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3. LIST OF ABBREVIATIONS 

ATP adenosine triphosphate 

Na
+
-K

+
-ATPase Sodium-potassium adenosine triphosphatase 

SERCA sarco/endoplasmic reticulum Ca
2+

-ATPase 

Na
+
 sodium ion 

H
+
 proton 

HCO3
-
 bicarbonate 

Ca
2+

 calcium ion 

ROS     reactive oxygen species 

DNA deoxyribonucleic acid 

MMP     matrix metalloproteinase 

HMG-CoA reductase enzyme 3-hydroxy-3-methyl-glutaryl-Coenzyme A reductase 

enzyme 

GTPase    guanosine triphosphate phosphatase enzyme 

NO     nitrogen monoxide 

RPO     red palm oil 

SRC     standard rat chow 

iv     intravenous 

HPLC     high performance liquid chromatography 

KOH     potassium hydroxide 

ELISA     enzyme-linked immunosorbent assay 
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BPM     beats per minute 
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ERK     extracellular-signal-regulated kinases 
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4. INTRODUCTION 

4.1 Acute myocardial infarction and ischemia/reperfusion injury 

Ischemic heart diseases are currently the leading causes of morbidity and mortality in 

the world [1]. About 70% of the people with ischemic heart disease die due to an acute 

myocardial infarction [2]. From being an illness seen predominantly in developed countries 

including Hungary, myocardial infarction is now becoming increasingly more common in 

developing countries as well [3]. Myocardial infarction has several risk factors such as 

hyperlipidemia, atherosclerosis, obesity, diabetes mellitus, heart failure, high blood pressure, 

smoking as well as age and gender.  

Myocardial ischemia can be described as an imbalance between oxygen and nutrient 

supply and demand of myocardial tissue. Specifically, myocardial hypertrophy and 

accelerated heart rhythm can enhance oxygen demand, while supply is hampered by partial or 

complete coronary artery occlusion. Coronary occlusion usually is a result of a thrombotic 

event such as rupture of a vulnerable atherosclerotic plaque, formation of a thrombus on the 

erosion of the lesion, or embolization. The definitive therapy for myocardial infarction is still 

the rapid reclamation of blood flow to the ischemic zone of myocardium, as percutaneous 

coronary intervention or if it is not available, thrombolytic therapy. Early reperfusion at least 

partly saves ischemic myocardium; however, reperfusion exacerbates further complications 

such as diminished cardiac contractile function (stunning) and arrhythmias. Therefore the 

prevention of ischemic heart disease is very important to avoid the enormous clinical, 

economic, and social costs of cardiovascular disease. The mechanism, how ischemia damage 

myocardial tissue, is very complex and not exactly known in details. Decreased oxygen and 

nutrient supply cause energy depletion via decreasing the ATP production of the myocardium 

and thus impair transport function (e.g. ouabain-sensitive Na
+
, K

+
-ATPase, SERCA), function 

of protein kinase enzymes, protein synthesis, etc. Under ischemic conditions the decrease in 

pH stimulates Na
+
-H

+
 exchange and Na

+
-HCO3

-
 transporter, which leads to intracellular 

sodium accumulation and development of intracellular Ca
2+

 overload [4] which activates pro-

apoptotic signaling [5]. Energy depletion results opening of the mitochondrial permeability 

transition pore, mitochondrial swelling and apoptosis. Derangement of the mitochondrial 

electron transport system promotes the generation of reactive oxygen species (ROS) and 
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development of oxidative stress in the ischemic heart. ROS react directly with cellular lipids, 

proteins and DNA leading to cell injury/death [6]. ROS are able to influence extracellular 

matrix remodeling through the activation of matrix metalloproteinases (MMPs) [7]. Re-

establishment of adequate oxygen and nutrients can limit the size of the ultimate area of 

infarction. Paradoxically, restoration of normal blood flow to an area of ischemia results in a 

complex cascade of inflammation and further oxidative stress. Ischemia/reperfusion results in 

the loss of contractile function and produces myocardial damage as a consequence of cell 

death from both necrosis and apoptosis [8]. The process involves damage caused by ischemia 

and reperfusion is called ischemia/reperfusion injury. The development of effective 

cardioprotective agents and pretreatments against ischemia/reperfusion injury is of great 

importance and remains a foremost experimental goal of heart research [9].  

4.2 Hypercholesterolemia 

Incidence of metabolic syndrome including obesity, diabetes mellitus, high blood 

pressure, and dyslipidemia is constantly growing worldwide. These diseases especially 

hypercholesterolemia are a well-known risk factor for atherosclerosis and, therefore, coronary 

heart diseases, including myocardial infarction. Hypercholesterolemia usually results from 

nutritional factors such as a diet high in saturated fats, sucrose, and fructose combined with 

decreased physical activity, obesity, and underlying polygenic predispositions [10]. It is well 

known, that hypercholesterolemia increases the incidence of cardiovascular diseases through 

atherosclerosis; however, several studies have shown that hypercholesterolemia exerts direct 

myocardial effects independent of the development of atherosclerosis both in humans [11-13] 

and animal models [14-21]. Different animal models are used to study hypercholesterolemia. 

The human lipid profile and lipid profile of animal models are different and these differences 

allow studying different aspects of hypercholesterolemia. We used the hearts of male Wistar 

rats to study the direct cardiac effects of dietary cholesterol as rats show moderate increase in 

serum cholesterol level due to a high-cholesterol diet without substantial development of 

atherosclerosis [16,22,23]. Hypercholesterolemia independently from the vascular effects 

negatively influences myocardial performance: impairs systolic as well as diastolic contractile 

function [14-16], aggravates the deleterious effects of ischemia/reperfusion injury [17], and 

interferes with the anti-ischemic effect of ischemic pre- [16,18,24] and postconditioning [25] 

(endogenous cardioprotective mechanisms). Furthermore, it has been shown that myocardial 
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function impaired in cholesterol fed rats and this impaired function is in connection with 

increased peroxynitrite level caused by cholesterol [14,20,21]. Cholesterol is the bulk end-

product of the mevalonate pathway [26]. HMG-CoA reductase enzyme is the rate limiting 

step of mevalonate pathway (Figure 1) and therefore, it is highly regulated. The end product 

cholesterol represses the transcription of the HMG-CoA reductase gene [27]. The most 

commonly used cholesterol lowering drugs, statins, are competitive inhibitors of HMG-CoA 

reductase enzyme [28]. In humans a number of large clinical trials have shown that chronic 

administration of statins have potent cholesterol-lowering effects and reduce cardiovascular 

morbidity and mortality [29,30]. On the other hand, it is well known that chronic treatment 

with statins may exhibit a number of extrahepatic adverse effects, such as myopathy and 

rhabdomyolysis [31]. Therefore, it is reasonable to develop new, safer therapeutic tool to 

influence mevalonate pathway. 

