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1. INTRODUCTION

The pancreas is a unique exocrine and endocrine organ located in the retroperitoneal
region of the upper abdominal cavity. The exocrine pancreas consists of two main types of
cells: acinar and ductal cells. Acinar cells secrete an isotonic, NaCl-rich fluid containing a
multitude of enzymes and precursor enzymes (Petersen, 2008). The protease precursors are
trypsinogen, chymotrypsinogen, and procarboxypeptidases. These precursors are activated
in the small intestine, initiated by conversion of trypsinogen to trypsin by the intestinal
enzyme enteropeptidase. Trypsin then activates trypsinogen autocatalytically and also
consequently activates other precursors (Petersen, 2008).

It was believed for a long time that the main function of pancreatic ductal epithelial
cells (PDEC) is to insure mechanical frame for acinar cells. Barry Argent and his co-
workers have worked out a method, which made it possible to isolate intact pancreatic
ducts and PDEC (Argent et al., 1986). Thereafter, a number of publications proved, that
PDEC are not only responsible for the formation a mechanical frame for the acini, but also
for the HCO3™ and fluid secretion of the pancreatic juice (Ishiguro et al., 2012). The human
pancreatic ductal epithelium secretes 1-2 L of alkaline fluid daily that may contain up to
140 mM NaHCOg3 (Lee and Muallem, 2008; Ishiguro et al., 2012). The physiological
function of this alkaline secretion is to wash toxic agents down the pancreatic ductal tree

into the duodenum, and to neutralise acidic chyme entering the duodenum.

1.1. Physiology of pancreatic ductal HCOj3™ and fluid secretion

The first step of HCO3" secretion is the accumulation of HCO3' inside the cell across
the basolateral membrane of the duct cell by Na*/HCOs co-transporters (NBC) and by the
backward transport of protons via the Na'/H" exchanger (NHE) and an H'-ATPase
(Ishiguro et al., 2012). HCOg3" secretion across the apical membrane of PDEC is thought to
be mediated by anion channels and transporters such as cystic fibrosis transmembrane
conductance regulator (CFTR) and solute carrier family 26 (SLC26) anion exchangers
(Ishiguro et al., 2012) (Figure 1.).

How these transporters act in concert to produce a high HCOj3; secretion is
controversial. One hypothesis is that HCOj3" is secreted via the anion exchanger until the
luminal concentration reaches about 70 mM, after which the additional HCO3™ required to
raise the luminal concentration to 140 mM is transported by CFTR (Sohma et al., 2000;
Ishiguro et al., 2002). Another hypothesis is that all the HCO3" is secreted via the apical



provide the luminal CI" required for anion exchange to occur (Ko et al., 2004).

SLC26 anion exchangers and CFTR functions only to activate the exchangers and to
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Figure 1. Schematic diagram of the ion transport systems in pancreatic ductal epihelial cells.
NBC: sodium-bicarbonate contransporter; NHE: sodium-hydrogen exchanger; SLC26: solute
linked carrier 26; CFTR: cystic fibrosis transmembrane conductance regulator; CACC: Ca*'-
activated chloride channel.

In the past it was assumed that water followed the osmotic gradient and flowed
from the basolateral to the luminal side via the paracellular pathway. However, it is now
clear that water transport is also mediated by the water channel aquaporins (AQP) and is a
regulated process (Lee and Muallem, 2008). AQP water channels, first discovered in 1992
(Preston et al., 1992), are known to enhance the water permeabilities of a wide range of
epithelia. The aquaporins are small integral membrane proteins whose six a-helical
membrane spanning domains surround a highly selective aqueous pore (Verkman & Mitra,
2000). Currently, at least 10 mammalian members of the family have been identified and
many show very specific tissue localisation. Immunolocalization indicates expression of
AQP1 at both the basolateral and the luminal membranes and AQP5 at the luminal

membrane of pancreatic duct cells (Burghardt et al., 2003).



1.1.1. Major proteins involved in pancreatic ductal HCOg secretion

1.1.1.1. Cystic fibrosis transmembrane conductance regulator

CFTR, a plasma-membrane cAMP-activated CI™ channel, is a member of the ATP
binding cassette transporter superfamily. CFTR is expressed in numerous functionally
diverse tissues, including the pancreas, kidney, intestine, sweat duct, heart and lung. In
epithelial cells, CFTR mediates the secretion of CI". In addition to its role as a secretory
CI" channel, CFTR also regulates several transport proteins, including the epithelial
sodium channel, K" channels, ATP-release mechanisms, anion exchangers, sodium-
bicarbonate transporters, and aquaporin water channels (Guggino & Stanton, 2006).

ATP binding cassette transporters usually contain two nucleotide-binding domains,
two transmembrane domains, which contain several membrane-spanning a-helices and a
regulatory (R) domain that is phosphorylated by protein kinase A and C (Riordan, 2005).
CFTR contains several other domains that mediate protein—protein interactions, including
postsynaptic density-95/disc-large/zonula occludens-1 (PDZ)-interacting domains in the C
terminus. PDZ domains consist of an 80-100 amino-acid sequence that mediates protein—
protein interactions by binding to short peptide sequences, most often in the C termini of
target proteins. Proteins that contain PDZ domains often contain other protein-interacting
modules (such as, ezrin, radixin, moesin-binding domains and coiled-coil domains) and
therefore can promote homotypic and heterotypic protein—protein interactions (Shenolikar
et al., 2004). The PDZ-interacting domain of human CFTR mediates the binding of CFTR
to several PDZ domain-containing proteins, including Na*/H" exchanger regulatory factor
isoform-1 (NHERF-1) NHERF-2, NHERF-3, NHERF-4 and CFTR-associated ligand
(Brone & Eggermont, 2005; Guggino, 2004; Li & Naren, 2005). NHERF-1 is involved in
numerous physiological processes, but the role of NHERF-1 in the pancreas has not yet
been investigated, despite the fact that CFTR, a key regulator of epithelial functions, is
controlled by this scaffolding protein (Lamprecht & Seidler, 2006).

NHERF-1 (also known as ezrin binding protein of 50 kDa, EBP50) is a scaffolding
protein that is involved in the apical targeting and trafficking of several membrane proteins
and anchors them to the cytoskeleton via ezrin (Lamprecht & Seidler, 2006). NHERF-1
also facilitates the association of multiprotein complexes via PDZ and ezrin, radixin,
moesin-binding domains, a process that is essential for the adequate transport and function
of transporters, channels, and receptors (Brone & Eggermont, 2005). The adapter protein
has been shown to bind to the PDZ-binding motifs of CFTR, NHES3, as well as a number of



other proteins that functionally interact with CFTR or NHE3, such as the 3,-adrenoreceptor
(Hall et al., 1998; Singh et al., 2009), or the SLC26 family anion exchanger down-
regulated in adenoma (DRA, SLC26A3) (Rossmann et al., 2005). The role of NHERF-1 in
the pancreas has not yet been investigated, despite the fact that CFTR, a key regulator of
epithelial functions, is controlled by this scaffolding protein.

1.1.1.2. Solute carrier family 26

SLC26 isoforms are members of a large, conserved family of anion exchangers,
many of which display highly restricted and distinct tissue distribution. To date, ten SLC26
genes or isoforms (SLC26A1-11) have been cloned (SLC26A10 is a pseudogene)
(Ishiguro et al., 2007). These genes encode polypeptides with cytoplasmic N- and C-
termini  flanking a transmembrane domain of unknown structure. The C-terminal
cytoplasmic region of all SLC26 proteins includes a “‘sulfate transporter and anti-sigma
factor antagonist (STAS) domain’’, which includes the PDZ recognition motif (Aravind &
Koonin, 2000). Several SLC26 isoforms function as CI'/HCO3™ exchangers. These include
DRA, SLC26A6 (PAT-1), SLC26A7 (PAT-2), and SLC26A9 (PAT-4). Out of these
isoforms PAT-1 and DRA were detected on the apical membrane of pancreatic ducts cells
and play important role in the mechanism of pancreatic ductal HCO3" secretion (Ishiguro et
al., 2007; Ko et al., 2004).

DRA was first identified as a candidate tumor suppressor gene (Schweinfest et al.,
1993). However, DRA functions as an electrogenic 2CI/1HCO3;  exchanger. The C-
terminal PDZ recognition motif in DRA binds to PDZ domain adaptor proteins NHERF-1,
NHERF-3 and NHERF-4 in lipid rafts. DRA interacts directly and functionally with
CFTR. Combined overexpression of DRA and CFTR in heterologous systems revealed that
each protein stimulated activity of the other through direct interaction of the DRA STAS
domain with the R domain of CFTR, as well as indirectly through mediation of PDZ
domain proteins (Ko et al., 2002; Ko et al., 2004).

PAT-1 was identified as a mouse kidney protein with Cl/formate exchange activity
(Knauf et al., 2001). PAT-1 is a major apical CI'/HCO3™ exchanger in the small intestine
and mediates majority of prostaglandin E-stimulated HCOj3™ secretion in the duodenum
(Tuo et al., 2006). On the basis of its localization in the apical membrane of the pancreatic
duct and its function as a 1CI/2HCO;3; exchanger (Ko et al., 2002), PAT-1 has been
proposed to be a major contributor to apical HCO3™ secretion in the pancreatic duct
(Greeley et al., 2001).



1.2. Pathophysiological role of pancreatic HCO3 secretion

Pancreatic ducts not only have prominent roles physiologically, but also
pathophysiologically. Most studies of acute pancreatitis focus on the damage to acinar cells
since they are assumed to be the primary target of multiple stressors affecting the pancreas.
However, increasing evidence suggest that the ductal tree may have a crucial role in
induction of the disease and is the primary target of stressors (Hegyi et al., 2011). Our
hypothesis is that ductal secretion serves to defend the pancreas by washing out toxic
agents such as bile acids, ethanol or activated trypsin. If this ductal defence mechanism is
insufficient, ductal secretion will be inhibited and the harmful agents cannot leave the

pancreas.

1.2.1. Toxic factors inducing pancreatitis

1.2.1.1. Bile acids

The effects of bile acids on the pancreatic ductal tree depend on the bile
concentration. Non-conjugated bile acids at a concentration of 100 uM stimulate
pancreatic ductal HCOs3 secretion in a Ca®* dependent manner, whereas at 1 mM
concentration they damage the mitochondria, deplete intracellular ATP levels and block
both the basolateral and apical ion transport mechanisms (Ignath et al., 2009; Maléth et al.,
2011; Venglovecz et al., 2008). In contrast, the conjugated glycochenodeoxycholate has a
significantly smaller effect than the non-conjugated form (Venglovecz et al., 2008),
suggesting that while non-conjugated bile salts (as weak acids) can pass through the cell
membranes by passive diffusion, conjugated bile acids are impermeable to cell membranes

and require active transport mechanisms for cellular uptake (Meier, 1995).

1.2.1.2. Ethanol

Ethanol administration itself does not induce experimental acute pancreatitis (Apte et al.,
2006; Petersen & Sutton, 2006). Ethanol itself mostly only exerts modest effects on acinar
cell Ca®* homeostasis, even in very high concentrations, whereas a combination of alcohol
and fatty acids causes massive intracellular Ca?* release and intracellular trypsin activation
(Criddle et al., 2004 and 2006; Gerasimenko et al., 2009; Petersen & Sutton, 2006). There

is much less data available concerning the effects of ethanol and their metabolites on
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pancreatic ductal cells. Interestingly, similarly to the non-conjugated bile acids, ethanol has
a dual effect on pancreatic HCO3™ secretion (Yamamoto et al., 2003). Yamamoto et al.
(2003) showed that ethanol in low concentration augmented the stimulatory effect of

secretin, whereas, in high concentration it inhibited the secretory rate.
1.2.1.3.  Trypsin

Trypsinogen is the most abundant digestive protease in the pancreas. Under
physiological conditions, trypsinogen is synthesised and secreted by acinar cells,
transferred to the duodenum via the pancreatic ducts and then activated by enteropeptidase
in the small intestine (Petersen, 2008). There is substantial evidence that early intra-acinar
(Lerch & Gorelick, 2000; Thrower et al., 2010) or luminal (Geokas & Rinderknecht, 1974;
Renner et al., 1978) activation of trypsinogen to trypsin is a key and common event in the
development of acute and chronic pancreatitis. Therefore, it is crucially important to
understand the effects of trypsin on PDEC.

Several studies have demonstrated that trypsin stimulates enzyme secretion from
acinar cells via protease-activated receptor 2 (PAR-2) (Kawabata et al., 2006; Singh et al.,
2007), whereas the effect of trypsin on PDEC is somewhat controversial. Trypsin activates
ion channels in dog PDEC (Nguyen et al., 1999) and stimulates HCOj3™ secretion in the
CAPAN-1 human pancreatic adenocarcinoma cell line (Namkung et al., 2003). On the
other hand, the protease dose-dependently inhibits HCOj3;  efflux from bovine PDEC
(Alvarez et al., 2004). The effect of trypsin differs not only among species, but also with
respect to the localization of PAR-2. When PAR-2 is localized to the basolateral membrane
and activated by trypsin, the result is stimulation of HCOj3™ secretion (Namkung et al.,
2003; Nguyen et al., 1999). In contrast, when the receptor is localised to the luminal
membrane, the effect is inhibition (Alvarez et al., 2004). Interestingly, there are no data
available concerning the effects of trypsin on guinea pig PDEC which, in terms of HCOj3’

secretion, are an excellent model of human PDEC (Lee & Muallem, 2008).
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2. AIMS

The main aims of this work were to investigate the physiology and pathophysiology of
HCOj3 and fluid secretion of PDEC.

Our specific aims were:

1. To evaluate the role of NHERF-1 in pancreatic ductal localization of CFTR,
and in HCO3™ and fluid secretion.

2. To investigate the effects of trypsin on pancreatic ductal HCOj3" secretion.
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3. MATERIALS AND METHODS
3.1. Materials

All laboratory chemicals were obtained from Sigma-Aldrich (Munich, Germany) unless
indicated otherwise. Forskolin was from Tocris Bioscience (Bristol, UK), purified CLSPA
collagenase was from Worthington Biochemical Corporation (Lakewood, NJ, USA). 2,7-
bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein, acetoxymethyl ester (BCECF-AM), 2-
(6-(bis(carboxymethyl)amino)-5-(2-(2-(bis(carboxymethyl)amino)-5-

methylphenoxy)ethoxy)-2-benzofuranyl)-5-oxazolecarboxylic acetoxymethyl ester (FURA
2-AM), dihydro-4,4’-diisothiocyanostilbene-2,2’-disulfonic acid (H,DIDS), 1,2-bis(o-
aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), Superscript 111 RT, Alexa
Fluor 488-labelled goat anti-rabbit 1gG, phalloidin-633 and SlowFade Gold antifade
reagent were purchased from Invitrogen Corporation (Carlsbad, CA, USA). NucleoSpin
RNA XS Total RNA Isolation Kit was from Machery & Nagel (Diiren, Germany). RNeasy
FFPE Kit was from QIAGEN (Hilden, Germany). High Capacity RNA-to-cDNA Kit and
Power SYBR Green PCR Master Mix were from Applied Biosystems (Carlsbad, CA,
USA). DirectPCR (Tail) reagent was obtained from Viagen Biotech Inc. (Los Angeles,
CA, USA). MesaGreen was from Eurogentec (Seraing, Li¢ge, Belgium). CellTak was
purchased from Becton Dickinson Labware (Bedford, MA, USA). Background reducing
buffer was from DAKO (Glostrup, Denmark). Tissue-freezing medium was from
TissueTec O.C.T. (Sakura). Rabbit anti-NHERF-1 antibody provided by C. Yun, Emory
University (Atlanta, GA, USA). Mr Pink rabbit polyclonal antibody against human CFTR
provided by W.E. Balch, Scripps Research Institute (La Jolla, CA, USA). Rabbit PAR-2
polyclonal antibody was purchased from Santa Cruz Biotechnology (Heidelberg,
Germany). Secondary anti-rabbit 1gG antibody was purchased from Vector Laboratories
(Burlingame, CA, USA). Anti- glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
antibody and secondary anti-mouse GAPDH antibody were from AbDSerotec (Diisseldorf,
Germany). Laboratory chow was from Biofarm (Zagyvaszanto, Hungary). Concentrated
stock solutions of forskolin (100 mM) and amiloride (50 mM) were prepared in
dimethylsulfoxide. 2% stock solution of dextran was dissolved in physiological saline.
PAR-2 antagonist (PAR-2-ANT, H-Phe-Ser-Leu-Leu-Arg-Tyr-NH;) and PAR-2 activating
peptide (PAR-2-AP, H-Ser-Leu-lle-Gly-Arg-Leu-amid trifluoroacetate salt) were from
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Peptides International (Louisville, Kentucky, USA). Primers were ordered from Biobasic

Canada Inc (Markham, Ontario, Canada).

3.2. Ethics

All experiments were conducted in compliance with the Guide for the Care and
Use of Laboratory Animals (National Academies Press, Eight Edition, 2011), and were
approved by Committees on investigations involving animals at the University of Szeged
and at the Hannover Medical School and also by independent committees assembled by
local authorities.

3.3. Maintenance and genotyping of animals

The mice and guinea pigs were housed in a standard animal care facility with a 12-
h light/12-h dark cycle and were allowed free access to water and standard laboratory
chow. NHERF-1-deficient mice were originally generated and described at Duke
University Medical Center (Shenolikar et al., 2002). NHERF-1 mutation was congenic for
the FVB/N background for at least 15 generations. Genotyping of mice was performed
after DNA extraction from tail samples using the DirectPCR (Tail) reagent supplemented
with proteinase K. The primer sequences for genotyping NHERF-1 mice were as follows:
wild-type forward, 5’-TCGGGGTTGTTGGCTGGAGAC-3’; common reverse, 5’-
AGCCCAACCCGCACTTACCA-3’; knock-out (KO) forward, 5’-
AGGGCTGGCACTCTGTCG-3’. Amplicons generated by PCR were 294 bp for the wild-
type (WT) gene and 242 bp for the KO gene.
PAR-2 KO mice (B6.Cg-F2rI1"™M*™) \vere previously generated by Schmidlin et al.
(2002) and were a kind gift from Ashok Saluja.

3.4. Isolation and culture of pancreatic ducts

Mice and guinea pigs were humanly killed by cervical dislocation, the pancreas was
removed and intra-/interlobular pancreatic ducts were isolated by enzymatic digestion,
microdissection, and then they were cultured overnight at 37 °C in a humidified
atmosphere containing 5% CO, as described previously (Gray et al., 1994). During
overnight incubation, both ends of the isolated ducts seal and the ducts swell due to fluid

secretion into the lumen.
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3.5. Real-time reverse transcription polymerase chain reaction

3.5.1. mRNA expression of CFTR, PAT-1, DRA and NHERFs in mouse pancreatic
ducts

Pancreatic ducts from WT and NHERF-1 KO mice were homogenized by
sonication in lysis-buffer and RNA was isolated with a NucleoSpin RNA XS Total RNA
Isolation Kit. Reverse transcription was performed using Superscript 11l RT. The primer
sequences were designed with “Primer Express” (Applied Biosystems, Foster City, CA,
USA). The primer sequences were:

Gene name  Primer sequence (5'- 3") Product lenght (bp)

CFTR TTCTTCACGCCCCTATGTCGA (forward) 145
GCTCCAATCACAATGAACACCA (reverse)

DRA TTCCCCTCAACATCACCATCC (forward) 110
GTAAAATCGTTCTGAGGCCCC (reverse)

PAT-1 GGCTCCTGGGTGATCTGTTA (forward) 100
CCAAACATAGGAGGCAATCC (reverse)

NHERF-1  AGATCTGCCTCCAGCGATAC (forward) 206
TTCATTTTTCTTGCTCCAGTCC (reverse)

NHERF-2 TAGTCGATCCTGAGACTGATG (forward) 173
ATTGTCCTTCTCTGAGCCTG (reverse)

NHERF-3 TGACGGTGTGGTGGAAATG (forward) 117
TGGCAGTAAAGAAGTGGAGAC (reverse)

B-actin AGA GGG AAATCG TGC GTG AC (forward) 138
CAA TAG TGA TGA CCT GGC CGT (reverse)

Real-time polymerase chain reactions were carried out using MesaGreen in the
Applied Biosystems 7300 Real-time PCR System. PCR extension was performed at 60 °C
with 40 repeats. Data were analyzed using Sequence Detection Software 1.2.3 (Applied

Biosystems) and exported to Microsoft Excel. Relative quantification was carried out using
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[-actin as a reference gene.

3.5.2. mMRNA expression of PAR-2 in human pancreatic tissue

RNA extraction: 15 formalin-fixed, paraffin-embedded normal pancreatic tissue
samples and 15 samples of chronic pancreatitic tissue were selected for real time RT-PCR
analysis. Total RNA was isolated from five 5-10 um macrodissected sections (connective
tissue excluded) using RNeasy FFPE Kit in accordance with the manufacturer’s
instructions. RNA concentrations were determined using NanoDrop Spectrophotometer
ND-1000 (Thermo Fisher Scientific Inc., Waltham, MA, USA).

Reverse Transcription of RNA: cDNA samples were prepared from 1 pg total RNA
using High Capacity RNA-to-cDNA Kit as specified by the manufacturer. Gene-specific
primers were designed by AlleleID 6.01 primer design software (Premier Biosoft
International, CA, USA) for real-time RT-PCR. Isoform specificity and primer sizes were
checked by BioEdit biological sequence alignment editor software (Tom Hall Ibis
Therapeutics, Carlsbad, CA, USA). Primer specificity was checked by BiSearch software
(Hungarian Academy of Sciences, Institute of Enzymology, Budapest, Hungary). Primer

specific amplification degree (58 °C) was optimized by gradient PCR. The used primer

sequences.
] Annealing
Gene name Primer sequence (5'- 3") Product length (bp)
temperature (°C)
B-actin GTACGCCAACACAGTGCTG (forward) 100 55

CTTCATTGTGCTGGGTGCC (reverse)

PAR-2 GGCACCATCCAAGGAACCAATAG (forward) 128 58

GCAGAAAACTCATCCACAGAAAAGAC (reverse)

RT-PCR: Real-time RT-PCR analysis was performed using SYBR Green
technology on ABI Prism 7000 Sequence Detection System (Applied Biosystems),
according to manufacturer's instructions. B-actin was used as the internal control gene.
Primer specific amplification was controlled by 2% agarose gel electrophoresis, as well as
by melting temperature analysis. The final 20 pl reaction mixture contained Power SYBR
Green PCR Master Mix, 10 pM of forward and reverse primers and 100 ng cDNA as

template. Amplification conditions were as follows: incubation at 95 °C for 10 min,
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followed by 45 cycles at 95 °C for 15 sec, 60 °C for 60 sec and 72 °C for 15 sec, with
subsequent melting analysis: heating to 95 °C for 20 sec, cooling to 45 °C for 10 sec, then
reheating to 95 °C.

3.6. Immunohistochemistry

3.6.1. Localization of NHERF-1 and CFTR proteins in WT and NHERF-1 KO mice

Immunohistochemistry of the mouse pancreas was performed as described by Cinar
et al. (2007) using rabbit polyclonal antibodies against NHERF-1 and CFTR. Briefly, for
NHERF-1 staining, paraformaldehyde-fixed, paraffin-embedded tissue sections (5 pum)
from mice of different genotypes were prepared on the same slide. After deparaffinization
with xylene, sections were treated with 0.01 M sodium citrate solution at 100 °C for 10
min. For CFTR staining, pancreata were fixed in 2% paraformaldehyde in phosphate
buffered saline (PBS). Fixed tissue was rinsed with PBS and transferred to 30% sucrose in
PBS overnight. The tissue was embedded in tissue-freezing medium. Cryosectioning was
done with a microtome cryostat at —20 °C and 10 um thick sections were collected on
microscope slides (SuperFrost Plus, Menzel-Glaser, Germany).

Pancreatic sections were incubated sequentially with PBS for 5 min, washing buffer
of PBS with 50 mM NH,CI twice for 10 min each, background reducing buffer for 20 min
and 5-10% goat serum for 30 min for blocking and incubated with rabbit anti-NHERF-1
(1:500) (Weinman et al., 1998) antibody or Mr. Pink rabbit polyclonal antibody against
human CFTR (1:100) in background reducing buffer overnight at 4 °C. Washing 4 times
for 5 min in the washing buffer was followed by secondary antibody (Alexa Fluor 488-
labelled goat anti-rabbit 1gG) incubation for 1 h at room temperature at a dilution of 1:300-
1:500 in background reducing buffer. After 2-4 washes for 5 min each, in case of NHERF-
1 staining, the sections were treated with 5U/ml phalloidin-633 in PBS with 1% bovine
serum albumin, 0.2% Triton X-100 for 30 min which was followed by washes with
washing buffer (six times). After washing, each cover slide was mounted with SlowFade
Gold antifade reagent with 4',6-diamidino-2-phenylindole (DAPI), and slides were imaged
on a confocal microscope (TCS SP2; Leica, Wetzlar, Germany). Excitation wavelengths
used were 405, 488, and 633 nm, and emission was taken at 415-450, 490-540, and 560—
700 nm for detection of DAPI, Alexa Fluor 488, and phalloidin 633, respectively.
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3.(_3.2. Localization of PAR-2 protein in guinea pig, human and WT and PAR-2 KO
mice

Pancreatic tissue from guinea pig, patients without pancreatic disease near
neuroendocrine tumor (average age: 59.5, female:male: 7:8) and WT and PAR-2 KO mice
were investigated. The human samples were obtained with the permission of the Regional
Ethical Committee of Semmelweis University (#172/2003).

The pancreatic tissues were fixed in 10% neutral buffered formalin for 24 hours,
followed by paraffin embedding, then cut and stained with hematoxylin eosin (HE) to
establish the diagnosis. Paraffin embedded, 3-4 um thick sections were used for
immunohistochemistry to detect PAR-2 expression. The slides were treated for 30 minutes
with target retrieval solution in a microwave oven, followed by incubation with the
primary rabbit polyclonal antibody in 1:100 dilution overnight at 4 °C. Signal detection
was achieved by ImPRESS reagent with secondary anti-rabbit 1gG antibody (20 min).
Diaminobenzidine was used to visualize immune complexes and nuclear counterstaining
was performed with haematoxylin. For negative controls, the appropriate antibody was
omitted and either the antibody diluent alone or isotype matched 1gG serum was used. The
negative controls exhibited no signal. Normal skin epithelial cells were used as positive
controls to confirm correct immunohistochemical staining for PAR-2.

