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Introduction 

Migraine 

Migraine is the most common primary headache disorder. The disease commonly 

presents in the form of intense pulsing or throbbing unilateral headache. Migraine 

usually starts in adolescence but tends to affect predominantly people aged between 

35 to 45 years. The socio-economic importance of the disease is that approximately 

20% of the population suffers from disabling attacks of migraine during lifetime 

[1]. The pain commonly accompanied by nausea, vomiting and extreme sensibility 

to light, smell and sound. In one quarter of the patients the headache is preceded by 

transient central nervous system symptoms, mostly visual or sensory, called aura. 

While environmental factors like hormonal changes, stress, changes in wake-sleep 

pattern or the environment, foods and drinks, medications and sensory stimuli could 

trigger migraine headache [2], scientific data suggest a predominantly genetic origin 

of the disease (see for review: [3,4]). 

The underlying pathophysiological process of migraine is not entirely understood 

and established indicators of the disease are missing. There are evidences, that the 

trigeminovascular pathway and hemispheric brain structures also must have a 

central role in the pathomechanism, which suggest the multilevel origin of the 

disease. Dural perivascular trigeminal activation and the release of calcitonin gene 

related peptide (CGRP) and substance P [5,6] are involved in migraine 

pathomechanism and that cause neurogenic inflammation. The nociceptive 

information is then transmitted by the sensory neuron, residing in the trigeminal 

ganglion, to the trigeminal nucleus caudalis [7,8] wherefrom it is mediated to the 

thalamus and forth to cortical centres [9].  Most of the migraineurs also report 

allodynia during the attacks when non-nociceptive stimuli cause pain either in the 

trigeminal or extracephalic areas, which is associated with the disease duration and 

attack frequency [10]. This process involves the central sensitisation of the 

secondary and tertiary neurons of the trigeminal system [11]. Trigeminal 

sensitisation might arise from two distinct but not necessarily exclusive processes: 
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stimulation might arise from the cortical spreading depression (CSD) [12] that 

stimulates trigeminal endings [13] or alternatively top-down modulation of the 

trigeminal system from higher-level cortical systems [14]. The altered excitability 

of the cerebral cortex in the interictal state seems to be fundamental in the brain’s 

susceptibility to migraine attacks [15]. 

To understand the parallel steps of the pathogenesis we should examine the 

migraine with extended methods. Beyond the investigation of animal models (the 

relevance of which is limited) and laboratory tests, functional and structural 

imaging techniques have a crucial role to investigate in vivo alterations in migraine 

patient’s central nervous system. 

The first functional imaging studies were based on positron emission tomography 

(PET). PET studies found increased activity in visual cortex during migraine attack 

and photophobia [16,17]. Migraineurs in interictal period showed altered brain 

activity compared to controls [18,19]. In patients, hypometabolism was found in the 

bilateral insula, bilateral anterior and posterior cingulate cortex, left premotor and 

prefrontal cortex, and left primary somatosensory cortex [19]. The cerebellum and 

the white matter of the posterior brain-parts showed decreased glucose metabolism 

[18]. Moreover, based on PET studies the role of the 5HT(1A) receptors was 

described in the pontine raphe nuclei, the left orbitofrontal cortex, the temporal pole 

and the precentral gyrus [20,21]. Functional magnetic resonance imaging (fMRI) 

examinations confirmed the results of the PET studies. The pain-related areas 

showed altered activation during migraine attack [22-25] and in interictal [26-29] 

period. 

Structural magnetic resonance imaging (MRI) studies, despite of the different 

methodological process, consistently revealed loss of gray matter in pain related 

brain regions, including the frontal cortex, temporal lobe, insula, and brainstem [30-

34]. Kim and coworkers described that increasing headache duration and increasing 

headache frequency lead to progressive reduction of the gray matter volume of the 

migraineurs suggesting that repeated migraine attacks may cause selective alteration 

to several brain regions involved in migraine pain processing [30].  

White matter microstructure changes, as defined by diffusion-weighted MRI, are 

receiving more and more attention. Diffusion-weighted MRI is sensitive to 
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diffusion of water molecules, which in the brain is largely restricted by the 

membranes of the cellular particles (Figure 1.). Diffusion weighted MRI is tuned to 

measure diffusion in certain directions and by fitting a diffusion tensor model to the 

measured diffusion profile, it is possible to calculate diffusion parameters that 

reflect the microscopic organisation of the measured volume [35]. 

 
Figure 1. The restricted diffusion of water in brain tissue can be measured with diffusion tensor 

imaging. The movement of the water is free parallel to the axons and restricted perpendicular to the 

membranes. Imaging techniques allow getting information about the integrity of the white matter 

tracts. 