4.3 Mevalonate pathway intermediates 

Farnesol (3,7,11-trimethyl-2,6,10-dodecatriene-1-ol), a 15-carbon sesquiterpenoid 

molecule, increases the degradation of HMG-CoA reductase enzyme [32]. Bentinger et al. 

(1998) has shown in rats that farnesol could be phosphorylated in vivo to form farnesyl-

pyrophosphate [33] which is a key branching point in the mevalonate pathway [26] (Figure 1) 

and, therefore, farnesol is able to modulate the mevalonate pathway [34]. We have previously 

shown that administration of farnesol restored the protective effect of preconditioning in 

cholesterol fed rats [9,35]; however, it is not known if farnesol itself is able to protect the 

heart against ischemia/reperfusion injury. Farnesol is naturally occurring mainly in aromatic 

fruits [36] and is known as a powerful antioxidant [36-38]. Farnesyl-pyrophosphate can be 

further metabolized to the mevalonate pathway end-products i.e. cholesterol, coenzyme Q, 

and dolichol [26]. Moreover, farnesyl-pyrophosphate is a precursor for the prenylation 

(farnesylation and/or geranylgeranylation) of several intracellular proteins. Protein 

prenylation is a common post-translational modification of several intracellular proteins 

[26,39] (Figure 1) and prerequisite for their physiological function. Examples of prenylated 

proteins include the γ subunit of heterotrimeric G-proteins, nuclear lamins, and some 

members of the Ras superfamily of small GTPases e.g.: Ras, Rho, Rac, Rab subfamily [40-

42]. Although several G-proteins are involved in the signal-transduction of 
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ischemia/reperfusion injury and cardioprotection, the role of their prenylation has not been 

investigated in ischemia/reperfusion injury. 

Farnesyl pyrophosphate is also a precursor for the synthesis of different forms of 

coenzyme Q such as coenzyme Q10 that is most common coenzyme Q in humans and 

coenzyme Q9 that is most common in rats [43] (Figure 1). Coenzyme Q plays a major role in 

the mitochondrial electron-transport chain and serves as an endogenous antioxidant [43]. 

Coenzyme Q is protective against myocardial ischemia/reperfusion-injury in animal studies 

[44,45] and it is a registered drug for adjuvant therapy of heart failure worldwide. 

 

Figure 1. The mevalonate pathway. 

Dolichol, another derivative of farnesyl pyrophosphate (Figure 1), is the most 

prevalent polyisoprenyl glycosyl carrier in eukaryotes involved in C- [46] and O-

mannosylaton of proteins, the formation of glycosylphosphatidylinositol anchors [47] and the 

N-glycosylation of proteins [48]. The role of dolichol in ischemia/reperfusion is not known. 
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Farnesol has been shown to exert an antioxidant effect in-vivo [36-38] and to restore 

reduced glutathione, glutathione reductase and glutathione peroxidase levels [36-38]. The 

above findings may support the potential cardioprotective effect of farnesol, since reactive 

oxygen and nitrogen species e.g. peroxynitrite formed nonenzymatically from NO and 

superoxide, play a pivotal role in ischemia/reperfusion injury [49,50]. 

4.4 Red palm oil 

Red palm oil (RPO) is a natural oil obtained from oil palm fruit (Elaeis guineensis). 

RPO is an antioxidant rich oil which contains approximately 50% saturated and 50% 

unsaturated fatty acids [51,52]. Carotenoids and vitamin E (75% of which is tocotrienol) are 

the most abundant antioxidants in this oil. Both of these antioxidants are contained at a level 

of at least 500 ppm in RPO [51,52]. The cocktail of antioxidants within RPO is believed to 

have synergistic effects [53,54]. The oil offers cardioprotection, by activation of several 

different protective pathways which work synergistically together [55]. Dietary RPO 

supplementation has previously been shown to offer protection against ischemia/reperfusion 

injury in the isolated perfused heart [56-58]. Esterhuyse and co-workers (2005) [56] showed 

that dietary RPO supplementation could improve post ischemic functional recovery in rats fed 

a standard rat chow diet (SRC), and rats fed a SRC plus 2% cholesterol for six weeks [56]. 

They suggested that RPO mediated protection against ischemia/reperfusion injury may be 

induced through different pathways in hearts of SRC fed and cholesterol fed rats. 

4.5 Matrix metalloproteinases 

Matrix metalloproteinases (MMPs) are a large family of zinc dependent 

endopeptidases that recognized for their ability to remodel the extracellular matrix [59]. 

MMPs involved in remodeling the extracellular matrix during various physiological functions 

such as embryonic development, angiogenesis, morphogenesis, wound healing, tissue repair 

and play a role in several pathological conditions such as cancer, cardiovascular disease, 

arthritis, inflammation, diabetes, etc. [19,60]. There are evidences that in pathological 

condition MMPs are able to proteolytically cleave intracellular proteins [61]. MMPs are 

synthesized in a latent form (zymogen or pro-MMP), and are activated by proteolytic 

cleavage of an amino terminal domain or by conformational changes induced by denaturing 

agents or oxidative stress molecules such as peroxynitrite. Normally MMPs are activated by 
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removal of the autoinhibitory propeptide domain by proteases resulting in an active truncated 

MMP. Recently it was found that MMP2 plays a role in ischemia/reperfusion damage in the 

heart [62] as ischemia induced activation and release of MMP-2 is a major effector of acute 

mechanical dysfunction after ischemia/reperfusion in rat hearts [62-64]. Increased MMP2 

activity has also been associated with hypercholesterolemic diets [9]. This may be due to the 

increased peroxynitrite production within the myocardium [14]. ROS and peroxynitrite have 

been shown to activate MMP2 through redox modification of the regulatory site of this 

enzyme [19,65-68]. This redox modification leads to activity being displayed in the 75 and 72 

kDa isoforms of the enzyme, while only the 64 kDa isoform is active if MMP2 is activated in 

the classical manner [19,66]. Activated MMP2 damages cardiomyocytes during reperfusion. 

This is achieved by cleaving the contractile protein regulatory element, troponin I and 

possibly other structural and cytoskeletal proteins [61,69-73]. Activation of MMP2 during an 

ischemic insult is therefore, normally associated with decreased functional recovery and 

larger infarct size of the heart [62,74-77]. This has been confirmed through inhibition of 

MMP2 by antibodies or chemical agents [78-82]. The RPO has antioxidant properties and 

therefore, may inhibit the peroxynitrite induced activation of MMP2. 

