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1. INTRODUCTION 

The pancreas is a unique exocrine and endocrine organ located in the retroperitoneal 

region of the upper abdominal cavity. The exocrine pancreas consists of two main types of 

cells: acinar and ductal cells. Acinar cells secrete an isotonic, NaCl-rich fluid containing a 

multitude of enzymes and precursor enzymes (Petersen, 2008). The protease precursors are 

trypsinogen, chymotrypsinogen, and procarboxypeptidases. These precursors are activated 

in the small intestine, initiated by conversion of trypsinogen to trypsin by the intestinal 

enzyme enteropeptidase. Trypsin then activates trypsinogen autocatalytically and also 

consequently activates other precursors (Petersen, 2008).  

It was believed for a long time that the main function of pancreatic ductal epithelial 

cells (PDEC) is to insure mechanical frame for acinar cells. Barry Argent and his co-

workers have worked out a method, which made it possible to isolate intact pancreatic 

ducts and PDEC (Argent et al., 1986). Thereafter, a number of publications proved, that 

PDEC are not only responsible for the formation a mechanical frame for the acini, but also 

for the HCO3
-
 and fluid secretion of the pancreatic juice (Ishiguro et al., 2012). The human 

pancreatic ductal epithelium secretes 1-2 L of alkaline fluid daily that may contain up to 

140 mM NaHCO3 (Lee and Muallem, 2008; Ishiguro et al., 2012). The physiological 

function of this alkaline secretion is to wash toxic agents down the pancreatic ductal tree 

into the duodenum, and to neutralise acidic chyme entering the duodenum.  

1.1. Physiology of pancreatic ductal HCO3
-
 and fluid secretion 

 

    The first step of HCO3
-
 secretion is the accumulation of HCO3

-
 inside the cell across 

the basolateral membrane of the duct cell by Na
+
/HCO3

-
 co-transporters (NBC) and by the 

backward transport of protons via the Na
+
/H

+
 exchanger (NHE) and an H

+
-ATPase 

(Ishiguro et al., 2012). HCO3
-
 secretion across the apical membrane of PDEC is thought to 

be mediated by anion channels and transporters such as cystic fibrosis transmembrane 

conductance regulator (CFTR) and solute carrier family 26 (SLC26) anion exchangers 

(Ishiguro et al., 2012) (Figure 1.).  

    How these transporters act in concert to produce a high HCO3
-
 secretion is 

controversial. One hypothesis is that HCO3
-
 is secreted via the anion exchanger until the 

luminal concentration reaches about 70 mM, after which the additional HCO3
-
 required to 

raise the luminal concentration to 140 mM is transported by CFTR (Sohma et al., 2000; 

Ishiguro et al., 2002). Another hypothesis is that all the HCO3
-
 is secreted via the apical 
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SLC26 anion exchangers and CFTR functions only to activate the exchangers and to 

provide the luminal Cl
-
 required for anion exchange to occur (Ko et al., 2004).  

 

 

Figure 1. Schematic diagram of the ion transport systems in pancreatic ductal epihelial cells. 

NBC: sodium-bicarbonate contransporter; NHE: sodium-hydrogen exchanger; SLC26: solute 

linked carrier 26; CFTR: cystic fibrosis transmembrane conductance regulator; CACC: Ca
2+

-
activated chloride channel. 

 

In the past it was assumed that water followed the osmotic gradient and flowed 

from the basolateral to the luminal side via the paracellular pathway. However, it is now 

clear that water transport is also mediated by the water channel aquaporins (AQP) and is a 

regulated process (Lee and Muallem, 2008). AQP water channels, first discovered in 1992 

(Preston et al., 1992), are known to enhance the water permeabilities of a wide range of 

epithelia. The aquaporins are small integral membrane proteins whose six α-helical 

membrane spanning domains surround a highly selective aqueous pore (Verkman & Mitra, 

2000). Currently, at least 10 mammalian members of the family have been identified and 

many show very specific tissue localisation. Immunolocalization indicates expression of 

AQP1 at both the basolateral and the luminal membranes and AQP5 at the luminal 

membrane of pancreatic duct cells (Burghardt et al., 2003). 
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    1.1.1. Major proteins involved in pancreatic ductal HCO3
-
 secretion 

     1.1.1.1. Cystic fibrosis transmembrane conductance regulator 

 

CFTR, a plasma-membrane cAMP-activated Cl
–
 channel, is a member of the ATP 

binding cassette transporter superfamily. CFTR is expressed in numerous functionally 

diverse tissues, including the pancreas, kidney, intestine, sweat duct, heart and lung. In 

epithelial cells, CFTR mediates the secretion of Cl
–
. In addition to its role as a secretory 

Cl
–
 channel, CFTR also regulates several transport proteins, including the epithelial 

sodium channel, K
+
 channels, ATP-release mechanisms, anion exchangers, sodium-

bicarbonate transporters, and aquaporin water channels (Guggino & Stanton, 2006).  

ATP binding cassette transporters usually contain two nucleotide-binding domains, 

two transmembrane domains, which contain several membrane-spanning α-helices and a 

regulatory (R) domain that is phosphorylated by protein kinase A and C (Riordan, 2005). 

CFTR contains several other domains that mediate protein–protein interactions, including 

postsynaptic density-95/disc-large/zonula occludens-1 (PDZ)-interacting domains in the C 

terminus. PDZ domains consist of an 80–100 amino-acid sequence that mediates protein–

protein interactions by binding to short peptide sequences, most often in the C termini of 

target proteins. Proteins that contain PDZ domains often contain other protein-interacting 

modules (such as, ezrin, radixin, moesin-binding domains and coiled-coil domains) and 

therefore can promote homotypic and heterotypic protein–protein interactions (Shenolikar 

et al., 2004). The PDZ-interacting domain of human CFTR mediates the binding of CFTR 

to several PDZ domain-containing proteins, including Na
+
/H

+
 exchanger regulatory factor 

isoform-1 (NHERF-1) NHERF-2, NHERF-3, NHERF-4 and CFTR-associated ligand 

(Brone & Eggermont, 2005; Guggino, 2004; Li & Naren, 2005). NHERF-1 is involved in 

numerous physiological processes, but the role of NHERF-1 in the pancreas has not yet 

been investigated, despite the fact that CFTR, a key regulator of epithelial functions, is 

controlled by this scaffolding protein (Lamprecht & Seidler, 2006). 

NHERF-1 (also known as ezrin binding protein of 50 kDa, EBP50) is a scaffolding 

protein that is involved in the apical targeting and trafficking of several membrane proteins 

and anchors them to the cytoskeleton via ezrin (Lamprecht & Seidler, 2006). NHERF-1 

also facilitates the association of multiprotein complexes via PDZ and ezrin, radixin, 

moesin-binding domains, a process that is essential for the adequate transport and function 

of transporters, channels, and receptors (Brone & Eggermont, 2005). The adapter protein 

has been shown to bind to the PDZ-binding motifs of CFTR, NHE3, as well as a number of 
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other proteins that functionally interact with CFTR or NHE3, such as the β2-adrenoreceptor 

(Hall et al., 1998; Singh et al., 2009), or the SLC26 family anion exchanger down-

regulated in adenoma (DRA, SLC26A3) (Rossmann et al., 2005). The role of NHERF-1 in 

the pancreas has not yet been investigated, despite the fact that CFTR, a key regulator of 

epithelial functions, is controlled by this scaffolding protein. 

        1.1.1.2. Solute carrier family 26 

 

SLC26 isoforms are members of a large, conserved family of anion exchangers, 

many of which display highly restricted and distinct tissue distribution. To date, ten SLC26 

genes or isoforms (SLC26A1–11) have been cloned (SLC26A10 is a pseudogene) 

(Ishiguro et al., 2007). These genes encode polypeptides with cytoplasmic N- and C-

termini flanking a transmembrane domain of unknown structure. The C-terminal 

cytoplasmic region of all SLC26 proteins includes a ‘‘sulfate transporter and anti-sigma 

factor antagonist (STAS) domain’’, which includes the PDZ recognition motif (Aravind & 

Koonin, 2000). Several SLC26 isoforms function as Cl
-
/HCO3

-
 exchangers. These include 

DRA, SLC26A6 (PAT-1), SLC26A7 (PAT-2), and SLC26A9 (PAT-4). Out of these 

isoforms PAT-1 and DRA were detected on the apical membrane of pancreatic ducts cells 

and play important role in the mechanism of pancreatic ductal HCO3
-
 secretion (Ishiguro et 

al., 2007; Ko et al., 2004). 

DRA was first identified as a candidate tumor suppressor gene (Schweinfest et al., 

1993). However, DRA functions as an electrogenic 2Cl
-
/1HCO3

-
 exchanger. The C-

terminal PDZ recognition motif in DRA binds to PDZ domain adaptor proteins NHERF-1, 

NHERF-3 and NHERF-4 in lipid rafts.  DRA interacts directly and functionally with 

CFTR. Combined overexpression of DRA and CFTR in heterologous systems revealed that 

each protein stimulated activity of the other through direct interaction of the DRA STAS 

domain with the R domain of CFTR, as well as indirectly through mediation of PDZ 

domain proteins (Ko et al., 2002; Ko et al., 2004).  

PAT-1 was identified as a mouse kidney protein with Cl
-
/formate exchange activity 

(Knauf et al., 2001). PAT-1 is a major apical Cl
-
/HCO3

-
 exchanger in the small intestine 

and mediates majority of prostaglandin E-stimulated HCO3
-
 secretion in the duodenum 

(Tuo et al., 2006). On the basis of its localization in the apical membrane of the pancreatic 

duct and its function as a 1Cl
-
/2HCO3

-
 exchanger (Ko et al., 2002), PAT-1 has been 

proposed to be a major contributor to apical HCO3
-
 secretion in the pancreatic duct 

(Greeley et al., 2001). 
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1.2. Pathophysiological role of pancreatic HCO3
-
 secretion 

 

Pancreatic ducts not only have prominent roles physiologically, but also 

pathophysiologically. Most studies of acute pancreatitis focus on the damage to acinar cells 

since they are assumed to be the primary target of multiple stressors affecting the pancreas. 

However, increasing evidence suggest that the ductal tree may have a crucial role in 

induction of the disease and is the primary target of stressors (Hegyi et al., 2011). Our 

hypothesis is that ductal secretion serves to defend the pancreas by washing out toxic 

agents such as bile acids, ethanol or activated trypsin. If this ductal defence mechanism is 

insufficient, ductal secretion will be inhibited and the harmful agents cannot leave the 

pancreas. 

1.2.1. Toxic factors inducing pancreatitis 

1.2.1.1. Bile acids 

 

The effects of bile acids on the pancreatic ductal tree depend on the bile 

concentration. Non-conjugated bile acids at a concentration of 100 µM stimulate 

pancreatic ductal HCO3
-
 secretion in a Ca

2+
 dependent manner, whereas at 1 mM 

concentration they damage the mitochondria, deplete intracellular ATP levels and block 

both the basolateral and apical ion transport mechanisms (Ignáth et al., 2009; Maléth et al., 

2011; Venglovecz et al., 2008). In contrast, the conjugated glycochenodeoxycholate has a 

significantly smaller effect than the non-conjugated form (Venglovecz et al., 2008), 

suggesting that while non-conjugated bile salts (as weak acids) can pass through the cell 

membranes by passive diffusion, conjugated bile acids are impermeable to cell membranes 

and require active transport mechanisms for cellular uptake (Meier, 1995). 

1.2.1.2. Ethanol 

 

Ethanol administration itself does not induce experimental acute pancreatitis (Apte et al., 

2006; Petersen & Sutton, 2006). Ethanol itself mostly only exerts modest effects on acinar 

cell Ca
2+

 homeostasis, even in very high concentrations,  whereas a combination of alcohol 

and fatty acids causes massive intracellular Ca
2+

 release and intracellular trypsin activation 

(Criddle et al., 2004 and 2006; Gerasimenko et al., 2009; Petersen & Sutton, 2006). There 

is much less data available concerning the effects of ethanol and their metabolites on 
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pancreatic ductal cells. Interestingly, similarly to the non-conjugated bile acids, ethanol has 

a dual effect on pancreatic HCO3
-
 secretion (Yamamoto et al., 2003). Yamamoto et al. 

(2003) showed that ethanol in low concentration augmented the stimulatory effect of 

secretin, whereas, in high concentration it inhibited the secretory rate. 

1.2.1.3. Trypsin 

 

Trypsinogen is the most abundant digestive protease in the pancreas. Under 

physiological conditions, trypsinogen is synthesised and secreted by acinar cells, 

transferred to the duodenum via the pancreatic ducts and then activated by enteropeptidase 

in the small intestine (Petersen, 2008). There is substantial evidence that early intra-acinar 

(Lerch & Gorelick, 2000; Thrower et al., 2010) or luminal (Geokas & Rinderknecht, 1974; 

Renner et al., 1978) activation of trypsinogen to trypsin is a key and common event in the 

development of acute and chronic pancreatitis. Therefore, it is crucially important to 

understand the effects of trypsin on PDEC.  

Several studies have demonstrated that trypsin stimulates enzyme secretion from 

acinar cells via protease-activated receptor 2 (PAR-2) (Kawabata et al., 2006; Singh et al., 

2007), whereas the effect of trypsin on PDEC is somewhat controversial. Trypsin activates 

ion channels in dog PDEC (Nguyen et al., 1999) and stimulates HCO3
-
 secretion in the 

CAPAN-1 human pancreatic adenocarcinoma cell line (Namkung et al., 2003). On the 

other hand, the protease dose-dependently inhibits HCO3
-
 efflux from bovine PDEC 

(Alvarez et al., 2004). The effect of trypsin differs not only among species, but also with 

respect to the localization of PAR-2. When PAR-2 is localized to the basolateral membrane 

and activated by trypsin, the result is stimulation of HCO3
-
 secretion (Namkung et al., 

2003; Nguyen et al., 1999). In contrast, when the receptor is localised to the luminal 

membrane, the effect is inhibition (Alvarez et al., 2004). Interestingly, there are no data 

available concerning the effects of trypsin on guinea pig PDEC which, in terms of HCO3
-
 

secretion, are an excellent model of human PDEC (Lee & Muallem, 2008). 
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2. AIMS  

The main aims of this work were to investigate the physiology and pathophysiology of 

HCO3
-
 and fluid secretion of PDEC.  

Our specific aims were: 

 

1. To evaluate the role of NHERF-1 in pancreatic ductal localization of CFTR, 

and in HCO3
-
 and fluid secretion. 

 

2. To investigate the effects of trypsin on pancreatic ductal HCO3
-
 secretion. 
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3. MATERIALS AND METHODS 

3.1. Materials 

 

All laboratory chemicals were obtained from Sigma-Aldrich (Munich, Germany) unless 

indicated otherwise. Forskolin was from Tocris Bioscience (Bristol, UK), purified CLSPA 

collagenase was from Worthington Biochemical Corporation (Lakewood, NJ, USA). 2,7-

bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein, acetoxymethyl ester (BCECF-AM), 2-

(6-(bis(carboxymethyl)amino)-5-(2-(2-(bis(carboxymethyl)amino)-5-

methylphenoxy)ethoxy)-2-benzofuranyl)-5-oxazolecarboxylic acetoxymethyl ester (FURA 

2-AM), dihydro-4,4’-diisothiocyanostilbene-2,2’-disulfonic acid (H2DIDS), 1,2-bis(o-

aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), Superscript III RT, Alexa 

Fluor 488-labelled goat anti-rabbit IgG, phalloidin-633 and SlowFade Gold antifade 

reagent were purchased from Invitrogen Corporation (Carlsbad, CA, USA). NucleoSpin 

RNA XS Total RNA Isolation Kit was from Machery & Nagel (Düren, Germany). RNeasy 

FFPE Kit was from QIAGEN (Hilden, Germany). High Capacity RNA-to-cDNA Kit and 

Power SYBR Green PCR Master Mix were from Applied Biosystems (Carlsbad, CA, 

USA). DirectPCR (Tail) reagent was obtained from Viagen Biotech Inc. (Los Angeles, 

CA, USA). MesaGreen was from Eurogentec (Seraing, Liège, Belgium). CellTak was 

purchased from Becton Dickinson Labware (Bedford, MA, USA). Background reducing 

buffer was from DAKO (Glostrup, Denmark). Tissue-freezing medium was from 

TissueTec O.C.T. (Sakura). Rabbit anti-NHERF-1 antibody provided by C. Yun, Emory 

University (Atlanta, GA, USA). Mr Pink rabbit polyclonal antibody against human CFTR 

provided by W.E. Balch, Scripps Research Institute (La Jolla, CA, USA). Rabbit PAR-2 

polyclonal antibody was purchased from Santa Cruz Biotechnology (Heidelberg, 

Germany). Secondary anti-rabbit IgG antibody was purchased from Vector Laboratories 

(Burlingame, CA, USA). Anti- glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

antibody and secondary anti-mouse GAPDH antibody were from AbDSerotec (Düsseldorf, 

Germany). Laboratory chow was from Biofarm (Zagyvaszántó, Hungary). Concentrated 

stock solutions of forskolin (100 mM) and amiloride (50 mM) were prepared in 

dimethylsulfoxide. 2% stock solution of dextran was dissolved in physiological saline.  

