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5-HT - serotonin 

CGRP- calcitonine gene-related peptide 
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NOS - nitric oxide synthase 
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Summary 

Migraine is the most common neurological disorder which affects up to 14% of the 

total population. Despite recent and continuous advance in its research, the precise 

pathomechanism remains unclear. 

One of the human models of migraine is the systemic administration of nitroglycerin, a 

nitric oxide donor. Nitroglycerin produces a rapid vasodilatation, which is probably 

responsible for an immediate headache that may occur in healthy subjects, but more often so 

in migraineurs. After a delay of several hours it also triggers typical attacks without aura in 

many migraine patients, but not in healthy volunteers. 

Nitric oxide is for med from L-arginine by nitric oxide synthase and as an 

unconventional transmitter substance it can cross cell membranes rapidly without any 

specialized release machinery. The presence of one of its isoforms, the neuronal nitric oxide 

synthase in the superficial layers of the dorsal hom of the spinal cord suggests that nitric 

oxide has functions in sensory and pain processing. There is evidence that nitric oxide has a 

key role in hyperalgesia and sensitization of sensory neurons. 

The cellular and molecular mechanisms of the delayed nitoglycerin-triggered migraine 

attacks are not known. Because of the involvement of the trigeminovascular system in 

vascular head pain, it has been suggested that this is the most likely target for nitric oxide in 

migraineurs. It has not been determined, however, whether nitric oxide would trigger a 

migraine attack via an effect on the pre- or on the postsynaptic arm of this system. The delay 

between nitroglycerin administration and the attack offers room for a number of central and 

peripheral actions of nitric oxide, including sensitization of peripheral trigeminal afferents or 

central sensitization similar to that shown for second order nociceptive neurons in the spinal 

cord. In any case, changes in nitric oxide activity may play a pivotal role in these processes 

and in a pilot trial it has been reported that a nitric oxide inhibitor was effective in the 

treatment of migraine attacks. 

Serotonin] d receptors are located presynaptically on the distal and proximal portions 

of these afferents and their activation is thought to contribute to the anti-migraine effect of 

serotonin] B/D agonists, also called triptans. Non-steroidal anti-inflammatory drugs, such as 

acetylsalicylic acid are also effective in the treatment of acute migraine headache and tension-

type headache. 
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Gonadal steroids, in particular estradiol, modulate the clinical expression of migraine. 

After puberty women are three times more affected. Abrupt falls in estrogen plasma levels can 

trigger the attacks, e.g. in the premenstrual phase, and they may disappear during pregnancy 

or after menopause, when plasma level of estrogen is stable. The neurobiological mechanisms 

which underlie these modulatory effects of estrogen on migraine remain speculative. 

Calcitonin gene-related peptide, a key transmitter in primary nociceptive afferents, can 

be released in animals by nitric oxide-mediated mechanism and is increased in jugular blood 

during migraine attacks. After electrical stimulation of the Gasserian ganglion in rats, an 

animal model for migraine producing meningeal plasma extravasation, calcitonin gene-related 

peptide-immunoreactive fibers in dura mater undergo morphological changes suggestive of 

transmitter release. These calcitonin gene-related peptide changes in migraineurs and in rats 

are both reversed or prevented by serotoniniB/o agonists, the most effective acute anti-

migraine drugs. Serotonergic mechanisms are pivotal in the control of nociception and in 

migraine pathogenesis. 

There is experimental evidence for an effect of estrogen both on calcitonin gene-

related peptide and serotonin neurotransmission. 

In our study we found that systemic administration of the nitric oxide donor 

nitroglycerin after a delay of 4 hours increased the expression neuronal nitric oxide synthase 

and c-fos oncoprotein in the caudal trigeminal nucleus of the rat, an effect also seen after 

nociceptive stimulus, a subcutaneous injection of formalin. The most probable explanation for 

this phenomenon is the direct action of nitric oxide on the peripheral afferents of the 

trigeminal system. This may lead to a self amplifying process which may explain the central 

sensitisation recently discovered in migraine patients. 

Contrary to lysine-acetylsalicylate the serotonin] B/D agonist sumatriptan pretreatment 

was not able to suppress the nitric oxide induced nitric oxide synthase activation. The lack of 

effect of sumatriptan in our study may therefore suggest that activation of nociceptive 

afferents has no role in the nitroglycerin-induced neuronal nitric oxide synthase increase or 

that serotonina/D receptors are not capable to oppose such a chemical activation. Earlier 

studies on migraine headache have emphasized a possible role for serotonin2B/c, or more 

likely for serotonin2B receptors, which mediate the release of nitric oxide from the 

endothelium. Recent experiments showed that serotonui2A receptor activation was able to 

enhance neuronal nitric oxide synthase expression in trigeminovascular neurons and 
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upregulation of platelet serotonin receptors was reported by the same group in transformed 

migraine. Taken together these findings underline that, besides serotonin IB/D, other receptor 

subtypes play a role in trigeminovascular pain, which could be an explanation for the lack of 

effect of sumatriptan in our model. An alternative explanation for the ineffectiveness of 

sumatriptan must be taken into account: its hydrophilicity and reduced ability to cross the 

blood-brain barrier. Lys-acetylsalicylate may also exert an anti-nociceptive effect by acting 

directly upon the periaqueductal gray matter. Taken together, these data and our present 

results suggest that the stimulating effect of nitroglycerin, and thus of nitric oxide, on 

neuronal nitric oxide synthase expression in secondary trigeminal nociceptors might be 

mediated by prostanoids and in particular by cyclo-oxygenase-2 expressing interneurons in 

the caudal trigeminal nucleus. 

Four hours after the systemic nitroglycerin administration we found the reduction of 

calcitonin gene-related peptide in the superficial layers of the caudal trigeminal nucleus. The 

decrease of the area occupied by calcitonin gene-related peptide-immunoreactive afferents 

found here is thus likely a consequence of an increased release of calcitonin gene-related 

peptide due to the nitric oxide-mediated stimulation of trigeminal nociceptive AS and C 

afferents. We could also demonstrate a decrease in the size of calcitonin gene-related peptide-

immunoreactive boutons which would support the hypothesis of an increased release of the 

peptide due to the nitroglycerin administration. 

By the same token, the nitroglycerin-induced increase in serotonin-immunoreactivity 

in the same spinal gray areas may indicate a reduced release of serotonin from supraspinal 

afferents. It is not known if nitroglycerin would reduce serotonin release in laminae I-II 

because of a local interaction with serotonergic terminals or via a secondary modulation of the 

serotonergic descending pain control pathway. Whatever the mechanism might be, in both 

cases it seems to be selective for spinal trigeminal nucleus caudalis, as we found no detectable 

changes in superficial dorsal horn of the thoracic spinal cord. 

Contrary to the acute changes in immunoreactivities occurring after nitroglycerin 

injection, those found after the experimental modulation of estradiol levels are on a different 

time scale and reflect slower plastic adaptations of neurotransmitter expression. Our results 

suggest that ovarian hormones, which greatly influence the course of migraine, have indeed 

the capacity to modify the expression of pivotal transmitters in the trigeminovascular 

nociceptive pathway. In animals with high estradiol levels, i.e. ovariectomized females treated 
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with 1713-estradiol, calcitonin gene-related peptide innervation was clearly reduced and 

nitroglycerin produced no significant changes in the superficial layers of the caudal trigeminal 

nucleus, compared to animals with low estradiol levels, i.e. males and ovariectomized non-

treated females. 

176-estradiol treatment increased the serotonin expression in the above mentioned 

area compared to the male and ovariectomized female rats. In this case as well nitroglycerin 

produced no changes in the innervation area. It has been shown earlier that ovarian steroids 

increase the expression of tryptophane hydroxylase, the key enzyme for serotonin synthesis 

and decreases the re-uptake transporter of this transmitter. 

It is not known if these data may be relevant for the hormonal influences in migraine. 

It is interesting, however, to draw a parallel between our immunocytochemical data in rats 

showing that estradiol is able to suppress activation of trigeminal afferents by nitroglycerin, a 

well known trigger of migraine attacks and the fact that the clinical picture of migraine 

improves during pregnancy when the estradiol levels are high and stable. 

In our paper we established a reproducible animal model for trigeminal activation. Our 

finding could be relevant for understanding the pathomechanisms of migraine headache and 

the role of nitric oxide and ovarian steroids in the pathogenesis of headaches. 
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I. Introduction 

Migraine headache is the most common neurological disorder, affecting up to 14% of 

the population (Raskin 1993, Fozard et al., 1994, Saxena 1994, Moskowitz et al., 1995). 

