3 distinct values

are “Swimming” with 610 hits, “Fishing” with 239 hits and “IceSkating” with

215 hits. The learning set in our example is made up of 2000 form submissions.

The plugin creates a statistical analysis of the other (C(F2), C(F3), C(F4))

classifier values. In our example wind [F2] is chosen as it had the most de-

Validating Web Forms 44

Figure 2.11: Outdoor Activities Form

scriptive classification (provides the largest separation of results). The top 3

wind [F2] values are selected and the resultset is filtered on that (V1(F2), V2(F2),

V3(F2)). If there are numeric values (e.g.: temperature) then the weighed av-

erage value is taken as the classifier. This, however, will only classify into two

sets so they are only used in later levels of the tree.

Conditional
Split (n-1) fields into

sets of Three

Randomly

ForEach Group

F1, (F2,F3,F4)

more

Filter Historical by

Selected Field

Values

Initialize

FieldSet={F2,F3,F4}

Insert Filtered F1

statistics in Node

Initialize Tree

Root=F1 Top 3

distinct values

with highest count

Collect Distinct Values

for FieldSet

Select Field(Fx) from FieldSet

with Highest count

and segmentation

Remove Fx

from FieldSet

HasNonNumeric

Fields in set?

Average Historical

Fx values

If numeric then

left <= Fx and

right>Fx

ForEach Leaf

F1 Node

Split statistics

by Fx values

(Top 3 distinct)

Find all leaves

with Ratio above

threshold and count > 5%

Propose jSRML

results

If Max(count) < %5

Stop processing

branch

Yes No

Figure 2.12: jpRelationship Conditional Method

Validating Web Forms 45

The next tree level is created by applying a filter on the classifier results.

In the example this means three nodes. The first node will list all entries

where the wind (F2) is “Weak”, the second sibling will list all entries where

the wind is “Strong” and the third node on this level will list all items whose

wind attribute is “Breeze”.

Based on the new level we recalculate the top three distinct values of the

target (F1) field for each selected value of Vi(F2). On a database level this ba-

sically means that we select the top 3 distinct values for F1 where

value of F2 IN (V1(F2), V2(F2), V3(F2)) . The statistics are stored on the

node level and are based on the filtered F2 values.

The next step is to examine the remaining fields and create possible clas-

sifiers. The possible values of the fields are reduced by fixing field F2 to the

top three values. Based on the filtering weather (F3) is chosen and the classi-

fiers become: C(F3[F2 = V1(F2)]), C(F3[F2 = V2(F2)]) and C(F3[F2 = V3(F2)])

respectively. Taking the first classifier from the left the top three values it

generates are “Sunny”, “Rain” and “Snow”. These values are used to filter

all nodes on the level. On each level the distinct values of the F1 are reduced

based on the previous classifiers (e.g.: on this level only submission items that

have the weather and wind values specified earlier are used to get the distinct

values of the target F1 field). The top three distinct values of the remaining

two classifiers are also generated and added to the tree.

The last level has only one field left to use: temperature[F4]. Since this

is a numeric value, we take the weighed average of historical values (taking

into consideration the field values chosen for F2 and F3). Taking the left node

as an example (the remaining nodes operate similarly) this classifier becomes

C(F4[F3 = V1(F3[F2 = V1(F2)])]). The left branch will be where the value of

F4 is less then or equal to the classifier’s single value of 10 (weighed average of

submissions for this field after applying the previous classifiers) and the right

branch contains statistics on field values larger than this value. Once the tree

is built we look at the leaf values. We select whichever ones breach the ratio

provided (in our example we set this to be 50 percent). If more than one leaf

on the same node breaches this threshold we select the largest one. If they are

identical then we select the first one from the left. To avoid too many false

positives we also have a concept of coverage ratio. This is set by default to

5 percent. What this entails is that all result counts below 5 percent of the

learning dataset will be ignored. In the example this comes to 100 elements,

which means that any leaf result below 100 submit matches are ignored. Based

on our example the following jSRML rules are proposed:

1. “Activity” is “Swimming” (64 percent of the cases) when the “wind” is

“Weak” and the “weather” is “Sunny” with a “temperature above 10

degrees”.

Validating Web Forms 46

2. “Activity” is “Swimming” (59 percent of the cases) when the “wind” is

“Weak” and the “weather” is “Rainy” with a “temperature above 16

degrees”.

Once a proposed prediction is made it is then checked against the remaining

50 percent of historical data to confirm that the matching ratio is kept. If the

ratio is above the target ratio a rule is created. It is important to note that

the validation ratio of this learning algorithm is not 100%. This requires the

owner of the domain or form to set the thresholds accordingly. It may mis-

classify valid inputs as false negatives if the threshold is not set correctly. The

purpose of the learning here is to provide a direction of validation rules that can

then be refined by the domain owner in contrast to the other learning plugins

which can classify the inputs with higher confidence. With more plugins and

stronger learning algorithms (e.g.: neural networks) the system can evolve to

better classify harder relationships as well.

Wind

IceSkating 215 0.100

Fishing 239 0.120

Swimming 610 0.305

Weather

Weak [860]

Swimming 401 0.466

Ski 119 0.138

Fishing 108 0.125

Weather

Strong [442]

HangGliding 105 0.237

Hiking 85 0.192

IceSkating 69 0.156

Weather

Breeze [244]

Swimming 53 0.217

Kayaking 23 0.094

Ski 23 0.094

Temperature

Sunny [360]

Swimming 201 0.558

Ski 68 0.188

Fishing 43 0.119

Temperature

Rain [304]

Swimming 190 0.625

Fishing 52 0.171

Hiking 35 0.115

Temperature

Sunny [213]

Hiking 66 0.309

IceSkating 48 0.205

HangGliding 43 0.201

V (F)21

V (F [F =V (F)])3 2 211 V (F [F =V (F)])3 2 212

V (F [F =V (F)])3 2 213

C(F [F =V (F)])
3 2 21

C(F [F =V (F)])
3 2 22

C(F [F =V (F)])3 2 22

V (F)23

C(F [F =V (F [F =V (F)])]4 3 1 3 2 2 C(F [F =V (F [F =V (F)])]4 3 2 3 2 2

W (F [F =V (F [F =V (F)])]<= 4 3 1 3 2 2 W (F [F =V (F [F =V (F)])]> 4 3 1 3 2 2
W (F [F =V (F [F =V (F)])]
<= 4 3 2 3 2 2

C(F)2

V (F)22

V (F [F =V (F)])
3 2 221

V (F [F =V (F)])3 2 222

Temperature

Cloudy [45]

Fishing 11 0.244

Swimming 10 0.222

IceSkating 7 0.155

V (F [F =V (F)])3 2 223

Temperature

Rain [120]

HangGliding 49 0.408

Fishing 36 0.3

Hiking 11 0.09

Snow [118]

Temperature

IceSkating 56 0.474

Ski 38 0.322

HangGliding 6 0.05

> 16 [181]

Swimming 107 0.591

Fishing 38 0.209

Hiking 25 0.138

>W (F [F =V (F [F =V (F)])]
4 3 2 1

>10 [176]

Swimming 114 0.647

Fishing 30 0.170

Ski 14 0.079

<=10 [184]

Swimming 87 0.473

Ski 54 0.293

Hiking 14 0.074

<= 16 [123]

Swimming 83 0.674

Fishing 14 0.113

Hiking 10 0.08

23

1
1

111 2

Figure 2.13: Sample tree in the Random Forest

jpPredefinedName

The jpPredefinedName plugin works on the assumption that many forms share

field names and types. For example a field named email usually contains an

email address, which has to be in a valid email format. The plugin contains a

list of constant names and their corresponding formats. This list is maintained

and extended by the administrator of the Servlet.

jpRegExp

The jpRegExp plugin is geared towards learning regular expression values for

fields. The plugin starts out by analyzing the historical values for the (F1) field

Validating Web Forms 47

in particular its separator sign occurrence (e.g.: −,+,@, (,), [,]). This is built

up from the assumption that form fields using regular expressions are usually

finite and pre-defined in format. This means that a field will usually follow the

same pattern historically if it belongs to the same form domain (e.g.: ISBN

number, phone number, Social Security Number...etc). A statistical table is

built up of these to determine any potential separator position recurrence.

This helps identify possible separators for the field value’s regular expression.

It also lowers the processing time of the algorithm as now only sets of fixed

character lengths need to be checked. The plugin tries to match a separate

regular expression for each section. We create a statistical tree, which analyzes

each section one character at a time. If there are no separators the algorithm

will treat the complete field values as a single section. This will, however,

cause uneven length inputs to offset the regular expression result (e.g.: if most

inputs were 5 characters long and some were longer then the output can be

something like [A− Za− z]{5}[1− 9ace]∗). If the range could not be merged

into an optimal one then it will contain the subranges per character location

(e.g.: [a − c][f − k][A − Z]{3}). In both section separated and single-section

modes each step will try to optimize the ranges into smaller expressions to con-

serve space. The statistical table contains ratios and statistics on all positions

and it will split only when the ratio for the separator is 100%. The separator

identification has two modes: fixed position and floating. In case of the fixed

position mode the segments are fixed in length as well as the position of the

separators. The floating position mode has a dynamic position nature (e.g.:

the @ sign in emails) in which case the only certain information the plugin has

is the number of sections in all inputs.

If the separators and sections are identified correctly then each section is

analyzed one position at a time using the similar approach to the above. De-

pending on the mode (fixed vs floating) the sections lengths are either constant

length or dynamic. This, however, will only affect the expression normaliza-

tion. For each position the possible values are collected and converted into

regular expression ranges. After the end of each section the ranges in the

actual section are compacted into a potentially shorter representation. This

compaction includes replacing a range of [0−9] to [\d] and ranges like [abcghi]

to a range of [a−cg−i]. Multiple occurrence of similar ranges or types are also

checked and introduced (e.g.: [abc][abc][abc] is converted to [a− c]{3}). Using

a sample input of (ab0-8cz,bc1-akm,dtt-d5e,cog-102) will generate an output of

[a− d][bcopt][01gt][−][18ad][05ck][2emz]. In case of the floating position mode

of the plugin we also utilize the + and ∗ occurrence characters.

Once all segments have been ”learned” the results are merged into one

complete regular expression and matched against the remaining 50 percent of

training data and if the ratio of the match is higher than the provided threshold

then a rule is proposed. We have also experimented with reversing the logic

Validating Web Forms 48

of regular expression creation by starting out from the broadest ranges and

tightening based on the results. This was also a good approach. However,

it provided more false positives due to the generic nature. The system also

has an experimental regular expression plugin based on block-wise grouping

and alignment algorithm coupled with a simple looping automata based on

the concepts outlined in [22]. This algorithm is simplified by the additional

information acquired from the potential separators acquired in the first pre-

check step. We thought it was worth mentioning it in this section as it can

provide a more optimal solution than the statistical approach.

Execute
Find +,-,@,(,),[,],.

positions

in Historical

Select Symbol Combination

with highest Match Ratio

Check Ratio

against Threshold

Above

Ratio?

Propose jSRML

Yes

No

Split String into segments

ForEach segment
more

ForEach character

position in segment
Find largest range

in historical distinct values

Compare against

ratio and save range

Try to extend to the n-1

ranges to create a merged

range

Figure 2.14: jpRegExp Plugin

2.4.2 Programatically evaluating the jSRML learning

plugins

The jSRMLTool learning process uses a gradual approach to create the rules.

The more positive inputs it receives the more effective the rules become. In

order to provide a proper baseline it is advisable to feed in some positive form

results. The results are summarized in Table 2.3 where T denotes True clas-

sification (including positive and negative), F+ means False positive and F-

marks False negative with ES and PS marking Empty and Primed initial learn-

ing sets. The table includes the percentage results of the input classification

(valid/invalid) for a specified plugin type. The learning is far from perfect,

but with proper training it can aid the creation of validation rules. The sim-

pler plugins like jpFormat, jpLength, jpRange are rather effective since they

dynamically adjust their limits according to the inputs. The more complex

plugins like the jpRegExp provided solid results. However, it is more resource

intensive and take longer to provide the same success ratio. The jpRelation-

ship plugin was excluded from the testing scenario as the random nature of

the tests would not provide conclusive results on the efficiency of this plugin.

We will demonstrate the real-life use of this plugin in a later section of this

chapter.

Validating Web Forms 49

During our tests we experimented with both empty and primed initial

learning sets. In case of the empty learning set the number of false positives

were considerably higher for the more complex plugins since they leveraged the

distinct values and the learning set extensively. We did not run an evaluation

on the jpPredefinedName plugin since that operates on a set of constant field

names (e.g.: email, ip address, isbn). The jpCopyContent plugin was also

ignored for this evaluation since the results are based on equality between two

fields and the random nature of the experiment offsets the actual findings of

the plugin.

To test our plugins we used the following input sources:

• An English dictionary file containing 170,000 words. This is the source

of all word subsets.

• A random list of 100,000 words from the dictionary to be used by the

jpLength plugin.

• An email address list of 130,000 items built up from the dictionary with

an added logic to generate valid/invalid emails. The ratio of valid/invalid

emails was set randomly. The invalid emails were generated by adding

known mistakes to words and symbols. The list also marks which are

valid/invalid so that this information can be used in the validation eval-

uation. This is one of the sources of jpRegExp.

• A list of 50,000 phone numbers (matching US phone numbers: (CCC)

NNN-MMMM) as the secondary input of jpRegExp.

• A list of 50,000 ISBN10 and ISBN13 random items as the tertiary input

source for jpRegExp.

• A list of 50,000 IPV4 and IPV6 random items as an additional input for

jpRegExp.

• A list of 250,000 regular expressions based on random expressions (vari-

able in both format and length using +,−,@, (,), [,]. This will provide

the additional learning set for jpRegExp.

• A list of 100,000 items randomly alternating between, string, integer,

double and date for use with the jpFormat plugin.

• A list of 100,000 numbers between 1 and 1 billion. This list is used by

the jpRange plugin.

Using the above sources we created 1,000 separate forms with random

fields. Every form contained multiple fields (one to test each plugin). The jp-

PredefinedName and jpCopyContent plugins were ignored for the experiment.

Validating Web Forms 50

The reason why we chose to run the results on multiple forms was to ensure

that the form fields and their contents were more random. For every field of

the forms the test randomly selected the “expected” results of the validation.

This was used to identify how successful the learning was. Each form was

processed with 30,000 inputs with both Empty and Primed Set approaches to

allow a better picture of the plugin efficiencies. The main operation flow of

each set is as follows:

• Empty Learning Set : For each form randomly select 15,000 values

from the corresponding lists for each field and run the engine on them.

It must be noted that for this mode the engine cannot determine what

the “expected” values are since the inputs are not classified. The engine

will try to generate rules for what the “expected” values are by choosing

an initial 15,000 inputs. These inputs are analyzed and a set of proposed

validation rules are created based on the best fit using the ratios. Fol-

lowing this another 15,000 values are selected from the learning set and

are used to observe the validation results. This is not an ideal approach

since we cannot ensure that the first batch of inputs were completely

valid therefore it will yield more false positives.

In case of the jpRegExp plugin the learning is not perfect due to the ran-

domness of the selection. The remaining 15,000 values are run with each

plugin and their classification is verified based on the expected versus the

learned rules.

• Primed Learning Set : Using this approach the engine randomly se-

lects 15,000 valid inputs for each field of each form based on the expected

validation rules. As mentioned earlier every field has an “expected” val-

idation requirement that is created during the form setup. The inputs

might not fully overlap the expected target. However, will be considered

valid based on its definition. An example for jpRange would be an expec-

ted range of [100,000-200,000]. The random values that fit into the range

will be considered valid and will allow the plugin to create its own jSRML

rule suggestion. Due to the random selection of valid elements a learned

range for the previous criteria might be [125,000-170,000] (which is a

subset of the original “expected” range). In case of the jpFormat plugin

items with the expected format (string, integer, date, double) are selec-

ted from the list as the initial set. This will be the “valid” set of inputs.

In case of jpRegExp one of eight predefined expression formats are selec-

ted as the “expected” validation rule and values that match this format

(these formats are: email, ipv4, ipv6, phone, isbn10, isbn13, webaddress,

phone). Afterwards a remaining 15,000 inputs are selected and executed

using the rules. During the processing of the remaining inputs the engine

Validating Web Forms 51

Plugin T ES F+ ES F- ES T PS F+ PS F- PS

jpFormat 64.36 % 25.11 % 10.53 % 94.58 % 3.23 % 2.19 %

jpLength 59.65 % 22.18 % 18.17 % 88.09 % 7.17 % 4.74 %

jpRange 26.78 % 44.06 % 29.16 % 66.31 % 25.41 % 8.28 %

jpRegExp 29.59 % 36.17 % 34.24 % 51.57 % 21.12 % 27.31 %

Table 2.3: Plugin comparison (ES=Empty Set, PS=Primed Set)

checks the learned rule results with the expected classification. Using

these we are able to measure the efficiency of the learning.

The results of the forms are averaged and evaluated in Table 2.3. Based on

the results it is visible that using Primed Sets yields the most effective results.

From the plugins jpFormat, jpLength and jpRange are the most effective. The

regular expression matching jpRegExp plugin does provide good results, how-

ever, the evolution of the format recognition should be tuned in the future. It

should be noted that the current efficiency of the implemented plugins is not at

100%. This can lead to a valid question: how do we validate a form that is only

n% effective? The short answer is that the acceptance threshold should be set

so that the domain owner can accept the efficiency of the results. Even if the

results are not 100% it still provides a direction to better tune the validation

requirements. The more examples the engine can derive decisions and learn

from the higher the efficiency becomes. In a human oriented approach the

fields have more relationship and are chosen based on some expected behavior.

One might argue if the whole learning validation rules has any relevance in

the forms nowadays. We believe that the jSRML language provides a cleaner

and more powerful way to define form validation rules. Allowing the option

to intercept and potentially learn validation rules in a non-obtrusive way not

only allows administrators with a powerful tool to create rule but can also

be used to mine the inputs based on the submissions and potentially discover

relationships and visitor decision patterns in the submitted form.

Due to the random nature of the previous experiment we felt it would

be worthwhile to demonstrate an incremental approach as well for some of

the plugins to better observe how the ratios change by gradually introducing

more and more positive examples to the experiment. We chose a significantly

smaller, more targeted learning set to better demonstrate how the plugins learn

the results. This more constrained testbed yielded considerably better results.

