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Introduction

Fixed point operations occur in just about all areas of theoretical computer
science including automata and languages, the semantics of programming
languages, process algebra, logical theories of computational systems, pro-
gramming logics, recursive types and proof theory, computational complex-
ity, etc. The equational properties of the fixed point, or dagger operation
can be best described in the context of Lawvere theories of functions over
a set equipped with structure, or more generally, in the context of abstract
Lawvere theories (or just theories), or cartesian or co-cartesian categories, cf.
[Law63, Elg75, BE93, SP00].

Iteration theories were introduced in [BEW80a], and independently and
axiomatically in [É80] in order to describe the equational properties of the
dagger operation in iterative and rational algebraic theories, cf. [WTWG76,
Elg75]. In an iterative theory, dagger is defined by unique fixed points, and in
rational theories, by least fixed points. In both types of theories, the dagger
operation satisfies the same set of identities. These identities define iteration
theories. In [BE93, SP00], it is argued that any nontrivial fixed point model
satisfies the iteration theory identities.

In an iteration theory the fixed point operation takes a morphism f : n→
n+ p to a morphism f † : n→ p which provides a solution to the fixed point
equation

ξ = f · 〈ξ,1p〉

in the morphism variable ξ : n → p. If a theory is equipped with an
additional structure, such as an additive structure, then the dagger operation
is usually related to some “Kleenean operations”.

For example, the theory of matrices over a semiring S has an additive
structure. Under a natural condition, cf. [BE93], any dagger operation over
a matrix theory determines and is determined by a star operation mapping an
n×n square matrix A (i.e., a morphism A : n→ n) to an n×n square matrix
A∗. Properties of the dagger operation are then reflected by corresponding
properties of the star operation. In Chapter 2, which is based on [EH09],
we show that this correspondence between the dagger and star operations
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can naturally be generalized to arbitrary grove theories.
When S is a semiring of formal power series then the usual partially

defined star operation determines and is determined by a partially defined
dagger operation. But this is not the only example where it is natural to work
with a partial dagger operation, since the dagger operation is necessarily a
partial operation in (nontrivial) iterative theories.

In [BEW80b, É82] (see also [BE93], Theorem 6.4.5) it was shown that any
iterative theory with at least one “constant” (i.e., morphism 1 → 0) can be
turned into an iteration theory that has a total dagger operation. Moreover,
the extension of the dagger operation to a total operation only depends on
the choice of the constant that serves as the canonical solution of the fixed
point equation associated with the identity morphism 1→ 1.

Chapter 3 is based on [EH11a]. Here we provide a generalization of this
construction that is applicable to partial iterative theories. We give a suffi-
cient condition ensuring that a partially defined dagger operation of a partial
iterative theory can be extended to a total operation so that the resulting
theory becomes an iteration theory. We show that this general result can be
instantiated to prove that every iterative theory with at least one constant
can be extended to an iteration theory. We also apply our main result to the-
ories equipped with an additive structure. We show that our result implies
the Matrix Extension Theorem of [BE93] and the Grove Extension Theorem
of [BE03]. In the context of these theories, the extension theorem asserts
that if we have unique solutions of certain “guarded” fixed point equations,
then under certain conditions, the fixed point operation can be extended in
a unique way to provide solutions to all fixed point equations such that the
resulting theory becomes an iteration theory. Possible applications of these
results include Process Algebra, where one usually deals with unique fixed
points of guarded fixed point equations (cf. [Fok07]).

Iteration theories can be axiomatized by the Conway theory identities
and a group identity associated with each finite (simple) group, cf. [É99].
Whereas the group identities are needed for completeness, several construc-
tions in automata and language theory and other areas of computer science
only require the Conway identities.

In [BE93], a general Kleene type theorem was proved for all Conway
theories. However, in many models of interest, the dagger operation is only
partially defined. Chapter 4 is based on [EH11b]. Here we provide a Kleene
theorem for partial Conway theories. We also discuss several application of
this generic result.

Chapter 5 of this thesis is based on [EH14]. Here we give a description
of the free iteration semirings using a simple congruence. However, at the
time of the writing of this thesis we do not yet have a decidability result
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for the equational theory of iteration semirings. Moreover, the contents of
Chapter 5 are unpublished at this time.

The publications that were used in the writing of this thesis are [EH11b],
[EH11a], [EH09] and the forthcoming [EH14]. I have contributed to one more
publication. This is [HH13].