Despite recent advances, the exact pathogenesis of migraine is not fully understood (Saxena 

1994). There is evidence that migraine is a neurovascular disorder with a complex 

interrelationship between neuronal and vascular mechanisms. Hence, although a number of 

highly effective symptomatic treatments have been developed, a succesful prevention remains 

to be achieved. 

Numerous factors are putatively involved in the etiology of migraine such as 

susceptibility to particular stimuli (stress, nitrated foods etc) or changes within the central 

nervous system (Moskowitz et al., 1995, Lance 1991). Several hypothesis have been put 

forward to account for the pain that accompany migraine, its maintenance and transmission 

from extracerebral tissues. Symptoms of central origin such as the abnormal sensory 

phenomena (experienced in migraine with aura), nausea and hypersensitivity to sensory 

stimuli are also typical features of migraine but their mechanisms remain unclear. 

Gonadal steroids, in particular estradiol, modulate the clinical expression of migraine. 

After puberty women are three times more affected. Abrupt falls in estrogen plasma levels can 

trigger the attacks, e.g. in the premenstrual phase, (Somerville 1975) and they may disappear 

during pregnancy or after menopause, when plasma level of estrogen is stable (Marcus 1995; 

Silberstein & Merriam 2000). The neurobiological mechanisms which underlie these 

modulatory effects of estrogen on migraine remain speculative. 

Recently, a decisive progress in the pharmacology of migraine has been achieved with 

the discovery of the involvement of nitric oxide (NO). It appears that the short-lived and 

ubiquitous molecule rediscovered as a major neurotransmission and pain regulator, may have 

a crucial role in migraine. Systemic administration of nitroglycerin (NTG), an NO donor, in 

migraineurs can trigger attacks without aura after a delay of several hours (Sicuteri et al,. 

1987, Olesen et al., 1993). Similarly to spontaneous migraine attacks, the NTG-induced 

attacks can be interrupted by antimigraine drug sumatriptan (Iversen et al., 1996), but their 

precise neurobiological mechanisms are still unknown. 
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The throbbing pain experienced in migraine was first attributed to the pulsations of 

abnormally dilated vessels (Blau & Dexter 1981; Friedberg et al., 1991). Nociceptive inputs 

generated from the pain-sensitive extracerebral vessels are then sent via the trigeminal 

ganglion and subsequently the spinal trigeminal nucleus caudalis (TNC) to higher centers 

involved in pain processing (Saxena 1994). A vascular origin of pain was also congruent with 

the possible release of vasoactive substances from the blood (such as 5-hydroxytryptamine (5-

HT)) or the vessel wall (such as endothelial NO) (Fozard et al, 1994). 

Nevertheless vasodilatation per se could not account for a number of observations in 

migraine sufferers (Friberg et al., 1991, Humphrey 1994) and a neuronal origin of the pain 

was suggested (Moskowitz 1993). According to this hypothesis vasoactive peptides such as 

calcitonine gene-related peptide (CGRP) and substance P (SP) released from the trigeminal 

afferents to the meningeal vessels produce not only vasodilation but a painful state of local 

inflammation which in turn, further stimulates perivascular nociceptive trigeminal fibers. 

However administration of CGRP and SP alone is reportedly not able to trigger pain 

(Pedersen-Bjerregard et al., 1991, Shekar et al., 1991) and the possibility of involvement of 

other substances with a broader spectrum of actions such as NO, was suggested (Fozard et al., 

1994, 1989, Olesen et al., 1995). In this respect a recent study demonstrated that NO, 

additionally to its vasodilatory effects, could elicit a direct activation of nociceptive 

trigeminal fibers (Wei et al., 1992). Moreover a strong correlation between the ability of a 

number of drugs to induce migraine and their affinity at 5-HT2 receptors putatively associated 

with endothelial NO release was also demonstrated (Fozard et al., 1989, 1994). Hence NO 

appeared as a vascular substance with potent nociceptive effects on both vascular and neural 

tissues. Moreover studies proved that NO and the related cGMP system is capable to inhibit 

the activity of spinothalamic pathways via glycine and GABAergic mechanisms (Lin et al., 

1999). 

However, it is noteworthy that the vascular wall is not the only possible site of release 

of NO within the meningeal tissues since the Gasserian ganglion contains NO neurons 

(Gulbenkian et al., 1999). Neuronally produced NO has also been evidenced in cerebral 

cortex during cortical spreading depression (CSD) (Goadsby et al, 1992, Wahl et al., 1994, 

Read et al, 1996), a mechanism that might underly the aura experienced by some migraine 

patients (Avioli et al., 1991, Lauritzen 1994). CSD is a slow wave electrophysiological 

activity that occurs in response to physical cortical stimulation and propagates along the 
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cerebral cortex triggering the release of numerous neurochemicals and changes in the tone of 

extracerebral vessels (Lauritzen 1994) in which NO has been directly implicated (Wahl et al., 

1994). Taken together, these studies show that NO can be released in multiple structures 

directly involved in migraine and affect both vascular and neural tissues. It is therefore in a 

position to play a critical role in the sequential development of the migraine crisis, first being 

released during CSD and later on during the events associated with migraine pain. 

The strongest evidence for the key-role of NO in the etiology of migraine stems from 

observations in migraine sufferers and led to the "NO hypothesis of migraine" put forward by 

Olesen and colleagues (1995). The administration of the NO donor NTG consistently elicited 

migraine in susceptible suspects (Sicuteri et al., 1987, Thomsen et al., 1994, Olesen et al., 

1993,1995). This effect is due to the release of NO which is the only known biological effect 

of NTG. The role of NO is also supported by the fact that other drugs that are able to induce 

migraine such histamine, reserpine or the serotoninergic antagonist mCPP all have in 

common to be associated with the release of endogenous nitric oxide (Olesen et al., 1995, 

Fozard et al., 1994). 

The infusion of NTG in human elicits an immediate short lasting headache that can be 

attributed to the rapid vasodilatory effect of NO on extracerebral arteries (Iversen et al., 1989, 

Thomsen et al., 1994, Olesen et al., 1995). Contrary to healthy subjects, in migraine patients 

and subjects with family history of migraine, the initial headache is followed by the incidence 

of a genuine migraine, mimicking the features of a spontaneous attack except the aura (Olesen 

et al., 1993, Thomsen et al., 1994, Olesen et al., 1995). It is characteristically accompanied by 

symptoms of central origin such as nausea and photophobia. Surprisingly in the view of short 

half-lives of NTG (Murad 1990) and NO (Kelm 1999) in vivo, the migraine occurs several 

hours after NTG infusion (Thomsen et al., 1994). Thus it appears that NO is a cause of 

migraine through mechanisms that develop over a long period of time. This is consistent with 

the possibility of a delayed and sustained production of NO by nitric oxide synthases (NOS) 

in a large number of tissues (Moncada et al., 1991, Forstermann et al., 1995). The importance 

of endogenous NO production during the headache phase of migraine has been evidenced in a 

recent study where the inhibition of NOS relieved the symptoms of spontaneous migraine 

with high efficacy (Lassen et al., 1997). Overall these studies suggest that NO has not only a 

rapid effect in vasodilation and pain but is also critically involved in the long-term 

development of genuine migraine crisis. 
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Due to its high lipophilicity, NO can readily cross the blood brain barrier and its action 

is primary limited by its very short half-life (Kelm 1999). NO-induced vasodilation is 

primarily attributed to its local release from the vascular endothelium to the adjacent smooth 

muscle where it triggers the production of cGMP and muscular relaxation (Monacada et al., 

1991). NO has also been shown to elicit a direct and immediate activation of trigeminal nerve 

terminals afferent to extracerebral vessels (Wei et al., 1992). NO has also been involved in 

longer lasting effects. A large number of studies show that NO can elicit long term changes in 

nociception in particular in the spinal cord where it plays an important role in the 

development of hyperalgesia (Urban et al., 1999). Interestingly sensitisation of primary 

afferents -which is an important trigger of the development of hyperalgesia- has been 

demonstrated in trigeminal meningeal afferents (Strassmann et al., 1996). Further, cellular 

activation within the caudal trigeminal nucleus has been shown to be mediated by trigeminal 

fibers after CSD (Mostkowitz et al., 1993) or noxious stimulation (Nozaki et al., 1992). 