PAR-2 antagonist (PAR-2-ANT, H-Phe-Ser-Leu-Leu-Arg-Tyr-NH2) and PAR-2 activating 

peptide (PAR-2-AP, H-Ser-Leu-Ile-Gly-Arg-Leu-amid trifluoroacetate salt) were from 

http://en.wikipedia.org/wiki/Amine
http://en.wikipedia.org/wiki/Amine
http://en.wikipedia.org/wiki/Ethane
http://en.wikipedia.org/wiki/Acetic_acid
http://en.wikipedia.org/wiki/Seraing
http://en.wikipedia.org/wiki/Li%C3%A8ge
http://en.wikipedia.org/wiki/Belgium
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Peptides International (Louisville, Kentucky, USA). Primers were ordered from Biobasic 

Canada Inc (Markham, Ontario, Canada). 

3.2. Ethics 

 

All experiments were conducted in compliance with the Guide for the Care and 

Use of Laboratory Animals (National Academies Press, Eight Edition, 2011), and were 

approved by Committees on investigations involving animals at the University of Szeged 

and at the Hannover Medical School and also by independent committees assembled by 

local authorities.  

3.3. Maintenance and genotyping of animals 

 

The mice and guinea pigs were housed in a standard animal care facility with a 12-

h light/12-h dark cycle and were allowed free access to water and standard laboratory 

chow. NHERF-1-deficient mice were originally generated and described at Duke 

University Medical Center (Shenolikar et al., 2002). NHERF-1 mutation was congenic for 

the FVB/N background for at least 15 generations. Genotyping of mice was performed 

after DNA extraction from tail samples using the DirectPCR (Tail) reagent supplemented 

with proteinase K. The primer sequences for genotyping NHERF-1 mice were as follows: 

wild-type forward, 5’-TCGGGGTTGTTGGCTGGAGAC-3’; common reverse, 5’-

AGCCCAACCCGCACTTACCA-3’; knock-out (KO) forward, 5’-

AGGGCTGGCACTCTGTCG-3’. Amplicons generated by PCR were 294 bp for the wild-

type (WT) gene and 242 bp for the KO gene. 

PAR-2 KO mice (B6.Cg-F2rl1
tm1Mslb/J

) were previously generated by Schmidlin et al. 

(2002) and were a kind gift from Ashok Saluja. 

3.4. Isolation and culture of pancreatic ducts  

 

Mice and guinea pigs were humanly killed by cervical dislocation, the pancreas was 

removed and intra-/interlobular pancreatic ducts were isolated by enzymatic digestion, 

microdissection, and then they were cultured overnight at 37 °C in a humidified 

atmosphere containing 5% CO2 as described previously (Gray et al., 1994). During 

overnight incubation, both ends of the isolated ducts seal and the ducts swell due to fluid 

secretion into the lumen. 
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3.5. Real-time reverse transcription polymerase chain reaction 

3.5.1. mRNA expression of CFTR, PAT-1, DRA and NHERFs in mouse pancreatic 

ducts 

 

Pancreatic ducts from WT and NHERF-1 KO mice were homogenized by 

sonication in lysis-buffer and RNA was isolated with a NucleoSpin RNA XS Total RNA 

Isolation Kit. Reverse transcription was performed using Superscript III RT. The primer 

sequences were designed with “Primer Express” (Applied Biosystems, Foster City, CA, 

USA). The primer sequences were: 

Gene name Primer sequence (5'- 3')  Product lenght (bp) 

  
  CFTR TTCTTCACGCCCCTATGTCGA (forward) 145 

  GCTCCAATCACAATGAACACCA (reverse) 
       

DRA TTCCCCTCAACATCACCATCC (forward) 110 

  GTAAAATCGTTCTGAGGCCCC (reverse) 

       

PAT-1 GGCTCCTGGGTGATCTGTTA (forward) 100 

  CCAAACATAGGAGGCAATCC (reverse) 

       

NHERF-1 AGATCTGCCTCCAGCGATAC (forward) 206 

  TTCATTTTTCTTGCTCCAGTCC (reverse) 
       

NHERF-2 TAGTCGATCCTGAGACTGATG (forward) 173 

  ATTGTCCTTCTCTGAGCCTG (reverse) 

       

NHERF-3 TGACGGTGTGGTGGAAATG (forward) 117 

  TGGCAGTAAAGAAGTGGAGAC (reverse) 

       

ß-actin AGA GGG AAA TCG TGC GTG AC (forward) 138 

  CAA TAG TGA TGA CCT GGC CGT (reverse)   

 

Real-time polymerase chain reactions were carried out using MesaGreen in the 

Applied Biosystems 7300 Real-time PCR System. PCR extension was performed at 60 °C 

with 40 repeats. Data were analyzed using Sequence Detection Software 1.2.3 (Applied 

Biosystems) and exported to Microsoft Excel. Relative quantification was carried out using  
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β-actin as a reference gene.  

 

 3.5.2. mRNA expression of PAR-2 in human pancreatic tissue 

 

RNA extraction: 15 formalin-fixed, paraffin-embedded normal pancreatic tissue 

samples and 15 samples of chronic pancreatitic tissue were selected for real time RT-PCR 

analysis. Total RNA was isolated from five 5-10 μm macrodissected sections (connective 

tissue excluded) using RNeasy FFPE Kit in accordance with the manufacturer’s 

instructions. RNA concentrations were determined using NanoDrop Spectrophotometer 

ND-1000 (Thermo Fisher Scientific Inc., Waltham, MA, USA). 

Reverse Transcription of RNA: cDNA samples were prepared from 1 μg total RNA 

using High Capacity RNA-to-cDNA Kit as specified by the manufacturer. Gene-specific 

primers were designed by AlleleID 6.01 primer design software (Premier Biosoft 

International, CA, USA) for real-time RT-PCR. Isoform specificity and primer sizes were 

checked by BioEdit biological sequence alignment editor software (Tom Hall Ibis 

Therapeutics, Carlsbad, CA, USA). Primer specificity was checked by BiSearch software 

(Hungarian Academy of Sciences, Institute of Enzymology, Budapest, Hungary). Primer 

specific amplification degree (58 °C) was optimized by gradient PCR. The used primer 

sequences: 

Gene name Primer sequence (5'- 3') Product length (bp) 
Annealing 

 temperature (°C) 

    

-actin GTACGCCAACACAGTGCTG (forward) 100 55 

  CTTCATTGTGCTGGGTGCC (reverse)     

    

PAR-2 GGCACCATCCAAGGAACCAATAG (forward) 128 58 

  GCAGAAAACTCATCCACAGAAAAGAC (reverse)     

 

RT-PCR: Real-time RT-PCR analysis was performed using SYBR Green 

technology on ABI Prism 7000 Sequence Detection System (Applied Biosystems), 

according to manufacturer's instructions. -actin was used as the internal control gene. 

Primer specific amplification was controlled by 2% agarose gel electrophoresis, as well as 

by melting temperature analysis. The final 20 µl reaction mixture contained Power SYBR 

Green PCR Master Mix, 10 pM of forward and reverse primers and 100 ng cDNA as 

template. Amplification conditions were as follows: incubation at 95 °C for 10 min, 
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followed by 45 cycles at 95 °C for 15 sec, 60 °C for 60 sec and 72 °C for 15 sec, with 

subsequent melting analysis: heating to 95 °C for 20 sec, cooling to 45 °C for 10 sec, then 

reheating to 95 °C. 

3.6. Immunohistochemistry 

 

3.6.1. Localization of NHERF-1 and CFTR proteins in WT and NHERF-1 KO mice 

 

Immunohistochemistry of the mouse pancreas was performed as described by Cinar 

et al. (2007) using rabbit polyclonal antibodies against NHERF-1 and CFTR. Briefly, for 

NHERF-1 staining, paraformaldehyde-fixed, paraffin-embedded tissue sections (5 μm) 

from mice of different genotypes were prepared on the same slide. After deparaffinization 

with xylene, sections were treated with 0.01 M sodium citrate solution at 100 °C for 10 

min. For CFTR staining, pancreata were fixed in 2% paraformaldehyde in phosphate 

buffered saline (PBS). Fixed tissue was rinsed with PBS and transferred to 30% sucrose in 

PBS overnight. The tissue was embedded in tissue-freezing medium. Cryosectioning was 

done with a microtome cryostat at −20 °C and 10 μm thick sections were collected on 

microscope slides (SuperFrost Plus, Menzel-Gläser, Germany). 

Pancreatic sections were incubated sequentially with PBS for 5 min, washing buffer 

of PBS with 50 mM NH4Cl twice for 10 min each, background reducing buffer for 20 min 

and 5-10% goat serum for 30 min for blocking and incubated with rabbit anti-NHERF-1 

(1:500) (Weinman et al., 1998) antibody or Mr. Pink rabbit polyclonal antibody against 

human CFTR (1:100) in background reducing buffer overnight at 4 °C. Washing 4 times 

for 5 min in the washing buffer was followed by secondary antibody (Alexa Fluor 488-

labelled goat anti-rabbit IgG) incubation for 1 h at room temperature at a dilution of 1:300-

1:500 in background reducing buffer. After 2-4 washes for 5 min each, in case of NHERF-

1 staining, the sections were treated with 5U/ml phalloidin-633 in PBS with 1% bovine 

serum albumin, 0.2% Triton X-100 for 30 min which was followed by washes with 

washing buffer (six times). After washing, each cover slide was mounted with SlowFade 

Gold antifade reagent with 4',6-diamidino-2-phenylindole (DAPI), and slides were imaged 

on a confocal microscope (TCS SP2; Leica, Wetzlar, Germany). Excitation wavelengths 

used were 405, 488, and 633 nm, and emission was taken at 415–450, 490–540, and 560–

700 nm for detection of DAPI, Alexa Fluor 488, and phalloidin 633, respectively. 
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3.6.2. Localization of PAR-2 protein in guinea pig, human and WT and PAR-2 KO 

mice  

 

Pancreatic tissue from guinea pig, patients without pancreatic disease near 

neuroendocrine tumor (average age: 59.5, female:male: 7:8) and WT and PAR-2 KO mice 

were investigated. The human samples were obtained with the permission of the Regional 

Ethical Committee of Semmelweis University (#172/2003). 

The pancreatic tissues were fixed in 10% neutral buffered formalin for 24 hours, 

followed by paraffin embedding, then cut and stained with hematoxylin eosin (HE) to 

establish the diagnosis. Paraffin embedded, 3-4 µm thick sections were used for 

immunohistochemistry to detect PAR-2 expression. The slides were treated for 30 minutes 

with target retrieval solution in a microwave oven, followed by incubation with the 

primary rabbit polyclonal antibody in 1:100 dilution overnight at 4 °C. Signal detection 

was achieved by ImPRESS reagent with secondary anti-rabbit IgG antibody (20 min). 

Diaminobenzidine was used to visualize immune complexes and nuclear counterstaining 

was performed with haematoxylin. For negative controls, the appropriate antibody was 

omitted and either the antibody diluent alone or isotype matched IgG serum was used. The 

negative controls exhibited no signal. Normal skin epithelial cells were used as positive 

controls to confirm correct immunohistochemical staining for PAR-2. 

The immunohistochemical reactions were digitalized with a Mirax MIDI slide 

scanner (3DHistech Ltd., Budapest, Hungary). Relative optical (RO) density was 

calculated using Image J program (National Institutes of Health, Bethesda, USA). Pixel 

values (PV) were normalized to erythrocyte density (PVNorm = PVMeasured – PVErythrocyte) in 

all sections. RO-density values were calculated from the RO-Density = log10(255⁄ PVNorm) 

equation assuming that the brightest value in the image equals 255. 

3.7. Western blot analysis 

 

Western blot analysis were used to determine the specificity of the PAR-2 antibody. 

Proteins were extracted from fresh-frozen guinea pig (n=3) and human (n=3) pancreatic 

tissue stored at -80 °C. Isolation was performed by using lysis buffer (20 mM TRIS pH 

7.5, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100 containing protease-inhibitor 

complex). Samples (50 mg) were homogenized, followed by centrifugation at 13,200 rpm 

at 4 °C for 5 min. Measurements of protein concentration were performed using Bradford-

analysis
 
(Bradford, 1976). 30 μg of protein samples were loaded in each lane, run on 10% 
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sodium dodecyl sulphate (SDS)-polyacrylamide electrophoresis at 200V for 35 min, then 

transferred to nitrocellulose membranes at 100V, 4 °C for 75 min. For aspecific protein-

blocking, non-fat dry milk (5%, PBS) was used for 30 min. Blots were incubated with 

polyclonal PAR-2 rabbit antibody (1:300) and anti-GAPDH antibody (1:5000) at 4 °C 

overnight. After washing with 0.1% TRIS, horseradish peroxidise-conjugated anti-rabbit 

antibody (1:2000) was applied at room temperature for 90 min. Following three series of 

washings in Tris-Buffered Saline Tween-20, signals were visualized by enhanced 

chemiluninescent detection. 

3.8. Solutions used for the determination of pancreatic ductal secretion in 

vitro 

 

The HEPES-buffered solution contained (in mM): 130 NaCl, 5 KCl, 1 CaCl2, 1 

MgCl2, 10 Glucose and 10 Na-HEPES and its pH was set to 7.4 with HCl at 37 °C. The 

standard HCO3
−
-buffered solution contained (in mM): 115 NaCl, 25 NaHCO3, 5 KCl, 1 

CaCl2, 1 MgCl2, 10 Glucose. In the NH4
+
 pulse experiments in HCO3

-
-buffered soultion, 

20 mM NaCl was replaced with NH4Cl. The Cl
-
-free HCO3

-
 solution contained (in mM): 

25 NaHCO3, 115 Na-gluconate, 1 Mg-gluconate, 6 Ca-gluconate, 2.5 K2-sulfate and 10 

glucose. The HCO3
-
-containing solutions were equilibrated with 95% O2 and 5% CO2 to 

maintain pH at 7.4 at 37 °C.  

 

3.9. Microperfusion and measurement of intracellular pH, Ca
2+

 

concentration 

 

The microperfusion of the cultured pancreatic ducts was performed as described 

previously (Venglovecz et al., 2008). Briefly, two concentric pipettes were used. One end 

of a sealed duct was cut off and the other end was aspirated into the outer, holding pipette. 

Then the inner, perfusion pipette, was gently inserted into the lumen of the holding pipette 

while a negative pressure was applied to the holding pipette using a syringe. The duct was 

then perfused at a rate of 10-30 μl/min, the luminal perfusate left the duct at the open end. 

The high rate of the bath perfusion (5-6 ml/min), which was in the same direction as the 

flow of luminal perfusate, ensured that the outgoing luminal perfusate did not gain access 

to the basolateral surface of the duct cells. Replacement of the luminal perfusate took up to 

2 min. 
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Intacellular pH (pHi) was estimated using the pH-sensitive fluorescent dye 2'7'-

bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) (Hegyi et 

al., 2004). Briefly, ducts were loaded with the membrane permeable acetoxymethyl 

derivative of BCECF (2 mol/l) for 20-30 min. After loading, the ducts were continuously 

perfused with solutions at a rate of 5-6 ml/min. pHi was measured using a Cell
R
 imaging 

system (Olympus, Budapest, Hungary). 4-5 small areas (Region of interests – ROIs) of 5-

10 cells in each intact duct were excited with light at wavelengths of 490 and 440 nm, and 

the 490/440 fluorescence emission ratio was measured at 535 nm. One pHi measurement 

was obtained per second. In situ calibration of the fluorescence signal was performed using 

the high K
+
-nigericin technique (Hegyi et al., 2004). 

Measurement of [Ca
2+

]i was performed using the same method except that the cells 

were loaded with the Ca
2+

-sensitive fluorescent dye 5-Oxazolecarboxylic acid, 2-(6-

(bis(carboxymethyl)amino)-5-(2-(2-(bis(carboxymethyl)amino)-5-methylphenoxy)ethoxy)-

2-benzofuranyl)-5-oxazolecarboxylic acetoxymethyl ester (FURA 2-AM) (5 mol/l) for 60 

min. For excitation, 340 and 380 nm filters were used, and the changes in [Ca
2+

]i were 

calculated from the fluorescence ratio (F340/F380) measured at 510 nm.  

3.10. Determination of HCO3
-
 efflux in WT and NHERF-1 KO mice 

 

To determine the HCO3
-
 efflux across the apical membrane of the pancreatic ductal 

epithelia, we used three methods: inhibitory stop, alkali load and luminal Cl
-
 withdrawal. 

The measured rates of pHi change (dpH/dt) were converted to transmembrane base flux 

[J(B
-
)] using the equation: J(B

-
)=(dpH/dt)xβtotal where βtotal is the total buffering capacity of 

the cells. J(B
-
) reflects the rate of HCO3

-
 efflux (i.e. secretion) on luminal Cl

-
/HCO3

-
 

exchangers (Hegyi et al., 2005). 

3.11. Measurement of fluid secretion  

 

In vitro 

Fluid secretion into the closed luminal space of the cultured pancreatic ducts was 

analysed using a swelling method developed by Fernandez-Salazar et al. (2004). Briefly, 

the ducts were transferred to a perfusion chamber (0.45 ml) and were attached to a 

coverslip precoated with CellTak in the base of the chamber. Bright-field images were 

acquired at 1 min intervals using a CCD camera (CFW 1308C, Scion Corporation, 

Frederick, MD, USA). The integrity of the duct wall was checked at the end of each 

http://www.biology-online.org/dictionary/Acid
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experiment by perfusing the chamber with a hypotonic solution (HEPES-buffered solution 

diluted 1:1 with distilled water). Digital images of the ducts were analysed using Scion 

Image software (Scion Corporation, Frederick, MD, USA) to obtain values for the area 

corresponding to the luminal space in each image. 