Basic Definitions (Chapter 1 of the thesis)

In any category whose objects are the nonnegative integers we will denote the
composite of the morphisms f : n→ p and g : p→ q in diagrammatic order
as f ·g. The identity morphism corresponding to object p will be denoted 1p.
When n is a nonnegative integer, we will denote the set {1, 2, . . . , n} by [n].
Thus, [0] is the empty set. We assume that the reader has some familiarity
with the concept of formal power series and rational power series. See [BR10]
and [BR82] for an introduction to this subject.

Let us recall from [BE93] that a (Lawvere) theory T is a small category
with objects the nonnegative integers such that each nonnegative integer n
is the n-fold coproduct of the object 1 with itself. We assume that each
theory T comes with distinguished coproduct injections in : 1 → n, i ∈ [n],
called distinguished morphisms, turning n to an n-fold coproduct of object
1 with itself. By the coproduct property, for each finite sequence of scalar
morphisms f1, . . . , fn : 1→ p there is a unique morphism f : n→ p such that
in · f = fi, for each i ∈ [n]. This unique morphism is denoted 〈f1, . . . , fn〉.
The operation implicitly defined by the coproduct property is called tupling.
In particular, when n = 0, tupling defines a unique morphism 0p : 0 → p,
for each p ≥ 0. Note that 1n = 〈1n, . . . , nn〉 for all nonnegative integers n.
In addition, we will always assume that 11 = 11, so that 〈f〉 = f for each
f : 1→ p. A theory T is termed trivial if 12 = 22. In a trivial theory, there
is at most one morphism n→ p, for each n, p ≥ 0.

Tuplings of distinguished morphisms are called base morphisms. For ex-
ample, 0n and 1n are base morphisms. When ρ is a mapping [n]→ [p], there
is an associated base morphism n → p, the tupling 〈(1ρ)p, . . . , (nρ)p〉 of the
distinguished morphisms (1ρ)p, . . . , (nρ)p.

The coproduct structure yields a pairing and a separated sum operation.
Pairing takes a morphism f : n → p and a morphism g : m → p to a
morphism n + m → p denoted 〈f, g〉. Separated sum takes a morphism
f : n→ p and a morphism h : m→ q to a morphism n+m→ p+ q.

A theory T is a subtheory of a theory T ′ if T is a subcategory of T ′ and
has the same distinguished morphisms as T .

A basic example of a theory is FunA the theory of functions over a set
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A. In this theory, a morphism n → p is a function f : Ap → An. Note the
reversal of the arrow. The composite of morphisms f : n→ p and g : p→ q
is their function composition written from right to left, which is a function
Aq → An. The distinguished morphisms are the projection functions.

Let S = (S,+, ·, 0, 1) be a semiring [Gol99]. The matrix theory MatS
over S has as morphisms n → p all n× p matrices in Sn×p. Composition is
matrix multiplication defined in the usual way. For each i ∈ [p], p ≥ 0, the
distinguished morphism ip : 1→ p is the 1×p row matrix with a 1 on the ith
position and 0’s elsewhere. The theory MatS comes with a sum operation
+ defined on each hom-set MatS(n, p) = Sn×p. It is known that for each
n, (MatS(n, n),+, ·,1n, 0n,n) is a semiring, since the product of two n × n
matrices is an n× n matrix. In particular, MatS(1, 1) is isomorphic to S.

Let T be a theory. A nonempty collection of morphisms I is an ideal
[BE93] of T if it is closed under tupling, composition with base morphisms
on the left, and composition with arbitrary morphisms on the right. I is
proper iff 11 /∈ I. Note that every ideal contains the morphisms 0p, p ≥ 0.

A partial dagger theory is a theory T equipped with a distinguished ideal
D(T ) and a partially defined dagger operation

† : T (n, n+ p)→ T (n, p) n, p > 0

defined on morphisms n→ n+ p in D(T ).
A partial Conway theory is a partial dagger theory subject to a certain

set (see Section 1.1 of the thesis) of identities. A partial iteration theory is a
partial Conway theory subject to the group identities, one identity per finite
group. See Section 1.2 of the thesis for these identities. A partial iterative
theory is a partial dagger theory T such that for each f : n→ n+p in D(T ),
f † is the unique solution of the fixed point equation associated with f :

ξ = f · 〈ξ,1p〉 (1)

in the variable ξ : n → p. It is known [BE93] that every partial iterative
theory is a partial iteration theory. A partial dagger theory is a dagger theory
iff the distinguished ideal contains every morphism. We define the concepts
of Conway theory and iteration theory in a similar manner.

Examples of iteration theories are the theories of continuous or monotone
functions over complete partial orders equipped with the least fixed point
operation as dagger. See [BE93] for details.