A number of studies reported altered white matter microstructure in migraine with 

different methodological approaches. For example, lower white matter mean 

diffusivity (MD) and increased fractional anisotropy (FA) were found in migraine 

patients by means of a histogram analysis [36]. Li and co-workers, in a region-of-

interest (ROI) analysis showed reduced FA in the genu, splenium, and body of the 

corpus callosum [37]. Similarly, in another ROI-based analysis, Rocca and 

colleagues found reduced FA and higher MD in the right optic radiation of patients 

with aura [38]. Using a voxel-based morphometry style analysis, lower FA was 

described in the thalamocortical tract of migraineurs, and similar alterations were 

found in the trigeminothalamic tract and in the periaqueductal gray matter (PAG) of 

patients with and without aura, respectively [39]. By using a similar approach, 

Granziera and colleagues found reduced FA in the visual motion-processing 

network [40]. 
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Cluster headache 

Cluster headache (CH), a primary headache disorder within the group of trigeminal 

autonomic cephalalgias, is characterised by paroxysmal hemicrania and ipsilateral 

craniofacial autonomic symptoms [2]. Cluster periods may last from weeks to 

months, usually followed by remission periods when the headache attacks stop 

completely. During remission, no headaches occur for months and sometimes even 

years. One period lasts form 6 to 12 weeks. Migraine-like symptoms can occur over 

an attack usually on one side. The main risk factors of CH are the smoking, alcohol 

use and positive family history. The first CH attack occurs between 20 and 50 

years. The prevalence of the CH is about 0.1%. Although the appearance of CH is 

much rare compared to migraine, it usually presents with a very severe headache, 

which causes significant disability during the attack. 

The pathomechanism of CH is not fully understood but involves both central and 

peripheral mechanisms [41]. Due to the periodic appearance of the attacks, there 

has been numerous studies suggesting the role of the hypothalamus [42]. Positron 

emission tomography studies showed that the anterior cingulate cortex, the 

contralateral thalamus, the ipsilateral basal ganglia and both insulae were activated 

in CH [43,44].   Most importantly, pain related to the emotional and autonomic 

response is known to be the main activator of the mentioned structures. 

Nevertheless, the activation of the hypothalamus seems to be a specific feature of 

cluster attacks [43], indicating its pivotal role in the pathogenesis and pain 

regulation in CH.  Since the hypothalamic activation can influence the pain-matrix 

[45]  these findings point to the multifocal origin of the CH, the dysfunction of the 

pain-matrix [41,46]. Structural MRI studies found gray as well as white matter 

alterations in CH [47] similar to those found in migraine [30,34,48]. A recent 

diffusion tensor imaging (DTI) study in CH found reduced FA in the pain matrix 

[49]. Contrarily, another study found no microstructural alterations (investigated FA 

and MD) in CH [47]. While these results may be contradictory, imaging markers 

could be a powerful tool to describe disease progression and reveal important clues 

on the pathomechanism. 
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Objectives 

The aim of our study was to seek biomarkers of primary headache disorders and 

examine the microstructure of the white matter in migraine and cluster headache. 

Furthermore, thalamic morphology was examined in migraine using structural MRI 

methods. 

Methods 

Participants 

Twenty-one female migraine patients and thirteen patients with episodic CH, 

without any history of other neurological disorder, were chosen from the Headache 

Outpatient Clinic of the Department of Neurology, University of Szeged. The 

diagnosis was based on the criteria of the International Headache Society [50]. In 

order to rule out possible confounding factors, patients were all screened for 

depression by means of the Hamilton Depression Rating Scale [51]. Based on this, 

four patients were excluded from the study.  

All patients underwent a clinical interview, which covered the time since the onset 

of headaches, frequency, quality, intensity, duration, localization of pain, provoking 

factors and associated symptoms. Headache-related allodynia was evaluated based 

on Lipton and coworkers’ work [10]. The allodynia symptom checklist measures 

the cephalic and the extracephalic allodynia. All subjects were right-handed; none 

of them had a history of head injury or met the criteria of chronic headache. None 

of the patients had any other neurological or psychiatric diseases. None of the 

patients reported aura symptoms. MRI scans were acquired in the interictal period. 

Demographic data of the study groups listed in Table 1 and Table 2. As controls, 

seventeen age-matched, right-handed, healthy female individuals and sixteen 

controls, with no history of migraine, CH, long-term headache or other neurological 

or psychiatric diseases were included in the migraine and CH study respectively. 

The study was approved by the local ethics committee (authority number: 87/2009), 

and all the subjects provided written consent according to the Declaration of 

Helsinki. 
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Image acquisition 

MR imaging was carried out on a 1.5T GE Signa Excite HDxt MRI scanner. During 

the scanning, each subject laid supine in the scanner with eyes closed and head 

motion was restricted with foam padding around the head, and the necessity of head 

immobility was explained to each subject. Scanner noise was attenuated with 

earplugs. 3D spoiled gradient echo (FSPGR: TE: 4.1ms, TR: 10.276ms, matrix: 

256x256, FOV: 25x25cm, Flip angle: 15 degree, in-plane resolution: 1x1mm, slice 

thickness: 1mm) and 60 direction diffusion weighted images with 6 non-diffusion-

weighted reference volume (TE: 93.8ms, TR: 16000ms, matrix: 96x96, FOV: 

23x23cm, Flip angle: 90 degree, in-plane resolution: 2.4x2.4mm slice thickness: 

2.4mm, b: 1000s/m2, NEX: 2, ASSET) were acquired for all the subjects. 