For the jpRegExp we used a regular expression of [1−4A−Za−z]{5}[−][1−
6]{5}[−][a − k][A − P]{8}[−][1 − 9A − Za − z]{8} as the valid format (ex-

ample valid inputs are: 1QrHk-56566-bPFI1ENNL-TLKir5Qk and h2bwM-

61632-fELCGFJEM-631237Va). This is a simpler regular expression then an

email or conditional isbn number expression (matching both isbn10 and isbn13

formats), but still provides adequate ground to demonstrate how the plugin’s

efficiency evolves in proportion to the number of positive examples. The input

Validating Web Forms 52

examples for jpRegExp are 30 characters long and randomized on each charac-

ter so we don’t really need a set of tens of thousands of positive examples to

learn them.

During the experiment the jpRange target range was also reduced to a

smaller magnitude. The experiment sets a random range between 100 and

5,000. The jpLength target was randomly selected with an upper limit of 400,

causing the experiment to terminate around 400-500 positive examples with

a 100% ratio.

We provide 100 valid inputs for each plugin at the start of the test. We

then take 50 positive and 50 negative for each plugin and observe how the

rules classify the results and record the incorrect/missed classification counts.

We are able to ensure that the the training examples are positive and negative

since we select them according to our predefined criteria. We perform this

over ten iterations. In each iteration we increase the positive examples by

100 and regenerate the validation rules. These rules are then run against 50

more positive and 50 more negative examples. After the tenth iteration we

are priming the experiment with 1,000 positive examples and testing against

500 positive and 500 negative examples. This is a very controlled experiment

but it is useful to demonstrate how the ratios converge in proportion to the

number of training examples. The results of the experiment can be seen in

Table 2.4. It can be seen in the figure that with proper and controlled positive

inputs the plugins can provide near 100% ratios as well. In the next section

we will demonstrate a real-life example where these results can be put into

practice.

2.4.3 A Real-world example: Dentistry Treatment In-

quiry Form

To evaluate the engine further we have hooked up the jSRMLTool servlet to an

already functioning form to verify what the engine suggested for the valida-

tion rules. This was a more exhaustive test than the previous outdoor activity

survey. During this test more plugins of the engine were verified as a whole.

We chose [9], which is a site targeted at capturing leads for international cli-

ents who are inquiring about dental treatment in Hungary. The booking form

contained several fields providing an ideal fit to test some of the plugins. Us-

ing the site’s form we were tested: jpFormat (Age, Country field), jpRange

(Age field), jpRegExp (Phone field), jpPredefinedName (Email field), jpLength

(First name, Last name, Phone, Treatment, How may we help fields), jpCopy-

Content(Confirm email). The Treatment field was used in conjunction with

the Age, Gender and Country fields to perform a jpRelationship conditional

learning. The Treatment field had multiple non-conflicting rules generated us-

ing different plugins. The system found the range of the length used for the

Validating Web Forms 53

Analyzed Total Miss Success

Plugin Examples Count Ratio

jpLength 100 17 83.00 %

jpLength 200 7 96.50 %

jpLength 300 2 99.33 %

jpLength 400 0 100.00 %

jpRange 100 72 28.00 %

jpRange 200 85 57.50 %

jpRange 300 97 67.67 %

jpRange 400 81 79.75 %

jpRange 500 63 87.40 %

jpRange 600 59 90.17 %

jpRange 700 45 93.57 %

jpRange 800 34 95.75 %

jpRange 900 28 96.88 %

jpRange 1,000 11 98.90 %

jpRegExp 100 98 2.00 %

jpRegExp 200 186 7.00 %

jpRegExp 300 198 34.00 %

jpRegExp 400 146 63.50 %

jpRegExp 500 90 82.00 %

jpRegExp 600 48 92.00 %

jpRegExp 700 22 96.85 %

jpRegExp 800 12 98.50 %

jpRegExp 900 6 99.33 %

jpRegExp 1,000 2 99.80 %

Table 2.4: Plugin Efficiency with gradual positive training examples

input and also used it for the conditional learning.

Our experiment used the site’s historical data for lead submissions and ran

537 leads acquired form the site using Selenium [51] (scriptable automated

tester framework) to emulate the form posting. The results were impressive,

since it was able to provide effective validation rules for most fields. The

Phone field had some weak rule recommendations (e.g.: [0−4][1−5][0−9]+).

However, the ratios were not high enough due to entries with hyphens and

extension numbers along with entries starting with + for international exit

codes. Since the target ratio was not breached the plugin’s rule recommend-

ation was ignored. The output of the validation rules for each plugin can be

seen in Table 2.5.

The experiment yielded in providing validation rules based on the results

visible in Table 2.5. Most of the plugins yielded considerable adaptive results.

If we would run the forms with more training examples then the ranges and

results would improve as well. The experiment also showed that “55% of

clients requesting All-on-four dental as their treatment are Male, over the age

of 50 and live in the UK.” (which is identical to the statement: In 55% of the

cases “Treatment” is “All-on-four-dental” when the client is “Male” is from

the “UK” has an age above “50”). The learning results also showed that “61%

of Abutment related requests come from Female clients from Ireland who are

under 60”. This provided a good demographic analysis of the visitors and

Validating Web Forms 54

Field Validation Results Plugin

Age [35, 70] jpRange

Age integer jpFormat

Country 5 < length < 12 jpLength

First Name 4 < length < 7 jpLength

Last Name 4 < length < 10 jpLength

Email email jpPredefinedName

Confirm Email Email match jpCopyContent

Gender 4 < length < 6 jpLength

Phone string jpFormat

Phone 7 < length < 14 jpLength

Treatment 4 < length < 37 jpLength

Treatment conditional jpRelationship

How may we help? 5 < length < 184 jpLength

Table 2.5: Plugin results for Dentistry Contact form

helped the site adjust their marketing strategies accordingly. Even though

data mining was not the focus of the experiment it did provide a direction

for future study for the jSRML engine. The experiment proved the viability

of such a solution in a real world scenario. The learning is not yet perfect,

the rule engine and concept of allowing easier rule definitions substantially

outweigh the performance and efficiency shortcomings (which can be tuned by

introducing better learning plugins into the system).

2.5 Summary

In this chapter we introduced the jSRML metalanguage and engine. This

is a major extension to the SRML language specification to enable it to be

used in the form validation space. After showing the background technologies

and demonstrating how form validation works, we provided the jSRMLTool

engine. Our engine allows both Client-side and Server-side validation modes

using the jSRML language. The extension permits non-obtrusive definition of

form validation rules. The jSRMLTool engine can also correct the form values,

making it extremely useful in situations when the submission can contain errors

that can be corrected based on rules. We also showed ways to provide real-

time validation. Our tool helps in the generation of jSRML rules using machine

learning as well. The rules can change over time based on the form inputs.

We believe jSRML is a valuable asset in the ever-growing pursuit for providing

pristine and valid data acquired from web forms.

2.6 Related Work

In this section we will mention a few approaches to form validation. The first

paper we would like to mention is [41]. This article proposes the use of an

Validating Web Forms 55

XML based rule definition to show field validation. They create an XML file

based on the database model itself on both the Client- and Server-side level.

While it is a sound approach it still lacks the flexibility of the user overriding

and defining custom conditions. In many cases, structural and type validity

is not enough, context validity should also be considered. This means that

even though a field’s value is correct, it might have dependencies on other

fields which are not visible on a database schema level. The approach lacks

the option to provide custom hooks and does not provide provisions for data

correction.

Another paper that we would like to mention is [21], which proposes that

the validation of forms should be part of the model design and handled on

the server-side. They leverage Spring MVC as part of their AC-MDSD (Ar-

chitecture Centric Model Driven Software Development). Although a good

approach, it requires the form validation to be coded as part if the datamodel

on the server that will process the data. Our jSRMLTool’s server mode provides

a more comprehensive set of features and does not force the developer to pre-

define their dataset prior to deploying the processing application.

The next approach we would like to mention is [5]. The author proposes a

rule based field validation using JavaScript. The rules themselves are basic but

support the comparison and aggregation of multiple field values. The validator

engine itself does not have any hooks and does not allow the user to control

what should happen if the validation fails. Our approach offers a solution to

both and provides a way to dynamically correct the field data, making it a

very powerful tool.

The authors of [4] propose an automatic Server-side validation approach for

HTML forms. It collects the form elements and stores the validation elements

inside a database and provides an interface for the administrators to go in

and specify how to validate the given fields. Currently they do not offer too

complex validation methods (since the approach is mainly focused on type and

format oriented validation). It does not offer dependency or regular expression

definitions for the field values. It resembles what we wish to achieve with

the Servlet mode of our engine. Our library not only offers the forms to be

validated using a centralized server, but also provides the definition of more

complex validation rules.

The points discussed in [4] are aimed at server-side validation and are valid

for most web forms. The article suggests that people will disable JavaScript,

which would render client-side validation useless. This is a long and heated

debate in the web community as most modern web pages utilize JavaScript

and flash excessively. Disabling JavaScript support will not only render the

validation useless but also hinder the usability of the page itself.

We should also mention the approach presented in [11]. This paper intro-

duces a language called EEL (edit engine language) to provide a common way

Validating Web Forms 56

of describing field validation rules. This language was applied in the telecom-

munications area where several forms were being submitted. Although their

approach was aimed at non-HTML forms, and was written purely in C++. It

does have a solid syntax and could potentially be extended to be used in a

modern web solution (after porting it to JavaScript or a server-side language).

The ideas raised in [24] demonstrate a .NET approach to rule based form

validation. It also uses an in-line approach similar to jSRML. The rules can

have conditions and it supports regular expressions as well. The rules are not

as readable as jSRML and do not provide support for context related rules.

For the rule definition it allows the reference of only one other field rather than

providing a complete context-based approach. It does provide a solid solution

for .NET based forms, which we believe is worth investigating in the future.

Our metalanguage, is not limited to one technology stack or implementing

language so creating a .NET library isn’t hard to envision and implement.

Chapter 3

Validating Google Protocol

Buffers

Thesis: Introduce a new metalanguage (ProtoML), which can val-

idate and correct the messages of Google Protocol Buffers.

Introduction

After showing a way to validate XML documents using SRML 2.0 rules, we

decided to experiment creating a language capable of validating Google Pro-

tocol Buffers (PB). This was a different direction compared to the text-based

XML format since PB is binary-based, making its validation a challenge.

Binary-based formats have considerably smaller payloads compared to text-

based formats, thus more data can be transmitted in the same amount of

packets. This advantage comes at a price of the format being boxed in and

hard to extend. Most binary formats use a predefined set of fields (similarly

to C structs). They often lack standardized validation schemas and usually

have no way to describe the relationship between fields or their formats. The

only real restriction they offer is specifying the type and name of the field and

possibly a set of values they can have (e.g.:ENUMs). The validation task is

usually up to the developer (it is rarely encapsulated within the language).

The reason why we chose Google Protocol Buffers (we will be using PB as

the abbreviation from now on) was that it is very versatile and has support

for various programming languages. Unfortunately the validation side of the

messages in PB was not part of the language specification so it also suffers

from the same drawback as most binary-based formats.

In this chapter we will introduce a new metalanguage called ProtoML,

which provides a standardized way to describe constraints and validation rules

for PB messages. The language took the advantages of SRML 1.0 [36] and

SRML 2.0 (see Section 1.1.3 in Chapter 1) and revised the language syn-

tax to make the rule definitions easier to define. We also introduce a tool

57

Validating Google Protocol Buffers 58

(ProtoMLTool), which generates Java wrapper classes that can validate the

PB messages using the ProtoML rules defined. We will start by introducing

the basic technologies used throughout to provide easier understanding of top-

ics mentioned later. We will then demonstrate the ProtoML language through

a simple example.

3.1 Preliminaries

There are a few terms and technologies that we should introduce first before

proceeding to the general discussion topic of the chapter. These help ensure

that the reader understands the fundamentals our language is based on.

3.1.1 Google Protocol Buffers

The most important topic to introduce is Google Protocol Buffers [26] (PB).

This format provides a binary and lightweight way of serializing structured

data. It allows developers to build up a proto file that describes the frame/-

structure of the messages that will be sent over the wire. These proto files

are then compiled into native language code (C++, Java, Python, C#...etc.)

providing wrapper classes to read and write the message content. One of the

advantages is that the language can handle multiple versions of the message

frame (proto file) by treating new fields as optional. PB is very popular since

it just works out of the box without any real in-depth knowledge requirement.

Figure 3.1 shows a message definition for a simple Person message. Every

Person message has a Name, Sex (which can be “Female” or “Male”), Title

(which can be “Mr”, “Mrs”, “Ms”, “Miss”, “Dr”), Age, Income and Employed.

It is possible to define the field order and types using C-like definitions and

also assign default values for each field. For Title, Sex and Employed ENUMs

are used in the message definition allowing a preliminary restriction on the

values of the field. Running the protoc compiler on the proto file will pro-

duce wrapper classes to serialize this type of message. We will be using Java

in this chapter as the language of choice similar to the rest of the dissertation.

PB messages can be nested within one another allowing more complex

message types. We can extend the previous example to serialize HouseHold

messages that contain a MemberCount, TotalIncome and one or more nested

Person message using the Member field (with the repeated keyword). The PB

proto message format can be seen in Figure 3.2.

3.1.2 DOM model

We have introduced DOM [2] before in Section 1.1.1 of Chapter 1. The reason

why we mention DOM in this chapter is that we will be using the DOM model

Validating Google Protocol Buffers 59

message Person {

required string Name = 1;

enum SexType {

FEMALE = 0;

MALE = 1;

}

enum TitleType {

MS = 0;

MRS = 1;

MISS = 2;

DR = 3;

MR = 4;

}

enum EmployType {

N = 0;

Y = 1;

}

required SexType Sex = 2 [default = FEMALE];

required TitleType Title = 3 [default = MS];

required int32 Age = 4;

required int32 Income = 5;

required EmployType Employed = 6 [default = N];

}

Figure 3.1: Simple PB message to serialize Person messages

message HouseHold {

required int32 MemberCount = 1 [default = 0];

required int32 TotalIncome = 2 [default = 0];

repeated Person Member = 3;

}

Figure 3.2: Nested PB message to serialize HouseHold messages

to represent the rules for ProtoML as well as converting the PB messages

into DOM trees. Using a tree representation makes the rule processing and

traversing easier. The DOM tree representation of Figure 3.2 can be seen in

Figure 3.3.

HouseHold

MemberCount TotalIncome Member

Name
Title

Age

Income Employed

Member

Name
Title

Age

Income Employed

Figure 3.3: DOM representation of Figure 3.2

Validating Google Protocol Buffers 60

3.1.3 XPath

Another technology leveraged by ProtoML is XPath [18]. This concept has

also been introduced in Section 1.1.2 of Chapter 1 so we will not be discussing

it in detail. We use XPath to allow easier description of rules in the ProtoML

validation space. Using the power of this query language it is possible to

reference fields and siblings within the DOM tree. Since PB messages can

be transformed into DOM trees it makes XPath a useful tool for field and

value reference as well. XPath can be used to return lists of values, nodes and

concrete values. If we take the DOM example of Figure 3.3 we can query the

Name of each Member in the HouseHold message using the XPath defined in

Figure 3.4.

//HouseHold/Member/Name

Figure 3.4: XPath query for Names of Figure 3.3

3.2 Discussion

After covering all required background topics we will now introduce the Pro-

toML metalanguage. The language is XML based and uses functions to extend

its descriptive capabilities. It allows the definition of validation and constraint

rules for PB messages (represented by the .proto file). ProtoML can define

multiple constraints on fields depending on their context and values. Using

XPath it is able to reference other field values within the message. The lan-

guage can also work with broader contexts by implementing message buffering

on the library side (multiple messages can be placed into one context building

up a larger DOM tree for the rules to operate on). The ProtoML rules can spe-

cify what action the implementing engine should take upon validation errors

(“warn”, “fail”, “ignore”). There is also a validation mode flag that can notify

the engine to potentially correct the value based on the expected rule value

if it does not match. In this section we will cover the language basics using

the HouseHold example described in the earlier sections. The ProtoML rule

definitions are stored in .pml files that are XML documents with predefined

schemas. The generic format of a ProtoML rule file can be seen in Figure 3.5.

The ProtoML document has a root proto-rules node that can have any

number of rule child nodes. Each rule node has five parts: path, mode, action,

constraints and value.

• path: This is the XPath of the field the rule is defining (the root here is

the message root).

Validating Google Protocol Buffers 61

<proto-rules>

<rule>

<path>root XPATH</path>

<mode>validate/correct</mode>

<action>warn/fail/ignore</action>

<constraints>

<match>any/all</match>

<constraint>constraint def</constraint>

...

</constraints>

<value>

<match>any/all</match>

<expr>value expression</expr>

</value>

</rule>

</proto-rules>

Figure 3.5: ProtoML rule format

• mode: This tells the implementing library what to do with validation

failures. The possible values are “validate” and “correct”. If “correct”

is used then the implementing library can attempt to correct the field

value using the value definitions.

• action: This is a flag for the implementing library. It specifies what

action to take if the validation fails on the given node. The values can

be “warn”, “fail”, “ignore”.

• constraints: This is a block of constraints for the format of the field.

This node has one match child and can have several constraint children.

Each constraint is a boolean expression that is matched against the

field value. If match is set to “all” then every constraint expression has

to evaluate to true in order for the constraint to be fulfilled. If the match

value is set to “any” then the constraint restriction will be satisfied if at

least one constraint returns true.

• value: This block also has a match node similar to the constraints. In

this case, however, the return values are not booleans but actual values

that are matched against the field values. The reason why it is possible

to have “any” as a match mode for expected values is that we can define

context conditional expected values, which are not always matched.

In the constraints and value nodes it is possible to use multiple internal

functions (evaluated from the inside out). The language also supports expression-

based evaluation using the eval() function allowing the definition of complex

arithmetical formulas without the need to daisy-chain the functions together.

Referencing the current field value can be accomplished by using the :self

constant. For the current field’s XPath path reference the :path constant can

Validating Google Protocol Buffers 62

be used. The implemented functions of the ProtoML language can be found

in Appendix C.1.