The immunohistochemical reactions were digitalized with a Mirax MIDI slide
scanner (3DHistech Ltd., Budapest, Hungary). Relative optical (RO) density was
calculated using Image J program (National Institutes of Health, Bethesda, USA). Pixel
values (PV) were normalized to erythrocyte density (PVnorm = PVmeasured — PVErythrocyte) 1N
all sections. RO-density values were calculated from the RO-Density = 10910(255PVnorm)

equation assuming that the brightest value in the image equals 255.

3.7. Western blot analysis

Western blot analysis were used to determine the specificity of the PAR-2 antibody.
Proteins were extracted from fresh-frozen guinea pig (n=3) and human (n=3) pancreatic
tissue stored at -80 °C. Isolation was performed by using lysis buffer (20 mM TRIS pH
7.5, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100 containing protease-inhibitor
complex). Samples (50 mg) were homogenized, followed by centrifugation at 13,200 rpm
at 4 °C for 5 min. Measurements of protein concentration were performed using Bradford-

analysis (Bradford, 1976). 30 pg of protein samples were loaded in each lane, run on 10%
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sodium dodecyl sulphate (SDS)-polyacrylamide electrophoresis at 200V for 35 min, then
transferred to nitrocellulose membranes at 100V, 4 °C for 75 min. For aspecific protein-
blocking, non-fat dry milk (5%, PBS) was used for 30 min. Blots were incubated with
polyclonal PAR-2 rabbit antibody (1:300) and anti-GAPDH antibody (1:5000) at 4 °C
overnight. After washing with 0.1% TRIS, horseradish peroxidise-conjugated anti-rabbit
antibody (1:2000) was applied at room temperature for 90 min. Following three series of
washings in Tris-Buffered Saline Tween-20, signals were visualized by enhanced

chemiluninescent detection.

3.8. Solutions used for the determination of pancreatic ductal secretion in
vitro

The HEPES-buffered solution contained (in mM): 130 NaCl, 5 KCI, 1 CaCl,, 1
MgCl,, 10 Glucose and 10 Na-HEPES and its pH was set to 7.4 with HCI at 37 °C. The
standard HCOg3 -buffered solution contained (in mM): 115 NaCl, 25 NaHCO3, 5 KCI, 1
CaCl,, 1 MgCly, 10 Glucose. In the NH,4" pulse experiments in HCO3-buffered soultion,
20 mM NaCl was replaced with NH4Cl. The CI'-free HCOj3™ solution contained (in mM):
25 NaHCOs3, 115 Na-gluconate, 1 Mg-gluconate, 6 Ca-gluconate, 2.5 K,-sulfate and 10
glucose. The HCO3™-containing solutions were equilibrated with 95% O, and 5% CO; to
maintain pH at 7.4 at 37 °C.

3.9. Microperfusion and measurement of intracellular pH, Ca*

concentration

The microperfusion of the cultured pancreatic ducts was performed as described
previously (Venglovecz et al., 2008). Briefly, two concentric pipettes were used. One end
of a sealed duct was cut off and the other end was aspirated into the outer, holding pipette.
Then the inner, perfusion pipette, was gently inserted into the lumen of the holding pipette
while a negative pressure was applied to the holding pipette using a syringe. The duct was
then perfused at a rate of 10-30 pl/min, the luminal perfusate left the duct at the open end.
The high rate of the bath perfusion (5-6 ml/min), which was in the same direction as the
flow of luminal perfusate, ensured that the outgoing luminal perfusate did not gain access
to the basolateral surface of the duct cells. Replacement of the luminal perfusate took up to

2 min.
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Intacellular pH (pH;) was estimated using the pH-sensitive fluorescent dye 2'7'-
bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) (Hegyi et
al., 2004). Briefly, ducts were loaded with the membrane permeable acetoxymethyl
derivative of BCECF (2 umol/l) for 20-30 min. After loading, the ducts were continuously
perfused with solutions at a rate of 5-6 ml/min. pH; was measured using a Cell® imaging
system (Olympus, Budapest, Hungary). 4-5 small areas (Region of interests — ROIs) of 5-
10 cells in each intact duct were excited with light at wavelengths of 490 and 440 nm, and
the 490/440 fluorescence emission ratio was measured at 535 nm. One pH; measurement
was obtained per second. In situ calibration of the fluorescence signal was performed using
the high K*-nigericin technique (Hegyi et al., 2004).

Measurement of [Ca?*]; was performed using the same method except that the cells
were loaded with the Ca®*-sensitive fluorescent dye 5-Oxazolecarboxylic acid, 2-(6-
(bis(carboxymethyl)amino)-5-(2-(2-(bis(carboxymethyl)amino)-5-methylphenoxy)ethoxy)-
2-benzofuranyl)-5-oxazolecarboxylic acetoxymethyl ester (FURA 2-AM) (5 umol/l) for 60
min. For excitation, 340 and 380 nm filters were used, and the changes in [Ca®']; were

calculated from the fluorescence ratio (Fs40/F3s0) measured at 510 nm.

3.10. Determination of HCOj3 efflux in WT and NHERF-1 KO mice

To determine the HCO3" efflux across the apical membrane of the pancreatic ductal
epithelia, we used three methods: inhibitory stop, alkali load and luminal CI" withdrawal.
The measured rates of pH; change (dpH/dt) were converted to transmembrane base flux
[J(B)] using the equation: J(B")=(dpH/dt)xBrotar Where Brotal is the total buffering capacity of
the cells. J(B) reflects the rate of HCOj3 efflux (i.e. secretion) on luminal CI'/HCOj3
exchangers (Hegyi et al., 2005).

3.11. Measurement of fluid secretion

In vitro

Fluid secretion into the closed luminal space of the cultured pancreatic ducts was
analysed using a swelling method developed by Fernandez-Salazar et al. (2004). Briefly,
the ducts were transferred to a perfusion chamber (0.45 ml) and were attached to a
coverslip precoated with CellTak in the base of the chamber. Bright-field images were
acquired at 1 min intervals using a CCD camera (CFW 1308C, Scion Corporation,
Frederick, MD, USA). The integrity of the duct wall was checked at the end of each


http://www.biology-online.org/dictionary/Acid

20

experiment by perfusing the chamber with a hypotonic solution (HEPES-buffered solution
diluted 1:1 with distilled water). Digital images of the ducts were analysed using Scion
Image software (Scion Corporation, Frederick, MD, USA) to obtain values for the area
corresponding to the luminal space in each image.

In vivo

Mice were anesthetized with 1.5 g/kg urethane by i.p. injection. The body
temperature of mice was maintained by placing the animals on a warm pad (37 °C) during
the experiments. The abdomen was opened, and the lumen of the common biliopancreatic
duct was cannulated with a blunt-end 30-gauge needle. Then the proximal end of the
common duct was occluded with a microvessel clip to prevent contamination with bile, and
the pancreatic juice was collected in PE-10 tube for 30 min. Using an operating
microscope, the jugular vein was cannulated for administration of secretin (0.75 CU/kQ)

and the pancreatic juice was collected for an additional 120 min.

3.12. Intravital video microscopy and data analysis

A separate experimental series was performed to assess the possible consequences
of secretin treatment on the microcirculation of the pancreas in mice anaesthetized with 1.5
g/kg urethane i.p. (n=3-4 in each group). Using an operating microscope, the right jugular
vein was cannulated (with polyethylene tubing ID: 0.28 mm, OD: 0.61 mm, Smiths
Medical International Ltd, Kent, UK) for i.v. administration of secretin and the
fluorescence marker used for the intravital microscopic examination. The animals were
placed in a supine position on a heating pad to maintain the body temperature between 36
and 37 °C, and a midline laparotomy performed. The majority of the intestines were
exteriorized to gain good assess to the pancreas which was carefully placed on a specially
designed stage and covered with a microscopic cover slip. The rest of the exteriorized
abdominal organs were also covered with Saran wrap to minimize the fluid and heat loss.

The microcirculation of the pancreas was visualized by intravital fluorescence
microscopy (Zeiss Axiotech Vario 100HD microscope, 100 W HBO mercury lamp,
Acroplan 20x water immersion objective) using a single i.v. bolus of fluorescein
isothiocyanate-labeled dextran (150 kDa; 75 planimal for plasma labeling). The
microscopic images were recorded with a charge-coupled device video camera (AVT
HORN-BC 12; Aalen, Germany) attached to an S-VHS video recorder (Panasonic AG-MD
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830, Budapest, Hungary) and a personal computer. Video images of the microcirculatory
network of the pancreatic tail were recorded at baseline and 20 min after the i.v.
application of secretin.

Plasma velocity in the pancreatic capillaries was assessed off-line by frame-to-
frame analysis of the videotaped images, using image analysis software (IVM, Pictron
Ltd., Budapest, Hungary). Average velocity values were measured in 3-5 separate

capillaries per 3-5 microscopic fields in each animal.

3.13. Statistical analysis

Statistical analysis was performed by SigmaPlot (Systat Software Inc., Chicago, IL,
USA). Data are presented as means + SEM. Both parametric (one— or two-way analysis of
variance) and non-parametric (Kruskal-Wallis) tests were used based on the normality of
data distribution (analyzed by the Shapiro-Wilk test). Post-hoc analysis (either Dunn's or
Bonferroni's test) was performed according to the recommendations made by SigmaPlot.
Statistical analysis of the immunohistochemical data was performed using the Mann-

Whitney U test. Probability values of P<0.05 were accepted as being significant.



22

4. RESULTS

4.1. Role of NHERF-1 in pancreatic ductal HCOj3 and fluid secretion

4.1.1 mRNA expression of CFTR, DRA, PAT-1 and NHERFs in mouse pancreatic
ducts

CFTR, DRA, PAT-1, NHERF-1 and NHERF-2, but not NHERF-3 mRNA were
expressed in isolated pancreatic ducts of WT mice (Figure 2). Notably, quantitative RT-
PCR indicated that NHERF-1 was expressed more abundantly than the other two CFTR-
binding NHERFs (NHERF-2 and NHERF-3).
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Figure 2. mRNA expression of CFTR, DRA, PAT-1, NHERF-1, NHERF-2 and NHERF-3 in
isolated mouse pancreatic ducts. Total RNA was prepared from isolated interlobular pancreatic
ducts of wild-type (WT) mice (n=6) after overnight culture and mRNA expression of
transporters/NHERF-1-3 was measured by real-time RT-PCR. Data are shown as means + SEM.

4.1.2. Apical NHERF-1 and CFTR localization in pancreatic ducts is reduced in
NHERF-1-knock-out mice

NHERF-1 was highly expressed in the apical membrane of pancreatic duct cells,
but only weakly expressed in some acinar cells of WT mice (Figure 3A, B). No or weak
staining was detected in NHERF-1-KO mice (Figure 3G, H). The weak staining is non-
specific and was not localized to the luminal membrane.

Next, we determined whether NHERF-1 affects the localization of CFTR. The CI

channel was expressed in both pancreatic acinar and ductal cells of WT and NHERF-1-KO
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mice. Compared to WT animals (Figure 3C), apical CFTR staining in pancreatic ducts was
markedly reduced and overall CFTR staining in the pancreas appeared more diffuse in the
absence of NHERF-1 (Figure 31). The strong cytoplasmic staining by the CFTR antibody
correlates with the high CFTR mRNA expression levels in murine pancreas as compared to
other gastrointestinal tissues [i.e. some cytoplasmic and basolateral staining in the
duodenum (Singh et al., 2009), but not the ileum or colon of this mouse strain -
unpublished observations]. Expression of pancreatic ductal CFTR mRNA was not
significantly different in WT and NHERF-1-KO mice (results not shown).

KO

Figure 3. NHERF-1 and CFTR staining in wild-type and NHERF-1-knock-out pancreata.
Representative immunohistochemical staining of NHERF-1 (A, B, G, H) and CFTR (C, 1) in the
pancreas of WT and NHERF-1-knock-out (KO) mice. NHERF-1 was localized in the apical
membrane of intra- and interlobular duct cells; only weak staining was noted in some acinar cells
of WT mice (A, B). No or weak staining was detected in NHERF-1-KO mice (G, H). CFTR
staining in the pancreas of WT and NHERF-1-KO mice showed that apical (white arrow) CFTR
localization (green) was reduced in NHERF-1-KO (1) vs. WT (C) ducts. Red staining shows F-
actin expression (D, J). E, K show merged images of CFTR and F-actin (yellow color indicates co-
localization). F, L are phase contrast pictures. Scale bar=50 um.
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4.1.3. Pancreatic ductal HCOj3 secretion is decreased in NHERF-1-knock-out mice

To determine if mislocalization of CFTR affects pancreatic ductal function, we
investigated HCO3™ secretion in isolated ducts using three different, but complementary,
methods that measure the rate at which HCO3' is secreted across the luminal membrane via
CITHCO3 exchangers and/or CFTR (Hegyi et al., 2005).

(1) Inhibitor stop. With this method the initial rate of pH; acidification is measured
after the basolateral membrane is exposed to H,DIDS (0.2 mM) and amiloride (0.2 mM)
which block HCO3;™ accumulation into the cell by the NBC and NHE (Venglovecz et al.,
2008). Using this approach the rate of J(B") was more than 4-fold lower in NHERF-1-KO
compared to WT mice (Figures 4A, D).
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Figure 4. Pancreatic ductal HCOj secretion is decreased in NHERF-1-knock-out mice. Panels
A-C show representative intracellular pH (pH;) traces of isolated pancreatic ducts bathed in
standard HCO3/CO; solution demonstrating the effects of 0.2 mM amiloride and 0.2 mM H,DIDS
administered from the basolateral membrane (A), the recovery from alkalosis via administration of
20 mM NH,CI (B), or after luminal CI" removal (C). Bar charts show summary data for the base
fluxes [-J(B/min)] after exposure of the transport inhibitors (D), 20 mM NH,CI (E) or luminal CI’
removal (F) in WT (closed columns) and NHERF-1-KO (open columns) mice. Means = SEM are
from 30-50 regions of interest from 5-8 ducts. a: P<0.05 vs. the respective WT group.
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(2) Alkali load. Here the recovery of pH; from an alkali load induced by exposure
to 20 mM NH4CI in a HCO3/CO;-containing solution reflects the rate of HCO3™ secretion
(Venglovecz et al., 2008). Figures 4B and 4E show that the recovery from alkali load was
about 2-fold lower in NHERF-1-KO vs. WT animals.

(3) Chloride removal. Figures 4C and 4F show that pH; alkalinisation induced by
removal of luminal CI" was significantly reduced in NHERF-1-KO compared to WT mice.

These data show that pancreatic ductal HCO3™ secretion was significantly reduced
in NHERF-1-KO compared to WT mice.

4.1.4. Fluid secretion is decreased in NHERF-1-knock-out mice

To investigate if fluid secretion was also compromised in KO mice, the rate of fluid
secretion was measured using sealed ducts and the swelling technique. In the absence of
secretagogue, we could not detect any significant changes in the volume of WT and
NHERF-1-KO ducts (Figure 5A). Stimulation of WT ducts with 5 uM forskolin caused
dynamic swelling of the ducts as a result of fluid secretion into the closed luminal space. In
contrast, ducts from NHERF-1-KO mice had a blunted response to forskolin (Figure 5B).

We also examined the rate of pancreatic juice secretion in vivo in anesthetized
mice. Under basal conditions, WT animals secreted pancreatic juice at a rate of 0.12 = 0.02
ul/hour/g body weight (Figure 5C). In contrast, we could not detect any basal secretion in
NHERF-1-KO animals. In response to secretin stimulation, we observed about 4-fold
higher rates of pancreatic juice secretion in WT mice, values significantly higher than from
NHERF-1-KO mice. These results demonstrate that pancreatic fluid secretion was
significantly reduced in NHERF-1-KO compared to WT animals under both basal and

secretin-stimulated conditions.
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Figure 5. Fluid secretion is decreased in NHERF-1-knock-out vs. wild-type mice. A and B
show changes in the relative luminal volume of pancreatic ducts from WT (black line, n=8 from 3
animals) and NHERF-1-KO (gray line, n=8 from 3 animals) mice. Initially, ducts were perfused
with HEPES-buffered solution, then perfusion was switched to standard HCO3; /CO,-buffered
solution (A). In some cases the ductal secretion was stimulated with 5 uM forskolin (B). Panel C
shows the volume of pancreatic juice collected in vivo under basal (secretin -) and secretin-
stimulated (secretin +, 0.75 CU/kg i.v.) conditions from WT (closed columns) and NHERF-1-KO
(open column) mice anesthetized with urethane. Means = SEM are from 5-6 animals. P<0.05 vs. a:
the respective secretin— group or b: vs. the WT secretin+ group. N.D.: not detected in case of
NHERF-1-KO mice.
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To rule out secondary alterations in pancreatic fluid secretion by changes in
microcirculation due to loss of NHERF-1, we measured baseline microcirculatory plasma
velocities in the capillaries of the pancreas, which were similar in WT and NHERF-1-KO

animals under both basal and secretin-stimulated conditions (Figure 6).
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Figure 6. Pancreatic microcirculation shows similar changes in wild-type and NHERF-1-
knock-out mice. The microcirculation of the pancreatic tail was visualized by intravital
fluorescence microscopy using a single i.v. bolus of fluorescein isothiocyanate-labelled dextran for
plasma labeling in WT (closed columns) or NHERF-1-KO (open columns) mice anesthetized with
urethane (1.5 g/kg i.p.). Video images were recorded at baseline (secretin -) and 20 min after the
i.v. administration of secretin (0.75 CU/kg, secretin +). 20 min after the i.v. injection of secretin,
significantly lower plasma velocity values were observed in both experimental groups. These
reduced microcirculatory velocities, however, were not due to the effect of secretin, but most likely
resulted from the 20-min exteriorization period of the pancreas, since a similar degree of reduction
(by about 10%) in plasma velocities was also observed in time-matched pilot studies where mice
were treated with PS vehicle (data not shown). a: P<0.05 vs. the respective secretin — group.

4.2. Role of trypsin in pancreatic ductal HCOj3; secretion

4.2.1. Expression of PAR-2 in guinea pig and human pancreata

PAR-2 was highly expressed in the luminal membrane of small intra- and
interlobular ducts (Figure 7A.i; cuboidal epithelial cells forming the proximal pancreatic
ducts), but was almost undetectable in the larger interlobular ducts (Figure 7A.ii; columnar
epithelial cells forming the distal pancreatic ducts). The localization of PAR-2 in the
human pancreas was identical to that in the guinea pig gland (Figure T7A.iv-vi).

Measurements of relative optical density confirmed the significant differences between the
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expression of PAR-2 in small intra- and interlobular ducts and the larger interlobular ducts

in both species (Figure 7C).
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Figure 7. Localization of PAR-2 on human and guinea pig pancreatic ducts. Representative
light micrographs of guinea pig (Ai-iii) and human (Aiv-vi) pancreas are shown. i) PAR-2 is
localized to the luminal membrane of PDEC in small intra- and interlobular ducts. ii) Large
interlobular ducts do not express PAR-2. iii) No primary antiserum. iv-v) Sections from human
pancreas exhibit a similar localization of PAR-2 compared to the guinea pig gland. vi) No primary
antiserum. B) Western blot analysis was used to determine the specificity of the PAR-2 antibody.
Polyclonal anti-PAR-2 demonstrated a single 44kDa band. C) Quantitative measurement of relative
optical densities (RO-Density) of small intra- and interlobular ducts (A.i, iv), and large interlobular
ducts (A.ii, v) are shown. n=12.*: P<0.05 vs. A.ii or A.v, respectively. Scale bar=100 pm on A.i,

4.2.2. Luminal administration of PAR-2-AP and trypsin induces dose-dependent
intracellular calcium signaling

Since PAR-2 expression was detected only on the luminal membrane of
intralobular duct cells, we used the microperfusion technique to see whether these
receptors can be activated by PAR-2 agonists. First, the experiments were performed at pH
7.4, in order to understand the effects of trypsin and PAR-2 under quasi physiological
conditions (Figure 8). The fluorescent images in Figure 8A clearly show that luminal
administration of PAR-2-AP increased [Ca?']; in perfused pancreatic ducts. The [Ca*'];

response was dose-dependent, and consisted of a peak which decayed in the continued
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presence of the agonist, possibly reflecting PAR-2 inactivation or depletion of intracellular
Ca®* stores (Figure 8B). Pre-treatment of PDEC with 10 pM PAR-2-ANT for 10 min
completely blocked the effects of 10 uM PAR-2-AP on [Ca?']; (Figure 8A,C). Removal of
extracellular Ca?* had no effect on the [Ca*']; rise evoked by luminal administration of 10
uM PAR-2-AP; however, pre-loading ducts with the Ca** chelator BAPTA-AM at 40 uM
totally blocked the response (Figure 8A,C).
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Figure 8. Effects of PAR-2-AP on [Ca?']; in microperfused guinea pig pancreatic ducts at pH
7.4. A) Light (1) and fluorescent ratio images (2 and 3) of microperfused pancreatic ducts showing
the effects of luminal administration of 10 uM PAR-2 activating peptide (PAR-2-AP), 10 uM
PAR-2 antagonist (PAR-2-ANT), or 40 uM BAPTA-AM on [Ca®;. Images were taken before (1
and 2) and after (3) exposure of the ducts to PAR-2-AP. B-C) Representative experimental traces
and summary data of the changes in [Ca®"];. n=5 for all groups,*: P<0.05 vs. 1 uM PAR-2-AP. **:
P<0.001 vs. 10 uM PAR-2-AP.

Trypsin also induced a dose-dependent [Ca?*]; elevation similar to that evoked by
PAR-2-AP (Figure 9B,C). 5 uM soybean trypsin inhibitor (SBTI), 10 uM PAR-2-ANT
and 40 pM BAPTA-AM totally blocked the rise in [Ca**]; (Figure 9A,C). These data show
that trypsin activates PAR-2 on the luminal membrane of the duct cell which leads to

release of Ca** from intracellular stores and an elevation of [Ca®'];.
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Figure 9. Effects of trypsin on [Ca?']; in microperfused guinea pig pancreatic ducts at pH 7.4.
A) Light (1) and fluorescent ratio images (2 and 3) of microperfused pancreatic ducts showing the
effects of luminal administration of 10 uM trypsin, 5 uM soybean trypsin inhibitor (SBTI) , 10 uM
PAR-2-ANT, or 40 uM BAPTA-AM on [Ca®'];.. Images were taken before (1 and 2) and after (3)
exposure of the ducts to trypsin. B-C) Representative experimental traces and summary data of the
changes in [Ca*;. n=>5 for all groups,*: P<0.05 vs. 0.1 uM trypsin. **: P<0.001 vs. 10 uM trypsin.

Since the pH of pancreatic juice can vary between approximately 6.8 and 8.0
(Behrendorf et al., 2010; Ishiguro et al., 1996), we also checked the effects of trypsin and
PAR-2-AP on [Ca?']; at these pH values (Figures 10 and 11, respectively). The elevations
of [Ca**]; at pH 6.8 and 8.0 were generally very similar to the changes observed at pH 7.4.
However, the [Ca®*']; rises evoked by 1 uM PAR-2-AP and 0.1 uM trypsin were
significantly lower at pH 6.8 compared to either pH 7.4 or 8.0 (Figure 12).
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pancreatic ducts at pH 6.8. A) Light (1) and fluorescent ratio images (2 and 3) of microperfused
pancreatic ducts showing the effects of luminal administration of 10 uM PAR-2-AP and 10 uM
PAR-2-ANT on [Ca?']; at pH 6.8. Images were taken before (1 and 2) and after (3) exposure of the
ducts to either PAR-2-AP or trypsin. An increase in [Ca®"]; is denoted by a change from a ““cold”’
colour (blue) to a ““warmer’” colour (yellow to red); see scale on the right. B-C) Representative
experimental traces and summary data of the changes in [Ca*]; at pH 6.8. D) The same protocol
was used to evaluate the effects of trypsin. E-F) Representative experimental traces and summary
data of the changes in [Ca®']; at pH 6.8. n=3-4, *: P<0.05 vs. 1 pM PAR-2-AP or 0.1 uM trypsin,
respectively. **: P<0.001 vs. 10 uM PAR-2-AP or 10 uM trypsin, respectively.



PAR-2-AP

PAR-2-AP
PAR-2 ANT

D.

TRYPSIN

TRYPSIN
+

PAR-2ANT E

32

e e
N »

Fas0/Faso

AF340/Fago

PAR2-AP
- 1M
- 10uM
- 100pM

3min

*
*
i
0.1 1 10 10
PAR-2
ANT

TRYPSIN (M)

TRYPSIN

- 0.1pM
- 1M
— 10pM

3min

*
. I .
]
0.1 1

10 10 TRYPSIN (uM)

PAR-2
ANT

Figure 11. Effects of PAR-2-AP and trypsin on [Ca®*]; in microperfused guinea pig pancreatic
ducts at pH 8.0. A) Light (1) and fluorescent ratio images (2 and 3) of microperfused pancreatic
ducts showing the effects of luminal administration of 10 uM PAR-2-AP and 10 uM PAR-2-ANT
on [Ca®*]; at pH 8.0. Images were taken before (1 and 2) and after (3) exposure of the ducts to
PAR-2-AP or trypsin. The colors are described in figure 10; see scale on the right. B-C)
Representative experimental traces and summary data of the changes in [Ca*]; at pH 8.0. D) The
same protocol was used to evaluate the effects of trypsin. E-F) Representative experimental traces
and summary data of the changes in [Ca*];. n=3-4, *: P<0.05 vs. 1 uM PAR-2-AP or 0.1uM
trypsin, respectively. **: P<0.001 vs. 10 uM PAR-2-AP or 10 uM trypsin, respectively.
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Figure 12. Summary of the effects of PAR-2-AP and trypsin on [Ca®] in
microperfused guinea pig pancreatic ducts at different extracellular pH values. A) The [Ca®'];

elevation evoked by 1 uM PAR-2-AP and B) 0.1 uM trypsin at different extracellular pH values
(6.8; 7.4; 8.0). n=3-4, *: P<0.05 vs. at pH 6.8.

