Optimalizdcids és visszatervezési technikdk kiértékelése
adat-intenziv rendszereken

Nagy Csaba

Szoftverfejlesztés Tanszék
Szegedi Tudomdnyegyetem

Témavezet6: Dr. Gyimothy Tibor

Ph.D. értekezés tézisei

Szegedi Tudomdnyegyetem
Informatika Doktori Iskola

Szeged, 2013 December

1. BEVEZETES

NAPJAINK INFORMACIOS RENDSZEREI MAR NEM EGYSZERU ALKALMAZASOK, AMIKKEL EGY-EGY FONTOSABB
FELADATOT OLDUNK MEG. Ma mdr hatalmas méretd, osszetett architekturdju rendszerekkel dolgozunk, amik
részei a mindennapjainknak, ott vannak a tdblagépeinken, okos telefonjainkon, mindenhol. Ezeknek a rendsze-
reknek a célja, hogy a helyes informéciét a megfeleld embereknek pontos id8ben és formaban juttassék el [15].

Pawlak 1981-ben megjelent cikkében ir a Vars6i Egyetem Informéciés Rendszerek Munkacsoportjdnak ered-
ményeirdl [14]. Tanulmanyéban bemutat egy informéciés rendszert, ami egy konyvtari rendszer és mintegy
50.000 dokumentumot kezel. Azéta az informdcios rendszerek rengeteget fejlédtek, és a kezelt adatmennyiség
is jelentésen megnétt. Ismeriink olyan rendszereket a rédidcsillagdszatbol, amik napi 138 PB (peta byte) adatot
kezelnek [16]. J6l ismert a részecskefizika vilagdbol a CERN 2008-ban 4tadott Large Hadron Collider részecs-
kegyorsitéja is, ami masodpercenként 2 PB adatot kezel [7]. Az ilyen rendszereket a jelentés adatterhelés miatt
adat-intenziv rendszereknek nevezziik [2, 10-12].

A hatalmas mennyiség(i adat, amit az adat-intenziv rendszerek kezelnek, dltaldban egy adatbdzisban keriil el-
térolasra, amit egy adatbdzis-kezeld rendszer (database management system, DBMS) kezel valamilyen adat séma
szerint rendszerezve. Reldcids DBMS-ekben (RDBMS) ez a séma tablékat tartalmaz, amik 4ltaliban egy entitést
jelolnek kiillonb6z6 tulajdonsédgokkal, amiket a tébla oszlopai térolnak.

Az ilyen rendszerek karbantartdsinak tdimogatdsara tobb médszert is kidolgoztak mind a forraskéd, mind pe-
dig az adatbdzis elemzésének segitségével is. Kevés olyan moédszer van viszont, ami valdban figyelembe veszi
az adat-intenziv rendszerek sajétossdgait (pl. adatelérésen keresztiili fiiggéségek vizsgalata). Ahogy Cleve et al.
megjegyzik azt az adat-intenziv rendszerek evoluciojat vizsgdld tanulmanyukban [3]: ,,mind a szoftver, mind az
adatbdzis rendszerek fejlesztdi keresik a megolddsokat a szoftver evoliicié problémdira. Mégis, meglepden kevés kutaté
munka vizsgdlja a két teriiletet egyiittesen, ahol a szoftver és az adat taldlkozik.”.

1.1. TEZIS CELKITUZESEI

Jelen tanulmédnyban adat-intenziv rendszerek visszatervezési moédszereit vizsgéljuk statikus elemzési moédszerek-
kel. Olyan médszerekkel foglalkozunk, amik a Cleve et al. dltal is felvetett médon, a szoftver és az adat kompo-
nensek egyiittes vizsgalataval nyernek ki rejtett kapcsolatokat adat-intenziv rendszerekbdl. A kinyert informacié
segitségével megolddst keresiink adat-intenziv rendszerek architekturdjinak feltérképezésére; egy specidlis ne-
gyedik generdcios nyelvben, Magicben fejlesztett alkalmazasok minéségbiztositisara; input adat okozta bizton-
sagi hibdk felderitésére; valamint informécids rendszerek optimalizaldsdra lokalis refaktoring miveletek segit-
ségével. A bemutatott médszerekkel nagymeérett, ipari rendszereket elemziink, egyebek mellett egy tobb, mint
4 milli6 soros banki rendszer esettanulmanyat is bemutatjuk, ahol a rendszer architektara térképét allitjuk el6
automatikus eszkozokkel, illetve mindségproblémakat tarunk fel benne.
Az aldbbi kutatdsi kérdésekre keressiik a valaszokat:

1. Lehetséges-e automatikus forrdskdd elemzési mdédszerekkel, adateléréseket vizsgalva, informdciot kinyer-
ni, ami segithet egy adat-intenziv rendszer architekturdjanak feltérképezésében?

2. Adaptilhaté-e egy harmadik generacids nyelvekhez kifejlesztett automatikus elemzési médszer egy ne-
gyedik generdciés nyelvre, mint amilyen a Magic? Amennyiben igen, ugy lehetséges-e statikus kodelem-
zéssel timogatni egy Magic alkalmazds Gjabb verziéra torténé migréldsat?

3. Hatékonyan hasznalhatéak-e a vezérlési folyam és adatfolyam elemzések a felhaszndléi input okozta biz-
tonsagi hibak felderitéséhez?

4. Milyen mértékben lehetséges csokkenteni kod faktoring algoritmusok segitségével egy forditd dltal el6dl-
litott bindrisok méretét?

Az elért eredményeinket hat tézispontban foglaljuk 6ssze, amelyek az aldbbiak:
I Orokoélt, adat-intenziv rendszerek architekturdjinak visszatervezése

(a) Architekturalis fiiggdségek feltérképezése adat-intenziv rendszerekben

(b) Nagyméretdi, 6rokolt rendszerek architekturalis problémainak vizsgélata

II A Magic vilaga
(a) Magic alkalmazasok visszatervezését timogatd elemzécsomag kifejlesztése
(b) Uj komplexitis metrikék definidlasa és kiértékelése Magic rendszereken

III Biztonsagi elemzés és optimalizalds

(a) Felhaszndléi input okozta biztonsdgi hibék felderitése

(b) Informaciés rendszerek optimalizaldsa: kéd faktoring a GCC forditéban

1.2. PUBLIKACIOK

A tézisben felhaszndlt publikacidk jelentds része a szakma rangos, nemzetkozi konferencidinak kiadvanyaiban,
valamint folyéirataiban keriilt kozlésre. A tézispontok és a publikiciok kapcsolatit 6sszegzi az 1.1. tablazat.

Tézispont Publikdcidk

I/a. Architekturalis fiigg6ségek feltérképezése adat-intenziv rendszerekben [23]
I/b. Nagyméretd, 6rokélt rendszerek architekturalis problémadinak vizsgalata [20, 25]

II/a. Magic alkalmazésok visszatervezését timogatd elemz8csomag kifejlesztése [18, 24, 27]
I1/b. Ujkomplexitds metrikik definiélasa és kiértékelése Magic rendszereken [26]

I11/a. Felhasznaléi input okozta biztons4gi hibak felderitése [21]
I1I/b. Informaciés rendszerek optimalizildsa: kéd faktoring a GCC forditéban [19, 22]

1.1. tablazat. Tézispontok és a publikacidk kapcsolatanak Gsszegzése.

2. OROKOLT, ADAT-INTENZIV RENDSZEREK ARCHITEKTURAJANAK VISSZATERVEZESE

EBBEN A FEJEZETBEN OLYAN ELEMZESI MODSZEREKET ISMERTETUNK, AMIK AZT HASZNALJAK KI ADAT-INTENZ{V
RENDSZEREKBEN, HOGY AZ ARCHITEKTURA KOZEPPONTJABAN EGY ADATBAZIS KEZELO RENDSZER VAN.