To demonstrate the ProtoML language in action we will define a few val-

idation rules for the example shown in Figure 3.2.

3.2.1 Validation rules for the HouseHold message

Validating the MemberCount field

The condition for this rule is: “The MemberCount field should equal the number

of Members (Person messages) in the HouseHold.” To describe this rule we

will use the count-children() function in the values definition part of the

ProtoML definition. Figure 3.6 shows the rule snippet. The path of the rule

is //HouseHold/MemberCount.

..

<value>

<match>all</match>

<expr>

count-children("//HouseHold",

"Member")

</expr>

</value>

..

Figure 3.6: ProtoML definition for MemberCount

Validating the TotalIncome field

The condition for this field is: “The TotalIncome field is the sum of all Member

Income fields”. This validation rule uses the for-all() function to match all

XPath elements with Income and use the add method to aggregate the values.

Figure 3.7 shows the rule snippet. The path of the rule is //HouseHold/TotalIncome.

..

<value>

<match>all</match>

<expr>

for-all("//HouseHold/Member/Income",

"add")

</expr>

</value>

..

Figure 3.7: ProtoML definition for TotalIncome

Validating Google Protocol Buffers 63

3.2.2 Validation rules for Member embedded message

This Member field has a type of Person, but from a rule point of view the tree

will use Member as the node name since that is the actual name of the field.

Validation rule for Title

This validation rule is as follows: “Title can be ’Mrs’, ’Ms’, ’Miss’ or ’Dr’ if

Sex is Female, otherwise it has to be ’Mr’ or ’Dr”’. In the proto message

definition we defined Title as an ENUM of “Mrs”,“Ms”,“Miss”,“Dr”,“Mr”.

This forces a structural requirement on the field; however, it cannot determine

conditional values. Using ProtoML we can define context sensitive possible

values of a field. The rule snippet can be found in Figure 3.8. The validation

rule first checks the value of the Sex field, which is on the same level as the

Title field so we can use the sibling() method with the :path constant to

get its XPath. We then compare the value against the word Female. If this

evaluates to true then the second parameter of if() is evaluated and returned.

This second parameter goes on to check if the value of the current field (which

is acquired using the :self constant) is in the set of values defined. The path

of the rule is //HouseHold/Member/Title. It is important to mention that

constraints will return true or false depending on the structural requirements

in contrast to the value nodes, which will return the expected value of the field.

..

<constraints>

<match>all</match>

<constraint>

if(eq(val(sibling(:path,"Sex")),"Female"),

contains(:self,"Mrs","Ms","Miss","Dr"),

contains(:self,"Mr","Dr"))

</constraint>

</constraints>

..

Figure 3.8: ProtoML definition for Title

Validation rule for Employed

Validation rule: “Employed has to be ’N’ if Age is below 18”. This validation

rule can be specified as either a constraint or a value match. Since the possible

value of Employed is restricted to “N”. For this validation rule we acquire the

value of the Age sibling and check if it is less than 18. If it is then the if()

function will return “N” as the required field value. If it is not less than 18

then it will return with the actual field value (using the :self constant), which

will always provide a successful field validation if this branch is hit. The path

of the rule is //HouseHold/Member/Employed. The validation snippet can be

seen in Figure 3.9.

Validating Google Protocol Buffers 64

..

<value>

<match>all</match>

<expr>

if(lt(val(sibling(:path,"Age")),18),"N",:self)

</expr>

..

Figure 3.9: ProtoML definition for Employed based on Age

3.2.3 ProtoMLTool library

We have demonstrated the potential of the ProtoML language through a verb-

ose example. In order to perform any actual validation an implementation

of the language is required. We have created a draft implementation of the

ProtoML language in Java called ProtoMLTool, which serves both as a library

to execute ProtoML rules and create wrapper code based on the input .proto

file and .pml language ruleset. The generated wrapper code no longer uses the

.pml file and can be compiled along with the generated PB Java code. This is

achieved by converting ProtoML rules into chained function calls and inserted

this into a static class wrapper code to gain performance. The library also has

a detached execution mode that can execute ProtoML rules on the messages

(this mode, however, will require the .pml file during runtime as well). Figure

3.10 shows the code wrapper generation flow of ProtoML.

.proto

file

.pml

file

ProtoMLTool

Wrapper

classes for

validation

Generates

Figure 3.10: ProtoMLTool workflow

The validation flow can be seen in Figure 3.12. The class that receives

the message needs to include a reference to the generated PMLValidator class

besides the library dependency (in a form of an Ivy dependency). When the

message is received a call to PMLValidator.Validate should be made with the

current Message as the input parameter to perform the validation. This static

method is generated from the .proto and .pml files so it will always use the

proper generated Message classes. It will use the protoc generated wrapper

classes internally to provide seamless integration with the target codebase.

Since PB generates custom types and Enums these generated types are used

by the library (for faster processing expressions and functions will invoke the

toString() methods to match values of Enums). In order to ensure that the

package names and types are correct it is important to specify the Java options

in the .proto file as demonstrated in the snippet in Figure 3.11.

Validating Google Protocol Buffers 65

package examples;

option java_package = "com.protoml.examples";

option java_outer_classname = "HouseHoldProtos";

..

Figure 3.11: Proto Message Java Options

The generated PMLValidator class contains a HashMap of all fields that

will need to be validated along with a validator descriptor. This descriptor

contains a method name (which is executed using reflection) along with the

flags for the given rule (validate/correct and the action to take upon validation

failure). During the processing the incoming Message is converted into a DOM

tree and the appropriate reflected method is called on it. This is done by

looking up the field XPath in the map and checking if it has any descriptors

assigned. Since all functions contained in the rules have their corresponding

methods in the library the resulting code is similar to the rule definition.

If the mode was set to “correct” then the engine checks if the field is valid.

If it is then the validation terminates successfully. If the result was not valid

it will attempt to correct the value using the expected value. The library will

retry three times to validate (if it fails again) after replacing the value until it

finally terminates with a validation error. In case of the “validate” mode the

process is straightforward. The ProtoMLTool was written in Java using the

Spring Framework and uses Exp4j [8] to evaluate the expressions. The DOM

manipulation and access is handled by the JDOM [29] library.

Message

Read Message

with Generated

Classes

ProtoMLTool

Library

Generated

ProtoML wrapper

class

Validate

Message

Valid?Mode check

Attempt

to Correct

base on expected

values

Success

For each

rule
All valid?

Success

Report,

Warn or

Fail

Report,

Warn or

Fail

YES

YES

NO

NO

Validate

Correct

Figure 3.12: ProtoMLTool Validation workflow

Validating Google Protocol Buffers 66

3.3 Summary

We have introduced a powerful new metalanguage called ProtoML, which al-

lows the definition of validation rules for Google Protocol Buffer Messages.

This language fits nicely into the validation space and contributes to the evol-

ution of SRML. The language provides a clear and concise way of specifying

the required value and format of the message fields with a potential to correct

invalid field values. We have shown how a draft implementation of a tool that

uses ProtoML operates and how it can be used to validate the messages.

3.4 Related Work

Some of the projects mentioned in this section are not fully related to Google

Protocol Buffers, but are aimed at providing a descriptive structural validation

for binary formats. Since PB is a binary format, most can be applied to it

with some modification.

The first one to note is the Piqi [38] project. It was created to provide

a framework for cross-platform and language serialization. It has a human

readable definition language that can describe the structure of documents. Its

tool-set enables the conversion between XML, JSON, Binary, and Protocol

Buffers. Unfortunately it does not have real value validation capabilities, only

structural verification.

A very common format is Apache Thrift [6]. It allows the authors to define

their data types and services as part of a .thrift file. This is very similar

to what PB does. It also provides a validation function to provide structural

validation.

Another project we would like to mention is the ASN.1 [37] ISO standard.

It allows Type References, Identifiers and Values. Its language specification

also allows complex data types to be defined; however, custom value validation

would require a separate implementation.

The author in [57] introduces a way to use Attribute Grammars as se-

mantics in binary formats. A part of this approach is similar to ProtoML

since the XML language itself can be extended with semantics similar to how

SRML 1.0 leveraged Attribute Grammars. We use a DOM tree (built from

the XML and proto message) to describe the binary format. It does not go on

to the actual rule context and value definition side, but starts out on a similar

path as ProtoML, therefore we thought it was worth mentioning here.

Chapter 4

Validating Web Services

Thesis: Combine the previous metalanguages (SRML 2.0, jSRML,

ProtoML) into SRML 3.0 and provide a way to validate Web Ser-

vices.

Introduction

The final the dissertation covers is the space of web services. Based on the

experience and knowledge gained during the development of jSRML and Pro-

toML we decided to unify their positive traits into the SRML language. This

led to the new 3.0 extension of the SRML language. In this chapter we will

show how the two metalanguages helped in making the 3.0 version of the

SRML language easier to use, more descriptive and contain less overhead than

its predecessors. We will demonstrate how the new version along with a new

implementation of the rule engine can be leveraged to validate web services.

The reason why web services are important is that there has been a paradigm

shift in software architectures in a sense that instead of re-writing services

over and over the trend now is to re-use and share functionality to reduce

cost. Web services bridge the gap between systems distributed over multiple

geographic regions, providing an easy way to communicate in a platform inde-

pendent manner. The advantage of using web services is that the client does

not need to know how the data is created or where it comes from. The client’s

system can implement its own business logic with the consumed data or can

connect to other web services as well. Web services are not limited to one

programming language, making them ideal for cross-platform communication

and service sharing.

The original groundwork was laid by RPC [10], which allowed systems

to connect to another machine, invoke remote procedures and return data.

Nowadays we live in an age of Service Oriented Architectures where solutions

are built by consuming and accessing external services, as part of the business

logic. With the emergence of web services considerable changes occurred in IT

67

Validating Web Services 68

architectures. Instead of single-use applications the trend has become to write

reusable services, that may be consumed by third party systems.

The evolution of the Internet also brought in several commercial and free

web services. An example is the National Digital Forecast Database service

[47], which allows the retrieval of weather information based on the supplied

zip or city. Another example of web services is that of on-line banking clients

that provide mobile and web access. With such a high demand on services,

validity is an important aspect. Publicly exposed services are under constant

attacks [14] [27] (e.g.: injection attacks, invalid data submission, Denial of

Service). This is one of the main reasons why validation and data sanitization

plays a very important role for both the client and provider side. The service

provider needs to ensure that the requested data is in a valid format and

will not compromise their system, whereas the priorities of the client involves

validating the format and content of the resulting data along with integrating

it into their existing infrastructure. Currently the only really viable way to

validate either side involves changes to the systems. While this is a great

solution, it requires extensive resources to introduce the validation logic into

an existing system. If the requirements or the format of the data change over

time (e.g.: a new bank account format is introduced) then the backing system

needs to be updated and possibly recompiled. The same situation exists for the

client side since the consumption data might need to be filtered for a subset.

We will be using WSDL [12] as the interface language for web service

description since it is an XML-based format, making SRML a good choice for

its validation. We have enhanced the SRML language to version 3.0, which

is also being presented as part of the chapter. We have created a rule-based

web service validator tool called wsSRML that leverages our SRML language.

Using SRML rules we can define the expected format (structure and value) of

the services (input and output). The tool is able to run in multiple modes:

native and proxy.

The native mode uses the set of SRML rules and augments web service calls

with a wrapper class, allowing the validation to occur natively within the code

itself. The second mode of operation acts as a proxy system that validates the

incoming service requests and relays the potentially corrected version to the

provider and vice versa. This permits a transparent validation flow without

the need to change the client or provider side. There are several web service

validation approaches available. However, most of them are not flexible and

are harder to use. We do not aim to provide a replacement for these but rather

demonstrate an easy-to-use, highly extensible rule-based approach, which also

allows the provision to correct validation errors. This creates an all-in-one

solution and enables the users to concentrate on the logic itself rather than

how to describe their business rules.

Validating Web Services 69

4.1 Background

In this section we will cover two main concepts that will be used throughout

the chapter: Web Services and the new SRML 3.0 format. First we will discuss

XML briefly since both the rules and the WSDL definitions are based on this

metalanguage. The second section will summarize the main aspects of web

services in order to provide a generic groundwork. The third topic will cover

the extension to the SRML language that will enable the description of the

validation rules.

4.1.1 XML

Since we have already introduced XML in Section 1.1.1 we will not be detailing

it again. We will, however, be using a Foreign Exchange Trade example in the

later sections, which uses XML documents similar to the one shown in Figure

4.1 as the input and performs operations based on them. It makes sense to

mention the example in this section for clarity.

<TradeRequest>

<client_id>AF0103991485</client_id>

<value_date>2013-11-28</value_date>

<timestamp>1385648969</timestamp>

<pair>EUR/USD<pair>

<bid>1.35895</bid>

<ask>1.35928</bid>

<qty>100</qty>

<action>BUY</action>

<ip_address>192.168.39.102</ip_address>

</TradeRequest>

Figure 4.1: Foreign Exchange Trade transaction in XML

4.1.2 Web Services

Web services provide a standardized way for two machines to communicate

over the World Wide Web. There are multiple formats that can be used with

web services. Most of the formats are REST-compliant [50] meaning they

perform a set of stateless operations that can be repeated numerous times. We

will be using the XML-based web service format since it uses XML messages

for communication that conform to the SOAP [13] standard. In many cases

there is also a machine-readable description of services which is defined using

WSDL [12]. This is not a requirement for the endpoints; however, they are

needed if automatic code generation is to be used. We will describe this in more

detail later since our wsSRML is based on the presence of a WSDL description.

The high level overview of the web services architecture can be seen in Figure

4.2.

Validating Web Services 70

Service

Registry

Service

Requester

Service

Provider

Services

Service

Descriptor

WSDL

CLIENT SERVER

interact

discover publish

Figure 4.2: Web Service Architecture

The SOAP protocol

The SOAP [13] protocol provides an extensible framework for wrapping XML

messages into envelopes. An envelope has a header and a body. The SOAP

header is an optional element in the message that can be used to pass in any

application-specific data along with the message. The SOAP body is required

since it is the payload of the message itself. SOAP messages are relayed using

standard network protocols like HTTP, FTP...etc. The data sent over the wire

represents the information needed to invoke a service or to marshal the results

of the output. A SOAP message defines both the target method’s name and

set of parameters along with the namespace definitions. Figure 4.3 shows a

SOAP message delivering the XML payload of Figure 4.1.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<performTrade xmlns="http://service.trades.example.com">

<inputParam>

<client_id>AF0103991485</client_id>

<value_date>2013-11-28</value_date>

<timestamp>1385648969</timestamp>

<pair>EUR/USD</pair>

<bid>1.35895</bid>

<ask>1.35928</bid>

<qty>100</qty>

<action>BUY</action>

<ip_address>192.168.39.102</ip_address>

</inputParam>

</performTrade>

</soapenv:Body>

</soapenv:Envelope>

Figure 4.3: Example SOAP message of Figure 4.1

WSDL

The Web Service Definition Language [12] is used to describe the messages that

are exchanged between the client and provider sides. This definition is protocol

Validating Web Services 71

agnostic, meaning that it does not care about how the message is relayed. This

language describes the available services, their input parameters with types

and the results allowing systems to generate code from the WSDL description,

making it easier to communicate between the systems. These definitions can

be mapped by any platform, language or messaging system. Figure 4.4 shows a

simple WSDL definition of a Foreign Exchange trading service. The service has

a performTrade method, which takes a single parameter called inputParam

of type TradeRequest (Figure 4.1 shows an example input) and returns a

TradeResponse.

In Java the wsdl2java tool takes a WSDL and can create classes and an

interface that provide the stubs to communicate with the web service. The

interface is used as a contract that wraps the message into the required format.

The results from the service call are also marshalled into the generated JAXB

classes. Figure 4.5 shows the service call flow using the generated classes. We

will be using this feature as part of the “native compiled” validation mode of

our validator engine.

4.1.3 SRML 3.0

In the previous chapters we have introduced SRML 2.0 (see Section 1.1.3),

ProtoML (Chapter 3) and jSRML (Chapter 2). We have decided to create a

new version of SRML using the knowledge gained from the additional metalan-

guages and provide an easier syntax for SRML. In this section we will demon-

strate the difference between SRML 2.0 and the new 3.0 version and provide

some validation example to better demonstrate the new syntax. This is im-

portant to better understand how we use the new version of the language to

validate the web services. Figure 4.7 shows a simple SRML 2.0 validation rule

that defines a simple rule for Figure 4.6. The rule has a restriction that only

considers the document valid if the name of the person is longer than 5 char-

acters. The SRML 2.0 format was aimed at returning the expected value of

the actual node rather than separating the expected value from its constraints.

This is the reason why the example returns ”SRML INVALID ENTRY” in the

else branch of the if-expr node. If the length is above 5 characters then the

actual node value is returned, making the validation succeed. If the length

is less than 5 then it will return ”SRML INVALID ENTRY” as the result,

which will not match the actual value causing the validation to fail. This was

efficient for smaller documents, which fit into memory but made the definition

and processing of more complex rules difficult. In a larger document context

the processing of these rules took more time so we had to come up with a new

format for performance reasons.

To provide more powerful (faster to process) and easier definition of the

rules for larger documents we have extended the language further to SRML 3.0

Validating Web Services 72

<wsdl:types>

<schema elementFormDefault="qualified"

targetNamespace="http://service.trades.example.com"

xmlns="http://www.w3.org/2001/XMLSchema">

<element name="performTrade">

<complexType>

<sequence>

<element name="inputParam" type="impl:TradeRequest"/>

</sequence>

</complexType>

</element>

<complexType name="TradeRequest">

<sequence>

<element name="client_id" nillable="true" type="xsd:string"/>

<element name="value_date" nillable="true" type="xsd:string"/>

<element name="timestamp" nillable="true" type="xsd:long"/>

<element name="pair" nillable="true" type="xsd:string"/>

<element name="bid" type="xsd:double"/>

<element name="ask" type="xsd:double"/>

<element name="qty" type="xsd:int"/>

<element name="action" nillable="true" type="xsd:string"/>

<element name="ip_address" nillable="true" type="xsd:string"/>

</sequence>

</complexType>

<element name="performTradeResponse">

<complexType>

<sequence>

<element name="performTradeReturn" type="impl:TradeResponse"/>

</sequence>

</complexType>

</element>

<complexType name="TradeResponse">

<sequence>

<element name="trade_id" nillable="true" type="xsd:string"/>

<element name="client_id" nillable="true" type="xsd:string"/>

<element name="value_date" nillable="true" type="xsd:string"/>

<element name="timestamp" nillable="true" type="xsd:long"/>

<element name="pair" nillable="true" type="xsd:string"/>

<element name="actual_bid" type="xsd:double"/>

<element name="actual_ask" type="xsd:double"/>

<element name="qty" type="xsd:int"/>

<element name="total" type="xsd:double"/>

<element name="action" nillable="true" type="xsd:string"/>

<element name="ip_address" nillable="true" type="xsd:string"/>

</sequence>

</complexType>

</schema>

</wsdl:types>

Figure 4.4: WSDL for the Foreign Exchange Trade service

along with a new validation engine implementation (the full XSD can be found

in Appendix D.1). The rule definition was considerably simplified using the

experience gained in the ProtoML and jSRML languages. Figure 4.8 shows

the new 3.0 rule definition format of the same name length restriction outlined

in Figure 4.7.