4.2.3. Luminal exposure to PAR-2-AP and trypsin evoke intracellular alkalosis in
guinea pig PDEC

Figure 13 shows pH; recordings from microperfused pancreatic ducts. Luminal
application of the CFTR inhibitor-172 (CFTRinh-172, 10 uM) and the anion exchanger
inhibitor H,DIDS (500 uM) induced an intracellular alkalization in PDEC (Figure 13A).
These data indicate that when HCO3™ efflux across the luminal membrane of PDEC (i.e.
HCOj3" secretion) is blocked an elevation of duct cell pH; occurs, presumably because the
basolateral transporters continue to move HCOj3" into the duct cell. Note also that the rise in
pH; evoked by the inhibitors is not sustained and begins to reverse before the inhibitors are
withdrawn (Figure 13A), which might be explained by the regulation of pH; by basolateral
acid/base transporters.

Both luminal PAR-2-AP and trypsin induced a dose-dependent elevation of pH;
(Figure 13B, C), suggesting that activation of PAR-2 inhibits HCO3™ efflux across the
apical membrane of the duct cell. Pre-incubation of PDEC with either 10 uM PAR-2-ANT
or 5 uM SBTI or 40 uM BAPTA-AM for 30 min totally blocked the effect of trypsin on
pH; (Figure 13D). The inhibitory effect of the Ca** chelator, BAPTA-AM, suggests that the
actions of trypsin and PAR-2-AP on pH; are mediated by the rise in [Ca®*]; that they evoke
(Figures 8, 9). Therefore, in this case, the transient nature of the pH; response may reflect
the transient effect that PAR-2 activators have on [Ca®"]; (Figures 8B, 9B), as well as pH;

regulation by basolateral acid/base transporters.
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Next we tested the effects of trypsin on pH; in Cl-free conditions and during
pharmacological inhibition of the luminal anion exchangers and/or CFTR (Figure 13E-H).
Luminal CI'-free conditions increased the pH; of PDEC presumably by driving HCO3
influx on the apical anion exchangers (Figure 13E). Note that luminal administration of
trypsin further elevated pH; in CI" free conditions (Figure 13E), and also in the presence of
H.DIDS (Figure 13F) and CFTRinh-127 (Figure 13G). However, pre-treatment of ducts
with a combination of H,DIDS and CFTRinh-172 markedly reduced the effect of trypsin
on pH; (Figure 13H).
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Figure 13. Effects of PAR-2-AP and trypsin on pH; in microperfused guinea pig pancreatic
ducts. Representative pH; traces showing the effects of luminal administration of different agents
in microperfused pancreatic ducts. A) 10 uM CFTRinh-172 and/or 500 uM H,DIDS caused
alkalization of pH;. B) PAR-2-AP and C) trypsin induced a dose-dependent pH; elevation, D)
Preincubation of ductal cells with 10 pM PAR-2-ANT or 5 uM SBTI or 40 uM BAPTA-AM
totally blocked the alkalization caused by 10 uM trypsin. E) Removal of luminal CI" or F)
administration of H,DIDS (500 uM) decreased, but did not totally abolish, the effects of 10 uM
trypsin on pH;. G) Pretreatment with 10 uM CFTRinh-172 also decreased the effects of trypsin (10
uM) on pH;. H) Simultaneous administration of H,DIDS and CFTRinh-172 strongly inhibited the
effect of 10 uM trypsin.

Figure 14A-C is a summary of the pH; experiments. Trypsin (Figure 14A) and
PAR-2- AP (Figure 14B) both induced statistically significant, dose-dependent rises in pH;
and these effects were blocked by PAR-2-ANT, SBTI and BAPTA-AM. Exposure of the
ducts to luminal CI" free conditions, H,DIDS, CFTRinh-172 or a combination of the
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inhibitors also induced an intracellular alkalosis (Figure 14C). Also shown in Figure 14C is
the additional, statistically significant, rise in pH; caused by trypsin in ducts exposed to CI*-
free conditions and the individual inhibitors. However, when ducts were exposed to both
CFTRinh-172 and H,DIDS simultaneously, the effect of trypsin on pH; was markedly
reduced although it remained statistically significant (Figure 14 C). We interpret these
results as indicating that trypsin inhibits both CI" dependent (i.e. anion exchanger mediated;
revealed when CFTR is blocked by CFTRinh-172) and CI" independent (i.e. CFTR
mediated; revealed in CI’-free conditions and when the luminal exchangers are blocked by
H,DIDS) HCOj3" secretory mechanisms in PDEC. Reduced HCOj3" secretion will lead to a

decrease in intraductal pH.
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Figure 14. A-B) Summary of the effects of PAR-2-AP and trypsin on pH;changes. ApHpax Was
calculated from the experiments shown in Figure 13. C) Effects of Cl-free conditions. Cl'-free
conditions, H,DIDS, CFTRinh-172 and a combination of the inhibitors all induced an intracellular
alkalosis. Trypsin further increased the alkalinisation of pH; although the effect was markedly
reduced when both H,DIDS and CFTRinh-172 were present. n=4-5 for all groups. A)*: P<0.05 vs.
0.1 uM trypsin; **: P<0.001 vs. 10 uM trypsin, B)*: P<0.05 vs. 0.1 uM PAR-2-AP; **: P<0.001
vs. 10 uM PAR-2-AP, C)*: P<0.05 vs. the respective filled column.

To gain insight into the mechanism by which trypsin inhibits HCO3™ secretion, we
next investigated the effects of trypsin and PAR-2-AP on basal and forskolin-activated

CFTR currents using the whole cell configuration of the patch clamp technique. Exposure
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of PDEC to 10 uM trypsin did not affect the basal currents; however, administration of
either 10 uM PAR-2-AP or 10 uM trypsin inhibited forskolin-stimulated CFTR currents

(data not shown).
4.2.4. PAR-2 is down-regulated in patients suffering from chronic pancreatitis

It has been documented that there is activated trypsin in the pancreatic ductal lumen
in chronic pancreatitis in human (Fedail et al., 1979; Kukor et al., 2002; Tympner, 1981,
Tympner & Rosch, 1978). If trypsin activity is elevated in the duct lumen, PAR-2 down-
regulation should occur, which could be due either: (i) to changes in PAR-2 mRNA

transcription and/or (ii) due to receptor internalization and translocation to the cytoplasm.
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Figure 15. Analyses of PAR-2 expression in human pancreatic samples. A. i-iv) PAR-2
expressing cells were visualized by immunohistochemistry. i) Representative section of normal

human pancreas. ii) No primary antiserum. iii) Representative section of human pancreas from a
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patient suffering from chronic pancreatitis (CP). iv) No primary antiserum. B) Relative optical
density of immunohistochemistry. n=15,*: P<0.05 vs. CP membrane. C) Real-time RT-PCR
analysis of PAR-2 mRNA expression of human pancreas. Data are given in 22dCT. n=15,*: P<0.05
vs. CP. Scale bar=50 pum.

Our data show a marked reduction in membranous PAR-2 protein level, but no

significant changes in cytoplasmic PAR-2 protein in chronic pancreatitis (Figure 15A. i-iv,
B). Furthermore, PAR-2 mRNA level was markedly reduced in chronic pancreatitis
(Figure 15C), suggesting that reduced PAR-2 mRNA transcription may cause PAR-2

down-regulation in chronic pancreatitis.

4.2.5. Luminal exposure to R122H mutant cationic trypsin induces elevation of
intracellular calcium concentration and evokes alkalosis in PDEC

It has been demonstrated that mutations in cationic trypsinogen increase the risk of
chronic pancreatitis, most likely because of the enhanced autoactivation exhibited by the
mutant trypsinogens (Sahin-Té6th & Taéth, 2000). Here we tested whether the most common
mutation in cationic trypsin, R122H, affected the protease’s ability to interact with PAR-2.
Figure 16 A-B shows that 1 um of R122H cationic trypsin causes comparable changes in
pH; and [Ca®*]i to 0.4 uM wild-type trypsin, suggesting that a trypsin-mediated inhibition
of HCOj3" secretion could play a role in the pathogenesis of hereditary as well as chronic

pancreatitis.
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Figure 16. R122H cationic trypsin causes comparable changes in pH; and [Ca?']; to
wild-type trypsin. Representative A) pH; and B) [Ca®];. measurements using luminal
administration of normal and R122H mutant cationic trypsin in microperfused guinea pig
pancreatic ducts. n=5 for all experiments.

4.2.6. Activation of PAR-2 is diminished in PAR-2 KO mice

Finally, we investigated the effects of both PAR-2-AP and trypsin on PDEC
isolated from WT and PAR-2 KO mice (Figure 18A-B). First we confirmed using
immunohistochemistry that WT mice do, whereas PAR-2 KO mice do not express PAR-2
in their PDEC (Figure 17A-D). Accordingly, our functional data clearly show that the pH;
and [Ca®]; responses to luminal administration of either trypsin or PAR-2-AP were
markedly diminished in PAR-2 KO PDEC (Figure 18A-B).
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Figure 17. Expression of PAR-2 on pancreatic ductal cells of WT and PAR-2 KO mice. PAR-2
expressing cells were visualized by immunohistochemistry as described in Figure 7. A)
Representative section of the pancreas removed from WT mice. B) Section without primary
antiserum. C) Pancreas removed from PAR-2 KO mice. D) Section without primary antiserum.
Scale bar=50 pm.
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Figure 18. Effects of PAR-2-AP and trypsin on pH; and [Ca®"]; in microperfused pancreatic
ducts isolated from WT and PAR-2 KO mice. A) pH; and B) [Ca®].. measurements using
luminal administration of trypsin in microperfused pancreatic ducts isolated from PAR-2 KO (red
curve) and PAR-2 WT mice (black curve). n=5 for all experiments,*;: P<0.05 vs. 10 uM trypsin
PAR-2WT;

**: P<0.05 vs. 10 uM PAR-2-AP PAR-2WT.
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5. DISCUSSION

In the present work we described the roles of NHERF-1 and trypsin in the
regulation of pancreatic ductal HCOj3" secretion.

5.1. The effect of NHERF-1 on pancreatic ductal HCO3; and fuid
secretion

We have demonstrated that NHERF-1 mRNA is highly expressed in mouse
pancreatic ducts. Furthermore, the genetic deletion of NHERF-1 greatly reduced the
translocation of CFTR to the luminal ductal cell membrane and also decreased both in vitro
and in vivo pancreatic HCO3™ and fluid secretion. Both basal and cAMP-stimulated (by
forskolin or secretin) secretion were affected in the transgenic animals, but this effect was
not caused by alterations in pancreatic blood flow.

Localization of CFTR to the apical plasma membrane of epithelial cells is critical
for vectorial transport of chloride in a variety of epithelia, including the airway, pancreas,
intestine, and kidney (Moyer et al., 1999). NHERF-1 has been shown to play an important
role in the apical trafficking, targeting, membrane retention and activation of several
membrane proteins such as CFTR (Raghuram et al., 2001). These effects on CFTR were
shown to require PDZ domain interactions with NHERF-1 in several studies (Milewski et
al., 2001; Moyer et al., 1999; Swiatecka-Urban et al., 2002), although other similar studies
failed to confirm these results (Benharouga et al., 2003; Ostedgaard et al., 2003). Moyer et
al. (1999) identified the last 3 amino acids in the C-terminus of CFTR (T-R-L) comprise a
PDZ-interacting domain that is required for the polarization of CFTR to the apical plasma
membrane in human airway and Kidney epithelial cells. Milewski et al. (2001) also
demonstrated that the cytoplasmic C-terminal tail (PDZ-interacting sequence) of CFTR
contains signals sufficient for its localization to the apical membrane in polarized epithelial
cells. The C-terminal amino acids of several other integral membrane proteins are
suspected of being an essential part of a multi-component signal that mediates apical or
basolateral localization in epithelial cells. In contrast, Benharouga et al. (2003) showed that
the inhibition of NHERF binding has no discernible effect on the apical localization of
CFTR in polarized tracheal, pancreatic, intestinal, and kidney epithelia and did not
influence the metabolic stability or the cAMP-dependent protein kinase-activated CI°

channel conductance in polarized pancreatic epithelia. These results indicate that apical
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localization of CFTR involves sorting signals other than the C-terminal 26 amino acid
residues and the PDZ-binding motif in differentiated epithelia (Benharouga et al., 2003). In
accordance with our findings, CFTR mutations causing cystic fibrosis that impair the
stability of the CI" channel in the plasma membrane also result in markedly reduced HCO3’
and fluid secretion (Lukacs & Verkman, 2012). Of course we cannot exclude the direct or
indirect (e.g. via CFTR) effects of NHERF-1 deletion on other transporters involved in
pancreatic HCO3 and fluid secretion, such as anion exchangers DRA and PAT-1. Of note,
both DRA and PAT-1 are known to have PDZ domain binding motifs (Lamprecht &
Seidler, 2006), and to bind to NHERF-1 (Lamprecht et al., 2002; Lohi et al., 2003;
Rossmann et al., 2005). In addition, activation of CFTR by SLC26 transporters was shown
to be facilitated by PDZ ligands (Ko et al., 2004). We could not test the expression of
PAT-1 and DRA in the apical membrane of pancreatic ducts, because the antibodies that
we have available also stain the apical membranes in PAT-1 KO and DRA-KO pancreatic
ducts, respectively. Nevertheless, the reduced expression of CFTR in the apical membrane
in NHERF-1 KO pancreatic ducts will likely decrease the activities of PAT-1 and DRA
(Chernova et al., 2003; Rakonczay et al., 2008).

Several studies have shown that binding of CFTR to NHERF proteins may also be
important for the regulation of CFTR activity. Broere et al. (2007) and Singh et al. (2009)
have demonstrated that NHERF-1 is required for full activation of transepithelial CI" and
HCOj3" secretion by cCAMP- and cGMP-linked agonists in the duodenum and jejunum. This
reduced activation of anion currents in NHERF-1 KO mice seemed to be independent of
the total amount of CFTR protein expression in epithelial cells, but did appear to be due to
a defect in apical targeting and/or apical retention of CFTR (Broere et al., 2007). In
addition, the NHERF-1 assisted formation of receptor-transporter signalling complexes in
the apical membrane were disrupted (Singh et al., 2009). Interestingly, NHERF-1 deletion
did not cause a generalized CFTR dysfunction, because in the NHERF-1 deficient ileum
where CFTR is strongly crypt located (Jakab et al., 2011), whereas NHERF-1 expression
shows a gradient with high expression in the villi, CFTR-mediated I response to forskolin
was not different in NHERF-1 KO and WT mucosa (Broere et al., 2007). A recent study
has shown that CFTR activity is also dependent on NHERF-1 regulated cAMP
compartmentalization and local protein kinase A activity in human airway epithelial cells
(Monterisi et al., 2012). The particularly high expression of NHERF-1, as well as CFTR in
pancreatic ducts, compared to other NHERFs and SLC26 anion transporters is quite

different from the relative expression levels of these transporters and the NHERFs in the
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small intestine (Hillesheim et al., 2007; Singh et al., 2010). These findings suggested to us

that CFTR-NHERF-1 interaction may be crucial to pancreatic ductal secretion.

5.2. The effect of trypsin on pancreatic ductal HCO3™ secretion

Until quite recently, the pathophysiological relevance of pancreatic ducts in acute
pancreatitis has been neglected. However, there are important lines of evidence supporting
the idea that pancreatic ducts play a role in the pathogenesis of pancreatitis: i) ductal fluid
and HCOs" secretion are compromised in acute and chronic pancreatitis (Cavestro et al.,
2010; Hegyi & Rakonczay, 2010), ii) one of the main endpoints of chronic pancreatitis is
the destruction of the ductal system (Ectors et al., 1997; Kloppel et al., 2005), iii)
mutations in CFTR may increase the risk of pancreatitis (Cavestro et al., 2010; Hegyi et
al., 2011; Hegyi & Rakonczay, 2010; Nousia-Arvanitakis, 1999; Weiss et al., 2009), and
iv) etiological factors for pancreatitis, such as bile acids or ethanol in high concentration,
inhibit pancreatic ductal HCOj3™ secretion (Maléth et al., 2011; Venglovecz et al., 2008;
Yamamoto et al., 2003) Despite the above mentioned data, the role of PDEC in the
development of pancreatitis has received relatively little attention (Lee & Muallem, 2008).

There are important species differences regarding the localization of PAR-2 in
pancreatic ducts and in the effect of PAR-2 activation on HCOj3™ secretion. For example,
CAPAN-1 cells (Namkung et al., 2003) and dog PDEC (Nguyen et al., 1999) express
PAR-2 only on the basolateral membrane, whereas bovine PDEC express PAR-2 on the
luminal membrane (Alvarez et al., 2004). Therefore, one of our aims was to determine
which animal model best mimics human PAR-2 expression and thus would be the best for
studying the effects of trypsin on PDEC function. Our results showed that in the human
pancreas PAR-2 is localized to the luminal membrane of small proximal pancreatic ducts,
which are probably the major site of HCO3™ and fluid secretion. Since CAPAN-1 cells and
dog PDEC express PAR-2 only on the basolateral membrane, they do not mimic the
human situation. Rats or mice are also not good models for the human gland because they
secrete only 70-80 mM HCO3™ (Padfield et al., 1989; Steward et al., 2005). However, the
guinea pig pancreas secretes ~140 mM HCOj3', as does the human gland, and the regulation
of HCOj3" secretion is similar in both species (Padfield et al., 1989; Stewart et al., 2009).
Since PAR-2 expression in the guinea pig pancreas was localized to the luminal membrane

of duct cells, we performed our experiments on isolated guinea pig ducts.
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First we characterized the effects of PAR-2 activation by trypsin and PAR-2-AP on
PDEC. Previously, it has been shown that activation of the G-protein-coupled PAR-2 by
proteinases requires proteolytic cleavage of the receptor, which is followed by an elevation
of [Ca®*]i (Bohm et al., 1996; Hoxie et al., 1993; Vergnolle, 2000). As expected, luminal
trypsin and PAR2-AP caused a dose-dependent elevation of [Ca®*]; in guinea pig ducts.
Importantly, the trypsin inhibitor SBTI, PAR-2-ANT and the intracellular Ca** chelator
BAPTA-AM all completely blocked the elevation of [Ca®];, whereas removal of
extracellular Ca?* had no effect. Acidosis (pH 6.8) also slightly reduced the changes in
[Ca?*]i evoked by trypsin, most probably due to reduced cleavage activity of trypsin at an
acidic pH. Next we characterized the effects of PAR-2 activation on pH;. Luminal
application of trypsin and PAR-2-AP both caused a dose-dependent intracellular alkalosis
in PDEC. This alkalosis is most likely explained either by a reduction in the rate of HCO3
efflux (i.e. secretion) across the apical membrane of PDEC or by an increase in the rate of
HCOj; influx at the basolateral side of the cell. We favour the former explanation as
luminal application of the anion exchange inhibitor, H,DIDS, or the CFTR inhibitor,
CFTRIinh-172, produced a similar intracellular alkalization (Hegyi et al., 2005; Stewart et
al., 2009). Thus, PAR-2 activation inhibits HCOj3™ secretion in PDEC by inhibiting SLC26
anion exchangers and CFTR expressed on the apical membrane of the duct cell. In
similarity with the [Ca®*]; signals, the effect of PAR-2 activation on pH; was blocked by
SBTI, PAR-2-ANT and BAPTA-AM; the action of BAPTA-AM suggesting that the
inhibition of HCO3™ secretion follows from the rise in [Ca®*];. Interestingly, an elevation of
[Ca®]i is crucial for both stimulatory [(e.g. acetylcholine (Argent, 2006), low
concentrations of bile acids (Venglovecz et al., 2008) and ethanol (Yamamoto et al.,
2003)] and inhibitory pathways (e.g. basolateral ATP, arginine vasopressin and high
concentrations of ethanol) that control HCO3" secretion by PDEC. Such marked differences
in the outcome of [Ca®']; signals in PDEC probably reflect differences in the source of
Ca®* and/or in the intracellular compartmentalisation of [Ca®']; signals generated by
different secretory agonists and antagonists.

Remarkably, trypsin was still able to evoke an elevation of pH; when CI" was
removed from the duct lumen and when PDEC were pre-treated with H,DIDS, conditions
that should inhibit HCOj3™ efflux on the exchanger. These results suggested the involvement
of CFTR, the only other known HCOj3™ efflux pathway on the apical membrane, in the
inhibitory effect of trypsin. This hypothesis was confirmed by patch clamp experiments in

which trypsin decreased CFTR whole cell currents in isolated guinea pig PDEC by 50-
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60%. Finally, the fact that the trypsin-induced alkalinisation was completely blocked by a
combination of CFTRinh-172 and H,DIDS confirms the involvement of both CFTR and
SLC26 anion exchangers. Our conclusion from these pH; and patch clamp data is that
PAR-2 activation inhibits both the SLC26 anion exchanger (probably PAT-1, Ko et al.,
2002) as DRA is only weakly inhibited by disulfonic stilbenes (Chernova et al., 2003, Ko
et al., 2002) and CFTR expressed on the apical membrane of the duct cell.

The pH of pancreatic juice [and therefore the luminal pH (pH.) in the duct] can
vary between approximately 6.8 and 8.0. It has recently been shown that protons co-
released during exocytosis cause significant acidosis (up to 1 pH unit) in the lumen of the
acini (Behrendorff et al., 2010). However, Ishiguro et al. (1998) have clearly shown that
the pH_ in pancreatic ducts is dependent on the rate of HCO3 secretion. pH_ can be
elevated from 7.2 to 8.5 by stimulation with secretin or forskolin and this effect was
strictly dependent on the presence of HCOj3™ (Ishiguro et al., 1999; Ishiguro et al., 1998;
Ishiguro et al., 1996). Also, inhibition of ductal HCO;3; secretion with H,DIDS can
decrease the pH_ to below 8.0 (Ishiguro et al., 1998). In view of these results, we tested
whether trypsinogen autoactivation was affected by pH over the range 6.0 to 8.5.
Autoactivation of trypsinogen was relatively slow at pH 8.5, but decreasing the pH from
8.5 to 7 progressively stimulated autoactivation (data not shown). These results suggest
that under physiological conditions HCO3™ secretion by PDEC is not only important for
elevating the pH in the duodenum, but also for keeping pancreatic enzymes in an inactive
state in the ductal system of the gland.

Receptor down-regulation is a phenomenon that occurs in the continued presence of
an agonist and leads to a reduction in the cell’s sensitivity to the agonist. Potentially, there
are two mechanisms that could underlie receptor down-regulation of PAR-2: i) after
proteolytic activation, the PAR-2 is internalized by a clathrin-mediated mechanism and
then targeted to lysosomes (Hoxie et al., 1993), and ii) if trypsin is present for a longer
time in the lumen, PAR-2 may be down-regulated at the transcriptional level. In this study,
we provide evidence that the second mechanism, transcriptional down-regulation, explains
the reduced expression of PAR-2 seen in chronic pancreatitis.

Conflicting data can be found in the literature concerning the role of PAR-2 in
acute pancreatitis. Namkung et al. (2004) concluded that PAR-2 might play a protective
role in pancreatitis when they found that PAR-2 activation reduces the severity of rat
secretagogue-induced pancreatitis. In contrast to these data, Singh et al. (2007) showed that

in secretagogue-induced experimental pancreatitis, PAR-2 deletion is associated with a
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more severe pancreatitis. Although Laukkarinen et al. (2008) confirmed these results of
Singh in cerulein-induced pancreatitis, they also clearly showed that in taurocholate-
induced pancreatitis, PAR-2 deletion markedly reduced the severity of the disease. There is
no evidence to suggest that clinical pancreatitis is evoked by supramaximal secretagoge
stimulation; however, the taurocholate-induced pancreatitis model may mimic the clinical
situation. Therefore, Laukkarinen et al. (2008) speculated that PAR-2 activation promotes
the worsening of clinical pancreatitis and our data are consistent with that hypothesis.

Besides the clear pathophysiological role of the trypsin-PAR-2 interaction in
chronic pancreatitis, there is still a debate as to why PAR-2 is localized to the luminal
membrane of PDEC in small ducts close to the acinar cells. What could the physiological
role of this PAR-2 be? A number of agents have been shown to have dual effects on PDEC
at different concentrations. For example, bile acids in low concentrations stimulate, but in
high concentrations inhibit HCO3™ secretion (Venglovecz et al., 2008). The same applies to
ethanol (Yamamoto et al., 2003). Under physiological conditions, trypsin inhibitors are co-
released from acinar cells with trypsinogen and should block the activity of any trypsin that
is generated spontaneously. Therefore, only very small amounts of active trypsin, if any,
will be present in the duct lumen under normal conditions. However, there remains a
possibility that very small amounts of active trypsin (i.e. concentrations below 0.1 uM that
would not cause a [Ca*']; elevation or pH change) could bind to PAR-2 on the luminal
membrane of the ducts and augment other stimulatory mechanisms so as to enhance
flushing of digestive enzymes down the ductal tree.

In conclusion, we suggest for the first time that one of the physiological roles of
HCOj3 secretion by PDEC is to curtail trypsinogen autoactivation within the pancreatic
ductal system. However, if trypsin is present in the duct lumen (as may occur during the
early stages of pancreatitis due to leakage from acinar cells), PAR-2 on the duct cell will
be activated leading to Ca®* release from intracellular stores and a rise in cytosolic Ca**
concentration. This causes inhibition of the luminal anion exchangers and CFTR reducing
HCOj3" secretion by the duct cell. The fall in HCOj3 secretion will increase the transit time
of zymogens down the duct tree and decrease pH_ both of which will promote the
autoactivation of trypsinogen. The trypsin so formed will further inhibit HCO3™ transport
leading to a vicious cycle generating further falls in pH_ and enhanced trypsinogen
activation, which will favour development of the pancreatitis. Finally, the R122H mutant

cationic trypsin also elevated [Ca®*]; and pH; in duct cells, suggesting that this mechanism
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may be particularly important in hereditary pancreatitis in which the mutant trypsinogens
more readily autoactivate (Sahin-To6th & Taéth, 2000).

6. SUMMARY

Introduction: The main function of pancreatic ductal epithelial cells (PDEC) is to secrete
an alkaline, HCOg3™rich isotonic fluid. HCO3" secretion across the apical membrane of
PDEC is thought to be mediated by cystic fibrosis transmembrane conductance regulator
CI" channel (CFTR) and solute carrier family 26 (SLC26) anion exchangers. Na'/H"
exchanger regulatory factor isoform-1 (NHERF-1) is a cytosolic adaptor protein, which
anchors CFTR on the apical membrane of epithelial cells. Pancreatic ducts not only have
prominent roles physiologically, but also pathophysiologically. There is substantial
evidence that the early intra-acinar or luminal activation of trypsinogen to trypsin is a key
and common event in the development of acute pancreatitis. Several studies have
demonstrated that trypsin stimulates digestive enzyme secretion from acinar cells via
protease-activated receptor 2 (PAR-2), whereas the effect of trypsin on PDEC is somewhat
controversial. Therefore, it is crucially important to understand the effects of trypsin on
PDEC.