Image analysis 

Processing of diffusion data 

Correction for eddy currents and movement artifacts by 12 DOF affine linear 

registration to the first non-diffusion-weighted reference image was the first step of 

the preprocessing [52]. Diffusion gradient directions were reoriented according to 

the result of eddy current correction [53]. Diffusion tensors at each voxel of the 

brain were fitted by an algorithm of FMRIB’s Diffusion Toolbox (FDT) in FSL (v. 

4.0, www.fmrib.ox.ac.uk/fsl; [54]). FA, MD, and AD (λ1 ) and PD ((λ2 + λ3)/2) to 

the principal diffusion direction were calculated for the whole brain. In CH study, 

images were mirrored to the midsaggital axis according to the side affected by the 

headache. In order to minimize the possible mistakes arising from misalignment of 

the images, we used the tract based spatial statistical (TBSS) method [55]: All 

subjects’ FA data were aligned into a common space derived from 58 high-

resolution FA images of healthy subjects, using the FMRIB’s Nonlinear 

Registration Tool, FNIRT [56] which uses a b-spline representation of the 

registration warp field [57]. A mean FA image was created and then thresholded at 

FA = 0.2, deriving a mean FA skeleton that represents the centres of all tracts 

common to the group. Each participant’s aligned FA data were then projected onto 

this skeleton and the resulting data fed into voxel-wise cross-subject statistics. 



	
   14	
  

Modeling and inference using standard general linear model design set-up was 

accomplished using permutation-based cluster analysis (5000 permutation) [58] as 

implemented in FSL. The design encoded for group membership and clinical 

variables.  

In the migraine study clusters were formed according to a defined threshold (t = 

2.3) and corrected for multiple comparisons (across space) within the permutation 

framework by building up the null distribution of the maximum cluster size for each 

permutation (p < 0.05). We also carried out a region of interest analysis on the 

white matter regions whose FA values differed significantly between groups. We 

tested for differences in FA, MD, longitudinal, and perpendicular diffusivity. 

Connectivity of the identified differences in white matter integrity was defined by 

probabilistic tractography (FDT, part of FSL: www.fmrib.ox.ac.uk/fsl/fdt/) in 

migraineurs. We fitted a multifibre diffusion model [59] that estimates probability 

distributions of the direction of 1 or more fibre populations at each brain voxel. 

Probabilistic tractography was then performed from any brain voxel by tracing 

streamline samples through these probabilistic distributions on fibre direction. For 

tractography, we generated 5000 streamline samples from each seed voxel to build 

up a connectivity distribution. The number of these samples passing through each 

brain voxel is interpreted as proportional to the probability of connection to the seed 

voxel. By fitting a multifibre model to our diffusion data, we were able to follow 

pathways through regions of fibre crossing [59]. Cluster-masks of the TBSS 

analysis were used as a binary seed masks. 

In CH study after using permutation test (5000 permutation), statistical images were 

thresholded by the novel threshold free cluster enhancing approach (TFCE) [60]. 

Similar analysis were carried out for the MD, perpendicular (PD) and axial 

diffusivity (AD). The diffusivity parameters were extracted from the regions 

indicated by the thresholded results of the TBSS analysis and these parameters were 

correlated with the number of cumulative headache days using Statistical Package 

for Social Sciences (SPSS 17 for OS X, SPSS Inc., http://www.spss.com). 

Laterality index was calculated for every diffusion parameter from the number of 

suprathreshold voxels [61]: 
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LI = NL + NR

NL − NR ,  

where NL and NR are the number of suprathreshold voxels in the left and right 

hemisphere.  

Volumetric analysis 

Volumetric analysis of the thalamus was carried out using tools of FSL (FMRIB 

Software Library, http://www.fmrib.ox.ac.uk/fsl) [55]. A deformable-model-based 

segmentation-registration tool employing a Bayesian Appearance Model (FMRIB’s 

Integrated Registration Segmentation Toolkit), FIRST was used, which can 

automatically segment the thalami [62]. For the automatic segmentation of basal 

ganglia, shape and intensity variations of subcortical structures were constructed 

from a training set of 336 images. To study the cross-subject vertex 

correspondence, surface meshes were obtained with a deformable model. At each 

vertex a sample was taken from the normalized intensities along the surface normal. 

Then the vertex intensity and location variation were modeled as a multivariate 

Gaussian distribution. Finally, maximizing the posterior probability of the shape 

given the observed intensities, this model was fit to new images [62]. The boundary 

voxels on the edge of the structure were corrected by FAST, which classifies these 

boundary voxels according to intensity [63]. The obtained segmentation quality was 

evaluated by visual inspection. Given our primary is interest of volume changes 

related to the sensitization of the tertial, thalamic neuron, our prior hypothesis was 

centered on the thalamus. The other subcortical structures were also segmented. 

Volumetric comparison of the segmented thalami across groups was performed 

using the Statistical Package for Social Sciences (SPSS 17 for OS X, SPSS Inc., 

http://www.spss.com). Testing the normality of the data Shapiro-Wilk test was used 

and Student t-test was used to compare groups. Pearson correlation was calculated 

between the size of the thalami and the clinical parameters. 