The new format separates the expected values (under the values node) from

the value/format constraints (conditions element). The other considerable

Validating Web Services 73

Client

Generated

Webservice

Interface

Populate

SOAP envelope

Response

Target Server
Marshal from

generated classes

Populate SOAP

envelope

Marshal to

generated

classes

Figure 4.5: Service Invocation using marshalled classes

<person>

<name>Fred Flintstone</name>

<phone>1-800-667-1234</phone>

<email>fred@bedrock.com</email>

</person>

Figure 4.6: Person representation in XML.

<rules-for root="person">

<rule-def name="name" mode="validate" match="all">

<rule-instance>

<validation-error>Invalid name, minimum length is 5!</validation-error>

<if-expr>

<expr>

<binary-op op="gt">

<expr>

<string-length> <instance-value /></string-length>

</expr>

<expr><data>5</data></expr>

</binary-op>

</expr>

<expr><data><instance-value /></data></expr>

<expr><data>INVALID_ENTRY</data></expr>

</if-expr>

</rule-instance>

</rule-def>

</rules-for>

Figure 4.7: SRML 2.0 ruleset for Figure 4.6

difference is that the engine received a new validation core, which now works

on a function chaining approach (similar to ProtoML). This makes the rule

definition easier since we can wrap multiple functions into one large condition

(e.g.: gt() and length() in the example). The full list of functions supported

can be found in Appendix D.2.

The extension also introduces the validation root and validation record

elements, allowing the ruleset to denote what the document’s root is and the

records are, similar to the how the root element is defined in XSD. This can

be leveraged by documents containing multiple records of the same structure.

In case of the validation record we can also define the ID of the record

that operations can use to refer to in a simpler approach. The record’s ID is

described using its XPath to allow more flexibility. This means that it can be

Validating Web Services 74

<rules-for root="person" >

<rule-def name="name" mode="validate" match="any">

<rule-instance>

<validation-error>Invalid name, minimum length is 5!

</validation-error>

<conditions >

<condition>

<entry>gt(length(:instance-value),5)</entry>

</condition>

</conditions>

<values />

</rule-instance>

</rule-def>

</rules-for>

Figure 4.8: SRML 3.0 ruleset for Figure 4.6

on the top level of the record or located somewhere in the record’s DOM tree.

The example below shows the definition of the new record elements:

<validation-doc-root name="rootname" />

<validation-record name="recordelementname" id="/xpath/to/ID" />

The key syntactic and usability improvements that SRML 3.0 has over the

previous version can be summarized the following way:

• Uses a new function approach syntax introduced to allow functions to

be daisy chained together and evaluated easier.

• The conditions tag allows listing the conditions that the inspected ele-

ment has to conform to. The match parameter can be all or any depend-

ing on whether or not the requirement is to have all condition expressions

met or at least one.

• The values tag enables context-specific value definitions to be described.

These expressions are evaluated top-down. The first one to match the

context child expression conditions will be used as the expected value.

This is used to correct the value easier.

• Using the validation-record allows the definition of the XML record

elements along with their primary IDs.

• With the help of validation-doc-root it is possible to define of the

XML document root element.

Continuing on with the TradeRequest example we can define the SRML

definition for the pair field of Figure 4.1 as shown in Figure 4.9. The example

rule definition uses the in() function, which returns true if the first parameter

is in the set defined in the second parameter. The set() method creates a set

from a list of values. For simplicity we limit the value-pairs to four currency

pairs. The :instance-value constant refers to the currently validated value

(in the example’s case the pair field value).

Validating Web Services 75

<rules-for root="TradeRequest">

<rule-def name="pair">

<rule-instance>

<validation-error>Invalid Pair specified</validation-error>

<conditions>

<condition>

<entry>in(:instance-value,

set("USD/CHF",

"EUR/USD",

"USD/JPY",

"GBP/USD"))</entry>

<params />

</condition>

</conditions>

<values/>

</rule-instance>

</rule-def>

</rules-for>

Figure 4.9: SRML rules for a Foreign Exchange Trade transaction

4.2 Validating services

We have created a tool called wsSRML, which builds on top of the SRML 3.0

language and allows the validation of web services. The new tool provides

two ways to validate the request and response of web services. We will be

using Java as the main language in this chapter. However, the concepts can

easily be applied to other languages as well (e.g.: C#). Our tool provides two

ways to validate the request and response of web services. The first way is

to perform the validation on the client side by placing the validation process

into the generated code. The second is to intercept incoming and outgoing

communication to and from the target web service and apply the validation

logic inside a proxy service. We will demonstrate how each method works

along with their advantages and disadvantages.

We will be using the Foreign Exchange trade example described earlier. The

service has a single method called performTrade. The method has a single

input parameter with a type of TradeRequest as described in Table 4.1. The

result type of the method is TradeResponse which is detailed in Table 4.2. In

the TradeReponse’s total field we demonstrate the ways SRML allows for arith-

metic expressions to be evaluated: the eval() function uses the expression en-

gine for evaluation and the mul(val(sibling())) uses an XPath value extrac-

tion approach. Both the input and output parameters have restriction require-

ments mentioned in their corresponding figures. The TradeResponse.total field

defines an expected value restriction. The method signature in Java can be

written as follows: TradeResponse performTrade(TradeRequest inputParam);

During the validation phase both Request and Response parameters are

accessible since the function of the wrapper class is making the actual service

call. When using the native mode the rules are converted to Java code and

Validating Web Services 76

Field Restriction SRML snippet

client id Starts with ”AF” and is 12 chars long and(starts-with(:instance-value,”AF”),

eq(length(:instance-value),12))

value date Has to be a valid day and at least today and(has format(:instance-value,”shortdate”),

gte(timestamp(:instance-value,”Ymd”),

timestamp(current date(”Ymd”),”Ymd”)))

timestamp Its an integer that is above and(type-check(:instance-value,”int”),

1356998400 (2013-01-01) gte(:instance-value, 1356998400))

pair Currency pair. Has to be the following: in(:instance-value,set(”USD/CHF”,

(USD/CHF, EUR/USD, ”EUR/USD”, ”USD/JPY”, ”GBP/USD”))

USD/JPY, GBP/USD)

bid Is a float value type-check(:instance-value,”float”)

ask Is a float value type-check(:instance-value,”float”)

qty Is an integer and greater than 0 and(type-check(:instance-value,”int”),

gte(:instance-value,0))

action Can be ”BUY” or ”SELL” in(:instance-value,set(”BUY”,”SELL”))

ip address Valid IP address format has format(:instance-value,”ipv4”)

Table 4.1: Forex TradeRequest type definition and restrictions

the input/output variables are still in the method’s scope. In case of the

proxy mode the parameters are pushed to a single DOM tree allowing XPath

operations on them. This means that the Response rules can refer to the

Request parameter values since they are still available when the server returns

the response value. This provides even more powerful validation rules since

there are cases when conditions can be defined on the response based on what

the request was.

Field Restriction SRML snippet

trade id Starts with ”TRD” starts-with(:instance-value,”TRD”)

client id Equals inputParam.client id eq(:instance-value,

val(”inputParam/client id”))

date Equals inputParam.value date eq(:instance-value,

val(”inputParam/value date”))

timestamp Larger than inputParam.timestamp gte(:instance-value,

val(”inputParam/timestamp))

pair Equals to inputParam.pair eq(:instance-value,

val(”inputParam/pair”))

qty Equals inputParam.qty eq(:instance-value,

val(”inputParam/qty”))

action Equals inputParam.action eq(:instance-value,

val(”inputParam/qty”))

actual bid Is a float value type-check(:instance-value,”float”)

actual ask Is a float value type-check(:instance-value,”float”)

ip address Equals inputParam.ip address q(:instance-value,

val(”inputParam/ip address”))

trade total If the action was SELL then if-else(

value = qty * actual bid eq(val(sibling(:instance-path,’action’)),”SELL”),

otherwise value = qty * actual ask mul(val(sibling(:instance-path,’actual bid’)),

val(sibling(:instance-path,’qty’))),

eval(”../actual ask∗../qty”))

Table 4.2: Forex TradeResponse type definition and restrictions

Most validators only concentrate on the request side. One might argue

why the server side should handle the response of the service. From a secur-

ity point there are cases when man-in-the-middle attacks can intercept and

Validating Web Services 77

shape/change the traffic to exploit the system for their own advantage. The

other situation when response validation is needed is when the service itself

is an aggregation of multiple services, which may not all, be valid. In these

situations providing response-based rules ensure a higher level of validity. The

response may be structurally valid, but content validation can only be done

with more advanced techniques. SRML 3.0 allows an easy way to define the

expected values as well. In the Foreign Exchange example the response needs

to be validated to ensure that the purchase of currency pairs was performed

according to the request. If the response was not validated then any down-

stream system utilizing the output of the response and using it further for

in their own business logic would need further validation. By allowing a rule-

based approach both request and response can be validated in the same ruleset.

Our system also allows the errors to be corrected using the validation rules,

making it more than a simple validation engine.

In order to define the SRML rules for the Forex trade service we will need to

use some of the internal functions of SRML 3.0 (Appendix D.2 contains the full

list of available functions). The rules-for element defines the method name

the rules are describing to and the name parameter in the rule-def specifies

which parameter name that the rule is pertaining to. If the name is @result

then the rule is referring to the result value of the method. Normally in SRML

the @ sign refers to an attribute reference. In the wsSRML space we use it

to denote the result value. The rule’s condition will provide the constraints

on the format of the parameters or result. The value section will define the

expected values of the given node. Using these expected values the values

of the input/output parameters can be corrected. Since the previous figures

only showed the actual entry contents we will show a full SRML snippet to

demonstrate what a full field rule definition looks like. The SRML definition

snippet that defines the rules for the result’s trade id can be seen in Figure

4.10.

<rules-for root="performTrade">

<rule-def name="@result/trade_id">

<rule-instance>

<validation-error>TradeID in response has an invalid format!</validation-error>

<conditions>

<condition>

<entry>starts-with(:instance-value,"TRD")</entry>

<params />

</condition>

</conditions>

<values/>

</rule-instance>

</rule-def>

</rules-for>

Figure 4.10: SRML rules for validating the trade id field in the response.

Validating Web Services 78

In the SRML ruleset for the Foreign Exchange Trade example we used

complexType definitions, meaning that both the input and output paramet-

ers were not primitive types. To specify which field the rule is referring to,

we specify its full path starting with the parameter name as the root. This

allows the rules to refer to more complex structures and provides a granular

validation schema for services. In case of primitive types the rule definitions

are straightforward as the rule-def name parameter will be a single string

specifying the name of the parameter being targeted.

4.2.1 Native validation mode

The first mode of the wsSRML engine we will demonstrate is the native valida-

tion mode. Once the stub generation is completed using wsdl2java our tool

will parse the SRML ruleset and augment the generated code. The SRML

rules are analyzed and the wrapper class is generated on top of the interface.

Figure 4.11 demonstrates how the native mode generates the wrapper class.

WSDL

SRML

rules

Set of

generated

classes

wsSRML

Create

wrapper class

with methods

implemented

Parse

SRML

foreach

service

method

Inject rule

logic into method

code

Convert rule logic

into native code

Figure 4.11: Native validation class generation

The validation wrapper class contains the business logic that is translated

from the SRML file. The logic is implemented using reflection. Since the rules

may contain functions that can be chained together the validator library needs

to be included into the project that wishes to leverage the validation. Figure

4.12 shows what the validation flow looks like in case of this mode.

RequestClient

wsSRML

generated

wrapper

Valid?
Validate

request

Attempt

to correct

parameters

Valid?

SRMLException

Invoke

original method

with validated

parameters

Target

Service
Response

wsSRML

wrapper
Valid?

Attempt

to correct

results

Valid?

SRMLException

Return with

updated

response

No

Yes

No

Yes
Yes

No
Yes

No

Figure 4.12: Native validation flow using wsSRML

Taking the previous Foreign Exchange service example we use wsdl2java to

generate the stubs and run wsSRML on the ruleset and the resulting classes. The

Validating Web Services 79

engine then uses the rules and creates a new class (e.g.: TradeServiceSRML)

and injects a reference to the previous interface generated from the wsdl2java

output. This new augmented wrapper class will have all the methods of the

original interface; however, the method content will be populated. The con-

tents contain the Java equivalent of the rules ending with the actual call to the

original interface’s corresponding method. This will ensure that the flow re-

mains the same as the original approach, but adds the validation aspect to the

methods. Method reflection was a better candidate here since each rule func-

tion can easily be converted into Java code and can be chained together and

no external layers are needed to process the rules. The wrapper class provides

a way to correct the input and output parameters. If the constraint fails then

an SRMLException is thrown. When the business logic needs to be changes

then the tool can regenerate the wrapper class using the new SRML rule file.

This is similar to how we solved the ProtoML rule native code generation in

Section 3.2.3 in Chapter 3.

• Advantages: Fast, native compiled validation that can be used in any

project that need web service validation.

• Disadvantages: Since the rules are compiled into the code the business

logic cannot be changed on the fly; it has to be recompiled, which may

be hard in a production setting.

4.2.2 Proxy-based validation mode

The second mode wsSRML supports is the proxy-based mode. This mode is

useful in situations when the client and server cannot be updated with the

validation code. Normally it is very difficult to alter legacy systems with new

business logic or validation rules. Using the proxy approach we introduce a

proxy servlet between the client and server. The clients request the services

from the servlet, which then passes the requests on to the target server. Dur-

ing the process the proxy will use the provided SRML rules to validate and

potentially correct the incoming and outgoing requests. Figure 4.13 shows the

validation flow in case of the proxy based validation.

There are three operation modes the proxy servlet can run in: real-time

rule loading mode, compiled rule plugin mode and SOAP intercept mode. The

proxy will perform the validation in the request phase. If the validation fails

then an exception is thrown and the error is returned in the response. In

case the server returns data that is invalid the engine will try to correct the

results using the rules. This is not as fast as a native version. However, does

provide more flexibility in replacing the validation rules without any consider-

able downtime.

Validating Web Services 80

Client Request
wsSRML

servlet

Validate

Request

Valid?

Attempt

to correct

Valid?

SRMLException

Proxy

Request

Target

Service

Response

Valid?wsSRML

servlet

Attempt

to correct
Valid?

Updated

response

No

Yes

Yes
No

No

Yes

No

Yes

Figure 4.13: Proxy based validation flow

Request
Find rules

for method

Load SRML

rules

Create

DOM tree

Evaluate

rules

Target

Service

Response
Find rules

for response

Validate/Correct

Validate/Correct

Response

Figure 4.14: Real-time proxy flow

In case of the real-time proxy the initial setup is the same since the aug-

mented wrapper class is generated, but the rules are not compiled to native

code, instead every request starts out by converting its input parameters into

a DOM tree using the wsSRML.convertToDOM() method. Figure 4.14 shows

the real-time proxy validation flow. It is not as optimal as a native compiled

version, but allows the switching of the ruleset during runtime. Figure 4.15

shows the augmented performTrade method in Java when running in real-time

proxy mode.

During the compiled rule plugin mode the rules are compiled into classes

and bundled into a JAR file similar to how the native compiled mode operates.

The advantage here is that the rules will not need to be processed on each

request but rather passed in to the proxy service to handle the request. This

is considerably faster than the real-time rule processing since the rules are not

processed over and over and the parameters are not converted to DOM trees

upon every request. The drawback is that it is more difficult to change the

business rules in production since they require downtime and a recompile of

the rule JAR file. Figure 4.16 shows the compiled rule JAR mode. Every

service running in this mode is deployed in its own context and has a custom

class loader associated with it. There is a challenge here since Java cannot

use multiple versions of the dependency classes. To resolve this issue, we

Validating Web Services 81

public com.example.trades.service.TradeResponse

performTrade(com.example.trades.service.TradeRequest inputParam)

throws SRMLException{

if (tradeService == null)

_initTradeServiceProxy();

Element inputDOM = wsSRML.convertToDOM(inputParam);

List<Element> inputRules = wsSRML.findInputRules(inputDOM);

for (Element rule : inputRules){

wsSRML.applyRule(rule, inputDOM);

}

com.example.trades.service.TradeRequest validatedInput =

wsSRML.reflectDOMtoObject(inputDOM,

com.example.trades.service.TradeRequest.class);

TradeResponse response = tradeService.performTrade(validatedInput);

Element resultDOM = wsSRML.convertToDOM(response);

Element mergedDOM = wsSRML.mergeDOM(inputDOM,resultDOM);

List<Element> outputRules = wsSRML.findResultRules(resultDOM);

for (Element rule : outputRules){

wsSRML.applyResultRule(rule, resultDOM, mergedDOM);

}

com.example.trades.service.TradeResponse validatedOutput =

wsSRML.reflectDOMtoObject(resultDOM,

com.example.trades.service.TradeResponse.class);

return validatedOutput;

}

Figure 4.15: Java source of the performTrade method in the real-time valida-

tion mode

use an approach similar to how OSGi works. The plugins are sand-boxed

to their own environments and versions of the classes. We use IVY as the

dependency management framework. The wsSRML proxy servlet will load

all the JAR files upon startup and expose each into its own endpoint. This

allows a single wsSRML servlet to expose and validate multiple web services

on different endpoints providing a service store approach. This concept can be

extended even further to potentially provide validation as a service for clients

of different domains.