The aims of this work were to evaluate the role of NHERF-1 in pancreatic ductal
localization of CFTR, and in HCOj3™ and fluid secretion and to investigate the effects of
trypsin on pancreatic ductal HCO3" secretion.

Methods: Guinea pigs, human pancreatic tissue, wild-type (WT) and NHERF-1 knock-out
(KO) mice were used for experiments. Intra- and interlobular pancreatic ducts were
isolated from the animals. mMRNA expression was detected by real-time reverse
transcription polymerase chain reaction. The expression of CFTR and PAR-2 were
analysed by immunohistochemistry. Pancreatic juice was collected from anesthetized mice
in basal and secretin-stimulated conditions. Fluid secretion into the closed luminal space of
the ducts was analysed using a swelling technique. Intracellular Ca®* concentration
([Ca*'];) and intracellular pH (pH;) were determined by microfluorometry.

Results: CFTR, down-regulated in adenoma (DRA), putative anion transporter (PAT-1),
NHERF-1 and NHERF-2, but not NHERF-3 mRNA were expressed in isolated pancreatic
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ducts of WT mice. Apical CFTR staining was markedly reduced in the pancreatic ducts of
mice lacking NHERF-1. The volume of pancreatic juice was significantly reduced in
NHERF-1 KO vs. WT mice under both basal and secretin-stimulated conditions in vivo.
Accordingly, the HCO3™ and fluid secretory rate was significantly lower in ducts from KO
vs. WT mice in standard HCO3/CO- solution in vitro. PAR-2 was localized to the apical
membrane of PDEC both in the human and in the guinea pig pancreas. Trypsin and PAR-2
activating peptide (PAR-2 AP) induced dose-dependent elevation of [Ca’]i and
alkalisation of pH;, and inhibited HCOj3" secretion via the luminal anion exchanger and the
CFTR. Our functional data clearly show that the pH; and [Ca®*]; responses to luminal
administration of either trypsin or PAR-2-AP were markedly diminished in PAR-2 KO
PDEC. 1 pm of R122H cationic trypsin causes comparable changes in pH; and [Ca®*]; to
0.4 uM wild-type trypsin. Finally, PAR-2 expression was strongly down-regulated in the
pancreatic ducts of patients suffering from chronic or acute pancreatitis, consistent with
elevated intraductal trypsin activity in these diseases.

Conclusion: NHERF-1 is required for the localization of CFTR on the apical membrane of
PDEC. NHERF-1 is involved in both pancreatic ductal HCO3™ and fluid secretion. Both
basal and cAMP-stimulated secretion was affected in the transgenic animals, but this effect
was not caused by alterations in pancreatic blood flow.

Under pathophysiological conditions, if tryspin is present in the duct lumen, trypsin
compromises pancreatic ductal bicarbonate secretion via a PAR-2 dependent inhibition of
the apical anion exchanger and CFTR. This may contribute to the development of chronic

pancreatitis.
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9. ANNEX



A NAY/H" CSERELO SZABALYOZO FAKTOR 1 ES A
TRIPSZIN SZEREPE A HASNYALMIRIGY
VEZETEKSEJTEK BIKARBONAT SZEKRECIOJABAN

Tézis kivonat

BEVEZETES

A pankreasz vezetéksejtek o feladata egy izotonias, HCO3'-ban gazdag folyadék
szekrécioja, mely kimossa az acinusok altal termelt emésztdenzimeket a pankreasz duktalis
rendszerébdl, illetve a duodenumba jutva semlegesiti a gyomornedv savas pH-jat. A HCO3’
a pankreasz duktalis epithel sejtek (PDEC) bazolateralis membranjan keresztiil jut be a
sejtbe, majd a luminalis membranon elhelyezkedé SLC26 csaladba tartozo anion cserélok
(SLC26A3, down regulated in adenoma, DRA ¢s SLC26A6, putative anion transporter 1,
PAT-1) és a cisztas fibrozis transzmembran konduktancia regulator (CFTR) egyiittes
milkodésével szekretalodik a pankreasz vezeték lumenébe. A szekrécid pontos
mechanizmusa nem ismert, de a CFTR alapvetd szerepe a folyamatban bizonyitott, igy a
CFTR megfeleld lokalizacidja a PDEC luminalis membranjan alapvetd fontossagu. A
Na*/H" cserélé szabalyozo faktor 1 (NHERF-1) egy citoszolikus adaptor fehérje, amely
szamos transzporter és csatorna (pl. CFTR) megfelel6 lokalizaciojat biztositja az epithel
sejteken. Az NHERF-1 szerepét korabban mar bizonyitottak tobb fiziologiai és
patofizioldgiai folyamatban, de a pankreasz vonatkozasaban még nem vizsgaltak.

A pankreasz vezetéksejtek az élettani folyamatokban betoltott szerepiik mellett,
nagy jelentdséggel birnak a korélettani folyamatok tekintetében is. Az elmult években
szamos tanulmany jelent meg, mely kimutatta, hogy a duktalis rendszer alapvetd szerepet
jatszhat az akut pankreatitisz kialakulasaban, mint a toxikus agensek (epesavak, etanol,
tripszin) tamadasanak elsédleges célpontja. A pankreasz duktuszok pankreatitiszben
betdltott szerepének tisztazasa érdekében elkeriilhetetlen a tripszin hatdsanak vizsgalata. A
tripszin a pankredsz legfdbb emésztdenzime, amely inaktiv forméban, zimogénként
termelddik, és fiziologias koriilmények kozott a vékonybélben, az enteropeptidaz hatasara
aktivalodik. Koros koriilmények kozott a tripszinogén a pankredszon beliil aktivalédhat,

mely gyulladas kialakuldsdhoz vezethet. Az eddig megjelent kozlemények alapjan a



tripszin hatdsa a PDEC-en ellentmondésos. Szdmos eredmény azt mutatja, hogy a tripszin
aktivalja az ioncsatorndk (Ca’*-aktivalta CI" és K csatorna) miikodését kutyaban, és
serkenti a HCO3™ szekréciot CAPAN-1 sejtekben. Ezzel ellentétben kimutattak, hogy a
tripszin dozis-fliggden gatolja a HCO3™ szekréciot marha PDEC-n.

CELKITUZESEK

crer

fiziologias és patofiziologids koriilmények kozott. Specifikus céljaink:

1. A NHERF-1 szerepének vizsgdlata a CFTR lokaliziciéjdban a pankredsz

vezetéksejteken, valamint a HCOj3™ €s folyadék szekrécioban.

2. A tripszin hatasanak vizsgalata a hasnyalmirigy vezetéksejtek HCO;3

szekrécidjaban.
ANYAGOK ES MODSZEREK

Kisérleteinkhez tengerimalacokat, illetve vad-tipusu (VT) és knock-out (KO)
egereket hasznaltunk. A vizsgalatokhoz inter- és intralobularis duktuszokat izolaltunk. Az
mRNS expresszios mintdzat meghatarozadsahoz valos-ideji polimerdz lancreakciot
alkalmaztunk. A NHERF-1, CFTR és proteaz aktivalta receptor 2 (PAR-2) lokalizaci6jat a
pankreaszban immunhisztokémia segitségével hataroztuk meg. Az intracellularis pH (pH;)
és Ca” koncentracio ([Ca’']) méréséhez mikrofluorimetriat ¢és mikroperfuziot
hasznaltunk. A folyadékszekréci6 mértékét hizasos technika felhasznalasaval mértiik in
vitro. Uretannal altatott allatokbol pankreasz nedvet gyijtottiink in vivo. A szekretin
hatasat a pankreasz mikrokeringésére intravitdl video mikroszkopiaval vizsgaltuk. A

statisztikai analizishez a SigmaPlot szofvert hasznaltuk.
EREDMENYEK

I. A NHERF-1 szerepe a hasnyalmirigy vezetéksejtek HCO;3; és folyadék

srers

1. Kisérleteink soran kimutattuk, hogy a CFTR, DRA, PAT-1, NHERF-1 és
NHERF-2 mRNS expresszalodik a VT egerekb6l izolalt pankreasz duktuszokon.

2. A NHERF-1 fehérje nagyfokll expressziot mutat a VT egerek PDEC apikalis
membranjan, mig a pankredsz acinus sejteken gyengén festddik. NHERF-1 KO



egerekben nem lathat6 NHERF-1 festddés. A CFTR mind a VT, mind a
NHERF-1 KO éllatok pankreasz acinus és duktusz sejtjein is detektalhato.
NHERF-1 hidnyaban a CFTR festédés erdsen csokken a pankreasz
duktuszokban a VT allatokhoz képest.

Mindharom altalunk haszndlt modszerrel (inhibitor stop, regeneracio
alkal6zisbol és luminalis Cl' elvonas) kimutattuk, hogy a pankredsz duktalis
HCOj3 szekrécid szignifikansan csokkent a NHERF-1 KO 4allatokban, a VT

egerekben mért értékhez képest.

A folyadékszekrécios kisérletek hasonld eredményt mutattak. Mind alap, mind
stimulalt (szekretin/forskolin) korilmények kozott jelentds mértékben
alacsonyabb folyadékszekrécios értéket kaptunk NHERF-1 KO egerekben in

vitro és in vivo egyarant.

A pankreasz mikrokeringésének tekintetében sem alap, sem szekretin-stimulalt
allapotban nem taldltunk szignifikans kiilonbséget a VT ¢és NHERF-1 KO
allatok kozott.

Il. A tripszin hatasanak vizsgalata pankreasz vezetéksejtek HCOj3 szekréciojaban

1.

2.

3.

4.

Kisérleteink soran megallapitottuk, hogy a pankreasz acinusok kozelében 1€vo
intralobularis (kis) duktuszok luminalis membranja fel61 PAR-2 receptorok

expresszalddnak mind a tengerimalac, mind az ember esetében.

A luminalis membréan fel6l adott PAR-2 aktivalo peptid (PAR-2-AP) dozis-
fliggd [Ca’*]i emelkedést okozott, amely emelkedés Ca®* kelator BAPTA-AM
adasaval és PAR-2 antagonistaval (PAR-2-ant) kivédheté volt. Az

extracellularis Ca®* elvonidsa nem volt hatidssal a PAR-2-AP 4ltal kivaltott

[Ca®*]i emelkedésre.

A tripszin ugyancsak dézis-fiiggé [Ca®']; emelkedést okozott a luminalis oldal
felél, amely teljesen blokkolhato volt Ca®* kelator BAPTA-AM adaséval, PAR-
2-ant-val és szojabab tripszin inhibitor alkalmazasaval. Az extracellularis Ca*

elvonéasa nem volt hatdssal a tripszin altal kivaltott [Ca®"]; emelkedésre sem.

A luminalis membran fel6l adott tripszin és PAR-2-AP alkalozist indukalt, ami

PAR-2-ant és tripszin inhibitor hatasara kivédhet6 volt. A lumindlis CI elvonas,



H,DIDS és CFTR inhibitor pH; emelkedést valtott ki, amely emelkedést a
tripszin alkalmazéasa tovabb fokozott. A H,DIDS ¢s CFTR inhibitor egyiittes

alkalmazasa jelentdsen csokkentette a tripszin pHj-ra kifejtett hatasat.

5. Kronikus pankreatitiszes betegek hasnydlmirigyében a PAR-2 mRNS és a
membranban 1évé PAR-2 fehérje szintje nagymértékben lecsokkent. Ez a
valtozas nem volt tapasztalhatdo a PAR-2 fehérje citoplazmaban mérhetd

szintjében.

6. Az R122H mutéans kationos tripszinogén hasonld valtozast okozott a [Ca®']; és
pH; vonatkozasdban mint a tripszin, igy a tripszin-medialta HCO3™ csokkenés

szerepet jatszhat az orokletes pankreatitisz patogenezisében is.

7. Végiil kimutattuk, hogy mind a tripszin, mind a PAR-2-AP [Ca®*];-ra és pHi-ra
kifejtett hatasa szignifikansan csokkent PAR-2 KO egerekben.

KOVETKEZTETESEK

Munkénk soran kimutattuk, hogy a NHERF-1 sziikséges a CFTR lokalizaci6jahoz a
PDEC apikalis membranjan. Tovabba a NHERF-1 szerepet jatszik a PDEC HCOj3™ és
folyadék szekréciojaban. Mind az alap, mind a stimuldlt szekrécid tekintetében
kiilonbséget mutattunk ki a VT és KO egerek kozott, de ezt az eltérést nem a
hasnyalmirigy vérkeringésében bekovetkezd valtozas okozta.

Pathologias koriilmények kozott, ha a tripszin jelen van a hasnyalmirigy
vezetéksejtek lumenében, a tripszin PAR-2-fliggé modon csdkkenti a hasnyalmirigy
vezetéksejtek HCOg3™ szekrécidjat a lumindlis anion cseréld, valamint a CFTR gatldsan
keresztil. Ez a folyamat szerepet jatszhat a kronikus hasnyalmirigy-gyulladas

kialakulasaban.
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Trypsin Reduces Pancreatic Ductal Bicarbonate Secretion by Inhibiting
CFTR CI~ Channels and Luminal Anion Exchangers

PETRA PALLAGI* VIKTORIA VENGLOVECZ,* ZOLTAN RAKONCZAY Jr,* KATALIN BORKA,S ANNA KOROMPAY,S
BELA OZSVARI,* LINDA JUDAK,* MIKLOS SAHIN-TOTH,! ANDREA GEISZ,*I ANDREA SCHNUR,*!I JOZSEF MALETH,*
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and PETER HEGYI*

*First Department of Medicine and *Department of Pharmacology, University of Szeged, Szeged, Hungary; $2nd Department of Pathology, Semmelweis University,
Budapest, Hungary; IDepartment of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts; Tinstitute
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BACKGROUND & AIMS: The effects of trypsin on pan-
creatic ductal epithelial cells (PDECs) vary among species
and depend on the localization of proteinase-activated
receptor 2 (PAR-2). We compared PAR-2 localization in
human and guinea-pig PDECs, and used isolated guinea
pig ducts to study the effects of trypsin and a PAR-2
agonist on bicarbonate secretion. METHODS: PAR-2 lo-
calization was analyzed by immunohistochemistry in
guinea pig and human pancreatic tissue samples (from 15
patients with chronic pancreatitis and 15 without pancre-
atic disease). Functionally, guinea pig PDECs were studied
by microperfusion of isolated ducts, measurements of
intracellular pH and intracellular Ca?* concentration, and
patch clamp analysis. The effect of pH on trypsinogen
autoactivation was assessed using recombinant human
cationic trypsinogen. RESULTS: PAR-2 localized to the
apical membrane of human and guinea pig PDECs. Tryp-
sin increased intracellular Ca?* concentration and intra-
cellular pH and inhibited secretion of bicarbonate by the
luminal anion exchanger and the cystic fibrosis trans-
membrane conductance regulator (CFTR) CI~ channel.
Autoactivation of human cationic trypsinogen accelerated
when the pH was reduced from 8.5 to 6.0. PAR-2 expres-
sion was strongly down-regulated, at transcriptional and
protein levels, in the ducts of patients with chronic pan-
creatitis, consistent with increased activity of intraductal
trypsin. Importantly, in PAR-2 knockout mice, the effects
of trypsin were markedly reduced. CONCLUSIONS:
Trypsin reduces pancreatic ductal bicarbonate secre-
tion via PAR-2-dependent inhibition of the apical
anion exchanger and the CFTR Cl~ channel. This
could contribute to the development of chronic pan-
creatitis by decreasing luminal pH and promoting
premature activation of trypsinogen in the pancreatic
ducts.

Keywords: Acinar Cells; Ductal Epithelium; Animal Model;
Pancreatic Enzymes.

T rypsinogen is the most abundant digestive protease
in the pancreas. Under physiologic conditions,
trypsinogen is synthesized and secreted by acinar cells,
transferred to the duodenum via the pancreatic ducts, and

then activated by enteropeptidase in the small intestine.!
There is substantial evidence that early intra-acinar®3 or
luminal#$ activation of trypsinogen to trypsin is a key and
common event in the development of acute and chronic
pancreatitis. Importantly, almost all forms of acute pan-
creatitis are due to autodigestion of the gland by pancre-
atic enzymes.®

Several studies have shown that trypsin stimulates en-
zyme secretion from acinar cells via proteinase-activated
receptor 2 (PAR-2),78 whereas the effect of trypsin on
pancreatic ductal epithelial cells (PDECs) is somewhat
controversial. Trypsin activates ion channels in dog
PDECs?® and stimulates bicarbonate secretion in the CA-
PAN-1 human pancreatic adenocarcinoma cell line,!°
whereas it dose-dependently inhibits bicarbonate efflux
from bovine PDECs.!! The effect of trypsin differs not
only among species, but also with respect to the localiza-
tion of PAR-2. When PAR-2 is localized to the basolateral
membrane and activated by trypsin, the result is stimula-
tion of bicarbonate secretion.®!° In contrast, when the
receptor is localized to the luminal membrane, the effect
is inhibition.!! Interestingly, there are no data available
concerning the effects of trypsin on guinea pig PDECs
which, in terms of bicarbonate secretion, are an excellent
model of human PDECs.!2

The human pancreatic ductal epithelium secretes an
alkaline fluid that may contain up to 140 mmol/L
NaHCO;.1213 The first step in HCO;™ secretion is the
accumulation of HCO;™ inside the cell, which is driven by
basolateral Na*/HCO;~ cotransporters, Na*/H* exchang-
ers, and H"-adenosine triphosphatases.!2!3 Only 2 trans-
porters have been identified on the apical membrane of

Abbreviations used in this paper: BAPTA-AM, 1,2-bis(o-aminophe-
noxy)ethane-N,N,N’,N’'-tetraacetic acid; CFTR, cystic fibrosis transmem-
brane conductance regulator ClI~ channel; CFTRinh-172, CFTR inhibitor-
172; [Ca2*];, intracellular Ca2* concentration; H,DIDS, dihydro-4,4'-
diisothiocyanostilbene-2,2'-disulfonic acid; PAR-2, proteinase-activated
receptor-2; PAR-2-AP, PAR-2 activating peptide; PAR-2-ANT, PAR-2 an-
tagonist; PDEC, pancreatic ductal epithelial cell; pH;, intracellular pH;
pHy, luminal pH; SBTI, soybean trypsin inhibitor; SLC26, solute carrier
family 26.
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cells in the proximal ducts that are the major sites of
HCO;~ secretion: cystic fibrosis transmembrane conduc-
tance regulator (CFTR) and the solute carrier family 26
(SLC26) anion exchangers.'213 How these transporters act
in concert to produce a high HCO;~ secretion is contro-
versial.'* Most likely, HCO;™ is secreted through the an-
ion exchanger until the luminal concentration reaches
about 70 mmol/L, after which the additional HCO;~
required to raise the luminal concentration to 140
mmol/L is transported via CFTR.1516

The role of PAR-2 in experimental acute pancreatitis is
also controversial and highly dependent on the model of
pancreatitis studied. PAR-2 was found to be protective
in secretagogue-induced pancreatitis in mice”-'7-1° and
rats.2° However, PAR-2 is clearly harmful when pancreati-
tis is evoked by the clinically more relevant luminal ad-
ministration of bile salts in mice.l”

In this study, we show for the first time that (1) PAR-2
is localized to the apical membrane of the human proxi-
mal PDECs, (2) the localization of PAR-2 in the guinea pig
pancreas is identical to that in the human gland, (3)
trypsin markedly reduces bicarbonate efflux through a
dihydro-4,4'-diisothiocyanostilbene-2,2"-disulfonic  acid
(H,DIDS)-sensitive apical SLC26 anion exchanger and
strongly inhibits CFTR, (4) a decrease in pH within the
ductal lumen will strongly accelerate the autoactivation of
trypsinogen, and (5) trypsin down-regulates PAR-2 expres-
sion at both transcriptional and protein levels in PDECs
of patients with chronic pancreatitis.

Materials and Methods

A brief outline of the materials and methods is given in
the following text. For further details, please see Supplementary
Materials and Methods.

Solutions

The compositions of the solutions used for microfluo-
rimetry are shown in Table 1.

Isolation of Pancreatic Ducts and Individual

Ductal Cells

Small intralobular proximal ducts and individual ductal
cells were isolated from guinea pigs or PAR-2 wild-type (PAR-

Table 1. Composition of Solutions for Microfluorimetry

Studies
Standard Standard Cl-free  CaZ*-free
HEPES HCO3~ HCO3~ HEPES
NaCl 130 115 132
KCI 5 5 5
MgCl, 1 1 1
CaCl, 1 1
Sodium HEPES 10 10
Glucose 10 10 10 10
NaHCO3 25 25
Sodium gluconate 115
Magnesium gluconate 1
Calcium gluconate 6
Potassium sulfate 2.5

NOTE. Values are concentrations in mmol/L.

TRYPSIN REDUCES PANCREATIC BICARBONATE SECRETION 2229

2%/%) and knockout (PAR-27/7) mice with a CS7BL6 back-
ground by microdissection as described previously.2!

Measurement of Intracellular pH and Ca?*

Concentration

Intracellular pH (pH;) and calcium concentration ([Ca?*];)
were estimated by microfluorimetry using the pH- and Ca?*-sensi-
tive fluorescent dyes 2,7-bis-(2-carboxyethyl)-5-(and-6-)carboxyfluo-
rescein, acetoxymethyl ester (BCECF-AM) and 2-(6-(bis(carboxy-
methyl)amino)-5-(2-(2-(bis(carboxymethyl)amino)-5-methylphenoxy)-
ethoxy)-2-benzofuranyl)-5-oxazolecarboxylic ~ acetoxymethyl  ester
(FURA 2-AM), respectively.

Microperfusion of Intact Pancreatic Ducts

The luminal perfusion of the cultured ducts was per-
formed as described previously.?2

Electrophysiology
CFTR CI~ channel activity was investigated by whole cell

patch clamp recordings on guinea pig single pancreatic ductal
cells.

Measuring Autoactivation of Trypsinogen
Autoactivation of human cationic trypsinogen was de-
termined in vitro at pH values ranging from 6.0 to 8.5. Experi-

mental details are described in Supplementary Materials and
Methods.

Immunobistochemistry

Five guinea pig, 2 PAR-2%/* 2 PAR-27/7, and 30 human
pancreata were studied to analyze the expression pattern of
PAR-2 protein. Relative optical densitometry was used to quan-
tify the protein changes in the histologic sections. Patients’ data
and the full methods are described in Supplementary Supple-
mentary Materials and Methods.

Real-Time Reverse-Transcription Polymerase

Chain Reaction

RNA was isolated from 30 human pancreata. Following
reverse transcription, messenger RNA (mRNA) expression of
PAR-2 and P-actin was determined by real-time polymerase
chain reaction analysis.

Results

Expression of PAR-2 in Guinea Pig and
Human Pancreata

PAR-2 was highly expressed in the luminal mem-
brane of small intralobular and interlobular ducts (Figure
1A [i]; cuboidal epithelial cells forming the proximal pan-
creatic ducts) but was almost undetectable in the larger
interlobular ducts (Figure 1A [ii]; columnar epithelial cells
forming the distal pancreatic ducts). The localization of
PAR-2 in the human pancreas was identical to that in the
guinea pig gland (Figure 1A [iv-vi]). Measurements of
relative optical density confirmed the significant differ-
ences between the expression of PAR-2 in small intralob-
ular and interlobular ducts and the larger interlobular
ducts in both species (Figure 1C).
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Figure 1. Localization of PAR-2 on human and guinea pig pancreatic ducts. Light micrographs of (A [i—iii]) guinea pig and (A [iv-vi]) human pancreas

are shown. (i) PAR-2 is localized to the luminal membrane of PDECs in small intralobular and interlobular ducts (original magnification 400 X). (i) Large
interlobular ducts do not express PAR-2 (original magnification 200 X). (i) No primary antiserum (original magnification 200X). (ivand v) Sections from
human pancreas exhibit a similar localization of PAR-2 compared with the guinea pig gland (original magnification 400 and 200). (vi) No primary
antiserum (original magnification 200X). (B) Western blot analysis was used to determine the specificity of the PAR-2 antibody. Polyclonal anti-PAR-2
showed a single 44-kilodalton band. (C) Quantitative measurement of relative optical densities (RO-Density) of small intralobular and interlobular
ducts (A.i,iv), and large interlobular ducts (A.ii,v) is shown. n = 12."P < .05 vs A.ii or A.v, respectively. Scale bar = 50 um for A (i, iv) and 100 um for

A (i and iii) and A (v and vi).

Luminal Administration of PAR-2-AP and
Trypsin Induces Dose-Dependent [Ca™ ];
Signals

Because PAR-2 expression was detected only on the
luminal membrane of intralobular duct cells, we used the
microperfusion technique to see whether these receptors
can be activated by PAR-2 agonists. First, the experiments
were performed at pH 7.4 to understand the effects of
trypsin and PAR-2 under quasi-physiologic conditions
(Figure 2). The fluorescent images in Figure 2A clearly
show that luminal administration of PAR-2 activating
peptide (PAR-2-AP) increased [Ca%*]; in perfused pancre-
atic ducts. The [Ca?*]; response was dose dependent and
consisted of a peak in [Ca?*]; that decayed in the contin-
ued presence of the agonist, possibly reflecting PAR-2
inactivation or depletion of intracellular Ca?* stores (Fig-
ure 2B). Pretreatment of PDECs with 10 wmol/L PAR-2
antagonist (PAR-2-ANT) for 10 minutes completely
blocked the effects of 10 wmol/L PAR-2-AP on [Ca?*];

(Figure 2A and C). Removal of extracellular Ca?* had no
effect on the increase in [Ca?*]; evoked by luminal admin-
istration of 10 wmol/L PAR-2-AP; however, preloading
ducts with the calcium chelator 1,2-bis(o-aminophe-
noxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM) at 40
pmol/L totally blocked the response (Figure 2A and C).

Trypsin also induced a dose-dependent elevation in
[Ca?*]; similar to that evoked by PAR-2-AP (Figure 2E and
F). Addition of 5 umol/L soybean trypsin inhibitor
(SBTI), 10 umol/L PAR-2-ANT, and 40 umol/L
BAPTA-AM totally blocked the increase in [Ca?*]; (Figure
2D and F). These data show that trypsin activates PAR-2
on the luminal membrane of the duct cell, which leads to
release of Ca?* from intracellular stores and an elevation
of [Ca?*];.