Shape changes of the subcortical structures 

A surface mesh model was fit to the individual thalami. The corresponding vertices 

can be compared across groups since the number of vertices are fixed and 

correspond with one another across subjects. The meshes were then aligned 
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(rotation and translation) to the mean surface in MNI152 space, and group 

comparisons of corresponding vertex locations were performed by calculating 

vertex-wise F statistics to investigate localized shape differences [62]. Since, this 

was only performed as a post-hoc localisation of the significant changes, identified 

with the volumetric analysis, uncorrected p-values were used. 

Connectivity of focal thalamic volume changes 

Probabilistic tractography was started from the descibed focal thalamic shape 

changes (thresholded at p<0.05, uncorrected). The mesh surface vertices in MNI152 

space were used as seed locations for tractography (FMRIB’s Diffusion Toolbox, 

part of FSL: www.fmrib.ox.ac.uk/fsl/fdt/). We fitted a multi-fibre diffusion model 

[59] that estimates probability distributions on the direction of one or more fibre 

populations in each seed brain voxel. Probabilistic tractography was then performed 

from any voxel of the brain by tracing streamline samples through these 

probabilistic distributions on fibre direction. We generated for tractography 5000 

streamline samples from each seed voxel to build up connectivity spacing. The 

number of these samples passing through each brain voxel is interpreted as being 

proportional to the probability of connection to the seed voxel. By fitting a multi-

fibre model to our diffusion data, we were able to trace pathways through regions of 

fibre crossings [59]. The individual connectivity maps were registered to standard 

MNI152 brain. Individual tractography results were thresholded at 1000 particles 

(20%), binarised and summed over subjects to represent the group level 

connectivity pattern. 

Results 

Migraine 

Focal white matter microstructure alterations 

As evaluated by group level voxelwise FA differences in the centre of white matter 

fibre bundles, the white matter microstructure was significantly changed in 

migraine patients as compared to controls. The differences were observed in the 

right frontal white matter (maximal t-score at voxel location x = 25 mm, y = 24 
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mm, z = 5mm standard space coordinates; Figure 

2.).  

Figure 2. Reduced FA in the right frontal white matter in 

migraine patients was detected with TBSS. The mean FA 

skeleton is rendered in green. The t-scores are depicted in red-

to-yellow colours within the significant cluster. 

Specifically, FA was lower (Figure 3.), while MD 

and PD were significantly higher in patients than in 

controls (p < 0.0088 and p < 0.0002, respectively, Figure 3.). AD, on the other 

hand, was not different between groups (p > 0.101, Figure 3.). 

 
Figure 3. FA, MD, axial (L1), and perpendicular ((L2 + L3)/2) diffusivity in the cluster where 

reduced FA was found (x=25mm, y=24mm, z=mm). MD was higher in migraine patients (p < 

0.0088), which was explained by the increase in perpendicular diffusivity (p < 0.0002). L1 did not 

differ between the groups (p > 0.101). On the box-plot, the central mark is the mean, the boxes 

represent the 25% and 75% percentiles, and outliers are depicted as red crosses. 

In a whole brain analysis, neither MD nor the axial/perpendicular diffusivity 

showed any significant difference between patients and controls. In order to further 

characterize the microstructural alterations found in migraine, we carried out a 

correlation analysis between clinical data and local FA by using an ROI approach. 

No correlation was found between the observed FA and disease duration or attack 

frequency. 
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Connectivity of focal FA changes in migraine 

The probabilistic tractography indicated that fibres of the right frontal white matter 

showing the FA alteration (identified by the TBSS analysis) were connected to the 

ipsilateral prefrontal cortical regions, insula, thalamus, dorsal, and ventral midbrain. 

Fibres proceeded in the direction of the occipital cortex through the putative inferior 

fronto-occipital fasciculus. Some fibres also crossed the midline through the corpus 

callosum (Figure 4). 

 

       

Figure 4. Connectivity of the white matter cluster showing significantly lower FA in migraine 

patients than in controls. The binary cluster masks were used as seed mask for each patient. 

Subcortical structures’ volume in migraineurs and controls 

The data showed normally distribution as we tested with Shapiro-Wilk test (right 

thalamus: p<0.323; left thalamus: p<0.529). The size of the left (p<0.04) as well as 

the right (p<0.047) thalami was significantly larger in patients. There was no 

significant difference between the size of the left and right thalamus either in case 

of the patients (p<0.467) or the healthy subjects (p<0.299). The volume of the other 

subcortical structures was not difference between patients and controls (p>0.05). 

The relationship of thalamic volume changes and clinical features 

We correlated the size of the thalami in migraineurs with the frequency of their 

attacks (the number of migraine attacks within one year, and also the total number 

of the attacks over the course of disease) and the duration of the disease. The 
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number of attacks within one year significantly correlated with the size of the left 

(R=0.550; F(1,15)=6.491; p<0.022) and right thalamus (R=0.496; F(1,15)=4.881; 

p<0.043) (Figure 5.). 
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Figure 5. Correlation of thalamic volumes with attack frequency. Correlation was significant on 

both side: left: R=0.550, p<0.022; right: R=0.496, p<0.043. 

