
SZEGED

2013

UNIVERSITY OF SZEGED

FACULTY OF SCIENCE AND INFORMATICS

DEPARTMENT OF THEORETICAL PHYSICS

DOCTORAL SCHOOL OF PHYSICS

Gravitational lensing in alternative theories of
gravitation

Abstract of Ph.D. thesis

Author:

Zsolt Horváth

Supervisor:

Dr. László Árpád Gergely

associate professor



1. Introduction

According to general relativity the energy-momentum makes the space-time curved, and

the orbit of the light bends accordingly. This is taken into account by the gravitational lensing,

which has become a useful tool in studying the properties of the gravitational �eld. The initial

observations were used to verify the predictions of the theory. In the last years it has been

employed to study the large scale structure of the Universe, mapping the distribution of the

dark matter.

The propagation of light in the curved space-time provides a number of observable e¤ects.

These can be measured using current telescopes. The most obvious one is the production

of multiple images and the angular separations of them. The lensing produces a change in

brightness of the images. If the source or the lens has a time dependence, the changes in arrival

times of light signals are measurable. The shape and orientation of the extended sources and

the images of them di¤er.

If one or more of the light rays originating from the source reach the observer, then this

fact is expressed by some lens equation. According to general relativity the light propagates

along null geodesics. In the weak �eld approximation the geodesics are straight lines in zeroth

order, therefore we use straight lines to describe the orbits of light. This approximation employs

sections and Euclidean trigonometry. The light rays which are curved in the neighborhood of

the lens can be replaced by two sections with a kink near the lens. The change in direction of

the light is described by the de�ection angle, which depends on the mass distribution of the

lens and the impact parameter of the light.

In the case of weak lensing the small angle approximation holds for the positions of the source

and the image, and for the de�ection angle. In the case of strong lensing the de�ection angle

is close to an integer multiple of �. Usually this is an even multiple, this is called relativistic

lensing. The corresponding images are called the relativistic or higher order images.
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If the lens is point-like then the lensing geometry becomes axially symmetric [9]. A number

of lens equations have been derived for this case [10]. Among these the Virbhadra-Ellis equation

[11] is employed frequently in the literature.

If the lens is a Schwarzschild black hole then two images form (or an Einstein ring, if the

source, the lens and the observer are collinear). The following classical result is important in

the thesis: for image separations greater than about 2.5 times the Einstein angle, the ratio of

the �uxes obeys a power law [9].
�1
�2
/
�
��

�E

��
: (1.1)

The exponent is �Sch = 6:22 � 0:15. Usually the lens can not be observed, thus the apparent

angles can not be measured separately.

The source brightness is unknown, therefore the individual magni�cations can not be mea-

sured. However the angular separation of the images can be measured, therefore the ratio of

the magni�cations and the image separation can be related to each other, which can be related

to the law (1.1). This provides a method to determine whether the lens is a Schwarzschild black

hole.

I study gravitational lensing in three selected alternative theory of gravitation in the thesis.

Gravitational lensing can be used to determine which among the various gravitational theories

is correct. The observations do not exclusively re�ect the e¤ects of the unknown forms of

matter, but also the deviation of the dynamics of gravitation from general relativity. The

Einstein equation has to be modi�ed to explain the observations. For this one has to add

some non-standard matter to the energy-momentum tensor or has to replace the dynamics of

gravitation. Spherically symmetric black hole solutions of the form ds2 = gtt (r) dt2+grr(r)dr2+

r2
�
d�2 + sin2�d'2

�
have been derived in all the three theories examined.
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Brane-world models have standard-model matter con�ned to a 3+1 dimensional hypersur-

face, and gravity acting in a higher dimensional space-time [12]. The e¤ective Einstein equation

[13] is valid instead of the Einstein equation on the brane, and it has black hole solutions. The

tidal charged black hole is a static, spherically symmetric, vacuum solution [14]:

gtt(r) = �
1

grr(r)
= �1 + 2m

r
� q

r2
: (1.2)

It is characterized by two parameters: the mass m and the tidal charge q. The tidal charge

arises from the Weyl curvature of the 5-dimensional space-time in which the brane is embedded.

Despite the tidal charge is similar to the square of the electric charge of the Reissner�Nordström

black hole in general relativity, the negative tidal charge is without classical counterpart.