Request
Load Wrapper

class from JAR

Invoke

compiled

method

Validate/Correct

Target

Service

Response

Validate repsonse

using JAR wrapper

class

Updated Response

Figure 4.16: Compiled Plugin proxy flow

Validating Web Services 82

The third mode of wsSRML is based on intercepting the raw SOAP mes-

sages. This mode is pure proxy since no stubs or wrapper classes are generated.

It takes the SOAP message from the request and applies the rules on the raw

XML document and updates it wherever necessary. This approach is similar

to the real-time mode in the sense that the rules are looked up and applied

on every SOAP message. It is more transparent as no generated stubs are

needed for the validation to work. It operates purely on the SOAP message

that is processed into a DOM document (as it is also an XML document). The

speed is not the most optimal since the ruleset is parsed upon each request

and response. Figure 4.17 shows the SOAP interception mode of the tool.

Figure 4.17: SOAP Intercept flow

• Advantages: Usable in situations when the client and/or server code

is unavailable or cannot be modified. Allows real-time swapping and

extension of validation rules without any potential downtime.

• Disadvantages: Slower than the native compiled version. Requires a

proxy servlet to be deployed to perform the interception adding an extra

level of complexity.

4.3 Summary

In this chapter we presented a way to validate web services using SRML 3.0

with the help of the wsSRML engine. The engine allows both native and proxy

modes enabling the validation of legacy black box systems, providing a way

to add validation logic to systems where the code cannot be modified but

validation needs to be added. In case of native validation, our tool can wrap the

generated interface stubs and provide native validation logic, offering better

performance. The rules ensure a more comprehensive validation experience

than formal approaches. Our validation engine also provides a way to correct

the values of web service calls (both request and response values).

Validating Web Services 83

4.4 Related Work

All of the works outlined in this section are very notable. However, they do not

provide a single solution for all the features our approach does. Our solution

is not aimed at replacing them, but rather providing an all-in-one solution

for validation of both the request and response of web services, providing

easy-to-read rules that are extensible with function hooks. Our wsSRML also

has provision to potentially correct the request and response of web services,

making it even more attractive for applications where a higher validation level

is required. Most approaches are based on the assumption that services should

be validated only before deploying them into a production environment. We

do not make such an assumption and feel that service validation is important

not only during design and implementation, but also during actual usage to

avoid potential errors. Our approach provides an in-built solution to validate

legacy systems when the source code is not accessible or updating it is not an

option.

In [17] they provide a model to validate SOAP message bodies. The mes-

sage is fed into the model and returns an error to the user if it detects a

malicious request. The engine is tuned to be usable for legacy systems. This

approach is similar to ours; however, their WSIVMXML input specification

contains simplistic restriction type rules only. Our approach fully leverages

SRML, which allows conditional and complex validation rules to the defined

not only for input parameters but also for output results.

In [40] a framework is introduced that is able to monitor and validate web

service interactions. It uses OWL-S to define the semantics of Web service

and employs a procedural programming approach. The monitoring framework

intercepts and analyzes the traffic between a web service and the connected

clients. It is fully automated and occurs during runtime. It has a CSM (con-

straint specification management) system that can create a pattern type ap-

proach for constraints against the named parameters. For the validation side

it uses CLVMs (Content Level Validation Managers) and queues to process

the incoming request. This is similar to how our chained validation rules work

since we can define multiple rules and dependencies for the parameters. It

does not have the option to define conditional rules compared to our solution.

The main idea behind [7] is to provide formal validation for Web Services

composition that is extracted from BPEL specifications. It uses a model called

Event B. This model is a set of variables that evolve through events by encod-

ing state transition systems. The rules are more formal and complex than the

SRML rule definition. It does have a solid base to provide powerful constraints

using THEOREMS. The description of Event B allows a conditional nature.

However, due to its complexity it has a very steep learning curve. The model

does not cover the response of the services.

Validating Web Services 84

In [56] the authors provide a model-based validation strategy that is able to

differentiate between correct and incorrect configurations and behaviors. The

model requires the domain owners to choose abstract models that describe the

affected systems and specify the incorrect configurations and behavior. They

run the validation on a controlled set of realistic data by splitting the on-line

system into a two slices: an on-line slice and a validation slice. Their rules were

based on the A assertion language. The language describes a set of assertions

against the elements that are typed objects themselves. The model described

is able to detect connectivity, capacity and security issues. Our rule-based

validation provides a more understandable and easier-to-describe ruleset. We

also provide a way to validate legacy black box systems where a validation

slice would not be possible.

We feel it is also important to mention some of the larger frameworks

available to the community that solve service validation as well. One of these

is the Spring Framework for Java, which allows a comprehensive web service

validator engine using the Spring Web Services [53] project. It can also handle

interception and manipulation of SOAP payloads with the help of e.g. the

PayloadValidatingInterceptor. Our solution is also based on Java and

uses Spring as the configuration framework. We use Apache CXF for the

PhaseInterceptors, that is similar to Spring-WS. We must emphasize that

our approach is not only a simple validator, but it can be considered as a

full solution for validation and data correction. While all of the functionality

can be coded in other languages and frameworks, it would still require the

developers considerable effort to define rules and be able to provide additional

features besides the validation.

Since validation is not language dependent, we should also mention a non-

Java approach: ASP.NET web API 2 [20]. This framework allows the fields and

models used in the web services to be validated using the IValidatableObject

interface. This is very similar to how a rule-oriented approach would work.

However, here the validation logic is coded into the application itself and it is

more complicated to define complex relationship logic as part of the member

validation. In many cases it may be enough to just validate the model and its

contents. However, there are situations when the content can be corrected by

applying logic that specifies what we were actually expecting in the context.

This is where SRML 3.0 rules shine. They allow the user to not only specify

what the data validation logic is but also define what the expected value for

the given member is.

Another great .NET validator that should be mentioned is the FluentVal-

idation [52] API. This framework makes use of lambda expressions to define

rules. It allows the definition of Validators that specify rules in the style of

RuleFor(expr).function(). An example validation rule for validating a field

with a length range and providing an error message would look something like

Validating Web Services 85

the following with this API:

RuleFor(customer => customer.Address).Length(20, 250).WithMessage("Invalid Length")

This requires the code itself to contain the validation logic, making it similar

to our Native validation mode. The rule definition in SRML 3.0 for the same

example would look like:

<rules-for root="retrieveCustomer">

<rule-def name="@result/Address">

<rule-instance>

<validation-error>Invalid Length!</validation-error>

<conditions>

<condition>

<entry>and(gt(length(:instance-value),20),lt(length(:instance-value),250)

)</entry>

<params />

</condition>

</conditions>

<values/>

</rule-instance>

</rule-def>

</rules-for>

In the above example we could have used the between() function to reduce

the length, but we thought it might be worthwhile to show another way of

chaining conditions in the new language. This SRML rule can be placed in a

separate file or can be bundled in the code depending on what use-case better

fits the scenario, making it more versatile.

Summary in English

The importance of data validation has been gaining more and more ground. It

is essential that the data transmitted between systems communicating between

each other is valid. One of the most common formats for information exchange

is XML (eXtensible Markup Language). In this dissertation, four validation

spaces are covered: XML, Google Protocol Buffers, Web Forms and Web Ser-

vices. The chapters demonstrate the evolution of the SRML language, which

was originally created to provide a way to compact XML documents. With

the extension it is now possible to provide a concise way to define semantic

rules for validation tasks. The extensions of the language not only allow valid-

ation but also introduce the option to correct and shape the data. This trait

provides a solid framework for systems where data might be corrupted, but

can be corrected with a set of semantic rules.

1. Validating XML documents

Thesis: Provide a way to validate and correct XML documents

using semantic rules through the extension of SRML 1.0.

The first area of the dissertation focuses on the extension of the SRML language

to permit its use in the validation space. The new version (SRML 2.0) of the

language has several novel improvements compared to its predecessor that can

be summarized as follows:

XPath support: Using XPath, it is now easier to reference attributes and

elements in the XML context. Previously it was a tedious job to reference

specific attribute instances. Earlier the reference was based on Attribute

Grammars, which made descriptions more difficult.

Numeric expressions: The new format also allows numeric expressions to

be used during the rule context, making it easier to describe expressions

and use them in the rule definitions.

Element and attribute references: The rules can now reference both at-

tribute and elements. Previously SRML only operated on an attribute

level.

86

Summary in English 87

Multiple rules for the same context: With this new feature, multiple rules

can be defined for the same context. This is important for validation, as

it is possible that the document may be considered valid if any of the

validation rules for that context is fulfilled.

Rule encapsulation in XSD: The rules themselves can be encapsulated in

the appinfo section of the XSD, making the validation and structural

description available in the same context.

Node relationship for tables: SRML 2.0 introduced the option to describe

database tables thus extending the scope of the rules to the area of

databases.

The chapter also demonstrates a potential way to validate database records

using the table relationship feature of the SRML 2.0 language. This is achieved

by using database triggers that fire upon specific database operations. The

biggest challenge during this endeavor was how to represent database records

as DOM trees. The records were flattened out and the rule structure was

updated to allow the definition of the relationship between tables, using an

approach similar to how foreign keys work. Using these keys we can join the

records together and use the columns as attributes. This is an exciting and

important area since it offers a fresh approach to validating and potentially

correcting records using rules.

Summary of the thesis and own contributions

• The SRML 1.0 language was extended into the validation space. The

original language was aimed at providing a way to make the XML doc-

uments smaller, more compact using semantic rules.

• The new format integrates closely with the XSD validation schema, mak-

ing it portable and allowing both structural and content validation logic

to be deployed in a single document.

• The new language provides XPath support and allows numerical expres-

sions, simplifying the rule definitions.

• Another novel result for the extension is that it also provided a way to

validate database records with semantic rules.

• The extension allowed the contents of the XML documents to be correc-

ted using the rule definitions.

The majority of the topics and approaches outlined in the thesis are my con-

tributions as the result of my research. The ideas demonstrated in the thesis

were published in [35].

Summary in English 88

2. Validating Web Forms

Thesis: Create a new jSRML metalanguage, which is capable of

defining semantic rules for the validation and correction of web

forms.

Web forms are used to capture information in many areas of the Internet. It

is vital that the data entered is valid not only from the user’s point of view

(confidential information, credit cards...etc), but also from a domain owner

(lead capture, user details...etc). There are many form validation engines and

approaches available. However, they are either too complex to use and main-

tain or require significant effort to update once the form fields change or the

logic needs to be updated. This chapter introduces a new metalanguage called

jSRML which is a semantic rule based validation language for web forms. Since

web forms are HTML-based, which is similar to XML, it made sense to invest-

igate this field as well. The jSRMLTool engine was built using jQuery provides

a non-obtrusive way to define validation logic for forms of any domain.

The rules are highly extensible and allow for external functions to be used.

The language has provision to correct the form contents in case of an invalid

form submission. The engine has multiple operating modes ranging from real-

time all the way to servlet-based service oriented validation schemas providing

versatile application.

We also demonstrate a way to learn jSRML validation rules using machine

learning techniques. Our learning engine is plugin-based which makes it highly

extensible. This is an exciting area and potentially aids the domain owner to

setup their validation rules, also providing an initial form of data mining on

the fields by discovering relationships between them.

Summary of the thesis and own contributions

• The jSRML metalanguage was created, which is able to describe semantic

validation rules for web forms. The new language is extensible and allows

the use of external functions.

• The approach is non-obtrusive and is able to insert and define semantic

rules in-line with the code of the form fields.

• The language allows context-oriented rule-definitions, making it a power-

ful tool for conditional value validation.

• The jSRML rules are able to correct the invalid field values using the

rule definitions allowing the form submissions to succeed.

• The jSRMLTool validation tool can be executed in all four validation

modes (Server-side, Client-side, Real-time, Hybrid).

Summary in English 89

• A servlet implementation of the validation engine was also implemented,

which is able to provide Validation as a Service (VaaS) approach for

forms of multiple domains.

• The validation engine’s servlet can also be hooked up to intercept form

values and store the results. The results are then fed into a set of ma-

chine learning plugins, which are able to suggest validation rules for the

forms. This learning module also provides a way to discover relationships

between field values making it a minimalistic data-mining approach.

The results of this thesis are entirely based on my contributions and are out-

lined in [33].

3. Validating Google Protocol Buffers

Thesis: Introduce a new metalanguage (ProtoML), which can val-

idate and correct the messages of Google Protocol Buffers.

One of the most widespread binary-based formats for information exchange

is Google Protocol Buffers. It allows a structured representation of messages

and has support for various programming languages. Performing validation

on these messages is not a straightforward task and it is up to the developer

to implement the logic itself. To solve this problem, the thesis provides the

definition of the ProtoML language. It derives its roots from SRML in a sense

that it also provides semantic rules to describe the content of PB messages.

The ProtoML language brings new functionalities to the table. One of the

most prominent traits is the support for function chaining and the use of ex-

ternal functions. Using the function oriented approach, ProtoML rules have

a considerably smaller footprint compared to SRML 2.0 rules. The chapter

also demonstrates the ProtoMLTool engine, which leverages the language for

validation. The engine can be used as a library to execute validation on pro-

tocol buffer messages dynamically or natively. The native mode analyzes the

.pml rule file and is able to create native Java code to perform the actual

validation. The language also allows provision to correct messages, making it

also very powerful for situations where data sanitization is essential.

Summary of the thesis and own contributions

• A new metalanguage called ProtoML was created, which is capable of

validating and correcting the messages of Google Protocol Buffers using

semantic rules.

• The metalanguage provided a function-oriented approach, allowing the

functions to be chained together, giving ProtoML rules a considerably

lighter footprint compared to SRML rules.

Summary in English 90

• The ProtoMLTool validation engine is able to generate Java code from

the .proto file and the ProtoML ruleset. This allows native validation

performance for Google Protocol Buffer messages.

• The validation engine can also be run in detached mode, which allows

the validation rules to be fed into it during runtime.

The development and implementation of ProtoML is completely the result

of my research which, were published in [32].

4. Validating Web Services

Thesis: Combine the previous metalanguages (SRML 2.0, jSRML,

ProtoML) into SRML 3.0 and provide a way to validate Web Ser-

vices.

The final area of the dissertation is the web service validation space. Using

the positive traits and functionalities of ProtoML and jSRML, we have merged

the functionality with that of SRML 2.0, creating yet another extension in the

form of SRML 3.0. The key syntactic and usability improvements that SRML

3.0 has over the previous version can be summarized the following way:

• Uses a new function-oriented approach, which allows functions to be

daisy chained together and evaluated easier.

• The conditions tag allows listing the conditions that the inspected ele-

ment has to conform to. The match parameter can be all or any depend-

ing on whether or not the requirement is to have all condition expressions

met or at least one.

• With the help of the values tag context-specific value definitions can

be described. These expressions are evaluated top-down. The first one

to match the context child expression conditions will be taken as the

expected value. This is used to correct the value easier.

• Using the validation-record element, the definition of the XML record

elements can be defined along with their primary ID attributes.

• With the help of validation-doc-root it is possible to define of the

XML document root element.

Using this new version of SRML, we applied it to the field of web ser-

vices. Web services can communicate in an XML based format as well (SOAP

messages), making them ideal candidates for validation. We have built a new

engine called wsSRML, which is able to validate and potentially correct web

service requests and responses using SRML rules.

Summary in English 91

The engine has two operational modes: native and proxy. The native mode

uses the WSDL file of the service and the SRML rule file and augments the

wsdl2java output classes with the validation logic. This provides near-native

validation performance since the validation rules are converted into a sequence

of operations and are invoked whenever the wrapper class’s methods are called.

The second operational mode is the proxy mode. This allows black-box and

legacy systems to be enhanced with validation without the need to update their

codebase. It uses a servlet to route the service call through which can validate

real-time, intercept-based or using compiled rule plugins. This addition to the

SRML language provides another powerful tool in the validation arsenal.

Summary of the thesis and own contributions

• The SRML 2.0, jSRML, ProtoML languages were combined into a new

version of SRML. This latest extension took all the advantages of the

other metalanguages and integrated it into SRML.

• The new SRML 3.0 extension provides function-oriented rule definitions,

which can be daisy-chained together providing an easier description.

• The extension also separates the conditions from the expected values,

making the definitions easier to read and process.

• The wsSRML validation engine is able to validate and correct the Request

and Response of web services. The tool can operate in two modes: native

and proxy.

• The engine is able to generate Java code from the SRML 3.0 rules and in-

ject the validation logic into the wrapper classes generated by wsdl2java.

This allows the validation logic to be executed in-line with the actual ser-

vice calls.

• It is possible to run the engine in proxy mode, which will intercept the

traffic using a servlet and apply the validation logic on the service pack-

ets. This mode offers a plugin submode as well, making a single servlet

capable of validating multiple web service endpoints (similar to how the

servlet validation mode of jSRMLTool worked). This can be useful in

situations when the system cannot be updated, however, validation logic

needs to be introduced.

The latest 3.0 extension of SRML along with the wsSRML validation engine

are purely based on my results. The content of the thesis are based on [34].

Summary in English 92

Conclusion

The dissertation demonstrated how the author extended the SRML language

into the field of validation. During the evolution of the language several

metalanguages were created, which helped the creation of the final 3.0 ver-

sion. The dissertation demonstrated a way to validate XML documents, web

forms, Google Protocol Buffers and Web Services. These cover the most com-

mon formats used for information exchange, making the results of the disser-

tation relevant and viable solutions for every-day use. In the future we plan

to extend the language even further into the binary-format validation space,

providing approaches for validating distributed documents spread out over a

cluster (e.g.:Hadoop).

Magyar nyelvű összefoglaló

Napjainkban egyre nagyobb szerepet kap az adatok validációja. Kulcsfon-

tosságú, hogy a rendszerek között átvitt adat helyes legyen. Az információ

cseréhez leggyakrabban az XML nyelvet használják. A disszertáció keretein

belül négy területre tértünk ki: XML, Google Protocol Buffers, Webes űrlapok,

Webszolgáltatások. A fejezetek végigvezetik az SRML nyelv evolúcióját, ame-

lyek lehetővé teszik a szemantikus szabályok pontos defińıcióját a validációs

feladatok ellátására. A nyelv kiterjesztései nem csak a validációt teszik le-

hetővé, de potenciálisan képesek az adatokat kijav́ıtani. Ez a tulajdonság

egy stabil keretet biztośıt azon rendszereknek, ahol kulcsfontosságú az ada-

tok minősége, viszont gyakori lehet azok sérülése. Ezen esetekben az SRML

kiterjesztései szemantikus szabályokkal képesek az adat hibákat helyrehozni.