Moreover a recent study demonstrated that the activation of the trigeminovascular system in 

response to pain can be markedly reduced by a NOS inhibitor (Hoskin et al., 1999). It thus 

appears possible that NO might mediate the development of a supersensitivity to pain within 

the trigeminal ganglion and the TNC. In support to this view, NTG administration in the rat 

was also shown to elicit the activation of pain-mediating TNC neurons (Tassorelli et al., 

1995, 1997). This effect was maximal after a delay of 4 hours, congruent with the delay of 

NTG induction of migraine in human (Thomsen et al., 1994, Olesen et al., 1995). Noticeably 

in the animal model a large number of the activated neurons also exhibited NOS 

immunoreactivity (Tassorelli et al., 1995). 

There is no doubt that NO and one of the three isoforms of NOS, the neuronal nitric 

oxide synthase (nNOS) play an important role in the sensory system especially in nociception 

(Saito et al., 1994, Lin et al., 1999). nNOS is also present in the trigeminal system suggesting 

involvement in pain processing (Dohrn et al., 1994). NOS inhibitors reduce c-fos activation 

by nociceptive stimuli in the dorsal hom in rats (Wang et al., 1999, Wu et al., 2000) and have 

produced an anti-migraine effect in a preliminary study (Lassen et al. 1998). Activation of the 

trigeminovascular sytem in response to pain can be markedly reduced by the administration of 

a NOS inhibitor (Ackerman et al., 2002). Thus the study of NO long-term effects within the 

structures relevant to migraine may provide critical information for the understanding of the 
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neurovascular events related to the initiation of the crisis and the developement of migraine 

headache. 

Anti-migraine drugs can also play an important role in the action of NO on the 

trigeminal system. The so called triptans are 5 - H T I B / D receptor agonists which are the most 

effective treatment available. NO may act on peripheral trigeminal afferents thus these drugs 

may have a modulatory effect on its action. Non-steroidal anti-inflammatory drugs (NS AEDs), 

such as acetylsalicylic acid (Aspirin®), are also effective in the treatment of acute migraine 

headache (Lange et al., 2000) and tension-type headache (Schoenen et al., 2000). This effect 

could be due to their inhibitory action on cyclo-oxygenase 2 (COX-2) and prostaglandins in 

the spinal trigeminal complex (Yaksh et al., 2001), but they could also inhibit NOS activation 

by reducing the induction of transcription factor NF kappa li (Ma et al., 1998). Concordantly, 

it was shown that pretreatment with indomethacin reduces the NTG induced c-fos activation 

in the caudal trigeminal nucleus (Tassorelli et al., 1997). 

CGRP, a key transmitter in primary nociceptive afferents, can be released in animals 

by NO-mediated mechanism (Garry et al., 2000) and is increased in jugular blood during 

migraine attacks (Goadsby et al., 1990). After electrical stimulation of the Gasserian ganglion 

in rats, an animal model for migraine producing meningeal plasma extravasation (Buzzi & 

Moskowitz, 1992), CGRP-immunoreactive (Ir) fibers in dura mater undergo morphological 

changes suggestive of transmitter release (Rnyihar-Csillik et al., 1995, 2000). These CGRP 

changes in migraineurs and in rats are both reversed or prevented by serotonin (5-HT)IB/D 

agonists, the most effective acute anti-migraine drugs. Serotonergic mechanisms are pivotal in 

the control of nociception (Roberts 1984; Fashmer et al., 1985) and in migraine pathogenesis 

(Sicuteri 1972; Ferrari et al., 1989).There is experimental evidence for an effect of estrogen 

both on CGRP and 5-HT neurotransmission. Estradiol reduces the CGRP content in cervical 

spinal cord (Moussaoul et al., 1996) and the number of CGRP-Ir neurons in sensory ganglia 

(Yang et al., 1998). It also increases the expression of tryptophan hydroxylase, the rate-

limiting enzyme of 5-HT synthesis, and of its mRNA in the raphe nuclei (Pecins-Thompson et 

al., 1996; Lu et al., 1999; Bethea et al., 2000), while it decreases that of the serotonin re-

uptake transporter (Pecins-Thompson et al., 1998; Rehavi et al., 1998). 

As CGRP and 5-HT are involved in migraine pathogenesis and both are influenced by 

estrogen, they could be pivotal for a better understanding of the hormonal influences and 

other trigger factors in this disorder. 
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II. Aims 

The aims of our studies were to 

i.) determine the effect of systemic NTG administration on the nNOS 

expression of the caudal trigeminal nucleus and compare the effect to a 

experimental somatic nociceptive stimulus, s.c. formaline administration. 

ii.) examine the possible modulatory effects of 5 - H T I B / D agonist sumatriptan 

and lysine-acetylsalicylate (Lys-ASA) in the above process. 

iii.) study the effect of NO on the CGRP and 5-HT innervation of the caudal 

trigeminal nucleus and check the possible effects of gonadal steroids. 

III. Materials and methods 

All experimental procedures described in this paper followed the guidelines of the 

International Association for the Study of Pain and the European Communities Council s 

(86/609/EEC). They were approved by the Ethics Committee of the Faculty of Medicine, 

University of Liège. The animals were raised and maintained in standard laboratory 

conditions with tap water and regular rat chow available ad libitum on a 12h:12h dark-light 

cycle. 

III.1. nNOS 

Animals: Thirty adult male Wistar rats (weight 250-350 g) were used. In the first 

group 8 animals received a single subcutaneous (s.c.) injection of NTG (prepared from 

Nitrolingual® Pumpspray, Pohl-Boskamp Co GmbH, Hohenlockstedt, Germany) at a dose of 

10 mg/kg b.w.; 8 animals received a s.c. injection of the vehicle of the drug (gift from Pohl-

Boskamp). Four hours later, the rats were deeply anesthetized with sodium-pentobarbital 

(Nembutal®, 80 mg/kg b.w) and transcardially perfused with 100 ml of physiological saline 

followed by 500 ml of 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). The 
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cervical (C1-C2) and thoracic (Thl) spinal cord was removed. The tissue blocks were 

postfixed overnight for immunohistochemistry. 

The second group of animals consisted of 6 rats which received NTG (n=3) or placebo 

(n=3) according to the same procedures. Four hours later, they were deeply anaesthetized and 

transcardially perfused with 200 ml of physiological saline. Cervical (C1-C2) and thoracic 

(Thl) spinal cords were removed and freezed in liquid nitrogen for western blotting. 

Eight animals received s.c. injection of formalin (50 pi, 4%) in the right upper lip. 

Four hours later the animals were anaesthetized and transcardially perfused like the rats in the 

first group. The brainstem and upper cervical cord were removed, postfixed overnight and 

processed for nNOS and c-fos immunohistochemistry. 

Immunohistochemistry: After cryoprotection (30% sucrose overnight), 30pm thick 

cryostat sections were cut and serially collected in 16 wells containing cold PBS. Each well 

received sections at a 0.5 mm distance throughout the rostrocaudal extent of the C1-C2 and 

Thl segments and the caudal brain stem. After a pretreatment with 0.3% H2O2, the free 

floating sections were rinsed several times in 0.1 M PBS containing 1% Triton X-100. Then 

samples from cervical and thoracic spinal cord and the brain stem were kept for 2 nights at 

4°C in polyclonal nNOS (Euro-Diagnostica AB, Malmö, Sweden n°.: B 220-1) antibody, at a 

dilution of 1:20000. Sections from the cervical spinal cord and the brain stem were incubated 

with c-fos antibody (Santa-Cruz Biotechnology, n0.: sc-52-G) at a dilution of 1:3000 for 3 

nights at 4°C. The immunocytochemical reaction was visualized using the avidin-biotin kit 

(ABC) of Vectastain (Vector Laboratories Inc. Burlingame, Ca, USA, n°.: PK-6101) and 

staining with nickel-ammonium-sulfate-intensified 3',3'-diaminobenzidine. Specificity of the 

immune reactions was controlled by omitting of the primary antiserum. 

Western blotting: Dorsal part of the spinal cord segments (C1-C2 and Thl) were 

homogenised in cold Tris-HCl buffer (50 mM , pH=7.4). Protein concentration was measured 

according to Bradford using BSA as a standard (Bradford 1976). Equal amounts of protein 

samples (20 pg/lane) were separated by standard SDS-PAGE procedures at 200V for 1 hour 

and transferred to immobilon P membrane (Millipore, Billerica, Mass, USA). Following the 

transfer and blocking in 5% non-fat dry milk, membranes were incubated with the nNOS 

antibody (Transduction Laboratories n0.: N31020), diluted to 1:1000. Protein bands were 

visualized using the ECL Western blotting analysis kit (Amersham Biosciences AB, Uppsala, 
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Sweden). The quantitative analysis was performed using a laser densitometer (Pharmacia 

LKB, Uppsala Sweden). 