In a recent study [83] it was shown that red palm oil reduced infarct size in a model of 

ischemia/reperfusion injury. However, this model investigated only hearts of healthy animals. 

The intention of the current study was therefore, to use a high cholesterol feeding model to 

ensure that the model is more clinically relevant and to establish confirmation that red palm 

oil protection are indeed applicable in unhealthy diets, as was previously argued. In all red 

palm oil fed studies up to date [55-58], results have indicated post-ischemic involvement of 

certain cellular biochemical pathways. However, none of these studies provided any evidence 

of pre-ischemic protection by red palm oil. Mechanism of RPO induced protection is not 

known; however, we hypothesized that RPO may attenuate peroxynitrite induced MMP 

activation.  

  



14 

5. Aims 

The aims of this study were: 1) to investigate the cardioprotective effect of farnesol 

and 2) to determine whether the antioxidant effect of farnesol or the increased coenzyme Q, 

protein prenylation and dolichol formation may protect myocardium against 

ischemia/reperfusion injury. Furthermore, our aims were 3) to investigate the effects of 

dietary RPO supplementation on myocardial infarct size in the hearts of rats on a cholesterol 

enriched diet and 4) to determine whether MMP2 activity was altered by RPO 

supplementation, both pre- and postischemically. 

  



15 

6. MATERIALS AND METHODS 

This investigation conformed to the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals (NIH Pub. No. 85-23, Revised 1996) and was approved by 

the local ethics committee at the University of Szeged. 

6.1. Experimental design and isolated heart perfusion protocol of study 1 

Here we assessed the effect of subchronic farnesol treatment on ischemic tolerance 

and biochemical changes of the heart. 

Male Wistar rats (300-400 g, n=108 in the entire study 1) were kept under controlled 

temperature with 12/12h light/dark cycles. They received a standard rodent chow and tap 

water ad libitum. Rats were randomly assigned to the following groups: oral administration of 

vehicle (2.5% methylcellulose) or 0.2, 1, 5, and 50 mg/kg/day farnesol (SAFC Supply 

Solution, St Louis, MO), respectively for 12 days. The length of farnesol administration and 

doses were applied according to previous studies [36,84].  

On day 13, the effect of farnesol on cardiac ischemic tolerance and biochemical 

changes was tested. Therefore, rats were anesthetized, heparin (500 U/kg iv) was 

administered, and hearts were isolated and perfused at 37°C in Langendorff mode with 

oxygenated Krebs-Henseleit buffer with constant pressure as previously described [35,84]. 

Hearts were subjected either to (i) 30 min coronary occlusion followed by 120 min 

reperfusion to measure infarct size in all groups (n=12-14 except for the 0.2 mg/kg/day 

farnesol treated group where n=8) or to (ii) 10 min of perfusion to wash out blood before 

tissue sampling for biochemical assays from selected groups as appropriate (see results). 

Cardiac levels of mevalonate pathway end-products (prenylated proteins, cholesterol, 

coenzyme Q9, Q10, and dolichol; n=13 in the vehicle and the 1 mg/kg/day farnesol treated 

group), and 3-nitrotyrosine (marker of oxidative/nitrosative stress, n=7 in the vehicle and the 

1 and 50 mg/kg/day farnesol treated group) were measured from the tissue samples in 

separate experiments, respectively (Figure 2). Background morphological and 

hemodynamical parameters such as body weight, heart weight, and coronary flow before 

ischemia were measured from all animals served for infarct size measurement and assessment 

of biochemical parameters (Table 1).  
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Figure 2. Experimental protocol of study 1. Male Wistar rats were treated with vehicle 

(2.5% methylcellulose) or 0.2, 1, 5, and 50 mg/kg/day farnesol, respectively for 12 days 

per os by gavage. On day 13, hearts were isolated to test the effect of the different 

treatments on cardiac ischemic tolerance and biochemical changes. To test ischemic 

tolerance, hearts from all groups were subjected to 30 min coronary occlusion followed 

by 120 min reperfusion to measure infarct size. To measure changes in cardiac 

biochemical parameters from selected groups, hearts were subjected to 10 min of 

aerobic perfusion to wash out blood before tissue sampling. 

6.2. Experimental design and isolated heart perfusion protocol of study 2 

Male Wistar rats were divided into four groups. Rats in these groups were placed on 

the following diets, respectively: 

Group 1: Standard rat chow diet for 9 weeks (Norm) 

Group 2: 2% cholesterol-enriched diet for 9 weeks (Chol) 

Group 3: Standard rat chow supplemented with 200 μl RPO (Norm+RPO) per day for 

the last 5 weeks of the 9 week period 
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Group 4: 2% cholesterol-enriched diet for nine weeks supplemented with 200 μl RPO 

per day for the last 5 weeks of the 9 week period (Chol+RPO) 

Rats were individually housed to ensure that each animal received equal amounts of 

supplements. RPO and supplements were prepared on a daily basis in order to prevent 

spoiling. The red palm oil doses were applied according to previous studies [85]. Rats were 

allowed ad libitum access to food and water. 

 

Figure 3. Experimental protocol of study 2. Male Wistar rats were fed with standard rat 

chow or 2% cholesterol supplemented rat chow for 9 weeks with or without red palm oil 

supplementation in the last 5 weeks. To assess ischemic tolerance hearts were subjected 

to 30 min global ischemia followed by 120 min reperfusion. Serum samples were taken 

from rats before perfusion protocol to assess serum cholesterol and serum triglyceride 

levels. Coronary effluents were collected before and after ischemia to assess cardiac 

MMP2 activity. 

After the feeding period, rats were anaesthetized using diethyl ether. Hearts were 

isolated, mounted on a Langendorff perfusion apparatus, and were perfused at 37°C using a 

Krebs-Henseleit buffer solution which was constantly gassed with 5% carbon dioxide, 95% 
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oxygen and a constant perfusion pressure of 100 cmH20 was maintained. After mounting, 

hearts were subjected to 10 minutes of stabilization, followed by 30 minutes of normothermic 

global ischemia and 120 minutes of reperfusion. At the end of the perfusion protocol infarct 

size was measured. 

6.3. Infarct size determination 

To assess ischemic tolerance of the heart, infarct size was measured as follows. In case 

of coronary occlusion (study 1) at the end of the perfusion protocol, the coronary artery was 

reoccluded and 5 ml of 0.1% Evans blue dye was injected into the aorta to delineate the area 

at risk zone and after that the hearts were frozen. In case of global ischemia (study 2) the 

hearts were frozen without Evans blue dying. Frozen hearts were then sliced, and incubated 

for 10 min at 37°C in 1% triphenyltetrazolium chloride to delineate infarcted tissue. Slices 

were then fixed in formalin solution 10 min at 37°C and then placed in phosphate buffer (pH 

7.4) [84,86]. Heart slices were then placed between two sheets of glass and scanned into a 

computer and analyzed using infarct size planimetry software (Infarctsize™ 2.4 

Pharmahungary, Szeged, Hungary) in a blinded manner. Infarct size was expressed as a 

percentage of the area at risk. In case of coronary occlusion (study 1) the area at risk was 

calculated as a percentage of the total ventricular area [84,86]. In case of global ischemia 

(study 2) the area at risk was the total ventricular area [84,86]. 