Because the pH of pancreatic juice can vary between
approximately 6.8 and 8.0,232* we also evaluated the ef-
fects of trypsin and PAR-2-AP on [Ca?*]; at these pH
values (Supplementary Figures 1 and 2, respectively). The
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Figure 2. Effects of PAR-2-AP and trypsin on [Ca?*]; in microperfused guinea pig pancreatic ducts at pH 7.4. (A) Light (1) and fluorescent ratio
images (2 and 3) of microperfused pancreatic ducts showing the effects of luminal administration of 10 umol/L PAR-2-AP, 10 umol/L PAR-2-ANT,
or 40 wmol/L BAPTA-AM on [Ca?*]. Images were taken before (1 and 2) and after (3) exposure of the ducts to PAR-2-AP or trypsin. (B and C)
Representative experimental traces and summary data of the changes in [Ca2*]. (D) The same protocol was used to evaluate the effects of trypsin.
Addition of 5 umol/L SBTI was used to inhibit trypsin activity. (E and F) Representative experimental traces and summary data of the changes in
[Ca?*]. n = 5 for all groups. ‘P < .05 vs 1 wmol/L PAR-2-AP or 0.1 umol/L trypsin, respectively. "P < .001 vs 10 wmol/L PAR-2-AP or 10 wmol/L

trypsin, respectively.

elevations of [Ca?*]; at pH 6.8 and 8.0 were generally very
similar to the changes observed at pH 7.4. However, the
increases in [Ca?"]; evoked by 1 umol/L PAR-2-AP and 0.1
pmol/L trypsin were significantly lower at pH 6.8 com-
pared with either pH 7.4 or 8.0 (Supplementary Figure 3).

Luminal Exposure to PAR-2-AP and Trypsin
Evokes Intracellular Alkalosis in PDECs

Figure 3 shows pH; recordings from microperfused
pancreatic ducts. Luminal application of the CFTR inhib-
itor (CFTRinh) 172 (10 pwmol/L) and the anion exchanger
inhibitor H,DIDS (500 wmol/L) induced intracellular al-
kalization in PDECs (Figure 3A [i]). These data indicate
that when bicarbonate efflux across the luminal mem-
brane of PDECs (ie, bicarbonate secretion) is blocked,
elevation of duct cell pH; occurs, presumably because the
basolateral transporters continue to move bicarbonate
ions into the duct cell. Note also that the increase in pH;
evoked by the inhibitors is not sustained and begins to

reverse before the inhibitors are withdrawn (Figure 3A [i]),
which might be explained by the regulation of pH; by
basolateral acid/base transporters.

Both luminal PAR-2-AP and trypsin induced a dose-depen-
dent elevation of pH; (Figure 3A [ii and iii]), suggesting that
activation of PAR-2 inhibits bicarbonate efflux across the apical
membrane of the duct cell. Preincubation of PDECs with either
10 pumol/L PAR-2-ANT or 5 wmol/L SBTI or 40 umol/L
BAPTA-AM for 30 minutes totally blocked the effect of trypsin
on pH; (Figure 3A [iv]). The inhibitory effect of the calcium
chelator BAPTA-AM suggests that the actions of trypsin and
PAR-2-AP on pH; are mediated by the increase in [Ca?*]; that
they evoke (Figure 2). Therefore, in this case, the transient
nature of the pH; response may reflect the transient effect that
PAR-2 activators have on [Ca?*]; (Figure 2B and E), as well as
pH; regulation by basolateral acid/base transporters.

Next we tested the effects of trypsin on pH; in Cl™-free
conditions and during pharmacologic inhibition of the
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Figure 3. Effects of PAR-2-AP and trypsin on pH; in microperfused guinea pig pancreatic ducts. (A) Representative pH; traces showing the effects
of luminal administration of different agents in microperfused pancreatic ducts. (i) A total of 10 umol/L CFTRinh-172 and/or 500 umol/L H.DIDS
caused alkalization of pH;. (i) PAR-2-AP and (jii) trypsin induced a dose-dependent pH; elevation. (iv) Preincubation of ductal cells with 10 umol/L
PAR-2-ANT or 5 umol/L SBTI or 40 umol/L BAPTA-AM totally blocked the alkalization caused by 10 umol/L trypsin. (v) Removal of luminal CI~ or
(vi) administration of HoDIDS (500 uwmol/L) decreased, but did not totally abolish, the effects of 10 wmol/L trypsin on pH;. (vii) Pretreatment with 10
umol/L CFTRInh-172 also decreased the effects of trypsin (10 wmol/L) on pH;. (vii) Simultaneous administration of H,DIDS and CFTRinh-172 strongly
inhibited the effect of 10 umol/L trypsin. (B and C) Summary of the effects of PAR-2-AP and trypsin on changes in pH;. ApHmax was calculated from
the experiments shown in A. (D) Effects of Cl~-free conditions. Cl~-free conditions, H.DIDS, CFTRIinh-172, and a combination of the inhibitors all
induced an intracellular alkalosis. Trypsin further increased the alkalinization of pH;, although the effect was markedly reduced when both H,DIDS and
CFTRinh-172 were present. n = 4-5 for all groups. (B) P < .05 vs 0.1 wmol/L trypsin; “"P < .001 vs 10 wmol/L trypsin. (C) ‘P < .05 vs 0.1 wmol/L
PAR-2-AP; "P < .001 vs 10 umol/L PAR-2-AP. (D) P < .05 vs the respective filled column.
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luminal anion exchangers and/or CFTR (Figure 3A [v-
viii]). Luminal Cl~-free conditions increased the pH; of
PDECs, presumably by driving HCO;™ influx on the api-
cal anion exchangers (Figure 3A [v]). Note that luminal
administration of trypsin further elevated pH; in Cl™-free
conditions (Figure 3A [v]) and also in the presence of
H,DIDS (Figure 3A [vi]) and CFTRinh-172 (Figure 3A
[vii]). However, pretreatment of ducts with a combination
of H,DIDS and CFTRinh-172 markedly reduced the effect
of trypsin on pH; (Figure 3A [viii]).

Figure 3B-D is a summary of the pH; experiments.
Trypsin (Figure 3B) and PAR-2-AP (Figure 3C) both in-
duced statistically significant, dose-dependent increases in
pH; and these effects were blocked by PAR-2-ANT, SBTI,
and BAPTA-AM. Exposure of the ducts to luminal Cl™-
free conditions, H,DIDS, CFTRinh-172, or a combination
of the inhibitors also induced an intracellular alkalosis
(Figure 3D). Also shown in Figure 3D is the additional,
statistically significant increase in pH; caused by trypsin in
ducts exposed to Cl -free conditions and the individual
inhibitors. However, when ducts were exposed to both
CFTRinh-172 and H,DIDS simultaneously, the effect of
trypsin on pH; was markedly reduced, although it re-
mained statistically significant (Figure 3D). We interpret
these results as indicating that trypsin inhibits both
Cl™-dependent (ie, anion exchanger mediated; revealed
when CFTR is blocked by CFTRinh-172) and Cl~-inde-
pendent (ie, CFTR mediated; revealed in Cl™-free con-
ditions and when the luminal exchangers are blocked
by H,DIDS) bicarbonate secretory mechanisms in
PDECs. Reduced bicarbonate secretion will lead to a
decrease in intraductal pH.

Trypsin and PAR-2-AP Inhibit CFTR

Exposure of guinea pig PDECs to 5 wmol/L fors-
kolin, which elevates intracellular adenosine 3’S'-cyclic
monophosphate levels, increased basal whole cell currents
(Figure 4A-D [i]) from 8.9 % 2.3 to 912 + 13.5 pA/pF
(Figure 4A-D [ii]) at +60 mV in 78% of cells (38/49). The
forskolin-activated currents were time- and voltage-inde-
pendent, with a near linear I/V relationship and a reversal
potential of —5.15 = 1.12 mV (Figure 4A-D [iv]). These
biophysical characteristics indicate that the currents are
carried by CFTR.

Exposure of PDECs to 10 umol/L trypsin did not affect
the basal currents; however, administration of either 10
umol/L PAR-2-AP (Figure 4A [iii]) or 10 wmol/L trypsin
(Figure 4B [iii]) inhibited forskolin-stimulated CFTR cur-
rents by 51.7% * 10.5% and 57.4% * 4.0%, respectively. In
both cases, the inhibition was voltage independent and
irreversible. Pretreatment with either SBTI (10 wmol/L;
Figure 4C [iii]) or PAR-2-ANT (10 wmol/L; Figure 4D [iii])
completely prevented the inhibitory effect of trypsin on
the forskolin-stimulated CFTR currents. Figure 4E is a
summary of these data, which suggest that trypsin inhib-
its CFTR Cl~ currents by activation of PAR-2.

TRYPSIN REDUCES PANCREATIC BICARBONATE SECRETION 2233

Autoactivation of Trypsinogen Is pH
Dependent

Trypsinogen can undergo autocatalytic activation
during which trace amounts of trypsin are generated,
which, in turn, can further activate trypsinogen in a self-
amplifying reaction. Human trypsinogens are particularly
prone to autoactivation, and mutations that facilitate
autoactivation are associated with hereditary pancreatitis.
To assess the effect of a decrease in intraductal pH (caused
by reduced bicarbonate secretion) on trypsinogen activa-
tion, we measured autoactivation of human cationic
trypsinogen in vitro at pH values ranging from 6.0 to 8.5
using a mixture of various buffers. As shown in Figure SA,
the rate at which cationic trypsinogen autoactivates was
markedly increased as the pH was reduced from 8.5 to 7.0
when the buffer solution contained 1 mmol/L CaCl, and
no NaCl. However, a further reduction in pH, from 7.0 to
6.0, had little effect (Figure SA [i]).

To rule out that the differences observed in autoacti-
vation were due to the different ionic strengths of the
buffers used, we repeated the experiments in the presence
of a higher concentration of sodium (100 mmol/L NaCl,
Figure 5A [ii]) or lower concentration of calcium (0.1
mmol/L CaCl,, Figure 5SA [iii]). Although the overall au-
toactivation rates were much slower in the presence of
NaCl, the pH profile of autoactivation was essentially
identical to that observed in the absence of added salt
(Figure 5A [ii]). Also, pH-dependent changes in the auto-
activation of trypsinogen were still detectable when the
experiments were performed using a low calcium buffer
(Figure SA [iii]).

PAR-2 Is Down-regulated in Patients With
Chronic Pancreatitis

It has been documented that there is activated
trypsin in the pancreatic ductal lumen in chronic pancre-
atitis in humans.25-28 If trypsin activity is elevated in the
duct lumen, PAR-2 down-regulation should occur, which
could be due to either (1) changes in PAR-2 mRNA tran-
scription and/or (2) receptor internalization and translo-
cation to the cytoplasm. Our data show a marked
reduction in membranous PAR-2 protein level but no
significant changes in cytoplasmic PAR-2 protein in
chronic pancreatitis (Figure 5B [i-iv] and C). Furthermore,
PAR-2 mRNA expression was markedly reduced in
chronic pancreatitis (Figure 5D), suggesting that reduced
PAR-2 mRNA transcription may cause PAR-2 down-regu-
lation in chronic pancreatitis.

Luminal Exposure to R122H Mutant Cationic
Trypsin Induces Elevation of [Ca’™ |; and
Evokes Alkalosis in PDECs

It has been shown that mutations in cationic
trypsinogen increase the risk of chronic pancreatitis, most
likely because of the enhanced autoactivation exhibited
by the mutant trypsinogens.?® Here we tested whether
the commonest mutation in cationic trypsin, R122H, af-
fected the ability of the protease to interact with PAR-2.
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Figure 4. Effects of trypsin and PAR-2-AP on CFTR CI~ currents of guinea pig pancreatic duct cells. Representative fast whole cell current
recordings from PDECs. (A-D) (i) Unstimulated currents, (i) currents after stimulation with 5 umol/L forskolin, and (jii) currents following 3-minute
exposure to (A) 10 umol/L PAR-2-AP, (B) 10 umol/L trypsin, (C) 10 wmol/L trypsin/5 umol/L SBTI, and (D) 10 wmol/L trypsin/10 wmol/L PAR-2-ANT.
(iv) I’V relationships. Diamonds represent unstimulated currents, squares represent forskolin-stimulated currents, and triangles represent forskolin-
stimulated currents in the presence of the tested agents (see previous text). (E) Summary of the current density (pA/pF) data obtained from A-D
measured at E,, = 60 mV. Exposing PDECs to either PAR-2-AP or trypsin blocked the forskolin-stimulated CFTR CI~ currents, while administration
of SBTI or PAR-2-ANT prevented the inhibitory effect of trypsin. n = 6 for all groups. P < .05 vs the unstimulated cells, “P < .05 vs forskolin. FORSK,

forskolin; TRYP, trypsin.

Figure 6A and B shows that 1 um of R122H human

Activation of PAR-2 Is Diminished in

cationic trypsin causes comparable changes in pH; and PAR-27/~ Mice
[Ca%*]; to 0.4 wmol/L wild-type bovine trypsin, suggesting

that a trypsin-mediated inhibition of bicarbonate secre-

Finally, we investigated the effects of both PAR-

tion could play a role in the pathogenesis of hereditary as 2-AP and trypsin on PDECs isolated from PAR-2*/* and
well as chronic pancreatitis.

PAR-27/~ mice (Figure 6C-E). First we confirmed using
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Figure 5. The effects of pH on trypsinogen activation and analyses of PAR-2 expression in human pancreatic samples. The autoactivation of human
cationic trypsinogen was determined in vitro at pH values ranging from 6.0 to 8.5. (A) (i) Trypsinogen at 2 umol/L concentration was incubated with
40 nmol/L trypsin at 37°C in 0.1 mol/L Tris + HEPES + 2-(N-morpholino)ethanesulfonic acid2-(N-morpholino)ethanesulfonic acid buffer mixture
containing 1 mmol/L CaCls. (i) The same protocol was used in high (100 mmol/L) NaCl buffer solution. Autoactivation of cationic trypsinogen
significantly increased as the pH was reduced from 8.5 to 6.0. (i) The same protocol was used in low (0.1 mmol/L) Ca?*-buffered solution buffer
solution. (B) (i-iv) PAR-2 expression. (i) Representative section of normal human pancreas. (i) No primary antiserum. (i) Representative section of
human pancreas from a patient with chronic pancreatitis (CP). (iv) No primary antiserum. (C) Relative optical density. n = 15. 'P < .05 vs CP
membrane. (D) Real-time reverse-transcription polymerase chain reaction analysis of PAR-2 mRNA expression of human pancreas. Data are given

in 2AdCT. n = 15. 'P < .05 vs CP.

immunohistochemistry that PAR-2*/* mice do, whereas
PAR-27/~ mice do not, express PAR-2 in their PDECs
(Figure 6C [i and iii]). Accordingly, our functional data
clearly show that the pH; and [Ca?*]; responses to luminal
administration of either trypsin or PAR-2-AP were mark-
edly diminished in PAR-27/~ PDECs (Figure 6D and E).

Discussion

The human pancreatic ductal epithelium secretes 1
to 2 L of alkaline fluid every 24 hours that may contain up
to 140 mmol/L NaHCOj;.1>13 The physiologic function of
this alkaline secretion is to wash digestive enzymes down

the ductal tree and into the duodenum and to neutralize
acidic chyme entering the duodenum from the stomach.
There are important lines of evidence supporting the idea
that pancreatic ducts play a role in the pathogenesis of
pancreatitis: (1) ductal fluid and bicarbonate secretion are
compromised in acute and chronic pancreatitis,3°3! (2)
one of the main end points of chronic pancreatitis is the
destruction of the ductal system,3233 (3) mutations in
CFTR may increase the risk of pancreatitis,3%-31-34-3¢ and
(4) etiologic factors for pancreatitis, such as bile acids or
ethanol in high concentration, inhibit pancreatic ductal
bicarbonate secretion.3”-3° Despite the previously men-
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Figure 6. Experiments using R122H human
mutant cationic trypsin and PAR-2~/~ mice.
Representative (4) pH; and (B) [Ca?*]; mea-
surements using luminal administration of
normal and R122H mutant cationic trypsin in
microperfused guinea pig pancreatic ducts.
n = 5 for all experiments. (C) (i-iv) PAR-2—
expressing cells were visualized by immuno-
histochemistry as described in Figure 1. (j)
Representative section of the pancreas re-
moved from PAR-2+/* mice. (i) Section with-
out primary antiserum. (i) Pancreas removed
from PAR-2~/~ mice. (iv) Section without pri-
mary antiserum. (D) pH; and (E) [Ca?*]; mea-
surements using luminal administration of
trypsin in microperfused pancreatic ducts
isolated from PAR-2 knockout (red curve)
and PAR-2 wild-type mice (black curve). n =
5 for all experiments. "P < .05 vs 10 umol/L
trypsin PAR-2+/*, "P < .05 vs 10 umol/L
PAR-2-AP PAR-2*/+,

of its activation on bicarbonate secretion. For example,

CAPAN-1 cells'® and dog PDECs® express PAR-2 only on

the basolateral membrane, whereas bovine PDECs express
PAR-2 on the luminal membrane.!! Therefore, one of our
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first aims was to determine which animal model best
mimics human PAR-2 expression and thus would be the
best for studying the effects of trypsin on PDEC function.
Our results showed that in the human pancreas PAR-2 is
localized to the luminal membrane of small proximal
pancreatic ducts, which are probably the major site of
bicarbonate and fluid secretion. Because CAPAN-1 cells
and dog PDECs express PAR-2 only on the basolateral
membrane, they do not mimic the human situation. Rats
or mice are also not good models for the human gland
because they secrete only 70 to 80 mmol/L bicarbon-
ate.*14> However, the guinea pig pancreas secretes ~140
mmol/L bicarbonate, as does the human gland, and the
regulation of bicarbonate secretion is similar in both
species.*1#2 Because PAR-2 expression in the guinea pig
pancreas was localized to the luminal membrane of duct
cells, we performed our experiments on isolated guinea
pig ducts.

First we characterized the effects of PAR-2 activation by
trypsin and PAR-2-AP on PDECs. Previously, it has been
shown that activation of the G protein- coupled PAR-2 by
proteinases requires proteolytic cleavage of the receptor,
which is followed by an elevation of [Ca%*];.43-45 As ex-
pected, luminal trypsin and PAR2-AP caused a dose-de-
pendent elevation of [Ca?*]; in guinea pig ducts. Impor-
tantly, the trypsin inhibitor SBTI, PAR-2-ANT, and the
intracellular calcium chelator BAPTA-AM all completely
blocked the elevation of [Ca?*];, whereas removal of ex-
tracellular Ca?* had no effect. Acidosis (pH 6.8) also
slightly reduced the changes in [Ca?*]; evoked by trypsin,
most probably due to reduced cleavage activity of trypsin
at an acidic pH. Next we characterized the effects of PAR-2
activation on pH;. Luminal application of trypsin and
PAR-2-AP both caused a dose-dependent intracellular al-
kalosis in PDECs. This alkalosis is most likely explained
either by a reduction in the rate of bicarbonate efflux (ie,
secretion) across the apical membrane of PDECs or by an
increase in the rate of bicarbonate influx at the basolateral
side of the cell. We favor the former explanation because
luminal application of the anion exchange inhibitor
H,DIDS or the CFTR inhibitor CFTRinh-172 produced a
similar intracellular alkalization.2246 Thus, PAR-2 activa-
tion inhibits bicarbonate secretion in PDECs by inhibit-
ing SLC26 anion exchangers and CFTR Cl~ channels
expressed on the apical membrane of the duct cell. In
similarity with the [Ca?*]; signals, the effect of PAR-2
activation on pH; was blocked by SBTI, PAR-2-ANT, and
BAPTA-AM, with the action of BAPTA-AM suggesting
that the inhibition of bicarbonate secretion follows from
the increase in [Ca?*],. Interestingly, an elevation of
[Ca?*]; is crucial for both stimulatory (eg, acetylcholine,!3
low concentrations of bile acids,?® and ethanol3®) and
inhibitory pathways (eg, basolateral adenosine triphos-
phate, arginine vasopressin, and high concentrations of
ethanol) that control bicarbonate secretion by PDECs.
Such marked differences in the outcome of [Ca?*]; signals
in PDECs probably reflect differences in the source of
Ca?* and/or in the intracellular compartmentalization of
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[Ca?*]; signals generated by different secretory agonists
and antagonists.

Remarkably, trypsin was still able to evoke an elevation
of pH; when Cl~ was removed from the duct lumen and
when PDECs were pretreated with H,DIDS, conditions
that should inhibit bicarbonate efflux on the exchanger.
These results suggested the involvement of CFTR, the
only other known bicarbonate efflux pathway on the api-
cal membrane, in the inhibitory effect of trypsin. This
hypothesis was confirmed by patch clamp experiments in
which trypsin decreased CFTR whole cell currents in iso-
lated guinea pig PDECs by 50% to 60%. Finally, the fact
that the trypsin-induced alkalinization was completely
blocked by a combination of CFTRinh-172 and H,DIDS
confirms the involvement of both CFTR and SLC26 anion
exchangers. Our conclusion from these pH; and patch
clamp data is that PAR-2 activation inhibits both the
SLC26 anion exchanger (probably SLC26A6 [PAT-1]47 be-
cause SLC26A3 [DRA] is only weakly inhibited by disul-
fonic stilbenes*”%8) and CFTR Cl~ channels expressed on
the apical membrane of the duct cell.

The pH of pancreatic juice (and therefore the luminal
pH [pH,] in the duct) can vary between approximately 6.8
and 8.0. It has recently been shown that protons core-
leased during exocytosis cause significant acidosis (up to 1
pH unit) in the lumen of the acini.?* However, Ishiguro et
al* have clearly shown that the pH, in pancreatic ducts is
dependent on the level of bicarbonate secretion. pH;, can
be elevated from 7.2 to 8.5 by stimulation with secretin or
forskolin, and this effect was strictly dependent on the
presence of bicarbonate.244950 Also, inhibition of ductal
bicarbonate secretion with H,DIDS can decrease the pH|
to less than 8.0.4° In view of these results, we tested
whether trypsinogen autoactivation was affected by pH
over the range of 6.0 to 8.5. Autoactivation of trypsinogen
was relatively slow at pH 8.5, but decreasing the pH from
8.5 to 7 progressively stimulated autoactivation. These
results suggest that under physiologic conditions bicar-
bonate secretion by PDECs is not only important for
elevating the pH in the duodenum, but also for keeping
pancreatic enzymes in an inactive state in the ductal
system of the gland.

Receptor down-regulation is a phenomenon that occurs
in the continued presence of an agonist and leads to a
reduction in the sensitivity of the cell to the agonist.
Potentially, there are 2 mechanisms that could underlie
receptor down-regulation of PAR-2: (1) after proteolytic
activation, the PAR-2 is internalized by a clathrin-medi-
ated mechanism and then targeted to lysosomes*s and (2)
if trypsin is present for a longer time in the lumen, PAR-2
may be down-regulated at the transcriptional level. In this
study, we provide evidence that the second mechanism,
transcriptional down-regulation, explains the reduced ex-
pression of PAR-2 seen in chronic pancreatitis.

Conflicting data can be found in the literature concern-
ing the role of PAR-2 in acute pancreatitis. Singh et al”
showed that in secretagogue-induced experimental pan-
creatitis, PAR-2 deletion is associated with a more severe

-
o3a
253
<=
o
v 0

92 g
[} (-
g




o
>
r4
o
]
m
>
n

TVNOILVISNVYL
ANV DIsve

2238 PALLAGI ET AL

pancreatitis. Although Laukkarinen et al'” confirmed
these results in cerulein-induced pancreatitis, they also
clearly showed that in taurocholate-induced pancreatitis,
PAR-2 deletion markedly reduced the severity of the dis-
ease. There is no evidence to suggest that clinical pancreatitis
is evoked by supramaximal secretagogue stimulation; how-
ever, the taurocholate-induced pancreatitis model may
mimic the clinical situation. Therefore, Laukkarinen et al'”
speculated that PAR-2 activation promotes the worsening of
clinical pancreatitis and our data are consistent with that
hypothesis.

Besides the clear pathophysiologic role of the tryp-
sin/PAR-2 interaction in chronic pancreatitis, there is
still a debate as to why PAR-2 are localized to the
luminal membrane of PDEC in small ducts close to the
acinar cells. What could the physiologic role of this
PAR-2 be? A number of agents have been shown to have
dual effects on PDECs at different concentrations. For
example, bile acids in low concentrations stimulate but
in high concentrations inhibit bicarbonate secretion.3®
The same applies to ethanol.3® Under physiologic con-
ditions, trypsin inhibitors are coreleased from acinar
cells with trypsinogen and should block the activity of
any trypsin that is generated spontaneously. Therefore,
only very small amounts of active trypsin, if any, will be
present in the duct lumen under normal conditions.
However, there remains a possibility that very small
amounts of active trypsin (ie, concentrations less than
0.1 wmol/L that would not cause an elevation of [Ca?*];
or change in pH) could bind to PAR-2 on the luminal
membrane of the ducts and augment other stimulatory
mechanisms so as to enhance flushing of digestive
enzymes down the ductal tree.

In conclusion, we suggest for the first time that one of
the physiologic roles of bicarbonate secretion by PDECs is
to curtail trypsinogen autoactivation within the pancre-
atic ductal system. However, if trypsin is present in the
duct lumen (as may occur during the early stages of
pancreatitis due to leakage from acinar cells), PAR-2 on
the duct cell will be activated, leading to Ca?* release from
intracellular stores and an increase in cytosolic Ca?* con-
centration. This causes inhibition of the luminal anion
exchangers and CFTR CI~ channels, reducing bicarbonate
secretion by the duct cell. The decrease in bicarbonate
secretion will increase the transit time of zymogens down
the duct tree and decrease pH;, both of which will pro-
mote the autoactivation of trypsinogen. The trypsin so
formed will further inhibit bicarbonate transport, leading
to a vicious cycle generating further decreases in pH; and
enhanced trypsinogen activation, which will favor devel-
opment of the pancreatitis (Supplementary Figure 4).
Finally, the R122H mutant cationic trypsin also elevated
[Ca?*]; and pH; in duct cells, suggesting that this mech-
anism may be particularly important in hereditary pan-
creatitis in which the mutant trypsinogens more readily
autoactivate.??
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Note: To access the supplementary material
accompanying this article, visit the online version of
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Supplementary Materials and Methods
Ethics

All experiments were conducted in compliance
with the Guide for the Care and Use of Laboratory
Animals (USA NIH publication No 85-23, revised 1985).
Animal experiments were approved by the Regional Eth-
ical Board at the University of Szeged, Hungary.

