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1. Bevezetés

Napjaink információs rendszerei már nem egyszerű alkalmazások, amikkel egy-egy fontosabb
feladatot oldunk meg. Ma már hatalmas méretű, összetett architektúrájú rendszerekkel dolgozunk, amik
részei a mindennapjainknak, ott vannak a táblagépeinken, okos telefonjainkon, mindenhol. Ezeknek a rendsze-
reknek a célja, hogy a helyes információt a megfelelő embereknek pontos időben és formában juttassák el [15].

Pawlak 1981-benmegjelent cikkében ír a Varsói Egyetem Információs RendszerekMunkacsoportjának ered-
ményeiről [14]. Tanulmányában bemutat egy információs rendszert, ami egy könyvtári rendszer és mintegy
50.000 dokumentumot kezel. Azóta az információs rendszerek rengeteget fejlődtek, és a kezelt adatmennyiség
is jelentősenmegnőtt. Ismerünk olyan rendszereket a rádiócsillagászatból, amik napi 138 PB (peta byte) adatot
kezelnek [16]. Jól ismert a részecskefizika világából a CERN 2008-ban átadott Large Hadron Collider részecs-
kegyorsítója is, ami másodpercenként 2 PB adatot kezel [7]. Az ilyen rendszereket a jelentős adatterhelés miatt
adat-intenzív rendszereknek nevezzük [2, 10–12].

A hatalmas mennyiségű adat, amit az adat-intenzív rendszerek kezelnek, általában egy adatbázisban kerül el-
tárolásra, amit egy adatbázis-kezelő rendszer (database management system, DBMS) kezel valamilyen adat séma
szerint rendszerezve. Relációs DBMS-ekben (RDBMS) ez a séma táblákat tartalmaz, amik általában egy entitást
jelölnek különböző tulajdonságokkal, amiket a tábla oszlopai tárolnak.

Az ilyen rendszerek karbantartásának támogatására többmódszert is kidolgoztak mind a forráskód, mind pe-
dig az adatbázis elemzésének segítségével is. Kevés olyan módszer van viszont, ami valóban figyelembe veszi
az adat-intenzív rendszerek sajátosságait (pl. adatelérésen keresztüli függőségek vizsgálata). Ahogy Cleve et al.
megjegyzik azt az adat-intenzív rendszerek evolúcióját vizsgáló tanulmányukban [3]:

”
mind a szoftver, mind az

adatbázis rendszerek fejlesztői keresik a megoldásokat a szoftver evolúció problémáira. Mégis, meglepően kevés kutató
munka vizsgálja a két területet együttesen, ahol a szoftver és az adat találkozik.”.

1.1. Tézis célkitűzései

Jelen tanulmányban adat-intenzív rendszerek visszatervezésimódszereit vizsgáljuk statikus elemzésimódszerek-
kel. Olyan módszerekkel foglalkozunk, amik a Cleve et al. által is felvetett módon, a szoftver és az adat kompo-
nensek együttes vizsgálatával nyernek ki rejtett kapcsolatokat adat-intenzív rendszerekből. A kinyert információ
segítségével megoldást keresünk adat-intenzív rendszerek architektúrájának feltérképezésére; egy speciális ne-
gyedik generációs nyelvben, Magicben fejlesztett alkalmazások minőségbiztosítására; input adat okozta bizton-
sági hibák felderítésére; valamint információs rendszerek optimalizálására lokális refaktoring műveletek segít-
ségével. A bemutatott módszerekkel nagyméretű, ipari rendszereket elemzünk, egyebek mellett egy több, mint
4 millió soros banki rendszer esettanulmányát is bemutatjuk, ahol a rendszer architektúra térképét állítjuk elő
automatikus eszközökkel, illetve minőségproblémákat tárunk fel benne.

Az alábbi kutatási kérdésekre keressük a válaszokat:

1. Lehetséges-e automatikus forráskód elemzésimódszerekkel, adateléréseket vizsgálva, információt kinyer-
ni, ami segíthet egy adat-intenzív rendszer architektúrájának feltérképezésében?

2. Adaptálható-e egy harmadik generációs nyelvekhez kifejlesztett automatikus elemzési módszer egy ne-
gyedik generációs nyelvre, mint amilyen a Magic? Amennyiben igen, úgy lehetséges-e statikus kódelem-
zéssel támogatni egy Magic alkalmazás újabb verzióra történő migrálását?

3. Hatékonyan használhatóak-e a vezérlési folyam és adatfolyam elemzések a felhasználói input okozta biz-
tonsági hibák felderítéséhez?

4. Milyenmértékben lehetséges csökkenteni kód faktoring algoritmusok segítségével egy fordító által előál-
lított binárisok méretét?
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Az elért eredményeinket hat tézispontban foglaljuk össze, amelyek az alábbiak:

I Örökölt, adat-intenzív rendszerek architektúrájának visszatervezése

(a) Architekturális függőségek feltérképezése adat-intenzív rendszerekben

(b) Nagyméretű, örökölt rendszerek architekturális problémáinak vizsgálata

II A Magic világa

(a) Magic alkalmazások visszatervezését támogató elemzőcsomag kifejlesztése

(b) Új komplexitás metrikák definiálása és kiértékelése Magic rendszereken

III Biztonsági elemzés és optimalizálás

(a) Felhasználói input okozta biztonsági hibák felderítése

(b) Információs rendszerek optimalizálása: kód faktoring a GCC fordítóban

1.2. Publikációk

A tézisben felhasznált publikációk jelentős része a szakma rangos, nemzetközi konferenciáinak kiadványaiban,
valamint folyóirataiban került közlésre. A tézispontok és a publikációk kapcsolatát összegzi az 1.1. táblázat.