6.4. Measurement of myocardial protein geranylgeranylation and farnesylation 

The nucleophilic cleavage of the allylic thiol bond by 2-naphthol provides for 

quantitative determination of the cysteine-bound prenyl groups of prenylated proteins. The 

level of cysteine-bound farnesyl and geranylgeranyl groups were measured by HPLC method 

as previously described [87]. Briefly, 200 mg tissue samples were delipidated by extraction 

with ethanol followed by diethyl ether. Delipidated samples were mixed with 2.5 ml reagent 

mixture (20 mg/mL potassium naphthoxide dissolved in dioxane). Then dioxane was removed 

with a stream of nitrogen gas and 100 µl dimethylformamide was added to the samples and 

were heated at 100°C for 8 hours. The reaction products were extracted with 400 µl n-hexane 

and the upper phase was injected to YL9100 HPLC system on a YMC-Pack ODS-A 250 

mm×4.6 mm ID 5 μm using 95-100% acetonitrile as mobile phase. Calibration curves were 

made using N-acetyl-S-farnesyl-L-cysteine and N-acetyl-S-geranylgeranyl-L-cysteine 



19 

standards (Sigma, St. Louis, MO) underwent the same preparation procedure. Therefore, 

protein farnesylation and geranylgeranylation were expressed as protein-bound farnesyl and 

geranylgeranyl group in ng/mg protein. 

6.5. Measurement of myocardial cholesterol 

Tissue cholesterol was measured (Cholesterol/Cholesterol Ester Quantification kit; 

BioVision, Mountain View, CA) from ventricular homogenates according to the 

manufacturer’s instructions. Ten mg ventricular homogenates were used for tissue cholesterol 

measurement. Myocardial cholesterol was expressed in ng/mg protein. 

6.6. Measurement of myocardial coenzyme Q 

The level of cardiac coenzyme Q9 and Q10 were measured by a HPLC method 

following lipid extraction with n-hexane as previously described [88]. Coenzyme Q9 and Q10 

were detected at 275 nm using an YL 9160 PDA detector following separation with a YL9100 

HPLC system on a C18 column (YMC Basic, 50 mm×4.6 mm ID 3 μm). Four hundred mg 

ventricular homogenate was used for myocardial coenzyme Q measurement. Calibration 

curves were made using coenzyme Q9 and Q10 standards (Sigma, St. Louis, MO). 

Myocardial coenzyme Q9 and Q10 were expressed in ng/mg protein. 

6.7. Measurement of myocardial dolichol 

The level of cardiac dolichol was measured by HPLC method as previously described 

[89]. Briefly, minced cardiac tissues (400 mg) were mixed with 0.5 ml 0.25% pyrogallol in 

methanol and 0.5 ml 60% KOH. Hydrolysis was performed in a water bath at 100°C for 30 

min; the mixture was extracted three times with diethyl ether:petroleum ether (1:1). The 

pooled extracts were washed with methanol:diethyl ether (1:1) and were dried under nitrogen. 

The samples were resolved with isopropanol:acetonitrile (65:35). Dolichol was detected at 

210 nm using an YL 9160 PDA detector following separation with an YL9100 HPLC system 

on C18 column (YMC-Pack ODS-AQ, 10 mm×4.0 mm ID 3 µm and YMC-Pack ODS-AQ, 

150 mm×4.6 mm ID 5 µm). Calibration curve was made using C90-Dolichol standard 

(Larodan, Malmö, Sweden). Myocardial dolichol was expressed in ng/mg protein. 

6.8. Measurement of 3-nitrotyrosine 

Cardiac free 3-nitrotyrosine content, as markers for peroxynitrite-induced 

oxidative/nitrosative stress, was measured after 10 minutes of perfusion. Cardiac free 3-
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nitrotyrosine level was measured by enzyme-linked immunosorbent assay (ELISA; Cayman 

Chemical, Ann Arbor, MI) from heart tissue samples according to the instructions. Briefly, 

supernatants of 50 mg ventricular tissue homogenate was incubated overnight with anti-

nitrotyrosine rabbit IgG specific to free 3-nitrotyrosine and nitrotyrosine acetylcholinesterase 

tracer in precoated (mouse anti-rabbit IgG) microplates followed by development with 

Ellman’s reagent. Free 3-nitrotyrosine content was normalized to protein content of cardiac 

homogenate and expressed as ng/mg protein. 

6.9. Measurement of protein concentration 

Protein concentrations were measured by the BCA Protein Assay kit (Thermo, 

Rockford, IL) according to the instructions. 

6.10. Neonatal cardiomyocyte culture experiments 

In order to investigate if farnesol has a direct cardiocytoprotective effect, we 

investigated whether farnesol protects cardiomyocytes subjected to simulated 

ischemia/reperfusion. Neonatal cardiomyocyte cultures were prepared as described previously 

[90]. Cells were kept in normoxic incubator and supplied with proliferation medium for 1 day 

(DMEM + 10% FBS). Then farnesol (0.0032 – 250 µM) was administered in differentiation 

medium (DMEM + 1% FBS) for 2 days. After farnesol treatment, the culture medium was 

changed to hypoxic solution [91] and plates were placed into a hypoxic chamber, and cells 

were exposed to a constant flow of a mixture of 95% N2 and 5% CO2 at 37 °C for 4 h. 

Simulated ischemia was followed by 2 h simulated reperfusion using differentiation medium 

and normoxia (Figure 4). To assess cell viability cardiomyocytes were incubated with 1 µM 

calcein acetoxymethyl ester (calcein-AM, Sigma, St Louis, MO) at room temperature for 30 

min. Fluorescence intensity was measured with a fluorescence plate reader (Fluostar Optima, 

BMG Labtech, Ortenberg, Germany) at 490-nm excitation and 520-nm emission filters. 

Simulated ischemia/reperfusion resulted in 21% decrease in cell viability as compared to 

normoxia (4 h normoxia with normoxic solution followed by simulated reperfusion, data not 

shown). 
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Figure 4. Experimental protocol of cardiomyocyte culture experiments. To assess the 

protective effect of farnesol, neonatal rat cardiomyocytes were treated with 0.0032, 

0.016, 0.08, 0.4, 2, 10, 50, and 250 µM farnesol or its vehicle (0.1% DMSO), respectively. 