Solutions and Chemicals

HEPES-buffered solutions were gassed with 100%
0,, and their pH was set to 7.4 with HCl at 37°C. HCO; -
buffered solutions were gassed with 95% 0,/5% co, to set
pH to 7.4 at 37°C. For patch clamp studies, the standard
extracellular solution contained (in mmol/L): 145 NaCl,
4.5 KCl, 2 CaCl,, 1 MgCl,, 10 HEPES, and 5 glucose (pH
7.4 adjusted with NaOH). The osmolarity of the extra-
cellular solution was 300 mOsm/L. The standard pipette
solution for the patch clamp experiments contained (in
mmol/L): 120 CsCl, 2 MgCl,, 0.2 ethylene glycol-bis(g-
aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), 10
HEPES, and 1 Na,ATP (pH 7.2 adjusted with NaOH).
Chromatographically pure collagenase was purchased
from Worthington (Lakewood, NJ). 2,7-Bis-(2-carboxy-
ethyl)-5-(and-6-)carboxyfluorescein, acetoxymethyl ester
(BCECF-AM),  2-(6-(bis(carboxymethyl)amino)-5-(2-(2-
(bis(carboxymethyl)amino)-5-methylphenoxy)ethoxy)-2-
benzofuranyl)-5-oxazolecarboxylic acetoxymethyl ester
(FURA 2-AM), dihydro-4,4'-diisothiocyanostilbene-
2,2'-disulfonic acid (H,DIDS), and 1,2-bis(o-amino-
phenoxy)ethane- N,N,N',N’-tetraacetic acid (BAPTA-
AM) were from Invitrogen (Carlsbad, CA). PAR-2-ANT
(H-Phe-Ser-Leu-Leu-Arg-Tyr-NH,) and PAR-2-AP (H-
Ser-Leu-Ile-Gly-Arg-Leu-amid  trifluoroacetate salt)
were from Peptides International (Louisville, KY). For-
skolin were from Tocris (Ellisville, MO). Rabbit PAR-2
polyclonal antibody was purchased from Santa Cruz
Biotechnology (Heidelberg, Germany). All other chem-
icals were obtained from Sigma-Aldrich (Budapest,
Hungary).

Isolation of Pancreatic Ducts and Individual
Ductal Cells

Male guinea pigs weighing between 150 and 250 g

or mice (PAR-2*/* and PAR-27/7) weighing between 18
and 21 g were humanely killed by cervical dislocation, the
pancreas was removed, and small intralobular proximal
ducts were isolated by microdissection as described pre-
viously.! PAR-27/~ mice (B6.Cg-F2rl1tmIMsIb/) were previ-
ously generated by Schmidlin et al' and a kind gift from
Ashok Saluja.? Isolated ducts were then cultured over-
night in a 37°C incubator gassed with 5% c0,/95% air.3
To obtain single pancreatic ductal cells, cultured ducts
were incubated for 50 minutes at 37°C in 50 U/mL
elastase dissolved in storage solution (Dulbecco’s modi-
fied Eagle medium containing 3% [wt/vol] bovine serum
albumin [pH 7.4 with NaOH]). Then the ducts were
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transferred to a Ca?"/Mg?*-free HEPES-buffered solu-
tion and incubated for a further 10 minutes at 37°C.
After the incubation, the ducts were transferred to a
coverslip and teased apart using stainless steel needles.
The individual ductal cells were used for experiments
within 3 to 4 hours after isolation.

Measurement of pH; and Ca’* Concentration

Ducts were bathed in standard HEPES solution
and loaded with BCECF-AM (2 umol/L) or FURA 2-AM
(5 wmol/L) for 30 to 60 minutes at room temperature.

Ducts were then transferred to a perfusion chamber
mounted on an IX71 inverted microscope (Olympus,
Budapest, Hungary) and perfused continuously with so-
lutions at 37°C both from the luminal and basolateral
side at a rate of 10 to 30 uL/min and 4 to S mL/min,
respectively. Four to 5 small areas (region of interests) of
5 to 10 cells in each intact duct were excited with light at
a given wavelength. Excitation of BCECF was at 495 and
440 nm, with emitted light monitored at 535 nm. Exci-
tation of FURA-2 was at 380 and 340 nm, with emitted
light monitored at 510 nm. The fluorescence emissions
were captured by a charge-coupled device camera and
digitized by a Cell imaging system (Olympus, Budapest,
Hungary). Ratio images were collected at 1-second inter-
vals. In situ calibration of pH; measured with BCECF was
performed using the high K*-nigericin technique.**

Electrophysiology

Guinea pig PDECs were isolated by an enzymatic
microdissection procedure as described previously. Using
a glass pipette, a few drops of cell suspension were placed
within a perfusion chamber mounted on the stage of an
inverted microscope (TMS; Nikon, Tokyo, Japan). The
ductal cells were allowed to settle and attach to
the bottom of the chamber for at least 30 minutes before
the perfusion was started.

Patch clamp micropipettes were fabricated from boro-
silicate glass capillaries (Clark, Reading, England) by us-
ing a P-97 Flaming/Brown micropipette puller (Sutter
Co, Novato, CA). These pipettes had resistances between
1.5 and 2.5 M{). Membrane currents were recorded with
an Axopatch 1D amplifier (Axon Instruments, Union
City, CA) using the whole cell configuration of the patch
clamp technique at 37°C. After establishing a high-resis-
tance seal (1-10 G{)) by gentle suction, the cell mem-
brane beneath the tip of the pipette was disrupted by
suction or by application of short electrical pulses. The
series resistance was typically 4 to 8 M{) before compen-
sation (50%-80%, depending on the voltage protocol).
Current-voltage (I/V) relationships were obtained by
holding V,, at 0 mV and clamping to £100 mV in 20-mV
increments. Membrane currents were digitized by using a
333-kHz analog-to-digital converter (Digidata 1200;
Axon Instruments) under software control (pClamp 6;
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Axon Instruments). Analyses were performed by using
pClamp 6 software after low-pass filtering at 1 kHz.

Expression and Purification of Human

Trypsinogens

Wild-type and R122H mutant human cationic
trypsinogen was expressed in Escherichia coli and purified
by ecotin-affinity chromatography as reported previ-
ously.6

Measuring Autoactivation of Trypsinogen

Autoactivation of trypsinogen was measured at 2
pmol/L concentration at 37°C in a polybuffer system
(American Bioanalytical Inc, Natick, MA) containing 100
mmol/L  2-(N-morpholino)ethanesulfonic acid, 100
mmol/L HEPES, and 100 mmol/L Tris in 100 pL final
volume. The pH of the Polybuffer was adjusted to given
values with HCI (pH 6.0 and 6.5) or NaOH (pH 7.0, 7.5,
8.0, and 8.5). Reactions also contained 1 mmol/L or 0.1
mmol/L CaCl, and 100 mmol/L NaCl, as indicated. At
given times, 2-uL aliquots were removed and trypsin
activity was determined using the N-CBZ-Gly-Pro-Arg-p-
nitroanilide substrate at 150 umol/L final concentration.

Immunobistochemistry

Pancreatic tissue from 5 guinea pigs, 15 patient
samples without pancreatic disease near neuroendocrine
tumors (average age, 59.5; female/male, 7:8), and 15 pa-
tients (average age, 56.6; female/male, 4:11) who had
chronic pancreatitis (13 alcohol, 2 gallstone) were inves-
tigated. The human samples were obtained with the per-
mission of the Regional Ethical Committee of Semmel-
weis University (#172/2003).

The pancreatic tissues were fixed in 10% neutral buff-
ered formalin for 24 hours, followed by paraffin embed-
ding, and were then cut and stained with H&E to estab-
lish the diagnosis. Paraffin-embedded, 3- to 4-um-thick
sections were used for immunohistochemistry to detect
PAR-2 expression. The slides were treated for 30 minutes
with target retrieval solution (Dako, Glostrup, Denmark)
in a microwave oven, followed by incubation with the
primary rabbit polyclonal antibody (Santa Cruz Biotech-
nology Inc, Heidelberg, Germany) in 1:100 dilution over-
night at 4°C. Signal detection was achieved by using
ImPRESS reagent with secondary anti-rabbit immuno-
globulin G antibody (20 minutes) (Vector Laboratories,
Burlingame, CA). Diaminobenzidine was used to visual-
ize immune complexes, and nuclear counterstaining was
performed with hematoxylin. For negative controls, the
appropriate antibody was omitted and either the anti-
body diluent alone or isotype-matched immunoglobulin
G serum was used. The negative controls exhibited no
signal. Normal skin epithelial cells were used as positive
controls to confirm correct immunohistochemical stain-
ing for PAR-2 (results not shown).

The immunohistochemical reactions were digitalized
with a Mirax MIDI slide scanner (3DHistech Ltd, Buda-
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pest, Hungary). Relative optical (RO) density was calcu-
lated using Image] program (National Institutes of
Health, Bethesda, MD). Pixel values (PV) were normalized
to erythrocyte density (PVyorm = PViteasured = PVEryehrocyee)
in all sections. RO-Density value was calculated from the
RO-Density = log;4(255/PVyom) equation, assuming that
the brightest value in the image equals 255.

Western blot analysis was used to determine the spec-
ificity of the PAR-2 antibody. Proteins were extracted
from fresh-frozen guinea pig (n = 3) and human (n = 3)
pancreatic tissue stored at —80°C. Isolation was per-
formed by using lysis buffer (20 mmol/L Tris, pH 7.5, 150
mmol/L NaCl, 2 mmol/L EDTA, 1% Triton X-100 con-
taining protease inhibitor complex [Sigma Aldrich Co,
Budapest, Hungary]). Samples (50 mg) were homoge-
nized, followed by centrifugation at 13,200 rpm at 4°C
for 5 minutes. Measurements of protein concentration
were performed using Bradford analysis.” A total of 30 ug
of protein samples were loaded in each lane, run on 10%
sodium dodecyl sulfate/polyacrylamide electrophoresis
at 200 V for 35 minutes, and then transferred to nitro-
cellulose membranes at 100 V, 4°C, for 75 minutes. For
aspecific protein blocking, nonfat dry milk (5%, phos-
phate-buffered saline) was used for 30 minutes. Blots
were incubated with polyclonal PAR-2 rabbit antibody
(1:300; Santa Cruz Biotechnology Inc, Heidelberg, Ger-
many) and anti-GAPDH antibody (1:5000; AbDSerotec,
Kidlington, England) at 4°C overnight. After washing in
0.1% Tris, the secondary antibodies as anti-mouse
GAPDH (1:2000; AbDSerotec, Diisseldorf, Germany) and
horseradish peroxidase-conjugated anti-rabbit antibody
(1:2000, Dako Cytomation, Ghostrup, Denmark) were
applied at room temperature for 90 minutes. Following 3
series of washings in Tris-buffered saline with Tween 20,
signals were visualized by enhanced chemiluminescent
detection.

Real-Time Reverse-Transcription Polymerase
Chain Reaction

RNA extraction. Fifteen formalin-fixed, paraffin-
embedded normal pancreatic tissue samples and 15 sam-
ples of chronic pancreatitis tissue were selected for real-
time reverse-transcription polymerase chain reaction
analysis. Total RNA was isolated from five 5- to 10-um
macrodissected sections (connective tissue excluded) using
RNeasy FFPE Kit (Qiagen, Hilden, Germany) in accordance
with the manufacturer’s instructions. RNA concentrations
were obtained using a NanoDrop Spectrophotometer ND-
1000 (Thermo Fisher Scientific Inc, Waltham, MA).

Reverse transcription of RNA. Complementary
DNA samples were prepared from 1 ug total RNA using
a High Capacity RNA-to-cDNA Kit (Applied Biosystems,
Carlsbad, CA) as specified by the manufacturer.

Primer design. Gene-specific primers were de-
signed by AlleleID 6.01 primer design software (Premier
Biosoft International, Palo Alto, CA) for real-time reverse-
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transcription polymerase chain reaction. Isoform speci-
ficity and primer sizes were checked by BioEdit biological
sequence alignment editor software (Tom Hall Ibis Ther-
apeutics, Carlsbad, CA). Primer specificity was checked by
BiSearch software (Hungarian Academy of Sciences, In-
stitute of Enzymology, Budapest, Hungary). Primer spe-
cific amplification degree (58°C) was optimized by gradi-
ent polymerase chain reaction. The used primer sequences
are shown in Supplementary Table 1.

Reverse-transcription polymerase chain reac-
tion. Real-time reverse-transcription polymerase chain
reaction analysis was performed using SYBR Green tech-
nology on an ABI Prism 7000 Sequence Detection System
(Applied Biosystems, Foster City, CA), according to the
manufacturer’s instructions. B-actin was used as the in-
ternal control gene. Primer-specific amplification was
controlled by 2% agarose gel electrophoresis, as well as by
melting temperature analysis. The final 20 pL reaction
mixture contained Power SYBR Green PCR Master Mix
(Applied Biosystems), 10 pmol/L of forward and reverse
primers, and 100 ng complementary DNA as template.
Amplification conditions were as follows: incubation at
95°C for 10 minutes, followed by 45 cycles at 95°C for 15
seconds, 60°C for 60 seconds, and 72°C for 15 seconds,
with subsequent melting analysis, heating to 95°C for 20
seconds, cooling to 45°C for 10 seconds, and then re-
heating to 95°C.

Statistical Analysis

Data are expressed as means = SEM. Significant
difference between groups was determined by analysis of

GASTROENTEROLOGY Vol. 141, No. 6

variance. Statistical analysis of the immunohistochemical
data was performed using the Mann-Whitney U test.
Probability values of P < .05 were accepted as being
significant.
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Supplementary Figure 1. Effects of PAR-2-AP and trypsin on [Ca?*]; in microperfused guinea pig pancreatic ducts at pH 8.0. (A) Light (1) and
fluorescent ratio images (2 and 3) of microperfused pancreatic ducts showing the effects of luminal administration of 10 umol/L PAR-2-AP and 10
wmol/L PAR-2-ANT on [Ca?*] at pH 8.0. Images were taken before (1 and 2) and after (3) exposure of the ducts to PAR-2-AP or trypsin. An increase
in [Ca2*]; is denoted by a change from a “cold” color (blue) to a “warmer” color (yellow to red); see scale on the right. (B and C) Representative
experimental traces and summary data of the changes in [Ca2*]; at pH 8.0. (D) The same protocol was used to evaluate the effects of trypsin. (E and
F) Representative experimental traces and summary data of the changes in [Ca?*]. n = 3-4. P < .05 vs 1 wmol/L PAR-2-AP or 0.1 wmol/L trypsin,
respectively. P < .001 vs 10 wmol/L PAR-2-AP or 10 umol/L trypsin, respectively.
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Supplementary Figure 2. Effects of PAR-2-AP and trypsin on [Ca?*]; in microperfused guinea pig pancreatic ducts at pH 6.8. (4) Light (1) and
fluorescent ratio images (2 and 3) of microperfused pancreatic ducts showing the effects of luminal administration of 10 umol/L PAR-2-AP and 10
wmol/L PAR-2-ANT on [Ca2*];at pH 6.8. Images were taken before (1 and 2) and after (3) exposure of the ducts to either PAR-2-AP or trypsin. The
colors are described in Supplementary Figure 1; see scale on the right. (B and C) Representative experimental traces and summary data of the
changes in [Ca?"]; at pH 6.8. (D) The same protocol was used to evaluate the effects of trypsin. (E and F) Representative experimental traces and
summary data of the changes in [Ca?*];at pH 6.8. n = 3-4. 'P < .05 vs 1 umol/L PAR-2-AP or 0.1 wmol/L trypsin, respectively. “P < .001 vs 10
umol/L PAR-2-AP or 10 wmol/L trypsin, respectively.
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Supplementary Figure 3. Summary of the effects of PAR-2-AP and trypsin on [Ca?*]; in microperfused guinea pig pancreatic ducts at different
extracellular pH values. (A) The elevation in [Ca2*]; evoked by 1 wmol/L PAR-2-AP and (B) 0.1 wmol/L trypsin at different extracellular pH values (6.8;
7.4;8.0).n=3-4."P < .05vs at pH 6.8.

Supplementary Figure 4. The vicious trypsin cycle. If trypsin is present in the duct lumen, PAR-2 receptors on the duct cell are activated, leading
to Ca?* release from intracellular stores and an increase in cytosolic Ca2* concentration. This causes inhibition of the luminal anion exchangers and
CFTR CI~ channels reducing bicarbonate secretion by the duct cell. The decrease in bicarbonate secretion will decrease luminal pH in the duct, which
strongly accelerates the autoactivation of trypsinogen to trypsin. The activated trypsin will further inhibit bicarbonate transport by the duct cells,
leading to a vicious cycle generating further decreases in luminal pH and enhanced trypsinogen activation with the potential for damaging the gland.
The cycle may eventually be broken by the down-regulation of duct cell PAR-2 expression once pancreatitis is established. N, nucleus.

Supplementary Table 1. Nucleotid Sequences of the Primers Used in the Study.

Product length Annealing
Gene name Primer sequence (5’ to 3') (base pairs) temperature (°C)
B-actin GTACGCCAACACAGTGCTG (sense) 100 55
CTTCATTGTGCTGGGTGCC (antisense)
PAR-2 GGCACCATCCAAGGAACCAATAG(sense) 128 58

GCAGAAAACTCATCCACAGAAAAGAC (antisense)
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ABSTRACT

OBJECTIVE: A common potentially fatal disease of the pancreas is acute pancreatitis, for
which there is no treatment. Most studies of this disorder focus on the damage to acinar
cells since they are assumed to be the primary target of multiple stressors affecting the
pancreas. However, increasing evidence suggest that the ducts may also have a crucial role
in induction of the disease. To test this hypothesis, we sought to determine the specific role
of the duct in the induction of acute pancreatitis using well established disease models and
mice with deletion of the Na'/H" exchanger regulatory factor-1 (NHERF-1) that have
selectively impaired ductal function.

DESIGN: Randomized animal study.

SETTING: Animal research laboratory.

SUBJECTS: Wild-type and NHERF-1 knock-out mice.

INTERVENTIONS: Acute necrotizing pancreatitis was induced by i.p. administration of
cerulein or by intraductal administration of sodium-taurocholate. The pancreatic expression
of NHERF-1 and cystic fibrosis transmembrane conductance regulator (CFTR, a key
player in the control of ductal secretion) was analysed by immunohistochemistry. In vivo
pancreatic ductal secretion was studied in anesthetized mice. Functions of pancreatic acinar
and ductal cells, as well as inflammatory cells were analyzed in vitro.

MEASUREMENTS AND MAIN RESULTS: Deletion of NHERF-1 resulted in gross
mislocalization of CFTR, causing marked reduction in pancreatic ductal fluid and
bicarbonate secretion. Importantly, deletion of NHERF-1 had no deleterious effect on
functions of acinar and inflammatory cells. Deletion of NHERF-1 that specifically
impaired ductal function increased the severity of acute pancreatitis in the two models

tested.



CONCLUSIONS: Our findings provide the first direct evidence for the crucial role of
ductal secretion in protecting the pancreas from acute pancreatitis, and strongly suggest
that improved ductal function should be an important modality in prevention and treatment

of the disease.



INTRODUCTION

A major disease of the exocrine pancreas is acute pancreatitis (AP) that is caused
by multiple stressors and for which there is no specific treatment. The disorder usually
develops either as a result of gallstone disease or moderate to heavy ethanol consumption
[1]. It can present as mild edematous (85%) or as severe necrotizing (15%) forms, the latter
of which can lead to a very high mortality rate of up to 50% in the case of multi-organ
failure [1]. Most studies of AP focus on the function and damage to acinar cells since they
are assumed to be the key target of stressors. However, increasing evidence point to the
duct as the primary target of the stressors, which may have crucial role in induction of the
disease.

The main function of the pancreatic duct is fluid and HCO3™ secretion that is
mediated by basolateral HCOs™ influx due to Na*-HCOs™ contransport by NBCel-B and
luminal HCOj3™ exit mediated by the concerted action of cystic fibrosis transmembrane
conductance regulator (CFTR), DRA (down-regulated in adenoma or slc26a3) and PAT-1
(putative anion transporter 1 or slc26a6) [2]. The interrelated function of CFTR and PAT-1
requires their assembly into complexes through postsynaptic density-95/disc-large/zonula
occludens (PDZ) domains by an unknown scaffolding protein [3].

Na*/H" exchanger regulatory factor-1 (NHERF-1) is a scaffolding protein involved
in the apical targeting and trafficking of several membrane proteins and anchors them to
the cytoskeleton via ezrin [4]. NHERF-1 also facilitates the association of multiprotein
complexes via PDZ and ezrin-radixin-moesin binding domains, a process that is essential
for the adequate function of transporters, channels, and signaling complexes [5]. The
adapter protein has been shown to bind to the PDZ-binding motifs of CFTR, Na'/H"

exchanger-3 (NHE3), as well as a number of other proteins that functionally interact with



CFTR or NHE3, such as the B,-adrenoreceptor [6, 7], or the Slc26 anion exchanger DRA
[8].

The role of NHERF-1 in the pancreas has not yet been investigated, despite the fact
that CFTR, a key regulator of epithelial function, is controlled by this scaffolding protein
[4]. CFTR has very important roles in pancreatic ductal physiology [9] and in the
pathogenesis of diseases like cystic fibrosis [5] and AP [10, 11]. We reasoned that the
central role of NHERF-1 in CFTR function offered a unique opportunity to directly
evaluate, for the first time, the role of pancreatic ducts in AP by analyzing ductal function

in mice with deletion of NHERF-1 and their response to induction of AP.



MATERIALS AND METHODS

Brief outline of the methods is given below. For further details, please see the

supplemental material.

Ethics

All experiments were conducted in compliance with the Guide for the Care and
Use of Laboratory Animals (National Academies Press, Eight Edition, 2011), and were
approved by Committees on investigations involving animals at the University of Szeged
and at the Hannover Medical School and also by independent committees assembled by

local authorities.

Animals
NHERF-1-deficient mice were originally generated and described at Duke
University Medical Center [12]. NHERF-1 mutation was congenic for the FVB/N

background for at least 15 generations. Genotyping was performed by PCR.

Isolation and culture of pancreatic ducts and acini

Intra-/interlobular pancreatic ducts were isolated and cultured overnight at 37°C in
a humidified atmosphere containing 5% CO, as described previously [13]. Acinar cells
were isolated by collagenase digestion and were used for experiments immediately

thereafter [14].

MRNA expression of CFTR, PAT-1, DRA and NHERFs

Pancreatic ducts were homogenized by sonication in lysis-buffer and RNA was

isolated with a NucleoSpin RNA XS Total RNA Isolation Kit. Reverse transcription was
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performed using Superscript 111 RT. The primer sequences and PCR protocol used for the
determination of the mRNA expression of transporters and NHERF-1-3 are described in

the supplementary methods.

Localization of NHERF-1 and CFTR proteins by immunohistochemistry

Immunohistochemistry of the mouse pancreas was performed as described by Cinar

et al [15] using rabbit polyclonal antibodies against NHERF-1 and CFTR.

Microperfusion and measurement of intracellular pH, Ca** concentration

The luminal and basolateral perfusions of the cultured ducts were performed as
described previously [16]. Intracellular pH (pH;) and Ca®* concentration ([Ca®'];) were

assessed using the fluorescent dye BCECF-AM[17] and FURA 2-AM, respectively.

Determination of HCOj™ efflux

To determine the HCO3™ efflux across the apical membrane of the pancreatic ductal
epithelia, we used three methods: inhibitory stop, alkali load and luminal CI" withdrawal.
The measured rates of pH; change (dpH/dt) were converted to transmembrane base flux
[J(B)] which reflects the rate of HCO3 efflux (i.e. secretion) on luminal CI/HCO3

exchangers [18].

Measurement of fluid secretion

Fluid secretion into the closed luminal space of in vitro cultured pancreatic ducts
was analysed using a swelling method [19]. Basal and secretin-stimulated pancreatic fluid

secretion in vivo was determined in anesthetized mice.



Induction of acute pancreatitis

Cerulein-induced pancreatitis

Mice were administered 1, 7 or 10 hourly i.p. injections of cerulein (50ug/kg per
injection). Control mice were given physiological saline (PS: 0.9% NaCl) solution i.p.
instead of cerulein.
Sodium-taurocholate-induced pancreatitis

Na-taurocholate was administered intraductally as described previously by Perides

et al [20].

Assays

Amylase and lactate dehydrogenase (LDH) activities were measured with
commercial kits. Acinar cell viability was determined using the trypan-blue exclusion test.
Interleukin-1B (IL-1B) levels were measured by ELISA. Expression of heat shock
protein72 (HSP72), IkB-o and IkB-B were determined by Western blot analysis [21].
Myeloperoxidase (MPQ) activity, as a marker of tissue leukocyte infiltration, was assessed

by the method of Kuebler et al [22].

Histologic examination

Pancreatic injury was evaluated by semiquantitative grading of interstitial edema,
haemorrhage and leukocyte infiltration [21]. The extent (%) of cell damage was confirmed
by analysis with Image) software (NIH, Bethesda, MD, USA). Apoptotic cells were
quantified in 1mm? of pancreatic tissue by TUNEL assay using an In Situ Cell Death

Detection Kit according to the manufacturer’s instructions.
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Statistical analysis

Statistical analysis was performed by SigmaPlot (Systat Software Inc., Chicago, IL,
USA). Data are presented as means+SEM. Both parametric (one— or two-way analysis of
variance) and non-parametric (Kruskal-Wallis) tests were used based on the normality of
data distribution (analyzed by the Shapiro-Wilk test). Post-hoc analysis (either Dunn's or
Bonferroni's test) was performed according to the recommendations made by SigmaPlot.
y2-test was used to determine differences between groups in the proportion of mice who

died. A P<0.05 was accepted as statistically significant.
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RESULTS

MRNA expression of CFTR, DRA, PAT-1 and NHERFs in mouse pancreatic ducts
CFTR, DRA, PAT-1, NHERF-1 and NHERF-2, but not NHERF-3 mRNA were

expressed in isolated pancreatic ducts of WT mice (Fig.1). Notably, quantitative RT-PCR

indicated that NHERF-1 was expressed more abundantly than the other two CFTR-binding

NHERFs (NHERF-2 and NHERF-3).