 

In vivo 

Mice were anesthetized with 1.5 g/kg urethane by i.p. injection. The body 

temperature of mice was maintained by placing the animals on a warm pad (37 °C) during 

the experiments. The abdomen was opened, and the lumen of the common biliopancreatic 

duct was cannulated with a blunt-end 30-gauge needle. Then the proximal end of the 

common duct was occluded with a microvessel clip to prevent contamination with bile, and 

the pancreatic juice was collected in PE-10 tube for 30 min. Using an operating 

microscope, the jugular vein was cannulated for administration of secretin (0.75 CU/kg) 

and the pancreatic juice was collected for an additional 120 min. 

3.12. Intravital video microscopy and data analysis 

 

A separate experimental series was performed to assess the possible consequences 

of secretin treatment on the microcirculation of the pancreas in mice anaesthetized with 1.5 

g/kg urethane i.p. (n=3-4 in each group). Using an operating microscope, the right jugular 

vein was cannulated (with polyethylene tubing ID: 0.28 mm, OD: 0.61 mm, Smiths 

Medical International Ltd, Kent, UK) for i.v. administration of secretin and the 

fluorescence marker used for the intravital microscopic examination. The animals were 

placed in a supine position on a heating pad to maintain the body temperature between 36 

and 37 
o
C, and a midline laparotomy performed. The majority of the intestines were 

exteriorized to gain good assess to the pancreas which was carefully placed on a specially 

designed stage and covered with a microscopic cover slip. The rest of the exteriorized 

abdominal organs were also covered with Saran wrap to minimize the fluid and heat loss.  

The microcirculation of the pancreas was visualized by intravital fluorescence 

microscopy (Zeiss Axiotech Vario 100HD microscope, 100 W HBO mercury lamp, 

Acroplan 20x water immersion objective) using a single i.v. bolus of fluorescein 

isothiocyanate-labeled dextran (150 kDa; 75 µl/animal for plasma labeling). The 

microscopic images were recorded with a charge-coupled device video camera (AVT 

HORN-BC 12; Aalen, Germany) attached to an S-VHS video recorder (Panasonic AG-MD 
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830, Budapest, Hungary) and a personal computer. Video images of the microcirculatory 

network of the pancreatic tail were recorded at baseline and 20 min after the i.v. 

application of secretin. 

Plasma velocity in the pancreatic capillaries was assessed off-line by frame-to-

frame analysis of the videotaped images, using image analysis software (IVM, Pictron 

Ltd., Budapest, Hungary). Average velocity values were measured in 3-5 separate 

capillaries per 3-5 microscopic fields in each animal. 

3.13. Statistical analysis 

 

Statistical analysis was performed by SigmaPlot (Systat Software Inc., Chicago, IL, 

USA). Data are presented as means ± SEM. Both parametric (one– or two-way analysis of 

variance) and non-parametric (Kruskal-Wallis) tests were used based on the normality of 

data distribution (analyzed by the Shapiro-Wilk test). Post-hoc analysis (either Dunn's or 

Bonferroni's test) was performed according to the recommendations made by SigmaPlot. 

Statistical analysis of the immunohistochemical data was performed using the Mann-

Whitney U test.  Probability values of P<0.05 were accepted as being significant. 
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4. RESULTS  

4.1. Role of NHERF-1 in pancreatic ductal HCO3
-
 and fluid secretion 

4.1.1 mRNA expression of CFTR, DRA, PAT-1 and NHERFs in mouse pancreatic 

ducts 

 

CFTR, DRA, PAT-1, NHERF-1 and NHERF-2, but not NHERF-3 mRNA were 

expressed in isolated pancreatic ducts of WT mice (Figure 2). Notably, quantitative RT-

PCR indicated that NHERF-1 was expressed more abundantly than the other two CFTR-

binding NHERFs (NHERF-2 and NHERF-3). 

 

 

Figure 2. mRNA expression of CFTR, DRA, PAT-1, NHERF-1, NHERF-2 and NHERF-3 in 

isolated mouse pancreatic ducts. Total RNA was prepared from isolated interlobular pancreatic 
ducts of wild-type (WT) mice (n=6) after overnight culture and mRNA expression of 

transporters/NHERF-1-3 was measured by real-time RT-PCR. Data are shown as means ± SEM. 

 

4.1.2. Apical NHERF-1 and CFTR localization in pancreatic ducts is reduced in 

NHERF-1-knock-out mice 

 

NHERF-1 was highly expressed in the apical membrane of pancreatic duct cells, 

but only weakly expressed in some acinar cells of WT mice (Figure 3A, B). No or weak 

staining was detected in NHERF-1-KO mice (Figure 3G, H). The weak staining is non-

specific and was not localized to the luminal membrane.  

Next, we determined whether NHERF-1 affects the localization of CFTR. The Cl
-
 

channel was expressed in both pancreatic acinar and ductal cells of WT and NHERF-1-KO 
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mice. Compared to WT animals (Figure 3C), apical CFTR staining in pancreatic ducts was 

markedly reduced and overall CFTR staining in the pancreas appeared more diffuse in the 

absence of NHERF-1 (Figure 3I). The strong cytoplasmic staining by the CFTR antibody 

correlates with the high CFTR mRNA expression levels in murine pancreas as compared to 

other gastrointestinal tissues [i.e. some cytoplasmic and basolateral staining in the 

duodenum (Singh et al., 2009), but not the ileum or colon of this mouse strain - 

unpublished observations]. Expression of pancreatic ductal CFTR mRNA was not 

significantly different in WT and NHERF-1-KO mice (results not shown). 

 

 

Figure 3. NHERF-1 and CFTR staining in wild-type and NHERF-1-knock-out pancreata. 

Representative immunohistochemical staining of NHERF-1 (A, B, G, H) and CFTR (C, I) in the 
pancreas of WT and NHERF-1-knock-out (KO) mice. NHERF-1 was localized in the apical 

membrane of intra- and interlobular duct cells; only weak staining was noted in some acinar cells 

of WT mice (A, B). No or weak staining was detected in NHERF-1-KO mice (G, H). CFTR 
staining in the pancreas of WT and NHERF-1-KO mice showed that apical (white arrow) CFTR 

localization (green) was reduced in NHERF-1-KO (I) vs. WT (C) ducts. Red staining shows F-

actin expression (D, J). E, K show merged images of CFTR and F-actin (yellow color indicates co-
localization). F, L are phase contrast pictures. Scale bar=50 μm. 
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4.1.3. Pancreatic ductal HCO3
-
 secretion is decreased in NHERF-1-knock-out mice 

 

To determine if mislocalization of CFTR affects pancreatic ductal function, we 

investigated HCO3
-
 secretion in isolated ducts using three different, but complementary, 

methods that measure the rate at which HCO3
-
 is secreted across the luminal membrane via 

Cl
-
/HCO3

-
 exchangers and/or CFTR (Hegyi et al., 2005). 

(1) Inhibitor stop. With this method the initial rate of pHi acidification is measured 

after the basolateral membrane is exposed to H2DIDS (0.2 mM) and amiloride (0.2 mM) 

which block HCO3
-
 accumulation into the cell by the NBC and NHE (Venglovecz et al., 

2008). Using this approach the rate of J(B
-
) was more than 4-fold lower in NHERF-1-KO 

compared to WT mice (Figures 4A, D). 

 

 

Figure 4. Pancreatic ductal HCO3
-
 secretion is decreased in NHERF-1-knock-out mice. Panels 

A-C show representative intracellular pH (pHi) traces of isolated pancreatic ducts bathed in 
standard HCO3

-
/CO2 solution demonstrating the effects of 0.2 mM amiloride and 0.2 mM H2DIDS 

administered from the basolateral membrane (A), the recovery from alkalosis via administration of 

20 mM NH4Cl (B), or after luminal Cl
-
 removal (C). Bar charts show summary data for the base 

fluxes [-J(B
-
/min)] after exposure of the transport inhibitors (D), 20 mM NH4Cl (E) or luminal Cl

-
 

removal (F) in WT (closed columns) and NHERF-1-KO (open columns) mice. Means  SEM are 
from 30-50 regions of interest from 5-8 ducts. a: P<0.05 vs. the respective WT group. 
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(2) Alkali load. Here the recovery of pHi from an alkali load induced by exposure 

to 20 mM NH4Cl in a HCO3
-
/CO2-containing solution reflects the rate of HCO3

-
 secretion 

(Venglovecz et al., 2008). Figures 4B and 4E show that the recovery from alkali load was 

about 2-fold lower in NHERF-1-KO vs. WT animals.  

(3) Chloride removal. Figures 4C and 4F show that pHi alkalinisation induced by 

removal of luminal Cl
-
 was significantly reduced in NHERF-1-KO compared to WT mice. 

These data show that pancreatic ductal HCO3
-
 secretion was significantly reduced 

in NHERF-1-KO compared to WT mice.  

4.1.4. Fluid secretion is decreased in NHERF-1-knock-out mice 

 

To investigate if fluid secretion was also compromised in KO mice, the rate of fluid 

secretion was measured using sealed ducts and the swelling technique. In the absence of 

secretagogue, we could not detect any significant changes in the volume of WT and 

NHERF-1-KO ducts (Figure 5A). Stimulation of WT ducts with 5 μM forskolin caused 

dynamic swelling of the ducts as a result of fluid secretion into the closed luminal space. In 

contrast, ducts from NHERF-1-KO mice had a blunted response to forskolin (Figure 5B).  

We also examined the rate of pancreatic juice secretion in vivo in anesthetized 

mice. Under basal conditions, WT animals secreted pancreatic juice at a rate of 0.12 ± 0.02 

μl/hour/g body weight (Figure 5C). In contrast, we could not detect any basal secretion in 

NHERF-1-KO animals. In response to secretin stimulation, we observed about 4-fold 

higher rates of pancreatic juice secretion in WT mice, values significantly higher than from 

NHERF-1-KO mice. These results demonstrate that pancreatic fluid secretion was 

significantly reduced in NHERF-1-KO compared to WT animals under both basal and 

secretin-stimulated conditions. 
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Figure 5. Fluid secretion is decreased in NHERF-1-knock-out vs. wild-type mice. A and B 

show changes in the relative luminal volume of pancreatic ducts from WT (black line, n=8 from 3 
animals) and NHERF-1-KO (gray line, n=8 from 3 animals) mice. Initially, ducts were perfused 

with HEPES-buffered solution, then perfusion was switched to standard HCO3
−
/CO2-buffered 

solution (A). In some cases the ductal secretion was stimulated with 5 μM forskolin (B). Panel C 
shows the volume of pancreatic juice collected in vivo under basal (secretin -) and secretin-

stimulated (secretin +, 0.75 CU/kg i.v.) conditions from WT (closed columns) and NHERF-1-KO 

(open column) mice anesthetized with urethane. Means  SEM are from 5-6 animals. P<0.05 vs. a: 
the respective secretin– group or b: vs. the WT secretin+ group. N.D.: not detected in case of 

NHERF-1-KO mice. 
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To rule out secondary alterations in pancreatic fluid secretion by changes in 

microcirculation due to loss of NHERF-1, we measured baseline microcirculatory plasma 

velocities in the capillaries of the pancreas, which were similar in WT and NHERF-1-KO 

animals under both basal and secretin-stimulated conditions (Figure 6). 

 

Figure 6. Pancreatic microcirculation shows similar changes in wild-type and NHERF-1-

knock-out mice. The microcirculation of the pancreatic tail was visualized by intravital 

fluorescence microscopy using a single i.v. bolus of fluorescein isothiocyanate-labelled dextran for 
plasma labeling in WT (closed columns) or NHERF-1-KO (open columns) mice anesthetized with 

urethane (1.5 g/kg i.p.). Video images were recorded at baseline (secretin -) and 20 min after the 

i.v. administration of secretin (0.75 CU/kg, secretin +). 20 min after the i.v. injection of secretin, 
significantly lower plasma velocity values were observed in both experimental groups. These 

reduced microcirculatory velocities, however, were not due to the effect of secretin, but most likely 

resulted from the 20-min exteriorization period of the pancreas, since a similar degree of reduction 

(by about 10%) in plasma velocities was also observed in time-matched pilot studies where mice 
were treated with PS vehicle (data not shown). a: P<0.05 vs. the respective secretin – group. 

 

4.2. Role of trypsin in pancreatic ductal HCO3
-
 secretion 

 

4.2.1. Expression of PAR-2 in guinea pig and human pancreata 

 

PAR-2 was highly expressed in the luminal membrane of small intra- and 

interlobular ducts (Figure 7A.i; cuboidal epithelial cells forming the proximal pancreatic 

ducts), but was almost undetectable in the larger interlobular ducts (Figure 7A.ii; columnar 

epithelial cells forming the distal pancreatic ducts). The localization of PAR-2 in the 

human pancreas was identical to that in the guinea pig gland (Figure 7A.iv-vi). 

Measurements of relative optical density confirmed the significant differences between the 
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expression of PAR-2 in small intra- and interlobular ducts and the larger interlobular ducts 

in both species (Figure 7C).  

 

 

Figure 7. Localization of PAR-2 on human and guinea pig pancreatic ducts. Representative 

light micrographs of guinea pig (Ai-iii) and human (Aiv-vi) pancreas are shown. i) PAR-2 is 

localized to the luminal membrane of PDEC in small intra- and interlobular ducts. ii) Large 

interlobular ducts do not express PAR-2. iii) No primary antiserum. iv-v) Sections from human 
pancreas exhibit a similar localization of PAR-2 compared to the guinea pig gland. vi) No primary 

antiserum. B) Western blot analysis was used to determine the specificity of the PAR-2 antibody. 

Polyclonal anti-PAR-2 demonstrated a single 44kDa band. C) Quantitative measurement of relative 

optical densities (RO-Density) of small intra- and interlobular ducts (A.i, iv), and large interlobular 
ducts (A.ii, v) are shown. n=12.*: P<0.05 vs. A.ii or A.v, respectively. Scale bar=100 μm on A.i, 

iv; 100 μm on A.ii-iii and A.v-vi.  

 

4.2.2. Luminal administration of PAR-2-AP and trypsin induces dose-dependent 

intracellular calcium signaling 

 

Since PAR-2 expression was detected only on the luminal membrane of 

intralobular duct cells, we used the microperfusion technique to see whether these 

receptors can be activated by PAR-2 agonists. First, the experiments were performed at pH 

7.4, in order to understand the effects of trypsin and PAR-2 under quasi physiological 

conditions (Figure 8). The fluorescent images in Figure 8A clearly show that luminal 

administration of PAR-2-AP increased [Ca
2+

]i in perfused pancreatic ducts. The [Ca
2+

]i 

response was dose-dependent, and consisted of a peak which decayed in the continued 
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presence of the agonist, possibly reflecting PAR-2 inactivation or depletion of intracellular 

Ca
2+

 stores (Figure 8B). Pre-treatment of PDEC with 10 µM PAR-2-ANT for 10 min 

completely blocked the effects of 10 µM PAR-2-AP on [Ca
2+

]i (Figure 8A,C). Removal of 

extracellular Ca
2+

 had no effect on the [Ca
2+

]i rise evoked by luminal administration of 10 

µM PAR-2-AP; however, pre-loading ducts with the Ca
2+

 chelator BAPTA-AM at 40 µM 

totally blocked the response (Figure 8A,C).  

 

 

Figure 8. Effects of PAR-2-AP on [Ca
2+

]i in microperfused guinea pig pancreatic ducts at pH 
7.4. A) Light (1) and fluorescent ratio images (2 and 3) of microperfused pancreatic ducts showing 

the effects of luminal administration of 10 µM PAR-2 activating peptide (PAR-2-AP), 10 µM 

PAR-2 antagonist (PAR-2-ANT), or 40 µM BAPTA-AM on [Ca
2+

]i. Images were taken before (1 

and 2) and after (3) exposure of the ducts to PAR-2-AP. B-C) Representative experimental traces 

and summary data of the changes in [Ca
2+

]i. n=5 for all groups,*: P<0.05 vs. 1 μM PAR-2-AP. **: 

P<0.001 vs. 10 μM PAR-2-AP.  

 

Trypsin also induced a dose-dependent [Ca
2+

]i elevation similar to that evoked by 

PAR-2-AP (Figure 9B,C). 5 µM soybean trypsin inhibitor (SBTI), 10 µM PAR-2-ANT 

and 40 µM BAPTA-AM totally blocked the rise in [Ca
2+

]i (Figure 9A,C). These data show 

that trypsin activates PAR-2 on the luminal membrane of the duct cell which leads to 

release of Ca
2+

 from intracellular stores and an elevation of [Ca
2+

]i. 
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Figure 9. Effects of trypsin on [Ca
2+

]i in microperfused guinea pig pancreatic ducts at pH 7.4. 

A) Light (1) and fluorescent ratio images (2 and 3) of microperfused pancreatic ducts showing the 
effects of luminal administration of 10 µM trypsin, 5 μM soybean trypsin inhibitor (SBTI) , 10 µM 

PAR-2-ANT, or 40 µM BAPTA-AM on [Ca
2+

]i. Images were taken before (1 and 2) and after (3) 

exposure of the ducts to trypsin. B-C) Representative experimental traces and summary data of the 
changes in [Ca

2+
]i. n=5 for all groups,*: P<0.05 vs. 0.1 μM trypsin. **: P<0.001 vs. 10 μM trypsin.  