To test ischemic tolerance, cardiomyocytes were subjected 4 h simulated ischemia and 2 

h simulated reperfusion. Cell viability was assessed by calcein viability assay. 

6.11. MMP2 zymography 

Coronary effluent collected for 10 minutes before ischemia and the first 10 minutes of 

reperfusion was concentrated by ultra-filtration using Amicon ultra filtration tubes (Millipore, 

Billerica, MA). The concentrated coronary flow was then subjected to gelatin zymography. 

Gelatinolytic activities of MMPs were examined as previously described [19]. Briefly, 

polyacrylamide gels were copolymerized with gelatin, and a constant amount of protein was 

separated by electrophoresis in each lane. Following electrophoresis, gels were washed with 

2.5% Triton X-100 and incubated for 20 hours at 37°C in incubation buffer. Gels were then 

stained with 0.05% Coomassie Brilliant Blue in a mixture of methanol/acetic acid/water and 

destained in aqueous 4% methanol/8% acetic acid. Zymograms were digitally scanned, and 

band intensities were quantified using Quantity One software (Bio-Rad, Hercules, CA) and 

expressed as a ratio to the internal standard. 

6.12. Serum cholesterol and triglyceride measurement 

Serum cholesterol and triglyceride were measured using a test kit supplied by 

Diagnosticum Zrt. (Budapest, Hungary) as described previously [20]. 

6.11. Statistics 

All values are presented as mean±SEM. Differences among means were analyzed by 

Student’s unpaired t-test or one-way ANOVA followed by an appropriate post hoc test, 

respectively. All comparisons were made versus the vehicle-treated or vehicle-treated 
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ischemia/reperfusion group or corresponding control group. Statistical significance was 

defined as p<0.05. 
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7. RESULTS 

7.1 Study 1 

7.1.1 Infarct size 

To assess the cardioprotective effect of different oral doses of farnesol, infarct size 

was measured after 30 min regional ischemia and 120 min of reperfusion. Infarct size was 

significantly decreased by 1 mg/kg/day farnesol (22.3±3.9% vs. 40.9±6.1%, p<0.05, Figure 

5). However, 0.2, 5, and 50 mg/kg/day farnesol treatment did not significantly decrease 

infarct size (37.3±5.1%, 32.0±3.1%, 43.5±5.1% vs. 40.9±6.1%, respectively, Figure 5). 

Therefore, the infarct size reducing effect of farnesol showed a U-shaped dose-response 

relationship. Farnesol did not affect body weight, heart weight, coronary flow and heart rate 

(Table 1). 

 

Figure 5. Effect of farnesol on myocardial infarct size. Infarct size is expressed as a 

percentage of the area at risk of isolated hearts that was subjected to 12 days vehicle or 

0.2, 1, 5, and 50 mg/kg/day farnesol treatment followed by 30 min coronary occlusion 

followed by 120 min reperfusion to measure infarct size. Values are mean±SEM; n = 8–

13 in each group; *p < 0.05 vs. vehicle. 
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Farnesol (mg) vehicle 0.2 1 5 50 

Body weight (g) 350 ±5(34) 337 ±8(8) 353 ±5(32) 334 ±3(14) 361 ±6(20) 

Heart weight (g) 1.28 ±0.02(34) 1.27 ±0.06(8) 1.30 ±0.03(32) 1.21 ±0.04(14) 1.27 ±0.04(20) 

Area at risk (%) 54.9 ±3.2(10) 43.7 ±4.4(8) 46.2 ±4.6(11) 64.9 ±3.6(12) 50.1 ±2.6(13) 

Coronary flow (mL/min) 

Before isch 17.9 ±0.5(33) 17.2 ±1.6(8) 18.0 ±0.6(32) 16.6 ±0.7(14) 16.9 ±1.1(18) 

During isch 10.1 ±1.1(11) 9.3 ±1.0(8) 9.8 ±0.5(12) 10.1 ±0.8(12) 9.0 ±0.7(13) 

0-5 min of rep 88.0 ±6.2(11) 72.6 ±5.3(8) 82.8 ±6.6(12) 88.0 ±7.7(12) 75.1 ±4.0(13) 

End of rep 12.6 ±1.3(11) 11.5 ±1.4(8) 14.4 ±1.1(12) 14.3 ±1.5(12) 11.6 ±0.8(13) 

Heart rate (beats/min) 

Before isch 284 ±18(14) 270 ±24(8) 284 ±17(12) 277 ±24(13) 303 ±9(13) 

End of isch 250 ±27(7) 275 ±35(8) 288 ±28(11) 292 ±31(11) 308 ±19(7) 

End of rep 288 ±9(6) 279 ±23(7) 239 ±28(8) 259 ±35(8) 294 ±17(8) 

Table 1. Body weight, animal weight, area at risk and cardiac functional parameters in 

vehicle or 0.2, 1, 5, and 50 mg/kg/day farnesol-treated groups for 12 days followed by 

either 10 min of aerobic perfusion for tissue sampling or 30 min coronary occlusion 

followed by 120 min reperfusion to measure infarct size. Body weight, heart weight, and 

coronary flow before ischemia were measured from all animals served for infarct size 

measurement and assessment of biochemical parameters to yield sample size n=6-34 in 

different groups. Values are mean±SEM (n). 

7.1.2 Mevalonate pathway end-products 

In separate sets of experiments, to assess the effect of cardioprotective (1 mg/kg/day) 

dose of farnesol on mevalonate pathway end-products, we measured cardiac protein 

prenylation, cholesterol, coenzyme Q, and dolichol. We found that oral farnesol treatment 

significantly increased cardiac protein-bound geranylgeranyl level (8.4±0.9 vs. 5.5±0.8 

ng/mg protein, p<0.05) (Figure 6). However, farnesol did not influence cardiac protein-bound 
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farnesyl level (1.6±0.2 vs. 2.7±0.5 ng/mg protein), cardiac cholesterol (100.4±4.5 vs. 

88.8±7.8 ng/mg protein), coenzyme Q9 and Q10 (13.1±0.7 vs. 11.0±2.8 ng/mg protein and 

0.89±0.06 vs. 0.74±0.19 ng/mg protein, respectively), and dolichol levels significantly 

(0.32±0.03 vs. 0.37±0.03 ng/mg protein) (Figure 6).  

 

Figure 6. Cardiac mevalonate pathway metabolites (cardiac cholesterol, coenzyme Q10, 

protein geranylgeranylation, protein farnesylation, coenzyme Q9, and dolichol) from 

rats orally treated with vehicle or 0.2, 1, 5, and 50 mg/kg/day farnesol for 12 days. 