Tézispont Publikációk

I/a. Architekturális függőségek feltérképezése adat-intenzív rendszerekben [23]
I/b. Nagyméretű, örökölt rendszerek architekturális problémáinak vizsgálata [20, 25]

II/a. Magic alkalmazások visszatervezését támogató elemzőcsomag kifejlesztése [18, 24, 27]
II/b. Új komplexitás metrikák definiálása és kiértékelése Magic rendszereken [26]

III/a. Felhasználói input okozta biztonsági hibák felderítése [21]
III/b. Információs rendszerek optimalizálása: kód faktoring a GCC fordítóban [19, 22]

1.1. táblázat. Tézispontok és a publikációk kapcsolatának összegzése.

2. Örökölt, adat-intenzív rendszerek architektúrájának visszatervezése

Ebbenafejezetbenolyanelemzésimódszereket ismertetünk, amikazthasználjákkiadat-intenzív
rendszerekben, hogy az architektúra középpontjában egy adatbázis kezelő rendszer van.

Először ismertetjük azt amódszert, amivel forráskódelemekés adat táblákközötti kapcsolatokat (Create-Retrieve-
Update-Delete,CRUD függőségek) térképezünk fel beágyazottSQLutasítások elemzésével. A kapcsolatok tanul-
mányozásával biztonságos relációkat keresünk, pl. hatásanalízis vagy architektúra rekonstrukció céljából. Ezt
követően egy esettanulmányban szemléltetjük, hogy a kinyert kapcsolatok hogyan használhatók egy rendszer
architektúrájának feltérképezésére. A tanulmányban egy nagyméretű, örökölt Oracle PL/SQL rendszert elem-
zünk először bottom-upmegközelítésben a kapcsolatok kinyerésével, majd top-downmegközelítésben a fejlesz-
tőket interjúztatva.
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2.1. Architekturális függőségek feltérképezése adat-intenzív rendszerekben

2.1.1. Beágyazott SQL utasítások kinyerése a forráskódból

Egy RDBMS-sel általában SQL utasításokkal kommunikálunk az alkalmazás oldaláról, egy library segítségével,
mint például a JDBC.Napjainkban azORM technológiák (pl. Hibernate) is egyre elterjedtebbek, alacsony szin-
ten viszont ezek is SQL lekérdezéseket küldenek az adatbázis felé. Sok visszatervezési módszer épít ezért a for-
ráskódba beágyazott SQL utasítások kinyerésére.

Tanulmányunkban [24] egy olyan módszert ismertetünk, aminek a segítségével egy speciális procedurális
nyelvből, ForrásSQL-ből nyerhetünk ki beágyazott SQL utasításokat. Ez a programozási nyelv, olyan informá-
ciós rendszerek fejlesztéséhez lett kifejlesztve, amik szoros kapcsolatban állnak egy adatbázissal. A forráskódban
ezért gyakran fordulnak elő beágyazott SQL utasítások, amik adott eljárások segítségével küldhetőek el az adat-
bázisnak, hasonlóan, mint ahogy a JDBC esetében is. Az általunk bemutatott módszer ezért könnyen általáno-
sítható lehet más procedurális nyelvekre is, annak ellenére, hogy ForrásSQL-re lett kifejlesztve.

A bemutatott módszer azon az egyszerű megfigyelésen alapszik, hogy azok az utasításrészletek, amik a string
műveletekkel összeállított SQL utasításokban nem ismerhetőek fel, egyszerűen helyettesíthetőek a fel nem is-
mert utasításrészletet tartalmazó változó nevével. Ha például a beágyazott utasítás valamely részletét a name
változóból kapjuk meg, akkor az utasításban a változó helyén ‘@@name@@’ string kerül behelyettesítésre. Az
általunk kifejlesztett SQL parser az ilyen utasításrészleteket speciális azonosítókként kezeli, biztosítva ezzel az
SQL utasítás szintaktikai elemzését. Egy ilyen kinyert SQL utasításra látható egy példa a 2.1. ábrán.

Ennek az egyszerű ötletnek a segítségével beazonosítjuk azokat az utasításokat a forráskódban, ahol SQL uta-
sítást küldenek az adatbázis felé, és megpróbáljuk minél hatékonyabban felépíteni az ott beágyazott utasítást.
Azoknak a változóknak a helyén, amiknek a tartalmát nem tudjuk kinyerni, a korábban ismertetett behelyettesí-
tést alkalmazzuk. Valahányszor az SQL elemző számára elemezhető utasítást kapunk, az a módszernek köszön-
hetően meg fogja őrizni az eredeti utasítás fő tulajdonságait (utasítás típusa, elért táblák, oszlopok).

name=readString();
sql="SELECT firstname , lastname " +

"FROM customers " +
"WHERE firstname " +
"LIKE('%" + name + "%')";

executeQuery(sql);

SELECT firstname , lastname
FROM customers
WHERE firstname

LIKE('%@@name@@%');

(a) (b)

2.1. ábra. Egy minta kódrészlet (a) egy beágyazott SQL utasításról és (b) a kinyert SQL utasításról, ami-
ben a LIKE paramétere egy változó helyettesítéséből származik.