Apical NHERF-1 and CFTR localization in pancreatic ducts is reduced in NHERF-1-
knock-out mice

NHERF-1 was highly expressed in the apical membrane of pancreatic duct cells,
but only weakly expressed in some acinar cells of WT mice (Fig.2A,B). No or weak
staining was detected in NHERF-1-KO mice (Fig.2G,H). The weak staining is non-specific
and was not localized to the luminal membrane.

Next, we determined whether NHERF-1 affects the localization of CFTR which
was expressed in both pancreatic acinar and ductal cells. Compared to WT animals
(Fig.2C), apical CFTR staining in pancreatic ducts was markedly reduced and overall
CFTR staining in the pancreas appeared more diffuse in the absence of NHERF-1 (Fig.2l).
Suppl.Fig. 1 shows that although the CFTR antibody gave a small amount of nonspecific
staining, this was not localized to the luminal membrane. The strong cytoplasmic staining
by the CFTR antibody correlates with the high CFTR mRNA expression levels in murine
pancreas as compared to other gastrointestinal tissues (i.e. some cytoplasmic and
basolateral staining in the duodenum [7], but not the ileum or colon of this mouse strain -
unpublished observations). Expression of pancreatic ductal CFTR mRNA was not

significantly different in WT and NHERF-1-KO mice (results not shown).
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Pancreatic ductal HCOj secretion is decreased in NHERF-1-knock-out mice

To determine if mislocalization of CFTR affects pancreatic ductal function, we
investigated HCO3™ secretion in isolated ducts using three different, but complementary
methods that measure the rate at which HCO3' is secreted across the luminal membrane via
CI/HCOs" exchangers and/or CFTR [18].

(1) Inhibitor stop. The administration of dihydro-4,4’-diisothiocyanostilbene-2,2’-
disulfonic acid (H,DIDS, 0.2mM) and amiloride (0.2mM) resulted in a rate of J(B") which
was more than 4-fold lower in NHERF-1-KO compared to WT mice (Figs.3A,D).

(2) Alkali load. Here the recovery of pH; from an alkali load induced by exposure
to 20mM NH4CI in a HCO3/CO,-containing solution reflects the rate of HCO3™ secretion
[16]. Figs.3B and 3E show that the recovery from alkali load was about 2-fold lower in
NHERF-1-KO vs. WT animals.

(3) Chloride removal. Figs.3C and 3F show that pH; alkalinisation induced by
removal of luminal CI" was significantly reduced in NHERF-1-KO compared to WT mice.

These data show that pancreatic ductal HCO3™ secretion was significantly reduced

in NHERF-1-KO compared to WT mice.

Fluid secretion is decreased in NHERF-1-knock-out mice

To investigate if fluid secretion was also compromised in KO mice, the rate of fluid
secretion was measured using sealed ducts. In the absence of secretagogue, we could not
detect any significant changes in the volume of WT and NHERF-1-KO ducts (Fig.4A).
Stimulation of WT ducts with 5uM forskolin caused dynamic swelling of the ducts as a
result of fluid secretion into the closed luminal space. In contrast, ducts from NHERF-1-

KO mice had a blunted response to forskolin (Fig.4B).
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We also examined the rate of pancreatic juice secretion in vivo in anesthetized
mice. Under basal conditions, WT animals secreted pancreatic juice at a rate of 0.12+0.02
ul/h/g body weight (Fig.4C). In contrast, we could not detect any basal secretion in
NHERF-1-KO animals. In response to secretin stimulation, we observed about 4-fold
higher rates of pancreatic juice secretion in WT vs. NHERF-1-KO mice. These results
demonstrate that pancreatic fluid secretion was significantly reduced in NHERF-1-KO
compared to WT animals under both basal and secretin-stimulated conditions.

To rule out secondary alterations in pancreatic fluid secretion by changes in
microcirculation due to loss of NHERF-1, we measured baseline microcirculatory plasma
velocities in the capillaries of the pancreas, which were similar in WT and NHERF-1-KO

animals (Suppl.Fig.2).

Cerulein-induced pancreatitis is more severe in NHERF-1-knock-out mice

To determine if the observed changes in pancreatic secretion could influence the
development of AP, mice were given 10 hourly i.p. injections of either PS (control) or
supramaximal doses of cerulein to induce AP (Fig.5A). The control animals had normal
pancreatic histology (Fig.5A.a,d). I.p. injections of cerulein caused extensive cell damage
(Fig.5A.b,c,e,f), the rates of necrosis (Fig.5B) and apoptosis (Fig.5C) were markedly
higher in the NHERF-1-KO vs. WT mice. However, no significant differences were
observed in the extent of interstitial edema (2.0+0.11 for WT vs. 2.2+0.2 for KO) or
leukocyte infiltration (1.72+0.08 for WT vs. 1.95+0.13 for KO, p=0.08) in cerulein-treated
groups.

There were also no significant differences between WT and NHERF-1-KO control

groups in all laboratory parameters, except for the level of 1xB-p.
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Serum amylase activities were greatly elevated in cerulein-treated WT and
NHERF-1-KO vs. the control groups (Fig.6A). Importantly, amylase activity was
significantly higher in the cerulein-treated NHERF-1-KO vs. WT mice. Pancreatic MPO
activity was significantly increased in cerulein-treated vs. control groups, but not different
in WT compared to KO mice exposed to cerulein (Fig.6B). Pancreatic HSP72 expression
(a sensitive marker of tissue injury) was significantly increased in cerulein-treated vs.
control groups (Fig.6C), and significant differences were also observed between cerulein—
treated WT and NHERF-1-KO groups.

Key events in the pathogenesis of AP include premature activation of trypsinogen
[23, 24] and the activation of the proinflammatory transcription factor nuclear factor-«xB
(NF-xB) [25]. To exclude any potential effects of NHERF-1 deletion on early trypsinogen
and NF-xB activation (regulated by IxBs), we measured pancreatic trypsin activity
(Fig.6D) and expression of IkBs (Suppl.Figs.3A-B) in mice injected i.p. with 1x50ug/kg
cerulein. Trypsin activity was increased by about 4-fold 0.5h after the injection of cerulein
compared to the control group (Fig.6D), however, there were no significant differences
between WT and NHERF-1-KO mice. Also, with respect to IkB-a expression, there was
no significant differences between WT and NHERF-1-KO animals in cerulein-treated
groups (Suppl.Fig.3A). The basal level of 1kB-p was significantly higher in NHERF-1-KO
vs. WT control mice, and no differences were observed in cerulein-treated WT and
NHERF-1-KO groups (Suppl.Fig.3B). These data demonstrate that the difference in AP
severity between WT and NHERF-1-KO mice is independent of pancreatic trypsinogen
and NF-xB activation.

The expression of the proinflammatory cytokine IL-1p was significantly elevated in

the pancreas of cerulein-treated WT and NHERF-1-KO mice vs. the control groups
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(Suppl.Fig.3C), but there was no difference between the cerulein-treated WT vs. NHERF-
1-KO mice.

Of note, i.p. administration of 7x50ug/kg cerulein in WT and NHERF-1-KO mice
caused similar effects in the investigated histological and laboratory parameters as shown
for the higher cerulein dose. A summary of these results can be found in Suppl.Figs.4-5.
Overall, our results clearly demonstrate that the severity of cerulein-induced AP is lower in
mice expressing NHERF-1.

To exclude any possible deleterious effects of NHERF-1 deletion on
cholecystokinin receptor function, we tested the sensitivity of acinar cells to cerulein.
Amylase secretion of acinar cells from WT and NHERF-1-KO animals showed no

significant differences in response to cerulein stimulation (Suppl.Fig.6).

Intraductal administration of 4% sodium-taurocholate causes more extensive acinar
cell necrosis in NHERF-1-knock-out compared to wild-type mice

We also investigated if NHERF-1-KO mice responded differently than WT mice
when AP was induced by intraductal infusion of 4% Na-taurocholate. Postoperative
mortality after administration of Na-taurocholate in KO mice (2/14 animals) was not
significantly different vs. WT animals (0/10).

Intraductal infusion of PS caused no postoperative mortality, but mild pancreatic
edema and inflammation was seen on histology without any significant necrosis
(Fig.7A,B). The rate of leukocyte infiltration was significantly higher in the NHERF-1-KO
vs. WT mice (Tablel). The infusion of 4% Na-taurocholate into the pancreatic duct
induced necrotizing AP in the head (Fig.7C,D), but not in the tail of the pancreas (not
shown). The latter finding is in accord with that of others [20]. Therefore, only the

pancreatic heads were used for analysis. Approximately 24% of acinar cells were necrotic
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in WT (Fig.7C,E) and about 47% in NHERF-1-KO mice (Figs.7D,E). Tablel summarizes
the histopathological changes in the various groups. Significantly higher rates of leukocyte
infiltration were detected in Na-taurocholate-treated vs. PS-treated WT groups. In contrast,
there were no differences in leukocyte infiltration between the Na-taurocholate-treated vs.
PS-treated NHERF-1-KO groups, and Na-taurocholate-treated NHERF-1-KO vs. WT
groups.

\Serum amylase activities were significantly higher in Na-taurocholate-treated vs.
control WT and NHERF-1-KO groups (Suppl.Fig.7A), but there were no differences
between Na-taurocholate-treated NHERF-1-KO and WT mice. We did not observe any
significant differences in MPO activity between WT and NHERF-1-KO mice after
intraductal PS infusion (Suppl.Fig.7B). However, MPO activity was increased in Na-
taurocholate-treated vs. control NHERF-1-KO mice, and even higher in the KO compared
to the WT Na-taurocholate-treated mice. Pancreatic IL-1p expression was elevated in Na-
taurocholate-treated WT and NHERF-1-KO mice vs. the control groups (Suppl.Fig.7C).
However, there were no significant differences in the levels of IL-1B of Na-taurocholate-
treated WT and NHERF-1-KO animals.

These data indicate that NHERF-1 expression reduces Na-taurocholate-induced
pancreatic injury, but does not necessarily influence other laboratory parameters of the

disease.

Functions of inflammatory cells are unaltered by deletion of NHERF-1
Since inflammatory cells are implicated in the pathogenesis of AP and NHERF-1
expression has been shown in neutrophils [26], we checked the bacterial killing efficiency

of polymorphonuclear cells and the phagocytic activity of peritoneal macrophages. The
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results in Suppl.Fig.8 demonstrate that knocking out NHERF-1 did not alter these

functions.

NHERF-1 expression does not influence intracellular calcium signaling and the
degree of cell damage caused by high concentrations of cerulein or sodium-
taurocholate in isolated acini

To further investigate whether acinar cells are affected by the deletion of NHERF-
1, we tested the effects of cerulein and Na-taurocholate on the critical intracellular Ca?*
signaling pathway in induction of AP, and on cell damage of isolated acini prepared from
WT and NHERF-1-KO mice. Suppl.Fig.9. shows no significant differences in elevation of
[Ca?*]i induced by cerulein or Na-taurocholate on isolated acinar cell from WT and
NHERF-1-KO mice (n=5-8). Next, we looked at the extent of in vitro cell damage induced
by the administration of high concentrations (based on literature data) of cerulein (10°M)
[27] and Na-taurocholate (1mM) [28]. Acinar viability of WT and NHERF-1-KO mice was
99.5+0.5% and 97.6+1.0% immediately after isolation, respectively (n=7); LDH release
was 9.2+1.2% and 7.6+1.0%, respectively (n=7). Acinar viability significantly decreased
with time and in response to cerulein or Na-taurocholate administration (Fig.8). However,
we did not find any significant differences in cell viability parameters of treated WT and

NHERF-1-KO acini.
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DISCUSSION

We have demonstrated that NHERF-1 mRNA is highly expressed in mouse
pancreatic ducts, but not acini. Furthermore, the genetic deletion of NHERF-1 greatly
reduced the localisation of CFTR in the luminal ductal cell membrane and also decreased
both in vitro and in vivo pancreatic bicarbonate and fluid secretion. Both basal and cAMP-
stimulated secretion was reduced in the transgenic animals, but this effect was not caused
by alterations in pancreatic blood flow. The diminished ductal secretion in NHERF-1-KO
mice was associated with increased severity of necrotizing AP in two independent models
of the disease. Importantly, early acinar events associated with AP, such as intracellular
Ca®* signaling, trypsinogen and NF-kB activation were unaltered by deletion of NHERF-1,
but late events such as apoptosis and necrosis were increased in the KO animals. Notably,
deletion of NHERF-1 had no deleterious effect on functions of acinar and inflammatory
cells independent of AP, indicating that increased severity of the disease is specifically due
to impaired ductal secretion.

NHERF-1 has been identified as a CFTR-interacting PDZ domain protein, which is
involved in the apical targeting of CFTR, signal complex formation with a variety of
receptors, and possibly the interaction with other membrane transport proteins, in a cell-
and signal-specific manner [26, 29-34]. In our study, the absence of NHERF-1 greatly
reduced CFTR abundance in the apical membrane of pancreatic ducts, whereas CFTR
MRNA expression was unaltered. The gross mislocalization of CFTR resulted in decreased
ductal fluid and HCO3™ secretion. Consistent with our findings, mutations in CFTR that
cause cystic fibrosis, impair the stability of the CI" channel in the plasma membrane and
also result in markedly reduced bicarbonate and fluid secretion [35]. Our study does not
differentiate between a loss of HCO3™ and fluid secretion via CFTR or via a disruption

between CFTR and other transporters involved in pancreatic bicarbonate and fluid
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secretion, such as SLC26 anion exchangers. Of note, both DRA and PAT-1 are known to
have PDZ domain binding motifs [4], and to bind to NHERF-1 [8, 36, 37]. In addition,
activation of CFTR by SLC26 transporters was shown to be facilitated by PDZ ligands [3].
The reduced expression of CFTR in the apical membrane in NHERF-1-KO pancreatic
ducts thus will likely decrease the activities of PAT-1 and DRA [38, 39].

Several groups have shown that binding of CFTR to NHERF may regulate CFTR
activity. Two studies [7, 40] have demonstrated that NHERF-1 is required for full
activation of transepithelial CI" and HCO3" secretion by cAMP- and cGMP-linked agonists
in the duodenum and jejunum. This reduced activation of anion currents in NHERF-1-KO
mice was independent of the total amount of CFTR expression in epithelial cells, and
appeared to be due to a defect in apical targeting and/or retention of CFTR [40]. In
addition, the NHERF-1 assisted formation of receptor-transporter signaling complexes in
the apical membrane were disrupted [7]. A recent study has shown that CFTR activity is
also dependent on NHERF-1 regulated cAMP compartmentalization and local protein
kinase A activity in human airway epithelial cells [41]. The particularly high expression of
NHERF-1 and CFTR in pancreatic ducts is quite different from that found in the small
intestine [42, 43]. These findings suggest to us that CFTR-NHERF-1 interaction may be
crucial to pancreatic ductal secretion.

Accumulating evidence suggests that pancreatic ducts not only have prominent
roles physiologically, but also pathophysiologically. It is well known that insufficient
electrolyte and fluid secretion by ductal cells in cystic fibrosis (caused by mutations in the
CFTR gene) leads to destruction of acini [9]. Numerous CFTR mutations predispose to
chronic pancreatitis [44]. Pancreatic biopsies from patients with autoimmune pancreatitis
showed mislocalization of CFTR in the ducts and secretin-stimulated fluid and HCO3’

secretion was reduced in these patients [45]. Until quite recently, the pathophysiological
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relevance of pancreatic ducts in AP has been neglected. It is commonly assumed that the
primary target of all stressors is the acinar cells since they are damaged in all forms of AP.
However, both clinical and experimental data suggest that pancreatic ductal cells may also
have fundamental roles in the development of AP [11]. Cavesto et al [10] have found
statistically significant association of CFTR gene mutations in patients with recurrent AP.
Pancreatic fluid secretion is greatly increased at the initiation of AP [46]. Also, in vitro
administration of agents inducing AP such as bile acids, viruses or ethanol to pancreatic
duct cells stimulate bicarbonate secretion [11, 16]. Our hypothesis is that ductal secretion
serves to defend the pancreas by washing out toxic agents such as activated digestive
enzymes. If this ductal defence mechanism is insufficient, ductal secretion will be inhibited
and the harmful enzymes cannot leave the pancreas. The beneficial effect of ductal fluid
hypersecretion is indicated by the fact that secretin, a major mediator of pancreatic ductal
secretion, has been shown to protect against cerulein-induced AP [47, 48]. Furthermore,
the severity of AP in galanin (a neuropeptide which has a potent inhibitory effect on
pancreatic HCO3  secretion) KO mice was significantly reduced compared to WT
littermates [49].

A striking finding of this study was that the severity of cerulein-induced acute
necrotizing pancreatitis was significantly greater in animals lacking NHERF-1 (and thus
reduced pancreatic ductal secretion), which suggests that normal ductal secretion in WT
mice protects acinar cells against necrosis and apoptosis. This effect was independent of a
change in cerulein sensitivity of acinar cells, and shows that NHERF-1 expression is not
necessary for cholecystokinin receptor function. Furthermore, we did not find any
significant differences in intracellular Ca®** signaling and pancreatic activation of
trypsinogen and NF-kB in mice lacking NHERF-1. Taken together, the latter findings

show that early acinar events leading to AP are unaltered by NHERF-1 expression. Similar
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to our findings, another group has shown that transgenic mice with reduced CFTR
expression were more susceptible to cerulein-induced AP [50, 51]. As CFTR-KO mice
exhibited constitutive overexpression of pancreatic proinflammatory mediators, this is not
that surprising. However, we did not find any differences in basal pancreatic
proinflammatory parameters between WT and NHERF-1-KO mice. Furthermore, in the
studies by DiMagno et al, only the cerulein-induced AP model was tested and the acinar-
vs. ductal-specific effects were not investigated. To confirm that the effect of diminished
secretion on AP severity was not specific to the cerulein-induced model, we also
determined disease severity in the clinically more relevant Na-taurocholate model [52].
Similar to the results observed in the cerulein-induced pancreatitis model, the degree of
acinar cell damage in Na-taurocholate-induced AP was significantly greater in NHERF-1-
KO vs. WT mice. Notably, the lower degree of necrosis was not necessarily accompanied
by markedly reduced levels of inflammatory infiltration. Interestingly, leukocyte
infiltration was higher in NHERF-1-KO vs. WT mice injected intraductally with PS. The
latter data indicate that KO animals may even be more sensitive to increased ductal
pressure.

Importantly, NHERF-1 expression did not influence the degree of cell damage
caused by high concentrations of cerulein or sodium-taurocholate in isolated acini. These
data indicate that the general deletion of NHERF-1 does not affect acinar cell damage
caused by the latter agents. Therefore, it is likely that factors other than variations in the
direct effects of cerulein or sodium-taurocholate on acinar cells are responsible for the

differences in AP severities of WT and NHERF-1-KO mice.

CONCLUSIONS
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Our results show for the first time that NHERF-1 plays a critical role in regulating
the apical localization of CFTR in mouse pancreatic duct cells and ductal secretion which
significantly influences the severity of acute necrotizing pancreatitis. Importantly, we
provide in vivo data that strongly suggests the involvement of pancreatic ductal secretion in
the pathogenesis of AP. The results obtained from this study may eventually open up new
therapeutic possibilities (targeting ductal secretion) in the treatment of pancreatic

inflammation which have to date mainly focused on acinar cells.
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Fig. 1. mRNA expression of CFTR, DRA, PAT1, NHERF-1, NHERF-2 and NHERF-3
in isolated mouse pancreatic ducts. Total RNA was prepared from isolated interlobular
pancreatic ducts of wild-type (WT) mice (n=6) after overnight culture and mRNA
expression of transporterssyNHERF1-3 was measured by real-time RT-PCR. Data are

shown as means + SEM.
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Fig. 2. NHERF-1 and CFTR staining in wild-type and NHERF-1-knock-out
pancreata.

Representative immunohistochemical staining of NHERF1 (A, B, G, H) and CFTR (C, I)
in the pancreas of WT and NHERF-1-knock-out (KO) mice. NHERF-1 was localized in

the apical membrane of intra- and interlobular duct cells; only weak staining was noted in

some acinar cells of WT mice (A, B). No or weak staining was detected in NHERF-1-KO
mice (G, H). CFTR staining in the pancreas of WT and NHERF-1-KO mice showed that
apical (white arrow) CFTR localization (green) was reduced in NHERF-1-KO (1) vs. WT
(C) ducts. Red staining shows F-actin expression (D, J). E, K show merged images of
CFTR and F-actin (yellow color indicates co-localization). F, L are phase contrast pictures.

Scale bar = 50 pm.
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Fig. 3. Pancreatic ductal HCOg3 secretion is decreased in NHERF-1-knock-out mice.

Panels A-C show representative intracellular pH traces of isolated pancreatic ducts bathed

in standard HCO3/CO, solution demonstrating the effects of 0.2mM amiloride and 0.2mM

H,DIDS administered from the basolateral membrane (A), the recovery from alkalosis via

administration of 20mM NH,CI (B), or after luminal CI" removal (C). Bar charts show

summary data for the base fluxes [-J(B/min)] after exposure of the transport inhibitors (D),
20mM NH,CI (E) or luminal CI" removal (F) in WT (closed columns) and NHERF-1-KO

(open columns) mice. Means + SEM are from 30-50 regions of interest from 5-8 ducts.

a: P<0.05 vs. the respective WT group.
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Fig. 4. Fluid secretion is decreased in NHERF-1-knock-out vs. wild-type mice. A and
B show changes in the relative luminal volume of pancreatic ducts from WT (black line,
n=8 from 3 animals) and NHERF-1-KO (gray line, n=8 from 3 animals) mice. Initially,
ducts were perfused with HEPES-buffered solution, then perfusion was switched to
standard HCO3; /CO,-buffered solution (A). In some cases the ductal secretion was
stimulated with 5 uM forskolin (B). Panel C shows the volume of pancreatic juice
collected in vivo under basal (secretin -) and secretin-stimulated (secretin +, 0.75 CU/kg
i.v.) conditions from WT (closed columns) and NHERF-1-KO (open column) mice

anesthetized with urethane. Means + SEM are from 5-6 animals. P<0.05 vs. a: the
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respective secretin— group or b: vs. the WT secretin+ group. N.D.: not detected in case of
NHERF-1-KO mice.

A physiological saline 10x50 pg/kg cerulein 10x50 pg/kg cerulein

B c a,b
60 1 a,b 250
50 1 [ ‘E 200 I
E
240 - S
s a 8 1501
0
» 30 2 a
o 2
5 £ 100 4
D 20 1 8
= [«
= 50
10 1 ,'E
0 - - 0 T
cerulein - - + + cerulein - - + +

Fig. 5. Histopathologic changes of the pancreas in response to intraperitoneal
administration of cerulein in wild-type and NHERF-1-knock-out mice. Acute
pancreatitis was induced by administering 10 hourly i.p. injections of cerulein (50 ug/kg
per injection, cerulein+). Control mice were given PS (cerulein-) instead of cerulein. Mice
were exsanguinated through the inferior vena cava 12 h after the first i.p. injection. (A)The
pictures show representative light micrographs (H&E staining) of the pancreata of WT
control (a) and cerulein-treated (b-c) and NHERF-1-KO control (d) and cerulein-treated
(e-f) mice. Scale bar=100um. The bar diagrams show the rates of pancreatic necrosis (B)
(n=9-10) and apoptosis (C) (n=4-6). Data are shown as means+SEM. P<0.05 vs. a: the
respective control group or b: vs. the WT cerulein+ group. WT (closed columns), NHERF-

1-KO (open columns).
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Fig. 6. Severity of cerulein-induced acute pancreatitis and pancreatic trypsinogen
activation in wild-type and NHERF-1-knock-out mice. Acute pancreatitis was induced
in WT (closed columns) and NHERF-1-KO (open columns) mice by administering
1x50ug/kg (for measurement of trypsin activity) or 10 hourly i.p. injections of 50 ug/kg
cerulein (cerulein+). Control mice were given PS (cerulein-) instead of cerulein. Mice were
exsanguinated through the inferior vena cava 0.5h (in case of measurement of trypsin
activity) or 12h after the first i.p. injection. The bar diagrams show serum amylase activity
(A), the pancreatic myeloperoxidase (MPOQ) activity (B), heat shock protein-72 (HSP72)
expression (C) and trypsin (D) activities. Data are shown as means + SEM, n=4-6. P<0.05

vs. a: the respective control group or b: vs. the WT cerulein+ group. N.D.: not detected.
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Fig. 7. Histopathologic changes of the pancreatic head in response to intraductal

administration of physiological saline and 4% sodium-taurocholate in wild-type and
NHERF-1-knock-out mice. The diagrams show representative light micrographs (H&E
staining) of pancreata of WT (A, C) and NHERF-1-KO (B, D) mice 24 h after intraductal
treatment with 50ul (10pl/min) PS (4%TC-) (A, B) or 4% Na-taurocholate (4%TC+) (C,
D). Inflammatory infiltration was significantly higher in NHERF-1-KO (A) vs. WT (B)
PS-treated mice. Intraductal infusion with 4% Na-taurocholate caused the development of
severe acute necrotizing pancreatitis in WT (C) and NHERF-1-KO (D) mice. The bar
diagram shows the rates of pancreatic necrosis (E) in the various groups. Data are shown
as means + SEM, n=5-7. P<0.05 vs. a: the respective control group or b: vs. the WT
4%TC+ group. N.D.: not detected in the WT group. Scale bar = 200 um. WT (closed
columns), NHERF-1-KO (open columns).
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Fig. 8. NHERF-1 expression does not influence the degree of cell damage caused by
high concentrations of cerulein or sodium-taurocholate in isolated acinar cells. Acinar
cells were isolated from WT and NHERF-1-KO mice by collagenase digestion. In vitro
cell damage was induced by the administration of high concentrations of 10® M cerulein
(cerulein+) for 2h or 1 mM Na-taurocholate (TC+) for 3h. Alternatively, cells were treated
with the vehicle for cerulein (cerulein-) or Na-taurocholate (TC-) for the same time-
periods. Cell viability was determined by trypan blue staining (A, B) and measurement of
lactate dehydrogenase (LDH) release (C, D) from acini. Data are shown as means + SEM,
n=7. P<0.05 vs. a: the respective control group. WT (closed columns), NHERF-1-KO

(open columns).
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TABLE

WT WT KO KO
physiological saline 4% Na-taurocholate physiological saline 4% Na-taurocholate
Interstitial edema (0-3) 1.75 £ 047 2+0.06 1.8+0.2 2.35%0.14
Hemorrhage (0-3) 0 042+0.2 a 0 0.71+0.28 a
Leukocyte infiltration (0-3) 0803 1.9+0.38 a 1.6+0.36 b 1.9+£045

Table 1. Histopathological changes in response to intraductal infusion of 4% sodium-
taurocholate and physiological saline in wild-type and NHERF-1-knock-out mice. WT
and NHERF-1-KO mice were infused intraductally with 4% Na-taurocholate or
physiological saline (PS, control) and were sacrificed after 24h. Histological scores are
shown as means + SEM for 5-7 animals. P<0.05 vs. a: the respective PS-treated group or b:
vs. the WT PS-treated group.
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SUPPLEMENTARY MATERIALS AND METHODS

Materials

All laboratory chemicals were obtained from Sigma-Aldrich (Munich, Germany)
unless indicated otherwise. Forskolin was from Tocris Bioscience (Bristol, UK), purified
CLSPA collagenase was from Worthington Biochemical Corporation (Lakewood, NJ,
USA) and cerulein was from American Peptide Company (Sunnyvale, CA, USA).
H,DIDS, Superscript 1l1 RT, TrypLE™ Express solution, Alexa Fluor 488-labelled goat
anti-rabbit 1gG, phalloidin-633 and SlowFade Gold antifade reagent were purchased from
Invitrogen Corporation (Carlsbad, CA, USA). CP-Ketamine (10%) and CP-Xylazine (2%)
were obtained from CP-Pharma-Handelsgesellschaft MBH (Burgdorf, Germany). Urethane
was from Reanal (Budapest, Hungary) and pentobarbital was from Bimeda MTC
(Cambridge, Canada). DirectPCR (Tail) reagent was obtained from Viagen Biotech Inc.
(Los Angeles, CA, USA). NucleoSpin RNA XS Total RNA Isolation Kit was from
Machery & Nagel (Diiren, Germany). MesaGreen was from Eurogentec (Seraing, Licge,
Belgium). CellTak was purchased from Becton Dickinson Labware (Bedford,
Massachusetts, USA). Background reducing buffer was from DAKO (Glostrup, Denmark).
Mr Pink rabbit polyclonal antibody against human CFTR provided by W.E. Balch, Scripps
Research Institute (La Jolla, CA, USA). An IL-1p ELISA kit was purchased from R&D
Systems (Minneapolis, MN, USA). Laboratory chow was from Biofarm (Zagyvaszanto,
Hungary). Dulbecco's Modified Eagle Medium (DMEM) and heat-inactivated fetal bovine
serum were purchased from Lonza (Basel, Switzerland). Amylase and lactate
dehydrogenase activities were determined using commercial kits (DIALAB GmbH,
Neudorf, Austria and Diagnosticum ZRt., Budapest, Hungary, respectively). Isolation of

polymorphonuclear cells was performed by Polymorphprep (Axis-Shield, Oslo, Norway).
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Apoptotic cells were quantitated by using an In Situ Cell Death Detection Kit from Roche
Diagnostics (Mannheim, Germany). Concentrated stock solutions of forskolin (100mM),
cerulein (4mM) and amiloride (50mM) were prepared in dimethylsulfoxide. 2% stock

solution of dextran was dissolved in physiological saline (PS).