We found no significant correlation between the number the total attacks and the 

size of the thalami (right thalamus: R=0.104; F(1,15)=0.164; p<0.691; left 

thalamus: R=0.161; F(1,15)=0.398; p<0.538). There was no significant correlation 

between the duration of the disease and the size of the thalami (right thalamus: 

R=0.176; F(1,15)=0.480; p<0.499; left thalamus: R=0.137; F(1,15)=0.286; 

p<0.601). Significant correlation was shown between the allodynia score of the 

patients and the volume of their left thalamus (R=0.528; F(1,15)=5,805; p<0.029) 

(Figure 6.). It should be noted that this correlation was primarily driven by the 

highest allodynia scores. There was no significant correlation between the size of 

the right thalamus and the allodynia score (R=0.233; F(1,15)=0.859; p<0.369). 
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Figure 6. Correlation of the size of the left thalamus with the allodynia score. A significant 

correlation was found: R=0.528, p<0.029. 

Surface changes of the thalami in migraineurs 

The vertex-based analysis of the focal thalamic shape changes showed a local 

augmentation of size in the ventral region of the right thalamus in patients (Figure 

7/A.). Probabilistic tractography of this enlarged area showed consistent 

connectivity to the dorsal brainstem. In the other direction, the highest connectivity 

was found to be to the premotor and prefrontal cortices (Figure 7/B.). 

 
Figure 7. Focal size augmentation of the right thalamus and the connectivity of that region (A). The 

right thalamus is depicted from the anterior aspect and slightly below. Yellow to blue colours (colour 

bar on the right represent F-values) represent the location of the size augmentation in patients. The 

image is thresholded at p<0.05, uncorrected. Arrows show the direction of movement of individual 
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vertices across groups (B). On the 3D image the same right thalamus is depicted with the result of 

the probabilistic tractography in transparent blue and the connectivity of the affected thalamic region 

is shown. The red to yellow scale shows super-threshold connectivity values present in two patients. 

Cluster headache 

White matter microstructural alterations 

The whole brain TBSS analysis showed decreased FA (p < 0.02, corrected for 

multiple comparison in the corpus callosum, bilaterally in the forceps minor and 

major, right corona radiata, left internal and external capsule, left cerebral 

peduncule, frontal portion of the left corona radiata, right parietal juxtacortical 

white matter, left inferior fronto-occiptal fascicle (Figure 8/A.).  

 
Figure 8. Diffusion parameters in cluster headache patients. Blue colours indicate reduction (A); 

red-to-yellow colours indicate increment (B-D) in the given diffusion parameters (x=75mm, 

y=102mm, z=87mm). The mean FA skeleton is shown in green. A thickened version of the 

significant cluster is used for easier visualisation (red-to-yellow or blue shades). Boxplots show the 

diffusion parameters of the affected area respectively. 

MD was found increased (p < 0.01, corrected for multiple correlations) in regions 

where FA alterations were found, but the alterations were more extensive involving 

more frontal, parietal and temporal juxtacortical white matter (Figure 8/B.).  Axial 

diffusivity was also found to be increased in widespread white matter regions (p < 

0.02, corrected for multiple correlations) similar to those of FA changes, but no 
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significant alteration of axial diffusivity was found in the right parietal lobe in the 

juxtacortical white matter and the posterior corona radiate (Figure 8/C.).  

Augmented perpendicular diffusivity (p < 0.01, corrected for multiple correlations) 

was the most extensive among the different diffusion parameters, involved 

essentially all major white matter fibre bundles, except the right external capsule 

(Figure 8/D.).  

No increased FA or decreased mean, axial, or perpendicular diffusivity was 

detected. Laterality indices of all measured diffusion parameters showed left 

dominancy (LIFA: 9.8, LIMD: 0.2, LIAD: 0.7, LIPD: 0.2). 

There was a significant correlation between the cumulative headache days and axial 

diffusivity in regions showing significant differences in AD (p < 0.022, r: 0.626, 

corrected for multiple comparisons, Figure 9.). Other diffusion parameters did not 

show significant correlation. 

 
Figure 9. 

Augmentation of the 

axial diffusivity 

shows inverse 

correlation with the 

cumulative 

headache days in 

lifetime. 

 

Discussion 
In this thesis MRI detected structural alterations are presented in migraine and CH 

patients: (1) in migraine patients right frontal white matter microstructural 
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alterations were found and (2) increased thalamic volumes were identified, which is 

correlated with the attack frequency and the level of allodynia, while (3) in cluster 

headache similar pattern of diffusion parameter alterations were detected, but more 

widespread in the white matter and (4) correlation was found between the disease 

burden and axial diffusivity.  

Migraine 

Microstructural alterations in migraine 

Microstructural white matter alterations as measured by diffusion MRI are 

frequently reported in migraine. In a histogram analysis lower white matter FA and 

higher MD was detected in migraineurs [31]. In a region of interest analysis 

reduced FA was measured in the corpus callosum [37] and in the optic radiation 

[38]. This later was also confirmed by a voxel based morphometry style analysis 

[39]. Similar changes (reduced FA, increased MD) was described in the trigemino-

thalamic and thalamo-cortical tracts [39].  By using a similar approach, Granziera 

and colleagues found reduced FA in the visual motion processing network [40]. 