 

Since the pH of pancreatic juice can vary between approximately 6.8 and 8.0 

(Behrendorf et al., 2010; Ishiguro et al., 1996), we also checked the effects of trypsin and 

PAR-2-AP on [Ca
2+

]i at these pH values (Figures 10 and 11, respectively). The elevations 

of [Ca
2+

]i at pH 6.8 and 8.0 were generally very similar to the changes observed at pH 7.4. 

However, the [Ca
2+

]i rises evoked by 1 µM PAR-2-AP and 0.1 µM trypsin were 

significantly lower at pH 6.8 compared to either pH 7.4 or 8.0 (Figure 12).   
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Figure 10. Effects of PAR-2-AP and trypsin on [Ca
2+

]i in microperfused guinea pig 

pancreatic ducts at pH 6.8. A) Light (1) and fluorescent ratio images (2 and 3) of microperfused 

pancreatic ducts showing the effects of luminal administration of 10 µM PAR-2-AP and 10 µM 
PAR-2-ANT on [Ca

2+
]i at pH 6.8. Images were taken before (1 and 2) and after (3) exposure of the 

ducts to either PAR-2-AP or trypsin. An increase in [Ca
2+

]i is denoted by a change from a ‘‘cold’’ 

colour (blue) to a ‘‘warmer’’ colour (yellow to red); see scale on the right. B-C) Representative 
experimental traces and summary data of the changes in [Ca

2+
]i at pH 6.8. D) The same protocol 

was used to evaluate the effects of trypsin. E-F) Representative experimental traces and summary 

data of the changes in [Ca
2+

]i at pH 6.8. n=3-4, *: P<0.05 vs. 1 μM PAR-2-AP or 0.1 μM trypsin, 

respectively.  **: P<0.001 vs. 10 μM PAR-2-AP or 10 μM trypsin, respectively.  
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Figure 11. Effects of PAR-2-AP and trypsin on [Ca

2+
]i in microperfused guinea pig pancreatic 

ducts at pH 8.0. A) Light (1) and fluorescent ratio images (2 and 3) of microperfused pancreatic 

ducts showing the effects of luminal administration of 10 µM PAR-2-AP and 10 µM PAR-2-ANT 
on [Ca

2+
]i at pH 8.0. Images were taken before (1 and 2) and after (3) exposure of the ducts to 

PAR-2-AP or trypsin. The colors are described in figure 10; see scale on the right. B-C) 

Representative experimental traces and summary data of the changes in [Ca
2+

]i at pH 8.0. D) The 
same protocol was used to evaluate the effects of trypsin. E-F) Representative experimental traces 

and summary data of the changes in [Ca
2+

]i. n=3-4,  *: P<0.05 vs. 1 μM PAR-2-AP or 0.1μM 

trypsin, respectively.  **: P<0.001 vs. 10 μM PAR-2-AP or 10 μM trypsin, respectively.  
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Figure 12. Summary of the effects of PAR-2-AP and trypsin on [Ca
2+

]i in 

microperfused guinea pig pancreatic ducts at different extracellular pH values. A) The [Ca
2+

]i 

elevation evoked by 1 µM PAR-2-AP and B) 0.1 µM trypsin at different extracellular pH values 

(6.8; 7.4; 8.0). n=3-4, *: P<0.05 vs. at pH 6.8.   

 

4.2.3. Luminal exposure to PAR-2-AP and trypsin evoke intracellular alkalosis in 

guinea pig PDEC 

 

Figure 13 shows pHi recordings from microperfused pancreatic ducts. Luminal 

application of the CFTR inhibitor-172 (CFTRinh-172, 10 µM) and the anion exchanger 

inhibitor H2DIDS (500 µM) induced an intracellular alkalization in PDEC (Figure 13A). 

These data indicate that when HCO3
-
 efflux across the luminal membrane of PDEC (i.e. 

HCO3
-
 secretion) is blocked an elevation of duct cell pHi occurs, presumably because the 

basolateral transporters continue to move HCO3
-
 into the duct cell. Note also that the rise in 

pHi evoked by the inhibitors is not sustained and begins to reverse before the inhibitors are 

withdrawn (Figure 13A), which might be explained by the regulation of pHi by basolateral 

acid/base transporters.  

Both luminal PAR-2-AP and trypsin induced a dose-dependent elevation of pHi 

(Figure 13B, C), suggesting that activation of PAR-2 inhibits HCO3
-
 efflux across the 

apical membrane of the duct cell. Pre-incubation of PDEC with either 10 µM PAR-2-ANT 

or 5 μM SBTI or 40 µM BAPTA-AM for 30 min totally blocked the effect of trypsin on 

pHi (Figure 13D). The inhibitory effect of the Ca
2+

 chelator, BAPTA-AM, suggests that the 

actions of trypsin and PAR-2-AP on pHi are mediated by the rise in [Ca
2+

]i that they evoke 

(Figures 8, 9). Therefore, in this case, the transient nature of the pHi response may reflect 

the transient effect that PAR-2 activators have on [Ca
2+

]i (Figures 8B, 9B), as well as pHi 

regulation by basolateral acid/base transporters.  
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Next we tested the effects of trypsin on pHi in Cl
-
-free conditions and during 

pharmacological inhibition of the luminal anion exchangers and/or CFTR (Figure 13E-H). 

Luminal Cl
-
-free conditions increased the pHi of PDEC presumably by driving HCO3

-
 

influx on the apical anion exchangers (Figure 13E). Note that luminal administration of 

trypsin further elevated pHi in Cl
-
 free conditions (Figure 13E), and also in the presence of 

H2DIDS (Figure 13F) and CFTRinh-127 (Figure 13G). However, pre-treatment of ducts 

with a combination of H2DIDS and CFTRinh-172 markedly reduced the effect of trypsin 

on pHi (Figure 13H).  

 

Figure 13. Effects of PAR-2-AP and trypsin on pHi in microperfused guinea pig pancreatic 

ducts. Representative pHi traces showing the effects of luminal administration of different agents 
in microperfused pancreatic ducts. A) 10 µM CFTRinh-172 and/or 500 µM H2DIDS caused 

alkalization of pHi. B) PAR-2-AP and C) trypsin induced a dose-dependent pHi elevation, D) 

Preincubation of ductal cells with 10 µM PAR-2-ANT or 5 μM SBTI or 40 µM BAPTA-AM 
totally blocked the alkalization caused by 10 µM trypsin. E) Removal of luminal Cl

-
 or F) 

administration of H2DIDS (500 µM) decreased, but did not totally abolish, the effects of 10 µM 

trypsin on pHi. G) Pretreatment with 10 µM CFTRinh-172 also decreased the effects of trypsin (10 
µM) on pHi. H) Simultaneous administration of H2DIDS and CFTRinh-172 strongly inhibited the 

effect of 10 µM trypsin. 

 

Figure 14A-C is a summary of the pHi experiments. Trypsin (Figure 14A) and 

PAR-2- AP (Figure 14B) both induced statistically significant, dose-dependent rises in pHi 

and these effects were blocked by PAR-2-ANT, SBTI and BAPTA-AM. Exposure of the 

ducts to luminal Cl
-
 free conditions, H2DIDS, CFTRinh-172 or a combination of the 
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inhibitors also induced an intracellular alkalosis (Figure 14C). Also shown in Figure 14C is 

the additional, statistically significant, rise in pHi caused by trypsin in ducts exposed to Cl
-
-

free conditions and the individual inhibitors. However, when ducts were exposed to both 

CFTRinh-172 and H2DIDS simultaneously, the effect of trypsin on pHi was markedly 

reduced although it remained statistically significant (Figure 14 C). We interpret these 

results as indicating that trypsin inhibits both Cl
-
 dependent (i.e. anion exchanger mediated; 

revealed when CFTR is blocked by CFTRinh-172) and Cl
-
 independent (i.e. CFTR 

mediated; revealed in Cl
-
-free conditions and when the luminal exchangers are blocked by 

H2DIDS) HCO3
-
 secretory mechanisms in PDEC. Reduced HCO3

-
 secretion will lead to a 

decrease in intraductal pH.  

 

Figure 14. A-B) Summary of the effects of PAR-2-AP and trypsin on pHi changes. ∆pHmax was 

calculated from the experiments shown in Figure 13. C) Effects of Cl
-
-free conditions. Cl

-
-free 

conditions, H2DIDS, CFTRinh-172 and a combination of the inhibitors all induced an intracellular 
alkalosis. Trypsin further increased the alkalinisation of pHi although the effect was markedly 

reduced when both H2DIDS and CFTRinh-172 were present. n=4-5 for all groups. A)*: P<0.05 vs. 

0.1 μM trypsin; **: P<0.001 vs. 10 μM trypsin, B)*: P<0.05 vs. 0.1 μM PAR-2-AP; **: P<0.001 
vs. 10 μM PAR-2-AP, C)*: P<0.05 vs. the respective filled column. 

 

To gain insight into the mechanism by which trypsin inhibits HCO3
-
 secretion, we 

next investigated the effects of trypsin and PAR-2-AP on basal and forskolin-activated 

CFTR currents using the whole cell configuration of the patch clamp technique. Exposure 
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of PDEC to 10 µM trypsin did not affect the basal currents; however, administration of 

either 10 μM PAR-2-AP or 10 μM trypsin inhibited forskolin-stimulated CFTR currents 

(data not shown). 

4.2.4. PAR-2 is down-regulated in patients suffering from chronic pancreatitis 

 

It has been documented that there is activated trypsin in the pancreatic ductal lumen 

in chronic pancreatitis in human (Fedail et al., 1979; Kukor et al., 2002; Tympner, 1981; 

Tympner & Rosch, 1978). If trypsin activity is elevated in the duct lumen, PAR-2 down-

regulation should occur, which could be due either: (i) to changes in PAR-2 mRNA 

transcription and/or (ii) due to receptor internalization and translocation to the cytoplasm.  

 

Figure 15. Analyses of PAR-2 expression in human pancreatic samples. A. i-iv) PAR-2 

expressing cells were visualized by immunohistochemistry. i) Representative section of normal 

human pancreas. ii) No primary antiserum. iii) Representative section of human pancreas from a 
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patient suffering from chronic pancreatitis (CP). iv) No primary antiserum. B) Relative optical 

density of immunohistochemistry. n=15,*: P<0.05 vs. CP membrane. C) Real-time RT-PCR 

analysis of PAR-2 mRNA expression of human pancreas. Data are given in 2^dCT. n=15,*: P<0.05 

vs. CP. Scale bar=50 μm. 

Our data show a marked reduction in membranous PAR-2 protein level, but no 

significant changes in cytoplasmic PAR-2 protein in chronic pancreatitis (Figure 15A. i-iv, 

B). Furthermore, PAR-2 mRNA level was markedly reduced in chronic pancreatitis 

(Figure 15C), suggesting that reduced PAR-2 mRNA transcription may cause PAR-2 

down-regulation in chronic pancreatitis.   

4.2.5. Luminal exposure to R122H mutant cationic trypsin induces elevation of 

intracellular calcium concentration and evokes alkalosis in PDEC 

 

 It has been demonstrated that mutations in cationic trypsinogen increase the risk of 

chronic pancreatitis, most likely because of the enhanced autoactivation exhibited by the 

mutant trypsinogens (Sahin-Tóth & Tóth, 2000). Here we tested whether the most common 

mutation in cationic trypsin, R122H, affected the protease’s ability to interact with PAR-2. 

Figure 16 A-B shows that 1 µm of R122H cationic trypsin causes comparable changes in 

pHi and [Ca
2+

]i to 0.4 µM wild-type trypsin, suggesting that a trypsin-mediated inhibition 

of HCO3
-
 secretion could play a role in the pathogenesis of hereditary as well as chronic 

pancreatitis.  
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Figure 16. R122H cationic trypsin causes comparable changes in pHi and [Ca
2+

]i to 

wild-type trypsin. Representative A) pHi and B) [Ca
2+

]i. measurements using luminal 

administration of normal and R122H mutant cationic trypsin in microperfused guinea pig 

pancreatic ducts. n=5 for all experiments. 

4.2.6. Activation of PAR-2 is diminished in PAR-2 KO mice 

 

 Finally, we investigated the effects of both PAR-2-AP and trypsin on PDEC 

isolated from
 

WT and PAR-2
 

KO mice (Figure 18A-B). First we confirmed using 

immunohistochemistry that WT mice do, whereas PAR-2
 
KO mice do not express PAR-2 

in their PDEC (Figure 17A-D). Accordingly, our functional data clearly show that the pHi 

and [Ca
2+

]i responses to luminal administration of either trypsin or PAR-2-AP were 

markedly diminished in PAR-2
 
KO PDEC (Figure 18A-B). 

 

 

 

Figure 17. Expression of PAR-2 on pancreatic ductal cells of WT and PAR-2 KO mice. PAR-2 
expressing cells were visualized by immunohistochemistry as described in Figure 7. A) 

Representative section of the pancreas removed from WT mice. B) Section without primary 

antiserum. C) Pancreas removed from PAR-2 KO mice. D) Section without primary antiserum. 
Scale bar=50 µm. 



39 

 

 

 

 

Figure 18. Effects of PAR-2-AP and trypsin on pHi and [Ca
2+

]i in microperfused pancreatic 

ducts isolated from WT and PAR-2 KO mice. A) pHi and B) [Ca
2+

]i. measurements using 

luminal administration of trypsin in microperfused pancreatic ducts isolated from PAR-2 KO (red 
curve) and PAR-2 WT mice (black curve). n=5 for all experiments,*: P<0.05 vs. 10 µM trypsin 

PAR-2
 
WT;  

**: P<0.05 vs. 10 µM PAR-2-AP PAR-2
 
WT. 
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5. DISCUSSION 

In the present work we described the roles of NHERF-1 and trypsin in the 

regulation of pancreatic ductal HCO3
-
 secretion. 

5.1. The effect of NHERF-1 on pancreatic ductal HCO3
-
 and fuid 

secretion 

 

We have demonstrated that NHERF-1 mRNA is highly expressed in mouse 

pancreatic ducts. Furthermore, the genetic deletion of NHERF-1 greatly reduced the 

translocation of CFTR to the luminal ductal cell membrane and also decreased both in vitro 

and in vivo pancreatic HCO3
-
 and fluid secretion. Both basal and cAMP-stimulated (by 

forskolin or secretin) secretion were affected in the transgenic animals, but this effect was 

not caused by alterations in pancreatic blood flow. 

Localization of CFTR to the apical plasma membrane of epithelial cells is critical 

for vectorial transport of chloride in a variety of epithelia, including the airway, pancreas, 

intestine, and kidney (Moyer et al., 1999). NHERF-1 has been shown to play an important 

role in the apical trafficking, targeting, membrane retention and activation of several 

membrane proteins such as CFTR (Raghuram et al., 2001). These effects on CFTR were 

shown to require PDZ domain interactions with NHERF-1 in several studies (Milewski et 

al., 2001; Moyer et al., 1999; Swiatecka-Urban et al., 2002), although other similar studies 

failed to confirm these results (Benharouga et al., 2003; Ostedgaard et al., 2003). Moyer et 

al. (1999) identified the last 3 amino acids in the C-terminus of CFTR (T-R-L) comprise a 

PDZ-interacting domain that is required for the polarization of CFTR to the apical plasma 

membrane in human airway and kidney epithelial cells. Milewski et al. (2001) also 

demonstrated that the cytoplasmic C-terminal tail (PDZ-interacting sequence) of CFTR 

contains signals sufficient for its localization to the apical membrane in polarized epithelial 

cells. The C-terminal amino acids of several other integral membrane proteins are 

suspected of being an essential part of a multi-component signal that mediates apical or 

basolateral localization in epithelial cells. In contrast, Benharouga et al. (2003) showed that 

the inhibition of NHERF binding has no discernible effect on the apical localization of 

CFTR in polarized tracheal, pancreatic, intestinal, and kidney epithelia and did not 

influence the metabolic stability or the cAMP-dependent protein kinase-activated Cl
-
 

channel conductance in polarized pancreatic epithelia. These results indicate that apical 
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localization of CFTR involves sorting signals other than the C-terminal 26 amino acid 

residues and the PDZ-binding motif in differentiated epithelia (Benharouga et al., 2003). In 

accordance with our findings, CFTR mutations causing cystic fibrosis that impair the 

stability of the Cl
-
 channel in the plasma membrane also result in markedly reduced HCO3

-
 

and fluid secretion (Lukács & Verkman, 2012). Of course we cannot exclude the direct or 

indirect (e.g. via CFTR) effects of NHERF-1 deletion on other transporters involved in 

pancreatic HCO3
-
 and fluid secretion, such as anion exchangers DRA and PAT-1. Of note, 

both DRA and PAT-1 are known to have PDZ domain binding motifs (Lamprecht & 

Seidler, 2006), and to bind to NHERF-1 (Lamprecht et al., 2002; Lohi et al., 2003; 

Rossmann et al., 2005). In addition, activation of CFTR by SLC26 transporters was shown 

to be facilitated by PDZ ligands (Ko et al., 2004). We could not test the expression of 

PAT-1 and DRA in the apical membrane of pancreatic ducts, because the antibodies that 

we have available also stain the apical membranes in PAT-1 KO and DRA-KO pancreatic 

ducts, respectively. Nevertheless, the reduced expression of CFTR in the apical membrane 

in NHERF-1 KO pancreatic ducts will likely decrease the activities of PAT-1 and DRA 

(Chernova et al., 2003; Rakonczay et al., 2008). 