The Hoµrava-Lifshitz theory is a family of �eld theories, in which there is a preferred foli-

ation of the space-time, violating the Lorentz invariance [15]. The Einstein�Hilbert action is

decomposed to the sum of the kinetic term T = KijKij � (� � 1)K2 and a potential term, then

these terms are extended individually by adding extra terms to them [16]. The �eld theory

obtained can be interpreted as a theory of gravitation. General relativity is recovered in the

limit � ! 1: The action implies a spin-0 �eld in the dynamics called the scalar mode for the

graviton. Applications range from cosmology, dark matter, dark energy to spherically sym-

metric space-times. Several versions of the theory have been proposed. The infrared-modi�ed

Hoµrava-Lifshitz theory is the one which is consistent with the current observational data [17].

The following static, spherically symmetric, vacuum space-time has been derived in Ref. [18]:

gtt(r) = �
1

grr(r)
= �1� !r2

"
1�

�
1 +

4m

!r3

�1=2#
: (1.3)

! is the Hoµrava-Lifshitz parameter and m is the mass of the black hole. The ! ! 1 limit is

the Schwarzschild metric, the ! ! 0 limit is the �at space-time.
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In the f(R) theories of gravitation the geometric side of the Einstein equation is modi�ed,

instead of the introduction of exotic energy-momentum tensors [19]-[20]. (In order to interpret

the observations in the framework of general relativity, the dark matter and dark energy have

been introduced.) The Einstein-Hilbert action is replaced by a generic function of the Ricci

curvature. The �eld equations derived from the action can be recast as

R�� �
R

2
g�� =

1

f 0(R)

�
1

2
g�� [f(R)�Rf 0(R)] +rvr�f

0(R)� g��gcdrcrdf
0(R)

�
+
T
(m)
��

f 0(R)
:

(1.4)

The �rst term in Eq. (1.4) can be interpreted as an e¤ective energy-momentum tensor of

geometric origin. If f(R) / Rn then the special theory obtained is called the Rn theory. The

static, spherically symmetric, vacuum solution of the �eld equations in this theory is [21]

gtt(r) = � 1

grr(r)
= �1� 2�(r)

c2
;

� (r;�; rc) = �Gm
2r

�
1 +

�
r

rc

���
: (1.5)

�(r) is the gravitational potential in the distance r from the point mass m: � is the strength

of gravity parameter and rc is a characteristic radius. The modi�cation of the potential of the

point mass in�uences the Galactic dynamics. The e¤ective energy-momentum tensor describes

an anisotropic curvature �uid, which violates all of the usual energy conditions.

4



2. New scienti�c results

1. I derived a new lens equation [1] by trigonometric considerations valid for point-like and

spherically symmetric lenses. No power series expansions of the trigonometric functions were

applied, in this sense this is an exact lens equation. The equation is more accurate than the

Virbhadra-Ellis equation. It reduces however to the Virbhadra-Ellis equation in a proper limit.

As for the solutions signi�cant di¤erences are to be expected, if the source and the observer are

placed asymmetrically with respect to the lens.

I have carried on expansions in the small mass and tidal charge parameters, then in the

small angles related to the positions of the source and the images. This way I obtained algebraic

lens equations [1]. Among the various cases discussed the tidal charge dominated lensing has

di¤erent predictions from the new lens equation and the Virbhadra-Ellis equation. This follows

from that the Virbhadra-Ellis equation does not predict some of the higher order terms, or it

predicts them with di¤erent coe¢ cients.

I have analysed how the image separations and the �ux ratios are modi�ed as compared to

the Schwarzschild lensing, by the perturbations arising from second order mass and �rst order

tidal charge contributions. The most apparent modi�cation appears in the �ux ratio, this is

presented on Fig. 3. of Ref. [1]. Depending on the sign of the quantity q � 5m2 the �ux ratio

can be either increased or decreased compared to the Schwarzschild lensing.

In the case of mass-dominated weak lensing the positions of the images are similar [1] to the

Reissner-Nordström black hole lensing [22]. In the case of the tidal charge-dominated lensing

the e¤ect of the lens with positive tidal charge resembles [1] the lensing properties of a negative

mass Schwarzschild lens [23]. In the case of a dominant negative tidal charge, similarly to the

positive mass Schwarzschild lens, one positive and one negative image emerge. The location of

the images is di¤erent, this is shown on Fig. 4. of Ref. [1].
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2. I have demonstrated that the image separation and the ratio of the �uxes obey the power

law (1.1) for image separations greater than about 2.5 times the Einstein angle. Fig. 6. of Ref.