Data analysis: nNOS- and c-fos-positive cells were counted by an observer blinded to 

the procedures in the laminae I-III of the cervical spinal cord, in three different series of 

sections in each animal. The individual sections in these series were taken at 0.5 mm distance 

along the rostrocaudal axis. nNOS-positive neurons were scored, if they contained 

cytoplasmic and dendritic staining and a nucleus. In case of c-fos the intensively stained 

nuclei were counted. In the thoracic segment, nNOS-Ir cells were counted in laminae I-III in 

ten sections, in each animal. In each experimental group normal distribution was checked by 

means of the Kolmogorov test. Since the hypothesis of a normal distribution was not rejected, 

Student's t test was used to determine the significance of differences between the mean values 

of data groups. In the animals, which received s.c. formalin, c-fos and nNOS positive cells 

were also counted on the ipsi- and contralateral sides of the caudal trigeminal nucleus in the 

brainstem (three different series per animal) of sections being 0.5 mm apart. The difference 

between the injected and control side for each section was calculated and analyzed with the 

paired Student's t-test. The relative optical densities from western blotting, were compared 

with the Student's t test. 

III.2. Sumatriptan and Lys-ASA pretreatment 

Animals: Seventy-eight male Wistar rats (250-350 g) were used. For 

immunohistochemistry, 48 animals were divided into three groups of 16. In the first group the 

rats did not receive any pretreatment. In the second group the rats received a subcutaneous 

(s.c.) injection of sumatriptan (Imitrex®, Glaxo Smith Kline, Research Triangle Park, NC, 

USA) at a dose of 0.6 mg/kg. The animals of the third group were injected intramuscularly 

with lys-ASA (Aspegic®, Sanofi-Synthelabo, Paris, France) at a dose of 50 mg/kg. 

Sumatriptan was diluted in physiological saline, lys-ASA in its commercially available 

solvent (distilled water). Ten minutes later in each group 8 animals received a s.c. injection of 

NTG (prepared from Nitrolingual®) at a dose of 10 mg/kg and 8 animals received a s.c. 

injection of the vehicle). 
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Four hours after the NTG or placebo injections the rats were deeply anaesthetised 

by pentobarbital (Nembutal® 80 mg/kg) and transcardially perfused with 100 ml 

physiological saline followed by 500 ml 4% PFA in PBS. The portions of cervical spinal 

cords comprised between -5 and -11 mm from the obex were removed and postfixed 

overnight for immunohistochemistry. 

For Western blotting 30 rats were divided in three groups of 10 and received 

pretreatment and NTG or placebo injections as above. Four hours later, they were deeply 

anaesthetized and transcardially perfused with 200 ml of physiological saline. Cervical spinal 

cords between -5 and -11 mm from the obex were removed and frozen in liquid nitrogen for 

Western blotting. 

Immunohistochemistry: The protocol was the same as described above for 

nNOS staining. 

Western Blotting: The dorsal portions of spinal cord segments were 

homogenized in cold Tris-HCl buffer (50 mM, pH=7.4). Protein concentration was measured 

according to Bradford (1976) using BSA as a standard. Equal amounts of protein samples (20 

pg/lane) were separated by standard SDS-PAGE procedures at 200 V for 1 hour and 

transferred to immobilon P membrane (Millipore, Billerica, Mass, USA). Following the 

transfer and blocking in 5% non-fat dry milk, membranes were incubated with a nNOS 

antibody (Transduction Laboratories, N31020), diluted to 1:1000. After the detection of 

nNOS protein the membranes were stripped and reprobed for 13-actin antibody (Sigma 

Chemical Co., St. Louis, Mo, USA A5441) diluted to 1:4000, which was used as an internal 

control. Protein bands were visualized using the ECL Western blotting analysis kit 

(Amersham Biosciences AB, Uppsala, Sweden). They were quantitatively analysed using a 

laser densitometer (Pharmacia LKB, Uppsala, Sweden). Optical densities of specific bands 

were quantified by densitometry and corrected for protein loading by dividing by the 13-actin 

signal of the same sample. 

Data analysis: nNOS-positive cells were counted by an observer blinded to the 

procedures in laminae I-III of the cervical spinal cord, in three different series of sections in 

each animal. The individual sections in these series were taken at 0.5 mm distances along the 

rostrocaudal axis. nNOS-positive neurons were scored, if they contained cytoplasmic and 

dendritic staining and a nucleus. The cell counts of nNOS and of relative Western blot optical 

densities were analysed with multiple variance analysis (ANOVA) and post hoc test Scheffe. 



The statistical tests were performed by StatWiew (Version 4.57 for Windows, Abacus 

Concepts Inc., Berkley, NC, USA). Significance level was set at p<0.05. 

III.3. CGRP and 5-HT 

Animals : Sixteen male and 32 female Wistar rats (250-350 g) were used At the age of 

2 months, the female animals (n=32) were ovariectomized under Nembutal0 anaesthesia and 

half of them had a 5 mm long Silastic capsule (3.18 mm OD and 1.57 mm ID; Dow Coming, 

Midland, Mich, USA) filled with a 1:1 mixture of cholesterol (Sigma Chemical Co., St. Louis, 

Mo, USA) and 17B-estradiol (Fluka, Buchs, Switzerland) inserted subcutaneously in the 

interscapular region. The capsules maintain estradiol plasma levels in a range that is typical of 

those found in female rats at early proestrus. (Smith et al., 1977). 

At the age of 3 months, half of the animals in all three groups (8 males, 8 

ovariectomized females - ovx, 8 ovariectomized females treated with estradiol - 0VX+E2) 

received a subcutaneous injection of NTG (prepared from Nitrolingual0 spray, Pohl-Boskamp 

GmbH, Hohenlockstedt, Germany) at a dose of 10 mg/kg. The other half received an injection 

of the vehicle (gift from Pohl-Boskamp GmbH) in the same location. Four hours after NTG or 

vehicle injections, the rats were deeply anaesthetised with pentobarbital (Nembutal0 80 

mg/kg; Sanofi-Synthelabo, Paris, France) and transcardially perfused with 100 ml 

physiological saline followed by 500 ml 4% paraformaldehyde in phosphate-buffered saline. 

The cervical (C1-C2) spinal cords from all animals, as well as the thoracic (Thl) cord from 

males, were removed and postfixed overnight for immunohistochemistry. 

Immunohistochemistry: The sections of the C1-C2 and Thl segments were obtained 

as described earlier. After pretreatment with 0.3% H2O2, the free-floating sections were rinsed 

several times in 0.1 M phosphate-buffered saline containing 1% Triton X-100 and then kept 

for 2 nights at 4°C in polyclonal anti-CGRP (Amersham Biosciences AB, Uppsala, Sweden, 

RPN. 1842) or anti-5-HT (DiaSorin Inc., Stillwater, Mn., USA, 20080) primary antisera at 

respective dilutions of 1:20000 and 1:200000. The immunocytochemical reaction was 

visualized using the Vectastain0 (Vector Laboratories Inc., Burlingame, Ca, USA, PK-6101) 

avidin-biotin kit (ABC) with nickel-ammonium-sulfate intensified 3',3'-diaminobenzidine 
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(Sigma Chemical Co., St. Louis, Mo, USA). Specificity of the immune reactions was 

controlled by omitting the primary antisera. 

Data analysis: The area covered by CGRP- and 5-HT-Ir fibres in laminae I-II of the 

cervical and thoracic dorsal homs was determined by video imaging using an Image Pro Plus 

4.0 image analysis software (Media Cybernetics, Silver Spring, Md, USA). Stained sections 

were examined under bright field with an Olympus microscope and a lOx objective. Images 

were recorded with a SONY 950-P CCD camera (Sony Corp., Japan) and transmitted to the 

frame grabber (Flashpoint 128; Integral Technologies, Inc., Indianapolis, Ind, USA) which 

converts the image into a digital matrix of 1600 X 1200 pixels. After image acquisition, a 

threshold gray level was established in order to detect Ir fibers in the digitized microscopic 

image, the so-called discrimination step. To avoid the subjective bias of manual thresholding, 

the threshold was determined on the basis of the density histogram displayed by the program. 

It was set on the point where the flat part of the histogram (pixels with high densities) started 

to raise steeply. The program expressed the area innervated by the Ir fibers as number of 

pixels having densities above the threshold. For the calibration we measured known areas of 

different shapes. Using sections from the thoracic spinal cord processed in parallel we tested 

reproducibility of measurements in homologous areas of the dorsal homs. Measurements were 

taken in a blinded fashion from at least 16 sections for each staining in each animal group and 

averaged. 

