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1. INTRODUCTION 
 

Urinary tract infections (UTIs) are among the most common bacterial infections 

worldwide, as about 50% of women will experience at least one episode of UTI during their 

lifetime [1]. UTIs are also one of the leading causes of antibiotic consumption [2] and they 

represent about 40% of hospital acquired infections [3] with substantial financial implications 

and significant consequences to morbidity and mortality. 

In the era of rapidly increasing antibiotic resistance the better understanding of the 

pathogenesis of UTIs and the role of virulence factors in the different clinical manifestations of 

urinary tract infections is of utmost importance. Despite the extensive research and major efforts 

that have been made in the field, there are still many questions regarding the molecular 

background of disease diversity and the interactions between bacteria and host.  

 

1.1. Urinary tract infections 
 

In healthy individuals the bladder and the upper urinary tract are sterile. Pathogens 

predominantly reach the urinary tract by ascending through the urethra, the other possible route 

is by haematogenous or lymphatic spread, usually to the kidneys. In women UTIs can be 

classified as lower urinary tract infections when the infection is restricted to the urethra 

(urethritis) or bladder (cystitis) and upper UTIs, when the kidneys are affected (pyelonpehritis). 

In case of an uncomplicated UTI there are no anatomical or functional complicating factors. In 

male patients or if one or more of these factors are present UTIs are considered as complicated. 

 

1.1.1. Uropathogens 

 

In most of the cases UTIs are caused by Gram-negative bacteria from the intestinal flora. 

The most important pathogen is Escherichia coli, being responsible for 70-95% of 

uncomplicated lower UTIs. Proteus mirabilis and Klebsiella pneumonie may be causative 

pathogens as well (2-5%). Pseudomonas aeruginosa is also an important Gram-negative 

bacterium, which can be found mostly in case of hospital acquired infections. The role of Gram- 

positive pathogens, such as Enterococcus faecalis shows an increasing trend due to the modern 

endourological practice and increased use of urinary foreign bodies. Rare pathogens such as 

Corynebacterium urealyticum or Mycobacterium tuberculosis can also be involved in UTIs. 
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1.1.2. Bacterial virulence factors 

 

Virulence factors refer to the properties that enable a microorganism to establish itself 

and replicate on or within a specific host species, and that enhance the microbe’s potential to 

cause disease [4]. Crucial virulence factors of uropathogenic E. coli (UPEC) confer resistance 

to the effects of the host defense and in addition, virulent bacteria are able to produce molecules 

that actively inhibit the immune response of the host, thereby enhancing bacterial persistence 

and tissue damage. The genes encoding virulence factors of UPEC are localized to 

chromosomal gene clusters called “pathogenicity islands” [5, 6]. The different virulence factors 

act in concert, their expression may be turned on or off during the course of the infection and 

can be regulated by environmental signals [7]. Many different factors have been implicated in 

UPEC pathogenesis, however, the specific factors that differentiate UPEC strains responsible 

for the different clinical manifestations of UTIs remain unclear. 

Bacterial adherence to mucosal surfaces is considered to be a critical virulence factor. 

Fecal isolates, strains causing asymptomatic bacteriuria (ABU), cystitis or pyelonephritis differ 

in their adherence capacity to uroepithelial and vaginal cells [8]. The uropathogenic clones are 

usually fimbriated and may express several adhesive surface organelles, such as P, type 1 and 

S fimbriae [9, 10] [11, 12]. Adherence factors other than the P and type 1 fimbriae are less well 

studied, and their potential role as virulence determinants has not yet been convincingly shown. 

The most important virulence factors will be discussed below. 

 

1.1.2.1. P fimbriae 

 

P fimbriae are encoded by the pap gene cluster. The adhesin, PapG is located on the tip 

of the fibrillum, and it mediates the attachment to the uroepithelium. The host cell receptors for 

P fimbriae are globoseries of glycosphingolipids (GSLs), which are expressed on uroepithelial 

cells. These receptors are abundant on the uroepithelial [13], but their expression varies 

depending on the P blood group [14].  

P fimbriae are classified according to their iso-receptor specificity. Class I P fimbriae 

carry PapGJ96 adhesin, which binds to globotriaosylceramide (GbO3). The association of this 

allele to UTIs is unknown [15], and it is uncommon in clinical isolates. Class II P fimbriae have 

been shown to have a strong association with acute pyelonephritis in both children [16] and 

adult women [17]. The PapGIA2 adhesin binds to most members of the globoseries of GSLs or 

GbO4, and recognize all P blood group determinants. Class III G adhesins, encoded by the 
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PrsGJ96 sequences, binds to sheep erythrocytes or GbO5, and recognize P blood group 

determinants with a terminal blood group A residue [16, 18]. This allele is the predominant 

variant in women with first-episode or recurrent acute cystitis [19]. A fourth PapG allele was 

recently discovered, the receptor and the significance in UTIs are still unknown [20]. 

 In epidemiological studies P fimbriae have shown the strongest association with acute 

disease severity, with at least 90% of acute pyelonephritis but less than 20% of ABU strains 

expressing this phenotype [13, 21, 22].  

 

1.1.2.2. Type 1 fimbriae 

 

 Type 1 fimbriae are encoded by the fim gene cluster, and are the most abundant adhesion 

factors on E. coli. The adhesin FimH is situated along the shaft and at the top of the fimbriae. 

Type 1 fimbriae recognize mannose on secreted and cell bound proteins, and bind to β-1 and α-

3 integrins [23], Tamm-Horsfall protein, secretory immunoglobulin A and the mannose-

containing CD48 receptor on mast cells. In vitro studies have shown that upon type 1 fimbrial 

binding to uroplakins the bacteria invade the underlying immature cells, and form intracellular 

bacterial communities [24]. 

Studies on the role of type 1 fimbriae as a colonization factor in the human urinary tract 

have provided contradictory results.  As most E. coli isolates carry the fim operon regardless of 

their source [25], the expression of the type 1 fimbriae, or possession of the fim gene cluster 

has not convincingly shown to correlate with uro-pathogenicity in humans [8, 13, 22]. On the 

other hand, the expression of type 1 fimbriae was shown to characterize the most virulent 

members of a single clone (O1:K1:H7) and a deletion of the fim gene cluster from that 

background was shown to attenuate virulence in the murine UTI model [26].  

 

1.1.2.3. S fimbrial family 

 

Members of the S-fimbrial family of adhesins consists of S-fimbriae (sfa), with its 

subtypes sfaI and sfaII; F1C-fimbriae (foc); S/F1C-related fimbriae (sfr) [27] [28] and AC/I-

fimbriae (fac). S-fimbrial adhesins recognize α-sialyl-2-3-β-lactose-containing receptors and 

are predominantly expressed by strains responsible for meningitis and sepsis but they have been 

described in strains causing UTIs as well [28, 29], whereas F1C-fimbrial adhesins bind to β-

GalNac-1,4-β-Gal-containing structures [30] and are preferentially expressed by UTI isolates 

[28]. 
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1.1.2.4. Flagella 

 

Flagella are filamentous structures attached to the surface of the bacteria. The flagellar 

filament is a polymer of flagellin subunits encoded by the fliC gene [31]. The filament is rotated 

by a motor apparatus in the plasma membrane [32] thus increasing bacterial motility. Flagella 

have been proposed to increase bacterial virulence by providing a selective advantage in the 

fight for nutrients in the urine and enhance bacterial dissemination to the upper urinary tract 

[33]. 

 

1.1.2.5. Biofilm 

 

A biofilm is a structured community of microorganisms encapsulated within a self-

developed polymeric matrix adherent to a surface [34]. In the urinary tract the formation of 

biofilm may protect bacteria against environmental stress, phagocytosis and antibiotics. Curli 

are bacterial surface organelles that bind several host extracellular matrix and contact phase 

proteins. These adhesive fibers enhance bacterial biofilm formation on various abiotic surfaces. 

In vitro, isolates causing asymptomatic bacteriuria formed biofilm more readily than isolates 

from acute pyelonephritis [35]. 

 

1.1.2.6. Lipopolysaccharide 

 

Lipopolysaccharides (LPS) can be found in the outer membrane of Gram-negative 

bacteria. LPS is composed of 3 covalently linked components: outer carbohydrate chains of 1-

50 oligosacharide units called the O antigen or O-specific side-chain; a core oligosaccharide; 

and an interior disaccharide with multiple fatty acids, called lipid A, which is responsible for 

much of the toxicity of Gram-negative bacteria (endotoxin).  Some O antigen serotypes (i.e. 

O1, O2, O4, O6, O7, O8, O16, O18, O25, O50 and O75) were shown to be frequent among 

UPEC strains [36]. LPS interact with other virulence factors (e.g. LPS-dependent targeting of 

HlyA to host cell membranes) and may also play a role in the protection against the human 

immune system [37].  
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1.1.2.7. Siderophore systems 

 

Bacteria need iron ions to successfully colonize the urinary tract. Bacteria express 

siderophores that scavenge iron from the environment to overcome iron limitation in the host 

[37]. E. coli strains may express different types of siderophores. Aerobactin is frequent in UPEC 

isolates, as it was shown to be present in about 45% of symptomatic isolates [38], but multiple 

systems may be expressed during colonization. Siderophore receptors may have dual functions, 

as the salmochelin siderophore receptor IroN also functions as an internalization factor 

promoting the invasion of urothelial cells by UPEC in vitro [39]. 

 

1.1.2.8. Toxins 

 

Many UPEC secrete toxins that facilitate infection by damaging host tissues or by 

disabling the host immune system. The α-hemolysin (HlyA) is a pore-forming toxin, which is 

encoded by about 30-50% of UPEC isolates [37, 40]. The expression of α-hemolysin was shown 

to increase the clinical severity of urinary tract infections [40]. In high concentrations, α-

hemolysin leads to cell lysis [41, 42], however, sublytic concentrations seem to be more 

physiologically relevant, when α-hemolysin was proposed to inhibit chemotaxis and 

phagocytosis as well as stimulation of host apoptotic and inflammatory pathways [37, 43, 44]. 

Cytotoxic necrotizing factor 1 (CNF1) is present in about 30% of UPEC strains [40]. 

CNF1 activates Rho GTPases in the host cell [45], promotes apoptosis of bladder epithelial 

cells [46] and counteracts phagocytic activity and chemotaxis of polymorphonuclear 

neutrophils (PMNs) [47].  

 

1.1.2.9. TIR domain containing proteins 

 

Toll/interleukin-1 receptor (TIR) domain containing proteins (Tcps) are soluble proteins 

which inhibit Toll-like receptor (TLR) signaling. Tcps are homologues of the Toll/Interleukin-

1 receptor domain, and are secreted by virulent bacteria. TcpC promotes bacterial survival by 

inhibiting the innate host response and specifically MyD88 dependent signaling pathways. 

TcpC was shown to be clinically relevant as a virulence factor in UTIs with severe kidney 

infections, and promoted renal tissue damage in murine models of UTI [48].  
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1.1.3. Host response induction 

 

The urinary tract relies primarily on innate immunity for its defense [49]. UPEC 

pathogenesis initiates with bacterial attachment to superficial bladder epithelial cells. The 

attachment is recognized by the cells, and triggers intracellular signaling proteins, transcription 

of target genes and release of effector proteins [50, 51] (Figure 1). TLR4 signaling is crucial 

for recognition of E. coli in the urinary tract, and may be activated via binding P fimbriae or 

type 1 fimbriae to uroepithelial receptors, which trigger different signaling pathways [51, 52]. 

The activated epithelial cells secrete chemokines (Interleukin [IL]-8), cytokines (IL-6, tumor 

necrosis factor [TNF]) and antimicrobial peptides (LL-37) depending on the activated signaling 

pathway. IL-8 is a strong chemoattractant for PMNs, its attachment to its receptors CXCR1 and 

CXCR2 on PMNs results in neutrophil recruitment and migration across the uroepithelium, and 

eventually the clearance of infection.  

The same cells respond poorly to asymptomatic carrier strains and proinflammatory 

pathways are not activated but suppressed [53]. This unresponsiveness is probably essential to 

protect the host from constant innate immune activation and to permit the symbiotic relationship 

between bacteria and host to develop into the commensal like and protective state of ABU. 

 

 

 

 

Figure 1. Host response induction in the urinary tract 
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1.2. Deliberate establishment of asymptomatic bacteriuria  
 

1.2.1. Asymptomatic bacteriuria 

 

Patients with asymptomatic bacteriuria (ABU) may carry more than 105 cfu/ml of 

bacteria in their urine for months or years without developing symptoms or sequels [54]. ABU 

was generally considered as a harmful state until the 1970’s, and it was aggressively treated 

accordingly. In the next decades, more and more publications showed that ABU is actually a 

harmless condition in patients without risk factors [55]. Furthermore, Hansson and co-workers 

showed in pediatric populations that ABU may be protective against recurrent episodes of UTIs 

[56], as children with long time asymptomatic bacteriuria developed symptomatic infections 

more often, when they were treated from ABU. This beneficial effect has been attributed to 

bacterial interference by competition for nutrients and by bacterial production of toxic 

molecules [57]. ABU creates a special form of colonization resistance in the urinary tract, 

similarly to the intestinal or vaginal microflora, thus it can prevent superinfections with more 

virulent strains.   

  

1.2.2. Escherichia coli 83972 

 

Bacteria causing ABU differ from bacteria causing symptomatic infections.  E. coli 

83972 was first isolated in schoolgirls with ABU [55]. It is a non-fimbriated strain belonging 

to a non-pathogenic OKH serogroup (OR:K5:H-)[55] and a  phylogenetic lineage B2 of E. coli, 

indicating a close relatedness to the UPEC strains which cause symptomatic UTI [58]. 

The strain has been fully sequenced and extensively studied. E. coli 83972 carries the 

different virulence genes, but does not express them, and never has been shown to express 

functional adhesion properties. It has a large deletion in the fim gene cluster and several point 

mutations in the papG adhesin, rendering both type 1 and P fimbriae unable to adhere, thus 

capable of colonizing the urinary tract for a long period. It carries a 1.6 kb plasmid, which is 

stable, and can be used for strain identification [59, 60]. E. coli 83972 was initially classified as 

O- and K antigen negative, due to weak surface antigen expression. Based on genome sequence 

analysis [61], an O antigen determinant which in part represents so far unknown DNA 

sequences and a  group II capsule determinant coding for the K5 capsular type was identified. 

Analysis of the LPS O side-chain pattern demonstrated that E. coli 83972 lacks long O antigen 

side chains, explaining why it was initially classified as O-negative. 
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1.2.3. Inoculation studies 

 

The idea of deliberately established bacteriuria of the lower urinary tract was born based 

on the observations regarding the protective effect of ABU in Lund, Sweden. E. coli 83972 was 

chosen for the purpose of colonization. The first colonization studies showed that the deliberate 

establishment of asymptomatic bacteriuria is a safe procedure without side effects, and long 

term asymptomatic bacteriuria can be achieved in patients with residual urine [59]. The 

presence of residual urine facilitates the development of stabile bacteriuria, and it is usually 

required for the successful colonization of the bladder.  

In 2010 a prospective randomized, controlled study of bacterial colonization was carried 

out [62]. In this study the authors compared the time to the first UTI and the total number of 

UTIs in during 12 months in the same patients with and without E. coli 83972 bacteriuria 

(inoculated with saline only). The authors found that the time to the first UTI was significantly 

longer with than without E. coli 83972 bacteriuria (median 11.3 vs 5.7 months, p < 0.0129).  

Also, there were significantly fewer UTI episodes during 12 months in the bacteriuria group 

compared to the placebo group (13 vs 35 episodes, p < 0.009). There was no febrile UTI episode 

in either of the study arms and no significant side effects of intravesical inoculation were 

reported. 

 

1.2.4. Deliberately established asymptomatic bacteriuria as a research model 

 

The deliberate establishment of asymptomatic bacteriuria is not only a method for 

prevention, however. It creates a unique situation, where we have an extensive knowledge of 

both the pathogen and the host, and we also control the time of the infection. With this model 

of controlled uroinfection we can monitor the pathogen-host interactions in the human urinary 

tract, which gives us countless research opportunities regarding the molecular basis of UTIs. 

The results of the colonization studies showed that colonized asymptomatic patients 

have a slightly elevated levels of neutrophils and cytokines in their urine, representing a low, 

but significant local host response. Interestingly, the rate of the host response varies between 

patients, they can be grouped as low or high responders. However, the same individual 

characteristic response can be observed for each patient during repeated colorizations [63].  

Analysis of the bacterial isolates regained from colonized patients in different time 

points after colonizations provided the first, genome-wide example of a single bacterial strain's 
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evolution in different human hosts. The results showed different bacterial genetic changes in 

case of each colonized patients, proving that each host “personalizes” their microflora, and that 

this adaptive bacterial evolution points towards commensalism rather than virulence [61]. 
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2. AIMS 
 

Our major aim was to analyze the role of bacterial virulence factors in the clinical course 

and outcome of urinary tract infections caused by Escherichia coli. 