El8szor ismertetjiik azt a médszert, amivel forraskddelemek és adat tabldk kozotti kapcsolatokat (Create-Retrieve-
Update-Delete, CRUD fiigg8ségek) térképeziink fel bedgyazott SQL utasitasok elemzésével. A kapcsolatok tanul-
manyozisaval biztonsagos relaciokat keresiink, pl. hatdsanalizis vagy architekttra rekonstrukcié céljabol. Ezt
koveten egy esettanulmdnyban szemléltetjiik, hogy a kinyert kapcsolatok hogyan hasznalhatok egy rendszer
architektdrdjanak feltérképezésére. A tanulmdnyban egy nagyméretd, 6rokolt Oracle PL/SQL rendszert elem-
ziink el6szor bottom-up megkozelitésben a kapcsolatok kinyerésével, majd top-down megkézelitésben a fejlesz-
toket interjuztatva.

2.1. ARCHITEKTURALIS FUGGOSEGEK FELTERKEPEZESE ADAT-INTENZ{V RENDSZEREKBEN
2.1.1. BEAGYAazoTr SQL UTASITASOK KINYERESE A FORRASKODBOL

Egy RDBMS-sel dltaldban SQL utasitdsokkal kommunikalunk az alkalmazas oldaldrdl, egy library segitségével,
mint péld4ul a JDBC. Napjainkban az ORM technolégik (pl. Hibernate) is egyre elterjedtebbek, alacsony szin-
ten viszont ezek is SQL lekérdezéseket kiilldenek az adatbazis felé. Sok visszatervezési modszer épit ezért a for-
raskodba bedgyazott SQL utasitasok kinyerésére.

Tanulményunkban [24] egy olyan mddszert ismertetiink, aminek a segitségével egy speciélis proceduralis
nyelvbél, ForrasSQL-bdl nyerhetiink ki bedgyazott SQL utasitasokat. Ez a programozasi nyelv, olyan informa-
cids rendszerek fejlesztéséhez lett kifejlesztve, amik szoros kapcsolatban allnak egy adatbézissal. A forrdskédban
ezért gyakran fordulnak el6 bedgyazott SQL utasitdsok, amik adott eljarasok segitségével killdhetéek el az adat-
bazisnak, hasonléan, mint ahogy a JDBC esetében is. Az altalunk bemutatott médszer ezért konnyen édltaldno-
sithato6 lehet mds procedurilis nyelvekre is, annak ellenére, hogy ForrdsSQL-re lett kifejlesztve.

A bemutatott médszer azon az egyszer(i megfigyelésen alapszik, hogy azok az utasitasrészletek, amik a string
miiveletekkel 6sszedllitott SQL utasitisokban nem ismerhetdek fel, egyszertien helyettesithetéek a fel nem is-
mert utasitdsrészletet tartalmazé valtozé nevével. Ha példdul a bedgyazott utasitis valamely részletét a name
véltozobdl kapjuk meg, akkor az utasitasban a véltozo helyén ‘@@name@@’ string keriil behelyettesitésre. Az
altalunk kifejlesztett SQL parser az ilyen utasitasrészleteket specidlis azonositokként kezeli, biztositva ezzel az
SQL utasitas szintaktikai elemzését. Egy ilyen kinyert SQL utasitdsra lathaté egy példa a 2.1. abran.

Ennek az egyszert 6tletnek a segitségével beazonositjuk azokat az utasitdsokat a forraskodban, ahol SQL uta-
sitast killdenek az adatbdzis felé, és megprobaljuk minél hatékonyabban felépiteni az ott bedgyazott utasitast.
Azoknak a valtozoknak a helyén, amiknek a tartalmat nem tudjuk kinyerni, a korabban ismertetett behelyettesi-
tést alkalmazzuk. Valahanyszor az SQL elemz6 szdmara elemezhet6 utasitast kapunk, az a médszernek koszon-
het8en meg fogja Srizni az eredeti utasitas f6 tulajdonsagait (utasitéds tipusa, elért tablak, oszlopok).

name=readString();
sql="SELECT firstname, lastname " + SELECT firstname, lastname

"FROM customers " + FROM customers
"WHERE firstname " + WHERE firstname
"LIKE('%" + name + "%')"; LIKE('%@@name@@%"') ;

executeQuery(sql);

(a) (b)

2.1. abra. Egy minta kédrészlet (a) egy bedgyazott SQL utasitasrdl és (b) a kinyert SQL utasitasrdl, ami-
ben a LIKE paramétere egy valtozé helyettesitésébdl szarmazik.

ForrdsSQL esetében azt figyeltilk meg, hogy a fejlesztok szeretik az adatbazisnak killdend6 utasitést az elkiil-
dés helyéhez kozel osszedllitani. A médszeriink ezt kihasznalva, el6sz6r megprobalja a valtozok értékét megha-
tarozni a korabbi értékadasokon keresztiil, vissza-vissza lépve a vezérlési folyamban. Amennyiben nem sikeriil
az értéket meghatarozni, a valtoz6 nevét a kordbban ismertetett modon helyettesiti.

A médszer elénye, hogy kis szdmitdsigénnyel implementélhatd. Persze szimos olyan eset el6fordulhat, ahol
osszetettebb modszerrel a bedgyazott SQL utasitis pontosabban kinyerhet lenne. Egy ForrasSQL rendszeren
vizsgalva mégis nagyon meggy6z6 eredményt értiink el: a kédban 6sszesen 7, 434 ponton kiildtek SQL utasitast
az adatbdzis fel¢, amibél 6, 499 SQL utasitést sikeriilt feldolgozni, 87%-ban kinyerve ezzel a bedgyazott SQL
utasitdsokat.

2.1.2. ADATELERESEKEN KERESZTUL FELLEPO FUGGOSEGEK ADAT-INTENZIV RENDSZEREKBEN

A beagyazott SQL utasitdsok segitségével, adateléréseken keresztiil fellépé, rejtett kapcsolatokat (Create, Ret-
rieve, Update, Delete; rdviden CRUD kapcsolatok) vizsgélunk, amihez egy un. CRUD matrixot allitunk el. A
CRUD matrixot kordbban sikerrel hasznaltak a kod megértését, illetve minéségét vizsgalo elemzési modszerek-
ben [1, 17]. Mi a CRUD matrixot forrdskodelemek kozotti kapesolatok feltérképezéséhez hasznaljuk [24]. A
matrix egyébként szemléltethetd egy graffal is, amire egy minta lathat6 a 2.2. dbrén.

CRUD
_frocedure CRUD

CRUD

Procedure
Procedure CRUD

Procedure

CheckCustomer
Customers Credit
SEA/SEB
CRUD

NewCustomer / CRUD CarRental Procedure SEA/SEB
/ Table CRUD
Procedure
CRUD / SEA/SEB
Procedure Rentals CheckCar
CRUD Available

Address Procedure

Modification

CRUD

CRUD Table

Procedure

CarCrash

2.2. dbra. CRUD és SEA/SEB kapcsolatok tablak és eljarasok kozott.

A modszert egy ForrasSQL rendszer eljarasai és adattablai kozotti CRUD kapcsolatok feltérképezésével vizs-
galjuk, majd vetjiik 6ssze SEA/SEB kapcsolatokkal [6]. A 2,936 eljérast és 317 tablat tartalmazé rendszerben
megmutatjuk, hogy mind a CRUD, mind a SEA/SEB iltal kinyert kapcsolatok kiegészitik egymast, ezért olyan
elemzésekkor, amikor biztonsiagos mddszerek kellenek (pl. hatdsanalizis) mindkét kapcsolattipus hasznélata
javasolt lehet.