The size of immunoreactive boutons was measured by the same digital system using a 

40x objective. At this high magnification different optical planes of the same section could be 

examined. For the determination of the cross-sectional areas we selected boutons which were 

in focus and were recognized and measured by the program as single objects. In each 

experimental group 450-500 boutons were analyzed. 

Generalized linear models were used to compare the data in function of group and 

treatment. Within each of the 3 groups of animals (males, ovx and 0VX+E2) differences 

between NTG and vehicle treatment were analyzed with Student's t test. The analyses were 

performed by the software SAS (Version 6.12 for Windows, SAS Institute, Cary, NC, USA). 

Significance level was set at p<0.05. 
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IV. Results 

IV.l. nNOS 

Transverse sections of the cervical spinal cord demonstrated prominent nNOS-IR neurons in 

the dorsal horn Laminae I-III and some cells in the Lamina X. In the superficial dorsal horn, 

small to medium size neurons (8-15 pm diameter) with few dendrites were most common. 

The nNOS-Ir neurons located around the central canal were multipolar and of medium to 

large size (15-30 pm). There was no significant difference in the number of NOS positive 

cells at different levels of the C1-C2 region. In animals sacrificed four hours after s.c. NTG 

injection we found a significant increase (p<0.001) in the number of nNOS positive neurons 

as compared to vehicle treated animals (Figure 1A, IB). By contrast, we found no difference 

in the number of nNOS-Ir neurons between the two groups of animals in the thoracic spinal 

cord. The results of the statistical analysis are shown in Figure 2. 

Figure 1. nNOS-immunoreactivity on transverse sections of the upper cervical spinal cord in 
placebo- (A) and NTG-treated (B) rats. The number of immunoreactive cells is increased 4 hr 
after s.c. NTG (10 mg/kg). Scale bar = 50pm. 

Western blot analysis of the C1-C2 region confirmed the results obtained by 

immunohistochemistry. We could identify a band at 155 kDa characteristic for the nNOS 

protein. In animals, which had received NTG 4 hours before, the density of the nNOS protein 

band was higher in C1-C2 segments, but not in the Thl segment (Figure 3). Densitometrie 

analyses confirmed that the nNOS band on western blots was significantly enhanced after 

NTG administration in cervical (control: 103.7±2, NTG-treated: 149.7±5.8, p<0.01), but not 

in thoracic segments (control: 107±4.3, NTG-treated: 116.7±4.4, n.s.). 
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Figure 2. Histogram illustrating the number of nNOS immunoreactive neurons in the cervical 
and thoracal segment of the rat spinal cord, (mean ± SEM; n=8) *** p < 0,001 
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Figure 3. Western blotting of nNOS in the cervical and thoracic regions of rat spinal cord. 
After s.c. NTG (10 mg/kg) treatment nNOS levels (155 kDa) are increased in the C1-C2 
segment, but not in the Thl segment. 

In parallel with the nNOS detection we have also performed c-fos immunostaining in 

the C1-C2 segment of the spinal cord, c-fos immunopositive cells were identified in dorsal 

horns; their number was significantly higher in NTG-treated than in placebo-treated animals 

(Figure 4A, 4B, Figure 5). 



2 2 

B 

Figure 4. c-fos immunorectivity in transverse section of the upper cervical dorsal horn. The 
number of immunoreactive cells is increased 4 hours after s.c. NTG (10 mg/kg) (B), 
compared to placebo (A). Scale bar: 50 pm. 
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Figure 5. Histogram illustrating the significant difference between NTG and placebo treated 
rats in number of c-fos imunoreactive neurons per 30 pm transverse sections in the cervical 
dorsal horn. (Mean ± SEM; n=8), *** p<0,001 

In animals which were given a s.c. formalin injection in the lip, the number of both 

nNOS (Figure 6A) and c-fos (Figure 6B) positive cells in the caudal trigeminal nucleus 

increased ipsilaterally to the injection in the appropriate segment of the cervico-medullary 

junction. 
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Figure 6. Histogram showing the number of nNOS (A) and c-fos (B) immunoreactive neurons 
in the caudal trigeminal nucleus in 30 pm transverse sections at increasing caudal distances 
from obex, ipsi- and contralateral^ to a s.c. formalin injection in the lip. (Mean ± SEM; n=8) 

IV.2. Sumatriptan and Lys-ASA pre-treatment 

A similar increase in the number of nNOS immunoreactive neurons was observed in 

the sumatriptan-pretreated group of animals after NTG treatment compared to the placebo. 

Lys-ASA pretreatment, on the contrary, abolished the NTG effect on nNOS-positive neurons 

(Figure 7C,D and E,F, Figure 8). 

Western blot results of the spinal cord segments are in line with the data of the 

immunohistochemistry. In animals, which had received NTG 4 hours before, the density of 

the C1-C2 nNOS protein band was increased compared to vehicle-injected rats. This increase 

was similar in control and sumatriptan pretreated groups. After pretreatment with lys-ASA, 

the nNOS band was comparable after NTG or vehicle injection (Figure 9). Densitometric 

analyses of the bands (corrected for protein loading) confirmed the results of the visual 

inspection of the Western blots: relative to vehicle injections, the optical density of the nNOS 

band was significantly enhanced after NTG administration with or without sumatriptan 

pretreatment, but not when the NTG injection was preceded by a pretreatment with lys-ASA 

(Figure 10). 
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Figure 7. nNOS-immunoreactivity on transverse sections of the upper cervical spinal cord in 
non pretreated (control) (A,B), sumatriptan-pretreated (C,D) and lysine-acetylsalicylate-
pretreated (E,F) rats. NTG administration (B,D,F) compared to vehicle (A,B,C) increases the 
number of nNOS-immunoreactive cells in controls and after sumatriptan pretreatement (B,D) 
but not after lysine-acetylsalicylate-pretreatment (E,F). Scale bar = 50pm. 
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Figure 8. Histogram showing the mean number of nNOS-immunoreactive cells in the 
superficial layers of the C1-C2 dorsal horns in the 3 animal groups 4 hours after subcutaneous 
injection of vehicle (light bars) or NTG (hatched bars) (mean+S.E.M, n=8 per group). In 
control and sumatriptan-pretreated animals there is a significant increase of nNOS-
immunoreactive cells ( p<0.05) but not in lysine-acetylsalicylate pretreated rats. 
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Figure 9. Western blotting of nNOS in C1-C2 spinal cord in control (lanes 1,2), sumatriptan-
(lanes 3,4) and lysine-acetylsalicylate pretreated (lanes 5,6) animals. Compared to the vehicle 
(1,3,5), NTG administration (2,4,6) enhances the nNOS band (155 kDa) in the control (2) and 
sumatriptan-pretreated group (4), but not in the lysine-acetylsalicylate-pretreated group (6). 
The corresponding B-actin bands are shown below for each animal group. 
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Figure 10. Histogram showing the optical densities of nNOS Western blots in the C1-C2 
segments of the 3 animal groups 4 hours after subcutaneous injection of vehicle (light bars) or 
NTG (hatched bars) (mean+S.E.M, n=5 per group). Data are expressed as proportion of 13-
actin. In controls and after sumatriptan pretreatment there is a significant increase of optical 
density in the 155kDa nNOS band ( p<0.05), while this increase is absent after lysine-
acetylsalicylate pretreatment. 

IV.3. CGRP and 5-HT 

On transverse sections of the C1-C2 spinal segments there were abundant CGRP-Ir 

fibers in the superficial layers of the caudal spinal trigeminal nucleus. The area covered by 

these fibers was not significantly different between the various rostro-caudal levels, nor 

between sides of the C1-C2 segments. 

As far as the total area covered by CGRP-Ir in the superficial laminae I-II of sTNC 

after vehicle injection was concerned, we found no significant difference between male rats 

and ovariectomized females. By contrast, the CGRP-innervated area in the estradiol-treated 

ovariectomized group was significantly smaller than in any of the two other groups (Figures 

9A, 9C, 9E). 
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Four hours after subcutaneous NTG administration there was a significant decrease of 

the area covered by CGRP-Ir fibres in males (Figures 9A, 9B) and in ovariectomized females 

(Figures 9C, 9D) compared to vehicle injections, but no change was found in estradiol-treated 

ovariectomized rats (Figures 9E, 9F). 