 

With the analysis of Escherichia coli 83972 strains isolated from symptomatic episodes during 

deliberately established E. coli 83972 bacteriuria we aimed to (Paper I): 

 

- Investigate if a reversion to a functional virulence gene repertoire by these isolates may 

account for the switch from asymptomatic carrier state to symptomatic lower urinary tract 

infections. 

- Identify changes in the bacterial genome of E. coli 83972 strains isolated during 

symptomatic episodes. 

- Assess the safety of the method of deliberately established ABU by investigating the 

potential of the colonizing bacteria to reacquire virulence. 

  

With the virulence factor analysis of clinical Escherichia coli isolates from urinary tract 

infections we aimed to investigate (Paper II): 

 

- If Escherichia coli strains causing acute cystitis can be characterized by a distinct virulence 

factor repertoire. 

- If the virulence factor profile of E. coli strains causing acute cystitis can be distinguished 

from the virulence factor profile of the strains causing acute pyelonephritis. 
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3. MATERIAL AND METHODS 
 

3.1. Analysis of E. coli 83972 strains isolated from symptomatic episodes 

during deliberately established bacteriuria 
 

We investigated E. coli 83972 re-isolates from symptomatic UTI episodes of patients 

colonized in a previously published human inoculation study (Trial ID number: RTP-A2003 - 

International Committee of Medical Journal Editors [https://register.clinicaltrials.gov]. [62]. 

Patients with incomplete bladder emptying due to spinal or lower motor neuron lesions who 

had recurrent lower UTIs were included in this placebo controlled study of intravesical 

inoculation with E. coli 83972. The human ethics committee at Lund University approved the 

study and patients gave their informed consent. The study design, patient characteristics and 

clinical results are described in detail in the paper by Sundén et al [62]. 

 

3.1.1. Inoculation protocol 

 

Before inoculation pre-existing bacteriuria was eliminated by antibiotic treatment, and 

after an antibiotic-free interval urine was cultured to confirm sterility. The patients were 

catheterized (14 Ch. Low-Fric - Astra), and after complete evacuation of the bladder, 30 ml of 

the bacterial suspension of E. coli 83972 (105 cfu/ml) was injected, and the catheter removed. 

The procedure was repeated once daily for 3 days. 

 

3.1.2. Symptomatic urinary tract infection episodes 

 

We examined the subset of colonized patients in whom symptomatic UTI episodes 

developed. Patients defined UTI episodes with a previously developed self-reported method 

[64], and UTI were also determined in a structured interview and by urine culture yielding 

greater than 105 cfu/ml of a single organism. Symptomatic episodes were defined by at least 2 

symptoms, including suprapubic pain, dysuria and/or frequency as well as increased spasticity 

in patients with a spinal cord lesion.  

 

3.1.3. Bacteria, cytokines and DNA Techniques 

 

E. coli 83972 re-isolates were identified by polymerase chain reaction (PCR) using 

primer pairs that matched the cryptic 1.6 kb plasmid and the internal 4,253 bp fim deletion. For 
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in vitro analysis strains were grown in lysogeny broth (LB) or in pooled human urine with or 

without 1.5% agar (DifcoTM). 

Neutrophils were quantified in uncentrifuged urine using a hemocytometer chamber. 

We quantified IL-6 and 8 concentrations by Immulite® assay. 

Qiagen® products were used for genomic DNA isolation. Primers were obtained from 

Eurofins MWG/Operon, Ebersberg, Germany. Restriction enzymes were obtained from New 

England Biolabs®. Genomic DNA was analyzed by pulsed field gel electrophoresis.  

Phylogenetic classification of the re-isolates was done according to the results of a 

triplex PCR using a method described by Clemont et al [65]. 

 

3.1.4. Bacterial genotypes 

 

The detection of fitness- and virulence-associated genes of extraintestinal pathogenic E. 

coli (ExPEC) included type 1 fimbrial (fim), P fimbrial (pap), F1C fimbrial (foc) gene clusters, 

the genes coding for the toxins alpha-hemolysin (hlyA) or cytotoxic-necrotizing factor (cnf1), 

the yersiniabactin siderophore receptor (fyuA), the salmochelin siderophore receptor (iroN), the 

aerobactin siderophore (iuc) as well as the K5 capsule (kpsMT K5) determinant and the 

pathogenicity island marker malX.  Genotyping was performed by PCR using primers that 

matched unique regions of the gene sequences [28, 58, 66]. 

 

3.1.5. Phenotypic assays 

 

Type 1 fimbrial expression was detected by hemagglutination of guinea pig and human 

erythrocytes after in vitro passage in Luria broth. Agglutination was performed both in the 

presence and absence of α-methyl-D-mannoside. Strains causing mannose sensitive 

agglutination were defined as type 1 fimbriated [67].  

P- and S/F1C fimbriae were detected by hemagglutination of defibrinated human and 

bovine erythrocytes, respectively. Aliquots of bacterial overnight cultures in LB or pooled 

human urine were incubated with a suspension of human or bovine blood (Elocin lab, Munich). 

Hemagglutination was compared after incubation for some minutes on ice. UPEC strain 536 

was used as a positive and E. coli strain HB101 as a negative control. 

Hemolytic activity was detected on sheep blood agar plates (Oxoid) after overnight 

incubation at 37 °C as the formation of clear halos around the colonies. UPEC strain 536 was 

used as a positive and E. coli strain HB101 as a negative control. 



20 

 

The aerobactin siderophore was detected by the aerobactin cross-feeding bioassay [68]. 

109 cells of aerobactin-requiring indicator E. coli strain LG1522 were cultured in M9 soft agar 

containing 200 mM 2’-2’-dipyridyl (Sigma, Deisenhofen, Germany). Aerobactin production by 

the test strains was indicated by a zone of enhanced growth of E. coli LG1522 around the 

colonies of the test strains. E. coli ABU strain 83972 was used as a positive and E. coli strain 

HB101 as a negative control. 

Morphotype analysis on Congo red and Calcoflour plates was used to study curli fimbria 

and cellulose expression [69].   

 

3.1.6. Biofilm formation 

 

Biofilm formation was assessed in a microtiter plate assay modified after O’Toole and 

Kolter [70]. Bacteria were grown overnight in LB medium at 37 °C with agitation. Filter-

sterilized pooled human urine was then inoculated (1:100) with the overnight bacterial culture 

and 160 μl of this inoculum was pipetted into 96-well U-bottom flexible microtiter plates (8 

wells per strain). Microtiter plates were incubated statically at 37 °C for 48 h. Afterwards, the 

medium was removed and the microtiter plates were washed twice with 1% PBS followed by 

drying at 65 °C for 10 min. The plates were then stained with 0.1% crystal violet for 10 min. 

Next, plates were washed twice with 1% PBS and dried at 65 °C for 10 min. Absorbed crystal 

violet was eluted using 180 μl acetone-ethanol (1:5), pooled and diluted 1:10. Finally, optical 

density was measured at 580 nm. Biofilm assays were performed at least in triplicate. 

 

3.1.7. O antigen side chain analysis 

 

Isolation of LPS from the E. coli strains used in this study was performed as previously 

described by Grozdanov et al [71]. 

 

3.1.8. Motility  

 

Overnight cultures were stabbed into the middle of motility agar plates (LB 

supplemented with 0.3% w/v agar). Plates were incubated for 16 h at 37 °C. Motility was then 

assessed by inspection of the migration zone of the bacteria. Three independent experiments 

were performed with three individual colonies per strain. 
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3.1.9. Bacterial growth in pooled human urine 

 

Growth of the bacterial isolates was compared to E. coli 83972 wild type by growing 

them without agitation in pooled human urine overnight and inoculating 30 ml fresh medium 

the following day with the overnight culture. Optical density was measured at 600 nm every 

hour for 8 h and overnight. The experiment was repeated three times using different batches of 

pooled human urine.  

 

3.1.10. Gene expression profiling 

 

RNA preparation and microarray hybridisation was performed as previously reported 

[61]. For total RNA isolation, the strains were grown statically in pooled human urine at 37 °C 

until they reached mid-logarithmic phase. Samples were then treated with RNAprotect (Qiagen) 

and extracted using the RNeasy mini kit (Qiagen). DNA traces were removed by RNase-free 

DNase I (New England Biolabs).  

For expression profiling, custom-tailored oligonucleotide microarrays (Operon 

Biotechnologies) were used. 10 μg of total RNA were reverse transcribed (SuperScript III, 

Invitrogen) with direct incorporation of fluorescently labelled (Cy3- or Cy5-) dCTP (GE 

Healthcare). 160 pmol of each Cy-3 and Cy-5 labelled probe were used for hybridisation. For 

each experiment, at least three independent hybridizations were performed. Hybridized and 

washed slides were scanned using a GenePix 4000B Microarray Scanner (GE Healthcare) with 

a resolution of 10 μm pixel size.  

The data was further analyzed with Acuity 4.0 (Molecular Devices) including 

normalization by a linear ratio-based method. For statistical significance, one sample t-test was 

applied with Bonferroni correction. For data analysis, a cut-off value of 1.7 (ln2) was used with 

p<0.09. Hierarchical clustering and visualization of expression patterns was performed with 

CLUSTER and TREEVIEW [72], respectively. 

 

3.1.11. In vitro cell experiments 

 

The human kidney carcinoma A498 (ATCC HTB-44) and T24 bladder carcinoma cell 

lines were grown in RPMI 1640 supplemented with 1 mM sodium pyruvate, 1 mM non-

essential amino acids, 50 mM/ml gentamicin, and 10% fetal calf serum (FCS - PAA 
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Laboratories, Pasching, Austria). Cells were maintained at 37 °C + 5% CO2 in a humidified 

atmosphere and split weekly.   

For adhesion studies 109 cells were exposed to 105 bacteria (E. coli 83972 wild type, the 

symptomatic re-isolates from the patients and CFT073 as positive control) for 45 minutes. After 

washing adhesive bacteria were counted and microscopic pictures were taken. 

For host response experiment cells were exposed to E. coli 83972 wild type, the 

symptomatic re-isolates or CFT073 (108 cfu in 0,01 mL) diluted in 1 mL media with 5% FCS 

or without FCS. Supernatants were collected 6 and 24 hours after stimulation and the secreted 

cytokines (IL-6 and IL-8) were quantified by Immulite 100 (Siemens, Bad Nauheim, Germany).  

 

3.1.12. Experimental animal infections 

 

Experiments were performed with the permission of the animal experimental ethics 

committee, Lund District Court, Sweden. Female C3H/HeN mice bred at the MIG animal 

facility were used at age 6 to 12 weeks.  After anesthesia (Isofluorane), mice were infected by 

intravesical inoculation with E. coli 83972 wild type and the symptomatic re-isolates (109 cfu 

in 0.1 mL) through a soft polyethylene catheter (outer diameter 0.61 mm; Clay Adams, 

Parsippany, NJ, USA). Animals were sacrificed at 6 hours, 24 hours and 7 days while under 

anesthesia, and the kidneys and bladders were removed. Viable counts in homogenized tissues 

were determined after overnight growth on tryptic soy agar plates at 37 °C. Urine samples 

collected prior to and daily after infection were cultured and recruited neutrophils were 

quantified in uncentrifuged urine by use of a hemocytometer.  

 

3.2. Virulence factor analysis of clinical Escherichia coli isolates from urinary 

tract infections  

 

We examined the virulence factor repertoire of Escherichia coli strains prospectively 

isolated from women with community-acquired acute cystitis. The course of UTIs and upper 

urinary tract involvement were documented.  

 

3.2.1. Patients, UTI episodes 

 

Women > 18 years of age with symptomatic UTI were enrolled in the analysis. They 

had significant bacteriuria, defined as ≥ 104 cfu/ml. Patients were diagnosed with acute cystitis 
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based on the following symptoms: frequency, dysuria and/or suprapubic pain, a temperature 

<38.0 °C and no flank pain. Patients who also had flank pain and/or fever were diagnosed as 

having acute cystitis with upper urinary tract involvement. The UTI episode was classified as 

sporadic (<two episodes during the previous six months or <three during the previous 12 

months) or recurrent. The history of previous UTI, concomitant disease and medical treatment 

were recorded. Blood samples were obtained at diagnosis and examined for C reactive protein 

(CRP, cut off ≥ 10 mg/l) and white blood cell counts (cut off ≥ 10x109/l). 

 

3.2.2. Urine cultures 

 

Midstream urine samples were obtained at diagnosis. Quantitative urine cultures 

identified 247 E. coli growing as monocultures, and the isolates were stored in deep agar stabs. 

For analysis, bacteria were grown overnight on tryptic soy agar plates at 37 °C. 

 

3.2.3. Bacterial genotypes, phenotypes and hemolysin production 

 

We genotyped the gene sequences coding the virulence factors (pap gene cluster - 

papGIA2, prsG J96; fim; TcpC). The genotypes were defined by PCR, using primer pairs that 

matched unique regions of the adhesin sequences [48, 73].  

The expression of type 1 and P fimbriae, curli and cellulose, as well as biofilm formation 

was determined as described previously.   

Hemolytic strains were identified in nutrient agar with 5% washed horse erythrocytes 

after overnight incubation. A hemolytic zone larger than the overlying colony was considered 

positive [74]. 

 

3.2.4. Statistical analysis 

 

Chi-square test or the Fisher’s exact test was used. P <0.05 was considered statistically 

significant (two-tailed). 
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4. RESULTS 
 

4.1. Analysis of E. coli 83972 strains isolated from symptomatic episodes 

during deliberately established bacteriuria 
 

4.1.1. Symptomatic UTI episodes during E. coli 83972 bacteriuria 

  

In the placebo controlled colonization study by Sundén et al, the number of symptomatic 

UTI episodes was significantly reduced in patients inoculated with E. coli 83972 compared to 

the  placebo control group (inoculated with saline only) or to the patients previous condition 

before the study. A small group of the patients with E. coli 83972 bacteriuria developed 

symptomatic UTI, however. Before the symptoms developed these patients carried E. coli 

83972 asymptomatically without discomfort. The reported UTI episodes were non-febrile lower 

urinary tract infections and antibiotic treatment resulted in prompt symptom relief.  

Out of the 20 patients, who spent a total of 202 months (mean 10.1) with E. coli 83972 

bacteriuria 13 symptomatic episodes were reported in nine patients. In 10 cases super-infection 

was caused by a different E. coli strain (n=7), Pseudomonas aeruginosa (n=1), Enterococcus 

faecalis (n=1) or Proteus mirabilis (n=1).  E. coli 83972 infection was verified in three cases, 

two of which occurred in one patient. In patients R4 and R15 only E. coli 83972 was recovered 

during 1 and 2 symptomatic episodes, respectively, suggesting that the symptomatic episodes 

were caused by the colonizing strain. The 3 symptomatic episodes were accompanied by 

elevated urine cytokine levels (IL-6 and IL-8), and increased urine polymorphonuclear 

leukocyte numbers indicating a significant host response. 

To examine if a change in bacterial properties had precipitated the symptomatic episode, 

the three E. coli 83972 isolates were further examined. In addition, we included two E. coli 

83972 isolates from symptomatic episodes in patients not included in the previously published 

study. One from patient R10, who carried E. coli 839972 after the closure of the study for a 

total of 104 days, when he had a symptomatic infection, and one from patient Sp10, who was 

successfully colonized with E. coli 83972, and who developed symptoms after 67 days of E. 

coli 839972 bacteriuria, but who was excluded from the study due to steroid treatment. Thus, a 

total of 5 symptomatic re-isolates were included in the analysis (Table 1). 

The re-isolates were verified as E coli 83972 by identification of the cryptic 1.6 kb 

plasmid and the internal 4,253 bp fim deletion. Genomic restriction patterns of all re-isolates 

were defined by pulse field electrophoresis and were found to be identical to E coli 83972. 
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  Pt R15 (episode No.)   

 Pt R4 1 2 Pt R10 Pt Sp10 

Gender F F F F M 

Age 60 46 46 47 67 

Diagnosis 

Detrusor 

insufficiency, 

post-void residual 

urine 

Detrusor 

insufficiency, 

post-void residual 

urine 

Detrusor insufficiency, 

post-void residual 

urine 

Spinal lesion, 

neurogenic 

bladder disorder 

UTI episode:      

Days after inoculation 192 20 19 104 67 

Symptoms 
Suprapubic pain, 

dysuria, frequency 

Local discomfort, 

dysuria, frequency 

Suprapubic pain, 

dysuria, frequency 

Local discomfort, 

dysuria, 

increased spasticity 

F= female M=male 
 

    

 

Table 1. Characteristics of 4 patients with E. coli 83972 asymptomatic bacteriuria and total of 5 proven UTI 

episodes caused by E. coli 83972 

 

 

4.1.2. Virulence properties of the symptomatic re-isolates 

 

The re-isolates were characterized regarding virulence genes associated with 

extraintestinal pathogenic E. coli. All of the re-isolates carried the examined gene sequences. 