A ranked alphabet Σ is a family of pairwise disjoint sets (Σn)n, where n
ranges over the nonnegative integers. We assume that the reader is familiar
with the notion of (total) Σ-trees over a set Xp = {x1, . . . , xp} of variables,
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defined as usual, see e.g. [BE93]. Below we will denote the collection of finite
and infinite Σ-trees by TΣ(Xp). We call a tree proper if it is not one of the
trees xi. Σ-trees form a theory ΣTR whose morphisms n→ p are the n-tuples
of trees in TΣ(Xp). Composition is defined by substitution for the variables
xi, and for i ∈ [p], the tree with a single vertex labeled xi serves as the ith
distinguished morphism 1 → p. Thus, if t : 1 → n and t′1, . . . , t

′
n : 1 → p in

ΣTR, then t · 〈t′1, . . . , t′n〉 : 1→ p is the tree obtained by substituting a copy
of t′i for each leaf of t labeled xi, for i ∈ [n]. See [BE93] for details. A tree is
called regular if up to isomorphism it has a finite number of subtrees. The
subtheory of ΣTR containing only the regular Σ-trees is denoted Σtr.

Let Σ be a ranked alphabet and let T be the theory ΣTR, or the theory
Σ tr. Let the ideal D(T ) consist of those morphisms f : n → p in T whose
components in · f , i ∈ [n], are proper trees. It is known that for each
f : n → n + p in D(T ) (1) has a unique solution in the variable ξ : n → p.
Denoting this unique solution by f †, T becomes a partial iterative theory.
Moreover, if Σ0 is not empty, so that there is at least one morphism in T (1, 0),
then for any choice of a morphism ⊥ : 1 → 0 the partial dagger operation
can be uniquely extended to a totally defined dagger operation such that T
becomes an iteration theory. See [BEW80a] and [É82], or [BE93].

Suppose that Σ contains a single letter⊥ that has rank 0. Then any scalar
morphism in ΣTR is either a distinguished morphism, or a morphism ⊥1,p =
⊥ · 0p : 1→ p. Given f : n→ n+ p, it holds that f † = fn · 〈⊥n,p,1p〉, where
⊥n,p = 〈⊥1,p, . . . ,⊥1,p〉 : n→ p, f 0 = 1n⊕0p and fk+1 = f · 〈fk, 0n⊕1p〉. Let
⊥TR denote this Conway theory. It is known that ⊥TR is an initial Conway
theory (and an initial iteration theory).

Let T = MatS be a matrix theory. Suppose that I = (I(n, p))n,p is a
collection of morphisms containing the zero morphisms 0n,p closed under sum
and left and right composition with any morphism in T . Then we call I a
two-sided ideal of T . Each two-sided ideal of T determines and is determined
by a two-sided ideal of the semiring S (cf. [Gol99]), since if I is a two-sided
ideal of T then I(1, 1) is a two-sided ideal of S, and if I0 is a two-sided ideal
of S then the collection of those matrices all of whose entries belong to I0 is
a two-sided ideal of T .

When a matrix theory MatS is a Conway theory, the dagger operation
determines a star operation mapping a matrix A : n → n to a matrix A∗ :
n→ n by

A∗ =
(
A 1n

)†
.

In particular, S is equipped with a star operation ∗ : S → S. The equational
properties of the dagger operation are then reflected by corresponding prop-
erties of the star operation. For example the fixed point identity corresponds
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to the identity A∗ = AA∗ + 1n, A : n → n. Moreover, the double dagger
identity corresponds to the identity

(A+B)∗ = A∗(BA∗)∗

and the composition identity corresponds to

(AB)∗ = 1 + A(BA)∗B

and in both identities A,B : n → n. It is known that the star operation
on MatS determines and is uniquely determined by the star operation on S.
Moreover, S, equipped with this star operation is a Conway semiring, or an
iteration semiring [BE93, É99], if MatS is an iteration theory.

Following [BEK08], we define a partial Conway semiring to be a semiring
S equipped with a distinguished two-sided ideal I and a star operation ∗ :
I → S such that

(a+ b)∗ = a∗(ba∗)∗, a, b ∈ I,
(ab)∗ = 1 + a(ba)∗b, a ∈ I or b ∈ I.

The star operation can be extended to square matrices over I using the
well-known matrix formula, see Section 1.2.1 of the thesis (this formula cor-
responds to the pairing identity as explained in [BE93]). Let T = MatS
and denote by D(T ) the ideal of those matrices all of whose entries are in
I. Then T , equipped with the above dagger operation defined on morphisms
n → n + p in D(T ), n, p ≥ 0, is a partial Conway theory. A partial itera-
tion semiring is a partial Conway semiring subject to a set of identities, one
identity per each finite group [BE09]. When S is a partial iteration semiring
then T = MatS with D(T ) defined as above is a partial iteration theory.