Figure 9. CGRP-immunoreactivity on transverse sections of the upper cervical spinal cord in 
males (A,B), ovx (C,D) and ovx+E2 females (E,F). NTG administration (B,D,F) compared to 
vehicle (A,B,C) reduces the immunoreactivity in males and ovx females (B,D) but not in 
ovx+E2 rats where the baseline immunoreactivity is lower. Scale bar = 50pm. 
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At the Thl level in male rats, where the superficial dorsal horn area innervated by 

CGRP-fibers is much smaller, there was no significant difference between NTG- and vehicle-

injected animals (data not illustrated). 

These results of the CGRP innervation are synoptically presented in the histogram of 

Figure 10 and in Table 1. 
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Figure 10. Histogram showing the area in pm2 covered by CGRP-Ir fibers in superficial 
laminae I-II of sTNC at C1-C2 in the 3 animal groups and of segment Thl (th) in males 4 
hours after subcutaneous injection of vehicle (light bars) or NTG (hatched bars) 
(mean+S.E.M, n=8 per group). In males and ovx animals there is a significant decrease in the 
area innervated by CGRP-Ir fibers (*** p<0.001). The level after vehicle injection is 
significantly lower in ovx+E2 animals as compared to the male or ovx rats (# p<0.05). 

At higher magnifications the size of the CGRP-Ir boutons in laminae I-II of TNC was 

not different between males and ovariectomized females but was significantly lower in the 

estradiol treated group. After NTG injections, the bouton size decreased significantly in males 

(Figure 11 and Table 2) and ovariectomized animals, but not in the ovariectomized + estradiol 

treated rats. We found no changes in bouton sizes at the Thl level (Figure 12). 
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Figure 11. High magnification photomicrograph of CGRP immunoreactive boutons in 
laminae I-II of sTNC of vehicle (A) and nitroglycerin (B) treated male rats. After NTG 
administration the bouton size is smaller. Scale bar = 1 0 pm 
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Figure 12. Histogram showing the CGRP-Ir bouton size in superficial laminae I-II of sTNC at 
C1-C2 in the 3 groups of animals and in segment Thl (th) of males 4 hours after 
subcutaneous injection of vehicle (light bars) or NTG (hatched bars) (mean+S.E.M, n=8 per 
group). In males and ovx animals there is a significant decrease in the bouton size of CGRP-Ir 
fibers ( p<0.001). The bouton size after vehicle injection is significantly lower in 0VX+E2 
animals as compared to the male or ovx rats (# p<0.05). 
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Serotonergic fibers project to the entire gray matter of the spinal cord, but the densest 

innervation by 5-HT-Ir fibers is found in superficial laminae I-II of the dorsal horn. This is 

also the case at the level of sTNC. Similarly to the results obtained with CGRP, the area in 

sTNC laminae I-II innervated by 5-HT-Ir fibers was not significantly different in male rats 

compared to ovariectomized females. By contrast with CGRP-fibers, however, the 5-HT-Ir 

area was significantly greater in the estradiol-treated ovariectomized animals compared to the 

two other groups (Figures 13A and 13C compared to 13E). 
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Figure 13. 5-HT-immunoreactivity on transverse sections of the upper cervical spinal cord in 
males (A,B), ovx (C,D) and 0VX+E2 females (E,F). NTG administration (B,D,F) compared to 
vehicle (A,B,C) increases the immunoreactivity in males and ovx females (B,D) but not in 
0VX+E2 rats where the baseline immunoreactivity is higher. Scale bar = 50p.m. 
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While the area occupied by 5-HT-Ir fibres in the superficial dorsal laminae at C1-C2 

segmental levels significantly increased after NTG injections in male (Figures 13A,13B) and 

ovariectomized rats (Figures 13C, 13D), these injections had no effect on the 5-HT 

innervation in estradiol-treated ovariectomized animals (Figures 13E, 13F). 

At segmental level Thl, the area covered by 5-HT-Ir fibers in laminae I-II of the 

dorsal horns was much smaller (not illustrated) than the one measured at C1-C2 and it 

remained unchanged after NTG administration (see Figure 14). 

The results for 5-HT immunoreactive areas are summarized in the histogram of Figure 

14 and in Table 2. At higher magnification there was no detectable size difference of 

serotoninergic boutons in the superficial layers of sTNC between animal groups neither 

before nor after NTG administration (Table 2). The numerical data for CGRP- and 5-HT-Ir 

area and bouton size are summarized in Table 1 and 2 respectively. 
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Figure 14. Histogram showing the area in pm covered by 5-HT-Ir fibers in superficial 
laminae I-II of sTNC at C1-C2 in the 3 animal groups and of segment Thl (th) in males 4 
hours after subcutaneous injection of vehicle (light bars) or NTG (hatched bars) 
(mean+S.E.M, n=8 per group) In males and ovx animals there is a significant increase in the 
area innervated by 5-HT-Ir fibers (*** p<0.001). The level after vehicle administration is 
significantly higher in ovx+E2 animals as compared to the male or ovx rats (### pO.OOl). 
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CGRP 5-HT 

Vehicle Nitroglycerin Vehicle Nitroglycerin 

Males 4.97 ±0,16 3.67 ± 0.23*** 3.16 ± 0.12 4.07 ± 0.06*** 

Ovx 4.76 ±0.12 
* * * 

3.75 ±0.13 3.17 ± 0.17 4.2 ±0.16*** 

OVX+E 2 3.98 ±0 .1 # 3.79 ±0.14 4.08 ± 0.17 ### 4.37 ±0.14 

Th 2.15 ±0.05 2.06 ± 0.06 1.69 ±0.06 1.67 ±0.07 

Table 1. Areas innervated by CGRP and 5-HT fibers in the superficial laminae of sTNC 
and the thoracic (Th) dorsal horns. The values are expressed as means ± S.E.M. in 104 pm2. 
There are significant differences 
( p<0,001) between vehicle and nitroglycerin in the male and ovx group as well as after 
vehicle between males and ovx±E2 animals (# p<0,05,### p<0,001). 

CGRP 5-HT 

Vehicle Nitroglycerin Vehicle Nitroglycerin 

Males 0.64 ± 0.03 
* * * 

0.49 ±0.01 0.56 ±0.04 0.61 ±0.05 

Ovx 0.65 ± 0.02 0.48 ±0.01*** 0.56 ± 0.03 0.59 ±0.03 

OVX±E 2 0.51 ±0.02 # 0.51 ±0.01 0.58 ±0.03 0.59 ±0.04 

Th 0.64 ± 0.02 0.63 ± 0.02 0.6 ±0.03 0.61 ±0.04 

Table 2. Size of CGRP and 5-HT immunoreactive boutons expressed as the cross sectional 
area in pm2 (mean ± S.E.M.) There is a significant reduction in the size of CGRP-Ir boutons 
( p < 0,001) between vehicle and nitroglycerin-treated male and ovx animals. After vehicle 
administration the boutons are significantly smaller (# p<0,05) in ovx+E2 rats compared to the 
males. 

f ?% 
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V. Discussion 

V.l. nNOS and c-fos experiments 

Our data demonstrate that systemic NTG administration increases significantly nNOS 

immunoreactivity in the superficial dorsal horn of the upper cervical spinal cord, in addition 

to the effect already described for c-fos immunoreactivity (Tassorelli et al., 1995). To 

understand the mechanisms responsible for the nNOS increase and its possible relevance for 

migraine it is important to note that NTG-induced c-fos and nNOS-positive neurons appear in 

a comparable anatomic territory, which receives C and A8 afferents from peripheral somatic 

trigeminal territories and meningeal vessels (Kaube et al., 1993). This suggests that both 

immunoreactivities are interdependent and related to activation of second order nociceptive 

neurons and interneurons. Such a relationship was demonstrated in the spinal cord after 

intradermal capsaicin injections (Wu et al., 2000) and more recently in trigeminal nucleus 

caudalis after formalin injections into the face which resulted in colocalization of c-fos and 

nNOS in 14% of neurons (Leong et al., 2000). 

Increased nNOS immunoreactivity may be due to increased synthesis or to reduced 

utilisation and cytoplasmic accumulation. Because of the concomitant c-fos activation and the 

fact that NTG or nociceptive stimuli cause activation of second order neurons, it is more 

likely that increased synthesis is causing this phenomenon. 