ForrásSQL esetében azt figyeltük meg, hogy a fejlesztők szeretik az adatbázisnak küldendő utasítást az elkül-
dés helyéhez közel összeállítani. A módszerünk ezt kihasználva, először megpróbálja a változók értékét megha-
tározni a korábbi értékadásokon keresztül, vissza-vissza lépve a vezérlési folyamban. Amennyiben nem sikerül
az értéket meghatározni, a változó nevét a korábban ismertetett módon helyettesíti.

A módszer előnye, hogy kis számításigénnyel implementálható. Persze számos olyan eset előfordulhat, ahol
összetettebb módszerrel a beágyazott SQL utasítás pontosabban kinyerhető lenne. Egy ForrásSQL rendszeren
vizsgálvamégis nagyonmeggyőző eredményt értünk el: a kódban összesen 7, 434 ponton küldtek SQLutasítást
az adatbázis felé, amiből 6, 499 SQL utasítást sikerült feldolgozni, 87%-ban kinyerve ezzel a beágyazott SQL
utasításokat.
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2.1.2. Adateléréseken keresztül fellépő függőségek adat-intenzív rendszerekben

A beágyazott SQL utasítások segítségével, adateléréseken keresztül fellépő, rejtett kapcsolatokat (Create, Ret-
rieve, Update, Delete; röviden CRUD kapcsolatok) vizsgálunk, amihez egy ún. CRUD mátrixot állítunk elő. A
CRUDmátrixot korábban sikerrel használták a kód megértését, illetve minőségét vizsgáló elemzési módszerek-
ben [1, 17]. Mi a CRUD mátrixot forráskódelemek közötti kapcsolatok feltérképezéséhez használjuk [24]. A
mátrix egyébként szemléltethető egy gráffal is, amire egy minta látható a 2.2. ábrán.

CRUD
Procedure

Customers

NewCustomer CarRentalCRUD
Table

Rentals

CRUD Table

Cars CarCrash

Address 
Modification

CRUD
Procedure

CRUD
Procedure

CRUD
Procedure

CheckCustomer
Credit

CheckCar
Available

CRUD
Procedure

CRUD
Procedure

CRUD
Procedure

CRUD
Procedure CRUD

Procedure

SEA/SEB

SEA/SEB

SEA/SEB

2.2. ábra. CRUD és SEA/SEB kapcsolatok táblák és eljárások között.

A módszert egy ForrásSQL rendszer eljárásai és adattáblái közötti CRUD kapcsolatok feltérképezésével vizs-
gáljuk, majd vetjük össze SEA/SEB kapcsolatokkal [6]. A 2, 936 eljárást és 317 táblát tartalmazó rendszerben
megmutatjuk, hogy mind a CRUD, mind a SEA/SEB által kinyert kapcsolatok kiegészítik egymást, ezért olyan
elemzésekkor, amikor biztonságos módszerek kellenek (pl. hatásanalízis) mindkét kapcsolattípus használata
javasolt lehet.

2.1.3. Saját hozzájárulás

A bemutatott SQL kinyerési algoritmus és a CRUD kapcsolatok kinyerésének módszere, valamint az elemzés
végrehajtása és az eredmények kiértékelése a szerző saját hozzájárulása. A szerzőmunkájának nagy része továbbá
az elemzés alapjául szolgálóMS SQL és Transact SQL séma és nyelvi elemzőmegtervezése és kidolgozása [23].
A ForrásSQL kódbázis elemzéséhez a Columbus elemzőcsomag ForrásSQL elemzőjét használtuk, amit a szerző
egészített ki a SEA/SEB kapcsolatok számításáért felelős komponenssel. A tanulmány megjelenését követően
Liu et al. a módszert használva hasonló eljárást dolgoztak ki PHP rendszerekre [8].

2.2. Nagyméretű, örökölt rendszerek architekturális problémáinak vizsgálata

Egyik ipari partnerünk azzal keresettmegminket, hogy segítsünk nekik a nagyméretű adatbázis rendszerük kar-
bantartási problémáiban. A cégnél egy Oracle PL/SQL rendszert tartottak karban, ami az évek alatt egy több,
mint 4.1 millió soros adatbázis dumppal (csak a nem-üres és nem-komment, adatbeszúrásokat nem tartalmazó
sorokat számítva) rendelkező rendszerré nőtt.

A rendszerről először egy architektúra térképet készítettünk. A fejlesztőkel folytatott interjúk során beazono-
sítottunk felsőszintű komponenseket és közöttük lévő kapcsolatokat, majd az alacsony szinten, forráskódelem-
zéssel kinyert kapcsolatokat emeltük fel a komponensek szintjére. A végeredményben előálló, a komponensek
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2.3. ábra. Kapcsolatok egy nagy adat-intenzív rendszer felső szintű komponensei között. Az ábra jól mu-
tatja, hogy az évek során ad-hoc módon fejlődött rendszer architektúrája teljesen átláthatatlan; a 26 meg-
határozott komponens mindegyike szinte minden másikkal kapcsolatban áll. (A neveket szándékosan eltor-
zítottuk.)

kapcsolatát mutató architektúra diagramon jól látható, hogy a meghatározott 26 komponens között szinte min-
den mindennel kapcsolatban van, a rendszer architektúrája teljesen ad-hoc módon fejlődött az évek során. Az
elemzés egy másik eredményeként olyan adatbázis objektumokat azonosítottunk be, amelyeket már nem hasz-
náltak, vagy logikailag rossz komponensbe soroltak be.