Despite the undisputed merits of these studies, our investigation overcomes some of 

the limitations. By investigating only the core of each fibre bundle (as defined by 

the local maxima of FA) we reduced the effect of the spatial variability [54]. Since 

this kind of data often violates the requirement of normally distributed data, the use 

of non-parametric permutation test further enhanced the value of our results.  

Our results are in line with previous reports describing structural and functional 

alterations of the frontal cortex of subjects with migraine. Frontal cortical atrophy 

was reported in migraine patients [32,34,64] and frontal cortical gray matter density 

reduction was correlated to T2-visible lesion load [31]. In migraineurs altered 

cognitive shift was correlated with the reduced frontal gray matter [65]. In a recent 

investigation gray matter atrophy was found in the left medial prefrontal cortex, the 

dorsal anterior cingulate cortex, the right occipital lobe, the cerebellum and 

brainstem [64]. The volume of the anterior cingulate cortex showed correlation with 

disease duration [64]. In migraine patients increased functional connectivity was 

detected between left dorsolateral prefrontal cortex, the bilateral middle temporal 

lobe, orbitofrontal cortex and the left anterior cingulate cortex [64].  
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However, there is a potential that alterations of the frontal lobe might not be 

specific to migraine. In other chronic pain syndromes gray matter loss was 

frequently reported in the prefrontal cortex [66], cingulate, parahippocampal gyrus, 

insula [67] amygdalae, hippocampi, postcentral gyri, anterior cingulate gyri, and 

superior frontal gyri [68]. With chronic pain conditions functional alterations are 

also observed in medial prefrontal cortex [69], anterior insula, cingulate cortex [70] 

and ventromedial prefrontal areas [71]. 

Thalamic volumetry 

The thalamus has a cardinal role in pain perception as well as in migraine 

pathomechanism. It is where the second order neurons project (trigeminothalamic 

tract) and where the third-order neurons of the thalamocortical tract emerge. 

Thalamic neurons, which are responding to dural stimulation also were shown to be 

sensitised by ipsilateral cephalic and extracephalic chemical stimulation [72]. 

Migraine patients with extracephalic allodynia were shown to have a larger 

thalamic BOLD response to sensory stimulation than when they were free of 

migraine [72]. The role of the thalamus in migraine and trigeminal neuralgia was 

also indicated by the abnormal balance of metabolite levels, detected by MR 

spectroscopy, in the thalamus [73]. Thalamic activation was described during 

migraine attacks [74,75]. Shields and colleagues found that naratriptan (see in 

review: [76]) an effective medication in migraine attack, suppressed the thalamic 

activation evoked by the stimulation of the superior saggital sinus in the ventral 

posteriomedial nucleus of the thalamus [77]. Interestingly, in another trigeminal 

pain disorder, in temporomandibular disorder thalamic and sensory cortical gray 

matter enlargement was found and shown to correlate with disease duration [78,79]. 

In contrast, localised thalamic atrophy was detected in trigeminal neuropathy, but 

not in patients that were classified as having trigeminal neuralgia or 

temporomandibular disorders [80]. Using MR spectroscopy in the same study, 

reduced levels of N-acetyl-aspartate, a marker of neuronal viability was found in the 

affected thalami. The difference between the direction of thalamic volume changes 

in trigeminal neuropathy and other pain disorder in the trigeminal territory may lie 

in the different pathomechanisms; peripheral events were proposed in trigeminal 

neuralgia and temporomandibular disorder, while the reduced volume and neural 
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viability suggest central mechanisms in trigeminal neuropathy [80]. In a recent 

study on trigeminal neuralgia gray matter volume reduction was described in the 

thalamus, insula, anterior cingulate cortex, primary somatosensory and orbitofrontal 

cortices, secondary somatosensory cortex, cerebellum, and dorsolateral prefrontal 

cortex [81]. Obermann and co-workers found no influence of the disease duration 

on thalamic volume [81]. A further study found reduced thalamic volume 

(contralateral ventral postero-lateral nucleus) in limb amputees with phantom pain 

[82]. However, this atrophy most probably was related to the loss of sensory input 

than the pain, as the time since amputation was correlating with the thalamic 

volume and not the pain index describing the pain intensity and frequency. 

Contrarily, in neuropathic pain in ankylosing spondylitis increased gray matter 

volume in the thalamus and putamen was observed [83]. Pain characteristics were 

correlated with increased gray matter in the motor cortex, anterior cingulate cortex, 

prefrontal cortex, thalamus, and striatum and with decreased gray matter in the 

primary somatosensory cortex in patients [83].  

The relation of our finding to migraine pathomechanism  

In our view there can be alternative interpretations for the white matter alterations 

and the thalamic enlargement in migraine patients. Degenerative changes and 

maladaptive plasticity might co-occur in the disease.  