2.1.3. SAJAT HOZZAJARULAS

A bemutatott SQL kinyerési algoritmus és a CRUD kapcsolatok kinyerésének modszere, valamint az elemzés
végrehajtasa és az eredmények kiértékelése a szerz6 sajat hozzajaruldsa. A szerzé munkdjanak nagy része tovabba
az elemzés alapjdul szolgaléd MS SQL és Transact SQL séma és nyelvi elemz8 megtervezése és kidolgozdsa [23].
A ForrasSQL kédbézis elemzéséhez a Columbus elemzécsomag ForrasSQL elemz6jét hasznéltuk, amit a szerzé

egészitett ki a SEA/SEB kapcsolatok szdmitaséért felel6s komponenssel. A tanulmdny megjelenését kovetéen
Liu et al. a médszert hasznalva hasonl6 eljérast dolgoztak ki PHP rendszerekre [8].

2.2. NAGYMERETU, OROKOLT RENDSZEREK ARCHITEKTURALIS PROBLEMAINAK VIZSGALATA

Egyik ipari partneriink azzal keresett meg minket, hogy segitsiink nekik a nagymeéret adatbazis rendszeriik kar-
bantartdsi problémaiban. A cégnél egy Oracle PL/SQL rendszert tartottak karban, ami az évek alatt egy tobb,
mint 4.1 millié soros adatb4zis dumppal (csak a nem-iires és nem-komment, adatbesztirdsokat nem tartalmazé
sorokat szamitva) rendelkezé rendszerré nétt.

A rendszerrdl el6szor egy architektura térképet készitettiink. A fejlesztokel folytatott interjuk sordn beazono-
sitottunk felsdszinti komponenseket és kozottiik 1évé kapcesolatokat, majd az alacsony szinten, forraskédelem-
zéssel kinyert kapcsolatokat emeltiik fel a komponensek szintjére. A végeredményben el64lld, a komponensek

2.3. abra. Kapcsolatok egy nagy adat-intenziv rendszer felsé szintii komponensei kozo6tt. Az abra jél mu-
tatja, hogy az évek soran ad-hoc médon fejl6dott rendszer architektiraja teljesen atlathatatlan; a 26 meg-
hatarozott komponens mindegyike szinte minden masikkal kapcsolatban all. (A neveket szandékosan eltor-
zitottuk.)

kapcsolatat mutaté architektura diagramon jol lathat6, hogy a meghatérozott 26 komponens kozott szinte min-
den mindennel kapcsolatban van, a rendszer architektiraja teljesen ad-hoc médon fejlodott az évek sordn. Az
elemzés egy mésik eredményeként olyan adatbdzis objektumokat azonositottunk be, amelyeket mar nem hasz-
naltak, vagy logikailag rossz komponensbe soroltak be.

A figgéségek meghatdrozdsa segitett tovabba egy olyan komponens eltavolitdséban, amit mér torolni akartak
a rendszerbdl, mert azéta Gjraimplementdlték Java nyelven. Az elemzés segitségével olyan kapcsolatokra mu-
tattunk rd, amiket még nem sziintettek meg a komponens eltdvolitdsidhoz. Az architekturalis problémak mellett
statikus elemzéeszkozokkel konkrét kddoldsi problémadkat és copy&paste kddrészleteket beazonositunk.

2.2.1. SAJAT HOZZAJARULAS

Az Oracle PL/SQL rendszerek elemzéséhez a Columbus rendszert Oracle PL/SQL elemzével kellett bévite-
niink. A szerzé munkéja volt meghatdrozé az Oracle PL/SQL séma és elemz6 kidolgozdsdban, az architektd-
ra térkép visszatervezési modszerének kidolgozasaban, és a nem hasznélt komponens kapcsolatait feltérképezo
modszer kidolgozdsdban is. A szerzd végezte el tovabba az esettanulmdnyban hasznélt elemzéseket és interjukat
a fejlesztékkel. Az egyéb eredmények a térsszerzokkel végzett kozos munka eredményei [20, 23].

3. AMAGIC VILAGA

EBBEN A FEJEZETBEN AZT VIZSGALJUK, HOGYAN ADAPTALHATO A COLUMBUS MODSZERTAN MAGIC-RE, MINT
EGY SPECIALIS NEGYEDIK GENERACIOS PROGRAMOZASI NYELVRE. Egy teljes elemz6 csomag kifejlesztése volt
a célunk, ami Magic alkalmazdsok mindségbiztositdsa mellett, a kordbban ismertetett architekturalis fiigg6ségek
kinyerésére is képes.

Ismertetjiik, hogyan adaptéljuk a Columbus médszertant Magic nyelven fejlesztett alkalmazasok elemzésé-
hez. Megmutatjuk, hogy a harmadik generéciés nyelvekhez fejlesztett elemzési technikék (pl. minéségmérések,
architekturalis informécidk kinyerése) 4GL kornyezetben is segitik a fejleszték munkajit. A médszertan adap-
talasa kozben szembesiiltiink azzal, hogy a fejleszték nem ugyanazokat a nyelvi elemeket talaljék komplexnek,
mint amiket az adaptalt metrikdk mutatnak. Ezért egy uj komplexitds metrika bevezetésére tett kisérletet is is-
mertetink.

3.1. MAGIC ALKALMAZASOK VISSZATERVEZESET TAMOGATO ELEMZOCSOMAG KIFEJLESZTESE

A negyedik generédciés nyelveket (4GL) gyakran nagyon magas szintti nyelveknek is hivjdk. A fejlesztdk, akik
ilyen nyelven fejlesztenek, nem irnak a hagyomanyos értelemben vett forrdskédot, hanem egy magasabb abszt-
rakcios szinten, gyakran egy alkalmazés generdtorban dllitanak 6ssze egy programot.

A Magic egy tipikus 4GL, amit a Magic Software Enterprises vezetett be a 80-as évek elején, mint egy innovativ
technoldgiat, ahol egy meta-model segitségével lehet alkalmazast késziteni. Uzleti alkalmaz4sok fejlesztéséhez
tervezték, amiknek a fejlesztése er6sen adatbazis kozpontu. Ezzel egyiitt a nyelv legtobb eleme is adat entitdsok-
hoz kapcsolddik: egy adattébla mez6i kozvetleniil véltozokon keresztiil érhetéek el, amiket task-ok kérdeznek le
vagy médositanak. Emiatt az adat-k6zpontusag miatt a Magic alkalmazésok is adat-intenziv rendszerek.

&

!
O}
e
BuildEngine

Magic2Metrics

Sample
project

MagicAnalyzer MagicCheckGEN

MagicDuplicate
CodeFinder

Admin GUI

3.1. abra. Columbus médszertan adaptalva Magic kérnyezetben.

Egy ipari partneriinkkel, a SZEGED Szoftver Zrt.-vel, kdzosen azt kutattuk, hogy a Columbus médszertan
adaptalhat6-e Magic alkalmazdsok visszatervezésére. A célunk az volt, hogy Magic rendszerek minéségbiztosi-
tésara [24], valamint migraldsanak tdmogat4séara adjunk statikus elemzéssel automatikus megold4sokat [27]. A
teljes Columbus médszertant implementaltuk Magic rendszerekre a nyelvi elemzéstdl, a metrikak szamitdsan at
akédolasi problémak és architekturalis nézetek kinyeréséig (3.1. dbra).

Metrika Erték
Programok szama 2761
Logikai sorok szdma 305 064
Osszes Task szdma 14 501
Osszes Adattibla szima 786

3.1. tablazat. Elemzett Magic rendszer fobb metrikai.