A függőségek meghatározása segített továbbá egy olyan komponens eltávolításában, amit már törölni akartak
a rendszerből, mert azóta újraimplementálták Java nyelven. Az elemzés segítségével olyan kapcsolatokra mu-
tattunk rá, amiket még nem szüntettek meg a komponens eltávolításához. Az architekturális problémák mellett
statikus elemzőeszközökkel konkrét kódolási problémákat és copy&paste kódrészleteket beazonosítunk.

2.2.1. Saját hozzájárulás

Az Oracle PL/SQL rendszerek elemzéséhez a Columbus rendszert Oracle PL/SQL elemzővel kellett bővíte-
nünk. A szerző munkája volt meghatározó az Oracle PL/SQL séma és elemző kidolgozásában, az architektú-
ra térkép visszatervezési módszerének kidolgozásában, és a nem használt komponens kapcsolatait feltérképező
módszer kidolgozásában is. A szerző végezte el továbbá az esettanulmányban használt elemzéseket és interjúkat
a fejlesztőkkel. Az egyéb eredmények a társszerzőkkel végzett közös munka eredményei [20, 23].

3. AMagic világa

Ebben a fejezetben azt vizsgáljuk, hogyan adaptálható aColumbusmódszertanMagic-re, mint
egy speciális negyedik generációs programozási nyelvre. Egy teljes elemző csomag kifejlesztése volt
a célunk, amiMagic alkalmazásokminőségbiztosításamellett, a korábban ismertetett architekturális függőségek
kinyerésére is képes.

Ismertetjük, hogyan adaptáljuk a Columbus módszertant Magic nyelven fejlesztett alkalmazások elemzésé-
hez. Megmutatjuk, hogy a harmadik generációs nyelvekhez fejlesztett elemzési technikák (pl. minőségmérések,
architekturális információk kinyerése) 4GL környezetben is segítik a fejlesztők munkáját. A módszertan adap-
tálása közben szembesültünk azzal, hogy a fejlesztők nem ugyanazokat a nyelvi elemeket találják komplexnek,
mint amiket az adaptált metrikák mutatnak. Ezért egy új komplexitás metrika bevezetésére tett kísérletet is is-
mertetünk.
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3.1. Magic alkalmazások visszatervezését támogató elemzőcsomag kifejlesztése

A negyedik generációs nyelveket (4GL) gyakran nagyon magas szintű nyelveknek is hívják. A fejlesztők, akik
ilyen nyelven fejlesztenek, nem írnak a hagyományos értelemben vett forráskódot, hanem egy magasabb abszt-
rakciós szinten, gyakran egy alkalmazás generátorban állítanak össze egy programot.

AMagic egy tipikus 4GL, amit aMagic SoftwareEnterprises vezetettbe a 80-as évek elején,mint egy innovatív
technológiát, ahol egy meta-model segítségével lehet alkalmazást készíteni. Üzleti alkalmazások fejlesztéséhez
tervezték, amiknek a fejlesztése erősen adatbázis központú. Ezzel együtt a nyelv legtöbb eleme is adat entitások-
hoz kapcsolódik: egy adattáblamezői közvetlenül változókon keresztül érhetőek el, amiket task-ok kérdeznek le
vagy módosítanak. Emiatt az adat-központúság miatt a Magic alkalmazások is adat-intenzív rendszerek.

Sample 
project

MagicAnalyzer

Project.msi

Magic2Metrics

MagicCheckGEN

MagicDuplicate
CodeFinder

Project metrics

Rule violations

Code clones

CMS

Database

Developer GUI

Admin GUI

BuildEngine

3.1. ábra. Columbus módszertan adaptálva Magic környezetben.

Egy ipari partnerünkkel, a SZEGED Szoftver Zrt.-vel, közösen azt kutattuk, hogy a Columbus módszertan
adaptálható-e Magic alkalmazások visszatervezésére. A célunk az volt, hogy Magic rendszerek minőségbiztosí-
tására [24], valamint migrálásának támogatására adjunk statikus elemzéssel automatikus megoldásokat [27]. A
teljes Columbusmódszertant implementáltukMagic rendszerekre a nyelvi elemzéstől, a metrikák számításán át
a kódolási problémák és architekturális nézetek kinyeréséig (3.1. ábra).

Metrika Érték

Programok száma 2 761
Logikai sorok száma 305 064
Összes Task száma 14 501
Összes Adattábla száma 786

3.1. táblázat. Elemzett Magic rendszer főbb metrikái.

A módszereket sikeresen adaptáltuk, a folyamat közben viszont az alábbiakat figyeltük meg: (1) az adaptált
minőségmutatókat óvatosan kell kezelni, a tipikusan használt méret és komplexitás metrikákat is máshogy ér-
telmezik a fejlesztők; (2) a fejlesztői környezet olyan információt is eltárol az alkalmazásról, amit 3GL nyelvek
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3.2. ábra. A Taskok eloszlása a logikai sorok száma alapján.

3.3. ábra. Menü elérésékkel bővített program hívások.

esetében csak nagyon nehezen, vagy egyáltalán nem lehetne kinyerni. Ilyen információ például a task-ok tábla-
elérése, ami közvetlen lekérdezhető a fejlesztői környezet mentéseiből.

Az ipari partnerünknek köszönhetően az adaptált eszközöket valós, ipari környezetben tesztelhettük és vali-
dálhattuk. Mi több, első kézből kaphattunk visszajelzéseket tapasztalt Magic fejlesztőktől. A 3.1 táblázat a teszt-
rendszer főmetrikáit szemlélteti, a 3.2. és a 3.3. ábra pedig rendre ametrikák eloszlását, illetve egy architekturális
nézetet szemléltetnek.