The re-isolates were also examined for the expression of virulence factors. The strains did not 

express functional P, type 1, or F1C fimbriae. To exclude that E. coli 83972 had acquired new 

adhesins the re-isolates were incubated with human uroepithelial cells (A498 kidney cells and 

T24 bladder cells). The re-isolates, such as the wild type failed to adhere to the human cells 

(Figure 2). There was no consistent change in biofilm, curli or cellulose formation. Re-isolates 

expressed an O antigen pattern identical to that of E. coli 83972. 
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Figure 2. Adhesion to T-24 bladder epithelial cells and A498 kidney epithelial cells. No difference in adhesion 

capacity between the wild type and the re-isolates. 

 

 

4.1.3. The presence of heterogeneous phenotypes 

 

Further phenotypic assays were performed to identify differences in the expression of 

bacterial traits that might influence survival in the urinary tract. Growth rates in urine were 

monitored and compared to growth in Luria broth. No increase was observed in growth rates 

compared to the E. coli 83972 wild type, however re-isolates of samples R15-1 and R15-2 

showed heterogeneous phenotypes and comprised colonies of different sizes or motility.  

For colonies from urine sample R15-1 about 75% the colony size and morphology 

resembled those of strain E. coli 83972 (R15-1 clone I). The remaining colonies (R15-1 clone 

II) were small, and these variants grew more slowly in liquid medium than E. coli 83972 wild 

type. These colonies were also identified as E. coli 83972 with the analysis of the specific 

plasmid, fim deletion, restriction pattern and virulence genes. The slow growth and reduced 

colony size were reminiscent of small colony variants associated with persistent infection. 

Individual colonies of urine sample R15-2 differed in motility and flagella expression. 
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4.1.4. Motility 

 

 Motility has been proposed to be an important virulence factor, as flagella enhance the 

ascent of bacteria from the lower urinary tract to the kidneys [75]. Motility of the strains was 

therefore screened on swarming agar plates and compared with the E. coli 83972 wild type. We 

observed an increase in motility in two of the re-isolates, R15-2 and Sp10. While Sp10 was a 

100% motile re-isolate, R15-2 appeared as a phenotypically heterogeneous population with 

individual cells displaying increased motility (R15-2 clone I), while the motility of the 

remaining cells (R15-2 clone II) did not differ from the E. coli 83972 wild type (Figure 3). The 

increase in motility reflected increased expression of flagella as shown by Western Blot 

analysis.  

 

 

 

Figure 3. Motility of E. coli 83972, the symptomatic re-isolates and CFT073 as positive control on urine 

swarm agar plates 

 

Whole genome transcription analysis was conducted to compare the transcriptional 

profile of E. coli 83972 to the motile re-isolates (R15-2 clone I and Sp10).  There were 95 de-

regulated genes in case of R15-2 clone I. 80 genes were up-regulated and 15 were down-

regulated. Most up-regulated genes encoded bacteriophage components, and genes were also 

involved in the stress response, including recA, recN, lexA, ruvB, dinI, dinB, sulA, yebG and 

umuD, and sigma factor expression (rpoA, rpoE and rpoS). In addition, acid stress response 

genes (gadA, gadB, hdeAB, cadB and slp) were up-regulated. In contrast, a group of genes 
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involved in phosphotransferase transport were down-regulated. In this re-isolate flagellar gene 

expression was less pronounced. 

 In Sp10 from the 98 de-regulated genes 81 were up-regulated and 17 were down-

regulated. In this 100% motile re-isolate genes involved in flagella biosynthesis and assembly 

(flgA, flgDEFG, flhA, fliA, fliG and fliO) was found to be significantly up-regulated. Other 

upregulated genes were involved in heat shock response (groEL and groES), LPS biosynthesis 

(rfaGPIJY, waaV, waaW, lpxAB), amino sugar utilization (glmUS), and iron-uptake 

(chuATUWXY and entCA). Significantly down-regulated genes were involved in N-acetyl-D-

galactosamine (aga), sorbitol (srl) and galactonate (dgo) transport. 

Few de-regulated genes were shared by the two re-isolates. Genes up-regulated in both 

R15-2 and Rp10 were involved in biofilm formation (yjbE, yqjD), D-glucarate utilization 

(gudD, gudP) and in the synthesis of proteins of the 30S and 50S ribosomal subunits. Ribose 

ABC transporter genes were down-regulated in both re-isolates relative to the wild type (Figure 

4). 

 

 

Figure 4. Gene expression profiling of the motile re-isolates. A, gene expression in re-isolates relative to E. coli 

83972. Most regulated genes were unique to each isolate. B, hierarchical cluster analysis of deregulated genes in 

re-isolates relative to E. coli 83972. Values represent mean expression ratio of at least 3 independent microarray 

experiments. Green areas indicate significantly regulated (log twofold change, p <0.05) suppressed genes. Red 

areas indicate significantly regulated (log twofold change, p <0.050) up-regulated genes. Black areas indicate 

genes without statistically significant change (p >0.05). 
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4.1.5. Host response induction by the re-isolates 

 

To analyze the re-isolates capacity to induce host response, we performed in vitro host 

response experiments in A498 human kidney cells. The IL-6 and IL-8 secretion in A498 cells 

exposed to the symptomatic re-isolates for 24 hours did not differ significantly from the 

response of the cells exposed to E. coli 83972 wild type (Figure 5). 

 

 

 

 

Figure 5. Epithelial response to in vitro infection of A498 cells with E. coli 83972 wild type, symptomatic re-

isolates and uropathogenic E. coli strain CFT073. Geometric means ± SEM of two independent experiments. 

 

 

 

Next we performed experimental urinary tract infections with the re-isolates and E. coli 

83972 wild type in C3H/HeN mice to further investigate if the symptomatic re-isolates 

reacquired increased virulence. There were no major difference in the bacterial clearance 

between the strains compared to the wild type, in respect of the bacterial counts in urine, kidneys 

and bladders or mortality. No symptoms appeared in any group. The kinetics of neutrophil 

recruitment did not differ between the groups. The level of neutrophils in the urine reached its 

maximum at 6 hours, and then decreased and remained low until day 7, reflecting a low acute 



30 

 

inflammatory response to E. coli 83972. Motility of the re-isolates did not influence bacterial 

numbers or urine neutrophil counts (Figure 6). 

 

 

 

 

Figure 6. Experimental infection of C3H/HeN mice by intravesical inoculation with 109 cfu in 0.1 ml E. coli 

83972 or re-isolates from symptomatic episodes. Bacterial number in urine, kidneys and bladders, and neutrophil 

response revealed no difference in virulence. 

 

 

 

4.2. Virulence factor analysis of clinical Escherichia coli isolates from urinary 

tract infections 
 

4.2.1. Patient characteristics 

 

247 women with microbiologically proven uncomplicated urinary tract infections were 

included in the analysis (mean age 51 years, range 18 - 91) and their infecting E. coli strains 

were saved. 242 patients (98%) had bacteriuria ≥105 cfu/ml, in 5 cases patients had 104 cfu/ml 

of urine. 215 patients were diagnosed with acute cystitis only, while 32 patients (13%) also had 
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upper urinary tract involvement. This group had significantly increased CRP levels and white 

blood cell counts compared to the acute cystitis group (p = 0.01 and p = 0.01 respectively). The 

infection was sporadic in 180 cases, while 67 women had recurrent infection. 

  

4.2.2. Virulence factor genotypes and expression 

 

Fim sequences coding type 1 fimbriae were present in 96% of the isolates and type 1 

fimbrial expression was detected in 80%. There was no significant difference between isolates 

from patients with acute cystitis (81%) and patients with upper urinary tract involvement (71%) 

(Figure 7A). 

Hemolysin expression was only detected in 28% in the total sample and the frequency 

did not differ between the two groups. 

Curli fimbriae were detected in 75% of all the cases (73% in case of acute cystitis and 

89% in patients with upper tract involvement) and 13% of the strains formed cellulose (14% 

vs. 10%).  There were no significant differences between the subgroups. However, only 16% 

of all patients formed biofilm, 15% of cystitis patients and 24% of patients with upper UTI, 

with no significant difference between the subgroups (Figure 7B). 

The pap gene cluster was detected in 43% of all isolates (papGIA2 24%, prsGJ96 20%, 

both 3%). The pap genotype was more common in the isolates from patients with upper urinary 

tract involvement (56%) compared to the acute cystitis group (41%), although the difference 

was not significant (Figure 7C and D). P fimbrial expression (Class II + III) was present in 42% 

of the isolates. Among those, Class II fimbriae -papGIA2- were more common (77%) than Class 

III fimbriae -prsGJ96- (23%) (Table 2).  P fimbrial expression was more common in case of 

upper tract involvement (50%) compared to isolates from patients with acute cystitis (41%), 

however the difference was not significant (p=0.332). There was no difference in Class II 

distribution among patients with acute cystitis with or without upper tract involvement (76% 

versus 81%, p = 0.75).  

TcpC was expressed by 33% of the isolates, and it was significantly more common in 

the upper urinary tract involvement group (32% vs. 42%, p<0.01). TcpC was also significantly 

more common in case of papG+/prsG+ strains compared to those lacking these sequences 

(Figure 7E and F).  
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Figure 7. Virulence factor repertoire of Escherichia coli isolates from women with acute cystitis. (A) Fim 

genotype and type 1 fimbrial expression (B) Curli, cellulose expression and biofilm formation (C) and (D) Pap 

genotype and P fimbrial expression (E) TIR homologous TcpC sequences in the different patient groups, (F) and 

in relation to the pap genotype. 23 isolates were weakly positive and are not included. Significantly higher TcpC 

frequency in patients with papG+ and/or prsG+ strains. 
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Pap genotype and 

P fimbrial expression 

No. of isolates (%) 
P values 

All isolates Cystitis Upper Tract 

Pap genotypea, totalb 247 215 32  

Positive  106 (43) 88 (41) 18 (56) n.s. 

PapG alleles, total 247 215 32  

papGIA2  59 (24) 48 (22) 11 (34)  

prsGJ96  50 (20) 41 (19) 9 (28)  

papGIA2+prsGJ96  8 (3) 8 (4) 0 (0)  

P fimbrial expression, total  247 215 32  

Positivec 104 (42) 88 (41) 16 (50) n.s. 

P fimbrial subtypes, total 104 88 16  

Class IId  (PapG) 80 (77) 67 (76) 13 (81) n.s. 

Class IIIe (PrsG )  24 (23) 21 (24) 3 (19) n.s. 

a Analysis based on restriction fragment length polymorphism. 
b Total = number of isolates examined for each parameter. 
c Agglutinated human P1 but not p erythrocytes.   
d Class II P fimbriated strains defined by agglutination of human A1P1, OP1 but not p 

erythrocytes.  
e Class III P fimbriated strains defined by agglutination of human A1P1 but not OP1 or p 

erythrocytes. 

 

 

Table 2.  Pap genotype and P fimbrial expression in E. coli isolates 

 

 

4.2.3. The presence of a combined virulence profile 

 

The E. coli isolates were assigned a virulence profile based on their expression of 

virulence factors (Figure 8). The complete virulence factor repertoire (fim, papG/prsG, TcpC 

genotypes and curli) was present in 18% of the isolates. Strains expressing the complete 

virulence factor profile were significantly more common in patients with upper tract 

involvement compared to acute cystitis only (15% vs. 37%, p<0.01). 35% of all the strains had 

a combined virulence factor with the fim, papG/prsG sequences and curli, while 76% of the 

strains were fim+ and expressed curli. Both combinations were more common in patients with 

upper tract involvement (p =0.001 and p <0.05 respectively). There were no significant 

differences between strains from sporadic or recurrent UTIs. 
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Figure 8. Combined virulence repertoire of the strains. Strains with the combined virulence repertoire were 

more common in the subgroup of patients with acute cystitis and upper tract involvement compared to patients 

with acute cystitis alone. 

 

 

5. DISCUSSION 
 

Virulence factors are instrumental in bacterial infections, as they enhance the ability of 

the microorganisms to disseminate and overcome host defenses. Pathogens causing urinary 

tract infections, unlike most commensal bacteria may possess many different virulence factors, 

which influence the site and severity of urinary tract infections. The different virulence factors 

play role in different steps of the UTI pathogenesis, and their expression can be variable 

depending the environment and the host. Despite the extensive research the specific virulence 

factors responsible for the different clinical manifestations of UTIs have not been convincingly 

identified. 

In our investigation we aimed to analyze the role of the different bacterial virulence 

factors in the clinical course and outcome of urinary tract infections caused by Escherichia coli. 

With the analysis of E. coli 83972 strains isolated from symptomatic episodes during 

deliberately established asymptomatic E. coli 83972 bacteriuria we wanted to identify if there 

is a change in the virulence profile of these strains responsible for the transition from the stable 

asymptomatic state to symptomatic lower urinary tract infections. Next, we analysed clinical E. 

coli isolates from urinary tract infections to determine if Escherichia coli strains causing acute 

cystitis can be characterized by a distinct virulence factor repertoire, and if their virulence factor 
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profile can be distinguished from the strains causing acute pyelonephritis. 

 
 

5.1. Analysis of E. coli 83972 strains isolated from symptomatic episodes during 

deliberately established bacteriuria 

 

The method of deliberately established asymptomatic E. coli 83972 bacteriuria is an 

effective alternative method for preventing recurrent urinary tract infections. Furthermore it 

creates a unique opportunity to investigate how the bacteria and the host interact during 

asymptomatic colonization of the urinary tract. Many asymptomatic bacteriuria strains have 

lost the ability to express virulence factors due to point mutations and deletions and these strains 

do not trigger the mucosal inflammatory response that characterizes infection with fully virulent 

strains. In particular, although E. coli 83972 carries the different virulence genes, it does not 

express functional virulence factors. A personalized bacterial adaptation was observed during 

previous colonization studies, and this adaptive bacterial evolution pointed towards 

commensalism rather than virulence during asymptomatic bladder colonization [61]. Evolution 

toward virulence in colonizing E. coli 83972 strains have not been reported.  

Patients colonized with E. coli 83972 developed symptoms of urinary tract infections 

significantly less frequent compared to controls in the randomized controlled inoculation study 

by Sundén et al. Most of the symptomatic episodes were triggered by superinfections caused 

by other uropathogens, only five cases of symptomatic UTI episodes caused by the colonizing 

E. coli 83972 strains were documented. To detect if changes in bacterial virulence are 

responsible for the rare development of symptoms during asymptomatic carriage we 

investigated genotypic and phenotypic changes in the bacterial re-isolates that might have 

triggered the symptomatic episodes. 

We could not prove a reacquisition of virulence factors as a cause of symptoms in our 

analysis, however. The ExPEC virulence-associated gene set was identical in the E. coli 83972 

wild type and symptomatic re-isolates, suggesting that the overall pathogenicity island structure 

remained largely intact. Also, the expression of classical virulence factors, such as fimbrial 

adhesins, LPS and capsule as well as biofilm formation were not changed by the re-isolates, 

and we did not observe increased growth rates either.  

Since bacterial adhesion is a key-step in the pathogenesis of urinary tract infections, we 

performed further adhesion studies on uroepithelial cells to rule out the possibility that the re-

isolates acquired new adhesins that has not been analysed earlier. However, we did not find any 

difference between the adhesion capacity of the symptomatic re-isolates and the wild type. 
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Increased motility compared to the wild type was the only shared feature we found in 

two of the re-isolates. Flagella have been proposed to provide a selective advantage in the early 

colonization of the urinary tract [33] and flagellum-driven motility is proposed to enhance 

bacterial dissemination to the upper urinary tract and facilitate bacterial spread to sites more 

advantageous for colonization [76]. Sp10 was a 100% motile re-isolate, whereas R15-2 

contained a mixture of motile and non-motile cells. Transcriptomic analysis identified 

individually de-regulated genes in these two isolates mainly involved in stress responses, 

metabolism and LPS biosynthesis, but no common expression pattern was detected. Flagella 

biosynthesis and assembly was found to be upregulated only in one of the re-isolates, Sp10. 

However, we did not observe any difference during the in vitro host response induction 

experiment between the motile re-isolates and the wild type strain, or any motility-related 

differences in bacterial persistence during the in vivo murine infection model. 

As flagella were found to be involved not just in motility, but in bacterial adhesion as 

well in case of Enteropathogenic E. coli [77] and Salmonella spp. [78] [79] their possible role 

as adhesive organelles was also proposed in the urinary tract. However, in a study by Wright et 

al the authors did not find flagellation to be a significant factor in the adhesion and invasion of 

uroepithelial cells [75]. Our data support this finding, as flagella did not to promote adhesion 

in the case of the re-isolates. The results imply that although two of the re-isolates were motile, 

their motility did not contribute to an increased virulence in the urinary tract. 

To exclude the possibility that the symptomatic re-isolates acquired any unidentified 

virulence factors not measured by the previous investigations, we compared the virulence of 

the re-isolates with the E. coli 83972 wild type using an in vitro cell host response experiment 

and in vivo experimental murine UTI model. We did not observe any difference in the host 

response induction in A498 human kidney cells by the re-isolates compared to the wild type 

measured by IL6 and IL-8 secretion. Also, there were no significant differences in the bacterial 

virulence between the re-isolates compared to the wild type in the murine UTI model in respect 

of bacterial counts in urine, kidneys and bladders, kinetics of neutrophil recruitment, or 

mortality. If the development of symptoms were due to changes in bacterial virulence, we would 

have expected the re-isolates to trigger an increased host response in vitro and show an 

increased fitness in the in vivo UTI model. This would have been reflected by higher counts in 

bladders and kidneys and in parallel, we would have expected these strains to trigger an 

inflammatory response not observed after infection with the wild type strain. Such changes 

were not observed, however. Thus, our results suggest that the symptomatic episodes during 

long-term asymptomatic carriage of E. coli 83972 do not reflect regained expression of 
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established virulence factors. 