A médszereket sikeresen adaptaltuk, a folyamat kézben viszont az aldbbiakat figyeltiik meg: (1) az adaptalt
mindségmutatdkat dvatosan kell kezelni, a tipikusan hasznalt méret és komplexitds metrikdkat is mashogy ér-
telmezik a fejlesztdk; (2) a fejlesztéi kérnyezet olyan informéciét is eltarol az alkalmazasrél, amit 3GL nyelvek

Shorteuts Reports Search ftem Charts Help

user
Search results Basicinfo | wiewsourcelPrg 9.src Tabt s |
IT Logical Arch View 700 o = o
Logical View | User Rights View A . Programs - ILOT
Global View Physical View

A Physical-Root

fal 079 -
o [hia@Physical (=l
¢ [Glabal Space
¢ Chect 850
9 CInmct
o 3 Data
o [Helps 71 -
o [Menus
o [Modets
[Programs| 502 -
o o1 UTILKErdés
0 2. UTIL.Jévahagyds
a3, UTILVSgrehaltas i 6

0 4. UTILESC-vel medg:
@ 5. UTILNull&Beepah
B, UTILVatozasok feli
o 7. UTIL:Egy rekord var 334 -
@ 8. UTIL:Jévihagyés (
@ 9. UTIL User Ext
o o491 Parancsfijl m)
9.UTILUser Exit
* 9. UTILUser Esit
010, UTIL Listarjl mes
a1, UTIL U listafile s ul =
012 UTILBESZFEJ 52
013, UTIL Katalogus b
14, UTILZOOM katald
[« i [D]

Number of items

I B B B A A 4

05 -

LR A A A §

528 -

. > > > (S S R
DS 2010.05.11] | R T . R - - T R PP A R R R

Property name | Property value |
Parent narne Prograrns -
Attribute 1D Loc =
ltern types Program, Task ~

3.2. abra. A Taskok eloszlasa a logikai sorok szama alapjan.

Shortcuts Reports Search Item Charts Help

Physical View M Tabs E| 55

Global View

Seareh resuits ‘ T ———

IT Loqical Arch View

Loaical View

User Rights View Programs
Menu View

Call Graph View

raph-Foot galom feld

bal Space
Log

HLog 11 [|

O Menus 116. Rendelések kozponti felvétele

4 3 0. Pop Up Menu

% [114. Napi for

¢ 3Submenu

¢ CI115 v

% 3 subr

b

¢ 3 Programs l<

o 1 UTILKérdés

o 10. UTIL Listafajl

0 100. UTIL: Utazr.t

01009, Teljes anul

© 103, UTILTeleph

o 1031 Szabad file|

uA re nris Aeak

i

O 104, UTIL Ervén

01041 Anula ok ki

o 1042, Kielégitetle| ||

01043 SMSJANUL | |
(i 1 D
Filtered by...

(E1EN] r

Dates: 2009-06-30] v |
Branches: [Urunk v

dART Sourcelnventory v1.2.0.0

=

Monitored system: Pharmalog

3.3. abra. Menii elérésékkel bovitett program hivasok.

esetében csak nagyon nehezen, vagy egydltalin nem lehetne kinyerni. Ilyen informdacié péld4ul a task-ok tabla-
elérése, ami kozvetlen lekérdezhet6 a fejlesztéi kornyezet mentéseib6l.

Az ipari partneriinknek koszonhetéen az adaptélt eszkozoket valds, ipari kornyezetben tesztelhettiik és vali-
dalhattuk. Mi tobb, els6 kézb6l kaphattunk visszajelzéseket tapasztalt Magic fejleszt6ktSl. A 3.1 téblazat a teszt-
rendszer f6 metrikait szemlélteti, a 3.2. ésa 3.3. dbra pedig rendre a metrikdk eloszlasat, illetve egy architekturalis
nézetet szemléltetnek.

A kifejlesztett elemz6 csomag j6 alapjat adta tovébbi kutatisoknak is, egy tanulméanyban [18] példaul a Ma-
gic alkalmazasok layout-fiiggetlen automatikus UI tesztelésére dolgozunk ki egy mddszert, kihaszndlva, hogy az
alkalmazés grafikus feliiletérél is tirol a Magic adatokat (pl. ablakok és rajtuk 1év8 control-ok pozicidi).

3.1.1. SAJAT HOZZAJARULAS

A szerz6 munkdja meghatdrozo volt a kifejlesztett eszkozok megtervezésében és implementéldsaban is. Bar a
Magic nyelvi feldolgozéjat a SZEGED Szoftver Zrt. munkatdrsai fejlesztették, a szerz6 tervezte a Magic sémat
és implementalta az azt kezel6 API-t. A szerz6 definidlta a Magic-re a metrikakat illetve a kinyert architektu-
ralis nézeteket. A kodoldsi szabdlysértések és azok tesztelése a Magic fejlesztékkel kozosen tortént. A szerzd
tervezte tovabba a Magic alkalmazasok layout-fiiggetlen automatikus UI teszteléséért felel6s alkalmazast, amit
egy kapcsol6dé tanulményban mutatunk be [18]. Megjegyezziik, hogy az eredmények szdmos tovabbi kutaté
munkdnak adtak alapot. Az eredményekre timaszkodnak hallgatoi szakdolgozatok, TDK munkak, valamint tu-
domanyos konferencidkon eléadott munkék is [4, 5, 13]; mindemellett tobb, az Eurépai Unié tdmogatésaval
megvaldsuld innovécids projekt elméleti alapjét is adja [24, 27].

3.2. UJ KOMPLEXITAS METRIKAK DEFINIALASA ES KIERTEKELESE MAGIC RENDSZEREKEN

A Magic alkalmazasok belsé szerkezetének leirdsa kozben tobb, 3 GL metrikdk adaptéldsdval mérhet6 tulajdonsé-
got is sikeriilt meghatérozni (pl. méret alapt metrikak, csatolds metrikak, komplexités). A legnagyobb kihivést
a komplexitas metrika definidldsa jelentette, ugyanis az els6 elemzési eredményeket megmutatva a fejleszték-
nek, azt a visszajelzést kaptuk, hogy a komplexnek itélt kodelemek szerintiik nem komplexek. A metrikdkat
modositottuk a fejlesztok visszajelzései alapjan, és egy kisérletben osszevetettitk az 6sszes kidolgozott metrikat
a tapasztalt Magic fejleszt6k véleményével.

El8szor a 3GL nyelvekbél jél ismert komplexités metrikakat adaptéltuk (McCabe és Halstead komplexités),
majd a fejlesztok visszajelzése alapjan a McCabe komplexitdst modositottuk a 3.4. dbran lathaté médon. A 3.5.
dbra a kisérletben haszndlt Magic programok egy rangsoroldsit mutatja a komplexitds mutatéik alapjan. EC
(Experiment Complexity) mutatja a fejleszték atlagolt rangsoroldsat, McCC, a médositott ciklomatikus komp-
lexitast, a HPV és HE metrikak pedig a Halstead komplexitds metrikdk.

McCC(LU) = Number of decision points in LU + 1
WLUT(T) = 3 McCC(LU)
LUET

McCC,(LU) = Number of decision points in LU +

> McCC,(TC) +1
TCeLU
McCC,(T) = > McCC,(LU)
LUET

T: Task a Projektben
LU: a Task egy Logic Unit-ja
TC: LU-bol hivott Task

3.4. abra. Logic Unit-ra adaptélt ciklomatikus komplexitas (McCC), Task-ra adaptalt ciklomatikus komp-
lexitds (WLUT), médositott ciklomatikus komplexitas (McCC,).