A star congruence on S is a semiring-congruence which preserves the par-
tially defined star operation, i.e. for every a, b ∈ I, whenever a is equivalent
to b then a∗ is equivalent to b∗.

Recall that Nrat〈〈∆∗〉〉 denotes the semiring of rational power series over
the semiring of the nonnegative integers. Nrat〈〈∆∗〉〉 is an example of a partial
iteration semiring with the usual definition of star. More can be said. The
following theorem is from [BE09]. The partial iteration semiring Nrat〈〈∆∗〉〉
of rational power series over the semiring of the nonnegative integers is freely
generated by ∆ in the category of partial iteration semirings.

A grove theory [BE93] is a theory equipped with the constants + : 1→ 2
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and # : 1→ 0 satisfying the following equations:

12 + 22 = 22 + 12,

(13 + 23) + 33 = 13 + (23 + 33),

11 + 01,1 = 11.

The equations above are understood in the following way.
Suppose that f, g : 1→ p are morphisms in a grove theory. We define

f + g = + · 〈f, g〉.

Moreover, for arbitrary f = 〈f1, . . . , fn〉, g = 〈g1, . . . , gn〉 : n→ p we define

f + g = 〈f1 + g1, . . . , fn + gn〉.

We say that the grove theory T is a subgrove theory of the grove theory T ′ if
T is a subtheory of T ′ with the same constants + and #.

It follows that for each n, p ≥ 0, (T (n, p),+, 0n,p) is a commutative
monoid. Moreover,

(f + g) · h = (f · h) + (g · h),

0m,n · f = 0m,p,

for all f, g : n → p and h : p → q. Note that distributivity on the left need
not hold.

Examples of grove theories include all matrix theories MatS. In MatS,
the morphism + is the matrix(

1 1
)

: 1→ 2

and # is the unique matrix 1→ 0.
A grove theory which is a (partial) Conway theory is a (partial) Conway

grove theory. A grove theory which is a (partial) iteration theory is a (partial)
iteration grove theory.

Suppose that L is a complete lattice with least element ⊥. Thus, each
direct power Ln of L is also a complete lattice. Recall that a function Lp →
Ln is continuous [Sco72, BE93] if it preserves the suprema of (nonempty)
directed sets. Let ContL denote the theory of all continuous functions over
L. Thus, ContL is the subtheory of FunL determined by the continuous
functions.

Let + denote the function L2 → L, (x, y) 7→ x ∨ y, the supremum of the
set {x, y}. It follows that for any f, g : 1→ p, f + g is the function Lp → L
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mapping x ∈ Lp to f(x) ∨ g(x). Moreover, let # denote the least element ⊥
considered as a function L0 → L. Then ContL is a grove theory. Note that
for each n, p, the morphism 0n,p is the function Lp → Ln which maps each
z ∈ Lp to ⊥n, the least element of Ln.

The theory LangΣ has morphisms 1 → p the Σ-tree languages L ⊆
TΣ(Xp). The morphisms n → p are the n-tuples of morphisms 1 → p. Let
L : 1 → p and L′ = (L′1, . . . , L

′
p) : p → q. Then L · L′ is the collection of all

trees in TΣ(Xq) that can be obtained by OI-substitution [ES77, ES78], i.e.,
the set of those trees t such that there is a tree s ∈ L such that t can be
constructed from s by replacing each leaf labeled xi for i ∈ [p] by some tree
in L′i so that different occurrences of xi may be replaced by different trees.
The distinguished morphism in is the set {xi}, and the morphisms + and
# are the sets {x1, x2} and ∅, respectively. It then follows that addition is
(component-wise) set union, and each component of any 0n,p is ∅.

Generalized star (Chapter 2 of the thesis)

The contents of this chapter were published in [EH09].

We have seen that in matrix theories the dagger operation determines
and is uniquely determined by a star operation. Every matrix theory is a
grove theory, but there are grove theories that are not matrix theories. In
this chapter, we consider grove theories equipped with a dagger operation
and grove theories equipped with a generalized star operation, and under
some natural assumptions we establish a correspondence between them in
terms of a categorical isomorphism. We then use this isomorphism to relate
equational properties of the dagger operation to equational properties of the
generalized star operation. Due to this isomorphism such a translation from
dagger to generalized star and vice versa is always possible, but we might
get rather complicated equations as the result of a direct application of the
isomorphism. In Chapter 2 we provide equivalent forms of the iteration
theory identities in grove theories that use the generalized star operation
instead of dagger, provided that some simple natural assumptions hold. Some
of the equivalences proved assume the parameter identity. This is no problem
for the applications, since any well-behaved dagger operation does satisfy
this identity. For example, when the generalized star fixed point identity
(see Section 2) holds, then for each f : n→ n+ p, f⊗ solves the fixed point
equation

ξ = f · 〈ξ, 0n ⊕ 1p〉+ (1n ⊕ 0p)
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in the variable ξ : n→ n+ p. When p = 0 this becomes

ξ = f · ξ + 1n.