The individual changes in the pattern of phenotypic traits and the transcriptional profile 

of the re-isolates may suggest that these changes may be attributed to the involvement of 

response mechanisms of the hosts and not only on the characteristics of the bacteria. For 

example up-regulation in the genes coding for acid stress response in R15-2 clone I may 

indicates that this re-isolate has undergone a drastic change in environmental pH. 

Moreover, since there were no distinct general changes in the virulence among the re-

isolates which could explain the occurrence of symptoms, it may seem reasonable to speculate 

whether such symptomatic episode was not triggered by bacterial changes in virulence but 

changes within the host itself. Even if the patients have been stably colonized with E. coli 83972 

without triggering any sign of infection for many months, there may have been changes in the 

homeostasis of the patients during the course of time (i.e. older age, temporary decrease in the 

general immune status) which could have increase their susceptibility to environmental 

stressors which aided the immune system to recognize E. coli 83972, and could have led to a 

host driven break in the tolerance of asymptomatic colonization. 

The method of deliberately established asymptomatic E. coli 83972 bacteriuria is an 

effective non-antibiotic based alternative approach for preventing recurrent urinary tract 

infections. Although previous colonization studies concluded that deliberate establishment of 

asymptomatic bacteriuria is a safe procedure without side effects [59, 80], it is reasonable to be 

peculiarly careful when inoculating patients with bacteria. Our results provide strong evidence 

that even in the rare case of symptomatic episodes caused by E. coli 83972, colonizing bacteria 

did not reacquire virulence, and did not regain potential to cause serious infections to the 

patients, thus underlining the safety of the method. 

 

5.2. Virulence factor analysis of clinical Escherichia coli isolates from urinary tract 

infections 
 

 

Though the molecular background of acute cystitis has been extensively studied in the 

past, while pyelonephritis-associated molecular traits have been defined, virulence factors 

specific for acute cystitis strains have not been identified.  In the second part of our 

investigation, we examined if we can characterize clinical Escherichia coli isolates causing 

acute cystitis by a distinct set of virulence factors, and if their virulence profile can be 

distinguished from the strains causing acute pyelonephritis. 

We found type 1 fimbriae to be the most characteristic virulence factor for E. coli strains 
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causing acute cystitis, as 96% of the strains carried the fim gene cluster and 81% expressed 

functional type 1 fimbriae, supporting their role in bladder infection. Although curli were 

expressed by 73% of cystitis strains, only 15% of them formed biofilm. The expression of P 

fimbriae and TcpC were more characteristic to the strains causing upper UTIs. The presence of 

a complete or a combined virulence profile for the tested virulence factors (fim, papG, prsG, 

TcpC and curli) were not characteristic in the acute cystitis group. On the other hand, strains 

expressing the complete or combined virulence factor profile were significantly more common 

in patients with upper tract involvement. 

The presence of fim sequences and type 1 fimbrial expression were the most common 

features of the cystitis isolates in our analysis. Type 1 fimbriae are ubiquitously expressed by 

uropathogenic E. coli as well as other Gram-negative bacteria. Although type 1 fimbriae have 

been implicated in cystitis pathogenesis and shown to be essential virulence factors in the 

murine UTI model [81], as most E. coli isolates carry the fim operon regardless of their source 

[25], their role as independent virulence factors has been debated [67].  

The expression of type 1 fimbriae was shown to characterize the most virulent members 

of a single clone, as the disease severity of UTI was greater in children infected with E. coli 

O1:K1:H7 isolates expressing type 1 fimbriae than in those infected with type 1 negative 

isolates of the same serotype and a deletion of the fim gene cluster from that background was 

shown to attenuate virulence in the murine UTI model [26]. Type 1 fimbriae were also shown 

to promote bacterial attachment and trigger a partially TLR4 dependent innate immune response 

in the murine model [81]. Type 1 fimbriae are also required for UPEC-induced urothelial 

apoptosis [82, 83]. In vitro studies have shown that upon type 1 fimbrial binding to uroplakin 

complexes on the uroepithelial surface the disruption of superficial epithelium by type 1 pilus-

dependent apoptosis enables bacteria to invade the underlying immature cells [84], and form 

intracellular biofilm-like structures, called intracellular bacterial communities (IBCs) [24, 85].  

Type 1 fimbriae were also proposed to have an important function in the intracellular 

aggregation and maturation of IBCs [24]. IBCs act as intracellular bacterial reservoirs and have 

been proposed to play a key role in recurrent UTIs [86].  

Previous human inoculation studies provided somewhat contradictory results, however, 

as transformation of E coli 83972 with functional fim gene cluster followed by human 

inoculation did not trigger a higher innate immune response than the wild type strain and there 

was no difference in the establishment of bacteriuria [67]. In our analysis of E. coli 83972 re-

isolates from symptomatic episodes during deliberately established bacteriuria we did not find 

re-acquisition of type 1 fimbrial expression to be involved in the transition from asymptomatic 
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state to symptomatic episodes either. 

The high frequency of type 1 fimbrial expression in the present analysis of E. coli strains 

from patients with acute cystitis is consistent with a contribution of type 1 fimbriae to acute 

cystitis pathogenesis supporting their role in bladder infection either during the colonization 

phase or by enhancing inflammation and symptoms.  

Biofilm consists of microorganisms and their extracellular products forming a structured 

community on a surface. The low frequency of biofilm forming strains in the cystitis group 

compared to the isolates from upper urinary tract involvement in our data suggests that biofilm 

formation is more associated with the pathogenesis of acute pyelonephritis rather than acute 

cystitis. Similar results were obtained by other groups in adults [87] and children [88]. On the 

other hand, Mabbett et al found biofilm formation to be less pronounced in pyelonephritis 

compared to ABU or acute cystitis [89], while Soto et al observed no differences between 

cystitis and pyelonephritis strains regarding biofilm formation [90]. Biofilm formation was also 

found to be associated with recurrent pyelonephritis in children recently [88]. 

 The pap gene cluster is strongly associated with acute pyelonephritis and urosepsis but 

in acute cystitis strains reported frequencies have been below 50%, suggesting a less strong 

effect on bladder infections than in the kidneys [22, 91]. Our results correspond to these data, 

as P fimbrial expression was more dominant in the upper urinary tract infection than in acute 

cystitis strains.  

TcpC is a TIR domain homologous protein secreted by UPEC, which promotes bacterial 

survival by inhibiting the innate host response. Cirl et al described TcpC as a novel virulence 

factor in 2008 [48]. They found TcpC sequences to be present in about 40% of acute 

pyelonephritis isolates and 21% of cystitis isolates. TcpC was also shown to be more associated 

with acute pyelonephritis and urosepsis in a recent publication by Vejborg et al [91]. Our results 

confirmed the strong association of TcpC with disease severity. 

We could not characterize the strains causing acute cystitis with a distinct set of 

virulence factors. In view of the variability in virulence profile, we speculate that acute cystitis 

may be triggered by a convergent host response, allowing bacteria with different virulence 

profiles to cause the characteristic clinical symptoms. 

However, the presence of a complete or a combined virulence profile was significantly 

more common in the isolates causing upper urinary tract infections in women compared to the 

isolates form acute cystitis. The same tendency was shown in children [92] and men [93]. 

This theoretically means that with virulence factor profiling of the pathogens we can 

gain information about the clinical course of UTIs. In the traditional management of urinary 
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tract infections urologists focus mainly on the patients (host side) and try to make risk 

assessments of the possible disease severity based on patient characteristics, such as co-

morbidity, the presence of complicating factors, immunosuppression, etc. [94]. The 

investigation of the pathogens is superficially included the decision making, and is practically 

reduced to the results of urine cultures, and antibiotic susceptibility. However, with the 

characterization of the bacterial virulence factor profile it is possible to make risk assessments 

about disease severity with the investigation of the bacteria itself.  

According to the current guidelines asymptomatic bacteriuria only needs to be treated 

before an invasive genitourinary procedure and in case of pregnancy [95], because ABU can 

lead to the development of pyelonephritis and also has been associated with low birth weight 

and prematurity [96, 97]. In every other condition (diabetes, postmenopausal women, urinary 

foreign bodies, etc.) treatment of asymptomatic bacteriuria is not recommended, as the low risk 

of a severe urinary tract infection to evolve does not counterweight the cost meant by the vast 

amount of antibiotic usage. If we could predict the possibility of a severe infection in case of a 

clinical asymptomatic bacteriuria by identifying bacteria with a virulence potential, we could 

selectively treat patients who are in risk of a serious infection.  

In the era of increasing antibiotic resistance and multidrug-resistant bacteria deeper 

understanding of the causative bacteria and the analysis of bacterial virulence profile can be a 

valuable asset. Urologists need to widen their diagnostic arsenal from the traditional urological 

methods to a more microbiology-centered aspect in the future in order to be able to successfully 

manage the increasing threat of urinary tract infections. 
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6. CONCLUSIONS 
 

 

1. Our results suggest that symptomatic episodes caused by E. coli 83972 during deliberately 

established asymptomatic bacteriuria do not reflect regained expression of established 

virulence factors by the colonizing strain. 

 

2. The individual changes in the pattern of phenotypic traits and the transcriptional profile of 

the re-isolates suggest that these changes may be attributed to the involvement of response 

mechanisms of the hosts and not only on the characteristics of the bacteria. 

 

3. Our results verify that the deliberately established asymptomatic bacteriuria for preventing 

recurrent urinary tract infection is a safe method, as even in the rare case of symptomatic 

episodes caused by E. coli 83972 colonizing bacteria did not reacquire virulence, and did 

not regain potential to cause serious infections to the patients. 

 

4. Clinical strains causing acute cystitis could not be characterized with a distinct virulence 

factor repertoire. The most characteristic virulence factor was the expression of type 1 

fimbriae. 

 

5. The presence of a complete or a combined virulence profile was significantly more common 

in the isolates causing upper urinary tract infections. 

  



42 

 

7. ÖSSZEFOGLALÁS 

 

A húgyúti fertőzések klinikai jelentősége több szempontból is kiemelkedő, hiszen 

miközben a kórokozók antibiotikumokkal szembeni rezisztenciája világszerte növekedő 

tendenciát mutat, a húgyúti fertőzések képezik az antibiotikum felhasználás egyik vezető okát, 

továbbá a nozokomiális fertőzések egyik legfontosabb forrását szerte a világon. A téma 

fontossága ellenére a húgyúti fertőzések molekuláris alapjairól, illetve a kórokozók és a 

szervezet közötti interakcióról csak korlátozott ismeretek állnak rendelkezésünkre.  

A húgyúti kórokozók fertőzőképességét, illetve a kialakuló fertőzés súlyosságát 

nagymértékben befolyásolja, hogy az adott baktériumtözs milyen virulencia faktorokkal 

rendelkezik. Számos különböző virulencia faktort írtak le, melyek befolyásolják a húgyúti 

fertőzések patogenezisének különböző szakaszait, azonban nem tisztázott, hogy a különböző 

klinikai formák (tünetmentes bacteriuria, cystitis, pyelonephritis, stb.) kialakulásában a 

szervezeti tényezőkön túl pontosan mely virulencia faktorok és milyen módon játszanak 

szerepet.  

 Jelen kutatás célja a leggyakoribb húgyúti kórokozó, az Escherichia coli virulencia 

faktorainak tanulmányozása volt a húgyúti fertőzések klinikai lefolyásában. Vizsgálatunk első 

szakaszában azt a kérdést kívántuk megválaszolni, hogy az Escherichia coli 83972 törzsek 

virulenciájában bekövetkezett változás áll-e a mesterségesen kialakított tünetmentes E. coli 

83972 bacteriuria során kialakult, a kolonizáló törzs által okozott alsó húgyúti tünekkel járó 

epizódok hátterében.  

A mesterségesen kialakított tünetmentes bacteriuria módszerének lényege, hogy egyéb 

kezelésre nem reagáló, visszatérő húgyúti fertőzésben szenvedő betegek húgyhólyagját a 

tünetmentes bacteriuriát okozó, avirulens E. coli 83972 törzsekkel kolonizáljuk, így egyfajta 

kolonizációs rezisztenciát hozva létre. Sundén és munkatársai 2010-ben egy randomizált, 

kontrollált kolonizációs vizsgálatban igazolták a módszer klinikai hatékonyságát. A vizsgálat 

során az E. coli 83972 törzsekkel kolonizált betegeknél szignifikánsan ritkábban alakultak ki 

húgyúti fertőzéses epizódok a fiziológiás sóoldattal kolonizált kontrollokkal összehasonlítva. 

Ezen epizódok többségét más baktériumokkal való felülfertőződés okozta, mindössze 5 esetben 

(4 betegben) igazolódott a kolonizáló E. coli 83972 törzs a tünetek hátterében. Vizsgálataink 

során ezen izolátumok virulenciáját analizáltuk. 

A baktériumtörzseken először genotípus meghatározást végeztünk az extraintesztinális 

fertőzést okozó E. coli törzsekhez köthető legfontosabb virulencia génekre vonatkozóan. Nem 
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találtunk különbséget a vad típushoz képest a fim (1-es típusú fimbria), pap (P fimbria), foc 

(F1C fimbria), hlyA (α-hemolysin), cnf1 (citotoxikus nekrotizáló faktor), fyuA (yersiniabactin 

sziderofór receptor), iroN (salmochelin sziderofór receptor), iuc (aerobactin sziderofór), kpsMT 

K5 (K5 tok) és a malX (patogenitási sziget marker) szekvenciákkal kapcsolatban.   

A fenotípus meghatározás során nem találtunk különbséget a virulencia faktorok 

expressziójával kapcsolatban sem. Az izolátumok nem expresszáltak 1-es típusú, P, vagy F1C 

fimbriákat. Az esetleges egyéb adhezinek jelenlétét A498 vese és T24 húgyhólyag sejteken 

végzett adhéziós kísérlettel zártuk ki. Az izolátumok biofilm képző képessége, curli, illetve 

cellulóz, valamint O antigén expressziója szintén megegyezett a vad típussal.  

Két izolátum esetében találtunk fokozott motilitást a vad törzshöz képest. A két izolátum 

génexpressziós vizsgálata során leginkább a stressz választ, metabolizmust, illetve az LPS 

szintézist érintő egyedi változásokat észleltünk,  a flagella (ostor) szintézisének fokozódása 

csak az egyik izolátum esetén volt kimutatható.  

Az izolátumok virulenciájának további tesztelésére, és valamilyen esetlegesen jelen 

lévő ismerelten virulencia faktor kiszűrésére in vitro és in vivo virulencia kísérleteket 

végeztünk. Az izolátumok által A498 vesesejteken kiváltott in vitro immunválasz nem 

különbözött a vad törzs által kiváltott választól a sejtek interleukin 6 és 8 szekréciója 

tekintetében. Hasonlóképpen nem találtunk különbséget az izolátumokkal, illetve a vad típussal 

kolonizált C3H/HeN egereknél a vizeletben, húgyhólyagban és vesékben mért baktériumszám, 

a neutrophil granulocyták kinetikája, illetve a mortalitás tekintetében.  

Vizsgálatunk második szakaszában azt a kérdést kívántuk megválaszolni, hogy az akut 

cystitist okozó Escherichia coli törzsek karakterizálhatóak-e valamilyen jellegzetes virulencia 

faktor repertoárral, illetve, hogy ez megkülöböztethető-e az akut pyelonephritist okozó törzsek 

virulencia profiljától. Akut húgyúti fertőzésben szenvedő nők vizeletéből izolált 247 E. coli 

törzsnél végeztünk virulencia faktor analízist az akut cystitisben felmerült legfontosabb 

faktorok jelenlétére, illetve azok kombinációjára vonatkozóan, összehasonlítva az 

eredményeket a fertőzés klinikai lefolyásának függvényében, azaz, hogy felső húgyúti fertőzés 

kialakult-e, vagy sem.   