1. XML dokumentumok validációja

Tézis: Az SRML 1.0 nyelv kiterjesztése, melynek seǵıtségével az

XML dokumentumok validációja és jav́ıtása lehetségessé válik.

A disszertáció első fejezete az SRML nyelv kiterjesztését tárgyalja, hogy al-

kalmas legyen a validációra. Az új verzió (SRML 2.0) számos új́ıtást tartalmaz

az elődjéhez képest.

Az új SRML verzió számos új́ıtást tartalmaz, melyek közül az alábbiakat

célszerű kiemelni:

XPath támogatás: Az XPath seǵıtségével könnyebbé válik az XML att-

ribútumokra és elemekre való hivatkozás. Korábban a hivatkozásokat

az Attribútum Nyelvtanoknál ismert módon kezelték, amely bár sokol-

dalú léırást tett lehetővé, bonyolult defińıciókat eredményezett.

Numerikus kifejezések: Az új formátum lehetőséget biztośıt arra, hogy nu-

merikus kifejezéseket használjunk a szabály defińıció során. Ez jelentősen

leegyszerűśıti a szabályok léırását és olvashatóbb formát biztośıt.

Elem és attribútum hivatkozások: Korábban csak attribútum h́ıvatkozást

engedélyezett a nyelv. A kiterjesztésnek köszönhetően most már mindkét

entitás t́ıpusra hivatkozhatunk.

93

Magyar nyelvű összefoglaló 94

Kontextuson belül több szabály defińıció engedélyezése: Ennek az új

jellemzőnek köszönhetően több szabályt lehet definiálni ugyanazon kon-

textuson belül. Ez a validációhoz rendḱıvül fontos funkcionalitás, mi-

vel lehetőség nýılik több, akár a környezettől függő szabály definiálásra.

Ilyen esetben a validáció akkor lesz sikeres, ha legalább egy szabály tel-

jesül a vizsgált elemre, vagy attribútumra.

Szabályok beágyazása XSD file-ba: Lehetőség van a szabályokat a validá-

ciós XSD dokumentum appinfo részében definiálni. Ennek köszönhetően

a tartalmi és struktúrális validációt egy helyen lehet léırni.

A fejezet bemutat egy módszert az adatbázis rekordok validációjára az

SRML 2.0 táblahivatkozásainak seǵıtségével. Ezt a funkcionalitást adatbázis

triggerek használatával képes a validációs motor elérni. A triggerek végrehaj-

tása az adatbázis műveletek során történik. Ez egy érdekes és fontos terület,

mivel egy újabb megközeĺıtést biztośıt a rekordok validációjára és potenciális

jav́ıtására.

Tézis összefoglalása és saját eredmények

• Bemutattuk, miként lehet kiterjeszteni az SRML 1.0 nyelvet a validáció

terére. Az eredeti nyelv specifikációja az XML dokumentumok kom-

paktálását célozta szemantikus szabályokkal.

• Az új formátum integrálódik az XSD validációs sémába, amely egy hor-

dozható megoldást hoz létre. Ezen megoldásban mind a struktúrális,

mind a tartalmi validációs logika egy közös dokumentumban jelenik meg.

• Az új nyelv támogatja az XPath hivatkozásokat és a numerikus kife-

jezéseket, melyek seǵıtségével jelentősen leegyszerűsödnek a szabálydefi-

ńıciók.

• A kiterjesztés egy további jelentős új́ıtást is bemutat: az adatbázisok

rekordjainak validációját szemantikus szabályokkal. Ez a kiterjesztés, az

adatbázisok triggerei seǵıtségével azok műveletei során képes a rekordok

tartalmát manipulálni.

• Bemutattuk, hogy miként lehet a kiterjesztés seǵıtségével az XML doku-

mentum hibás értékeit kijav́ıtani.

Az SRML validációra való kiterjesztése elsősorban az én kutatásom eredménye,

melyet a [35] publikáció részletez.

Magyar nyelvű összefoglaló 95

2. Webes űrlapok validációja

Tézis: A jSRML metanyelv létrehozása, amely képes szemantikus

szabályok alkalmazásával validálni és jav́ıtani a webes űrlapokat.

Az Internet számos területén Webes űrlapokat használnak adatbevitelre. Mind

a felhasználó (személyes adatok, hitelkártya információk. . . stb.), mind a

weboldal tulajdonos (hirdetésre jelentkező adatok, regisztrációs adatok. . . stb.)

számára nagyon fontos, hogy a bevitt adat helyes legyen. Számos űrlap va-

lidációs motor és algoritmus létezik, viszont gyakran túl bonyolult a használatuk

vagy nehezen lehet őket módośıtani, ha a validációs logikát változtatni kell.

Ez a fejezet bemutat egy új metanyelvet a jSRML-t, amely egy szemantikus

szabály alapú validációs nyelv a webes űrlapok validálására. A jSRMLTool mo-

tor jQuery seǵıtségével került kifejlesztésre, amely képes nem tolakodó módon

validálni a különböző felhasználási területek űrlapjait.

A szabályok széles körben kiterjeszthetők és lehetővé teszik a külső füg-

gvények felhasználását a validációhoz. A nyelv lehetőséget ad az űrlapok

tartalmának jav́ıtására hibás beküldések esetén. A jSRMLTool motor több

üzemmódban képes működni, amely a valós idejű validációtól egészen a serv-

let alapú szolgáltatás modellig terjed.

A fejezet keretein belül megmutatunk egy lehetséges módot a jSRML szabá-

lyok mesterséges intelligencával történő tanulására. Ennek az alkalmazásával

nem csak a validációs szabályok előálĺıtását tudjuk megkönnýıteni, de képes

egy kezdetleges adatbányászatot végezni a beküldött mezők értékei alapján.

Tézis összefoglalása és saját eredmények

• Létrejött a jSRML metanyelv, amely képes szemantikus validációs sza-

bályokat definiálni a webes űrlapok számára. Az új nyelv jól bőv́ıthető

és lehetőség van külső függvények használatára is.

• A megoldás nem tolakodó és képes az űrlapok kódjába beszúrni a va-

lidációs szabályokat.

• A nyelv seǵıtségével lehetőség nýılik kontextus-függő szabályokat de-

finiálni, amelyek hasznos eszköz lehet a feltételes érték validáció terén.

• A jSRML szabályok képesek a hibás mezők értékeit kijav́ıtani a szabályaik

seǵıtségével. Ez potenciálisan sikeressé teheti az űrlap beküldési folya-

matát.

• A jSRMLTool validációs motort mind a négy validációs üzemmódban

lehet használni (Szerver-oldali, Kliens-oldali, Valós-idejű, Hibrid)

Magyar nyelvű összefoglaló 96

• A validációs motor mellé egy servlet alapú implementáció is kifejlesztésre

került, amely képes számos domain különböző űrlapjainak VaaS-aként

(Validáció-mint-szolgáltatás) működni.

• A validációs servlet képes az űrlapok értékeit elfogni és azokat tárolni.

Ezt eredményeket ezt követően a tanuló modul számos gépi tanulású

algoritmussal ellátott plugin (bőv́ıtmény) seǵıtségével kiértékeli, majd

validációs szabályokat javasol. A tanuló modul képes a mezők és értékei

közti összefüggéseket feltárni és ezzel egyfajta adatbányászati eszközként

is alkalmazható.

A jSRML kifejlesztése és alkalmazása a webes validációra teljes mértékben

az én tudományos munkám eredménye, amelyet a [33] folyóiratban publikáltunk.

3. Google Protocol Buffer üzenetek validációja

Tézis: Létrehozni egy metanyelvet (ProtoML), amely a Google

Protocol Buffers üzeneteit képes validálni és kijav́ıtani.

Az egyik legelterjetteb bináris formátum, amelyet információ cserére használ-

nak a Google Protocol Buffers (PB). Népszerűségét annak köszönheti, hogy

strukturált reprezentációt ad az üzeneteknek és számos programozási nyelvet

támogat. Ezen üzenetek validációja nem egyértelmű feladat, amely eddig a

programozók által való implementálásra várt. A fenti problémára hivatott

megoldást biztośıtani a ProtoML nyelv. Ezen metanyelv alapjait az SRML

adja abból a szempontból, hogy ez a nyelv szintén szemantikus szabályokat

használ a PB üzenetek mezői közötti összefüggések léırásához.

A ProtoML nyelv számos új́ıtást is hoz magával. Az egyik legjelentősebb

tulajdonság a függvények összefűzének támogatása. A függvény orientált meg-

közeĺıtésnek köszönhetően a ProtoML szabályok kisebb mérettel b́ırnak az

SRML 2.0 szabályokhoz képest. A fejezetben bemutatkozik a ProtoMLTool

motor is, amely a nyelvet felhasználva végzi a PB üzenetek validációját. A

ProtoMLTool libraryként való használata dinamikus validációt tesz lehetővé.

A rendszert lehet nat́ıv módban is használni, amely során a .pml szabály file

vizsgálata után a motor képes Java kódot generálni, amelyben a validációt

utaśıtásokra ford́ıtja. Ez nagy teljeśıtményű és gyors validációt tesz lehetővé.

A ProtoML nyelv lehetőséget biztośıt a PB üzenetek jav́ıtására is, amely

számos esetben fontos lehet.

Tézis összefoglalása és saját eredmények

• A kifejlesztett ProtoML metanyelv képes a Google Protocol Buffers üze-

neteit szemantikus szabályokkal validálni és kijav́ıtani.

Magyar nyelvű összefoglaló 97

• A nyelv függvény-orientált megközeĺıtést használ, mely során egymásba

ágyazhatók a függvények. Ez jelentősen kisebb szabály méretet eredmé-

nyez a korábbi SRML szabályokhoz képest.

• A ProtoMLTool validációs motor a .proto léıró állomány és ProtoML

szabályokat felhasználva képes Java validációs kódot generálni, amelyet

beleilleszthetünk a meglévő kódba. Ez közel nat́ıv teljeśıtményt nyújthat

a Google Protocol Buffers validációjára.

• A validációs motor képes külön is futni, és a szabályokat futási időben

alkalmazni.

A ProtoML nyelv és funkcionalitása teljes egészében kutatásom eredményeit

képezik, amelyeket a [32] publikáció részletez.

4. Webszolgáltatások validációja

Tézis: A korábbi metanyelvek (SRML 2.0, jSRML, ProtoML) egye-

śıtésével létrehozni egy új SRML 3.0 nyelvet, valamint megoldást

találni a webszolgáltatások szemantikus szabályokkal történő va-

lidációjára.

A disszertáció utolsó validációs területe a webszolgáltatásokat tárgyalja.

A ProtoML és a jSRML pozit́ıv tulajdonságaival kiterjesztettük az SRML

2.0 nyelvet, amely seǵıtségével előállt az SRML 3.0. Ennek az új SRML

nyelvnek a seǵıtségével a webszolgáltatások validációját céloztuk meg. Kiin-

dulópontunk az volt, hogy a webszolgáltatások is képesek XML alapú nyelven

kommunikálni (SOAP üzenetek), amely miatt ideális jelölt lett a validáció

alkalmazására. Az újabb kiterjesztés alkalmazásához elkésźıtettük a wsSRML

validációs motort is, amely képes SRML szabályokkal validálni és potenciálisan

kijav́ıtani a webszolgáltatás kéréseket és válaszokat. A motornak két működési

üzemmódja van: nat́ıv és proxyzott. A nat́ıv mód esetén a szolgáltatás WSDL

állománya és az SRML szabály file seǵıtéségével képes a wsdl2java kime-

netének osztályait validációs funkcionalitással kiegésźıteni. A rendszer ilyen-

kor a validációs szabályokat műveletek sorozatára alaḱıtja, amelyet a rend-

szer többi részével leford́ıthatunk. Ilyenkor a wrapper osztályok metódusainak

h́ıvásakor automatikusan validálva lesz az adatforgalom.

A második üzemmód a proxyzott mód. Ennek során lehetséges zárt, il-

letve hagyományos rendszereket a forráskódjuk módośıtása nélkül validációval

bőv́ıteni. Ehhez egy Servlet-et használunk, amely a h́ıvó és a tényleges szolgál-

tatás közé integrálódik és elkapja a forgalmat. A validációt képes valós időben,

interceptor alapú módban, vagy leford́ıtott bőv́ıtmény formájában végezni.

Magyar nyelvű összefoglaló 98

Az új SRML 3.0 jelentősen bőv́ıti a validációs területeit a korábbi verziókhoz

képest.

Tézis összefoglalása és saját eredmények

• Az SRML 2.0, jSRML, ProtoML nyelvek integrációjával létrejött az SRML

3.0 metanyelv. Ez a nyelv a többi nyelv összes előnyét átvette, amely

eredményeként egy új, hatékonyabb validációs nyelv jött létre.

• Az új 3.0 kiterjesztés függvény-orientált szabály definicókon alapul, ahol

a függvényeket egymásba ágyazhatjuk (hasonlóan a ProtoML-hez). En-

nek köszönhetően sokkal átláthatóbbak a szabályok, jelentősen rövideb-

bek és gyorsabban feldolgozhatók.

• A kiterjesztés szétválasztja a feltéletekre vonatkozó szabályokat az elvárt

értékekre irányuló szabályoktól, mely eredményeképp jobban áttekinthe-

tőbbek lesznek a defińıciók.

• A wsSRML validációs motor képes validálni és kijav́ıtani a webszolgáltatá-

sok Kérését (Request) és Válaszát (Response). A motor két üzemmódban

alkalmazható: nat́ıv és proxyzott.

• A motor, felhasználva az SRML 3.0 szabályokat, képes Java kódot ge-

nerálni a szabályokból és ezeket beleinjektálni a wsdl2java által generált

wrapper osztályokba. Ennek seǵıtségével a validációs logikát a tényleges

szolgáltatás h́ıvásával együtt végezhetjük. A motor, proxyzott üzemmód

esetén elfogja a szolgáltatás forgalmát egy köztes servlet seǵıtségével. A

szolgáltatás ezt követően validálja illetve kijav́ıtja az üzeneteket mielőtt

tovább́ıtaná az eredeti webszolgáltatásnak. Ennek az üzemmódnak van

egy plugin almódja is, amelynek köszönhetően a servlet képes számos

webszolgáltatás validációját ellátni (hasonlóan, ahogy a jSRMLTool VaaS

megközeĺıtése működött).

Az SRML kiterjesztése webszolgáltatások validálására teljes mértékben az

én tudományos munkám eredménye, melyet a [34] publikáció tartalmaz.

Összefoglaló

A disszertáció szemléltette, hogy miként lett kibőv́ıtve az SRML nyelv, hogy

alkalmazható legyen a validáció terén is. A nyelv fejlődése során számos meta-

nyelv jött létre, amely jelentősen hozzájárult a végső SRML 3.0 kialaḱıtásában.

A dolgozat bemutatta, milyen módszerrel lehet XML dokumentumokat, we-

bes űrlapokat, Google Protocol Buffers üzeneteket és webszolgáltatásokat va-

lidálni. Ezek a területek lefedik a rendszerek közti információcsere leggyako-

Magyar nyelvű összefoglaló 99

ribb módjait, mely alapján releváns témát jelentenek. A jövőben tovább akar-

juk terjeszteni a nyelv korlátait a bináris állományok validációjára, illetve va-

lidációs eljárást nyújtani az klasztereken osztott dokumentumok validációjára

is (pl.: Hadoop).