Sections 2.1, 2.2 and 2.3 illustrate that our generalization of the correspon-
dence between the dagger and star operations in matrix theories is well be-
haved and natural. In Section 2.1 we introduce Conway and iteration star
theories. An easy corollary of the definitions is that the category of iteration
star theories is isomorphic to the category of iteration theories.

In Conway theories, the group identities are implied by a simple impli-
cation, called the functorial dagger implication. In Section 2.1 we give two
versions of the functorial dagger implication expressed with the generalized
star operation. In Section 2.2 we introduce the concept of ordered iteration
grove theory : an iteration grove theory is ordered iff there is a partial order
on each hom-set which is preserved by the composition and tupling opera-
tions. Moreover, we require that for each p the morphism 01,p is the least
morphism 1 → p. In the same section we give an equivalent formulation of
the fixed point induction rule (See [Par69, É97]) using the generalized star
operation.

Below, by a dagger term we will mean any term built in the usual way
from symbols representing morphisms in dagger grove theories and the dis-
tinguished morphisms by composition, the cartesian operations, sum and
dagger. Star terms are defined in the analogous way. Note that each dagger
or star term has a source n and a target p, and under each evaluation of
the morphism variables, the term evaluates to a morphism n → p in any
dagger theory or generalized star theory. An equation t = t′, or inequation
t ≤ t′ between dagger or star terms is a formal (in)equality between terms
t, t′ : n→ p. The validity or satisfaction of an (in)equation in a dagger grove
theory or a generalized star theory is defined as usual.

In Section 2.3 we rephrase the a result from [É00] using the generalized
star operation. This result of [É00] is as follows:

An (in)equation between dagger terms holds in all theories ContL, where
L is any complete lattice iff it holds in all ordered iteration grove theories
satisfying +† = 11.

The last equation can also be written as (12 + 22)† = 11. As a corollary
of the preceding sections we obtain:

An equation between star terms holds in all theories ContL, where L is
any complete lattice iff it holds in all ordered iteration star theories satisfying
11
⊗ = 11.
In the same section we give a reformulation of an other result from [É00].
An equation between dagger terms holds in all theories ContL iff it holds

in all ordered idempotent grove theories which are dagger theories satisfying
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the (scalar versions) of the fixed point identity, the parameter identity, and
the fixed point induction rule.

And the same with generalized star operation is as follows:

An equation between star terms holds in all theories ContL iff it holds in
all ordered idempotent generalized star theories satisfying the (scalar versions
of the) generalized star fixed point identity, the generalized star parameter
identity, and the generalized star fixed point induction rule.

The last two results also hold for the broader class of monotone functions.

Suppose that S is a continuous monoid, i.e., a commutative monoid S =
(S,+, 0) equipped with a partial order ≤ such that (S,≤) is a cpo with least
element 0, so that the supremum of each nonempty directed set exists, and
the sum operation preserves such suprema (and is thus monotone).

Let ContS denote the theory of continuous functions over S. It is an
iteration grove theory in the same way as the theory ContL, where L is
a complete lattice. But unless the monoid S is idempotent, ContS is not
necessarily idempotent. Note that unlike in [Boz99] or [Kui00], we do not
require here any linearity conditions for the functions themselves.

The following results were proved in [É02]. We expressed them with the
concepts we worked with.

An (in)equation between dagger terms holds in all theories ContS, where
S is any continuous monoid iff it holds in all ordered iteration grove theories
satisfying (13 + 23 + 33)†† = (12 + 22)† and (12 + 22)† · (f + g) = ((12 + 22)† ·
f) + ((12 + 22)† · g).

An (in)equation between dagger terms holds in all theories ContS iff it
holds in all ordered dagger grove theories satisfying the (scalar versions) of the
fixed point identity, the parameter identity and the fixed point induction rule,
together with the equation (13+23+33)†† = (12+22)† and (12+22)† ·(f+g) =
((12 + 22)† · f) + ((12 + 22)† · g).

An (in)equation between star terms holds in all theories ContS, where
S is any continuous monoid iff it holds in all ordered iteration star theories
satisfying 11

⊗⊗ = 11
⊗ and 11

⊗ · (f + g) = (11
⊗ · f) + (11

⊗ · g), or when
it holds in all ordered generalized star theories satisfying the star forms the
(scalar versions) of fixed point identity, the parameter identity, the fixed point
induction rule, together with the equations 11

⊗⊗ = 11
⊗ and 11

⊗ · (f + g) =
(11
⊗ · f) + (11

⊗ · g).
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Figure 1: γ is on the left and c is on the right.