Az 1-es típusú fimbriák jelenléte volt a leggyakoribb az akut cystitist okozó törzseknél, 

a fimbriát kódoló fim szekvenciák az izolátumok 96%-ában voltak jelen, a fimbriákat az 

izolátumok 80%-a expresszálta. Ugyan curli-fimbriák 73%-ban voltak jelen a cystitis 

csoportban, biofilm képzést csak az izolátumok 15%-ánál észleltünk. Nem találtunk 

szignifikáns különbséget sem az 1-es típusú fimbriák, sem a biofilm képzés tekintetében az akut 

cystitist és az akut pyelonephritist okozó törzsek között. 
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A P fimbriákat kódoló pap génklaszter az összes törzs 43%-ban volt azonosítható (papG 

IA2 24%,  prsGJ96 20%, mindkettő 3%), akut cystitis esetén 41%-ban, felső húgyúti érintettség 

esetén 56%-ban. A P fimbriák expresszióját (Class II+III) az összes izolátum 43%-ában, a 

cystitist okozó törzsek 41%-ban, a felső húgyúti érintettséggel járó csoport esetén 50%-ban 

észleltük. A pap gének és a P fimbriák tekintetében észlelt különbség azonban nem volt 

szignifikáns a két csoport között. A TcpC expressziója szignifikánsan gyakoribb volt felső 

húgyúti érintettség esetén (42%) a csak cystitist okozó törzsekhez képest (32%) (p<0.01). A 

teljes, ill. halmozott virulencia profilt (fim, pap, TcpC és curli-fimbria) expresszáló törzsek 

szignifikánsan gyakoribbak voltak felső húgyúti érintettség, mint csak cystitis esetén (37% vs. 

17%, p<0.01). Nem találtunk szignifikáns különbséget a visszatérő ill. sporadikus húgyúti 

fertőzésekből izolált törzsek virulencia profiljában. 

Összefoglalva, a mesterségesen kialakított tünetmentes Escherichia coli 83972 

bacteriuria során kialakult, a kolonizáló törzs által okozott alsó húgyúti tünekkel járó epizódok 

hátterében a törzsek fokozódott virulenciája nem volt igazolható. Eredményeink arra utalnak, 

hogy a tünetek létrejöttében valószínűleg a gazdaszervezet állapotában kialakult változások 

játszhattak döntő szerepet, továbbá megerősítik a módszer klinikai alkalmazásának biztonságos 

voltát. 

A húgyúti fertőzésekből izolált Escherichia coli törzsek vizsgálata során az akut cystitist 

okozó E. coli törzsek az 1-es típusú fimbriák expressziójával voltak leginkább jellemezhetők. 

Az akut cystitist okozó törzsek jellegzetes virulencia faktor repertoárral nem voltak 

karakterizálhatóak, azonban felső húgyúti érintettség kialakulása esetén a kombinált virulencia 

faktor profil szignifikánsan gyakrabban volt jelen.  
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Rare Emergence of Symptoms during Long-Term
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Purpose: Asymptomatic bacteriuria established by intravesical inoculation of
Escherichia coli 83972 is protective in patients with recurrent urinary tract in-
fections. In this randomized, controlled crossover study a total of 3 symptomatic
urinary tract infection episodes developed in 2 patients while they carried E. coli
83972. We examined whether virulence reacquisition by symptom isolates may
account for the switch from asymptomatic bacteriuria to symptomatic urinary
tract infection.

Materials and Methods: We used E. coli 83972 re-isolates from 2 patients in a
prospective study and from another 2 in whom symptoms developed after study
completion. We phylogenetically classified the re-isolates, and identified the
genomic restriction patterns and gene expression profiles as well as virulence
gene structure and phenotypes. In vivo virulence was examined in the murine
urinary tract infection model.

Results: The fim, pap, foc, hlyA, fyuA, iuc, iroN, kpsMT K5 and malX genotypes
of the symptomatic re-isolates remained unchanged. Bacterial gene expression
profiles of flagellated symptomatic re-isolates were unique to each host,
providing no evidence of common deregulation. Symptomatic isolates did not
differ in virulence from the wild-type strain, as defined in the murine urinary
tract infection model by persistence, symptoms or innate immune activation.

Conclusions: The switch from asymptomatic E. coli 83972 carriage to symp-
tomatic urinary tract infection was not explained by reversion to a functional
virulence gene repertoire.
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520 EMERGENCE OF SYMPTOMS DURING ASYMPTOMATIC ESCHERICHIA COLI 83972 CARRIAGE
Key Words: urinary bladder, urinary tract infections, Escherichia coli, virulence, gene expression
BACTERIA invading the urinary tract may cause
symptomatic disease or give rise to ABU, a symptom-
free carrier state resembling commensalism.1 ABU
is even more common than symptomatic UTI.1,2

Epidemiological studies show that asymptomatic
carriage protects the patient against symptomatic
superinfections2,3 compared to patients in whom
bacteriuria is eradicated by antibiotic therapy.3

This protective effect has been used as a rationale
to deliberately establish ABU in patients prone to
UTI.4�6 The therapeutic efficacy of this approach
was demonstrated in randomized clinical trials.5,7

Observational studies established that therapeutic
inoculation is safe and decreases UTI morbidity.8,9

The prototype ABU Escherichia coli strain
839723,6 is extensively used for human inoculation
since it produces no adverse effects, fails to express
virulence factors associated with symptomatic UTI
and lacks conjugative plasmids.4 E. coli 83972 and
other ABU strains have a smaller genome size than
uropathogenic strains. This is due in part to viru-
lence gene deletions that abolish fimbrial expression
and adherence, suggesting that ABU strains adapt
to the human urinary tract by undergoing reductive
evolution.9

After therapeutic E. coli 83972 inoculation in
a series the number of symptomatic episodes
decreased during E. coli 83972 bacteriuria and pa-
tients experienced a longer infection-free interval
than a placebo group.6 While most symptomatic UTI
episodes were caused by superinfection with other
E. coli or nonE. coli strains, we identified a few
patients in whom symptoms developed during
E. coli 83972 bacteriuria, suggesting a transition
from ABU to symptomatic UTI.

In the current study we examined whether E. coli
83972 evolves toward virulence during asymptom-
atic carriage in the urinary tract. We compared
phenotypic and genotypic traits of E. coli 83972 to
those of re-isolates from patients with symptomatic
episodes. We found no evidence of increased
expression of traditional virulence factors by E. coli
83972 in hosts with symptomatic UTI during
asymptomatic carriage.
METHODS

Patients and Study Design
Patients with incomplete bladder emptying due to spinal or
lower motor neuron lesions who had recurrent lower UTIs
were included in a placebo controlled study of intravesical
inoculation with E. coli 83972. In all patients optimal
treatment, including clean intermittent catheterization,
had been tried but failed. Study exclusion criteria were
upper urinary tract dilatation, febrile UTI episodes or
pyelonephritis, corticosteroid treatment and significant
comorbidity. The study was approved by the Lund Uni-
versity human ethics committee and patients provided
informed consent (RTP-A2003, www.ClinicalTrials.gov).
Sund�en et al previously reported patient characteristics
and identification numbers, diagnostic criteria and
study design.6

Before inoculation preexisting bacteriuria was elimi-
nated by antibiotic treatment. After an antibiotic-free
interval E. coli 83972 bacteriuria was established by
intravesical inoculation of 105 cfu/ml in saline. The pro-
cedure was repeated once daily for 3 days. After bacteri-
uria was established the effect on UTI morbidity was
quantified as the total number of symptomatic UTI epi-
sodes during 10 to 12 months compared to UTI morbidity
after a crossover period of similar duration without E. coli
83972 bacteriuria.

Symptomatic UTI Episodes
We examined the subset of patients in whom symptomatic
UTI episodes developed during the study (see table).
UTI episodes were self-reported, a method previously
shown to be reliable in select patient groups.10 UTI was
also determined in a structured interview by the study
physician and by urine culture yielding greater than
105 cfu/ml of a single organism. Symptomatic episodes
were defined by at least 2 symptoms, including supra-
pubic pain, dysuria and/or frequency as well as increased
spasticity in patients with a spinal cord lesion. Antibiotic
treatment initiated by the study physician resulted in
prompt relief of symptoms.

Bacteria and Cytokines
Urine samples were semiquantitatively cultured and the
antibiotic susceptibility pattern was recorded. Isolated
bacteria were maintained as deep agar stabs or frozen
glycerol cultures. For E. coli species verification of isolates
16S rRNA sequencing was performed with phenotypes
different from E. coli 83972. E. coli 83972 re-isolates were
identified by polymerase chain reaction, which detected
the cryptic 1.6 kb plasmid and the internal 4,253 bp fim
deletion. For in vitro analysis strains were grown in
lysogeny broth or in pooled human urine with or without
1.5% agar (Difco�).

Neutrophils were quantified in uncentrifuged urine
using a hemocytometer chamber. IL-6 and 8 concentrations
were quantified by Immulite� assay. The MILLIPLEX�
MAP Human Cytokine/Chemokine Panel was used to
screen for additional cytokines.

DNA Techniques
QIAGEN� products were used for genomic DNA iso-
lation. Primers were obtained from Eurofins MWG/
Operon, Ebersberg, Germany. Restriction enzymes were
obtained from New England Biolabs�. Genomic DNA was
analyzed by pulsed field gel electrophoresis. Phylogenetic

http://www.ClinicalTrials.gov


Data on 4 patients with E. coli 83972 asymptomatic bacteriuria and total of 5 proven UTI episodes caused by E. coli

Pt R4

Pt R15 (episode No.)

Pt R10 Pt Sp101 2

Pt data
Gender F F F M
Yr born 1944 1958 1957 1937
Diagnosis Detrusor insufficiency,

post-void residual
urine

Detrusor insufficiency,
post-void residual
urine

Detrusor insufficiency,
post-void residual
urine

Spinal lesion, neurogenic
bladder disorder

UTI episode:
Days after E. coli 83972 inoculation 192 20 19 104 67
Symptoms Suprapubic pain,

dysuria, frequency
Local discomfort,

dysuria, frequency
Suprapubic pain,

dysuria, frequency
Local discomfort, dysuria,

increased spasticity
Urine inflammatory response

During preceding E. coli 83972 bacteriuria:
IL-6 (pg/ml) 39.6 145.2 235.4 Mean 2.1 (range 2e2) Mean 6.9 (range 2e24)
IL-8 (pg/ml) 4,706 3,268 551 Mean 20.2 (range 5e62) Mean 518 (range 37e407)
Neutrophils (� 104) 240 960 800 Mean 0.6 (range 0e2) Mean 25 (range 8e24)

At UTI episode:
IL-6 (pg/ml) 18 145 235 8 300
IL-8 (pg/ml) 4,706 3,268 551 43 7,500
Neutrophils (� 104) 240 960 800 Not determined 20,000
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classification of re-isolates, and ExPEC virulence genes
were determined as previously described.11

Virulence Factor Expression
Functional type 1, P, F1C fimbriae, hemolysis and motility
as well as O antigen, aerobactin expression and biofilm
formation were detected.11,12 Adhesion to the human uri-
nary tract cell lines A498 and T24, and curli and cellulose
expression were determined as described previously.13

Experiments were performed in triplicate. We determined
growth rates at 600 nm optical density in triplicate exper-
iments using different batches of pooled human urine.

Gene Expression Profiling
RNA preparation and microarray analysis were per-
formed as previously reported.9 For statistical significance
the 1-sample t-test was applied with the Bonferroni
correction. A cutoff of 1.7 (ln2) was used at p �0.09.

Experimental Infection
Experiments were performed with the permission of the
animal experimental ethics committee, Lund District
Court, Sweden. Female C3H/HeN mice bred at the MIG
animal facility were infected at age 6 to 12 weeks by
intravesical inoculation with E. coli 83972 wt or re-isolates
from each symptomatic episode.14 Themice were sacrificed
at 6 or 24 hours, or 7 days, and the kidneys and bladders
were removed. Infection was quantified by viable counts on
kidney and bladder homogenates. Neutrophils were quan-
tified in uncentrifuged urine using a hemocytometer
chamber.For statistical analysis the groupswere compared
by the paired t-test or Mann-Whitney test.
RESULTS

E. coli 83972 Bacteriuria Delayed UTI Recurrences

and Decreased Number of Symptomatic UTI

Episodes

Re-isolates of E. coli 83972 were obtained from
patients who participated in a placebo controlled
crossover study of the protective effect of E. coli
83972 bacteriuria after deliberate inoculation of this
strain into the urinary tract.6 Patients were pro-
tected from symptomatic UTI, as defined by the
number of episodes, before study entry and while in
the placebo arm of the study. The mean number
of symptomatic episodes per patient-year was 1.2
during ABU and 4 before the study (paired t-test
p ¼ 0.000019, fig. 1, A). In the E. coli 83972 bacte-
riuria arm with 202 months of observation a total
of 13 symptomatic UTI episodes developed in 9 pa-
tients (0.8 per patient-year). This was significantly
lower than in the placebo arm with 168 months
of observation time during which 4 of 20 patients
had a total of 35 UTI episodes (2.5 per patient-year,
p ¼ 0.009). Median time to the first symptomatic
episodewas also significantly less in the placebo group
than during ABU (11.3 vs 5.7 months, p <0.013).

The 13 UTI episodes recorded during E. coli
83972 bacteriuria were further characterized. Ten
episodes were superinfections. E. coli 83972 was
replaced by a different E. coli strain in 7 episodes,
and by Pseudomonas aeruginosa, Enterococcus
faecalis and Proteus mirabilis in 1 each. In patients
R4 and R15 only E. coli 83972 was recovered
during 1 and 2 symptomatic episodes, respectively,
suggesting that symptoms were caused by this
strain (see table and fig. 1, B). Before symptoms
developed these patients carried E. coli 83972
asymptomatically without discomfort. The 3 symp-
tomatic episodes were accompanied by increased
urine polymorphonuclear leukocyte numbers and
increasedurine cytokine levels (see table, fig. 2,Aand
supplementaryfig. 1, http://jurology.com/). In patient
R4 an increase in RANTES, IP-10, sIL-2Ra, MCP-1,
IL-1a, IL-1RA and IFNg was observed and in pa-
tient R15 IL-6, sIL-2Ra and IL-1a were increased.

http://jurology.com/
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infections
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p = 1.42 x 10

p = 0.00000034

n 80 13 10 3

Patient ID Days after
inoculation

IL-6
(ng/L)

IL-8
(ng/L) PMN x104/mL Culture Isolate

E. coli

83972

R4 192 39.6 4706 240 E.coli 83972 R4
R15 20 145.2 3268 960 E.coli 83972 R15-1
R15 19 235.4 551 800 E.coli 83972 R15-2

Other bacteria

R2 69 19.8 2627 nd E.coli

R15 116 206.8 1626 562 Enterococcus faecalis

R16 103 4.4 9 0 E. coli; Proteus mirabilis

R16 12 nd nd nd E.coli

Sp2 332 nd nd 28 Pseudomonas aeruginosa

Sp5 88 nd nd nd E.coli

Sp5 95 4.4 7156 nd E.coli

Sp8 119 4.4 62 1 E.coli

Sp12 272 nd nd nd E.coli

Sp13 193 nd nd nd E.coli

A B

Figure 1. Symptomatic UTI episodes during E. coli 83972 bacteriuria. A, mean � SEM frequency (n) of symptomatic UTI episodes

during year before inoculation and during year with E. coli 83972 bacteriuria in 20 patients (paired t-test). B, innate immune

response of patients to symptomatic E. coli 83972 episodes quantified as urine cytokine and PMN levels.
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However, these isolates did not stimulate a higher
cytokine response in humanuroepithelial cells (fig. 2,
B and supplementary fig. 1, http://jurology.com/). In
all patients the peak mucosal response was several
fold higher during the symptomatic episode
compared to the preceding ABU period. In patient
R10 the preceding ABU response was low or absent.

Properties of E. coli 83972 Re-Isolates from

Symptomatic Episodes

To examine whether a change in bacterial proper-
ties precipitated the symptomatic episodes we
examined the 3 E. coli 83972 re-isolates. We also
included E. coli 83972 re-isolates from symptomatic
episodes in 2 patients. Patient R10 participated in
the therapeutic study but symptoms developed after
study completion. Patient Sp10, who received E. coli
83972 inoculation in a separate open study protocol,
was excluded from analysis due to corticosteroid
treatment (see table).

To identify E. coli 83972 re-isolates we screened
20 randomly chosen colonies for the presence of the
cryptic 1.6 kb plasmid and the internal 4,253 bp fim
deletion (fig. 3, A). Like the wt strain, re-isolates
were phylogenetically classified into the B2 lineage
and shared an identical genomic restriction pattern
(supplementary fig. 2, http://jurology.com/).

E. coli 83972 carries the type 1 (fim), P (pap),
F1C ( foc) fimbrial genetic determinants and genes
coding for hlyA or cnf1, fyuA, iroN, iuc, kpsMT K5
and the pathogenicity island marker malX.11 These
genes were present in all re-isolates, suggesting
that the overall pathogenicity island structure
remained largely intact (fig. 3, B).

Re-isolates did not express functional P, F1C or
type 1 fimbriae (fig. 3, C ). To exclude other adhesins
we monitored adherence to A498 kidney cells and
T24 bladder cells but it was not detected (fig. 4, A).
We observed no consistent change in biofilm, curli or
cellulose formation (figs. 3, C and 4, B).

Re-isolates expressed an O antigen pattern
identical to that of E. coli 83972 (supplementary
fig. 2, http://jurology.com/). They had a growth rate
in pooled human urine similar to that of E. coli
83972 except re-isolates R10 and R15-1 clone II,
which grew more slowly (fig. 4, C ).