Several studies have shown that binding of CFTR to NHERF proteins may also be 

important for the regulation of CFTR activity. Broere et al. (2007) and Singh et al. (2009) 

have demonstrated that NHERF-1 is required for full activation of transepithelial Cl
-
 and 

HCO3
-
 secretion by cAMP- and cGMP-linked agonists in the duodenum and jejunum. This 

reduced activation of anion currents in NHERF-1 KO mice seemed to be independent of 

the total amount of CFTR protein expression in epithelial cells, but did appear to be due to 

a defect in apical targeting and/or apical retention of CFTR (Broere et al., 2007). In 

addition, the NHERF-1 assisted formation of receptor-transporter signalling complexes in 

the apical membrane were disrupted (Singh et al., 2009). Interestingly, NHERF-1 deletion 

did not cause a generalized CFTR dysfunction, because in the NHERF-1 deficient ileum 

where CFTR is strongly crypt located (Jakab et al., 2011), whereas NHERF-1 expression 

shows a gradient with high expression in the villi, CFTR-mediated Isc response to forskolin 

was not different in NHERF-1 KO and WT mucosa (Broere et al., 2007). A recent study 

has shown that CFTR activity is also dependent on NHERF-1 regulated cAMP 

compartmentalization and local protein kinase A activity in human airway epithelial cells 

(Monterisi et al., 2012). The particularly high expression of NHERF-1, as well as CFTR in 

pancreatic ducts, compared to other NHERFs and SLC26 anion transporters is quite 

different from the relative expression levels of these transporters and the NHERFs in the 
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small intestine (Hillesheim et al., 2007; Singh et al., 2010). These findings suggested to us 

that CFTR-NHERF-1 interaction may be crucial to pancreatic ductal secretion. 

5.2. The effect of trypsin on pancreatic ductal HCO3
-
 secretion 

 

Until quite recently, the pathophysiological relevance of pancreatic ducts in acute 

pancreatitis has been neglected. However, there are important lines of evidence supporting 

the idea that pancreatic ducts play a role in the pathogenesis of pancreatitis: i) ductal fluid 

and HCO3
-
 secretion are compromised in acute and chronic pancreatitis (Cavestro et al., 

2010; Hegyi & Rakonczay, 2010), ii) one of the main endpoints of chronic pancreatitis is 

the destruction of the ductal system (Ectors et al., 1997; Kloppel et al., 2005), iii) 

mutations in CFTR may increase the risk of pancreatitis (Cavestro et al., 2010; Hegyi et 

al., 2011; Hegyi & Rakonczay, 2010; Nousia-Arvanitakis, 1999; Weiss et al., 2009), and 

iv) etiological factors for pancreatitis, such as bile acids or ethanol in high concentration, 

inhibit pancreatic ductal HCO3
-
 secretion (Maléth et al., 2011; Venglovecz et al., 2008; 

Yamamoto et al., 2003) Despite the above mentioned data, the role of PDEC in the 

development of pancreatitis has received relatively little attention (Lee & Muallem, 2008). 

There are important species differences regarding the localization of PAR-2 in 

pancreatic ducts and in the effect of PAR-2 activation on HCO3
-
 secretion. For example, 

CAPAN-1 cells (Namkung et al., 2003) and dog PDEC (Nguyen et al., 1999) express 

PAR-2 only on the basolateral membrane, whereas bovine PDEC express PAR-2 on the 

luminal membrane (Alvarez et al., 2004). Therefore, one of our aims was to determine 

which animal model best mimics human PAR-2 expression and thus would be the best for 

studying the effects of trypsin on PDEC function. Our results showed that in the human 

pancreas PAR-2 is localized to the luminal membrane of small proximal pancreatic ducts, 

which are probably the major site of HCO3
-
 and fluid secretion. Since CAPAN-1 cells and 

dog PDEC express PAR-2 only on the basolateral membrane, they do not mimic the 

human situation. Rats or mice are also not good models for the human gland because they 

secrete only 70-80 mM HCO3
-
 (Padfield et al., 1989; Steward et al., 2005). However, the 

guinea pig pancreas secretes ~140 mM HCO3
-
, as does the human gland, and the regulation 

of HCO3
-
 secretion is similar in both species (Padfield et al., 1989; Stewart et al., 2009). 

Since PAR-2 expression in the guinea pig pancreas was localized to the luminal membrane 

of duct cells, we performed our experiments on isolated guinea pig ducts. 
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First we characterized the effects of PAR-2 activation by trypsin and PAR-2-AP on 

PDEC. Previously, it has been shown that activation of the G-protein-coupled PAR-2 by 

proteinases requires proteolytic cleavage of the receptor, which is followed by an elevation 

of [Ca
2+

]i (Bohm et al., 1996; Hoxie et al., 1993; Vergnolle, 2000). As expected, luminal 

trypsin and PAR2-AP caused a dose-dependent elevation of [Ca
2+

]i in guinea pig ducts. 

Importantly, the trypsin inhibitor SBTI, PAR-2-ANT and the intracellular Ca
2+

 chelator 

BAPTA-AM all completely blocked the elevation of [Ca
2+

]i, whereas removal of 

extracellular Ca
2+

 had no effect. Acidosis (pH 6.8) also slightly reduced the changes in 

[Ca
2+

]i evoked by trypsin, most probably due to reduced cleavage activity of trypsin at an 

acidic pH. Next we characterized the effects of PAR-2 activation on pHi. Luminal 

application of trypsin and PAR-2-AP both caused a dose-dependent intracellular alkalosis 

in PDEC. This alkalosis is most likely explained either by a reduction in the rate of HCO3
-
 

efflux (i.e. secretion) across the apical membrane of PDEC or by an increase in the rate of 

HCO3
-
 influx at the basolateral side of the cell. We favour the former explanation as 

luminal application of the anion exchange inhibitor, H2DIDS, or the CFTR inhibitor, 

CFTRinh-172, produced a similar intracellular alkalization (Hegyi et al., 2005; Stewart et 

al., 2009). Thus, PAR-2 activation inhibits HCO3
-
 secretion in PDEC by inhibiting SLC26 

anion exchangers and CFTR expressed on the apical membrane of the duct cell. In 

similarity with the [Ca
2+

]i signals, the effect of PAR-2 activation on pHi was blocked by 

SBTI, PAR-2-ANT and BAPTA-AM; the action of BAPTA-AM suggesting that the 

inhibition of HCO3
-
 secretion follows from the rise in [Ca

2+
]i. Interestingly, an elevation of 

[Ca
2+

]i is crucial for both stimulatory [(e.g. acetylcholine (Argent, 2006), low 

concentrations of bile acids (Venglovecz et al., 2008) and ethanol (Yamamoto et al., 

2003)] and inhibitory pathways (e.g. basolateral ATP, arginine vasopressin and high 

concentrations of ethanol) that control HCO3
-
 secretion by PDEC. Such marked differences 

in the outcome of [Ca
2+

]i signals in PDEC probably reflect differences in the source of 

Ca
2+

 and/or in the intracellular compartmentalisation of [Ca
2+

]i signals generated by 

different secretory agonists and antagonists.   

Remarkably, trypsin was still able to evoke an elevation of pHi when Cl
- 

was 

removed from the duct lumen and when PDEC were pre-treated with H2DIDS, conditions 

that should inhibit HCO3
-
 efflux on the exchanger. These results suggested the involvement 

of CFTR, the only other known HCO3
-
 efflux pathway on the apical membrane, in the 

inhibitory effect of trypsin. This hypothesis was confirmed by patch clamp experiments in 

which trypsin decreased CFTR whole cell currents in isolated guinea pig PDEC by 50-
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60%. Finally, the fact that the trypsin-induced alkalinisation was completely blocked by a 

combination of CFTRinh-172 and H2DIDS confirms the involvement of both CFTR and 

SLC26 anion exchangers. Our conclusion from these pHi and patch clamp data is that 

PAR-2 activation inhibits both the SLC26 anion exchanger (probably PAT-1, Ko et al., 

2002)  as DRA is only weakly inhibited by disulfonic stilbenes (Chernova et al., 2003, Ko 

et al., 2002) and CFTR expressed on the apical membrane of the duct cell.  

The pH of pancreatic juice [and therefore the luminal pH (pHL) in the duct] can 

vary between approximately 6.8 and 8.0. It has recently been shown that protons co-

released during exocytosis cause significant acidosis (up to 1 pH unit) in the lumen of the 

acini (Behrendorff et al., 2010). However, Ishiguro et al. (1998) have clearly shown that 

the pHL in pancreatic ducts is dependent on the rate of HCO3
-
 secretion. pHL can be 

elevated from 7.2 to 8.5 by stimulation with secretin or forskolin and this effect was 

strictly dependent on the presence of HCO3
-
 (Ishiguro et al., 1999; Ishiguro et al., 1998; 

Ishiguro et al., 1996). Also, inhibition of ductal HCO3
-
 secretion with H2DIDS can 

decrease the pHL to below 8.0 (Ishiguro et al., 1998). In view of these results, we tested 

whether trypsinogen autoactivation was affected by pH over the range 6.0 to 8.5. 

Autoactivation of trypsinogen was relatively slow at pH 8.5, but decreasing the pH from 

8.5 to 7 progressively stimulated autoactivation (data not shown). These results suggest 

that under physiological conditions HCO3
-
 secretion by PDEC is not only important for 

elevating the pH in the duodenum, but also for keeping pancreatic enzymes in an inactive 

state in the ductal system of the gland.  

Receptor down-regulation is a phenomenon that occurs in the continued presence of 

an agonist and leads to a reduction in the cell’s sensitivity to the agonist. Potentially, there 

are two mechanisms that could underlie receptor down-regulation of PAR-2: i) after 

proteolytic activation, the PAR-2 is internalized by a clathrin-mediated mechanism and 

then targeted to lysosomes (Hoxie et al., 1993), and ii) if trypsin is present for a longer 

time in the lumen, PAR-2 may be down-regulated at the transcriptional level. In this study, 

we provide evidence that the second mechanism, transcriptional down-regulation, explains 

the reduced expression of PAR-2 seen in chronic pancreatitis. 

Conflicting data can be found in the literature concerning the role of PAR-2 in 

acute pancreatitis. Namkung et al. (2004) concluded that PAR-2 might play a protective 

role in pancreatitis when they found that PAR-2 activation reduces the severity of rat 

secretagogue-induced pancreatitis. In contrast to these data, Singh et al. (2007) showed that 

in secretagogue-induced experimental pancreatitis, PAR-2 deletion is associated with a 



45 

 

more severe pancreatitis.  Although Laukkarinen et al. (2008) confirmed these results of 

Singh in cerulein-induced pancreatitis, they also clearly showed that in taurocholate-

induced pancreatitis, PAR-2 deletion markedly reduced the severity of the disease. There is 

no evidence to suggest that clinical pancreatitis is evoked by supramaximal secretagoge 

stimulation; however, the taurocholate-induced pancreatitis model may mimic the clinical 

situation. Therefore, Laukkarinen et al. (2008) speculated that PAR-2 activation promotes 

the worsening of clinical pancreatitis and our data are consistent with that hypothesis.  

Besides the clear pathophysiological role of the trypsin-PAR-2 interaction in 

chronic pancreatitis, there is still a debate as to why PAR-2 is localized to the luminal 

membrane of PDEC in small ducts close to the acinar cells. What could the physiological 

role of this PAR-2 be? A number of agents have been shown to have dual effects on PDEC 

at different concentrations. For example, bile acids in low concentrations stimulate, but in 

high concentrations inhibit HCO3
-
 secretion (Venglovecz et al., 2008). The same applies to 

ethanol (Yamamoto et al., 2003). Under physiological conditions, trypsin inhibitors are co-

released from acinar cells with trypsinogen and should block the activity of any trypsin that 

is generated spontaneously. Therefore, only very small amounts of active trypsin, if any, 

will be present in the duct lumen under normal conditions. However, there remains a 

possibility that very small amounts of active trypsin (i.e. concentrations below 0.1 µM that 

would not cause a [Ca
2+

]i elevation or pH change) could bind to PAR-2 on the luminal 

membrane of the ducts and augment other stimulatory mechanisms so as to enhance 

flushing of digestive enzymes down the ductal tree.   

In conclusion, we suggest for the first time that one of the physiological roles of 

HCO3
-
 secretion by PDEC is to curtail trypsinogen autoactivation within the pancreatic 

ductal system. However, if trypsin is present in the duct lumen (as may occur during the 

early stages of pancreatitis due to leakage from acinar cells), PAR-2 on the duct cell will 

be activated leading to Ca
2+

 release from intracellular stores and a rise in cytosolic Ca
2+

 

concentration. This causes inhibition of the luminal anion exchangers and CFTR reducing 

HCO3
-
 secretion by the duct cell. The fall in HCO3

-
 secretion will increase the transit time 

of zymogens down the duct tree and decrease pHL, both of which will promote the 

autoactivation of trypsinogen. The trypsin so formed will further inhibit HCO3
-
 transport 

leading to a vicious cycle generating further falls in pHL and enhanced trypsinogen 

activation, which will favour development of the pancreatitis. Finally, the R122H mutant 

cationic trypsin also elevated [Ca
2+

]i and pHi  in duct cells, suggesting that this mechanism 
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may be particularly important in hereditary pancreatitis in which the mutant trypsinogens 

more readily autoactivate (Sahin-Tóth & Tóth, 2000). 

 

 

 

6. SUMMARY 

Introduction: The main function of pancreatic ductal epithelial cells (PDEC) is to secrete 

an alkaline, HCO3
-
-rich isotonic fluid. HCO3

-
 secretion across the apical membrane of 

PDEC is thought to be mediated by cystic fibrosis transmembrane conductance regulator 

Cl
-
 channel (CFTR) and solute carrier family 26 (SLC26) anion exchangers. Na

+
/H

+
 

exchanger regulatory factor isoform-1 (NHERF-1) is a cytosolic adaptor protein, which 

anchors CFTR on the apical membrane of epithelial cells. Pancreatic ducts not only have 

prominent roles physiologically, but also pathophysiologically. There is substantial 

evidence that the early intra-acinar or luminal activation of trypsinogen to trypsin is a key 

and common event in the development of acute pancreatitis. Several studies have 

demonstrated that trypsin stimulates digestive enzyme secretion from acinar cells via 

protease-activated receptor 2 (PAR-2), whereas the effect of trypsin on PDEC is somewhat 

controversial. Therefore, it is crucially important to understand the effects of trypsin on 

PDEC.  

The aims of this work were to evaluate the role of NHERF-1 in pancreatic ductal 

localization of CFTR, and in HCO3
-
 and fluid secretion and to investigate the effects of 

trypsin on pancreatic ductal HCO3
-
 secretion.  

Methods: Guinea pigs, human pancreatic tissue, wild-type (WT) and NHERF-1 knock-out 

(KO) mice were used for experiments. Intra- and interlobular pancreatic ducts were 

isolated from the animals. mRNA expression was detected by real-time reverse 

transcription polymerase chain reaction. The expression of CFTR and PAR-2 were 

analysed by immunohistochemistry. Pancreatic juice was collected from anesthetized mice 

in basal and secretin-stimulated conditions. Fluid secretion into the closed luminal space of 

the ducts was analysed using a swelling technique. Intracellular Ca
2+ 

concentration 

([Ca
2+

]i) and intracellular pH (pHi) were determined by microfluorometry.  

Results: CFTR, down-regulated in adenoma (DRA), putative anion transporter (PAT-1), 

NHERF-1 and NHERF-2, but not NHERF-3 mRNA were expressed in isolated pancreatic 
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ducts of WT mice. Apical CFTR staining was markedly reduced in the pancreatic ducts of 

mice lacking NHERF-1. The volume of pancreatic juice was significantly reduced in 

NHERF-1 KO vs. WT mice under both basal and secretin-stimulated conditions in vivo. 

Accordingly, the HCO3
-
 and fluid secretory rate was significantly lower in ducts from KO 

vs. WT mice in standard HCO3
-
/CO2 solution in vitro. PAR-2 was localized to the apical 

membrane of PDEC both in the human and in the guinea pig pancreas. Trypsin and PAR-2 

activating peptide (PAR-2 AP) induced dose-dependent elevation of [Ca
2+

]i and 

alkalisation of pHi, and inhibited HCO3
-
 secretion via the luminal anion exchanger and the 

CFTR. Our functional data clearly show that the pHi and [Ca
2+

]i responses to luminal 

administration of either trypsin or PAR-2-AP were markedly diminished in PAR-2
 
KO 

PDEC. 1 µm of R122H cationic trypsin causes comparable changes in pHi and [Ca
2+

]i to 

0.4 µM wild-type trypsin. Finally, PAR-2 expression was strongly down-regulated in the 

pancreatic ducts of patients suffering from chronic or acute pancreatitis, consistent with 

elevated intraductal trypsin activity in these diseases.  

Conclusion: NHERF-1 is required for the localization of CFTR on the apical membrane of 

PDEC. NHERF-1 is involved in both pancreatic ductal HCO3
-
 and fluid secretion. Both 

basal and cAMP-stimulated secretion was affected in the transgenic animals, but this effect 

was not caused by alterations in pancreatic blood flow.  