Dagger Extension Theorem (Chapter 3 of the

thesis)

The contents of this chapter were published in [EH11a].

In this section we give a sufficient condition ensuring that the dagger
operation of a partial iterative theory be extendible to a total dagger opera-
tion such that the resulting theory becomes a Conway theory or an iteration
theory.

Let T be a partial dagger theory with dagger operation †D defined on the
morphisms f : n→ n + p in D(T ) and let T0 be a subtheory of T . Suppose
that T0 is a dagger theory with dagger operation †0 : T0(n, n+ p)→ T0(n, p),
n, p ≥ 0.

A description (α, a) : n → q of weight s consists of a morphism α :
n → s + q in T0 and a morphism a : s → q in D(T ). We write |(α, a)| for
the morphism α · 〈a,1q〉 in T , and call this morphism the behavior of the
description (α, a). Moreover, for a description (α, a) : n→ n+ p of weight s,
we define (α, a)∧ to be the description (γ, c) : n→ p of weight s, where

γ = (α · (πn,s ⊕ 1p))
†0 : n→ s+ p,

c = (a · 〈γ, 0s ⊕ 1p〉)†D : s→ p.

see Fig. 1. Here πn,s denotes the base morphism 〈0n⊕ 1s,1n⊕ 0s〉 : s+ n→
n+ s for all n, s > 0.

Recall that each partial iterative theory T is s a partial iteration theory
such that †D that provides unique solutions to fixed point equations ξ =
f · 〈ξ,1p〉, for all f : n→ n+ p in D(T ). Below we will denote this operation
by †D . The Dagger Extension Theorem is as follows:
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Theorem 1 Let T be a partial iterative theory so that T is also a partial
dagger theory with the operation †D defined on the morphisms f : n→ n+ p
in D(T ). Suppose that the following hold:

1.1. T0 is a subtheory of T and a Conway theory with the operation

†0 : T0(n, n+ p)→ T0(n, p), n, p ≥ 0.

1.2. Each morphism n→ p in T can be written as α · 〈a,1p〉, where α : n→
s+ p is in T0 and a : s→ p is in D(T ).

1.3. For all α : n→ s+ n+ p, α′ : n→ r + n+ p in T0 and a : s→ n+ p,
a′ : r → n+ p in D(T ) the following holds:

|(α, a)| = |(α′, a′)| =⇒ |(α, a)∧| = |(α′, a′)∧|

i.e.,

α · 〈a,1n+p〉 = α′ · 〈a′,1n+p〉 =⇒ γ · 〈c,1p〉 = γ′ · 〈c′,1p〉,

where

(γ, c) = (α, a)∧ and (γ′, c′) = (α′, a′)∧.

Then the operations †0 and †D can be uniquely extended to a totally defined
operation † : T (n, n+ p)→ T (n, p) such that T equipped with † is a Conway
theory. Moreover, if T0 is an iteration theory then T is an iteration theory.

In Section 3.2 we consider some corollaries of the Dagger Extension Theorem.
In the first corollary, we replace Assumption 1.3. of the Dagger Extension
Theorem by a condition based on the notion of simulation [BE93] that is
useful in many applications.

Call a morphism f : n → p of a nontrivial theory T ideal if none of
the components in · f for i ∈ [n] is a distinguished morphism. An iterative
theory [Elg75] is a nontrivial partial iterative theory T such that D(T ) is the
collection of all ideal morphisms. Thus, each iterative theory comes with a
partial dagger operation defined on the ideal morphisms n→ n+ p.

In Section 3.3.1 we show that the following result from [BEW80b] and
[É82] is an instance of the Dagger Extension Theorem.

Suppose that T is an iterative theory and ⊥ : 1 → 0. Then there is a
unique way of defining a dagger operation on T such that T becomes a Con-
way theory with 11

† = ⊥. Moreover, equipped with this dagger operation, T
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is an iteration theory.