(1.) In localized white matter diffusivity alteration (reduced FA) might reflect 

degenerative process in migraineurs. One hypothesis states that the depolarization 

wave progressing through the cortex has a central role in migraine pathomechanism 

[24]. The excessive activation might well be enough to induce in cellular damage, 

[14] kindle neuroinflammation and consequently cause pain [84-86]. CSD in 

animals upregulates the matrix metalloproteinase (MMP)-9 [87] and the activation 

of MMP can elicit the leakage of blood–brain barrier and lead to inflammatory 

response and neuronal damage [88]. Elevated MMP activity was also detected in 

human migraineurs [89]. Other markers of neuronal (neuron specific enolase) and 

glial (S100B) damage was also found in migraineurs [90]. There seems, therefore, 

to be some evidence for biochemical changes potentially involved in the 

disintegration of white matter fibre bundles that might be reflected by reduction of 

FA, increase of MD, and augmented perpendicular diffusivity. Similar patterns of 
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DTI abnormalities are most frequently reported as a consequence of 

neurodegenerative processes [91,92]. Reduction of FA and AD reflect axonal loss 

[93-95], while increased perpendicular diffusivity seems to be a sign of 

demyelination [93,94]. The serum markers of neuronal and glial damage reported 

recently [90] might indicate combined damage. 

In migraine patients T2 white matter lesions [96] were detected, and the lesions 

have been widely considered of ischemic nature [97], but not without criticism and 

alternative hypotheses [98,99]. For instance, the coexistence of antineuronal 

antibody suggested the inflammatory origin of the altered MRI signal [100]. 

Reduction of frontal gray matter volume was found to be correlated with the T2 

visible lesion load [36]. Retrograde degeneration of axons passing through the 

macroscopic lesions was the suggested background of this correlation. In our study, 

however, only one patient had a right frontal T2 visible white matter lesion. 

Because of the close proximity of the lesion to our cluster of FA difference, we 

have repeated the analysis with the exclusion of this subject, but the results were 

essentially unaltered. Hence, it is likely that white matter microstructural alterations 

are not directly related to the T2 visible lesions in migraine.  

(2.) As regarding the increased size of the thalami in migraine the first scenario is 

the thalami are genuinely larger that could kindle the pathomechanism. 

Longitudinal imaging studies of normal people, who later develop migraine, or 

genetically stratified imaging studies could be of use.  

Alternatively, and more likely, the increased volume of the thalami is the result of 

the disease. There are evidences that repeated painful stimuli similarly to training 

lead to plastic changes in the brain. Gray matter morphological changes due to 

used-dependent plasticity have already been reported in adults [101,102]. Similar 

alterations were also found in the white matter with DTI [103]. As an expression of 

similar mechanisms, repeated pain stimuli were also reported to induce increase of 

gray matter density in pain processing regions, including the cingulate and the 

contralateral somatosensory cortex [104].  

Apart from the repeated pain in migraineurs, other factors related to the 

pathomechanism of the disorder might also contribute to maladaptive plasticity: the 

altered cortical excitability [105-109] might also lead to such changes. Plastic 
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changes were reported in the central nervous system of animals after induction of 

CSD [110,111]. A possible energy deficit suggested in migraine [112,113] might 

also contribute to plastic changes in the brain [114]. The cellular mechanism behind 

these gray matter volume changes can be suspected similar as proposed in learning-

related plastic gray matter enlargements [102], such as synaptogenesis and dendritic 

arborisation [115,116]. Furthermore, cortical spreading depression itself may induce 

neurogenesis in the cortex as well as in subcortical structures [117].  

Another open question that the above-stated maladaptive plasticity hypothesis, 

however, is that in chronic pain conditions [66,118,119,67] as well as in migraine 

[30-34], reduction rather than increase of gray matter size or density has been 

reported, as seen, for example, in learning [102]. Similarly, white matter alterations 

due to use-dependent plasticity-like processes were expected to appear in the form 

of increased FA, as it was reported recently [120]. Explanation of such controversy 

may lie in a lack of noxious stimulus in chronic pain [121], chronification of the 

pain condition, compensatory mechanisms [122] or affective components [123], and 

personality traits related to migraine [124].  

Another aspect of our findings that has to be considered is the integration of the 

thalamic enlargement and the prefrontal white matter alteration in the pain related 

functional networks. Hadjipavlou and co-workers described the pain network that 

contains prefrontal cortex, periaqueductal gray and cuneiform nucleus, amygdala, 

thalamus and hypothalamus, and rostroventral medulla [125]. Our tractography 

findings are in line with this study; accurately the prefrontal white matter lesion and 

the enlarged thalamic region are connected to the above-mentioned structures. 

The vertex analysis showed that the ventral surface of the thalamus was enlarged in 

patients. The probabilistic tractography showed that this ventral aspect of the 

thalamus is the area connected to brainstem structures. These structures cannot be 

unanimously identified with the current resolution, but might connect thalamus to 

the PAG or could possibly be the fibres from the putative trigemino-thalamic 

pathway. Regarding the pathomechanism of migraine each of these pathways could 

have crucial importance [36,113]. However it has to be pointed out that earlier 

investigations described the connectivity of PAG to the mediodorsal thalamus 

[126], rather than to the thalamic region in our analysis. In the other direction the 



	
   28	
  

enlarged thalamic region is connected, with the highest probability, to the frontal 

cortex. Together with the above-mentioned results it must be emphasized that the 

role of these regions should not be evaluated individually, but must be seen as part 

of a network, the parts of which are heavily interconnected [127,125]. 