Appendix A

Validating XML documents

A.1 XSD of SRML 2.0

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="srml-def">

<xs:complexType>

<xs:sequence>

<xs:element ref="database" minOccurs="0" maxOccurs="1" />

<xs:element ref="rules-for" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="database">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element ref="tables" minOccurs="1" maxOccurs="unbounded" />

<xs:element ref="references" minOccurs="1" maxOccurs="unbounded" />

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="tables">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element name="table" minOccurs="1" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="name" type="xs:string" />

<xs:attribute name="key" type="xs:string" />

</xs:complexType>

</xs:element>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="references">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element name="reference" minOccurs="1" maxOccurs="unbounded">

100

A.1 XSD of SRML 2.0 101

<xs:complexType>

<xs:attribute name="root" type="xs:string" />

<xs:attribute name="root_key" type="xs:string" />

<xs:attribute name="child" type="xs:string" />

<xs:attribute name="child_key" type="xs:string" />

</xs:complexType>

</xs:element>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="rules-for">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element ref="rule-def" minOccurs="1" maxOccurs="unbounded" />

</xs:choice>

</xs:sequence>

<xs:attribute name="root" type="xs:string" />

<xs:attribute name="key" type="xs:string" use="optional" />

</xs:complexType>

</xs:element>

<xs:element name="rule-def">

<xs:complexType>

<xs:sequence>

<xs:element ref="rule-instance" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required" />

<xs:attribute name="mode" default="validate" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="validate" />

<xs:enumeration value="correct" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="match" default="any" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="any" />

<xs:enumeration value="all" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="key" type="xs:string" use="optional" />

</xs:complexType>

</xs:element>

<xs:element name="rule-instance">

<xs:complexType>

<xs:sequence>

<xs:element name="validation-error" type="xs:string" />

<xs:element name="expr" type="ExprType" minOccurs="1"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="ExprType">

A.1 XSD of SRML 2.0 102

<xs:choice>

<xs:element ref="binary-op" minOccurs="1" maxOccurs="1" />

<xs:element ref="attribute" minOccurs="1" maxOccurs="1" />

<xs:element name="data" type="xs:string" minOccurs="1"

maxOccurs="1" />

<xs:element name="no-data" minOccurs="1" maxOccurs="1"

type="xs:string" />

<xs:element ref="if-element" minOccurs="1" maxOccurs="1" />

<xs:element ref="if-all" minOccurs="1" maxOccurs="1" />

<xs:element ref="if-any" minOccurs="1" maxOccurs="1" />

<xs:element ref="if-expr" minOccurs="1" maxOccurs="1" />

<xs:element name="current-attribute" minOccurs="1"

maxOccurs="1" type="xs:string" />

<xs:element name="position" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:attribute name="element" type="BinaryOpTypes" />

<xs:attribute name="from" default="begin">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="begin" />

<xs:enumeration value="current" />

<xs:enumeration value="end" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="instance-value" minOccurs="1" maxOccurs="1" />

<xs:element name="count-children" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:attribute name="name" type="xs:string" />

<xs:attribute name="key" type="xs:string" />

</xs:complexType>

</xs:element>

<xs:element name="count-siblings" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:attribute name="name" type="xs:string" />

<xs:attribute name="key" type="xs:string" />

</xs:complexType>

</xs:element>

<xs:element name="reg-eval" minOccurs="1" maxOccurs="1"

type="xs:string" />

<xs:element name="value-ref" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:attribute name="path" type="xs:string" />

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

<xs:element name="binary-op">

<xs:complexType>

<xs:sequence>

<xs:element name="expr" minOccurs="2" maxOccurs="2"

type="ExprType" />

</xs:sequence>

<xs:attribute name="op" type="BinaryOpTypes" use="required" />

</xs:complexType>

</xs:element>

<xs:element name="attribute">

<xs:complexType>

<xs:attribute name="element" type="BinaryOpTypes" use="required" />

<xs:attribute name="num" type="xs:integer" default="0" />

A.1 XSD of SRML 2.0 103

<xs:attribute name="from" default="begin">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="begin" />

<xs:enumeration value="current" />

<xs:enumeration value="end" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="attrib" type="xs:string" use="required" />

</xs:complexType>

</xs:element>

<xs:element name="if-element">

<xs:complexType>

<xs:sequence>

<xs:element name="expr" minOccurs="2" maxOccurs="2"

type="ExprType" />

</xs:sequence>

<xs:attribute name="from" default="begin">

<xs:simpleType>

<xs:restriction base="xs:token">

<xs:enumeration value="begin" />

<xs:enumeration value="end" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="if-all">

<xs:complexType>

<xs:sequence>

<xs:element name="expr" minOccurs="3" maxOccurs="3"

type="ExprType" />

</xs:sequence>

<xs:attribute name="element" type="xs:string" default="srml:all" />

<xs:attribute name="attrib" type="xs:string" default="srml:all" />

</xs:complexType>

</xs:element>

<xs:element name="if-any">

<xs:complexType>

<xs:sequence>

<xs:element name="expr" minOccurs="3" maxOccurs="3"

type="ExprType" />

</xs:sequence>

<xs:attribute name="element" type="xs:string" default="srml:all" />

<xs:attribute name="attrib" type="xs:string" default="srml:all" />

</xs:complexType>

</xs:element>

<xs:element name="if-expr">

<xs:complexType>

<xs:sequence>

<xs:element name="expr" minOccurs="3" maxOccurs="3"

type="ExprType" />

</xs:sequence>

</xs:complexType>

</xs:element>

A.1 XSD of SRML 2.0 104

<xs:simpleType name="BinaryOpTypes">

<xs:restriction base="xs:string">

<xs:enumeration value="add" />

<xs:enumeration value="sub" />

<xs:enumeration value="mul" />

<xs:enumeration value="div" />

<xs:enumeration value="exp" />

<xs:enumeration value="equal" />

<xs:enumeration value="not-equal" />

<xs:enumeration value="less" />

<xs:enumeration value="greater" />

<xs:enumeration value="or" />

<xs:enumeration value="xor" />

<xs:enumeration value="and" />

<xs:enumeration value="nor" />

<xs:enumeration value="contains" />

<xs:enumeration value="concat" />

<xs:enumeration value="begins-with" />

<xs:enumeration value="ends-with" />

<xs:enumeration value="equal-rounded" />

</xs:restriction>

</xs:simpleType>

</xs:schema>

Appendix B

Validating Web Forms

B.1 Full XSD of jSRML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="validate-input">

<xs:complexType>

<xs:sequence>

<xs:element name="error-text" minOccurs="1" maxOccurs="1" type="xs:string" />

<xs:element name="css" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:attribute name="invalid" type="xs:string" />

<xs:attribute name="error-class" type="xs:string" />

</xs:complexType>

</xs:element>

<xs:element name="action" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:attribute name="valid" type="xs:string" />

<xs:attribute name="invalid" type="xs:string" />

</xs:complexType>

</xs:element>

<xs:element ref="conditions" minOccurs="1" maxOccurs="1" />

</xs:sequence>

<xs:attribute name="id" type="xs:string" />

<xs:attribute name="form" type="xs:string" />

<xs:attribute name="required-field" default="false" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="true" />

<xs:enumeration value="false" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="mode" default="validate" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="validate" />

<xs:enumeration value="replace" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="method" default="standard" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

105

B.1 Full XSD of jSRML 106

<xs:enumeration value="standard" />

<xs:enumeration value="real-time" />

<xs:enumeration value="focus" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="conditions">

<xs:complexType>

<xs:sequence>

<xs:element name="expr" type="ExprType" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="ExprType">

<xs:choice>

<xs:element ref="binary-op" minOccurs="1" maxOccurs="1" />

<xs:element name="data" type="xs:string" minOccurs="1"

maxOccurs="1" />

<xs:element ref="if-expr" minOccurs="1" maxOccurs="1" />

<xs:element name="text-length" minOccurs="1" maxOccurs="1" />

<xs:element name="text-value" minOccurs="1" maxOccurs="1" />

<xs:element name="field-length" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:attribute name="id" type="xs:string" />

</xs:complexType>

</xs:element>

<xs:element name="field-value" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:attribute name="id" type="xs:string" />

</xs:complexType>

</xs:element>

<xs:element name="reg-eval" minOccurs="1" maxOccurs="1"

type="xs:string" />

<xs:element name="text-format" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:attribute name="value">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="numeric" />

<xs:enumeration value="date" />

<xs:enumeration value="email" />

<xs:enumeration value="regexp" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="expression" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="has-value" minOccurs="1" maxOccurs="1">

<xs:complexType>

<xs:attribute name="id" type="xs:string" />

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

<xs:element name="binary-op">

<xs:complexType>

B.2 Full source of example 107

<xs:sequence>

<xs:element name="expr" minOccurs="2" maxOccurs="2"

type="ExprType" />

</xs:sequence>

<xs:attribute name="op" type="BinaryOpTypes" use="required" />

</xs:complexType>

</xs:element>

<xs:element name="if-expr">

<xs:complexType>

<xs:sequence>

<xs:element name="expr" minOccurs="3" maxOccurs="3"

type="ExprType" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:simpleType name="BinaryOpTypes">

<xs:restriction base="xs:string">

<xs:enumeration value="equals" />

<xs:enumeration value="not-equal" />

<xs:enumeration value="lt" />

<xs:enumeration value="gt" />

<xs:enumeration value="gte" />

<xs:enumeration value="lte" />

<xs:enumeration value="date-lt" />

<xs:enumeration value="date-lte" />

<xs:enumeration value="date-eq" />

<xs:enumeration value="date-gte" />

<xs:enumeration value="date-gt" />

<xs:enumeration value="contains" />

<xs:enumeration value="not-contains" />

<xs:enumeration value="begins-with" />

<xs:enumeration value="ends-with" />

<xs:enumeration value="and" />

<xs:enumeration value="or" />

</xs:restriction>

</xs:simpleType>

</xs:schema>

B.2 Full source of example

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>jSRML demo</title>

<link rel="stylesheet" type="text/css" href="resources/css/simple.css">

<script src="resources/js/jquery-1.8.3.js"></script>

<script src="resources/js/jSRMLTool.js"></script>

</head>

<body>

<script type="text/javascript">

function error(id){

alert("Callback function for error on validation "+id);

}

$(document).ready(function(){

// alert("starting");

initializeSRML();

B.2 Full source of example 108

});

</script>

<div class="form-cnt">

<h2>Validation Example using jSRML</h2>

<form method="post" action="post-result" id="myform" name="myform">

<div class="row-cnt">

<div class="row-label">

Field 01 [min 5 chars]:

</div>

<div class="row-field">

<input type="text" name="field_01" id="field_01" value="12345" class="row-item" />

<!--[SRML]

<validate-input id="field_01" form="myform" mode="validate">

<error-text>The size needs to be larger than 5 characters</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

<conditions>

<expr>

<binary-op op="gte">

<expr><text-length/></expr>

<expr><data>5</data></expr>

</binary-op>

</expr>

</conditions>

</validate-input>

-->

</div>

</div>

<br style="clear:both" />

<div class="row-cnt">

<div class="row-label">

Field 02 [numeric]:

</div>

<div class="row-field">

<input type="text" name="field_02" id="field_02" value="123" class="row-item" />

<!--[SRML]

<validate-input id="field_02" form="myform" mode="validate">

<error-text>Invalid number format!</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

<conditions>

<expr>

<text-format value="numeric" />

</expr>

</conditions>

</validate-input>

-->

</div>

</div>

<br style="clear:both" />

<div class="row-cnt">

<div class="row-label">

Field 03 [date MM/dd/yyyy]:

</div>

<div class="row-field">

<input type="text" name="field_03" id="field_03"

value="12/28/2012" class="row-item" />

<!--[SRML]

<validate-input id="field_03" form="myform" mode="validate">

<error-text>Invalid number format!</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

B.2 Full source of example 109

<conditions>

<expr>

<text-format value="date" />

</expr>

</conditions>

</validate-input>

-->

</div>

</div>

<br style="clear:both" />

<div class="row-cnt">

<div class="row-label">

Field 04 [regexp ISBN D-DDDDD-DDD-D]:

</div>

<div class="row-field">

<input type="text" name="field_04" id="field_04"

value="1-12345-123-1" class="row-item" />

<!--[SRML]

<validate-input id="field_04" form="myform" mode="validate">

<error-text>Invalid ISBN format!</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

<conditions>

<expr>

<text-format value="regexp"

expression="^\d{1}-\d{5}-\d{3}-\d{1}$" />

</expr>

</conditions>

</validate-input>

-->

</div>

</div>

<br style="clear:both" />

<div class="row-cnt">

<div class="row-label">

Field 05 [numeric and max 100]:

</div>

<div class="row-field">

<input type="text" name="field_05" id="field_05" value="39" class="row-item" />

<!--[SRML]

<validate-input id="field_05" form="myform" mode="validate">

<error-text>Invalid number format! Maximum value 100!</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

<conditions>

<expr>

<text-format value="numeric" />

</expr>

<expr>

<binary-op op="lt">

<expr><text-value/></expr>

<expr><data>100</data></expr>

</binary-op>

</expr>

</conditions>

</validate-input>

-->

</div>

</div>

<br style="clear:both" />

<div class="row-cnt">

<div class="row-label">

Field 06 [numeric and equals fifth+second]:

</div>

B.2 Full source of example 110

<div class="row-field">

<input type="text" name="field_06" id="field_06" value="162" class="row-item" />

<!--[SRML]

<validate-input id="field_06" form="myform" mode="validate">

<error-text>Invalid number format! Should be numeric and the sum of

fifth+second!</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

<conditions>

<expr>

<text-format value="numeric" />

</expr>

<expr>

<binary-op op="equals">

<expr><text-value/></expr>

<expr>

<reg-eval>[{field_02}]+[{field_05}]</reg-eval>

</expr>

</binary-op>

</expr>

</conditions>

</validate-input>

-->

</div>

</div>

<br style="clear:both" />

<div class="row-cnt">

<div class="row-label">

Field 07 [email]:

</div>

<div class="row-field">

<input type="text" name="field_07" id="field_07"

value="test@email.com" class="row-item" />

<!--[SRML]

<validate-input id="field_07" form="myform" mode="validate">

<error-text>Invalid email format!</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

<conditions>

<expr>

<text-format value="email" />

</expr>

</conditions>

</validate-input>

-->

</div>

</div>

<br style="clear:both" />

<div class="row-cnt">

<div class="row-label">

Field 08 [password min 6 chars]:

</div>

<div class="row-field">

<input type="password" name="field_08" id="field_08"

value="1234567" class="row-item" />

<!--[SRML]

<validate-input id="field_08" form="myform" mode="validate">

<error-text>Minimum 6 characters</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

<conditions>

<expr>

<binary-op op="gte">

<expr><text-length /></expr>

B.2 Full source of example 111

<expr><data>6</data></expr>

</binary-op>

</expr>

</conditions>

</validate-input>

-->

</div>

</div>

<br style="clear:both" />

<div class="row-cnt">

<div class="row-label">

Field 09 [password+retype]:

</div>

<div class="row-field">

<input type="password" name="field_09" id="field_09"

value="1234567" class="row-item" />

<!--[SRML]

<validate-input id="field_09" form="myform" mode="validate">

<error-text>Value does not match Field 08</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

<conditions>

<expr>

<binary-op op="equals">

<expr><field-value id="field_08" /></expr>

<expr><text-value /></expr>

</binary-op>

</expr>

</conditions>

</validate-input>

-->

</div>

</div>

<br style="clear:both" />

<div class="row-cnt">

<div class="row-label">

Field 10 [Has to be Cat] :

</div>

<div class="row-field">

<select name="field_10" id="field_10" class="row-item">

<option value="cat">Cat</option>

<option value="bird">Bird</option>

</select>

<!--[SRML]

<validate-input id="field_10" form="myform" mode="validate">

<error-text>Please select cats!</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

<conditions>

<expr>

<binary-op op="equals">

<expr><text-value /></expr>

<expr><data>cat</data></expr>

</binary-op>

</expr>

</conditions>

</validate-input>

-->

</div>

</div>

<br style="clear:both" />

<div class="row-cnt">

<div class="row-label">

Field 11 [if cat then it has legs, otherwise wings]:

B.2 Full source of example 112

</div>

<div class="row-field">

<select name="field_11" id="field_11" class="row-item">

<option value="legs">Legs</option>

<option value="wings">Wings</option>

</select><br style="clear:both" />

<!--[SRML]

<validate-input id="field_11" form="myform" mode="validate">

<error-text>Cats have legs and Birds have wings!</error-text>

<css invalid="inp-form-error" error-class="form_error_message error" />

<action valid="" invalid="error" />

<conditions>

<expr>

<binary-op op="equals">

<expr>

<if-expr>

<expr>

<binary-op op="equals">

<expr><field-value id="field_10" /></expr>

<expr><data>cat</data></expr>

</binary-op>

</expr>

<expr><data>legs</data></expr>

<expr><text-value /></expr>

</if-expr>

</expr>

<expr><text-value /></expr>

</binary-op>

</expr>

</conditions>

</validate-input>

-->

</div>

</div>

<br style="clear:both" />

<div class="row-cnt">

<div class="row-label">

<input type="submit" value="Submit Form" />

</div>

</div>

<div class="row-field"> </div>

<br style="clear:both" />

</form>

</div>

</body>

</html>

Appendix C

Validating Google Protocol

Buffers

C.1 Function List of ProtoML

• add(v1,v2) : Returns the sum of v1 and v2.

• and(c1,c2) : Returns true if both conditions are true.

• begins-with(s1,s2): Returns true if s1 begins with s2.

• camelcase(s1) : Converts s1 to camelcase.

• child(xp,name) : Returns the list of child nodes of the XPath expression stored in xp which have a

name of name.

• contains(v1,m1, ..., ,mn) : Returns true if v1 is present in the set of (m1, ..., ,mn).

• count-children(xp,name) : Returns the number of children under the XPath xp with the name of

name.

• div(v1,v2) : Divides v1 with v2 .

• ends-with(s1,s2) : Returns true if s1 ends with the string in s2.

• eq(v1,v2) : If v1 is equal to v2 the value is true.

• eval(expr) : Evaluates the expression in expr. It is possible to refer to XPath elements using their

XPath in ${path} placeholders (e.g.: eval(${//HouseHold/TotalIncome}+ 1). The expression can

also contain functions.

• for-all(xp,op) : This is an iterative function that will query all fields that match the XPath xp

and execute the named function of op on it. It is usable on all two-parameter functions. It takes the

current aggregate value (op(op(op(v1, v2), v3), ..., vn−1)) as the first parameter and the actual value

(vn) as the second.

• ge(v1,v2) : If v1 is greater or equal than v2 then this function returns true.

• gt(v1,v2) : If v1 is greater than v2 then this function returns true.

• if(c1,v1,v2) : If c1 is true then the result is v1, otherwise v2.

• if-all(xp,c1,v1,v2) : Matches the condition c1 on all fields returned by XPath xp. If the result

was true for all the end result if v1, otherwise v2.

113

C.1 Function List of ProtoML 114

• if-any(xp,c1,v1,v2) : Works similarly to how if-all works with the difference that here the value if

v1 if at least one field evaluated true on the c1 condition.

• index-of(s1,s2) : Returns the index of s2 if it is a substring of s1, otherwise returns -1.

• le(v1,v2) : If v1 is less or equal than v2 then this function returns true.

• length(s1) : Returns the length of the s1 string.

• lowercase(s1) : Converts s1 to lowercase.

• lt(v1,v2) : If v1 is less than v2 then this function returns true.

• mul(v1,v2) : Returns the multiplied value of v1 and v2.

• or(c1,c2) : Returns true if either c1 or c2 is true.

• path(node) : Returns the XPath of a given field defined in node.

• regex(v1,expr) : Evaluates v1 against the regular expression described in expr.

• round(v1,dec) : rounds the value in v1 to a decimal places of dec. If dec is set to 0 then the value

is rounded to an integer.

• sibling(xp,name) : Returns the field node with the name of name resulting from the query of

XPath xp. This can be used for example when accessing a field on the same level of the message

(sibling(:path,”fieldname”)). This will only return the actual field, not its value. If the value needs

to be retrieved then it has to be surrounded by a val() function call.

• sub(v1,v2) : Subtract v2 from v1.

• substring(s1,s2) : Returns true if s2 is a substring of s1.

• typeof(v1,type) : returns true if the type of v1 matches type . Currently the following types

are supported: integer, float, string. Types are usually inferred by the proto message definition.

However, using this allows type forcing on string definitions.

• uppercase(s1) : Converts s1 to uppercase.

• val(xp) : Returns the value defined by the XPath xp. If the XPath is a list then the first element

value is returned.