Maintenance and genotyping of mice

The mice were housed in a standard animal care facility with a 12-h light/12-h dark
cycle and were allowed free access to water and standard laboratory chow. Genotyping of
mice was performed after DNA extraction from tail samples using the DirectPCR (Tail)
reagent supplemented with proteinase K. The primer sequences for genotyping NHERF-1
mice were as follows: wild-type forward, 5-TCGGGGTTGTTGGCTGGAGAC-3’;
common  reverse, 5’-AGCCCAACCCGCACTTACCA-3’; KO forward, 5’-
AGGGCTGGCACTCTGTCG-3’. Amplicons generated by PCR were 294 bp for the WT

gene and 242 bp for the KO gene.

MRNA expression of CFTR, PAT-1, DRA, NHERF-1, NHERF-2 and

NHERF-3 in mouse pancreatic ducts

The primer sequences for CFTR Homolog NM 021050 are forward: 5'-
TTCTTCACGCCCCTATGTCGA-3" reverse: 5'-GCTCCAATCACAATGAACACCA-3’
(PCR product length: 145 bp), for slc26a3 (DRA) NM 021353 are forward: 5'-
TTCCCCTCAACATCACCATCC-3’, reverse: 5-GTAAAATCGTTCTGAGGCCCC-3’
(PCR-product length: 110 bp), for NHERF-2 NM_023449:2 are forward: 5'-
TAGTCGATCCTGAGACTGATG-3", reverse: 5-ATTGTCCTTCTCTGAGCCTG-3’
(PCR-product length: 173 bp), and for NHERF-3 NM_021517:1 are forward: 5'-

TGACGGTGTGGTGGAAATG-3", reverse: 5-TGGCAGTAAAGAAGTGGAGAC-3’
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(PCR-product length: 117 bp) were designed with “Primer Express” (Applied Biosystems,
Foster City, CA, USA). The primers sequences for slc26a6 (putative anion transporter-1,
PAT-1) and NHERF-1 were published before [1, 2]. Real-time polymerase chain reactions
(gRT-PCR) were carried out using MesaGreen in the Applied Biosystems 7300 Real-time
PCR System. PCR extension was performed at 60 °C with 40 repeats. Data were analyzed
using Sequence Detection Software 1.2.3 (Applied Biosystems) and exported to Microsoft

Excel. Relative quantification was carried out using B-actin as a reference gene [3].

Immunohistochemistry

Briefly, for NHERF-1 staining, paraformaldehyde-fixed, paraffin-embedded tissue
sections (5 wm) from mice of different genotypes were prepared on the same slide. After
deparaffinization with xylene, sections were treated with 0.01 M sodium citrate solution at
100 °C for 10 min. For CFTR staining, pancreata were fixed in 2% paraformaldehyde (in
PBS). Fixed tissue was rinsed with PBS and transferred to 30% sucrose in PBS overnight.
The tissue was embedded in tissue-freezing medium (TissueTec O.C.T., Sakura).
Cryosectioning was done with a microtome cryostat at —20 °C and 10 um thick sections
were collected on microscope slides (SuperFrost Plus, Menzel-Gliser, Germany).

Pancreatic sections were incubated sequentially with PBS for 5 min, washing buffer
of PBS with 50 mM NH,CI twice for 10 min each, background reducing buffer for 20 min
and 5-10% goat serum for 30 min for blocking and incubated with rabbit anti-NHERF-1
(1:500) [4] antibody or Mr. Pink rabbit polyclonal antibody against human CFTR (1:100)
in background reducing buffer overnight at 4 °C. Washing 4 times for 5 min in the washing
buffer was followed by secondary antibody (Alexa Fluor 488-labelled goat anti-rabbit 1gG)
incubation for 1 h at room temperature at a dilution of 1:300-1:500 in background reducing

buffer. After 2-4 washes for 5 min each, in case of NHERF-1 staining, the sections were
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treated with 5U/ml phalloidin-633 in PBS with 1% bovine serum albumin, 0.2% Triton X-
100 for 30 min which was followed by washes with washing buffer (six times). After
washing, each cover slide was mounted with SlowFade Gold antifade reagent with DAPI,
and slides were imaged on a confocal microscope (TCS SP2; Leica, Wetzlar, Germany).
Excitation wavelengths used were 405, 488, and 633 nm, and emission was taken at 415—
450, 490-540, and 560-700nm for detection of DAPI, Alexa Fluor 488, and phalloidin

633, respectively.

Solutions used for the determination of pancreatic ductal HCOj; and

fluid secretion in vivo

The HEPES-buffered solution contained (in mM): 130 NaCl, 5 KCI, 1 CaCl,, 1
MgCl,, 10 glucose and 10 Na-HEPES and its pH was set to 7.4 with HCI at 37 °C. The
standard HCOg3 -buffered solution contained (in mM): 115 NaCl, 25 NaHCO;, 5 KCI, 1
CaCl,, 1 MgCly, 10 Glucose. In the NH,4" pulse experiments in HCO3-buffered soultion,
20 mM NaCl was repleaced with NH4CI. The CI-free HCOj3" solution contained (in mM):
25 NaHCOg, 115 Na-gluconate, 1 Mg-gluconate, 6 Ca-gluconate, 2.5 KH,-sulfate and 10
glucose. The HCO3™-containing solutions were equilibrated with 95% O, and 5% CO; to

maintain pH at 7.4 at 37 °C.

Determination of HCO3 efflux

To determine the HCO3" efflux across the apical membrane of the pancreatic ductal
epithelia, we used three methods: inhibitory stop, alkali load and luminal CI" withdrawal.
The measured rates of pH; change (dpH/dt) were converted to J(B") using the equation:
J(B)=(dpH/dt)xPtal Where Protal is the total buffering capacity of the cells. J(B") reflects the

rate of HCOj3" efflux (i.e. secretion) on luminal CI'/HCO3™ exchangers [5].
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Measurement of fluid secretion

In vitro

Fluid secretion into the closed luminal space of the cultured pancreatic ducts was
analysed using a swelling method developed by Fernandez-Salazar et al [6]. Briefly, the
ducts were transferred to a perfusion chamber (0.45 ml) and were attached to a coverslip
precoated with CellTak in the base of the chamber. Bright-field images were acquired at 1
min intervals using a CCD camera (CFW 1308C, Scion Corporation, Frederick, MD,
USA). The integrity of the duct wall was checked at the end of each experiment by
perfusing the chamber with a hypotonic solution (standard HEPES-buffered solution
diluted 1:1 with distilled water). Digital images of the ducts were analysed using Scion
Image software (Scion Corporation, Frederick, MD, USA) to obtain values for the area
corresponding to the luminal space in each image.
In vivo

Mice were anesthetized with 1.5 g/kg urethane by i.p. injection. The body
temperature of mice was maintained by placing the animals on a warm pad (37°C) during
the experiments. The abdomen was opened, and the lumen of the common biliopancreatic
duct was cannulated with a blunt-end 31-gauge needle. Then the proximal end of the
common duct was occluded with a microvessel clip to prevent contamination with bile, and
the pancreatic juice was collected in PE-10 tube for 30 min. Using an operating
microscope, the jugular vein was cannulated for i.v. administration of secretin (0.75

CU/kg) and the pancreatic juice was collected for an additional 120 min.

Isolation of pancreatic acini
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Mouse pancreatic acinar cells were isolated according to the method of Pandol et al
[7]. Briefly, mice were anaesthetized with 85 mg/kg pentobarbital by i.p. injection. The
pancreas was quickly removed, and was cleaned from fat and lymph nodes. The
extracellular solution for cell isolation contained (in mM) 120 NaCl, 5 KCI, 25 HEPES, 2
NaH,PO4, 2 CaCl,, 1 MgCl,, 5 pyruvate, 4 Na-fumarate, 4 Na-glutamate, 12 mM D-
glucose, as well as 0.02% (wt/vol) soybean trypsin inhibitor, 0.2% (wt/vol) bovine serum
albumin, 0.025% (vol/vol) minimal essential amino acids and 0.01% (vol/vol) vitamins
eagle. The pancreas was inflated with 5ml of extracellular solution containing collagenase
(105 U/ml) then subjected to three successive 20-min incubations in this solution with
vigorous shaking at 37 °C. For each 20-min incubation, the extracellular solution
containing collagenase was replaced with a fresh oxygenated aliquot. Acinar cells were
then washed three times with extracellular solution, followed by resuspension in Medium
199 and incubated for 30 min. Acinar cells were used for experiments thereafter. Cells
were incubated with cerulein (10%-10%* M), 1 mM Na'-taurocholate or physiological
saline. Amylase secretion was determined in response to cerulein and is given as the
percentage of total amylase content. The extent of cytotoxicity (in response to 10° M
cerulein and 1 mM Na'-taurocholate) as quantified by trypan-blue staining and by
measuring the amount of lactate dehydrogenase (LDH) released into the incubation
medium of acinar cells. LDH activity was measured spectrophotometrically as the
production of NAD from pyruvic acid and NADH. Values for LDH release are presented

as the percentage of total LDH activity (medium/medium-+cells).

Isolation of polymorphonuclear cells and bacterial killing assay

Mouse polymorphonuclear cells (PMNs) were isolated from freshly drawn,

heparinized blood using Polymorphprep (Axis-Shield) according to the manufacturer’s
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instructions. Isolated PMNs were immadiately plated in round-bottom 96-well plastic cell
culture plates (10° PMNs/well) in DMEM supplemented with 10% autologous serum. E.
coli bacteria were added to the cultures at an effector/target ratio of 1:5. As a control, the
same number of bacterial cells were incubated in the appropriate cell culture medium
without PMNs. After a 1 h incubation period, PMNs were treated with distilled water and
the lysates were plated on LB agar plates and incubated overnight at 37 °C. Then, the
number of colony forming units was determined and the efficiency of killing was
calculated as follows: (number of live E. coli cells in control wells — number of live E. coli

cells in co-cultures) / number of live E. coli cells in control wells x 100.

Culturing and FITC labeling of E. coli bacteria

E. coli (ATCC 25922) bacteria were grown overnight in LB medium (1% NaCl, 1%
tryptone, 0.5% yeast extract). Cells were harvested by centrifugation, washed twice with
PBS, counted in a Biirker-chamber and adjusted to the proper concentration used in
subsequent experiments. For phagocytosis assay, E. coli were heat-killed (15 min, 100 °C),
and incubated in hydrogen carbonate buffer (50 mM NaHCO3, 100 mM NaCl) containing
200 pg/ml fluorescein isothiocyanate (FITC). After 1 h incubation, cells were washed
extensively with PBS and adjusted to the proper concentration used in subsequent

experiments.

Isolation of peritoneal macrophages and phagocytosis assay

Mouse peritoneal macrophages were obtained by lavage [8] and plated in 24-well
(8x10° cells/well) flat-bottomed plates in DMEM supplemented with 10% heat-inactivated
fetal bovine serum and 1% 100x penicillin-streptomycin solution. Macrophages were

allowed to attach for 2 h, and their medium was replaced therafter.
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Macrophages were co-cultured with the FITC-labeled E. coli at a ratio of 1:5 for 1 h
to allow phagocytosis. After the incubation period, the cell culture medium was removed,
and macrophages were washed gently with PBS. Subsequently, 500 pul TrypLE™ Express
solution was added to the cultures and incubated for 45 min at 37 °C in order to detach
cells from the bottom of cell culture plates. Macrophages were then gently resuspended to
a single cell suspension by pipetting, harvested by centrifugation, resuspended in 400 ul
PBS and measured on a FACSCalibur instrument (BD Biosciences, San Jose, CA, USA).

Experiments were performed in triplicate. Data were analysed using the FlowJo software.

Intravital video microscopy and data analysis

A separate experimental series was performed to assess the possible consequences
of secretin treatment on the microcirculation of the pancreas in mice anaesthetized with 1.5
g/kg urethane i.p. (n=3-4 in each group). Using an operating microscope, the right jugular
vein was cannulated (with polyethylene tubing ID: 0.28 mm, OD: 0.61 mm, Smiths
Medical International Ltd, Kent, UK) for i.v. administration of secretin and the
fluorescence marker used for the intravital microscopic examination. The animals were
placed in a supine position on a heating pad to maintain the body temperature between 36
and 37 °C, and a midline laparotomy performed. The majority of the intestines were
exteriorized to gain good assess to the pancreas which was carefully placed on a specially
designed stage and covered with a microscopic cover slip. The rest of the exteriorized
abdominal organs were also covered with Saran wrap to minimize the fluid and heat loss.

The microcirculation of the pancreas was visualized by intravital fluorescence
microscopy (Zeiss Axiotech Vario 100HD microscope, 100 W HBO mercury lamp,
Acroplan 20x water immersion objective) using a single i.v. bolus of fluorescein

isothiocyanate-labeled dextran (150 kDa; 75 pl/animal for plasma labeling). The
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microscopic images were recorded with a charge-coupled device video camera (AVT
HORN-BC 12; Aalen, Germany) attached to an S-VHS video recorder (Panasonic AG-MD
830, Budapest, Hungary) and a personal computer. Video images of the microcirculatory
network of the pancreatic tail were recorded at baseline and 20 min after the i.v.
application of secretin.

Plasma velocity in the pancreatic capillaries was assessed off-line by frame-to-
frame analysis of the videotaped images, using image analysis software (IVM, Pictron
Ltd., Budapest, Hungary). Average velocity values were measured in 3-5 separate

capillaries per 3-5 microscopic fields in each animal.

Sodium-taurocholate-induced pancreatitis

Na-taurocholate was administered intraductally as described previously by Perides
et al [9]. Briefly, anesthesia was achieved with a 125 mg/kg ketamine and 12.5 mg/kg
xylazine cocktail. After median laparotomy, the duodenum was punctured with a 0.4mm
diameter needle connected to polyethylene tubing. Leakage of Na-taurocholate was
prevented by temporary ligature of the biliopancreatic duct, while the proximal bile duct
was temporarily occluded with a microvessel clip. 4% Na-taurocholate or PS solution was
infused with an infusion pump (10 pl/min) (TSE System GmbH, Bad Homburg, Germany)
for 5 min. After the infusion, the microvessel clip, the injection needle, as well as the distal
ligature were removed, and the abdominal wall and the skin were closed separately. Mice

were sacrificed 24h later.

Sacrifice of animals, sample processing

Mice were anesthetized with pentobarbital (85 mg/kg i.p.). The animals were

exsanguinated through the inferior vena cava and the pancreas was quickly removed,
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cleaned from fat and lymph nodes and frozen in liquid nitrogen and stored at -80 °C until
use for assays or put into 6% neutral formaldehyde solution for histologic examinations. In
case of taurocholate-induced pancreatitis, the pancreas was removed with attached
duodenum and spleen for histologic examinations. Only the pancreatic head was used for
laboratory measurements. The pancreatic head (defined as the portion of the pancreas
located within 5 mm of the lesser duodenal curvature) was separated from the pancreatic
body/tail regions.

The pancreas fixed in 6% neutral formaldehyde solution was subsequently
embedded in paraffin. Sections were cut at 4um thickness and stained with hematoxylin
and eosin. The slides were coded and read by two independent observers who were blind to
the experimental protocol. In case of taurocholate-induced pancreatitis only the pancreatic
head (defined as the portion of the pancreas located within ~5 mm of the lesser duodenal
curvature) was investigated. The observers investigated 4-6 low-power fields in the head of

the pancreas.
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SUPPLEMENTARY FIGURES

KO

Supplementary figure 1. Specificity of Mr Pink rabbit polyclonal CFTR antibody

tested in the pancreas of CFTR-knock-out mouse. Representative immunohistochemical
stainings in the pancreas of WT (A-D) and CFTR-KO (E-H) mice. KO mice showed no
apical-specific staining of CFTR (green) in the KO (E) vs. the WT (A) tissue. Red color
indicates the staining of F-actin (B, F). The nuclei are stained with DAPI (blue) (C, G). D

and H show merged images of CFTR, F-actin and nucleus. Scale bar=50 um.

46



400 -
350 -

300 -

250 -

200 -

150 -

Plasma velocity (um/sec)

100 -

50 -

0 =
secretin - - + +

Supplementary figure 2. Pancreatic microcirculation shows similar changes in wild-
type and NHERF-1-knock-out mice. The microcirculation of the pancreatic tail was
visualized by intravital fluorescence microscopy (see supplementary methods) using a
single i.v. bolus of fluorescein isothiocyanate-labelled dextran for plasma labeling in wild-
type (closed columns) or NHERF-1-KO (open columns) mice anesthetized with urethane
(1.5 g/kg i.p.). Video images were recorded at baseline (secretin -) and 20 min after the i.v.
administration of secretin (0.75 CU/kg, secretin +). 20min after the i.v. injection of
secretin, significantly lower plasma velocity values were observed in both experimental
groups. These reduced microcirculatory velocities, however, were not due to the effect of
secretin, but most likely resulted from the 20-min exteriorization period of the pancreas,
since a similar degree of reduction (by about 10%) in plasma velocities was also observed
in time-matched pilot studies where mice were treated with PS vehicle (data not shown). a:

P<0.05 vs. the respective secretin — group.
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Supplementary figure 3. Effects of cerulein administration on pancreatic IkB-a, IxB-
B, interleukin-1p in wild-type and NHERF-1-knock-out mice. Acute pancreatitis was
induced by administering 1x50 ug/kg (for measurements of pancreatic IxB-a, IkB-p levels)
or 10 hourly (A-C) i.p. injection of 50 pg/kg cerulein (cerulein+) in WT (closed columns)
and NHERF-1-KO (open columns) mice. Control animals were given PS (cerulein-)
instead of cerulein. Mice were sacrificed by exsanguination through the inferior vena cava
0.5h (in case of administration of 1x50 ug/kg cerulein) or 12 h after the first i.p. injection.
The bar diagrams and the representative Western immunoblot analysis (A, B) of protein
lysates (40 pg/lane) from the pancreas of mice, showing the expression of IkB-a (A) and
IxB-B (B). Equal loading/transfer of proteins was checked by Ponceau S staining of the
nitrocellulose membrane. IL-1B expression (C) was determined from the pancreatic
homogenates by ELISA. Means + SEM for 4-6 animals are shown. P<0.05 vs. a: the

respective control group or b: vs. the WT cerulein+ group. N.D.: not detected.
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Supplementary figure 4. Histopathologic changes of the pancreas in response to
intraperitoneal administration of cerulein in wild-type and NHERF-1-knock-out
mice. Acute pancreatitis was induced in WT (closed columns) and NHERF-1-KO (open
columns) mice by administering 7 hourly i.p. injections of cerulein (50 pg/kg per
injection). The mice were sacrificed by exsanguination through the inferior vena cava 12 h
after the first i.p. injection. The diagrams show representative light micrographs
(hematoxylin and eosin staining) of the pancreata of cerulein-treated WT (A) and NHERF-
1-KO (B) mice. The bar diagrams show the rates of pancreatic necrosis (C) (n=8) and
apoptosis (D) (n=4). Data are shown as means + SEM. a: P<0.05 vs. the WT group. Scale
bar=100 pm.

49



25 2.0 1 a 25
- 181 I " T
220 I £ 161 S 20
=1 s | 2
? -g 14 g
o 154 21 3 4
2 g 12 g 15
8 o <
> g 101 2
£ 35 ®
S 109 S o0e; g 101
3 L 064 5
3 =, 3

5 4 0.4 x 54

0.2 4
04 0.04 0d
D E F
a
25 = 80 =
a 14
70 4
= 20 £ 12 4
s = 604 s
g a g 2 10 1
5 154 5 509 >
£ T o e gd
s E 40 s
= 2 2
g 101 £ 5 G 61
s 3 S 4
@ = 204 ]
9 51 X
= 10 4 2 21
04 0 0

Supplementary figure 5. Severity of cerulein-induced acute pancreatitis in wild-type
and NHERF-1-knock-out mice. Acute pancreatitis was induced in WT (closed columns)
and NHERF-1-KO (open columns) mice by administering 7 hourly i.p. injections of 50
ug/kg cerulein. The mice were sacrificed by exsanguination through the inferior vena cava
12 h after the first i.p. injection. There was no significant difference in serum amylase
activity of WT and NHERF-1-KO mice (A). Pancreatic MPO activity was significantly
increased in NHERF-1-KO vs. WT mice (B). No significant difference was detected
between WT and NHERF-1-KO mice in expression of pancreatic IkB-a (C). The
expression of pancreatic 1kB- was significantly lower in NHERF-1-KO vs. WT mice (D).
The expression of pancreatic IL-1p (E) and HSP72 (F) were significantly higher in
NHERF-1-KO vs. WT animals. Data are shown as means + SEM, n=4-6. a: P<0.05 vs. the

respective control group.

50



N
o

T
e
s 15
=
c J I I ]
2 MY —
210
3
@
2]
w
(2]
8 8
>
=
<
0
0 -12 -11 -10 -9 -8

Cerulein (log M)

Supplementary figure 6. Acinar sensitivity to cerulein is unaltered by NHERF-1
expression. To determine the sensitivity of dispersed acinar cells (see supplementary
methods) of WT (black line) and NHERF-1-KO (grey line) mice to cerulein, amylase
secretion was determined in response to various concentrations (10™2-10® M) of cerulein
for 30 min. Amylase secretion was calculated as the percent of total release

(medium/medium-+cells). a: P<0.05 vs. 0 M cerulein, n=4-6 animals.
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Supplementary figure 7. Severity of sodium-taurocholate-induced acute pancreatitis
in wild-type and NHERF-1-knock-out mice. WT and NHERF-1-KO mice were treated
as described in Figure 8. The mice were sacrificed by exsanguination through the inferior
vena cava 24 h after the infusion. There were no significant differences in serum amylase
(A) and pancreatic MPO (B) activities between Na’-taurocholate-treated WT (closed
columns) and NHERF-1-KO (open columns) mice. There was no significant difference in
the levels of pancreatic IL-1B (C) of Na'-taurocholate-treated WT and NHERF-1-KO
mice. Data are shown as means + SEM, n=4-6. P<0.05 vs. a: the respective control group

or b: vs. the WT 4% TC+ group.
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Supplementary figure 8. Functions of inflammatory cells are unaltered by deletion of
NHERF-1. Blood polymorphonuclear cells and peritoneal macrophages were isolated
from WT and NHERF-1-KO mice. (A) Bacterial killing efficiency of polymorphonuclear
cells (PMNs) after a 1 h incubation period with E. coli was deduced from the number of
colony forming units from control wells (without PMNSs) and co-cultured wells (containing
PMNSs). (B) Phagocytosis by macrophages was determined on FITC-labeled, heat-killed E.
coli. Data are shown as means + SEM. WT (closed columns), NHERF-1-KO (open

columns).
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Supplementary figure 9. NHERF-1 expression does not influence the changes in
intracellular Ca** concentration caused by cerulein or sodium-taurocholate in
isolated acinar cells. Acinar cells were isolated from WT and NHERF-1-KO mice by
collagenase digestion. Summary data show the maximal changes of [Ca®']; induced by
administration of cerulein or Na'-taurocholate (TC). There were no significant differences
between WT and NHERF-1 KO mice in the changes of [Ca?*]i on isolated acinar cell in
response to different concentrations of cerulein (10°-10" M) (A) or TC (1-10 mM) (B).
Data are shown as means + SEM, n=5-8. WT (closed columns), NHERF-1-KO (open

columns).
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