Under pathophysiological conditions, if tryspin is present in the duct lumen, trypsin 

compromises pancreatic ductal bicarbonate secretion via a PAR-2 dependent inhibition of 

the apical anion exchanger and CFTR. This may contribute to the development of chronic 

pancreatitis.  
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9. ANNEX 



A NA
+
/H

+
 CSERÉLŐ SZABÁLYOZÓ FAKTOR 1 ÉS A 

TRIPSZIN SZEREPE A HASNYÁLMIRIGY 

VEZETÉKSEJTEK BIKARBONÁT SZEKRÉCIÓJÁBAN 

Tézis kivonat 

 

BEVEZETÉS 

A pankreász vezetéksejtek fő feladata egy izotóniás, HCO3
-
-ban gazdag folyadék 

szekréciója, mely kimossa az acinusok által termelt emésztőenzimeket a pankreász duktális 

rendszeréből, illetve a duodenumba jutva semlegesíti a gyomornedv savas pH-ját. A HCO3
-
 

a pankreász duktális epithel sejtek (PDEC) bazolaterális membránján keresztül jut be a 

sejtbe, majd a luminális membránon elhelyezkedő SLC26 családba tartozó anion cserélők 

(SLC26A3, down regulated in adenoma, DRA és SLC26A6, putative anion transporter 1, 

PAT-1) és a cisztás fibrózis transzmembrán konduktancia regulátor (CFTR) együttes 

működésével szekretálódik a pankreász vezeték lumenébe. A szekréció pontos 

mechanizmusa nem ismert, de a CFTR alapvető szerepe a folyamatban bizonyított, így a 

CFTR megfelelő lokalizációja a PDEC luminális membránján alapvető fontosságú. A 

Na
+
/H

+
 cserélő szabályozó faktor 1 (NHERF-1) egy citoszolikus adaptor fehérje, amely 

számos transzporter és csatorna (pl. CFTR) megfelelő lokalizációját biztosítja az epithel 

sejteken. Az NHERF-1 szerepét korábban már bizonyították több fiziológiai és 

patofiziológiai folyamatban, de a pankreász vonatkozásában még nem vizsgálták. 

A pankreász vezetéksejtek az élettani folyamatokban betöltött szerepük mellett, 

nagy jelentőséggel bírnak a kórélettani folyamatok tekintetében is. Az elmúlt években 

számos tanulmány jelent meg, mely kimutatta, hogy a duktális rendszer alapvető szerepet 

játszhat az akut pankreátitisz kialakulásában, mint a toxikus ágensek (epesavak, etanol, 

tripszin) támadásának elsődleges célpontja. A pankreász duktuszok pankreátitiszben 

betöltött szerepének tisztázása érdekében elkerülhetetlen a tripszin hatásának vizsgálata. A 

tripszin a pankreász legfőbb emésztőenzime, amely inaktív formában, zimogénként 

termelődik, és fiziológiás körülmények között a vékonybélben, az enteropeptidáz hatására 

aktiválódik. Kóros körülmények között a tripszinogén a pankreászon belül aktiválódhat, 

mely gyulladás kialakulásához vezethet. Az eddig megjelent közlemények alapján a 



tripszin hatása a PDEC-en ellentmondásos. Számos eredmény azt mutatja, hogy a tripszin 

aktiválja az ioncsatornák (Ca
2+

-aktiválta Cl
-
 és K

+
 csatorna) működését kutyában, és 

serkenti a HCO3
-
 szekréciót CAPAN-1 sejtekben. Ezzel ellentétben kimutatták, hogy a 

tripszin dózis-függően gátolja a HCO3
-
 szekréciót marha PDEC-n. 

 

CÉLKITŰZÉSEK 

Kísérleteink fő célja a pankreász vezetéksejtek HCO3
-
 szekréciójának vizsgálata 

fiziológiás és patofiziológiás körülmények között. Specifikus céljaink: 

1. A NHERF-1 szerepének vizsgálata a CFTR lokalizációjában a pankreász 

vezetéksejteken, valamint a HCO3
-
 és folyadék szekrécióban. 

2. A tripszin hatásának vizsgálata a hasnyálmirigy vezetéksejtek HCO3
- 

szekréciójában. 

ANYAGOK ÉS MÓDSZEREK 

Kísérleteinkhez tengerimalacokat, illetve vad-típusú (VT) és knock-out (KO) 

egereket használtunk. A vizsgálatokhoz inter- és intralobuláris duktuszokat izoláltunk. Az 

mRNS expressziós mintázat meghatározásához valós-idejű polimeráz láncreakciót 

alkalmaztunk. A NHERF-1, CFTR és proteáz aktiválta receptor 2 (PAR-2) lokalizációját a 

pankreászban immunhisztokémia segítségével határoztuk meg. Az intracelluláris pH (pHi) 

és Ca
2+

 koncentráció ([Ca
2+

]i) méréséhez mikrofluorimetriát és mikroperfúziót 

használtunk. A folyadékszekréció mértékét hízásos technika felhasználásával mértük in 

vitro. Uretánnal altatott állatokból pankreász nedvet gyűjtöttünk in vivo. A szekretin 

hatását a pankreász mikrokeringésére intravitál video mikroszkópiával vizsgáltuk. A 

statisztikai analízishez a SigmaPlot szofvert használtuk. 

EREDMÉNYEK 

I. A NHERF-1 szerepe a hasnyálmirigy vezetéksejtek HCO3
-
 és folyadék 

szekréciójában 

1. Kísérleteink során kimutattuk, hogy a CFTR, DRA, PAT-1, NHERF-1 és  

NHERF-2 mRNS expresszálódik a VT egerekből izolált pankreász duktuszokon. 

2. A NHERF-1 fehérje nagyfokú expressziót mutat a VT egerek PDEC apikális 

membránján, míg a pankreász acinus sejteken gyengén festődik. NHERF-1 KO 



egerekben nem látható NHERF-1 festődés. A CFTR mind a VT, mind a 

NHERF-1 KO állatok pankreász acinus és duktusz sejtjein is detektálható. 

NHERF-1 hiányában a CFTR festődés erősen csökken a pankreász 

duktuszokban a VT állatokhoz képest. 

3. Mindhárom általunk használt módszerrel (inhibitor stop, regeneráció 

alkalózisból és luminális Cl
-
 elvonás) kimutattuk, hogy a pankreász duktális 

HCO3
-
 szekréció szignifikánsan csökkent a NHERF-1 KO állatokban, a VT 

egerekben mért értékhez képest. 

4. A folyadékszekréciós kísérletek hasonló eredményt mutattak. Mind alap, mind 

stimulált (szekretin/forskolin) körülmények között jelentős mértékben 

alacsonyabb folyadékszekréciós értéket kaptunk NHERF-1 KO egerekben in 

vitro és in vivo egyaránt.  

5. A pankreász mikrokeringésének tekintetében sem alap, sem szekretin-stimulált 

állapotban nem találtunk szignifikáns különbséget a VT és NHERF-1 KO 

állatok között. 

II. A tripszin hatásának vizsgálata pankreász vezetéksejtek HCO3
-
 szekréciójában 

1. Kísérleteink során megállapítottuk, hogy a pankreász acinusok közelében lévő 

intralobuláris (kis) duktuszok luminális membránja felől PAR-2 receptorok 

expresszálódnak mind a tengerimalac, mind az ember esetében. 

2. A luminális membrán felől adott PAR-2 aktiváló peptid (PAR-2-AP) dózis-

függő [Ca
2+

]i emelkedést okozott, amely emelkedés Ca
2+

 kelátor BAPTA-AM 

adásával és PAR-2 antagonistával (PAR-2-ant) kivédhető volt. Az 

extracelluláris Ca
2+

 elvonása nem volt hatással a PAR-2-AP által kiváltott 

[Ca
2+

]i emelkedésre. 

3. A tripszin ugyancsak dózis-függő [Ca
2+

]i emelkedést okozott a luminális oldal 

felől, amely teljesen blokkolható volt Ca
2+

 kelátor BAPTA-AM adásával, PAR-

2-ant-val és szójabab tripszin inhibitor alkalmazásával.  Az extracelluláris Ca
2+

 

elvonása nem volt hatással a tripszin által kiváltott [Ca
2+

]i emelkedésre sem. 

4. A luminális membrán felől adott tripszin és PAR-2-AP alkalózist indukált, ami 

PAR-2-ant és tripszin inhibitor hatására kivédhető volt. A luminális Cl
-
 elvonás, 



H2DIDS és CFTR inhibitor pHi emelkedést váltott ki, amely emelkedést a 

tripszin alkalmazása tovább fokozott. A H2DIDS és CFTR inhibitor együttes 

alkalmazása jelentősen csökkentette a tripszin pHi-ra kifejtett hatását.  

5. Krónikus pankreátitiszes betegek hasnyálmirigyében a PAR-2 mRNS és a 

membránban lévő PAR-2 fehérje szintje nagymértékben lecsökkent. Ez a 

változás nem volt tapasztalható a PAR-2 fehérje citoplazmában mérhető 

szintjében. 

6. Az R122H mutáns kationos tripszinogén hasonló változást okozott a [Ca
2+

]i és 

pHi vonatkozásában mint a tripszin, így a tripszin-mediálta HCO3
-
 csökkenés 

szerepet játszhat az örökletes pankreátitisz patogenezisében is. 

7. Végül kimutattuk, hogy mind a tripszin, mind a PAR-2-AP [Ca
2+

]i-ra és pHi-ra 

kifejtett hatása szignifikánsan csökkent PAR-2 KO egerekben. 

KÖVETKEZTETÉSEK 

Munkánk során kimutattuk, hogy a NHERF-1 szükséges a CFTR lokalizációjához a 

PDEC apikális membránján. Továbbá a NHERF-1 szerepet játszik a PDEC HCO3
-
 és 

folyadék szekréciójában. Mind az alap, mind a stimulált szekréció tekintetében 

különbséget mutattunk ki a VT és KO egerek között, de ezt az eltérést nem a 

hasnyálmirigy vérkeringésében bekövetkező változás okozta.  

Pathológiás körülmények között, ha a tripszin jelen van a hasnyálmirigy 

vezetéksejtek lumenében, a tripszin PAR-2-függő módon csökkenti a hasnyálmirigy 

vezetéksejtek HCO3
- 

szekrécióját a luminális anion cserélő, valamint a CFTR gátlásán 

keresztül. Ez a folyamat szerepet játszhat a krónikus hasnyálmirigy-gyulladás 

kialakulásában.  
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Trypsin Reduces Pancreatic Ductal Bicarbonate Secretion by Inhibiting
CFTR Cl� Channels and Luminal Anion Exchangers
PETRA PALLAGI,* VIKTÓRIA VENGLOVECZ,‡ ZOLTÁN RAKONCZAY Jr,* KATALIN BORKA,§ ANNA KOROMPAY,§
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Budapest, Hungary; �Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts; ¶Institute
for Cell & Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England; and #Department of Medicine A, Greifswald University Hospital, Greifswald,
Germany

BACKGROUND & AIMS: The effects of trypsin on pan-
creatic ductal epithelial cells (PDECs) vary among species
and depend on the localization of proteinase-activated
receptor 2 (PAR-2). We compared PAR-2 localization in
human and guinea-pig PDECs, and used isolated guinea
pig ducts to study the effects of trypsin and a PAR-2
agonist on bicarbonate secretion. METHODS: PAR-2 lo-
calization was analyzed by immunohistochemistry in
guinea pig and human pancreatic tissue samples (from 15
patients with chronic pancreatitis and 15 without pancre-
atic disease). Functionally, guinea pig PDECs were studied
by microperfusion of isolated ducts, measurements of
intracellular pH and intracellular Ca2� concentration, and
patch clamp analysis. The effect of pH on trypsinogen
autoactivation was assessed using recombinant human
cationic trypsinogen. RESULTS: PAR-2 localized to the
apical membrane of human and guinea pig PDECs. Tryp-
sin increased intracellular Ca2� concentration and intra-
cellular pH and inhibited secretion of bicarbonate by the
luminal anion exchanger and the cystic fibrosis trans-
membrane conductance regulator (CFTR) Cl� channel.
Autoactivation of human cationic trypsinogen accelerated
when the pH was reduced from 8.5 to 6.0. PAR-2 expres-
sion was strongly down-regulated, at transcriptional and
protein levels, in the ducts of patients with chronic pan-
creatitis, consistent with increased activity of intraductal
trypsin. Importantly, in PAR-2 knockout mice, the effects
of trypsin were markedly reduced. CONCLUSIONS:
Trypsin reduces pancreatic ductal bicarbonate secre-
tion via PAR-2– dependent inhibition of the apical
anion exchanger and the CFTR Cl� channel. This
could contribute to the development of chronic pan-
creatitis by decreasing luminal pH and promoting
premature activation of trypsinogen in the pancreatic
ducts.

Keywords: Acinar Cells; Ductal Epithelium; Animal Model;
Pancreatic Enzymes.

Trypsinogen is the most abundant digestive protease
in the pancreas. Under physiologic conditions,

trypsinogen is synthesized and secreted by acinar cells,
transferred to the duodenum via the pancreatic ducts, and

then activated by enteropeptidase in the small intestine.1

There is substantial evidence that early intra-acinar2,3 or
luminal4,5 activation of trypsinogen to trypsin is a key and
common event in the development of acute and chronic
pancreatitis. Importantly, almost all forms of acute pan-
creatitis are due to autodigestion of the gland by pancre-
atic enzymes.6

Several studies have shown that trypsin stimulates en-
zyme secretion from acinar cells via proteinase-activated
receptor 2 (PAR-2),7,8 whereas the effect of trypsin on
pancreatic ductal epithelial cells (PDECs) is somewhat
controversial. Trypsin activates ion channels in dog
PDECs9 and stimulates bicarbonate secretion in the CA-
PAN-1 human pancreatic adenocarcinoma cell line,10

whereas it dose-dependently inhibits bicarbonate efflux
from bovine PDECs.11 The effect of trypsin differs not
only among species, but also with respect to the localiza-
tion of PAR-2. When PAR-2 is localized to the basolateral
membrane and activated by trypsin, the result is stimula-
tion of bicarbonate secretion.9,10 In contrast, when the
receptor is localized to the luminal membrane, the effect
is inhibition.11 Interestingly, there are no data available
concerning the effects of trypsin on guinea pig PDECs
which, in terms of bicarbonate secretion, are an excellent
model of human PDECs.12

The human pancreatic ductal epithelium secretes an
alkaline fluid that may contain up to 140 mmol/L
NaHCO3.12,13 The first step in HCO3

� secretion is the
accumulation of HCO3

� inside the cell, which is driven by
basolateral Na�/HCO3

� cotransporters, Na�/H� exchang-
ers, and H�-adenosine triphosphatases.12,13 Only 2 trans-
porters have been identified on the apical membrane of

Abbreviations used in this paper: BAPTA-AM, 1,2-bis(o-aminophe-
noxy)ethane-N,N,N=,N=-tetraacetic acid; CFTR, cystic fibrosis transmem-
brane conductance regulator Cl� channel; CFTRinh-172, CFTR inhibitor-
172; [Ca2�]i, intracellular Ca2� concentration; H2DIDS, dihydro-4,4=-
diisothiocyanostilbene-2,2=-disulfonic acid; PAR-2, proteinase-activated
receptor-2; PAR-2-AP, PAR-2 activating peptide; PAR-2-ANT, PAR-2 an-
tagonist; PDEC, pancreatic ductal epithelial cell; pHi, intracellular pH;
pHL, luminal pH; SBTI, soybean trypsin inhibitor; SLC26, solute carrier
family 26.

© 2012 by the AGA Institute
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cells in the proximal ducts that are the major sites of
HCO3

� secretion: cystic fibrosis transmembrane conduc-
tance regulator (CFTR) and the solute carrier family 26
(SLC26) anion exchangers.12,13 How these transporters act
in concert to produce a high HCO3

� secretion is contro-
versial.14 Most likely, HCO3

� is secreted through the an-
ion exchanger until the luminal concentration reaches
about 70 mmol/L, after which the additional HCO3

�

required to raise the luminal concentration to 140
mmol/L is transported via CFTR.15,16

The role of PAR-2 in experimental acute pancreatitis is
also controversial and highly dependent on the model of
pancreatitis studied. PAR-2 was found to be protective
in secretagogue-induced pancreatitis in mice7,17–19 and
rats.20 However, PAR-2 is clearly harmful when pancreati-
tis is evoked by the clinically more relevant luminal ad-
ministration of bile salts in mice.17

In this study, we show for the first time that (1) PAR-2
is localized to the apical membrane of the human proxi-
mal PDECs, (2) the localization of PAR-2 in the guinea pig
pancreas is identical to that in the human gland, (3)
trypsin markedly reduces bicarbonate efflux through a
dihydro-4,4=-diisothiocyanostilbene-2,2=-disulfonic acid
(H2DIDS)-sensitive apical SLC26 anion exchanger and
strongly inhibits CFTR, (4) a decrease in pH within the
ductal lumen will strongly accelerate the autoactivation of
trypsinogen, and (5) trypsin down-regulates PAR-2 expres-
sion at both transcriptional and protein levels in PDECs
of patients with chronic pancreatitis.

Materials and Methods
A brief outline of the materials and methods is given in

the following text. For further details, please see Supplementary
Materials and Methods.

Solutions
The compositions of the solutions used for microfluo-

rimetry are shown in Table 1.