A kifejlesztett elemző csomag jó alapját adta további kutatásoknak is, egy tanulmányban [18] például a Ma-
gic alkalmazások layout-független automatikus UI tesztelésére dolgozunk ki egy módszert, kihasználva, hogy az
alkalmazás grafikus felületéről is tárol a Magic adatokat (pl. ablakok és rajtuk lévő control-ok pozíciói).
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3.1.1. Saját hozzájárulás

A szerző munkája meghatározó volt a kifejlesztett eszközök megtervezésében és implementálásában is. Bár a
Magic nyelvi feldolgozóját a SZEGED Szoftver Zrt. munkatársai fejlesztették, a szerző tervezte a Magic sémát
és implementálta az azt kezelő API-t. A szerző definiálta a Magic-re a metrikákat illetve a kinyert architektu-
rális nézeteket. A kódolási szabálysértések és azok tesztelése a Magic fejlesztőkkel közösen történt. A szerző
tervezte továbbá a Magic alkalmazások layout-független automatikus UI teszteléséért felelős alkalmazást, amit
egy kapcsolódó tanulmányban mutatunk be [18]. Megjegyezzük, hogy az eredmények számos további kutató
munkának adtak alapot. Az eredményekre támaszkodnak hallgatói szakdolgozatok, TDK munkák, valamint tu-
dományos konferenciákon előadott munkák is [4, 5, 13]; mindemellett több, az Európai Unió támogatásával
megvalósuló innovációs projekt elméleti alapját is adja [24, 27].

3.2. Új komplexitás metrikák definiálása és kiértékelése Magic rendszereken

AMagic alkalmazásokbelső szerkezetének leírása közben több, 3GLmetrikák adaptálásávalmérhető tulajdonsá-
got is sikerült meghatározni (pl. méret alapú metrikák, csatolás metrikák, komplexitás). A legnagyobb kihívást
a komplexitás metrika definiálása jelentette, ugyanis az első elemzési eredményeket megmutatva a fejlesztők-
nek, azt a visszajelzést kaptuk, hogy a komplexnek ítélt kódelemek szerintük nem komplexek. A metrikákat
módosítottuk a fejlesztők visszajelzései alapján, és egy kísérletben összevetettük az összes kidolgozott metrikát
a tapasztalt Magic fejlesztők véleményével.

Először a 3GL nyelvekből jól ismert komplexitás metrikákat adaptáltuk (McCabe és Halstead komplexitás),
majd a fejlesztők visszajelzése alapján a McCabe komplexitást módosítottuk a 3.4. ábrán látható módon. A 3.5.
ábra a kísérletben használt Magic programok egy rangsorolását mutatja a komplexitás mutatóik alapján. EC
(Experiment Complexity) mutatja a fejlesztők átlagolt rangsorolását,McCC a módosított ciklomatikus komp-
lexitást, aHPV ésHEmetrikák pedig a Halstead komplexitás metrikák.

McCC(LU) = Number of decision points in LU+ 1
WLUT(T) =

∑
LU∈T

McCC(LU)

McCC (LU) = Number of decision points in LU +∑
TC∈LU

McCC (TC) + 1

McCC (T) =
∑

LU∈T
McCC (LU)

T: Task a Projektben

LU: a Task egy Logic Unit-ja

TC: LU-ból hívott Task

3.4. ábra. Logic Unit-ra adaptált ciklomatikus komplexitás (McCC), Task-ra adaptált ciklomatikus komp-
lexitás (WLUT), módosított ciklomatikus komplexitás (McCC ).

A fejlesztőkkel végzett kísérlet során úgy találtuk, hogy nem korrelál egymással a kezdeti adaptált McCabe
komplexitás mutatónk és a fejlesztők rangsorolása, ugyanakkor erős a kapcsolat a módosított McCabe komple-
xitás és a fejlesztők, valamint a Halstead komplexitás és a fejlesztők rangsorolása között.
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3.5. ábra. A fejlesztők rangsorolása (EC értékek) összehasonlítása a metrikák szerinti rangsorolással.
(Task-ok ciklomatikus komplexitása (WLUT), módosított ciklomatikus komplexitás (McCC ), Halstead
komplexitások (Program Volume, HPV; Effort to implement, HE).

3.2.1. Saját hozzájárulás

A szerzőmunkája voltmeghatározó ametrikákdefiniálásban és a fejlesztőkkel végzettkísérlet végrehajtásában. A
metrikák implementálása és a végeredmények kiértékelése a kapcsolódó cikk társszerzőinek közösmunkájaként
történt [26]. A módosított komplexitás metrika definícióját fontos eredménynek tekintjük, hiszen hasonló, a
fejlesztők komplexitás elképzelését megfelelően tükröző mutatót még nem dolgoztak ki Magic rendszerekre.

4. Biztonsági elemzés és optimalizálás

Ebben a fejezetben biztonsági elemzésre és optimalizálásra kidolgozottmódszereket ismerte-
tünk. Ezek a technikák általánosabbak a korábban bemutatottaknál abban az értelemben, hogy nem függnek
egy adatbázis-központú architektúrától.

Először egy statikus elemzési módszert ismertetünk olyan alkalmazásokra, amik külső forrásokból kapott (pl.
felhasználó, I/O műveletek) adattal dolgoznak. Ezt követően lokális refaktoring algoritmusok hatékonyságát
vizsgáljuk C, C++ rendszereken. Az algoritmusokat a GCC fordító különböző, belső reprezentációs szintjein
implementáltuk, és azt mérjük, melyik szinten, milyen százalékos kódméret csökkenés érhető el a segítségükkel.