A fejlesztSkkel végzett kisérlet soran tgy taldltuk, hogy nem korrelal egymadssal a kezdeti adaptalt McCabe
komplexitds mutatonk és a fejleszt6k rangsoroldsa, ugyanakkor erds a kapcsolat a médositott McCabe komple-
xitds és a fejleszték, valamint a Halstead komplexitas és a fejleszt6k rangsoroldsa kozott.

xS o X0

6 @] cOC2
—HPV

4 4
e HE

2 L —EC

2469 281 278 69 372 449 128 452 291 377
Program Id

3.5. abra. A fejlesztdk rangsoroldsa (EC értékek) osszehasonlitdsa a metrikak szerinti rangsorolassal.
(Task-ok ciklomatikus komplexitdsa (WLUT), médositott ciklomatikus komplexitas (McCC,), Halstead
komplexitasok (Program Volume, HPV; Effort to implement, HE).

3.2.1. SAJAT HOZZAJARULAS

A szerz6 munkdja volt meghatdrozé a metrikdk definidlasban és a fejlesztokkel végzett kisérlet végrehajtasaban. A
metrikdk implementéldsa és a végeredmények kiértékelése a kapcsolddo cikk tarsszerzdinek kozos munkéjaként
tortént [26]. A médositott komplexitas metrika definiciéjat fontos eredménynek tekintjiik, hiszen hasonlé, a
tejleszt6k komplexitas elképzelését megfelel6en titkr6z6 mutatét még nem dolgoztak ki Magic rendszerekre.

4. B1ZTONSAGI ELEMZES ES OPTIMALIZALAS

EBBEN A FEJEZETBEN BIZTONSAGI ELEMZESRE ES OPTIMALIZALASRA KIDOLGOZOTT MODSZEREKET ISMERTE-
TUNK. Ezek a technikdk altalanosabbak a kordbban bemutatottakndl abban az értelemben, hogy nem fuggnek
egy adatbazis-kézpontu architektaratol.

El8szor egy statikus elemzési modszert ismertetiink olyan alkalmaz4sokra, amik kiilsé forrasokbél kapott (pl.
felhasznéls, I/O miveletek) adattal dolgoznak. Ezt kovetéen lokalis refaktoring algoritmusok hatékonysagat
vizsgaljuk C, C++ rendszereken. Az algoritmusokat a GCC fordité kiilonboz6, belsd reprezentdcids szintjein
implementaltuk, és azt mérjiik, melyik szinten, milyen szdzalékos kodméret csokkenés érhet6 el a segitségiikkel.

4.1. FELHASZNALOI INPUT OKOZTA BIZTONSAGI HIBAK FELDERITESE

Abemutatott médszerben [21] a forrdskddnak arra a részére korldtozzuk az elemzést, ami a felhasznaléi inputtél
fugg. Ez az a kddrészlet, ami feldolgozza a felhaszndl6tdl kapott adatot, és ami ha hibét tartalmaz, akkor az egy
tamado altal konnyen kihasznalhat6. Az at, amit az inputként kapott adat bejér, adatfolyam elemzéssel nyomon
kovethetd, igy az érintett kodrészlet is meghatarozhat6. Hibak természetesen barhol el6fordulhatnak a kédban,
de amik ebben a kddrészletben helyezkednek el, azok kiilonosen veszélyes biztonsagi hibdkat rejthetnek.

A bemutatott modszer £6 1épései az aldbbiak:

1. Megkeressiik azokat a helyeket a forraskddban, ahol I/ O miveletekkel adatot olvasunk be. Ezek a helyek
lesznek az an. input pontok.

2. Meghatarozzuk azokat a kddrészleteket, amik az input pontoktdl fiiggnek.

3. Metrikak segitségével meghatdrozzuk az input pontoktol fiiggd, veszélyes metodusokat.

Metrics

Preprocessing Calculate Input
Coverage

Dangerous
Functions

. System
Information ¥

Source Code Dependence
Graph

Extraction

Calculate Input
Distance

Locate Input
Points Bug detection

Buffer Overrun
| — Detection
\ Format

Violation
Detection

Calculate Input
Paths

Input Points

Input Paths

Vulnerable
Functions

4.1. abra. A modszer f6bb [épéseinek attekintése.

Név El6fordulds Fiiggvény Sorok szama Lefedettség (%)
read() 55 yahoo_roomlist destroy 12 83.33
fread() 12 aim_info_free 13 84.62
fgets() 10 s5_sendconnect 22 77.27
gg read() 9 purple_ntlm_gen type1 35 77.14
gethostname() 6 gtk _imhtml is_tag 91 76.92
getpwuid() 2 jabber buddy resource free 25 72.00
fscanf() 1 peer_oft checksum_destroy 8 75.00
getenv() 1 qq_get conn_info 12 75.00
getpass() 1 _copy_field 8 75.00
char *argv[] 1 qq_group_free 8 75.00

(a) (b)

4.1. tablazat. A Pidginben eléfordulé (a) input miiveletek, (b) valamint a tiz legnagyobb input lefedett-
séggel rendelkezd figgvény.

4. Automatikus hibakeresé algoritmusokkal hibds kodrészleteket keresiink.

A médszert nyilt forraskddu rendszereken teszteljiik, és bemutatunk egy esettanulmanyt is, amiben a kozis-
mert Pidgin chat klienst elemezziik. A médszerrel Pidginben is és a tobbi elemzett rendszerben is valés hibakat
taldltunk. A bemutatott médszer abban az értelemben is 4j, hogy a konkrét hibafelderités mellett metrikakat
definidl, amik rossz tervezésre vagy hibdkra kiillonésen érzékeny fiiggvényekre mutatnak rd. A Pidgin tanulmany
jol demonstrilja a bemutatott moédszer hatékonysdgat egy kozepes mérettinek mondhato6 rendszeren, ami 7173
tuggvényt és 229825 kddsort tartalmat. Néhdny mért adatot mutat be a 4.1. tédbldzat. A mérések eredménye azt
mutatja, hogy a rendszernek alig tobb, mint 10%-a érintett a felhasznalé6i inputban.

4.1.1. SAJAT HOZZAJARULAS

A C és C++ forraskdd elemzéséhez a GrammTech Inc. CodeSurfer eszkozét hasznaltuk. Az eszkozhoz a szerzd
implementalta azt a plugint, amivel a bemutatott algoritmust teszteltiik. A tesztelést is és az eredmények kiérté-
kelését is a szerz6 végezte el. A bemutatott eredményeket fontos eredményeknek tekintjiik a statikus forraskod-
elemzés biztonsiggal foglalkozé teriiletén, ahogy a kapcsolddé cikkre [21] tobb kiilsé hivatkozas is talalhaté.

10

4.2. INFORMACIOS RENDSZEREK OPTIMALIZALASA: KOD FAKTORING A GCC FORDITOBAN

Ebben a részben uj optimalizdciés algoritmusokat mutatunk be, amiket a GCC fordit6 kiilonb6z6 belsé repre-
zentdcios szintjein implementaltunk. Az algoritmusok ugynevezett kod faktoring algoritmusok, optimalizécids
technolégidknak egy olyan csalddja, amiket kodméret csokkentésre dolgoztak ki. A fejleszték mér korabban fel-
ismerték a lehet6ségeket ezekben az algoritmusokban, ahogyan mar mas eszkozokben implementaltak is 6ket
(pl. a The Squeeze Project’ az egyik elsé ilyen projekt volt).

IPA passes Tree passes RTL passes
Front End
Y Y Y Y 7 Y L7
GENERIC Interprocedural Tree Sequence Tree-SSA Sequence Abstr. Sinking-Hoisting Back End
Abstraction Abstraction Sinking-Hoisting on RTL on RTL
v Y Y Y L 2 Y
GIMPLE

4.2. abra. Az implementalt algoritmusok egy attekintése.

A bemutatott algoritmusokat a GCC Tree-SSA és RTL szintjein is implementéljuk, az un. szekvencilis abszt-
rakciora egy interprecodeduralis valtozatot is bemutatunk. A 4.2. dbra ad egy éttekintést az algoritmusok sor-
rendjérél az egyes szinteken.