The nNOS increase in second order trigeminal nociceptors could be due to i.) a direct 

effect of NO on these neurons, ii.) to a modulation by NO of descending brain stem inputs or 

iii.) to an indirect activation via NO stimulation of peripheral nociceptive afferents. Since 

NTG produced no detectable changes in nNOS content of the thoracic dorsal hom, a direct 

effect of NO on second order sensory neurons containing nNOS is most unlikely. There is 

some evidence that local microinjections of NO donors in the rat are able to inhibit 

periaqueductal gray (PAG) matter neurons (Lovick et al., 1996). The ventrolateral part of 

PAG can inhibit neurons in trigeminal nucleus caudalis, including those that receive afferents 

from intracranial vessels (Li et al., 1996). Although the studies on local injections of NO 

donors were performed on the dorsolateral, i.e. the "autonomic", portion of PAG, we cannot 

rule out that the nNOS activation in trigeminal nucleus caudalis is secondary to disinhibition 
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because of reduced descending inputs from PAG neurons. The most likely explanation for the 

increased nNOS immunoreactivity, however, is the secondary activation of second order 

nociceptive neurons and/or intemeurons because of excitation of their peripheral afferents. 

NTG is indeed able to activate meningeal nociceptive fibers (Knyihar-Csillik et al., 1999) and 

we have confirmed in the present paper that a somatic nociceptive stimulus (s.c. formalin) is 

able to activate both c-fos and nNOS in the trigeminal system. It has been shown, moreover, 

that c-fos activation in trigeminal nucleus caudalis neurons by s.c. NTG is reduced after the 

destruction of unmyelinated fibers by capsaicin (Tassorelli et al., 1997) and that c-fos 

activation by NO donors in the spinal cord is abolished by pretreatment with a NOS inhibitor 

(Wu et al., 2000). 

Our findings could be relevant for the pathophysiology of the trigeminovascular 

system and thus for migraine pathogenesis and its NO hypothesis. Increased nNOS activity in 

superficial trigeminal nucleus caudalis suggests that the local availability of NO is enhanced. 

This may be responsible for a central sensitization, possibly via activation of c-fos which can 

induce a number of excitatory or inhibitory transmitters related to pain mechanisms; such a 

relationship between NO and c-fos was recently demonstrated in the spinal cord after a 

peripheral nociceptive stimulus (Lin et al., 1999, Wu et al., 2000). The effects of NO on 

nNOS activity in second order nociceptive neurons appear to be specific to the trigeminal 

system, as we did not observe them in the thoracic spinal cord. The neurobiology of 

trigeminal and peripheral nociception may thus be different. Whether this difference could be 

related to the different presynaptic receptor population (e.g. 5 - H T I B / D receptors) on 

nociceptive afferents, which is underscored by the selective efficacy of triptans in migrainous 

headache (Buzzi et al., 1991), or to other factors remains to be proven. In any case the data 

presented here suggest that NO donors are able to initiate a feedback process in which their 

direct effect on nociceptive trigeminovascular afferents may be amplified and prolonged by 

the nNOS activation in trigeminal nucleus caudalis. Such a process might be important for 

central sensitization and, possibly, for migraine headache. It may be related to the clinical 

signs of central trigeminal nociceptor sensitization which were recently shown in migraine 

patients (Burstein et al., 2000). It might also explain why NTG causes an attack in 

migraineurs only after a delay of several hours, which corresponds roughly to the time it takes 

to induce the increased nNOS activity in the rat. 
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V.2. Sumatriptan and Lys-ASA 

In our study we examined the effect of anti-migraine drugs on the above described 

NTG-induced increase of nNOS expression in the superficial layers of trigeminal nucleus 

caudalis. Pretreatment with sumatriptan failed to influence the increase in nNOS expression 

induced by the NO donor NTG, while the NSAID lys-ASA attenuated the NTG-induced 

nNOS activation. 

It is not known for sure how NTG modifies nNOS in TNC. There are several possible 

ways for NO to induce nNOS expression in secondary trigeminal nociceptors, but we 

hypothesized nonetheless from our first study that the most likely explanation was a 

secondary activation of second order nociceptive neurons and/or interneurons because of 

excitation by NO of their peripheral afferents. 

The NTG effect on nNOS seemed to be specific for TNC as it was not found in upper 

thoracic segments, we cannot rule out the involvement of other neuronal subpopulations. It 

has been shown indeed that NO can exert a dual effect on nociception depending on the dose 

used (Sousa et al., 2001, Colasanti et al., 2000). 

If the latter hypothesis is correct, one would expect that an agonist of presynaptic 5-

H T J B / D receptors which inhibit the release of transmitters in primary nociceptive afferents 

(Arvieu et al., 1993), is able to attenuate the NO effect on nNOS expression. Sumatriptan was 

indeed shown to reduce the CGRP release from meningeal trigeminal fibers after electric 

stimulation of the Gasserian ganglion in the rat, while lys-ASA was not (Limmroth et al., 

2001). It was also reported that sumatriptan prevents the increase of dural perivascular CGRP-

Ir nerve endings after electric stimulation of the Gasserian ganglion (Knyihar-Csillik et al., 

1997). The lack of effect of sumatriptan in our study may therefore suggest that activation of 

nociceptive afferents has no role in the NTG-induced nNOS increase or that 5 - H T 1 B / D 

receptors are not capable to oppose such a chemical activation. Earlier studies on migraine 

headache have emphasized a possible role for 5 -HT 2 B/C (Fozard et al., 1994), or more likely 

for 5-HT2B receptors, which mediate the release of NO from the endothelium (Schmuck et al., 

1996). Recent experiments showed that 5-HT2A receptor activation was able to enhance nNOS 

expression in trigeminovascular neurons (Srikiatkhachorn et al., 2002) and upregulation of 

platelet 5 - H T 2 receptors was reported by the same group in transformed migraine 
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(Srikiatkhachorn et al., 1994). Taken together these findings underline that, besides 5 - H T I B / D , 

other 5-HT receptor subtypes play a role in trigeminovascular pain, which could be an 

explanation for the lack of effect of sumatriptan in our model. 

An alternative explanation for the ineffectiveness of sumatriptan must be taken into 

account: its hydrophilicity and reduced ability to cross the blood-brain barrier (Humphrey et 

al., 1991). For instance, systemic administration of sumatriptan in cat is able to inhibit the 

firing of central trigeminal neurons induced by sagittal sinus stimulation only after disruption 

of the blood-brain barrier by mannitol (Kaube et al., 1993), which contrasts with more 

lipophilic triptans like zolmitriptan and naratriptan (Goadsby et al., 1996,1997). Interestingly, 

in acute migraine treatment sumatriptan has little efficacy, if it is taken at the time of the aura, 

i.e. before the headache phase (Baneqee et al., 1992), whereas aspirin will not lose efficacy 

on the headache if given during the aura (Ross-Lee et al., 1983). 

There is no doubt that sumatriptan is effective in NTG-induced attacks in migraineurs 

(Iversen et al., 1996), but such attacks are triggered by microgram-range doses of NTG 

administration, which seems to produce sensitisation, but not c-fos activation of trigeminal 

neurons (Jones et al., 2001). It may thus be possible that higher doses of NTG, such as those 

used here, induce a more robust activation of central trigeminal nociceptors. 

Inducible cyclo-oxygenase 2 (COX-2) is expressed in the superficial dorsal hom of the 

rat spinal cord (Beiche et al., 1998) and plays a role in central sensitisation (Samad et al., 

2001). It mediates most of the analgesic effects of NSAIDs (Yaksh et al., 2001). After 

hindpaw inflammation in mice some of the COX-2 expressing cells in laminae I-II are also 

positive for nNOS (Maihofner et al., 2001) suggesting an interaction between the two 

enzymes. Lys-ASA, like all NSAIDs, inhibits cyclo-oxygenase 1 and COX-2. It is effective in 

migraine, penetrates easily the blood-brain barrier and has a long-lasting effect as well as a 

long half-life (Gatti et al., 1989). Lys-ASA may also exert an anti-nociceptive effect by acting 

directly upon the periaqueductal gray matter (Tortorici et al., 1995). Taken together, these 

data and our present results suggest that the stimulating effect of NTG, and thus of NO, on 

nNOS expression in secondary trigeminal nociceptors might be mediated by prostanoids and 

in particular by COX-2 expressing interneurons in TNC superficial laminae. 
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V.3. CGRP and 5-HT 

To our knowledge this study demonstrates for the first time that systemic 

administration of NTG is able to change CGRP and 5-HT immunoreactivities in laminae I-II 

of the spinal portion of trigeminal nucleus caudalis. Up to now, NTG-induced c-Fos 

(Tassorelli et al., 1995) and the above mentionned nNOS activations were reported in the 

same area of the upper cervical cord. Release or increased turnover of CGRP in spinal dorsal 

horns of appropriate segments was reported after localised peripheral inflammation (Sluka et 

al., 1992), capsaicin administration (Garry et al., 2000) or subcutaneous formalin injections 

(Zhang et al., 1994). The decrease of the area occupied by CGRP-Ir afferents found here is 

thus likely a consequence of an increased release of CGRP due to the NO-mediated 

stimulation of trigeminal nociceptive A8 and C afferents. Morphological changes suggestive 

of transmitter release were also found in the distal portions of trigeminal CGRP-Ir afferents in 

dura mater after electrical stimulation of the Gasserian ganglion (Knyihar-Csillik et al, 2000). 