We found thalamic volume being related to attack frequency and allodynia reported 

by the patients. Allodynia (an abnormal sensory state in which normally inoxious 

stimuli sensed as painful) is a frequently reported feature of migraine [128] and 

thought to be a sign of neuronal sensitisation. The first order neurons of the 

trigemino-vascular pathway are in the trigeminal ganglion, which innervate the 

dural sinuses and project to the spinal trigeminal nucleus. The second order neurons 

process information from the dural vessels and from both the skin and deep tissue 

of the periorbital region. The sensitisation of the first order neuron is thought to be 

related to the throbbing nature of the pain [129]. The sensitisation of the second 

order neurons is thought to be related to the allodynia around the eye on the affected 

side and the referred pain [11]. The third order neurons in the thalamus that receive 

projections from the ipsi- and contralateral second order trigeminal neurons and 

from all other level of the spinal cord, process multimodal information from the 

affected and contralateral side of the head as well as from extracephalic regions 

[130]. In a recent parallel rodent electrophysiological and human fMRI 

investigation extracranial allodynia was associated with the sensitisation of these 

third order neurons [72]. Furthermore, reduced fractional anisotropy was found in 

the thalamocortical tracts in migraineurs [39]. It would be tempting to relate the 

thalamic enlargement to the appearance of extracranial allodynia in our study group 

also, but almost all the patients having allodynia also reported that as being 

extracranial, and therefore we do not have appropriate statistical power.  

Cluster headache 

In the literature there are contradictory results on the diffusion alterations in cluster 

headache, despite using the same analysis approach as in our study. In a DTI study, 

Teepker and colleagues described reduction of FA in several brain regions, but no 

other diffusion parameters were investigated [49]. The extent of the FA alterations 

was much smaller than in our study. Another investigation on CH patients found no 
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alteration of FA or MD with similar analytical method [47]. One possible reason 

why we found more widespread changes than in previous studies could be because 

of the high angular resolution DTI acquisition, what we have used in our study, 

thereby providing a higher signal to noise ratio [131].  

Correlation between the alteration of diffusion parameters and tissue microstructure 

is not yet entirely clear. However, the increment of mean and perpendicular 

diffusivity, which was the most prominent finding of our study, is most probably a 

sign of increased distances between membranes. This mostly relates to 

demyelination [94,93], but combined axon and myelin loss may also cause a 

complex change of diffusion parameters [132]. The increased inter-membrane 

distance [133] may also cause increased perpendicular diffusivity. One could 

speculate that the changes in the extracellular space might be related to the sterile 

inflammation proposed in CH [134].  However recent SPECT study did not find 

evidence of increased number of intracranial white blood cells in CH [135]. 

It was previously suggested that the lack of correlation of diffusion abnormalities 

with attack frequency or disease duration point to a phenotypic biomarker of the 

disease, reflecting a congenital condition rather than a process related to disease 

progression over time [47]. However in our current investigation we found a 

negative correlation between the axial diffusivity and the cumulative headache 

days. This interesting finding can be explained by observations showing that early 

stage of axon damage is associated with reduced axial diffusivity 

[95,94,93,132,136]. However later, the axial diffusivity will pseudo-normalise 

again as the axon and myelin debris gradually cleared [137,138]. This mechanism 

could potentially explain our findings, nevertheless it should be emphasized that 

none of the DTI indices are a direct measurement of specific white matter 

compartments [139], hence no direct relation can be established between our results 

and the pathomechanism of CH.   

Functional and structural studies on cluster headache found activation and gray 

matter changes in the contralateral side of the pain [140-143]. Similar lateralisation 

of the white matter microstructural alterations were found in our investigation. 

Importantly, this finding point toward a mechanism different from vasodilatation of 

the intracranial arteries, since that is reported ipsilateral to the pain [144]. 
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Limitations 
Our studies are certainly not without limitation. Longitudinal studies are needed in 

order to reveal if the identified white matter microstructural changes are permanent. 

Furthermore, it would be important to know if the structural alterations have 

influence on brain function other than the experienced pain. Earlier studies showed 

that migraine and CH patients have a decline of memory processing during 

headache attack, but not between attacks and no progressive cognitive decline was 

detected [145,146]. While our results are solely structural in nature, given the strong 

coupling between structure and function in the brain, functional correlates also have 

to be considered. Our results can be paralleled by recent experiments showing 

altered resting state fMRI activity in migraine and CH patients [46,147-149]. 

Furthermore, investigation of the correlation between these microstructural 

alterations and molecular markers is imperative to get in depth understanding of the 

pathogenetic relevance of our findings. 

Conclusions 
Our findings raise the possibility that diffusion imaging and thalamic volumetry in 

research settings could be a possible biomarker of the primary headache disorders. 

The pattern of diffusion parameter changes, what we found in CH is similar to what 

we have described with identical methods in migraine, but the changes in CH are 

more extensive. However, specificity to migraine as opposed to other chronic pain 

conditions has to be investigated. While thalamic enlargement seems to be a clue to 

the pathogenesis of migraine chronification, further investigations into the different 

phases of the disease would help to elucidate the importance of our findings. 
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