A lokdlis faktoring (local factoring vagy code hoisting/sinking) azon az egyszerdi &tleten alapszik, hogy basic
blockokban, amiknek a futdsat kozos basic blockok el6zik meg, vagy éppen kovetik, gyakran eléfordul, hogy
azonos utasitdsok talilhatéak meg, amiket egyszerten 4t lehetne mozgatni a kozos sziil6kbe vagy gyerekekbe.

Tekintsiink példanak egy if utasitast, aminek a then és else dga is ugyanazokkal az utasitasokkal kezd6dik.
Ha a feltételvizsgalattdl nem fiiggnek, akkor ezeket az utasitasokat kdnnyedén az if elé mozgathatjuk (ezt ne-
vezik code hoisting-nak), amivel folosleges kod duplikaciét sziintethetiink meg (4.3/a-b. bra). Ez az alap étlet
kiterjeszthetd egyéb, 6sszetettebb esetekre is, mint példdul a switch utasitds vagy a goto utasitds okozta eldga-
zasok a vezérlési folyamban. Sét, az utasitdsokat nem csak az if elé mozgathatjuk a then vagy else dgakbdl,
hanem az 1f mogé is. Ezt nevezik code sinking-nek, amit csak akkor lehet megtenni, ha a mozgatott utasitdsoktol
nem fiiggnek egyéb utasitisok az eredeti blockon belil.

Szekvencidlis kiszervezés (sequence abstraction) a lokalis faktoringgal szemben egy bemenett és egy kimenett
(single-entry single-exit, SESE) kodrészletekkel foglalkozik, nem 6nallé utasitisokkal. A technika lényege, hogy
egymds utni, azonos utasits sorozatokat taldljunk, amiket eljirasokkd lehet kiszervezni (4.3/c-d. abra). Egy
Uj eljards létrehozdsa utdn a kiszervezett kodrészletet egyszerten az eljarashivassal helyettesitjiik. A moédszer
hasonléan alkalmazhaté (multiple-entry single-exit, MESE) kédrészletek esetében is.

Az algoritmusok implementacidjanak helyességét és a kodmeéret csokkentésének hatékonysagat a GCC hi-
vatalos, kddméret mérésre kialakitott tesztkdrnyezetén mértiik (Code-Size Benchmark Environment, CSiBE). A
méréseket tobb architekturdra is elvégeztiik, amik koziil az ARM architekturdn a legmagasabb kédcsokkenés
61.53% volt, az atlagos pedig 2.58%-os az egyszer(i -Os’ kapcsoloval Osszevetve, ami jelentds eredménynek te-
kinthetd. Néhdny kiemelt mérési eredményt szemléltet a 4.2. tablazat.

Thttp://www.cs.arizona.edu/projects/squeeze/

11

v
' D G
NE =
. . f\ é A E E A E
A C F F
M B D B B B B B
E I F E [K C E H C ret
R e - e e o A e
i : i 1:
(a) (b) (c) (d)

4.3. abra. Basic block-ok kozos sziilékkel és gyerekekkel a lokalis faktoring (a) el6tt és (b) utan. Kilonbo-
28 hosszlsagu, szekvencialis absztrakciéval kiszervezhet6 kédrészletek (c) a leghosszabb kédrészlet kieme-
lésével (d). Azonos betiik, azonos utasitassorozatokat jeldInek.

i686-elf arm-elf
Kapcsolok . ;
méret avg max méret avg max
(byte) (%) (%) (byte) (%) (%)
-Os 2900177 3636462
-Os -ftree-1fact -frtl-Ifact 2892432 0.27 6.13 3627070 0.26 10.29
-Os -frtl-Ifact 2894531 0.19 4.31 3632454 0.11 4.35
-Os -ftree-1fact 2897382 o0.10 §5.75 3630378 0.17 10.34
-Os -ftree-seqabstr -frtl-seqabstr 2855823 1.53 36.81 3580846 1.53 56.92
-Os -frtl-seqabstr 2856816 1.50 30.67 3599862 1.01 42.4§
-Os -ftree-seqabstr 2888833 0.39 30.60 3610002 0.73 44.72
-Os -ﬁpa—procabstr 2886632 0.47 §6.32 3599042 1.03 59.29
Osszes 2838348 2.13 §7.0§ 3542506 2.§8 61.53

4.2. tablazat. Atlagos és maximalis kédméret csokkenés adatok i686-elf és arm-elf rendszerekre. Méret a
binarisok 6sszmérete byteban megadva; avg a szdmitott atlagos méret csokkenés a '-Os’-hez viszonyitva;
max pedig a legnagyobb kddméret csokkenés, amit egy objektumon elértiink szazalékban kifejezve.

4.2.1. SAJAT HOZZAJARULAS

Az algoritmusok a kordbban publikalt [9] médszer alapjén keriiltek megtervezésre. A sinking-hoisting és a sequ-
ence abstraction algoritmusok implementéldsa nagyrészt a szerz8 munkéja volt, kézdsen Loki Géborral, a [22]
publikdcié mésodik szerzéjével. A bemutatott mérések elvégzése és az eredmények kiértékelése a szerzé sajat
hozzdjaruldsinak eredménye. A szerz6 hozzdjarulasa tovibba az a kezdeti munka, aminek soran a Columbus
ASG-je keriil 4talakitisra a GCC belsé reprezentécidjara [19].

5. OSSZEFOGLALAS

JELEN MUNKA KULONBOZO TECHNIKAKAT MUTAT BE ADAT-INTENZIV RENDSZEREK ELEMZESERE ES AUTOMA-
TIKUS TRANSZFORMACIOK VEGREHAJTASARA. Ebben a fejezetben a kordbban feltett kutatdsi kérdésekre adunk
vélaszokat az eredményeinket 6sszefoglalva.

12

5.1. EREDMENYEK OSSZEFOGLALASA

Osszességében, az eredmények azt mutatjék, hogy statikus kédelemzé modszerekkel hatékonyan lehet témo-
gatni az adat-intenziv rendszerek fejlesztési folyamatait. Egy alkalmazds legjobb dokumentacidja a forrdskod, a
forraskodot elemezve ezért olyan implicit informdacidt nyerhetiink a rendszerrél, ami mds méodszerek szaméra
rejtett maradhat. Megmutatjuk, hogy az adatelérések (pl. bedgyazott SQL utasitisokon keresztiil) ilyen rejtett
tuggéségeket hordoznak, ugyanakkor j6 forrasai architekturalis kapcsolatoknak. A bemutatott médszerek alkal-
mazhatéak Magic-re is, mint egy speciélis negyedik generdcios programozasi nyelvre. Mindemellett, egy statikus
elemzési modszert mutatunk be felhaszndlé input okozta biztonsagi hibak felderitésére, és optimalizacios elja-
rasokat ismertetiink a kodméret csokkentésére.

Fontosnak tartjuk megjegyezni, hogy a bemutatott eredmények altalaban valds, ipari motivacids igényt elé-
gitenek ki, aminek eredményeként kidolgozott moédszerek tesztelését is ipari kornyezetben végezhettiik el. A
kutatdsi munkdak eredményeire ezért a kiilsé hivatkozasok mellett Eurépai Uni6s tdmogatassal megvaldsuld, in-
novacios projektek is timaszkodnak. Emellett a Magic rendszereken elért eredmények tobb szakdolgozatnak és
TDK munkdnak az alapjat is adtik, amelyek nemzetkozi konferencidkon is bemutatasra kertiltek.