Isolation of Pancreatic Ducts and Individual
Ductal Cells
Small intralobular proximal ducts and individual ductal

cells were isolated from guinea pigs or PAR-2 wild-type (PAR-

2�/�) and knockout (PAR-2�/�) mice with a C57BL6 back-
ground by microdissection as described previously.21

Measurement of Intracellular pH and Ca2�

Concentration
Intracellular pH (pHi) and calcium concentration ([Ca2�]i)

were estimated by microfluorimetry using the pH- and Ca2�-sensi-
tive fluorescent dyes 2,7-bis-(2-carboxyethyl)-5-(and-6-)carboxyfluo-
rescein, acetoxymethyl ester (BCECF-AM) and 2-(6-(bis(carboxy-
methyl)amino)-5-(2-(2-(bis(carboxymethyl)amino)-5-methylphenoxy)-
ethoxy)-2-benzofuranyl)-5-oxazolecarboxylic acetoxymethyl ester
(FURA 2-AM), respectively.

Microperfusion of Intact Pancreatic Ducts
The luminal perfusion of the cultured ducts was per-

formed as described previously.22

Electrophysiology
CFTR Cl� channel activity was investigated by whole cell

patch clamp recordings on guinea pig single pancreatic ductal
cells.

Measuring Autoactivation of Trypsinogen
Autoactivation of human cationic trypsinogen was de-

termined in vitro at pH values ranging from 6.0 to 8.5. Experi-
mental details are described in Supplementary Materials and
Methods.

Immunohistochemistry
Five guinea pig, 2 PAR-2�/�, 2 PAR-2�/�, and 30 human

pancreata were studied to analyze the expression pattern of
PAR-2 protein. Relative optical densitometry was used to quan-
tify the protein changes in the histologic sections. Patients’ data
and the full methods are described in Supplementary Supple-
mentary Materials and Methods.

Real-Time Reverse-Transcription Polymerase
Chain Reaction
RNA was isolated from 30 human pancreata. Following

reverse transcription, messenger RNA (mRNA) expression of
PAR-2 and �-actin was determined by real-time polymerase
chain reaction analysis.

Results
Expression of PAR-2 in Guinea Pig and
Human Pancreata
PAR-2 was highly expressed in the luminal mem-

brane of small intralobular and interlobular ducts (Figure
1A [i]; cuboidal epithelial cells forming the proximal pan-
creatic ducts) but was almost undetectable in the larger
interlobular ducts (Figure 1A [ii]; columnar epithelial cells
forming the distal pancreatic ducts). The localization of
PAR-2 in the human pancreas was identical to that in the
guinea pig gland (Figure 1A [iv–vi]). Measurements of
relative optical density confirmed the significant differ-
ences between the expression of PAR-2 in small intralob-
ular and interlobular ducts and the larger interlobular
ducts in both species (Figure 1C).

Table 1. Composition of Solutions for Microfluorimetry
Studies

Standard Standard Cl�-free Ca2�-free
HEPES HCO3

� HCO3
� HEPES

NaCl 130 115 132
KCl 5 5 5
MgCl2 1 1 1
CaCl2 1 1
Sodium HEPES 10 10
Glucose 10 10 10 10
NaHCO3 25 25
Sodium gluconate 115
Magnesium gluconate 1
Calcium gluconate 6
Potassium sulfate 2.5

NOTE. Values are concentrations in mmol/L.
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Luminal Administration of PAR-2-AP and
Trypsin Induces Dose-Dependent [Ca2�]i
Signals
Because PAR-2 expression was detected only on the

luminal membrane of intralobular duct cells, we used the
microperfusion technique to see whether these receptors
can be activated by PAR-2 agonists. First, the experiments
were performed at pH 7.4 to understand the effects of
trypsin and PAR-2 under quasi-physiologic conditions
(Figure 2). The fluorescent images in Figure 2A clearly
show that luminal administration of PAR-2 activating
peptide (PAR-2-AP) increased [Ca2�]i in perfused pancre-
atic ducts. The [Ca2�]i response was dose dependent and
consisted of a peak in [Ca2�]i that decayed in the contin-
ued presence of the agonist, possibly reflecting PAR-2
inactivation or depletion of intracellular Ca2� stores (Fig-
ure 2B). Pretreatment of PDECs with 10 �mol/L PAR-2
antagonist (PAR-2-ANT) for 10 minutes completely
blocked the effects of 10 �mol/L PAR-2-AP on [Ca2�]i

(Figure 2A and C). Removal of extracellular Ca2� had no
effect on the increase in [Ca2�]i evoked by luminal admin-
istration of 10 �mol/L PAR-2-AP; however, preloading
ducts with the calcium chelator 1,2-bis(o-aminophe-
noxy)ethane-N,N,N=,N=-tetraacetic acid (BAPTA-AM) at 40
�mol/L totally blocked the response (Figure 2A and C).

Trypsin also induced a dose-dependent elevation in
[Ca2�]i similar to that evoked by PAR-2-AP (Figure 2E and
F). Addition of 5 �mol/L soybean trypsin inhibitor
(SBTI), 10 �mol/L PAR-2-ANT, and 40 �mol/L
BAPTA-AM totally blocked the increase in [Ca2�]i (Figure
2D and F). These data show that trypsin activates PAR-2
on the luminal membrane of the duct cell, which leads to
release of Ca2� from intracellular stores and an elevation
of [Ca2�]i.

Because the pH of pancreatic juice can vary between
approximately 6.8 and 8.0,23,24 we also evaluated the ef-
fects of trypsin and PAR-2-AP on [Ca2�]i at these pH
values (Supplementary Figures 1 and 2, respectively). The

Figure 1. Localization of PAR-2 on human and guinea pig pancreatic ducts. Light micrographs of (A [i–iii]) guinea pig and (A [iv–vi]) human pancreas
are shown. (i) PAR-2 is localized to the luminal membrane of PDECs in small intralobular and interlobular ducts (original magnification 400�). (ii) Large
interlobular ducts do not express PAR-2 (original magnification 200�). (iii) No primary antiserum (original magnification 200�). (iv and v) Sections from
human pancreas exhibit a similar localization of PAR-2 compared with the guinea pig gland (original magnification 400� and 200�). (vi) No primary
antiserum (original magnification 200�). (B) Western blot analysis was used to determine the specificity of the PAR-2 antibody. Polyclonal anti–PAR-2
showed a single 44-kilodalton band. (C) Quantitative measurement of relative optical densities (RO-Density) of small intralobular and interlobular
ducts (A.i,iv), and large interlobular ducts (A.ii,v) is shown. n � 12. *P � .05 vs A.ii or A.v, respectively. Scale bar � 50 �m for A (i, iv) and 100 �m for
A (ii and iii) and A (v and vi).
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elevations of [Ca2�]i at pH 6.8 and 8.0 were generally very
similar to the changes observed at pH 7.4. However, the
increases in [Ca2�]i evoked by 1 �mol/L PAR-2-AP and 0.1
�mol/L trypsin were significantly lower at pH 6.8 com-
pared with either pH 7.4 or 8.0 (Supplementary Figure 3).

Luminal Exposure to PAR-2-AP and Trypsin
Evokes Intracellular Alkalosis in PDECs
Figure 3 shows pHi recordings from microperfused

pancreatic ducts. Luminal application of the CFTR inhib-
itor (CFTRinh) 172 (10 �mol/L) and the anion exchanger
inhibitor H2DIDS (500 �mol/L) induced intracellular al-
kalization in PDECs (Figure 3A [i]). These data indicate
that when bicarbonate efflux across the luminal mem-
brane of PDECs (ie, bicarbonate secretion) is blocked,
elevation of duct cell pHi occurs, presumably because the
basolateral transporters continue to move bicarbonate
ions into the duct cell. Note also that the increase in pHi

evoked by the inhibitors is not sustained and begins to

reverse before the inhibitors are withdrawn (Figure 3A [i]),
which might be explained by the regulation of pHi by
basolateral acid/base transporters.

Both luminal PAR-2-AP and trypsin induced a dose-depen-
dent elevation of pHi (Figure 3A [ii and iii]), suggesting that
activation of PAR-2 inhibits bicarbonate efflux across the apical
membrane of the duct cell. Preincubation of PDECs with either
10 �mol/L PAR-2-ANT or 5 �mol/L SBTI or 40 �mol/L
BAPTA-AM for 30 minutes totally blocked the effect of trypsin
on pHi (Figure 3A [iv]). The inhibitory effect of the calcium
chelator BAPTA-AM suggests that the actions of trypsin and
PAR-2-AP on pHi are mediated by the increase in [Ca2�]i that
they evoke (Figure 2). Therefore, in this case, the transient
nature of the pHi response may reflect the transient effect that
PAR-2 activators have on [Ca2�]i (Figure 2B and E), as well as
pHi regulation by basolateral acid/base transporters.

Next we tested the effects of trypsin on pHi in Cl�-free
conditions and during pharmacologic inhibition of the

Figure 2. Effects of PAR-2-AP and trypsin on [Ca2�]i in microperfused guinea pig pancreatic ducts at pH 7.4. (A) Light (1) and fluorescent ratio
images (2 and 3) of microperfused pancreatic ducts showing the effects of luminal administration of 10 �mol/L PAR-2-AP, 10 �mol/L PAR-2-ANT,
or 40 �mol/L BAPTA-AM on [Ca2�]i. Images were taken before (1 and 2) and after (3) exposure of the ducts to PAR-2-AP or trypsin. (B and C)
Representative experimental traces and summary data of the changes in [Ca2�]i. (D) The same protocol was used to evaluate the effects of trypsin.
Addition of 5 �mol/L SBTI was used to inhibit trypsin activity. (E and F) Representative experimental traces and summary data of the changes in
[Ca2�]i. n � 5 for all groups. *P � .05 vs 1 �mol/L PAR-2-AP or 0.1 �mol/L trypsin, respectively. **P � .001 vs 10 �mol/L PAR-2-AP or 10 �mol/L
trypsin, respectively.
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Figure 3. Effects of PAR-2-AP and trypsin on pHi in microperfused guinea pig pancreatic ducts. (A) Representative pHi traces showing the effects
of luminal administration of different agents in microperfused pancreatic ducts. (i) A total of 10 �mol/L CFTRinh-172 and/or 500 �mol/L H2DIDS
caused alkalization of pHi. (ii) PAR-2-AP and (iii) trypsin induced a dose-dependent pHi elevation. (iv) Preincubation of ductal cells with 10 �mol/L
PAR-2-ANT or 5 �mol/L SBTI or 40 �mol/L BAPTA-AM totally blocked the alkalization caused by 10 �mol/L trypsin. (v) Removal of luminal Cl� or
(vi) administration of H2DIDS (500 �mol/L) decreased, but did not totally abolish, the effects of 10 �mol/L trypsin on pHi. (vii) Pretreatment with 10
�mol/L CFTRinh-172 also decreased the effects of trypsin (10 �mol/L) on pHi. (viii) Simultaneous administration of H2DIDS and CFTRinh-172 strongly
inhibited the effect of 10 �mol/L trypsin. (B and C) Summary of the effects of PAR-2-AP and trypsin on changes in pHi. �pHmax was calculated from
the experiments shown in A. (D) Effects of Cl�-free conditions. Cl�-free conditions, H2DIDS, CFTRinh-172, and a combination of the inhibitors all
induced an intracellular alkalosis. Trypsin further increased the alkalinization of pHi, although the effect was markedly reduced when both H2DIDS and
CFTRinh-172 were present. n � 4–5 for all groups. (B) *P � .05 vs 0.1 �mol/L trypsin; **P � .001 vs 10 �mol/L trypsin. (C) *P � .05 vs 0.1 �mol/L
PAR-2-AP; **P � .001 vs 10 �mol/L PAR-2-AP. (D) *P � .05 vs the respective filled column.
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luminal anion exchangers and/or CFTR (Figure 3A [v–
viii]). Luminal Cl�-free conditions increased the pHi of
PDECs, presumably by driving HCO3

� influx on the api-
cal anion exchangers (Figure 3A [v]). Note that luminal
administration of trypsin further elevated pHi in Cl�-free
conditions (Figure 3A [v]) and also in the presence of
H2DIDS (Figure 3A [vi]) and CFTRinh-172 (Figure 3A
[vii]). However, pretreatment of ducts with a combination
of H2DIDS and CFTRinh-172 markedly reduced the effect
of trypsin on pHi (Figure 3A [viii]).

Figure 3B–D is a summary of the pHi experiments.
Trypsin (Figure 3B) and PAR-2-AP (Figure 3C) both in-
duced statistically significant, dose-dependent increases in
pHi and these effects were blocked by PAR-2-ANT, SBTI,
and BAPTA-AM. Exposure of the ducts to luminal Cl�-
free conditions, H2DIDS, CFTRinh-172, or a combination
of the inhibitors also induced an intracellular alkalosis
(Figure 3D). Also shown in Figure 3D is the additional,
statistically significant increase in pHi caused by trypsin in
ducts exposed to Cl�-free conditions and the individual
inhibitors. However, when ducts were exposed to both
CFTRinh-172 and H2DIDS simultaneously, the effect of
trypsin on pHi was markedly reduced, although it re-
mained statistically significant (Figure 3D). We interpret
these results as indicating that trypsin inhibits both
Cl�-dependent (ie, anion exchanger mediated; revealed
when CFTR is blocked by CFTRinh-172) and Cl�-inde-
pendent (ie, CFTR mediated; revealed in Cl�-free con-
ditions and when the luminal exchangers are blocked
by H2DIDS) bicarbonate secretory mechanisms in
PDECs. Reduced bicarbonate secretion will lead to a
decrease in intraductal pH.

Trypsin and PAR-2-AP Inhibit CFTR
Exposure of guinea pig PDECs to 5 �mol/L fors-

kolin, which elevates intracellular adenosine 3=5=-cyclic
monophosphate levels, increased basal whole cell currents
(Figure 4A–D [i]) from 8.9 � 2.3 to 91.2 � 13.5 pA/pF
(Figure 4A–D [ii]) at �60 mV in 78% of cells (38/49). The
forskolin-activated currents were time- and voltage-inde-
pendent, with a near linear I/V relationship and a reversal
potential of �5.15 � 1.12 mV (Figure 4A–D [iv]). These
biophysical characteristics indicate that the currents are
carried by CFTR.

Exposure of PDECs to 10 �mol/L trypsin did not affect
the basal currents; however, administration of either 10
�mol/L PAR-2-AP (Figure 4A [iii]) or 10 �mol/L trypsin
(Figure 4B [iii]) inhibited forskolin-stimulated CFTR cur-
rents by 51.7% � 10.5% and 57.4% � 4.0%, respectively. In
both cases, the inhibition was voltage independent and
irreversible. Pretreatment with either SBTI (10 �mol/L;
Figure 4C [iii]) or PAR-2-ANT (10 �mol/L; Figure 4D [iii])
completely prevented the inhibitory effect of trypsin on
the forskolin-stimulated CFTR currents. Figure 4E is a
summary of these data, which suggest that trypsin inhib-
its CFTR Cl� currents by activation of PAR-2.

Autoactivation of Trypsinogen Is pH
Dependent
Trypsinogen can undergo autocatalytic activation

during which trace amounts of trypsin are generated,
which, in turn, can further activate trypsinogen in a self-
amplifying reaction. Human trypsinogens are particularly
prone to autoactivation, and mutations that facilitate
autoactivation are associated with hereditary pancreatitis.
To assess the effect of a decrease in intraductal pH (caused
by reduced bicarbonate secretion) on trypsinogen activa-
tion, we measured autoactivation of human cationic
trypsinogen in vitro at pH values ranging from 6.0 to 8.5
using a mixture of various buffers. As shown in Figure 5A,
the rate at which cationic trypsinogen autoactivates was
markedly increased as the pH was reduced from 8.5 to 7.0
when the buffer solution contained 1 mmol/L CaCl2 and
no NaCl. However, a further reduction in pH, from 7.0 to
6.0, had little effect (Figure 5A [i]).

To rule out that the differences observed in autoacti-
vation were due to the different ionic strengths of the
buffers used, we repeated the experiments in the presence
of a higher concentration of sodium (100 mmol/L NaCl,
Figure 5A [ii]) or lower concentration of calcium (0.1
mmol/L CaCl2, Figure 5A [iii]). Although the overall au-
toactivation rates were much slower in the presence of
NaCl, the pH profile of autoactivation was essentially
identical to that observed in the absence of added salt
(Figure 5A [ii]). Also, pH-dependent changes in the auto-
activation of trypsinogen were still detectable when the
experiments were performed using a low calcium buffer
(Figure 5A [iii]).

PAR-2 Is Down-regulated in Patients With
Chronic Pancreatitis
It has been documented that there is activated

trypsin in the pancreatic ductal lumen in chronic pancre-
atitis in humans.25–28 If trypsin activity is elevated in the
duct lumen, PAR-2 down-regulation should occur, which
could be due to either (1) changes in PAR-2 mRNA tran-
scription and/or (2) receptor internalization and translo-
cation to the cytoplasm. Our data show a marked
reduction in membranous PAR-2 protein level but no
significant changes in cytoplasmic PAR-2 protein in
chronic pancreatitis (Figure 5B [i–iv] and C). Furthermore,
PAR-2 mRNA expression was markedly reduced in
chronic pancreatitis (Figure 5D), suggesting that reduced
PAR-2 mRNA transcription may cause PAR-2 down-regu-
lation in chronic pancreatitis.