In Sections 3.3.2 and 3.3.3 we show that the Dagger Extension Theorem
is a generalization of the Matrix Extension Theorem found in [BE93], on
pages 323-335, and the extension theorem concerning grove theories, found
in [BE03]. The proof goes by showing the the assumptions of the Matrix
(resp. grove) Extension Theorem implies the assumptions of the Dagger
Extension Theorem. The Matrix Extension Theorem (for semirings) is as
follows:

Theorem 2 Let S be a semiring with a distinguished two-sided ideal I0.
Suppose the following:

2.1. S0 is a subsemiring of S that is a Conway semiring with star operation
∗0.

2.2. For each a ∈ I0 and b ∈ S, the equation x = ax + b has a unique
solution in S.

2.3. Each s ∈ S can be written as s = x+ a for some x ∈ S0 and a ∈ I0.

2.4. For all x, x′ ∈ S0 and a, a′ ∈ I0, if x + a = x′ + a′ then x = x′ and
a = a′.

Then the operation ∗0 can be extended in a unique way to the a star operation
∗ : S → S such that S becomes a Conway semiring. Moreover, if S0 is an
iteration semiring, then S also becomes an iteration semiring.

Applications of Theorem 2 were given in [BE93] and [BE09]. Here we
only mention the following result from [BE93].

Corollary 3 If S is an iteration semiring, then S〈〈∆∗〉〉, the semiring of
formal power series over an alphabet ∆ with coefficients in S is an iteration
semiring. The same holds for Srat〈〈∆∗〉〉, the semiring of rational power series
over ∆ with coefficients in S.

Suppose that T is a grove theory and T0 is a sub-grove theory of T .
Moreover, suppose that T0 is a matrix theory. Note that if an ideal D(T ) is
closed under composition with arbitrary morphisms from T0 on the left, then
for all f, g : n → p in D(T ) we have f + g ∈ D(T ) and 0n,p ∈ D(T ). We
call an ideal D(T ) a T0-ideal, if it is closed under composition with arbitrary
morphisms from T0 on the left.

The following is the grove extension theorem:
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Theorem 4 Let T be a grove theory and T0 a sub-grove theory of T that is
a matrix theory. Further, assume that the following hold:

4.1. D(T ) is a T0-ideal.

4.2. Every morphism in T can be written uniquely as α + a, for some α in
T0 and a in D(T ).

4.3. For all α : n→ p in T0 and f, g : p→ q in T we have

α · (f + g) = (α · f) + (α · g).

4.4. T0 is a Conway theory with dagger operation

†0 : T0(n, n+ p)→ T0(n, p), n, p ≥ 0.

4.5. For every α : n → p in T0 and a : n → n + p in D(T ), the fixed point
equation ξ = ((0n ⊕ α) + a) · 〈ξ,1p〉 has a unique solution.

Then there is a unique way to define a total dagger operation † on T extending
†0 such that T becomes a Conway theory. Further, if T0 is an iteration theory,
so is T .

A corollary of the Grove Extension Theorem is the following, see [BE03].
Recall that a formal tree series 1 → p with coefficients in S is a mapping
TΣ(Xp)→ S from the set of Σ-trees to a semiring S, cf. [EK03].

Corollary 5 The formal tree series over a ranked alphabet with coefficients
in a Conway semiring S form a Conway grove theory containing the rational
tree series as a sub-Conway grove theory. When S is an iteration semiring,
both theories are iteration grove theories.

Kleene Theorem for Partial Conway theories

(Chapter 4 of the thesis)

In this section we give a Kleene-type theorem for partial Conway theories
and discuss several applications of this result. The contents of this chapter
were published in [EH11b].

Let T be a partial dagger theory, T0 a subtheory of T , and let A be a
set of scalar morphisms in D(T ). We write A(T0) for the set of morphisms
〈f1, . . . , fn〉 : n → p, n, p ≥ 0 such that each fi is the composition of a
morphism in A with a morphism in T0. In particular, 0p ∈ A(T0) for all
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p ≥ 0. Note that if T0 is T then A(T0) is the least ideal in T containing
the morphisms in A, and if A is the set of scalar morphisms in D(T ), then
A(T0) = D(T ) for every subtheory T0 of T .

We say that (T0, A) is dagger compatible, if for each α : n→ s+ n+ p in
T0 and a : s→ s+ n+ p in A(T0), s, n, p ≥ 0,

α · 〈a†,1n+p〉 ∈ D(T ) =⇒ α · 〈a, 0s ⊕ 1n+p〉 ∈ A(T0).

This condition is fulfilled in a partial dagger theory T if (T0, A) is strongly
dagger compatible:

1. For all α : n→ p ∈ T0 and a : p→ g ∈ A(T0), α · a ∈ A(T0), i.e., when
A(T0) is closed under left composition with T0-morphisms.

2. If α·〈f,1p〉 ∈ D(T ) for some α : n→ m+p ∈ T0 and f : m→ p ∈ D(T ),
then α = β ⊕ 0p for some β : n→ m in T0.

Below, when we write that (T0, A) is a basis , we will mean that T0 is a
subtheory of T and A is a set of scalar morphisms in D(T ).