1) LEHETSEGES-E AUTOMATIKUS FORRASKOD ELEMZESI MODSZEREKKEL, ADATELERESEKET VIZSGALVA, IN-
FORMACIOT KINYERNI, AMI SEGITHET EGY ADAT-INTENZ{V RENDSZER ARCHITEKTURAJANAK FELTERKEPE-
ZESEBEN? Bemutattunk egy 4j médszert adat-intenziv rendszerek architekturalis kapcsolatainak kinyerésére
(CRUD kapcsolatok), ami az adateléréseket vizsgalja a bedgyazott SQL utasitasok elemzésével. Az Gtlet alapja,
hogy a program alkalmazds oldaldt és az adatbazist egyiittesen elemezziik, felderitve ezzel olyan fiiggéségeket,
amik adatbazis hasznélat miatt johetnek 1étre. Egy nagyméretd, pénziigyi rendszert vizsgalunk, amit ForrasSQL
nyelven fejlesztettek Transact SQL és MS SQL utasitdsokat bedgyazva a kddba. A kinyert kapcsolatokat a Sta-
tic Execute After/Before kapcsolatokkal vetjitk 6ssze, aminek az eredményeként azt tapasztaljuk, hogy a CRUD
kapcsolatok olyan fiiggésekre mutatnak rd, amiket mas médszerek nem ismernek fel. Ezt a médszert hasznaljuk
ezért egy kés6bbi tanulmany sordn is, ahol egy nagyméreti Oracle PL/SQL rendszer architektardjat térképezzik
tel.

A tanulmanyokbdl kidertil, hogy automatikus elemzési moédszerekkel vizsgalva az adateléréseket olyan hasz-
nos informdacidt nyerhetiink egy rendszerrdl, amit mas médszerekkel nem tudnédnk felderiteni. A technika alkal-
mazasa ezért javasolt lehet olyan elemzéseknél mint pl. a hatdsanalizis, architektidra visszatervezés vagy mind-
ségbiztositds.

2) ADAPTALHATO-E EGY HARMADIK GENERACIOS NYELVEKHEZ KIFEJLESZTETT AUTOMATIKUS ELEMZESI MOD-
SZER EGY NEGYEDIK GENERACIOS NYELVRE, MINT AMILYEN A MAGIC? AMENNYIBEN IGEN, UGY LEHETSEGES-E
STATIKUS KODELEMZESSEL TAMOGATNI EGY MAGIC ALKALMAZAS UJABB VERZIORA TORTEN® MIGRALASAT?
A disszertdcioban bemutatunk egy Gjszerti médszert Magic alkalmazésok statikus elemzésére. Ebben a médszer-
ben az alkalmazasfejleszté kornyezet mentését tekintjik az alkalmazds ‘forraskddjanak’ Ez a mentési dllomény
ugyan nem tekinthet6 a hagyomanyos értelemben vett forrdskédnak, mégis minden fontos informdciét tartal-
maz az alkalmazds felépitésér6l. Erre timaszkodva, egy teljes elemzé eszkozcsomagot fejlesztiink a Columbus
modszertanbdl kiindulva, amit célzottan C, C++ és Java nyelven fejlesztett alkalmazésok visszatervezésére ter-
veztek. Az ipari partneriink segitségével megmutatjuk, hogy a kifejlesztett eszkzcsomag jol hasznalhaté Magic
alkalmazdsok visszatervezéséhez.

Megmutatjuk, hogy az ismert komplexitas metrikak koziil a McCabe és a Halstead komplexitas metrikak sem
titkrozik a fejlesztok komplexitds elképzelését, ezért Magic-re egy 4j komplexitds metrikat javaslunk.

Aztis megmutatjuk, hogy statikus kédelemzéssel felfedezhetSek olyan kapcsolatok az alkalmazésban (pl. CRUD
relaciok, tablak kozotti kiilsé kules kapcsolatok), amik jelentésen segithetik egy Magic alkalmazés migralédsat egy
korédbbi verziordl egy Gjabb verziora.

13

3) HATEKONYAN HASZNALHATOAK-E A VEZERLESI ES ADATFOLYAM ELEMZESEK A FELHASZNALOI INPUT OKOZ-
TA BIZTONSAGI HIBAK FELDERITESEHEZ? Bemutatunk egy olyan elemzési modszert, ami a vezérlési és adat-
folyam elemzéseket felhasznaléi input okozta biztonsagi hibak felderitéséhez hasznélja, C nyelven irédott alkal-
mazdsokban. A médszer a kiilonb6z6 I/O miiveletekbdl szarmazé adatot kveti nyomon az adatfolyamban, és
jelez, ha a vezérlés olyan, hibdra érzékeny ponthoz jut, ahol nem lett leellendrizve korabban az kiilsé forrasbol
érkez6 adat. A mddszert GrammaTech CodeSurfer pluginként implementaljuk és nyilt forrdskodu rendszereken
teszteljiik. A kozel 200.000 kddsoros Pidginben és cyrus-imapd-ben is rimutatunk tényleges hibakra a segitsé-
gével.

4) MILYEN MERTEKBEN LEHET CSOKKENTENI KOD FAKTORING ALGORITMUSOK SEGITSEGEVEL EGY FORDITO
ALTAL ELOALLITOTT BINARISOK MERETET? Kod factoring algoritmusok csaladjaba tartozé lokalis faktoring
és sequence abstraction algoritmusokat implementilunk a GCC kiillonb6z6 optimalizacids szintjein, hogy azt
vizsgaljuk milyen kodméret csokkenés érhetd el az algoritmusok segitségével. Az algoritmusokat a GCC hiva-
talos, kddméret mérésre kialakitott tesztkdrnyezetén teszteljiik (Code-Size Benchmark Environment, CSiBE).
A méréseket tobb architekturara is elvégeztiik, amik koziil az ARM architektran a legmagasabb kodcsokkenés
61.53% volt, az atlagos pedig 2.58%-0s az egyszer(i -Os’ kapcsoldval Osszevetve, ami jelentés mértéka csokken-
tésnek tekinthetd.

KOSZONETNYILVANITAS

Mindenek el6tt szeretném megkdszonni témavezetémnek, Dr. Gyimothy Tibornak, az érdekes kutatdsi téma-
kat és célokat, a biztos hatteret és a vezetését éveken keresztiil. Kiilon koszonettel tartozok szerzétirsamnak,
Dr. Ferenc Rudolfnak, aki mint mentorom irdnyitotta a munkdamat és segitett az évek alatt. K6sz6n6m tovébba
David P. Curleynek a munka nyelvi helyességének ellenérzését és javitasat. Koszonettel tartozom még kolléga-
imnak és trsszerzéimnek, Spiros Mancoridisnak, Loki Gdbornak, Dr. Beszédes Arpadnak, Gergely Tamasnak,
Viddcs Laszlonak, Bakota Tibornak, Pantos Janosnak, Kakuja-T6th Gabriellanak, Fischer Ferencnek, Hegediis
Péternek, Jasz Juditnak, Ségor Zoltannak, Fiilop Lajos Jenének, Siket Istvannak, Siket Péternek, Kiss Akosnak,
Havasi Ferencnek, Fritsi Ddnielnek, Novdk Gdbornak és Dévai Richdrdnak. Koszonet tovabbé a tanszék minden
dolgozdjanak az évek sordn nyujtott timogatdsért.

A disszertaci6 egy fontos része foglalkozik a Magic programozasi nyelvvel. Ez a munka nem jéhetett volna
létre a SZEGED Szoftver Zrt. egyiittmikodése nélkiil. Kilon koszonom ezért a cég munkatarsainak az egyiitt-
miukodését, killonosen Kovacs Istvannak, Kocsis Ferencnek és Smohai Ferencnek.

Végiil, de nem utolsé sorban, k6szoném csalidomnak, sziileimnek és testvéreimnek, hogy mindenben tdmo-
gattak és biztattak a munkdm sordn.

Nagy Csaba, December 2013.