Re-Isolate Population Heterogeneous Phenotypes

Although urine samples from symptomatic episodes
were E. coli 83972 monocultures, re-isolates of
samples R15-1 and R15-2 showed heterogeneous
phenotypes and comprised colonies of different sizes
or motility. For colonies from urine sample R15-1
about 75% the colony size and morphology resem-
bled those of strain E. coli 83972 (R15-1 clone I). The
remaining colonies (R15-1 clone II) were small and
grew slowly (fig. 4, C ). However, they had the same
1.6 kb cryptic plasmid, fim deletion, restriction
pattern and virulence gene content as E. coli 83972.
The slow growth and reduced colony size were
reminiscent of small colony variants associated with
persistent infection.15 Furthermore, individual col-
onies of urine sample R15-2 differed in motility and
flagella expression.

http://jurology.com/
http://jurology.com/
http://jurology.com/


Figure 2. Host response to ABU in vivo and in vitro. A, host response to symptomatic E. coli 83972 episodes. B, geometric mean � SEM

epithelial response to in vitro infection of A498 cells with E. coli 83972 wt, symptomatic E. coli 83972 re-isolates and uropathogenic

E. coli strain CFT073 in 2 independent experiments. Fetal calf serum (FCS) (5%) was used to provide soluble CD14.
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Re-Isolate Increased Motility

Since flagella were proposed to facilitate ascending
UTI,16,17 we compared the motility of E. coli 83972
and the re-isolates. Increased motility was observed
for re-isolates R15-2 and Sp10. R15-2 appeared
as a phenotypically heterogeneous population with
increased motility of individual cells (R15-2 clone I)
and flagellar expression relative to E. coli 83972
(fig. 4, D and supplementary fig. 3, http://jurology.
com/). The remaining re-isolates (R15-2 clone II)
were as motile as E. coli 83972.

Motile Re-Isolate Gene Expression Analysis

To analyze differences in the gene expression of re-
isolates with phenotypes that markedly deviated
from the wt we compared the transcriptome be-
tween E. coli 83972 and the motile re-isolates (R15-2
clone I and Sp10). Of 95 de-regulated genes in R15-2
clone I 80 were up-regulated and 15 were down-
regulated while 81 and 17 of 98 genes in Sp10
were increased and decreased, respectively (fig. 5).

Most up-regulated genes in R15-2 clone I encoded
bacteriophage components. In addition, activated
genes were involved in the SOS or stress response
(recA, recN, lexA, ruvB, dinI, dinB, sulA, yebG,
osmB and umuD), s factor expression (rpoA, rpoE
and rpoS ) and acid resistance ( gadA, gadB, hdeAB,
cadB and slp). mglAB genes that code for a galac-
tose transporter and some phage related genes were
down-regulated. In E. coli R15-2, representing a
heterogeneous group of motile and less motile col-
onies, increased flagellar gene expression was less
pronounced.

In contrast, in re-isolate Sp10, in which all col-
onies showed increased motility, flagella biosyn-
thesis and assembly genes (flgA, flgDEFG, flhA,

http://jurology.com/
http://jurology.com/


Figure 3. Virulence gene repertoire and characteristics of E. coli 83972 and symptomatic re-isolates. A, 1.6 kb plasmid and fim deletion

were amplified by polymerase chain reaction (PCR) to verify E. coli 83972 identity in patient urine. B, identical virulence gene set was

identified in E. coli 83972 and symptomatic re-isolates. C, E. coli 83972 and re-isolate phenotypic characteristics.
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fliA, fliG and fliO) were significantly up-regulated
together with genes involved in heat shock
response ( groEL and groES ), LPS biosynthesis
(rfaGPIJY, waaV, waaW and lpxAB), amino sugar
use ( glmUS ) and iron uptake (chuATUWXY and
entCA). Transport genes were significantly down-
regulated, including aga, srl and dgo.

The yjbE and yqjD genes involved in biofilm
formation were commonly up-regulated in R15-2
clone I and Sp10 compared to E. coli 83972, as
were gudD and gudP involved in D-glucarate use,
and genes coding for 30S and 50S ribosomal subunit
components. Transcription of ribose transporter
genes was repressed in each re-isolate relative to
the wt.

Accordingly, transcriptional regulation was
unique for bacteria recovered from each host. It
provided no evidence of commonly deregulated genes
in re-isolates from different symptomatic hosts.

Bacterial Persistence and Host Response

Activation In Vivo

To investigate whether the re-isolates showed
increased virulence we established in vivo infections
in C3H/HeN mice. There was no significant differ-
ence in the bacterial number in kidneys and blad-
ders 24 hours and 7 days after inoculation (fig. 6, A).
Urine neutrophil counts reflected the low acute in-
flammatory response to E. coli 83972. Motility of the
re-isolates did not influence bacterial numbers or
urine neutrophil counts (fig. 6, A).

E. coli 83972 was compared to the strain
83972DfliC mutant, which does not express func-
tional flagella. SN25, the most motile asymptomatic



Figure 4. Phenotypic characterization of E. coli 83972 re-isolates from symptomatic episodes. A, adhesion to T-24 bladder epithelial

cells and A498 kidney epithelial cells. B, biofilm formation in pooled human urine. C, growth kinetics in pooled human urine

in vitro. D, motility on urine swarm agar plates.
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re-isolate, served as the positive control (fig. 6, B).
We observed a biphasic infection pattern. Five
hours after infection E. coli 83972 and SN25
reached significant numbers while the kidneys of
mice colonized with E. coli 83972DfliC remained
sterile, consistent with a role for flagellation in the
early phase of ascending infection.16 At 7 days
persistent bacteriuria (greater than 105 cfu/ml)
developed in mice infected with E. coli 83972 and
83972DfliC. The highly motile isolate was elimi-
nated more rapidly than the wt and no increase
in the urine neutrophil number was related to
flagellation (fig. 6, B).
DISCUSSION
After comparing the genome of E. coli 83972
re-isolates from different inoculated human hosts
we previously suggested that evolution toward
commensalism is favored during asymptomatic
bladder colonization.9 The current study was
designed to address whether evolution toward
virulence may occur in parallel in specific hosts. To
detect changes in bacterial properties associated
with the rare development of symptoms during
asymptomatic carriage we investigated phenotypic
or genotypic changes in re-isolates that might have
precipitated the symptomatic episodes.

After 202patient-months ofE. coli 83972ABUonly
3 symptomatic UTI episodes with E. coli 83972 were
recorded. Analysis of these isolates and an additional
2 re-isolates from symptomatic episodes excluded
regained expression of virulence factors as a cause
of symptoms. LPS and capsule as well as biofilm
formation and adherence properties remained un-
changed. Deregulated genes were mainly involved
in different stress responses, metabolic versatility
and LPS biosynthesis but no common expression
pattern was detected. Flagellation was perturbed
but differences in virulence were not observed in the
murine UTI model. Results suggest that the occa-
sional symptomatic UTI episode does not reflect
regained expression of established virulence factor in
E. coli 83972 during long-term carriage.

Interestingly, we observed phenotypic variation
in the E. coli 83972 monoculture populating the
bladder. This behavior mirrored adverse and stress
conditions, and it may ensure the fitness and sur-
vival of a subset of cells in this niche. The presence
of 2 phenotypes in a clonal population18 suggests
bistable gene expression facilitating the exploitation
of dynamic host environments and promoting gene



Figure 5. Gene expression profiling of individual re-isolates. A, gene expression in re-isolates relative to E. coli 83972. Most regulated

genes were unique to each isolate. B, hierarchical cluster analysis of deregulated genes in re-isolates relative to E. coli 83972. Strains

were grown in vitro at 37C in pooled human urine. Values represent mean expression ratio of at least 3 independent microarray

experiments. Green areas indicate significantly regulated (log twofold change, p <0.05) suppressed genes. Red areas indicate

significantly regulated (log twofold change, p <0.050) up-regulated genes. Black areas indicate genes without statistically

significant change (p >0.05).
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expression changes, eg those favoring chronic
infection.19 Examples of such heterogeneous phe-
notypes correlated with increased fitness of Vibrio
cholerae20 and E. coli.21 Flagellin expression of
Salmonella typhimurium also underlies bistable
gene regulation22 but host environmental factors
driving these changes remain poorly understood.
Small colony variant formation in Staphylococcus
aureus or P. aeruginosa23,24 has correlated with
chronic infection and in Campylobacter jejuni it is
considered a survival strategy relying on stress fit
individuals in a heterogeneous population.25 There-
fore, bacterial adaptation to long-term in vivo
growth in the urinary tract could include phenotype
switching. Alternatively, the occurrence of hetero-
geneous populations at symptomatic episodes may
represent spontaneous stochastic events, including
minor transient populations.

If symptom development were due to changes
in bacterial virulence, the re-isolates should have
shown increased fitness in the murine UTI model,
as reflected by a higher count in the bladders and
kidneys. In parallel, we would have expected these
strains to trigger an inflammatory response that was
not observed after infection with the wt strain.
However, such changes were not observed. The
highly flagellated asymptomatic strain SN25
attained a significant number in kidneys 5 hours
after infection. This suggests that flagellar motility
may be important for initial ascent of bacteria to
the upper urinary tract but this was cleared earlier
than the wt strain. In contrast, the 83972DfliC
mutant established persistent bacteriuria without
upper urinary tract involvement, similar to human
ABU.This implies that increasedflagellar expression
may be counterproductive for long-term persistence.

Symptomatic episodes were accompanied by an
innate immune response with increased cytokine
and chemokine levels in urine as well as pyuria.
IL-6 and 8 responses in symptomatic UTI have been
extensively studied and the concentrations reflect
disease severity.26 A recent experimental study
suggested a potential role for noninflammatory host
responses, showing distinct symptomatic responses
to bacteriuria mediated by TLR4 that are indepen-
dent of inflammation.27 However, in our study
all symptomatic UTI episodes were accompanied
by increased cytokine levels. Additional proin-
flammatory cytokines included IL-1a, which was
counterbalanced by the IL-1 receptor antagonist
IL-1RA, as well as RANTES, which was associated
with eosinophil/mast cell activation. The increase in
soluble IL-2Ra and IFNg confirmed a response
profile previously observed in patients with E. coli
83972 bacteriuria.28 These findings are consistent
with local lymphocyte and dendritic cell activation,
and infection dependent formation of lymphoid fol-
licles in patients with long-term ABU. The follicles
resolve after antibiotic eradication of bacteriuria,
confirming that they are driven by infection. How-
ever, there was no evidence of follicle formation in
patients who carried E. coli 83972.6
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Figure 6. Geometric mean � SEM values of re-isolate virulence, as defined by in vivo infection (Mann-Whitney test). A, experimental

infection of C3H/HeN mice by intravesical inoculation with 109 cfu in 0.1 ml E. coli 83972 or re-isolates from symptomatic episodes.

Bacterial number in urine, kidneys and bladders, and neutrophil response revealed no difference in virulence (Mann-Whitney test).

B, role of increased flagellation and motility were compared for E. coli 83972 wt and highly motile re-isolate Sp10. Mutant strains

E. coli 83972 DfliC::cat and SN25, highly motile re-isolate from asymptomatic carrier, served as negative and positive control,

respectively. Bacterial numbers in urine, kidneys and bladders, and neutrophil influx revealed no long-term advantage for

flagellated strains.
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CONCLUSIONS
In the absence of functional virulence factors and
shared molecular changes in bacteria the mecha-
nism behind the emergence of symptoms remains
unclear. A possibility is a host driven break in
the tolerance of asymptomatic colonization, which
triggers spurious pathogen recognition signaling.
However, it is intriguing to speculate that the
molecular events that precipitate cystitis symptoms
have a different mechanistic nature than that of
acute pyelonephritis. It is also intriguing that the
few study patients in whom symptoms developed
during ABU strain carriage may share what is to our
knowledge an as yet undefined host response pattern
that leads to immune overactivity and symptoms.
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Bacterial virulence factors influence the site and severity of urinary tract infections. While
pyelonephritis-associated molecular traits have been defined, virulence factors specific for acute cystitis
strains have not been identified. This study examined the virulence factor repertoire of 247 Escherichia
coli strains, prospectively isolated from women with community-acquired acute cystitis. Fim sequences
were present in 96% of the isolates, which also expressed Type 1 fimbriae. Curli were detected in 75%, 13%
of which formed cellulose. Pap sequences were present in 47%, 27% were papGþ, 23% were prsGþ and
42% expressed P fimbriae. TcpC was expressed by 33% of the strains, 32% in a subgroup of patients who
only had symptoms of cystitis and 42% in patients with signs of upper urinary tract involvement; most
frequently by the papGþ/prsGþ subgroup. Strains with the full fim, pap and TcpC and curli virulence
profile were more common in cystitis patients with than in patients without upper tract involvement
(p< 0.05). The varied virulence profile of E. coli strains causing acute cystitis suggests that diverse
bacterial strains, expressing Type 1 fimbriae trigger a convergent host response, involving pathways that
give rise to the characteristic symptoms of acute cystitis.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The severity of urinary tract infections (UTI) reflects the viru-
lence and tissue specificity of the infecting strain. Acute pyelo-
nephritis is caused by a restricted subset of uropathogenic
Escherichia coli (UPEC) clones, distinguished for example by O:K:H
serotypes or E. coli reference collection types combined with
specific virulence factors with specific functions during the
pathogenesis of infection [1]. Adhesins, including P and Type 1
fimbriae facilitate tissue attack and toxins perturb diverse cellular
functions [1,2]. TcpC, a homolog of the Toll/Interleukin-1 receptor
domain is a new type of virulence factor, which acts by inhibiting
Toll-like receptor (TLR) signaling [3]. These virulence factors
increase the fitness of UPEC for the renal environment and aid
them to resist elimination by the host defense. Through their
interactions with host cells, the virulence factors trigger the
innate immune response, leading to symptoms like fever, general
malaise and flank pain.
atharina.svanborg@med.lu.se

All rights reserved.
Acute cystitis is a more common but less well-defined disease
entity than acute pyelonephritis, characterized by inflammation of
the lower urinary tract with symptoms like dysuria, frequency and
suprapubic pain. Acute cystitis strains form an intermediary group
with respect to O:K:H serotype diversity, ECOR types and certain
virulence gene frequencies [1,2,4,5]. Type 1 fimbrial expression
alone has been discussed as major virulence factors in acute cystitis
as these fimbriae enhance virulence in the murine urinary tract
[6,7e9], through attachment to the bladder mucosa. Receptor
epitopes are provided bymannosylated host cell glycoconjugates in
sIgA [10], uroplakins on bladder cells, CD48 on mucosal mast cells
[11], integrins b1 and a3 [12] and Tamm-Horsfall Protein (THP) [13]
and diverse signaling pathways trigger bacterial internalization and
innate immunity. On the other hand, human inoculation studies
have so far not confirmed the role of Type 1 fimbriae for persistence
and inflammation in the urinary tract [9,14,15]. Toxins such as
hemolysin (hly) and cytotoxic necrotizing factor (CNF) enhance
uroepithelial damage [16] and curli and cellulose support biofilm
formation but there is no evidence that these properties are unique
for acute cystitis strains or more abundant in this group [17]. Acute
cystitis strains also express P fimbriae [4,5,18e20] and three PapG
adhesin variants have been identified [21]. The reported frequen-
cies of P fimbriated strains vary among acute cystitis isolates as
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shown by binding assays and PCR-based genotyping [5,18e20,22]
and thus, the contribution of the PapG adhesin variants to
bladder infection remain unclear.

In this study, we have usedmolecular epidemiology to address if
strains causing acute cystitis have a distinct virulence factor
repertoire. The results show that Type 1 fimbriae and curli are
common in acute cystitis isolates but analysis of multiple virulence
factors did not define a cystitis-specific virulence profile. These
findings raise the question if the symptoms of acute cystitis actually
result from the action of specific virulence factors, especially Type 1
fimbriae which are most abundant among these strains, or if the
pathogenesis of acute cystitis is fundamentally different from that
of acute pyelonephritis, in terms of the variety of organisms that
can give rise to a similar symptom profile. Understanding the
pathogenesis of acute cystitis thus remains a major challenge.

2. Materials and methods

2.1. Patients

Women� 18 years of age were enrolled in a controlled
randomized treatment trial of symptomatic UTI in general practice
[23]. They had significant bacteriuria (>104 cfu/mL) and were
assigned a diagnosis of acute cystitis based on frequency, dysuria
and/or suprapubic pain, a temperature <38.0 �C and no flank pain.
Patients who also had flank pain and/or fever (>38.0 �C) were
diagnosed as having acute cystitis with upper urinary tract
involvement. On admission, a history of previous UTI, concomitant
disease and medical treatment were recorded. The UTI episode was
classified as sporadic (<two episodes during the previous six
months or<three during the previous 12 months) or recurrent and
as uncomplicated or complicated if the patient had structural or
functional abnormalities of the urinary tract.

2.2. Host response to infection

Blood samples were obtained at diagnosis and examined for C-
reactive protein (CRP, cut off� 10 mg/L), white blood cell counts
(cut off� 10�109/L) and erythrocyte sedimentation rate (ESR, cut
off> 25 mm/h).