4.1. Felhasználói input okozta biztonsági hibák felderítése

A bemutatottmódszerben [21] a forráskódnak arra a részére korlátozzuk az elemzést, ami a felhasználói inputtól
függ. Ez az a kódrészlet, ami feldolgozza a felhasználótól kapott adatot, és ami ha hibát tartalmaz, akkor az egy
támadó által könnyen kihasználható. Az út, amit az inputként kapott adat bejár, adatfolyam elemzéssel nyomon
követhető, így az érintett kódrészlet is meghatározható. Hibák természetesen bárhol előfordulhatnak a kódban,
de amik ebben a kódrészletben helyezkednek el, azok különösen veszélyes biztonsági hibákat rejthetnek.

A bemutatott módszer fő lépései az alábbiak:

1. Megkeressük azokat a helyeket a forráskódban, ahol I/O műveletekkel adatot olvasunk be. Ezek a helyek
lesznek az ún. input pontok.

2. Meghatározzuk azokat a kódrészleteket, amik az input pontoktól függnek.

3. Metrikák segítségével meghatározzuk az input pontoktól függő, veszélyes metódusokat.
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4.1. ábra. A módszer főbb lépéseinek áttekintése.

Név Előfordulás

read() 55
fread() 12
fgets() 10
gg_read() 9
gethostname() 6
getpwuid() 2
fscanf() 1
getenv() 1
getpass() 1
char *argv[] 1

Függvény Sorok száma Lefedettség (%)

yahoo_roomlist_destroy 12 83.33
aim_info_free 13 84.62
s5_sendconnect 22 77.27
purple_ntlm_gen_type1 35 77.14
gtk_imhtml_is_tag 91 76.92
jabber_buddy_resource_free 25 72.00
peer_oft_checksum_destroy 8 75.00
qq_get_conn_info 12 75.00
_copy_field 8 75.00
qq_group_free 8 75.00

(a) (b)

4.1. táblázat. A Pidginben előforduló (a) input műveletek, (b) valamint a tíz legnagyobb input lefedett-
séggel rendelkező függvény.

4. Automatikus hibakereső algoritmusokkal hibás kódrészleteket keresünk.

A módszert nyílt forráskódú rendszereken teszteljük, és bemutatunk egy esettanulmányt is, amiben a közis-
mert Pidgin chat klienst elemezzük. A módszerrel Pidginben is és a többi elemzett rendszerben is valós hibákat
találtunk. A bemutatott módszer abban az értelemben is új, hogy a konkrét hibafelderítés mellett metrikákat
definiál, amik rossz tervezésre vagy hibákra különösen érzékeny függvényekremutatnak rá. A Pidgin tanulmány
jól demonstrálja a bemutatott módszer hatékonyságát egy közepes méretűnek mondható rendszeren, ami 7173
függvényt és 229825 kódsort tartalmat. Néhány mért adatot mutat be a 4.1. táblázat. A mérések eredménye azt
mutatja, hogy a rendszernek alig több, mint 10%-a érintett a felhasználói inputban.

4.1.1. Saját hozzájárulás

A C és C++ forráskód elemzéséhez a GrammTech Inc. CodeSurfer eszközét használtuk. Az eszközhöz a szerző
implementálta azt a plugint, amivel a bemutatott algoritmust teszteltük. A tesztelést is és az eredmények kiérté-
kelését is a szerző végezte el. A bemutatott eredményeket fontos eredményeknek tekintjük a statikus forráskód-
elemzés biztonsággal foglalkozó területén, ahogy a kapcsolódó cikkre [21] több külső hivatkozás is található.
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4.2. Információs rendszerek optimalizálása: kód faktoring a GCC fordítóban

Ebben a részben új optimalizációs algoritmusokat mutatunk be, amiket a GCC fordító különböző belső repre-
zentációs szintjein implementáltunk. Az algoritmusok úgynevezett kód faktoring algoritmusok, optimalizációs
technológiáknak egy olyan családja, amiket kódméret csökkentésre dolgoztak ki. A fejlesztők már korábban fel-
ismerték a lehetőségeket ezekben az algoritmusokban, ahogyan már más eszközökben implementálták is őket
(pl. a The Squeeze Project’¹ az egyik első ilyen projekt volt).

4.2. ábra. Az implementált algoritmusok egy áttekintése.

Abemutatott algoritmusokat aGCCTree-SSA és RTL szintjein is implementáljuk, az ún. szekvenciális abszt-
rakcióra egy interprecodedurális változatot is bemutatunk. A 4.2. ábra ad egy áttekintést az algoritmusok sor-
rendjéről az egyes szinteken.

A lokális faktoring (local factoring vagy code hoisting/sinking) azon az egyszerű ötleten alapszik, hogy basic
blockokban, amiknek a futását közös basic blockok előzik meg, vagy éppen követik, gyakran előfordul, hogy
azonos utasítások találhatóak meg, amiket egyszerűen át lehetne mozgatni a közös szülőkbe vagy gyerekekbe.