Values are mean±SEM; n = 6–8 in each group. *p < 0.05 vs. vehicle. 

7.1.3 3-nitrotyrosine 

To assess the antioxidant effect of the cardioprotective dose of farnesol in the heart, in 

separate experiments, we measured cardiac 3-nitrotyrosine level as marker of cardiac 

peroxynitrite which is a major player in cardiac oxidative and nitrosative stress. We found that 

the cardioprotective dose of farnesol (1 mg/kg/day) did not affect cardiac 3-nitrotyrosine level 

(Figure 7). Therefore, to further assess if farnesol at a higher dose may show an antioxidant 

effect, in separate experiment, we measured 3-nitrotyrosine in the 50 mg/kg/day
 
farnesol-

treated group. This dose of farnesol (50 mg/kg/day) significantly decreased cardiac 3-
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nitrotyrosine level (1.2±0.2 vs. 2.4±0.5 ng/mg protein, p<0.05) (Figure 7), however, it did not 

show any cardioprotective effect (see above, Figure 5). 

 

Figure 7. Cardiac 3-nitrotyrosine from rats oral treated with vehicle or 1 and 50 

mg/kg/day farnesol for 12 days. Values are mean±SEM; n = 7 in each group, *p < 0.05 

vs. vehicle. 

7.1.4 Cardiomyocyte culture results 

To assess if farnesol has a direct cardiocytoprotective effect, we measured cell 

viability of cardiomyocytes subjected to simulated ischemia/reperfusion. Farnesol (0.0032 – 

50 µM) protected cardiomyocytes in a bell-shaped concentration-response manner similarly to 

that observed in the isolated heart experiments (0.016 µM farnesol: 40.4±1.4 AU, 0.08 µM 

farnesol: 39.6±1.5 AU, 0.4 µM farnesol: 43.1±1.0 AU vs. 34.8±1.2 AU, respectively, Figure 

8). However, 250 µM farnesol showed a cytotoxic effect (data not shown).  



27 

 

Figure 8. Viability assay for neonatal rat cardiomyocytes treated with 0.0032, 0.016, 

0.08, 0.4, 2, 10, and 50 µM farnesol or its vehicle (0.1% DMSO), respectively for 2 days. 

Values are mean±SEM; n = 16-24 well. *p < 0.05 vs. vehicle. 

7.2 Study 2 

7.2.1 Animal mass 

The body and heart weight of the RPO supplemented rats were significantly decreased 

when compared to the Norm group and also to the Chol+RPO group after the feeding period 

(Table 2). 

 Norm Chol Norm+RPO Chol+RPO 

Animal mass (g) 494.0±18.1 472.6±13.5 381.3± 7.6* 511.5±14.4 

Heart mass (g) 1.6±0.1 1.7±0.1 1.4±0.1* 1.7±0.1 

Table 2. Animal mass and heart mass after a nine week diet. Values are mean ± SEM, n 

= 8; *p < 0.05 versus Norm and Chol+RPO. 
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7.2.2 Perfusion data 

There were no significant differences in the coronary effluent of any of the groups 

after the supplementation period. Coronary effluent of all groups except the RPO group was 

significantly decreased after ischemia, when compared to their baseline values. There were no 

significant differences in the heart rates before or after ischemia (Table 3). 

 
CE before 

ischemia 

(mL/10min) 

CE after 

ischemia 

(mL/10min) 

HR before 

ischemia 

(BPM) 

HR after 

ischemia 

(BPM) 

Norm 205.0±5.7 59.2±4.0* 387.4±56.5 338.0±128.6 

Chol 185.9±21.7 67.1±6.5* 390.8±37.3 346.0±115.3 

Norm+RPO 152.5±12.9 100.0±6.9 344.1±12.0 328.0±40.7 

Chol+RPO 141.9±12.5 61.9±3.8* 327.3±17.6 339.0±29.2 

Table 3. Coronary effluent (CE) collected for 10 min to measure MMP activity and 

heart rate (HR) before and after ischemia. Values are mean ± SEM, n = 8; *p < 0.05 

versus the corresponding “before ischemia” values. 

7.2.3 Infarct size 

Cholesterol-enriched diet alone increased myocardial infarct size from 23.5 ± 3.0% to 

37.2 ± 3.6% (p < 0.05) when compared to normal diet. RPO supplementation significantly 

reduced infarct size in Norm+RPO and also in Chol+RPO (9.2 ± 1.0% and 26.9 ± 3.0%), 

respectively (Figure 9). Infarct size in Chol+RPO group was comparable to the group fed with 

normal diet. 

7.2.4 MMP2 

Before ischemia activity of the 75kDa isoform of MMP2 was significantly lower in 

the Chol+RPO group when compared to the Chol group (228 ± 28 AU versus 450 ± 34 AU; 

(Figure 10). After ischemia MMP2 (72kDa isoform) activity of the RPO supplemented group 

was significantly increased when compared to rats with normal diet (2472 ± 132 AU versus 

2007 ± 68 AU; Figure 11). 

 



29 

 

Figure 9. Myocardial infarct size in rats fed different diets for nine weeks. Infarct size is 

expressed as a percentage of the area at risk, values are mean ± SEM, n = 8; *p < 0.05 

versus corresponding non-RPO treated groups; #p < 0.05 versus corresponding normal 

diet. 

7.2.5 Serum lipid profile 

There were no significant differences in the serum total cholesterol and triglyceride 

level among groups (Table 4). 

 Norm Chol Norm+RPO Chol+RPO 

Total cholesterol 

(mmol/L) 

 

1.96±0.05 

 

1.91±0.05 2.15±0.23  1.79±0.04 

Triglycerides 

(mmol/L) 
0.72±0.06 0.80±0.08 0.71±0.06 0.80±0.07 

Table 4. Serum total cholesterol and serum triglyceride levels of rats after nine weeks of 

diet. Values are mean ± SEM, n = 8. 
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Figure 10. MMP2 activity in coronary effluent collected for 10 minutes before ischemia. 

Values are mean ± SEM, n = 8; *p <0.05 versus corresponding non-RPO treated groups; 

#p < 0.05 versus corresponding normal diet. 
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Figure 11. MMP2 activity in coronary effluent collected for the first 10 minutes of 

reperfusion. Values are mean ± SEM, n = 8; *p < 0.05 versus corresponding non-RPO 

treated groups; #p < 0.05 versus corresponding normal diet. 
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8 DISCUSSION 

8.1 Study 1 

This is the first demonstration that oral farnesol treatment reduces infarct size in the 

rat heart following ischemia/reperfusion. We also found that farnesol shows a direct 

cytoprotective effect in cardiomyocytes subjected to simulated ischemia/reperfusion. 