2.3. Urine cultures

Midstream urine samples were obtained at diagnosis. Quanti-
tative urine cultures identified 247 E. coli growing as monocultures,
and the isolates were stored in deep agar stabs. For analysis,
bacteria were grown overnight on tryptic soy agar plates at 37 �C.
The urinary tract is normally sterile, and urinary tract infections are
usually caused by a single bacterial strain, originating from the fecal
flora [24,25]. Infections by multiple organisms are associated with
long-term catheterization or mechanical disorders affecting the
urine flow [26].

2.4. Pap, fim, papG and TcpC genotypes

P fimbriae are encoded by the pap operon [27]. The pap geno-
type was determined by DNAeDNA hybridization with probes
specific for the 50 (HindIII) and 30 (SmaI) fragments of the pap
operon and derived from the pap gene cluster [22]. The papG
adhesin isotypes were defined by PCR, using primer pairs that
matched unique regions of the papGIA2, prsGJ96 sequences [28].
Whole bacterial cells provided template DNA and primers did not
cross-amplify other papG sequences, as shown by the recombinant
strains containing a single known copy of papGIA2 or prsGJ96. The P
fimbriated E. coli IA2 and E. coli J96, and the pap positive
recombinants E. coli HB101 (papGIA2) and E. coli HB101 (prsGJ96)
were used as positive controls and E. coli HB101, E. coli AAEC
(pPKL4) as negative controls. The TcpC genotype was defined by
PCR, using specific primer pairs defining unique regions of the TcpC
sequences [3].

The fimH genotype was defined by PCR, using primer pairs that
matched unique regions of the adhesin sequences [28].

2.5. Bacterial phenotypes

Type 1 fimbrial expressionwas detected by hemagglutination of
guinea pig and human erythrocytes after in vitro passage in Luria
broth. Agglutination was performed both in the presence and
absence of a-methyl-D-mannoside. Strains causing mannose-
sensitive agglutination were defined as Type 1 fimbriated [15].

The P-fimbrial phenotype was defined by P blood group-
dependent hemagglutination [22]. P-fimbrial expression was
defined by agglutination of P1 (receptor positive) but not p
(receptor negative) erythrocytes. Class II strains agglutinated A1P1,
OP1 but not A1p erythrocytes and Class III agglutinated only A1P1
and not OP1 erythrocytes. Strains, which agglutinated A1p eryth-
rocytes were assigned to a group with “other mannose resistant
adhesins”.

Morphotype analysis on Congo red and Calcoflour plates was
used to study curli and cellulose expression [17]. After overnight
culture, morphotypes were determined at daylight (Congo red) and
UV-light (Calcoflour), as previously described. Reference strains
were included and all strains were classified as curliþ and
celluloseþ, curliþ and cellulose�, curli� and cellulose� and curli�
and celluloseþ.

Biofilm formation was quantified by the crystal violet method
[17]. Bacteria diluted in Luria-Bertani broth without salt were
seeded into 96-well plates, incubated overnight at 37 �C without
shaking, washed, air-dried and stained with crystal violet (3%). The
dyewas solubilized with ethanol (95%) and the optical density (OD)
was measured at 570 nm. Ability to form biofilms was defined at an
OD� 0.5.

2.6. Hemolysin production

Hemolytic strains were identified in nutrient agar with 5%
washed horse erythrocytes after overnight incubation. A hemolytic
zone larger than the overlying colony was considered positive [4].

2.7. Statistical analysis

Chi-square test or the Fisher’s exact test was used. p< 0.05 was
considered statistically significant (two-tailed).

3. Results

3.1. Characteristics of the patient population at inclusion

Women with cystitis symptoms and bacteriuria (n¼ 247, mean
age 51 years, range 18e91) were included and their infecting E. coli
strains were saved. All but five patients had bacteriuria defined as
�105 cfu/mL (98%); the remaining had 104 cfu/mL of urine. Most
patients (83%) were healthy, except for the ongoing UTI episode,
but 39 had hypertension and/or diabetes (Table 1). The UTI episode
was sporadic in 73% while 16% had a history of childhood UTI,
indicating UTI susceptibility. Most of the patients (n¼ 215) had only
acute cystitis symptoms but a smaller group (n¼ 32, 13%) also had
flank pain and/or fever, suggesting upper tract involvement
(Table A.1). This group had increased circulating CRP levels and



Table 3
Fim genotype, type 1 fimbrial, curli/cellulose expression and biofilm formation.

Virulence typing,
E. coli isolates

Total
No. (%)

Symptoms p Values

Cystitis
No. (%)

Upper tract
No. (%)

Fim genotypea 247 215 32
Positive 237 (96) 207 (96) 30 (94) n.s.

Type 1 expressionb,c 226 198 29
Positive 181 (80) 161 (81) 20 (71) n.s.

Hemolysin expressiond 245 213 32
Positive 68 (28) 60 (28) 8 (25) n.s.

Morphotypese 227 198 29
Curliþ and celluloseþ 30 (13) 27 (14) 3 (10)
Curliþ and cellulose� 140 (62) 117 (59) 23 (79) p¼ 0.036
Curli� and cellulose� 57 (25) 54 (27) 3 (10)
Curli� and celluloseþ 0 0 0

Biofilm formationf 225 196 29
0.0e0.49 189 (83) 167 (85) 22 (76)
0.5� 2 36 (16) 29 (15) 7 (24) n.s.

a Analyzed by PCR.
b Analyzed by hemagglutination.
c Information from 21 patients was missing.
d 16 strains had weak hemolysin production.
e Information from 20 patients was missing.
f Information from 22 patients was missing.

Table 1
Host background variables in women with acute cystitis.

Host background variables Patients No. (%)

Age, years median [range] 51.0 [18e91]

Medical events
No illnessa 205 (83)
Hypertensionb 31 (13)
Diabetes 8 (3)
Diureticsc 29 (12)

UTI history
Childhood UTI 39 (16)

Current UTI
Cystitis 215 (87)
Upper tract involvementd 32 (13)

Type of symptomatic UTIe,f

Sporadic uncomplicated 154 (62)
Sporadic complicated 26 (11)
Recurrent uncomplicated 56 (23)
Recurrent complicated 11 (4)

Total No. of patients 247

a Patients without any known illness other than UTI.
b One patient had both hypertension and diabetes, 26 patients with

hypertension received diuretics and 3 additional patients received diuretic
treatment without a diagnosis of hypertension.

c Diuretic treatments: tiazides (n¼ 14), loop-diuretics (n¼ 6), K-sparing
drugs (n¼ 1), combinations of diuretics (n¼ 8).

d Patients with flank pain alone or in combination with cystitis symp-
toms and/or fever.

e Complicated UTI structural or functional abnormalities of the urinary
tract including diabetes.

f Sporadic UTI< 2 UTI episodes during the last 6 months or <3 during
the last 12 months.
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white blood cell counts compared to the group with only acute
cystitis symptoms (p¼ 0.01 and p¼ 0.01 respectively, Table 2).

3.2. Fim genotype, Type 1 fimbrial and hemolysin expression

As Type 1 fimbriae have been implicated in cystitis pathogenesis
and shown to be essential virulence factors in the murine UTI
model, we first defined the Type 1 fimbrial genotype by PCR using
fim specific primers. The expression of Type 1 fimbriae was also
detected by mannose-sensitive hemagglutination. Except ten
isolates, all were fimþ (96%) and Type 1 fimbrial expression was
detected in 80% of the isolates (Table 3). There was no significant
difference in fim frequency between isolates from patients with
acute cystitis (81%) and the subgroup which also had upper tract
involvement (71%) (Fig. 1A). Hemolysin expression was only
detected in 28% in the total sample and the frequency did not differ
between the two groups (Table 3). The results confirm the high fim
Table 2
Laboratory parameters in women with acute cystitis.

Laboratory parameter Total No. (%) Symptoms p Values

Cystitis
No. (%)

Upper tract
No. (%)

C-reactive protein 247
>10 mg/L 67 52 (24) 15 (47) p¼ 0.01

White blood cell counts 242
>10� 109/L 43 32 (15) 11 (35) p¼ 0.01

Erythrocyte
sedimentation rate

145

>25 mm/hg 50 45 (21) 5 (16) n.s.
frequency among cystitis strains, consistent with these adhesins
being essential for the pathogenesis of acute cystitis.

3.3. Curli, cellulose and biofilm expression

Curli are bacterial surface organelles that bind several host
extracellular matrix and contact phase proteins. These adhesive
fibers enhance bacterial biofilm formation on various abiotic
surfaces. To analyze curli expression as a virulence factor in acute
cystitis isolates, curli expression was examined by morphotype
analysis. Curli were detected in seventy-five per cent of the isolates;
73% in patients with acute cystitis compared to 89% of patients, who
also had upper tract involvement. Only 13% of the strains formed
cellulose (Table 3). The curliþ and cellulose� phenotype was more
frequent in patients with upper tract symptoms (p< 0.05) (Fig. 1B).
Biofilm, which consists of microorganisms and their extracellular
products forming a structured community on a surface, was
detected by the crystal violet method in <20% of all strains after
growth at 37 �C, which was selected to resemble the conditions in
the urinary tract. The results suggest that strains causing acute
cystitis frequently express curli but biofilm formation was mostly
not detected.

3.4. Pap/PapG genotypes and P-fimbrial expression

The pap gene cluster is strongly associated with acute pyelone-
phritis and urosepsis but in acute cystitis strains reported
frequencies have been below 50%, suggesting a less strong effect on
bladder infections than in the kidneys. The P-fimbrial G adhesin
determines the receptor specificity is localized at the tip of the
fimbrial organelle and at least 3 isotypes have been distinguished,
based on receptor specificity of the G adhesin (Class I PapG, Class II
PapG and Class III PapG or PrsG). Two P-fimbrial isotypes
predominate among uropathogenic E. coli. Class II G adhesins,
encoded by the papGIA2 sequences, recognize all P blood group
determinants. Class III G adhesins, encoded by the prsGJ96
sequences, recognize P blood group determinants with a terminal
blood group A residue [22,27]. Class I P fimbriae (papGJ96) are
uncommon in clinical isolates.



Fig. 1. Virulence factor repertoire of Escherichia coli isolates fromwomen with acute cystitis. (A) Fim genotype and Type 1 fimbrial expression in isolates from 247 patients, all with
symptoms of acute cystitis (n¼ 215) and a subgroup, who also had upper tract symptoms (n¼ 32). (B) Curli and cellulose expression of Fim genotype positive strains in the different
patient groups. The curliþ and cellulose� phenotype was more frequent in the subset of patients with upper tract symptoms (p< 0.05). (C) and (D) Pap genotype and P-fimbrial
expression in the different patient groups. (E) TIR homologous TcpC sequences in the different patient groups, and in relation to the pap genotype. (F) 23 isolates were weakly
positive and are not included. Significantly higher TcpC frequency in patients with papGþ and/or prsGþ strains (p< 0.001 and p< 0.05). (F) Fim genotypes, curli/cellulose expression
and papG genotypes (G) in patients with no host compromise, patients with history of UTI and patients with medical events. The frequency of fimþ and curliþ isolates was
increased in patients with medical events compared to those with a history of UTI (p< 0.05).
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To further clarify this question, the P-fimbrial gene cluster was
detected by DNA hybridization and adhesin isotypes (papG/prsG)
were identified by PCR, using specific primers. The pap gene cluster
was present in 43% of all isolates (Table 4). The papGIA2 adhesin
sequences were present in 24% and prsGJ96 sequences in 20% of all
isolates, while 3% of the isolates carried both adhesin genes (Fig. 1C
and D).

The P-fimbrial phenotype is defined by hemagglutination, using
erythrocytes specifically expressing the P blood group antigens in
the presence or absence of the A blood group determinant and with
P blood group deficient cells as a negative control. P-fimbrial
expression (Class IIþ III) was detected by hemagglutination in 104
(42%) of the isolates (Table 4). Among those, Class II fimbriae
(papGIA2) weremore common (77%) than Class III fimbriae (prsGJ96)
(23%, p< 0.001). P blood group independent adhesins were found
in 13% of the strains.

P-fimbrial expression was further examined as a function of the
papG genotype. As expected, most strains expressing Class II P
fimbriae were papGþ (80%) and isolates expressing Class III P
fimbriae were prsGþ (96%), 30% of the strains agglutinating A1p



Table 4
Pap genotype and P-fimbrial expression in E. coli isolates.

Pap genotype and
P-fimbrial expression

No. of isolates (%) p Values

All isolates Cystitis Upper Tract

Pap genotype,a totalb 247 215 32
Positive 106 (43) 88 (41) 18 (56) n.s.

PapG alleles,c total 247 215 32
papGIA2 59 (24) 48 (22) 11 (34)
prsGJ96 50 (20) 41 (19) 9 (28)
papGIA2þ prsGJ96 8 (3) 8 (4) 0 (0)

P-fimbrial expression,d total 247 215 32
Positivee 104 (42) 88 (41) 16 (50) n.s.

P-fimbrial subtypes, total 104 88 16
Class IIf (PapG) 80 (77) 67 (76) 13 (81) n.s.
Class IIIg (PrsG) 24 (23) 21 (24) 3 (19) n.s.

a Analysis based on restriction fragment length polymorphism.
b Total¼ number of isolates examined for each parameter.
c Analyzed by PCR.
d Analyzed by P blood group specific hemagglutination.
e Agglutinated human P1 but not p erythrocytes.
f Class II P fimbriated strains defined by agglutination of human A1P1, OP1 but not

p erythrocytes. There is a higher frequency of Class II P fimbriae compared to Class III
in all three groups p< .001.

g Class III P fimbriated strains defined by agglutination of human A1P1 but not OP1
or p erythrocytes.
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erythrocytes were prsGþ, suggesting that P-fimbrial expression
might be masked in this group.

In patients with upper tract involvement, 56% of isolates were
papþ and 50% expressed P fimbriae compared to 41% and 41% of the
isolates from patients without upper tract symptoms (p¼ 0.102 and
p¼ 0.332 respectively). There was no difference in Class II distri-
bution among patients with acute cystitis with or without upper
tract involvement, however (76% versus 81%, p¼ 0.75).

The results suggest that about half of acute cystitis strains are
papþ, that the papG genotype predominates over prsG and that
most papþ acute cystitis strains express functional P fimbriae.
3.5. TcpC genotype

TcpC is a TIR domain homologous protein secreted by UPEC,
which promotes bacterial survival by inhibiting the innate host
response and specifically MyD88 dependent signaling pathways
[3]. The TcpC genotype of the cystitis isolates was defined by PCR,
using specific primers. TcpC was detected in 33% of the isolates, in
Fig. 2. Combined virulence repertoire including the fim, tcpC, papG/prsG sequences and
respectively. Strains with the combined virulence repertoire were more common in the sub
with acute cystitis alone (p< 0.05).
32% of patients with acute cystitis compared to 42% in the subset of
patients with upper tract symptoms (Fig. 1E). TcpC was more
common in the papGþ/prsGþ subset of the strains than in isolates
lacking papG and/or prsG (p< 0.01 and p¼ 0.01, respectively)
(Fig. 1F). The results confirmed that papþ uropathogenic strains
express TcpC more often than pap� strains, but showed no signif-
icant association with acute cystitis.

3.6. Virulence, UTI history and host compromise

Medical conditions that compromise the host defense have
previously been shownto influence the requirements forvirulence in
strains causing acute pyelonephritis [29]. The virulence factor profile
was therefore compared between isolates from patients with dia-
betes/hypertension and those who were healthy except for the
ongoing UTI episode. Furthermore, genetic predisposition has been
shown to influence acute pyelonephritis susceptibility and the
frequency of UTI in this group. Isolates from patients with sporadic
infections were therefore compared to isolates from patients, who
had a history of UTI (Fig. 1G and H). There was no significant differ-
ence in overall virulence profile related to these host variables. The
frequency of fimþ and curliþ isolates was increased in patients with
medical events compared to those with a history of UTI (p< 0.05).

3.7. Combined virulence profile

The E. coli isolates were assigned a virulence profile based on
their expression of virulence factors (Fig. 2). The complete virulence
profile, comprising the fim, papG/prsG and TcpC genotypes as well
as curli was detected in 18% of the isolates; 15% of the cystitis only
and 37% of the group with upper tract involvement (p< 0.01). 35%
of the strains carried the fim, papG/prsG sequences and expressed
curli and this combination was also more common in patients with
upper tract involvement (p¼ 0.001). There was also a significant
difference in the frequency of fimþ strains with curli expression
between the two groups (p< 0.05). The results showed that strains
with the combined virulence profile were significantly more
common in patients with acute cystitis who had upper tract
involvement than in patients with only lower tract symptoms.