Tekintsünk példának egy if utasítást, aminek a then és else ága is ugyanazokkal az utasításokkal kezdődik.
Ha a feltételvizsgálattól nem függnek, akkor ezeket az utasításokat könnyedén az if elé mozgathatjuk (ezt ne-
vezik code hoisting-nak), amivel fölösleges kód duplikációt szüntethetünk meg (4.3/a-b. ábra). Ez az alap ötlet
kiterjeszthető egyéb, összetettebb esetekre is, mint például a switch utasítás vagy a goto utasítás okozta elága-
zások a vezérlési folyamban. Sőt, az utasításokat nem csak az if elé mozgathatjuk a then vagy else ágakból,
hanem az if mögé is. Ezt nevezik code sinking-nek, amit csak akkor lehetmegtenni, ha amozgatott utasításoktól
nem függnek egyéb utasítások az eredeti blockon belül.
Szekvenciális kiszervezés (sequence abstraction) a lokális faktoringgal szemben egy bemenetű és egy kimenetű

(single-entry single-exit, SESE) kódrészletekkel foglalkozik, nem önálló utasításokkal. A technika lényege, hogy
egymás utáni, azonos utasítás sorozatokat találjunk, amiket eljárásokká lehet kiszervezni (4.3/c-d. ábra). Egy
új eljárás létrehozása után a kiszervezett kódrészletet egyszerűen az eljáráshívással helyettesítjük. A módszer
hasonlóan alkalmazható (multiple-entry single-exit, MESE) kódrészletek esetében is.

Az algoritmusok implementációjának helyességét és a kódméret csökkentésének hatékonyságát a GCC hi-
vatalos, kódméret mérésre kialakított tesztkörnyezetén mértük (Code-Size Benchmark Environment, CSiBE). A
méréseket több architektúrára is elvégeztük, amik közül az ARM architektúrán a legmagasabb kódcsökkenés
61.53% volt, az átlagos pedig 2.58%-os az egyszerű -Os’ kapcsolóval összevetve, ami jelentős eredménynek te-
kinthető. Néhány kiemelt mérési eredményt szemléltet a 4.2. táblázat.

¹http://www.cs.arizona.edu/projects/squeeze/
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4.3. ábra. Basic block-ok közös szülőkkel és gyerekekkel a lokális faktoring (a) előtt és (b) után. Különbö-
ző hosszúságú, szekvenciális absztrakcióval kiszervezhető kódrészletek (c) a leghosszabb kódrészlet kieme-
lésével (d). Azonos betűk, azonos utasítássorozatokat jelölnek.

Kapcsolók
i686-elf arm-elf

méret avg max méret avg max
(byte) (%) (%) (byte) (%) (%)

-Os 2900177 3636462

-Os -ftree-lfact -frtl-lfact 2892432 0.27 6.13 3627070 0.26 10.29
-Os -frtl-lfact 2894531 0.19 4.31 3632454 0.11 4.35
-Os -ftree-lfact 2897382 0.10 5.75 3630378 0.17 10.34

-Os -ftree-seqabstr -frtl-seqabstr 2855823 1.53 36.81 3580846 1.53 56.92
-Os -frtl-seqabstr 2856816 1.50 30.67 3599862 1.01 42.45
-Os -ftree-seqabstr 2888833 0.39 30.60 3610002 0.73 44.72

-Os -fipa-procabstr 2886632 0.47 56.32 3599042 1.03 59.29

Összes 2838348 2.13 57.05 3542506 2.58 61.53

4.2. táblázat. Átlagos és maximális kódméret csökkenés adatok i686-elf és arm-elf rendszerekre. Méret a
binárisok összmérete byteban megadva; avg a számított átlagos méret csökkenés a ’-Os’-hez viszonyítva;
max pedig a legnagyobb kódméret csökkenés, amit egy objektumon elértünk százalékban kifejezve.

4.2.1. Saját hozzájárulás

Az algoritmusok a korábban publikált [9]módszer alapján kerültekmegtervezésre. A sinking-hoisting és a sequ-
ence abstraction algoritmusok implementálása nagyrészt a szerző munkája volt, közösen Lóki Gáborral, a [22]
publikáció második szerzőjével. A bemutatott mérések elvégzése és az eredmények kiértékelése a szerző saját
hozzájárulásának eredménye. A szerző hozzájárulása továbbá az a kezdeti munka, aminek során a Columbus
ASG-je kerül átalakításra a GCC belső reprezentációjára [19].

5. Összefoglalás

Jelenmunka különböző technikákatmutat be adat-intenzív rendszerek elemzésére és automa-
tikus transzformációk végrehajtására. Ebben a fejezetben a korábban feltett kutatási kérdésekre adunk
válaszokat az eredményeinket összefoglalva.
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5.1. Eredmények összefoglalása

Összességében, az eredmények azt mutatják, hogy statikus kódelemző módszerekkel hatékonyan lehet támo-
gatni az adat-intenzív rendszerek fejlesztési folyamatait. Egy alkalmazás legjobb dokumentációja a forráskód, a
forráskódot elemezve ezért olyan implicit információt nyerhetünk a rendszerről, ami más módszerek számára
rejtett maradhat. Megmutatjuk, hogy az adatelérések (pl. beágyazott SQL utasításokon keresztül) ilyen rejtett
függőségeket hordoznak, ugyanakkor jó forrásai architekturális kapcsolatoknak. A bemutatottmódszerek alkal-
mazhatóakMagic-re is, mint egy speciális negyedik generációs programozási nyelvre. Mindemellett, egy statikus
elemzési módszert mutatunk be felhasználó input okozta biztonsági hibák felderítésére, és optimalizációs eljá-
rásokat ismertetünk a kódméret csökkentésére.

Fontosnak tartjuk megjegyezni, hogy a bemutatott eredmények általában valós, ipari motivációs igényt elé-
gítenek ki, aminek eredményeként kidolgozott módszerek tesztelését is ipari környezetben végezhettük el. A
kutatási munkák eredményeire ezért a külső hivatkozások mellett Európai Uniós támogatással megvalósuló, in-
novációs projektek is támaszkodnak. Emellett a Magic rendszereken elért eredmények több szakdolgozatnak és
TDK munkának az alapját is adták, amelyek nemzetközi konferenciákon is bemutatásra kerültek.