Furthermore, we found that the in-vivo cardioprotective dose of farnesol (1 mg/kg/day for 12 

days) increased the geranylgeranylation of cardiac proteins, however, it did not affect other 

mevalonate pathway-derived end-products (cardiac cholesterol, coenzyme Q, dolichol) and 

cardiac peroxynitrite marker 3-nitrotyrosine level significantly. This shows that the 

cardioprotective effect of farnesol is independent of its antioxidant effect but may involve 

changes in protein geranylgeranylation (Figure 12). 

 

Figure 12. Proposed mechanism of cardioprotection by farnesol. 

It is known that mammalian cells can utilize farnesol for protein prenylation [34] and 

for synthesis of other mevalonate pathway derivatives (cholesterol, coenzyme Q, and 

dolichol) [34] (Figure 1). Bentinger et al. (1998) has shown in rats that farnesol could be 

phosphorylated in vivo to form farnesyl-pyrophosphate, which could re-enter biosynthetic 

reactions [33]. Our present results support this finding since administration of exogenous 

farnesol increased total myocardial protein geranylgeranylation and reduced infarct size. 

Prenylation (protein farnesylation and geranylgeranylation) is a lipid post-translational 

modification of proteins involving the irreversible covalent attachment of either farnesyl (15-

carbon) or geranylgeranyl (20-carbon) isoprenoid to conserved cysteine residues at or near the 

C-terminus of numerous cellular proteins [92]. Prenyl groups act as hydrophobic membrane 

anchors [40] and play key role in the maturation of proteins [41], regulation of protein 



33 

targeting, function of proteins, and controlling apoptosis [40,93]. Large number of proteins is 

known to be prenylated, such as e.g. γ subunit of heterotrimeric G-proteins, nuclear lamins, 

and some members of the Ras superfamily of small GTPases e.g.: Ras, Rho, Rac, Rab 

subfamily [40-42]. Some of these proteins have been shown to be involved in 

cardioprotection. Brar et al. (2004) also showed that cardioprotective effect of urocortin-II 

against ischemia/reperfusion injury in rat heart was completely abolished by the Ras inhibitor 

manumycin A [94]. It was also shown that infarct size was increased in cardiac specific RhoA 

knockout mice hearts and was significantly decreased in cardiac-specific RhoA transgenic 

mice [95]. It was also reported that activation of c-Jun N-terminal kinase through the 

Rac1/cdc42-TAK-1 pathway promotes survival of cardiac myocytes after hypoxia-

reoxygenation [96]. Members of the Rab subfamily are geranylgeranylated [40] while the 

other small GTPases either farnesylated or geranylgeranylated [93]. In our present study, we 

measured total protein farnesylation and geranylgeranylation and found that farnesol 

treatment significantly increased total myocardial protein geranylgeranylation but not 

farnesylation. However, the reason for the discrepancy between farnesol-induced protein 

geranylgeranylation and farnesylation remained unknown and it was not investigated in our 

present study. Protein prenylation is catalysed by prenyl transferase enzymes, which can be 

classified into two main functional classes: (i) the CAAX prenyl transferases including 

farnesyl transferase and geranylgeranyl transferase type 1, [93], and (ii) the Rab 

geranylgeranyl transferase (geranylgeranyl transferase type 2) [40]. CAAX prenyltransferase 

activities are highly selective for their isoprenoid diphosphate substrates: farnesyl transferase 

for farnesyl-pyrophosphate and geranylgeranyl transferase type 1 for geranylgeranyl-

pyrophosphate. However, farnesyl transferase can also bind geranylgeranyl-pyrophosphate 

with low affinity, yet the enzyme is unable to transfer the geranylgeranyl group to substrate 

proteins, indicating that geranylgeranyl-pyrophosphate is a competitive inhibitor of farnesyl 

transferase [93]. This might explain our findings regarding the difference between farnesol-

induced protein geranylgeranylation and farnesylation.  

Farnesyl-pyrophosphate can be utilized for synthesis of cholesterol, coenzyme Q, and 

dolichol [26]. In our present study, we have observed that cardiac tissue cholesterol content 

expressed in ng/mg protein was approximately 10-fold higher than the level of geranylgeranyl 

group of protein; however, farnesol treatment did not modify cardiac cholesterol production. 
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In our present study, we have found that the cardiac tissue content of coenzyme Q9 

was comparable to that of protein-bound geranylgeranyl group. Cardiac level of coenzyme 

Q10 content was approximately 10-fold less than coenzyme Q9 or protein-bound 

geranylgeranyl group. Our result is in concordance with the findings of Matejíková et al. 

(2008) who reported that the rat heart contains approximately 10-fold more coenzyme Q9 

than coenzyme Q10 [97]. Coenzyme Q is a well-known antioxidant and cardioprotective 

molecule [44,98]. In our present study, farnesol treatment failed to alter coenzyme Q levels, 

which suggest that farnesol-induced cardioprotection is independent of changes in coenzyme 

Q levels. In our experiment the dolichol content of cardiac tissue did not change, but it was 

10-fold lower than protein-bound geranylgeranyl content. The role of dolichol in 

ischemia/reperfusion is not known in the literature. However, it was shown that dolichol 

kinase deficiency causes congenital dilated cardiomyopathy in patients [99,100]. 

Farnesol has been shown to exert antioxidant effect in vivo [36-38]. However, in our 

present study the cardioprotective dose of farnesol (1 mg/kg/day) failed to decrease 

peroxynitrite formation, a major player in oxidative/nitrosative stress. However, 

50 mg/kg/day farnesol, which did not show any cardioprotective effect, significantly 

decreased 3-nitrotyrosine a marker of peroxynitrite, demonstrating an antioxidant effect of 

farnesol. These results show that the cardioprotective effect of farnesol is independent from 

its antioxidant effect.  

We have found here that oral farnesol reduced infarct size in a U shaped dose-

dependent manner showing the maximum efficacy at 1 mg/kg/day
 
dose. Moreover, here we 

also demonstrated that farnesol exerts a similar concentration-dependent direct cytoprotective 

effect in cardiomyocytes in vitro. These results show that the cardioprotective effect of 

farnesol is not dependent on any systemic effect; however, it might be based on a direct 

cardiocytoprotective action. The reason for the inefficiency of higher farnesol doses (5 and 

50 mg/kg/day in in-vivo experiments and 2, 10, 50, 250 µM in neonatal rat cardiomyocyte 

experiments) has not been revealed in this study. However, one may speculate that the 

potential pro-apoptotic effect of farnesol may interfere with its cardioprotective effect at 

higher doses. Indeed, Chagas et al. (2009) found in a partial hepatectomy model that farnesol 

(250 mg/kg for 2 consecutive weeks) induced apoptosis in rat hepatocytes [101]. Joo et al. 