4. Discussion

The molecular basis of acute cystitis has been extensively
studied in cellular and experimental infection models [14,15,30].
Still, it remains unclear if a specific repertoire of virulence factors
curli formation in all patients, those with acute cystitis and upper tract symptoms,
group of patients with acute cystitis and upper tract involvement compared to patients
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distinguishes acute cystitis strains from E. coli causing other forms
of UTI. The present study examined E. coli isolates from 247 women
with acute cystitis, using a combination of virulence genes
commonly associated with acute pyelonephritis or cystitis. Type 1
fimbrial expression and fim sequences were common in the cystitis
isolates, supporting their role in bladder infection. Curli, which
have been proposed to improve biofilm formation, adhesion to host
cells and internalization [31] were expressed by>70% of all isolates.
In contrast, P fimbriae and TcpC were expressed by less than half of
the cystitis strains, with papG being somewhat more common than
prsG. A subgroup of strains expressed all the tested virulence factors
(fim, papG, prsG, TcpC and curli) but such strains were not abundant
in the acute cystitis group. Consistent with a role of these virulence
factors in kidney infection, however, strains with the full virulence
genotype were most common in patients with acute cystitis and
upper tract involvement. The results suggest that Type 1 fimbrial
expression is a unifying feature among acute cystitis strains, but
provide no evidence that the virulence gene repertoire distin-
guishes strains causing acute cystitis from other uropathogens. In
view of the variable virulence profile and high frequency of Type 1
fimbrial expression, we speculate that characteristic acute cystitis
symptoms may be triggered Type 1 fimbrial interactions with the
bladder mucosa. The symptoms reflect a different repertoire of host
mediators than acute pyelonephritis possibly including bacterial
tethering of neuronal circuits in the mucosal compartment.

Type 1 fimbriae are ubiquitously expressed by uropathogenic
E. coli as well as other Gram-negative bacteria. Due to this high
frequency, their role as independent virulence factors has been
debated [15]. Recently, strains causing asymptomatic bacteriuria
have been shown to carry fim deletions, suggesting that an intact
fim gene cluster may be counterproductive and that a loss of
functional type 1 fimbriae promotes bacterial adaptation to long-
term bacterial carriage in the urinary tract. The high fim
frequency in the present study is consistent with a contribution of
Type 1 fimbriae to acute cystitis pathogenesis, either during the
colonization phase or by enhancing inflammation and symptoms
[9,14,15,30,32]. Furthermore, type 1 fimbriae are major virulence
factors in the murine cystitis model, where they act by promoting
bacterial attachment and by triggering a partially TLR4 dependent
innate immune response [33]. FimH has also been shown to
suppress NFkB-dependent transcription of pro-inflammatory genes
[34,35] and Type 1 fimbriae have been proposed to enhance E. coli
uptake into specialized dome cells in the bladder mucosa and
promote intracellular bacterial proliferation, thus creating persis-
tent infection and resistance to antibiotic therapy [36,37]. Binding
of the FimH adhesin to uroplakin complexes on the uroepithelial
surface mediates bacterial entry into uroepithelial cells [32,38]
through elevated cAMP levels [34]. In addition, Type 1 fimbriae
may be involved in eliciting apoptosis in uroepithelial cells [35]. In
mucosal mast cells, FimH binding to the CD48 receptor has been
proposed to direct bacterial uptake.

Human inoculation studies have provided somewhat contra-
dictory results, regarding Type 1 fimbriae and their contribution to
UTI. The prototype ABU strain E. coli 83972 fails to express Type 1
fimbriae and gives rise to a weak host response. After trans-
formation of this strain with the fim gene cluster followed by
human inoculation, the Type 1 fimbriated strain did not trigger
a higher innate immune response than the wild type strain and
there was no difference in the establishment of bacteriuria, sug-
gesting that Type 1 fimbriae might function differently in the
human and murine urinary tracts [15]. In addition to fim sequence
variation, virulence for the urinary tract is modified by controlled
variation in Type 1 fimbrial expression [30,39,40]. In a clinical study
of E. coli O1K1H7 and acute pyelonephritis in children, disease
severity was augmented when the infecting strain expressed both
Type 1 and P fimbriae compared to infections caused by the same
strain, but having lost Type 1 fimbrial expression [40]. This differ-
ence was also observed in vivo, where reconstitution with func-
tional fim sequences restored virulence in the murine model [30]
consistent with Type 1 fimbriae contributing to kidney infection. In
the present study, Type 1 fimbrial expressionwasmaintained in the
largemajority of the strains, suggesting that acute cystitis strains do
not loose Type 1 fimbrial expression through phase variation or
mutation during the acute phase of infection, consistent with
a functional role for these fimbriae in acute cystitis.

The efficiency of the bacterial virulence factors in causing UTI
depends on the immune status of the host. Innate immunity
controls many aspects of the host response to acute UTI and
variation on the efficiency of this response has been shown to
affect the degree of tissue damage and the clearance of infection
[41]. As a consequence, host genetic variants that modify the
innate immune response have been associated with different
forms of UTI [42,43]. In patients with recurrent UTI, which mostly
denotes cystitis, several genetic screens have proposed gene
associations, including promoter polymorphisms in LTA and TNFa
[44], in the coding regions of TLR1, TLR4 and TLR5 [45]. The
functional importance of these genetic variants in cystitis is not
well understood, however. Several genetic markers of acute
pyelonephritis have been established but have shown no associ-
ation with acute cystitis. Low expression of the chemokine
receptor CXCR1 is associated with APN susceptibility and CXCR1
gene polymorphisms are common in pyelonephritis prone indi-
viduals [46]. Other genetic markers of pyelonephritis suscepti-
bility include IRF 3 polymorphisms [43]. These genetic studies
emphasize the difference in pathogenesis and genetic control as
well as the symptoms typical of acute pyelonephritis and cystitis.
Finally, in ABU, genes like TLR4 may be mutated and promoter
polymorphisms have been associated with reduced TLR4
expression and ABU but not with acute cystitis [42]. In future
studies, it may be relevant to match bacterial properties against
the host immune repertoire, to better understand the patho-
genesis of acute cystitis.

It is interesting to speculate that acute cystitis strains may share
as yet undefined virulence factors that specifically enhance the
attack on the bladder mucosa. The cystitis strains are genetically
diverse, however, and it appears less likely that strains of very
different clonal origin would share a new, disease-defining cystitis-
specific virulence factor. The clinical presentation of disease might
instead be determined by the host response pathways, which are
activated by the different acute cystitis strains. Innate immunity is
crucial for the antimicrobial defense of the urinary tract, and TLR4
dependent signaling pathways have been shown to influence the
susceptibility to acute pyelonephritis and asymptomatic bacteri-
uria. It remains possible that distinct innate response circuits may
distinguish cystitis prone patients from patients prone to other
forms of UTI. In this case, strains with different virulence profiles
may converge on similar host signaling pathways creating the
characteristic acute cystitis symptoms. The relevant pathways and
host response dynamics need to be further explored.
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Appendix

See Table A.1.
Table A.1
Signs and symptoms of acute cystitis at the time of diagnosis.

Symptoms Patients No. (%)

Lower tract symptoms only
Frequency and dysuria 92 (37)
Frequency, dysuria and suprapubic pain 71 (29)
Frequency or dysuria or suprapubic pain 39 (16)
Frequency, suprapubic pain or dysuria, suprapubic pain 13 (5)

Additional upper tract symptoms
Flank pain and/or fever 32 (13.4)

Total No. of patients 247
References

[1] Orskov I, Orskov F, Birch-Andersen A, Kanamori M, Svanborg-Eden C. O, K, H
and fimbrial antigens in Escherichia coli serotypes associated with pyelone-
phritis and cystitis. Scand J Infect Dis Suppl 1982;33:18e25.

[2] Johnson JR. Virulence factors in Escherichia coli urinary tract infection. Clin
Microbiol Rev 1991;4:80e128.

[3] Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, et al. Subversion of
Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1
receptor domain-containing proteins. Nat Med 2008;14:399e406.

[4] Sandberg T, Kaijser B, Lidin-Janson G, Lincoln K, Orskov F, Orskov I, et al.
Virulence of Escherichia coli in relation to host factors in women with symp-
tomatic urinary tract infection. J Clin Microbiol 1988;26:1471e6.

[5] Johnson JR, Russo TA, Brown JJ, Stapleton A. papG alleles of Escherichia coli
strains causing first-episode or recurrent acute cystitis in adult women.
J Infect Dis 1998;177:97e101.

[6] Svanborg-Eden C, Hagberg L, Hull R, Hull S, Magnusson KE, Ohman L. Bacterial
virulence versus host resistance in the urinary tracts of mice. Infect Immun
1987;55:1224e32.

[7] Mobley HL, Chippendale GR, Tenney JH, Hull RA, Warren JW. Expression of
type 1 fimbriae may be required for persistence of Escherichia coli in the
catheterized urinary tract. J Clin Microbiol 1987;25:2253e7.

[8] Hultgren SJ, Porter TN, Schaeffer AJ, Duncan JL. Role of type 1 pili and effects of
phase variation on lower urinary tract infections produced by Escherichia coli.
Infect Immun 1985;50:370e7.

[9] Schaeffer AJ, Schwan WR, Hultgren SJ, Duncan JL. Relationship of type 1 pilus
expression in Escherichia coli to ascending urinary tract infections in mice.
Infect Immun 1987;55:373e80.

[10] Wold AE, Mestecky J, Tomana M, Kobata A, Ohbayashi H, Endo T, et al.
Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia
coli type 1 fimbrial lectin. Infect Immun 1990;58:3073e7.

[11] Malaviya R, Gao Z, Thankavel K, van der Merwe PA, Abraham SN. The mast cell
tumor necrosis factor alpha response to FimH-expressing Escherichia coli is
mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc
Natl Acad Sci U S A 1999;96:8110e5.

[12] Eto DS, Jones TA, Sundsbak JL, Mulvey MA. Integrin-mediated host cell invasion
by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog 2007;3:e100.

[13] Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR. Tamm-Horsfall protein binds to type 1
fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia
and Ib receptors. J Biol Chem 2001;276:9924e30.

[14] Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, et al.
Induction and evasion of host defenses by type 1-piliated uropathogenic
Escherichia coli. Science 1998;282:1494e7.

[15] Bergsten G, Wullt B, Schembri MA, Leijonhufvud I, Svanborg C. Do type 1
fimbriae promote inflammation in the human urinary tract? Cell Microbiol
2007;9:1766e81.

[16] Smith YC, Rasmussen SB, Grande KK, Conran RM, O’Brien AD. Hemolysin of
uropathogenic Escherichia coli evokes extensive shedding of the uroepithe-
lium and hemorrhage in bladder tissue within the first 24 hours after intra-
urethral inoculation of mice. Infect Immun 2008;76:2978e90.

[17] Bokranz W, Wang X, Tschape H, Romling U. Expression of cellulose and curli
fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med
Microbiol 2005;54:1171e82.

[18] Svanborg C, Godaly G. Bacterial virulence in urinary tract infection. Infect Dis
Clin North Am 1997;11:513e29.
[19] Plos K, Carter T, Hull S, Hull R, Svanborg Eden C. Frequency and organization
of pap homologous DNA in relation to clinical origin of uropathogenic
Escherichia coli. J Infect Dis 1990;161:518e24.

[20] Johnson JR, Owens K, Gajewski A, Kuskowski MA. Bacterial characteristics in
relation to clinical source of Escherichia coli isolates from women with acute
cystitis or pyelonephritis and uninfected women. J Clin Microbiol 2005;43:
6064e72.

[21] Marklund BI, Tennent JM, Garcia E, Hamers A, Baga M, Lindberg F, et al.
Horizontal gene transfer of the Escherichia coli pap and prs pili operons as
a mechanism for the development of tissue-specific adhesive properties. Mol
Microbiol 1992;6:2225e42.

[22] Johanson IM, Plos K, Marklund BI, Svanborg C. Pap, papG and prsG DNA
sequences in Escherichia coli from the fecal flora and the urinary tract. Microb
Pathog 1993;15:121e9.

[23] The Urinary Tract Infection Study Group. Coordinated multicenter study of
norfloxacin versus trimethoprim-sulfamethoxazole treatment of symptomatic
urinary tract infections. J Infect Dis 1987;155:170e7.

[24] Lidin-Janson G, Hanson LA, Kaijser B, Lincoln K, Lindberg U, Olling S, et al.
Comparison of Escherichia coli from bacteriuric patients with those from feces
of healthy schoolchildren. J Infect Dis 1977;136:346e53.

[25] Plos K, Connell H, Jodal U, Marklund BI, Marild S, Wettergren B, et al. Intestinal
carriage of P fimbriated Escherichia coli and the susceptibility to urinary tract
infection in young children. J Infect Dis 1995;171:625e31.

[26] Tenke P, Bjerklund Johansen TE, Matsumoto T, Tambyah PA, Naber KG.
European and Asian guidelines on management and prevention of catheter-
associated urinary tract infections. Urologiia; 2008:84e91.

[27] Lund B, Marklund BI, Stromberg N, Lindberg F, Karlsson KA, Normark S.
Uropathogenic Escherichia coli can express serologically identical pili of
different receptor binding specificities. Mol Microbiol 1988;2:255e63.

[28] Otto G, Magnusson M, Svensson M, Braconier J, Svanborg C. pap genotype and
P fimbrial expression in Escherichia coli causing bacteremic and non-
bacteremic febrile urinary tract infection. Clin Infect Dis 2001;32:1523e31.

[29] Dowling KJ, Roberts JA, Kaack MB. P-fimbriated Escherichia coli urinary tract
infection: a clinical correlation. South Med J 1987;80:1533e6.

[30] Connell I, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. Type 1
fimbrial expression enhances Escherichia coli virulence for the urinary tract.
Proc Natl Acad Sci U S A 1996;93:9827e32.

[31] Gophna U, Barlev M, Seijffers R, Oelschlager TA, Hacker J, Ron EZ. Curli fibers
mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun
2001;69:2659e65.

[32] Hagberg L, Jodal U, Korhonen TK, Lidin-Janson G, Lindberg U, Svanborg
Eden C. Adhesion, hemagglutination, and virulence of Escherichia coli causing
urinary tract infections. Infect Immun 1981;31:564e70.

[33] Hedlund M, Frendeus B, Wachtler C, Hang L, Fischer H, Svanborg C. Type 1
fimbriae deliver an LPS- and TLR4-dependent activation signal to CD14-
negative cells. Mol Microbiol 2001;39:542e52.

[34] Song J, Duncan MJ, Li G, Chan C, Grady R, Stapleton A, et al. A novel TLR4-
mediated signaling pathway leading to IL-6 responses in human bladder
epithelial cells. PLoS Pathog 2007;3:e60.

[35] Klumpp DJ, Weiser AC, Sengupta S, Forrestal SG, Batler RA, Schaeffer AJ.
Uropathogenic Escherichia coli potentiates type 1 pilus-induced apoptosis by
suppressing NF-kappaB. Infect Immun 2001;69:6689e95.

[36] Mysorekar IU, Hultgren SJ. Mechanisms of uropathogenic Escherichia coli
persistence and eradication from the urinary tract. Proc Natl Acad Sci U S A
2006;103:14170e5.

[37] Schilling JD, Lorenz RG, Hultgren SJ. Effect of trimethoprim-sulfamethoxazole
on recurrent bacteriuria and bacterial persistence in mice infected with uro-
pathogenic Escherichia coli. Infect Immun 2002;70:7042e9.

[38] Thumbikat P, Berry RE, Schaeffer AJ, Klumpp DJ. Differentiation-induced
uroplakin III expression promotes urothelial cell death in response to uro-
pathogenic E. coli. Microbes Infect 2009;11:57e65.

[39] Holden NJ, Totsika M, Mahler E, Roe AJ, Catherwood K, Lindner K, et al.
Demonstration of regulatory cross-talk between P fimbriae and type 1
fimbriae in uropathogenic Escherichia coli. Microbiology 2006;152:1143e53.

[40] Hagberg L, Hull R, Hull S, Falkow S, Freter R, Svanborg Eden C. Contribution of
adhesion to bacterial persistence in the mouse urinary tract. Infect Immun
1983;40:265e72.

[41] Bergsten G, Wullt B, Svanborg C. Escherichia coli, fimbriae, bacterial persis-
tence and host response induction in the human urinary tract. Int J Med
Microbiol 2005;295:487e502.

[42] Ragnarsdottir B, JonssonK, UrbanoA,Gronberg-Hernandez J, LutayN, TammiM,
et al. Toll-like receptor 4 promoter polymorphisms: commonTLR4 variantsmay
protect against severe urinary tract infection. PLoS One 2010;5:e10734.

[43] Fischer H, Lutay N, Ragnarsdottir B, Yadav M, Jonsson K, Urbano A, et al.
Pathogen specific, IRF3-dependent signaling and innate resistance to human
kidney infection. PLoS Pathog; 2010:6.

[44] Hughes LB, Criswell LA, Beasley TM, Edberg JC, Kimberly RP, Moreland LW,
et al. Genetic risk factors for infection in patients with early rheumatoid
arthritis. Genes Immun 2004;5:641e7.

[45] Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, et al. Toll-like receptor
polymorphisms and susceptibility to urinary tract infections in adult women.
PLoS One 2009;4:e5990.

[46] FrendeusB, GodalyG,Hang L, KarpmanD, Lundstedt AC, Svanborg C. Interleukin
8 receptor deficiency confers susceptibility to acute experimental pyelone-
phritis and may have a human counterpart. J Exp Med 2000;192:881e90.