1) Lehetséges-e automatikus forráskód elemzési módszerekkel, adateléréseket vizsgálva, in-
formációt kinyerni, ami segíthet egy adat-intenzív rendszer architektúrájának feltérképe-
zésében? Bemutattunk egy új módszert adat-intenzív rendszerek architekturális kapcsolatainak kinyerésére
(CRUD kapcsolatok), ami az adateléréseket vizsgálja a beágyazott SQL utasítások elemzésével. Az ötlet alapja,
hogy a program alkalmazás oldalát és az adatbázist együttesen elemezzük, felderítve ezzel olyan függőségeket,
amik adatbázis használat miatt jöhetnek létre. Egy nagyméretű, pénzügyi rendszert vizsgálunk, amit ForrásSQL
nyelven fejlesztettek Transact SQL és MS SQL utasításokat beágyazva a kódba. A kinyert kapcsolatokat a Sta-
tic Execute After/Before kapcsolatokkal vetjük össze, aminek az eredményeként azt tapasztaljuk, hogy a CRUD
kapcsolatok olyan függésekre mutatnak rá, amiket más módszerek nem ismernek fel. Ezt a módszert használjuk
ezért egy későbbi tanulmány során is, ahol egynagyméretűOraclePL/SQL rendszer architektúráját térképezzük
fel.

A tanulmányokból kiderül, hogy automatikus elemzési módszerekkel vizsgálva az adateléréseket olyan hasz-
nos információt nyerhetünk egy rendszerről, amit másmódszerekkel nem tudnánk felderíteni. A technika alkal-
mazása ezért javasolt lehet olyan elemzéseknél mint pl. a hatásanalízis, architektúra visszatervezés vagy minő-
ségbiztosítás.

2)Adaptálható-eegyharmadikgenerációsnyelvekhezkifejlesztettautomatikuselemzésimód-
szer egynegyedikgenerációsnyelvre, mintamilyenaMagic? Amennyiben igen, úgylehetséges-e
statikus kódelemzéssel támogatni egy Magic alkalmazás újabb verzióra történő migrálását?
Adisszertációban bemutatunk egy újszerűmódszertMagic alkalmazások statikus elemzésére. Ebben amódszer-
ben az alkalmazásfejlesztő környezet mentését tekintjük az alkalmazás ‘forráskódjának’. Ez a mentési állomány
ugyan nem tekinthető a hagyományos értelemben vett forráskódnak, mégis minden fontos információt tartal-
maz az alkalmazás felépítéséről. Erre támaszkodva, egy teljes elemző eszközcsomagot fejlesztünk a Columbus
módszertanból kiindulva, amit célzottan C, C++ és Java nyelven fejlesztett alkalmazások visszatervezésére ter-
veztek. Az ipari partnerünk segítségével megmutatjuk, hogy a kifejlesztett eszközcsomag jól használható Magic
alkalmazások visszatervezéséhez.

Megmutatjuk, hogy az ismert komplexitás metrikák közül aMcCabe és aHalstead komplexitás metrikák sem
tükrözik a fejlesztők komplexitás elképzelését, ezért Magic-re egy új komplexitás metrikát javaslunk.

Azt ismegmutatjuk, hogy statikuskódelemzéssel felfedezhetőekolyankapcsolatokaz alkalmazásban(pl. CRUD
relációk, táblák közötti külső kulcs kapcsolatok), amik jelentősen segíthetik egyMagic alkalmazásmigrálását egy
korábbi verzióról egy újabb verzióra.
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3)Hatékonyanhasználhatóak-eavezérlési ésadatfolyamelemzésekafelhasználói inputokoz-
ta biztonsági hibák felderítéséhez? Bemutatunk egy olyan elemzési módszert, ami a vezérlési és adat-
folyam elemzéseket felhasználói input okozta biztonsági hibák felderítéséhez használja, C nyelven íródott alkal-
mazásokban. A módszer a különböző I/O műveletekből származó adatot követi nyomon az adatfolyamban, és
jelez, ha a vezérlés olyan, hibára érzékeny ponthoz jut, ahol nem lett leellenőrizve korábban az külső forrásból
érkező adat. AmódszertGrammaTechCodeSurfer pluginként implementáljuk és nyílt forráskódú rendszereken
teszteljük. A közel 200.000 kódsoros Pidginben és cyrus-imapd-ben is rámutatunk tényleges hibákra a segítsé-
gével.

4)Milyenmértékben lehet csökkenteni kód faktoring algoritmusok segítségével egy fordító
által előállított binárisok méretét? Kód factoring algoritmusok családjába tartozó lokális faktoring
és sequence abstraction algoritmusokat implementálunk a GCC különböző optimalizációs szintjein, hogy azt
vizsgáljuk milyen kódméret csökkenés érhető el az algoritmusok segítségével. Az algoritmusokat a GCC hiva-
talos, kódméret mérésre kialakított tesztkörnyezetén teszteljük (Code-Size Benchmark Environment, CSiBE).
A méréseket több architektúrára is elvégeztük, amik közül az ARM architektúrán a legmagasabb kódcsökkenés
61.53% volt, az átlagos pedig 2.58%-os az egyszerű -Os’ kapcsolóval összevetve, ami jelentős mértékű csökken-
tésnek tekinthető.
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