HivaATk0ZASOK

HIvATKOZASOK

[1] Huib van den Brink, Rob van der Leek, and Joost Visser. Quality assessment for embedded SQL. In
Proceedings of the Seventh IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM 2007), pages 163—170. IEEE Computer Society, 2007.

[2] Anthony Cleve. Program Analysis and Transformation for Data-Intensive System Evolution. PhD thesis,
University of Namur, October 2009.

[3] Anthony Cleve, Tom Mens, and Jean-Luc Hainaut. Data-intensive system evolution. IEEE Computer, 43
(8):110-112, August 2010.

14

(4]

(5]

Richédrd Dévai, Judit Jész, Csaba Nagy, and Rudolf Ferenc. Designing and implementing control flow graph
for magic 4th generation language. In Proceedings of the 13th Symposium on Programming Languages and
Software Tools (SPLST 2013), pages 200-214, Szeged, Hungary, August 26-27 2013.

Daniel Fritsi, Csaba Nagy, Rudolf Ferenc, and Tibor Gyiméthy. Alayoutindependent GUI test automation
tool for applications developed in Magic/uniPaaS. In Proceedings of the 12th Symposium on Programming
Languages and Software Tools (SPLST 2011), pages 248—259, Tallinn, Estonia, Oct 4-7 2011.

[6] Judit Jasz, Arpad Beszédes, Tibor Gyiméthy, and Vaclav Rajlich. StaticExecute After/Before as a Replace-

ment of Traditional Software Dependencies. In Proceedings of the 2008 IEEE International Conference on
Software Maintenance (ICSM 2008), pages 137—-146. IEEE Computer Society, 2008.

R. T. Kouzes, G. A. Anderson, S. T. Elbert, I Gorton, and D. K. Gracio. The changing paradigm of data-
intensive computing. IEEE Computer, 42(1):26-34, January 2009.

Kaiping Liu, Hee Beng Kuan Tan, and Xu Chen. Extraction of attribute dependency graph from database
applications. In Proceedings of the 2011 18th Asia-Pacific Software Engineering Conference, pages 138—145.
IEEE Computer Society, 2011.

Gabor Loki, Akos Kiss, Judit Jisz, and Arpad Beszédes. Code factoring in GCC. In Proceedings of the 2004
GCC Developers’ Summit, pages 7984, June 2004.

C.A. Mattmann, D.J. Crichton,].S. Hughes, S.C. Kelly, and M. Paul. Software architecture for large-scale,
distributed, data-intensive systems. In Proceedings of the Fourth Working IEEE/IFIP Conference on Software
Architecture (WICSA 2004), pages 255-264, 2004.

Chris Mattmann and Paul Ramirez. A comparison and evaluation of architecture recoveryin data-intensive
systems using focus. Technical report, Computer Science Department, University of Southern California,
2004.

Chris A. Mattmann, Daniel J. Crichton, Andrew F. Hart, Cameron Goodale, J.Steven Hughes, Sean Kelly,
Luca Cinquini, ThomasH. Painter, Joseph Lazio, Duane Waliser, Nenad Medvidovic, Jinwon Kim, and
Peter Lean. Architecting data-intensive software systems. In Handbook of Data Intensive Computing, pages
25—57. Springer Science+Business Media, 2011.

Gdabor Novak, Csaba Nagy, and Rudolf Ferenc. A regression test selection technique for Magic systems.
In Proceedings of the 13th Symposium on Programming Languages and Software Tools (SPLST 2013, pages
76-89, Szeged, Hungary, August 26-27 2013.

Z.Pawlak. Information systems theoretical foundations. Information Systems, 6(3):205 — 218, 1981.

R. Kelly Rainer and Casey G. Cegielski. Introduction to Information Systems: Enabling and Transforming
Business. John Wiley & Sons, Inc., 4 edition, January 11 2012.

H. Rottgering. Lofar, a new low frequency radio telescope. New Astronomy Reviews, 47(4-5, High-redshift
radio galaxies - past, present and future):405-409, Septepmber 2003.

A.Van Deursen and T. Kuipers. Rapid system understanding: Two COBOL case studies. In Proceedings of
the 6th International Workshop on Program Comprehension (IWPC 1998), page 90. IEEE Computer Society,

1998.

1§

FELHASZNALT PUBLIKACIOK

[18]

Daniel Fritsi, Csaba Nagy, Rudolf Ferenc, and Tibor Gyiméthy. A methodology and framework for au-
tomatic layout independent GUI testing of applications developed in Magic xpa. In Proceedings of the
13th International Conference on Computational Science and Its Applications - ICCSA 2013 - Part II, pages
513-528, Ho Chi Minh City, Vietnam, June 24-27 2013. Springer.

Csaba Nagy. Extension of GCC with a fully manageable reverse engineering front end. In Proceedings of
the 7th International Conference on Applied Informatics (ICAI 2007), January 28-31 2007. Eger, Hungary.

Csaba Nagy. Static analysis of data-intensive applications. In Proceedings of the 17th European Conference on
Software Maintenance and Reengineering (CSMR 2013). IEEE Computer Society, March 5-8 2013. Genova,
Italy.

Csaba Nagy and Spiros Mancoridis. Static security analysis based on input-related software faults. In
Proceedings of the 13th European Conference on Software Maintenance and Reengineering (CSMR 2009), pages
37-46, Fraunhofer IESE, Kaiserslautern, Germany, March 24-27 2009. IEEE Computer Society.

Csaba Nagy, Gébor Loki, Arpad Beszédes, and Tibor Gyiméthy. Code factoring in GCC on different
intermediate languages. ANNALES UNIVERSITATIS SCIENTIARUM BUDAPESTINENSIS DE RO-
LANDO EOTVOS NOMINATAE Sectio Computatorica - TOMUS XXX, pages 79-96, 2009.

Csaba Nagy, Janos Péntos, Tamas Gergely, and Arpdd Beszédes. Towards a safe method for computing
dependencies in database-intensive systems. In Proceedings of the 14th European Conference on Software
Maintenance and Reengineering (CSMR 2010), pages 166—175, Madrid, Spain, March 15-18 2010. IEEE
Computer Society.

Csaba Nagy, Lészl6 Vidacs, Rudolf Ferenc, Tibor Gyimoéthy, Ferenc Kocsis, and Istvan Kovacs. MAGIS-
TER: Quality assurance of Magic applications for software developers and end users. In Proceedings of the
26th IEEE International Conference on Software Maintenance (ICSM 2010), pages 1—6, Timisoara, Romania,
Sept 2010.

Csaba Nagy, Rudolf Ferenc, and Tibor Bakota. A true story of refactoring a large Oracle PL/SQL banking
system. In European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2011), Szeged, Hungary, Sept 5-9 2011.

Csaba Nagy, Laszl6 Vidacs, Rudolf Ferenc, Tibor Gyimoéthy, Ferenc Kocsis, and Istvan Kovacs. Comple-
xity measures in 4GL environment. In Proceedings of the 2011 International Conference on Computational
Science and Its Applications - Volume Part V,ICCSA'11, pages 293-309, Santander, Spain, June 20-23 2011.
Springer-Verlag.

Csaba Nagy, Laszl6 Vidacs, Rudolf Ferenc, Tibor Gyiméthy, Ferenc Kocsis, and Istvan Kovacs. Solutions
for reverse engineering 4GL applications, recovering the design of a logistical wholesale system. In Pro-
ceedings of the 15th European Conference on Software Maintenance and Reengineering (CSMR 2011), pages
343 —346, Oldenburg, Germany, March 1-4 2011. IEEE Computer Society.

16

	Bevezetés
	Örökölt, adat-intenzív rendszerek architektúrájának visszatervezése
	A Magic világa
	Biztonsági elemzés és optimalizálás
	Összefoglalás