(2007) reported that 250 µM farnesol induced apoptosis in human lung carcinoma cell line 
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[102]. Indeed, we have found here that 250 µM farnesol radically decreased the viability of 

cardiomyocytes. 

The present study has clearly shown the cardioprotective effect of farnesol and 

revealed several aspect of its mechanism; however its cellular mechanism has not been fully 

explored. An obvious limitation of the present study is that total protein farnesylation and 

geranylgeranylation were measured and individual protein prenylation was not examined. 

Further studies are necessary to identify the specific geranylgeranylated proteins, which may 

play a role in the cardioprotective effect of farnesol.  

8.2 Study 2 

Our results show that dietary RPO supplementation reversed the negative effects of 

cholesterol supplementation in the ischemia/reperfusion rat heart model. Furthermore, dietary 

RPO supplementation reduced myocardial infarct size in cholesterol supplemented rats. 

Previous studies have shown that dietary RPO supplementation improved functional recovery 

of cholesterol fed rats after ischemia [56,58]. In the present study cholesterol supplementation 

was carried out for a longer period (nine weeks versus six weeks in previous studies). This 

indicates that RPO could effectively protect hearts against ischemia/reperfusion injury, 

despite a longer duration of cholesterol feeding. Osipov and co-workers (2009) found that 

hypercholesterolemic pigs had increased left ventricular function throughout the 

ischemia/reperfusion period when compared to normal pigs [17]. This was, however, 

associated with an increased infarct size and increased apoptotic markers. Our results together 

with previous studies [56,58] showed that dietary RPO can attenuate the harmful effects of 

cholesterol supplementation in the ischemia/reperfusion model. Our total serum cholesterol 

results were not increased in the cholesterol fed rats. This was expected, as a previous study 

employed a similar model of cholesterol feeding in rats, without achieving significant changes 

in serum cholesterol [103]. The effects of the cholesterol feeding on the cardiovascular system 

are however clearly discussed in the study of Giricz and coworkers (2003) through the 

depletion of nitric oxide, and our current study by increased myocardial infarct size [103]. 

Coronary flow in the Norm group was reduced by 70%, in the Chol group by 64%, in 

the Chol+RPO group by 57% and in the Norm+RPO group by 33% after ischemia. This 

indicates that RPO attenuated the fall in coronary flow after ischemia. This may suggest that 

RPO supplementation improves vascular function during reperfusion. 
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MMP2 activity was measured before ischemia in the cholesterol supplemented groups 

and compared to a Norm control group and a RPO supplemented group, as it may be expected 

that the cholesterol supplemented groups may have increased oxidative stress after 

supplementation. As increased oxidative stress leads to activation of MMP2 through redox 

modification of its regulatory subunit, this would be associated with changes in MMP2 

activity before ischemia which would be expected to be absent in normal rats [9,19,65-67]. 

Our results demonstrate for the first time that dietary RPO supplementation may alter 

myocardial oxidative stress before ischemia in cholesterol fed rats, as MMP2 activity was 

reduced before ischemia. The reduction in MMP2 activity before ischemia in rats 

supplemented with both cholesterol and RPO suggests that RPO was able to reduce oxidative 

stress in these rats. This would most probably be achieved through quenching of ROS, which 

is generated in greater proportions in cholesterol supplemented rats [14,103]. Increased 

generation of ROS and oxidative stress would normally be associated with activation of 

MMP2 [19,65,67]. As increased activity of MMP2 may lead to either cardiac remodeling, or 

tissue damage [61,71-73] , this reduction in MMP2 activity may play a role in RPO mediated 

protection against ischemia/reperfusion injury. However, MMP2 activity of the Norm +RPO 

was increased during reperfusion, when compared to normal rats without RPO 

supplementation. This would normally be associated with increased myocardial susceptibility 

to ischemia/reperfusion injury [62,74-77]. RPO was able to reduce myocardial infarct size in 

cholesterol fed rats, despite increased activity of MMP2 in reperfusion found in normal rats. 

This suggests MMP2 activity may only play a protective role in cholesterol fed rats, and that 

other protective pathways are responsible for RPO mediated protection in normal rats. 

The aim of this study was to investigate whether MMP2 activity was involved in RPO 

mediated protection of cholesterol fed rat hearts against ischemia/reperfusion. Our results 

suggest that MMP2 activity may play a role in RPO mediated protection of the hearts of the 

cholesterol fed rats, but not the hearts of SRC fed rats. This suggests that more pathways of 

protection may play a role in this protection. Kruger and co-workers (2007) found that RPO 

supplementation of cholesterol fed rats led to decreased phosphorylation of pro-apoptotic 

molecules, p38 and JNK [58]. This coincided with increased phosphorylation of the pro-

survival kinase ERK early in reperfusion, which leads to reduced apoptosis. Apoptosis has 

been shown to play a role in the detrimental effects of hypercholesterolemia in the heart. 
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Inhibition of apoptosis may therefore, explain the protective effects of RPO in this model 

[58].  



38 

Summary 

In conclusion, in the study 1, we have demonstrated that oral farnesol treatment 

reduces ischemia/reperfusion injury. Furthermore, we have shown that the cardioprotective 

effect of farnesol likely involves increased protein geranylgeranylation and seems to be 

independent of the other end-products of mevalonate pathway and the antioxidant effect of 

farnesol. 

In study 2 we showed that dietary RPO supplementation attenuated increased 

susceptibility of cholesterol fed rat hearts to ischemia/reperfusion injury as evidenced by 

reduced infarct size. Myocardial MMP2 activity was reduced in cholesterol and RPO 

supplemented rat hearts before ischemia (Figure 10), but not after ischemia (Figure 11) 

associated with decreased infarct size. This may suggest a different or additional mechanism 

of protection. 

Acute myocardial infarction is currently the leading causes of morbidity and mortality 

in the world. Myocardial infarction has several risk factors and these risk factors likely lead 

finally to cardiovascular events. Rapid reclamation of blood flow to the ischemic zone can 

decrease the mortality of myocardial infarction but it is still high. Therefore, the prevention of 

myocardial infarction is foremost goal. Here we presented oral pretreatments with two widely 

used natural food additives which decrease ischemia/reperfusion injury. It may improve the 

compliance of patients (with risk factors) and increase the effectiveness of prevention of 

ischemic heart diseases that these materials are natural and orally usable. However, further 

investigations are needed to understand the mechanism of protective effect of farnesol and 

RPO. Further understanding of the biochemical mechanism of the protective effect of farnesol 

and RPO may help to develop new and more effective prevention of acute myocardial 

infarction.  
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