We could also demonstrate a decrease in the size of CGRP immunoreactive boutons which 

would support the hypothesis of an increased release of the peptide due to the NTG 

administration. By the same token, the NTG-induced increase in 5-HT immunoreactivity in 

the same spinal gray areas may indicate a reduced release of serotonin from supraspinal 

afferents. The molecular and functional relation between 5-HT afferents to the superficial 

spinal dorsal horn and spinal nociceptors is complex. Multiple 5-HT receptors (such as 5-

H T I B , 5 - H T I D and 5-HTIF ) are found in laminae I-II (Castro et al., 1997). When activated, all 

of them may decrease c-fos expression in trigeminal nucleus caudalis induced by nociceptive 

stimulation (Mitsikostas & Sanchez del Rio 2001; Hoskin et al., 1996). By contrast, spinal 

nociceptive transmission after peripheral inflammation can be enhanced by the action of 

serotonin on 5-HT3 receptors (Green et al., 2000). It is not known if NTG would reduce 5-HT 

release in laminae I-II because of a local interaction with serotonergic terminals or via a 

secondary modulation of the serotonergic descending pain control pathway. Increased 5-HT-

metabolism was demonstrated in nucleus raphe magnus and in the spinal dorsal hom after 

subcutaneous injection of formalin (Puig et al., 1992). Carrageenan-induced inflammation in 

the paw also increased the 5-HT concentration in periaqueductal gray and the lumbar spinal 

dorsal hom of the rat (Zhang et al., 2000). Whatever the mechanism might be, it seems to be 

selective for spinal trigeminal nucleus caudalis, as we found no detectable change in 
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superficial dorsal horn of the thoracic spinal cord, a selectivity already pointed out for NTG-

induced NOS activation in 2nd order nociceptors (Pardutz et al., 2000). The selectivity of the 

NTG effect for the projection site of trigeminovascular afferents underlines the relevance of 

the NTG model for migraine. The reason for this selectivity has to be determined, but it might 

be related to the presence on visceral trigeminal Ad and C afferents of specific receptor 

populations, such as the 5 - H T I B / D receptors, or to other regional differences in neuronal 

metabolism. Interestingly, the specific 5 - H T I B / D agonist eletriptan, which is highly effective in 

migraine treatment, prevents the morphological changes of CGRP-Ir peripheral dural 

afferents induced by trigeminal ganglion stimulation (Knyihar-Csillik et al., 2000). 

Contrary to the acute changes in immunoreactivities occurring after NTG injection, 

those found after the experimental modulation of estradiol levels are on a different time scale 

and reflect slower plastic adaptations of neurotransmitter expression. Our results suggest that 

ovarian hormones, which greatly influence the course of migraine, have indeed the capacity to 

modify the expression of pivotal transmitters in the trigeminovascular nociceptive pathway. In 

animals with high estradiol levels, i.e. ovariectomized females treated with 1713-estradiol, 

CGRP innervation was clearly reduced in the superficial sTNC layers, compared to animals 

with low estradiol levels, i.e. males and ovariectomized non-treated females. This is in line 

with findings by Moussaoul et al. (1996). Estrogen receptors are present on spinal sensory 

ganglion neurons (Yang et al., 1998, Taleghany et al., 1999) and in spinal gray matter 

(Shugrhue et al. 1997). Estradiol may thus act at the genomic level, which would modify the 

phenotypic expression of CGRP and annihilate any detectable change in immunoreactivity 

after NTG. 

Contrasting with CGRP, the area covered by 5 - H T - I r fibers in sTNC laminae I-II was 

higher in estradiol-treated ovariectomized rats. This finding has to be discussed in the light of 

the well documented effect of estrogen on various aspects of serotonin transmission and 

metabolism in other brain areas. It has been shown that ovarian steroids increase tryptophan 

hydroxylase in species such as macaques or guinea pigs (Pecins-Thompson et al., 1996; 

Bethea et al., 2000; Lu et al., 1999), while they decrease mRNA expression of the serotonin 

re-uptake transporter in monkeys and rats (Pecins-Thompson et al., 1998; Rehavi et al., 

1998). Estrogen is also able to desensitize 5 - H T I A receptors in hypothalamic neurons (Raap et 

al., 2000), which may activate serotonergic neurons by decreasing auto-inhibition. Among 

these various and possibly interrelated effects, an estrogen-dependent increase in activity of 
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the synthesizing enzyme tryptophan hydroxylase in descending raphe-spinal serotonergic 

neurons would probably best account for our finding of increased 5-HT immunoreactivity in 

sTNC after estradiol treatment. Estrogen receptors are known to be localized on serotonergic 

neurons in raphe nuclei (Leranth et al., 1999) and may mediate some of these effects. Like for 

CGRP, there was no significant change in the sTNC 5-HT innervation after NTG in estradiol-

treated ovariectomized rats, probably because there was no possibility for further 5-HT 

increase after stimulation of its anabolism by the estrogen. On the other hand, it has been 

shown that estradiol induces structural synaptic remodeling in certain sex steroid-responsive 

brain areas (Garcia-Segura et al. 1994), so that the changes in the CGRP and 5-HT-Ir 

innervation pattern observed here in estradiol-treated animals could be the result of synaptic 

rearrangements in the superficial laminae of trigeminal nucleus caudalis. Whether they may 

be relevant for the hormonal influences in migraine remains speculative. It is interesting, 

however, to draw a parallel between our immunocytochemical data in rats showing that 

estradiol is able to suppress activation of trigeminal afferents by nitroglycerin, a well known 

trigger of migraine attacks (Olesen et al. 1993), and the clinical observation that migraine 

markedly improves in most women during pregnancy, i.e. when sex hormone levels are high 

and stable (Marcus 1995; Silberstein & Merriam., 2000). 

In summary, NTG, a NO donor, is able to decrease the area covered by peripheral 

CGRP-Ir afferents in superficial laminae of rat spinal trigeminal nucleus caudalis and to 

decrease the area occupied in the same laminae by descending 5-HT-Ir afferents. These 

effects are annihilated in animals in which the baseline activity of CGRP is decreased or that 

of 5-HT is increased because of chronically high levels of estradiol. Whatever the underlying 

molecular mechanisms of the acute NTG-induced and the chronic estradiol-dependent change 

might be, both seem to be selective for the trigeminal sytem and may shed some light on the 

role of NO donors and ovarian steroids in trigeminovascular pain syndromes, such as 

migraine. If, as deduced from our immunocytochemical observations, the release of CGRP is 

indeed enhanced and that of 5-HT reduced by NO at the level of the spinal trigeminal nucleus, 

one may expect increased nociception. On the other hand, the opposite changes in animals 

with high estradiol levels would lead to decreased trigeminal nociceptive transmission. This 

might be at least part of the neurobiological explanation for the attack-triggering effect of 

NTG and other NO donors in migraine patients and for the protective action on this disorder 

of high and steady levels of ovarian hormones, as for instance during pregnancy. 
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VI. Conclusions 

In our paper we established a reproductive animal model for migraine headache the 

systemic administration of NTG in rats. 

i. The NO donor NTG causes a delayed induction of nNOS in the caudal trigeminal 

nucleus, a similar effect witnessed after nociceptive stimulus. This phenomenon may cause 

a self amplified process explaining the central sensitisation discovered in migraine patients 

(Burstein et al. 2000). 

ii. Lys-ASA but not the 5 - H T I B / D agonist sumatriptan is able to modulate the nNOS 

inducing effect of NTG suggesting the involvement of prostanoids in the process. 

iii. We also examined the modulatory effect of estradiol, a gonadal steroid which 

influences the clinical picture of migraine headache on two relevant transmitters CGRP and 

5-HT. NTG was able to decrease the CGRP and increase the 5-HT content of the TNC in 

male and ovariectiomised rats but not in estradiol treated females. 

These data may contribute to a better understanding of the pathomechanisms of 

migraine headache and the relevance of the modulating effect of estradiol in these conditions. 
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