We introduce the concept of presentation:
A presentation n→ p of dimension s over a basis (T0, A) is an ordered pair:

D = (α, a) : n→ p,

where α : n→ s+ p is in T0 and a : s→ s+ p is in A(T0).
The behavior of D is the following morphism in T :

|D| = α · 〈a†,1p〉 : n→ p.

In Section 4.1 for every presentation D and E we define presentation
〈D,E〉 : n + m → p and D · E : n → q. Moreover, we define D† : n → p
whenever (T0, A) is dagger compatible of when T0 ⊆ D(T ) is closed under
dagger.

Then we proceed to prove that 〈|D|, |E|〉 = |〈D,E〉|, |D| · |E| = |D · E|
and whenever (T0, A) is dagger compatible or when T0 ⊆ D(T ) is closed
under dagger, then |D|† = |D†|.

Using these results we obtain the following Kleene-type theorem for par-
tial Conway theories:

Theorem 6 Let T be a partial Conway theory with basis (T0, A). Suppose
that either (T0, A) is dagger compatible or T0 ⊆ D(T ) is closed under dag-
ger. Then a morphism f belongs to the least partial Conway subtheory of T
containing T0 and A iff f is the behavior of some presentation over (T0, A).
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In the theorem above the concept of partial Conway subtheory is understood
in the following way. Suppose that T, T ′ are partial Conway theories. We
say that T is a partial Conway subtheory of T ′, if T is a subtheory of T ′ and
the distinguished ideal of T can be obtained by restricting the distinguished
ideal of T ′ to T . Moreover, we require that the dagger operation of T can be
obtained by restricting the dagger operation on T ′.

In Section 4.2 we show the following corollary for grove theories:

Corollary 7 Suppose that T is a partial Conway grove theory with basis
(T0, A) such that T0 is a matrix theory. Suppose that one of the following
two conditions holds:

1. For all x : 1 → p in T0 and f : 1 → p ∈ D(T ), if x + f ∈ D(T ) then
x = 01,p. Moreover, for all x : 1 → 1 ∈ T0 and a, b : 1 → p ∈ A(T0),
x · a ∈ A(T0) and a+ b ∈ A(T0).

2. For every x : 1→ 1 ∈ T0, x∗ is defined and belongs to T0.

Then a morphism n→ p belongs to the least partial Conway subgrove theory
of T containing T0 and A iff it is the behavior of some presentation over
(T0, A).

In the theorem above the concept of partial Conway subgrove theory is un-
derstood in the following way. Suppose that T, T ′ are partial Conway grove
theories. We say that T is a partial Conway subgrove theory of T ′, if T is a
subgrove theory and a partial Conway subtheory of T ′.

In Section 4.3 we show various applications of the Kleene theorem for
partial Conway theories. We show a Kleene-type theorem for trees, sychro-
nization trees (up to bisimulation), weighted tree automata and Büchi au-
tomata. We also show that Schützenberger’s theorem, see [Sch61, Sch62] or
[KS85] can be obtained as a corollary of our result.

Partial and total iteration semirings (Chapter

5 of the thesis)

In this chapter we give a description of the free iteration semirings using a
simple congruence.

Recall that Nrat〈〈(∆+{⊥})∗〉〉 denotes the semiring of rational power series
over the semiring of nonnegative integers. Here (∆ + {⊥}) is the direct sum
of the alphabets ∆ and {⊥}.
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First, we extend the partially defined star operation on Nrat〈〈(∆+{⊥})∗〉〉
to a totally defined star operation in the following way:

1∗ = ⊥

and for each n = 2, 3, . . .
n∗ = ⊥∗

and for every proper p ∈ Nrat〈〈(∆ + {⊥})∗〉〉 and n = 1, 2, 3, . . .

(n+ p)∗ = (n∗p)∗n∗. (2)

Notice that star in (2) is well-defined, since n∗p is proper, because p is proper.
Now we define θ as the least star congruence on Nrat〈〈(∆ + {⊥})∗〉〉 such

that
(⊥+ 1) θ⊥ (3)

and
(⊥+⊥) θ⊥. (4)

We write F∆ for the star semiring obtained by dividing Nrat〈〈(∆ + {⊥})∗〉〉
with θ.

Remark 8 θ is the least star congruence on Nrat〈〈(∆ + {⊥})∗〉〉 such that

(⊥k +⊥m) θ⊥max{k,m} (5)

for every k,m > 0.

Theorem 9 The iteration semiring F∆ is freely generated by ∆ in the cate-
gory of iteration semirings.
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[EH09] Zoltán Ésik and Tamás Hajgató. Iteration grove theories with
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