Appendix D

Validating Web Services

D.1 XSD of SRML 3.0

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="srml-def">

<xs:complexType>

<xs:sequence>

<xs:element ref="database" minOccurs="0" maxOccurs="1" />

<xs:element ref="validation-doc-root" minOccurs="0" maxOccurs="1" />

<xs:element ref="validation-record" minOccurs="0" maxOccurs="1" />

<xs:element ref="rules-for" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="database">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element ref="tables" minOccurs="1" maxOccurs="unbounded" />

<xs:element ref="references" minOccurs="1" maxOccurs="unbounded" />

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="tables">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element name="table" minOccurs="1" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="name" type="xs:string" />

<xs:attribute name="key" type="xs:string" />

</xs:complexType>

</xs:element>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="references">

<xs:complexType>

<xs:sequence>

115

D.1 XSD of SRML 3.0 116

<xs:choice>

<xs:element name="reference" minOccurs="1" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="root" type="xs:string" />

<xs:attribute name="root_key" type="xs:string" />

<xs:attribute name="child" type="xs:string" />

<xs:attribute name="child_key" type="xs:string" />

</xs:complexType>

</xs:element>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="validation-doc-root">

<xs:complexType>

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="validation-record">

<xs:complexType>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="id" type="xs:string" use="optional"/>

</xs:complexType>

</xs:element>

<xs:element name="rules-for">

<xs:complexType>

<xs:sequence>

<xs:choice>

<xs:element ref="rule-def" minOccurs="1" maxOccurs="unbounded" />

</xs:choice>

</xs:sequence>

<xs:attribute name="root" type="xs:string" />

<xs:attribute name="key" type="xs:string" use="optional" />

</xs:complexType>

</xs:element>

<xs:element name="rule-def">

<xs:complexType>

<xs:sequence>

<xs:element ref="rule-instance" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required" />

<xs:attribute name="mode" default="validate" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="validate" />

<xs:enumeration value="correct" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="match" default="any" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="any" />

<xs:enumeration value="all" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

D.2 Functions of SRML 3.0 117

<xs:attribute name="key" type="xs:string" use="optional" />

</xs:complexType>

</xs:element>

<xs:element name="rule-instance">

<xs:complexType>

<xs:sequence>

<xs:element name="validation-error" type="xs:string" />

<xs:element name="conditions" type="ConditionType" minOccurs="1"

maxOccurs="1" />

<xs:element name="values" type="ValuesType" minOccurs="1"

maxOccurs="1" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="ConditionType">

<xs:element name="condition" minOccurs="0" maxOccurs="onbounded">

<xs:complexType>

<xs:attribute name="match" default="any" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="any" />

<xs:enumeration value="all" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:sequence>

<xs:element name="entry" minOccurs="1" maxOccurs="1" />

<xs:element name="params" minOccurs="0" maxOccurs="1" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:complexType>

<xs:complexType name="ValuesType">

<xs:complexType>

<xs:attribute name="match" default="any" use="optional">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="any" />

<xs:enumeration value="all" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:element name="value-entry" minOccurs="0" maxOccurs="onbounded">

<xs:sequence>

<xs:element name="eval" minOccurs="0" maxOccurs="1" />

<xs:element name="entry" minOccurs="1" maxOccurs="1" />

<xs:element name="params" minOccurs="0" maxOccurs="1" />

</xs:sequence>

</xs:element>

</xs:complexType>

</xs:complexType>

</xs:schema>

D.2 Functions of SRML 3.0

• add(v1,v2): Returns the sum of v1 and v2

D.2 Functions of SRML 3.0 118

• and(c1,c2): Returns true if both conditions are true

• begins-with(s1,s2): Returns true if s1 begins with s2

• camelcase(s1): Converts s1 to camelcase

• child(xp,name): Returns the list of child nodes of the XPath expression stored in ”xp” which have

a name of ”name”

• contains(v1,m1,...,mn): Returns true if v1 is present in the set of (m1,...,mn)

• count-children(xp,name): Returns the number of children under the XPath xp with the name of

name

• current timestamp(): Returns the current timestamp

• current date(f): Returns the current date using the format specified in ”f”. E.g.: ”YYYY-mm-dd”

• div(v1,v2): Divides v1 with v2

• ends-with(s1,s2): Returns true if s1 ends with the string in s2

• eq(v1,v2): If v1 is equal to v2 the value is true

• eval(expr): Evaluates the expression in ”expr”. It is possible to refer to XPath elements using their

XPath. The expression can also contain functions

• for-all(xp,op): This is an iterative function that will query all fields that match the XPath ”xp”

and execute the named function of ”op” on it. It is usable on all two-parameter functions. It takes

the current aggregate value (op(op(op(v1,v2),v3) , ... , vn−1)) as the first parameter and the actual

value (vn) as the second

• ge(v1,v2): If v1 is greater or equal than v2 then this function returns true

• gt(v1,v2): If v1 is greater than v2 then this function returns true

• has format(v1,f): Returns true if v1 has a format of ”f”. Currently the following formats are

supported: email, ipv4, ipv6,url, date, shortdate

• if(c1,v1,v2): If c1 is true then the result is v1, otherwise v2

• if-all(xp,c1,v1,v2): Matches the condition c1 on all fields returned by XPath ”xp”. If the result

was true for all the end result if v1, otherwise v2

• if-any(xp,c1,v1,v2): Works similarly to how if-all works with the difference that here the value if

v1 if at least one field evaluated true on the c1 condition

• index-of(s1,s2): Returns the index of s2 if it is a substring of s1, otherwise returns -1

• le(v1,v2): If v1 is less or equal than v2 then this function returns true

• length(s1): Returns the length of the s1 string

• lowercase(s1): Converts s1 to lowercase

• lt(v1,v2): If v1 is less than v2 then this function returns true

• mul(v1,v2): Returns the multiplied value of v1 and v2

• or(c1,c2): Returns “true” if either c1 or c2 is “true”

• path(node): Returns the XPath of a given field defined in “node”

• regex(v1,expr): Evaluates v1 against the regular expression described in “expr”

D.2 Functions of SRML 3.0 119

• round(v1,dec): Rounds the value in v1 to a decimal places of “dec”. If “dec” is set to 0 then the

value is rounded to an integer

• sibling(xp,name): Returns the field node with the name of “name” resulting from the query of

XPath “xp”. This can be used for example when accessing a field on the same level of the message

(sibling(:path,“fieldname”)). This will only return the actual field, not its value. If the value needs

to be retrieved then it has to be surrounded by a val() function call.

• sub(v1,v2): Subtract v2 from v1

• substring(s1,s2): Returns “true” if s2 is a substring of s1

• timstamp(s,f): Returns the timestamp based on the date specified in “s” using the format of ”f”

• type-check(v1,type): Returns “true” if the type of v1 matches “type”. Currently the following

types are supported: integer, float, string

• uppercase(s1): Converts s1 to uppercase

• val(xp): Returns the value defined by the XPath ”xp”. If the XPath is a list then the first element

value is returned

Bibliography

[1] Cam. [Online]. Available: https://wiki.oasis-open.org/cam/

[2] Document object model (DOM), http://www.w3.org/dom/. [Online]. Avail-

able: http://www.w3.org/DOM/

[3] “H2 database engine, http://www.h2database.com/html/main.html.” [Online].

Available: http://www.h2database.com/html/main.html

[4] “Automated server-side form validation,” in International Conference on In-

formatics. Electronics & Vision (ICIEV), May 18-19 2012, pp. 61–64.

[5] H. Adorf, “Form validation with Rule Bases,” 2010. [Online]. Available:

http://blog.mgm-tp.com/2010/10/test-data-generation-part1

[6] S. M. K. M. Agarwal, A., “Thrift: Scalable Cross-Language Services

Implementation,” 2007. [Online]. Available: http://thrift.apache.org/static/

files/thrift-20070401.pdf

[7] I. Ait-Sadoune and Y. Ait-Ameur, “A Proof Based Approach for Modelling and

Verifying Web Services Compositions,” in 14th IEEE International Conference

on Engineering of Complex, 2009, pp. 1–10.

[8] F. Asseg, “Exp4j, http://www.objecthunter.net/exp4j/,” 10 2011. [Online].

Available: http://www.objecthunter.net/exp4j/

[9] BCI, “Dental implant abroad,” 2014. [Online]. Available: http://www.

dental-implantabroad.co.uk/ental-implant-overseas

[10] A. Birrell and B. Nelson, “Implementing remote procedure calls,” Xerox Cor-

poration, Tech. Rep. Technical Report CSL-83-7, 1983.

[11] L. Blando, “A Framework for a Rule-Based Form Validation Engine,”

http://wiki.lassy.uni.lu/Special:LassyBibDownload?id=324, 1999.

[12] D. Booth and C. Liu, “Web Services Description Language Version 2.0,”

W3C Recommendation, http://www.w3.org/TR/2007/REC-wsdl20-primer-

20070626/, Tech. Rep., June 26 2007.

[13] D. Box and D. Ehnebuske, “Simple Object Access Protocol (SOAP) 1.1,” World

Wide Web Consortium, http://www.w3.org/TR/SOAP/, Tech. Rep., 2000.

120

https://wiki.oasis-open.org/cam/
http://www.w3.org/DOM/
http://www.h2database.com/html/main.html
http://blog.mgm-tp.com/2010/10/test-data-generation-part1
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://www.objecthunter.net/exp4j/
http://www.dental-implantabroad.co.uk/ental-implant-overseas
http://www.dental-implantabroad.co.uk/ental-implant-overseas

BIBLIOGRAPHY 121

[14] S. W. Boyd and A. D. Keromytis, “SQLrand: Preventing SQL injection at-

tacks,” in International Conference on Applied Cryptography and Network Se-

curity (ACNS), LNCS, Ed., vol. 2, 2004.

[15] T. Bray, J. Paoli, and C. Sperberg-McQueen. (1998) Extensible markup

language. [Online]. Available: http://www.w3.org/TR/REC-xml

[16] L. Breiman, “Random Forests,” in Proceedings of Machine Learning, 2001, pp.

5–32.

[17] R. Brinhosa and C. Westphall, “Proposal and Development of the Web Ser-

vices Input Validation Model,” in IEEE Network Operations and Management

Symposium (NOMS), 2012, pp. 643–646.

[18] J. Clark and S. DeRose. (1999) XML Path Language (XPath) Version 1.0.

[Online]. Available: http://www.w3.org/TR/xpath

[19] D. Cockford, Javascript: The Good Parts. O’Reilly, 2008.

[20] M. Corporation, “Asp.net web api 2,” http://www.asp.net/web-api, Tech. Rep.,

2014.

[21] E. Escott and P. Strooper, “Model-Driven Web Form Validation with UML and

OCL,” in Lecture Notes in Computer Science, 2012, vol. 7059, pp. 223–225.

[22] H. Fernau, “Algorithms for learning regular expressions from positive data,”

Information and Computation, vol. 207, no. 4, pp. 521–541, 2009.

[23] J. Garret. Ajax: A New Approach to Web Applications. [Online]. Available:

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications

[24] J. Giannoudis, “Rule based validation for asp.net.” [Online]. Available: http://

www.codeproject.com/Articles/367214/Rule-Based-Validation-for-ASP-NET

[25] C. Goldfarb and P. Prescod, The XML Handbook. Prentice-Hall, 2001.

[26] Google. (2008) Protocol Buffer, http://code.google.com/apis/proto-

colbuffers/docs/overview.html.

[27] M. Handley, “Internet Denial-of-Service Considerations,” IAB, RFC4732, Tech.

Rep., 2006.

[28] T. R. Hastie, T. and J. Friedman, The Elements of Statistical Learning.

Springer, 2001, no. ISBN 0–387–95284–5.

[29] J. Hunter. (2000) JDOM, http://jdom.org/docs/apidocs/. [Online]. Available:

http://jdom.org/docs/apidocs/

[30] J. Hunter and W. Crawford, Java Servlet Programming, 2nd ed. O’Reilly,

2001.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xpath
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.codeproject.com/Articles/367214/Rule-Based-Validation-for-ASP-NET
http://www.codeproject.com/Articles/367214/Rule-Based-Validation-for-ASP-NET
http://jdom.org/docs/apidocs/

BIBLIOGRAPHY 122

[31] M. Kálmán, “An approach for compacting XMI documents,” Acta Cybernetica,

vol. 17, no. 2, pp. 289–310, 2005.

[32] M. Kálmán, “ProtoML: A rule-based validation language for Google Protocol

Buffers,” in Proceedings of the 8th International Conference for Internet Tech-

nology and Secured Transactions (ICITST), London, UK, December 9-12 2013,

IEEE Computer Society, pp. 193–198.

[33] M. Kálmán, “Versatile form validation using jSRML,” Acta Cybernetica, 2014

(Accepted for publication).

[34] M. Kalman, “Rule-based web service validation,” in Proceedings of the 21st

International Conference on Web Services (ICWS), Alaska, USA, June 27 -

July 2 2014 (Accepted for publication), IEEE Computer Society.

[35] M. Kálmán and F. Havasi, “Enhanced XML validation using SRML,” Interna-

tional Journal of Web & Semantic Technology (IJWeST), vol. Volume 4, no.

October, pp. 1–18, 2013.

[36] M. Kálmán, F. Havasi, and T. Gyimóthy, “Compacting XML documents,” in

Journal of Information and Software Technology, vol. 48, no. 2. Elsevier,

February 2006, pp. 90–106.

[37] J. Larmouth, ASN.1 Complete. ISBN: 978-0-122-33435-1: Academic Press,

November 1999.

[38] A. Lavrik, “PIQI.” [Online]. Available: http://piqi.org/doc/piqi

[39] C. League and K. Eng, “Schema-Based Compression of XML Data with Relax

NG,” JCP, vol. 2, no. 10, pp. 9–17, 2007.

[40] Z. Li, Y. Jin, and J. Han, “A Runtime Monitoring and Validation Framework

for Web Service Interactions,” in Proceedings of the 2006 Australian Software

Engineering Conference, (ASWEC’06), Ed., 2006.

[41] Z. Liang, “A field-oriented approach to web form validation for Database-

Isolated Rule,” in Proceedings of IEEE International Conference on Systems

Man and Cybernetics (SMC). IEEE, 2009.

[42] H. Lie and B. Bos, Cascading Style Sheets, designing for the Web. Addison

Wesley, 1999.

[43] C. Lindley, jQuery Cookbook. O’Reilly Media, 2009.

[44] W. Means and M. Bodie, The Book of SAX. ISBN: 1-886411-77-8: No Starch

Press, 2002.

[45] P. Montero, M. Hedler, and N. Kutscherauer, Effiziente Business Rules fuür

XML-Dokumente, Heidelberg, 2011.

[46] P. Montero and J. Sieben, Professionelle XML-Verarbeitung mit Word.

WordML und SmartDocuments, Heidelberg, 2006.

http://piqi.org/doc/piqi

BIBLIOGRAPHY 123

[47] NDFD. (2013) National digital forecast database. [Online]. Available:

http://graphical.weather.gov/xml/

[48] D. Raggett and A. Hors, “HTML 4.0 specification,” W3C, Tech. Rep., April

1998.

[49] J. Refsnes. Introduction to DTD, http://www.w3schools.com/dtd/dtd intro.asp.

[50] L. Richardson and S. Ruby, RESTful Web Services. ISBN: 978-0-596-52926-0:

O’Reilly Media, 2007.

[51] SeleniumHQ, “Selenium, http://docs.seleniumhq.org,” 2014.

[52] J. e. a. Skinner, “Fluent validation api,” http://fluentvalidation.codeplex.com,

Tech. Rep., 2013.

[53] Springsource, “Spring web services (spring-ws),”

http://projects.spring.io/spring-ws/, Tech. Rep., 2014.

[54] Sun Microsystems, “Java Architecture for XML Binding (JAXB),”

2009. [Online]. Available: http://java.sun.com/developer/technicalArticles/

WebServices/jaxb/

[55] SurveyMonkey, “Surveymonkey online surveys.” [Online]. Available: http:

//www.surveymonkey.com

[56] A. Tjang and F. Oliveira, “Model-Based Validation for Internet Services,” in

28th IEEE International Symposium on Reliable Distributed Systems, 2009, pp.

61–70.

[57] W. Underwood, “Grammar-Based Specification and Parsing of Binary File

Formats,” The International Journal of Digital Curation, vol. 7, no. 1, 2012.

[58] E. van der Vilst, Schematron. ISBN: 9780596527716: O’Reilly, 2007.

[59] E. van der Vlist, XML Schema. O’Reilly, 2001.

[60] XMLBlueprint. (2002) Well-formed and valid XML Documents. [Online].

Available: http://www.xmlblueprint.com/help/html/topic 118.htm

http://graphical.weather.gov/xml/
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/
http://www.surveymonkey.com
http://www.surveymonkey.com
http://www.xmlblueprint.com/help/html/topic_118.htm

	List of Tables
	List of Figures
	Contents
	Validation overview
	Validating XML documents
	Preliminaries
	XML
	XPath
	SRML 2.0

	Validating XML Documents
	Extending XSD
	A validation example using SRML
	Using SRML in the field of Databases for Dataset validation

	Summary
	Related Work

	Validating Web Forms
	Preliminaries
	HTML and DOM
	Types of form validation
	The jSRML extension

	Extending SRML for form validation
	Validation using jSRML
	Defining validation rules
	A form validation example

	The jSRMLTool Servlet
	Learning jSRML rules
	Programatically evaluating the jSRML learning plugins
	A Real-world example: Dentistry Treatment Inquiry Form

	Summary
	Related Work

	Validating Google Protocol Buffers
	Preliminaries
	Google Protocol Buffers
	DOM model
	XPath

	Discussion
	Validation rules for the HouseHold message
	Validation rules for Member embedded message
	ProtoMLTool library

	Summary
	Related Work

	Validating Web Services
	Background
	XML
	Web Services
	SRML 3.0

	Validating services
	Native validation mode
	Proxy-based validation mode

	Summary
	Related Work

	Summary in English
	Magyar nyelvu összefoglaló
	Validating XML documents
	XSD of SRML 2.0

	Validating Web Forms
	Full XSD of jSRML
	Full source of example

	Validating Google Protocol Buffers
	Function List of ProtoML

	Validating Web Services
	XSD of SRML 3.0
	Functions of SRML 3.0

	Bibliography