[1] presents the ratio of the magni�cations of the images as function of the image separation

normalized to the Einstein angle, on the log�log scale. According to the curve presented on the

�gure the exponent in the space-time (1.2) is �q = 2:85� 0:25. Since this value di¤ers from the

Schwarzschild value, measuring the �uxes and the angular separation of the images provides a

distinction between the Schwarzschild space-time and the (1.2) space-time.

3. I derived a formula for the radius of the �rst relativistic Einstein ring in the tidal charged

black hole space-time [2]. The Einstein angle is a function of the lens mass, the tidal charge and

the impact parameter. The tidal charge modi�es both weak and strong lensing characteristics of

the black hole. Even if strong lensing measurements are in agreement with the Schwarzschild

lens model, the margin of error of the detecting instrument (the designed GRAVITY inter-

ferometer [24]) allows for a certain tidal charge. The study of the angular radius of the �rst

relativistic Einstein ring led to the constraint q 2 [�1:815; 0:524]�1020 m2 for the supermassive

black hole in the Galactic Center [2].

4a. I have demonstrated that for every value of the Hoµrava-Lifshitz parameter there exists a

maximal de�ection angle �max, occurring at the corresponding distance of minimal approach

rcrit. All the rays passing the lens both above or below rcrit will experience less de�ection, than

the one passing through rcrit. This e¤ect is explained by Figs. 4. and 6. of Ref. [3].

The existence of the maximal de�ection angle �max implies that for any mass and lensing

geometry there is an ! for which only the positive image forms. Since rays forming the negative

images have larger de�ection angle, than the ones responsible for the positive images. For each

mass and lensing geometry there is an !; such that the corresponding �max will not be su¢ cient

to de�ect any of the rays passing below the lens to the observer. Therefore the negative image

does not form. This feature does not exist in the Schwarzschild lensing.
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4b. I have determined the order of the Hoµrava-Lifshitz parameter compatible with the obser-

vations from weak lensing. The dimensionless Hoµrava-Lifshitz parameter normalized with the

square of the mass is of order 10�16: The results are presented in the tables I. and II. of Ref.

[3]. I discussed also the �rst and second relativistic Einstein rings emerging in strong lensing.

I compared the constraints with related results in the literature [25], and concluded that the

constraint presented in the table III. of Ref. [3] is the strongest one up to date.

5. I have found that the characteristic radius rc of the compact object with metric (1.5) divides

the space-time into two regions according to the strength of the gravitational potential. Gravity

is weakened in the region r < rc; and strengthened in the region rc < r as compared to the

Newtonian potential.

I have computed the image positions for � = 0:25 and � = 0:75 [4]. For the larger value of

� the image separation grows faster with an increase in the mass and grows more slowly as the

source moves away from the optical axis. For �xed � the magni�cation of the images increase

with �, especially the magni�cation of the positive image. The most apparent increase is found

in the �ux ratio �1=�2.

6. I have demonstrated that the image separation and the ratio of the �uxes obey the power

law (1.1) for image separations greater than about 2.5 times the Einstein angle. Fig. 8. of Ref.

[4] presents the ratio of the magni�cations of the images as function of the image separation

normalized to the Einstein angle, on the log�log scale. Based on the curves presented, the

dependence of the exponent � on � in the space-time (1.5) is shown in the table I. of Ref.

[4]. The function � (�) has a double degeneracy, except a small neighborhood of the general

relativity limit � = 0. Consequently the future measurements of the slope � of the curves

characterizing the ratio of the magni�cations should be able to constrain the parameter �. The

observations can either support or falsify the Rn theory.
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It is a common feature of the tidal charged black hole and of the lens in the Rn theory that

the ratio of the �uxes of the images as a function of the separation of the images obeys a power

law, which di¤ers from the power law of the Schwarzschild black hole. For the tidal charged

black hole the exponent � is smaller than the exponent for the Schwarzschild lens. For the lens

in the Rn theory the exponent � is larger than in the Schwarzschild case (for every nonzero �).

The logarithm of the ratio of the magni�cations of the images as a function of the logarithm

of the image separation divided by the Einstein angle. The tidal charge dominated lens is

presented by the lower curve on the left �gure. The right �gure shows the Rn black hole lensing

for a series of �. The upper curve represents the Schwarzschild lensing on both �gures.
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