Luminal Exposure to R122H Mutant Cationic
Trypsin Induces Elevation of [Ca2�]i and
Evokes Alkalosis in PDECs
It has been shown that mutations in cationic

trypsinogen increase the risk of chronic pancreatitis, most
likely because of the enhanced autoactivation exhibited
by the mutant trypsinogens.29 Here we tested whether
the commonest mutation in cationic trypsin, R122H, af-
fected the ability of the protease to interact with PAR-2.
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Figure 6A and B shows that 1 �m of R122H human
cationic trypsin causes comparable changes in pHi and
[Ca2�]i to 0.4 �mol/L wild-type bovine trypsin, suggesting
that a trypsin-mediated inhibition of bicarbonate secre-
tion could play a role in the pathogenesis of hereditary as
well as chronic pancreatitis.

Activation of PAR-2 Is Diminished in
PAR-2�/� Mice

Finally, we investigated the effects of both PAR-
2-AP and trypsin on PDECs isolated from PAR-2�/� and
PAR-2�/� mice (Figure 6C–E). First we confirmed using

Figure 4. Effects of trypsin and PAR-2-AP on CFTR Cl� currents of guinea pig pancreatic duct cells. Representative fast whole cell current
recordings from PDECs. (A–D) (i) Unstimulated currents, (ii) currents after stimulation with 5 �mol/L forskolin, and (iii) currents following 3-minute
exposure to (A) 10 �mol/L PAR-2-AP, (B) 10 �mol/L trypsin, (C) 10 �mol/L trypsin/5 �mol/L SBTI, and (D) 10 �mol/L trypsin/10 �mol/L PAR-2-ANT.
(iv) I/V relationships. Diamonds represent unstimulated currents, squares represent forskolin-stimulated currents, and triangles represent forskolin-
stimulated currents in the presence of the tested agents (see previous text). (E) Summary of the current density (pA/pF) data obtained from A–D
measured at Erev � 60 mV. Exposing PDECs to either PAR-2-AP or trypsin blocked the forskolin-stimulated CFTR Cl� currents, while administration
of SBTI or PAR-2-ANT prevented the inhibitory effect of trypsin. n � 6 for all groups. *P � .05 vs the unstimulated cells, **P � .05 vs forskolin. FORSK,
forskolin; TRYP, trypsin.
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immunohistochemistry that PAR-2�/� mice do, whereas
PAR-2�/� mice do not, express PAR-2 in their PDECs
(Figure 6C [i and iii]). Accordingly, our functional data
clearly show that the pHi and [Ca2�]i responses to luminal
administration of either trypsin or PAR-2-AP were mark-
edly diminished in PAR-2�/� PDECs (Figure 6D and E).

Discussion
The human pancreatic ductal epithelium secretes 1

to 2 L of alkaline fluid every 24 hours that may contain up
to 140 mmol/L NaHCO3.12,13 The physiologic function of
this alkaline secretion is to wash digestive enzymes down

the ductal tree and into the duodenum and to neutralize
acidic chyme entering the duodenum from the stomach.
There are important lines of evidence supporting the idea
that pancreatic ducts play a role in the pathogenesis of
pancreatitis: (1) ductal fluid and bicarbonate secretion are
compromised in acute and chronic pancreatitis,30,31 (2)
one of the main end points of chronic pancreatitis is the
destruction of the ductal system,32,33 (3) mutations in
CFTR may increase the risk of pancreatitis,30,31,34 –36 and
(4) etiologic factors for pancreatitis, such as bile acids or
ethanol in high concentration, inhibit pancreatic ductal
bicarbonate secretion.37–39 Despite the previously men-

Figure 5. The effects of pH on trypsinogen activation and analyses of PAR-2 expression in human pancreatic samples. The autoactivation of human
cationic trypsinogen was determined in vitro at pH values ranging from 6.0 to 8.5. (A) (i) Trypsinogen at 2 �mol/L concentration was incubated with
40 nmol/L trypsin at 37oC in 0.1 mol/L Tris � HEPES � 2-(N-morpholino)ethanesulfonic acid2-(N-morpholino)ethanesulfonic acid buffer mixture
containing 1 mmol/L CaCl2. (ii) The same protocol was used in high (100 mmol/L) NaCl buffer solution. Autoactivation of cationic trypsinogen
significantly increased as the pH was reduced from 8.5 to 6.0. (iii) The same protocol was used in low (0.1 mmol/L) Ca2�-buffered solution buffer
solution. (B) (i–iv) PAR-2 expression. (i) Representative section of normal human pancreas. (ii) No primary antiserum. (iii) Representative section of
human pancreas from a patient with chronic pancreatitis (CP). (iv) No primary antiserum. (C) Relative optical density. n � 15. *P � .05 vs CP
membrane. (D) Real-time reverse-transcription polymerase chain reaction analysis of PAR-2 mRNA expression of human pancreas. Data are given
in 2^dCT. n � 15. *P � .05 vs CP.
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tioned data, the role of PDECs in the development of
pancreatitis has received relatively little attention.40

There are important species differences regarding the
localization of PAR-2 in pancreatic ducts and in the effect

of its activation on bicarbonate secretion. For example,
CAPAN-1 cells10 and dog PDECs9 express PAR-2 only on
the basolateral membrane, whereas bovine PDECs express
PAR-2 on the luminal membrane.11 Therefore, one of our

Figure 6. Experiments using R122H human
mutant cationic trypsin and PAR-2�/� mice.
Representative (A) pHi and (B) [Ca2�]i mea-
surements using luminal administration of
normal and R122H mutant cationic trypsin in
microperfused guinea pig pancreatic ducts.
n � 5 for all experiments. (C) (i–iv) PAR-2–
expressing cells were visualized by immuno-
histochemistry as described in Figure 1. (i)
Representative section of the pancreas re-
moved from PAR-2�/� mice. (ii) Section with-
out primary antiserum. (iii) Pancreas removed
from PAR-2�/� mice. (iv) Section without pri-
mary antiserum. (D) pHi and (E) [Ca2�]i mea-
surements using luminal administration of
trypsin in microperfused pancreatic ducts
isolated from PAR-2 knockout (red curve)
and PAR-2 wild-type mice (black curve). n �
5 for all experiments. *P � .05 vs 10 �mol/L
trypsin PAR-2�/�, **P � .05 vs 10 �mol/L
PAR-2-AP PAR-2�/�.
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first aims was to determine which animal model best
mimics human PAR-2 expression and thus would be the
best for studying the effects of trypsin on PDEC function.
Our results showed that in the human pancreas PAR-2 is
localized to the luminal membrane of small proximal
pancreatic ducts, which are probably the major site of
bicarbonate and fluid secretion. Because CAPAN-1 cells
and dog PDECs express PAR-2 only on the basolateral
membrane, they do not mimic the human situation. Rats
or mice are also not good models for the human gland
because they secrete only 70 to 80 mmol/L bicarbon-
ate.41,42 However, the guinea pig pancreas secretes �140
mmol/L bicarbonate, as does the human gland, and the
regulation of bicarbonate secretion is similar in both
species.41,42 Because PAR-2 expression in the guinea pig
pancreas was localized to the luminal membrane of duct
cells, we performed our experiments on isolated guinea
pig ducts.

First we characterized the effects of PAR-2 activation by
trypsin and PAR-2-AP on PDECs. Previously, it has been
shown that activation of the G protein– coupled PAR-2 by
proteinases requires proteolytic cleavage of the receptor,
which is followed by an elevation of [Ca2�]i.43– 45 As ex-
pected, luminal trypsin and PAR2-AP caused a dose-de-
pendent elevation of [Ca2�]i in guinea pig ducts. Impor-
tantly, the trypsin inhibitor SBTI, PAR-2-ANT, and the
intracellular calcium chelator BAPTA-AM all completely
blocked the elevation of [Ca2�]i, whereas removal of ex-
tracellular Ca2� had no effect. Acidosis (pH 6.8) also
slightly reduced the changes in [Ca2�]i evoked by trypsin,
most probably due to reduced cleavage activity of trypsin
at an acidic pH. Next we characterized the effects of PAR-2
activation on pHi. Luminal application of trypsin and
PAR-2-AP both caused a dose-dependent intracellular al-
kalosis in PDECs. This alkalosis is most likely explained
either by a reduction in the rate of bicarbonate efflux (ie,
secretion) across the apical membrane of PDECs or by an
increase in the rate of bicarbonate influx at the basolateral
side of the cell. We favor the former explanation because
luminal application of the anion exchange inhibitor
H2DIDS or the CFTR inhibitor CFTRinh-172 produced a
similar intracellular alkalization.22,46 Thus, PAR-2 activa-
tion inhibits bicarbonate secretion in PDECs by inhibit-
ing SLC26 anion exchangers and CFTR Cl� channels
expressed on the apical membrane of the duct cell. In
similarity with the [Ca2�]i signals, the effect of PAR-2
activation on pHi was blocked by SBTI, PAR-2-ANT, and
BAPTA-AM, with the action of BAPTA-AM suggesting
that the inhibition of bicarbonate secretion follows from
the increase in [Ca2�]i. Interestingly, an elevation of
[Ca2�]i is crucial for both stimulatory (eg, acetylcholine,13

low concentrations of bile acids,39 and ethanol38) and
inhibitory pathways (eg, basolateral adenosine triphos-
phate, arginine vasopressin, and high concentrations of
ethanol) that control bicarbonate secretion by PDECs.
Such marked differences in the outcome of [Ca2�]i signals
in PDECs probably reflect differences in the source of
Ca2� and/or in the intracellular compartmentalization of

[Ca2�]i signals generated by different secretory agonists
and antagonists.

Remarkably, trypsin was still able to evoke an elevation
of pHi when Cl� was removed from the duct lumen and
when PDECs were pretreated with H2DIDS, conditions
that should inhibit bicarbonate efflux on the exchanger.
These results suggested the involvement of CFTR, the
only other known bicarbonate efflux pathway on the api-
cal membrane, in the inhibitory effect of trypsin. This
hypothesis was confirmed by patch clamp experiments in
which trypsin decreased CFTR whole cell currents in iso-
lated guinea pig PDECs by 50% to 60%. Finally, the fact
that the trypsin-induced alkalinization was completely
blocked by a combination of CFTRinh-172 and H2DIDS
confirms the involvement of both CFTR and SLC26 anion
exchangers. Our conclusion from these pHi and patch
clamp data is that PAR-2 activation inhibits both the
SLC26 anion exchanger (probably SLC26A6 [PAT-1]47 be-
cause SLC26A3 [DRA] is only weakly inhibited by disul-
fonic stilbenes47,48) and CFTR Cl� channels expressed on
the apical membrane of the duct cell.

The pH of pancreatic juice (and therefore the luminal
pH [pHL] in the duct) can vary between approximately 6.8
and 8.0. It has recently been shown that protons core-
leased during exocytosis cause significant acidosis (up to 1
pH unit) in the lumen of the acini.23 However, Ishiguro et
al49 have clearly shown that the pHL in pancreatic ducts is
dependent on the level of bicarbonate secretion. pHL can
be elevated from 7.2 to 8.5 by stimulation with secretin or
forskolin, and this effect was strictly dependent on the
presence of bicarbonate.24,49,50 Also, inhibition of ductal
bicarbonate secretion with H2DIDS can decrease the pHL

to less than 8.0.49 In view of these results, we tested
whether trypsinogen autoactivation was affected by pH
over the range of 6.0 to 8.5. Autoactivation of trypsinogen
was relatively slow at pH 8.5, but decreasing the pH from
8.5 to 7 progressively stimulated autoactivation. These
results suggest that under physiologic conditions bicar-
bonate secretion by PDECs is not only important for
elevating the pH in the duodenum, but also for keeping
pancreatic enzymes in an inactive state in the ductal
system of the gland.

Receptor down-regulation is a phenomenon that occurs
in the continued presence of an agonist and leads to a
reduction in the sensitivity of the cell to the agonist.
Potentially, there are 2 mechanisms that could underlie
receptor down-regulation of PAR-2: (1) after proteolytic
activation, the PAR-2 is internalized by a clathrin-medi-
ated mechanism and then targeted to lysosomes45 and (2)
if trypsin is present for a longer time in the lumen, PAR-2
may be down-regulated at the transcriptional level. In this
study, we provide evidence that the second mechanism,
transcriptional down-regulation, explains the reduced ex-
pression of PAR-2 seen in chronic pancreatitis.

Conflicting data can be found in the literature concern-
ing the role of PAR-2 in acute pancreatitis. Singh et al7

showed that in secretagogue-induced experimental pan-
creatitis, PAR-2 deletion is associated with a more severe
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pancreatitis. Although Laukkarinen et al17 confirmed
these results in cerulein-induced pancreatitis, they also
clearly showed that in taurocholate-induced pancreatitis,
PAR-2 deletion markedly reduced the severity of the dis-
ease. There is no evidence to suggest that clinical pancreatitis
is evoked by supramaximal secretagogue stimulation; how-
ever, the taurocholate-induced pancreatitis model may
mimic the clinical situation. Therefore, Laukkarinen et al17

speculated that PAR-2 activation promotes the worsening of
clinical pancreatitis and our data are consistent with that
hypothesis.

Besides the clear pathophysiologic role of the tryp-
sin/PAR-2 interaction in chronic pancreatitis, there is
still a debate as to why PAR-2 are localized to the
luminal membrane of PDEC in small ducts close to the
acinar cells. What could the physiologic role of this
PAR-2 be? A number of agents have been shown to have
dual effects on PDECs at different concentrations. For
example, bile acids in low concentrations stimulate but
in high concentrations inhibit bicarbonate secretion.39

The same applies to ethanol.38 Under physiologic con-
ditions, trypsin inhibitors are coreleased from acinar
cells with trypsinogen and should block the activity of
any trypsin that is generated spontaneously. Therefore,
only very small amounts of active trypsin, if any, will be
present in the duct lumen under normal conditions.
However, there remains a possibility that very small
amounts of active trypsin (ie, concentrations less than
0.1 �mol/L that would not cause an elevation of [Ca2�]i

or change in pH) could bind to PAR-2 on the luminal
membrane of the ducts and augment other stimulatory
mechanisms so as to enhance flushing of digestive
enzymes down the ductal tree.

In conclusion, we suggest for the first time that one of
the physiologic roles of bicarbonate secretion by PDECs is
to curtail trypsinogen autoactivation within the pancre-
atic ductal system. However, if trypsin is present in the
duct lumen (as may occur during the early stages of
pancreatitis due to leakage from acinar cells), PAR-2 on
the duct cell will be activated, leading to Ca2� release from
intracellular stores and an increase in cytosolic Ca2� con-
centration. This causes inhibition of the luminal anion
exchangers and CFTR Cl� channels, reducing bicarbonate
secretion by the duct cell. The decrease in bicarbonate
secretion will increase the transit time of zymogens down
the duct tree and decrease pHL, both of which will pro-
mote the autoactivation of trypsinogen. The trypsin so
formed will further inhibit bicarbonate transport, leading
to a vicious cycle generating further decreases in pHL and
enhanced trypsinogen activation, which will favor devel-
opment of the pancreatitis (Supplementary Figure 4).
Finally, the R122H mutant cationic trypsin also elevated
[Ca2�]i and pHi in duct cells, suggesting that this mech-
anism may be particularly important in hereditary pan-
creatitis in which the mutant trypsinogens more readily
autoactivate.29

Supplementary Material

Note: To access the supplementary material
accompanying this article, visit the online version of
Gastroenterology at www.gastrojournal.org, and at doi:
10.1053/j.gastro.2011.08.039.
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Supplementary Materials and Methods

Ethics
All experiments were conducted in compliance

with the Guide for the Care and Use of Laboratory
Animals (USA NIH publication No 85-23, revised 1985).
Animal experiments were approved by the Regional Eth-
ical Board at the University of Szeged, Hungary.

Solutions and Chemicals
HEPES-buffered solutions were gassed with 100%

O2, and their pH was set to 7.4 with HCl at 37oC. HCO3
�-

buffered solutions were gassed with 95% O2/5% CO2 to set
pH to 7.4 at 37oC. For patch clamp studies, the standard
extracellular solution contained (in mmol/L): 145 NaCl,
4.5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, and 5 glucose (pH
7.4 adjusted with NaOH). The osmolarity of the extra-
cellular solution was 300 mOsm/L. The standard pipette
solution for the patch clamp experiments contained (in
mmol/L): 120 CsCl, 2 MgCl2, 0.2 ethylene glycol-bis(�-
aminoethyl ether)-N,N,N=,N=-tetraacetic acid (EGTA), 10
HEPES, and 1 Na2ATP (pH 7.2 adjusted with NaOH).
Chromatographically pure collagenase was purchased
from Worthington (Lakewood, NJ). 2,7-Bis-(2-carboxy-
ethyl)-5-(and-6-)carboxyfluorescein, acetoxymethyl ester
(BCECF-AM), 2-(6-(bis(carboxymethyl)amino)-5-(2-(2-
(bis(carboxymethyl)amino)-5-methylphenoxy)ethoxy)-2-
benzofuranyl)-5-oxazolecarboxylic acetoxymethyl ester
(FURA 2-AM), dihydro-4,4=-diisothiocyanostilbene-
2,2=-disulfonic acid (H2DIDS), and 1,2-bis(o-amino-
phenoxy)ethane- N,N,N=,N=-tetraacetic acid (BAPTA-
AM) were from Invitrogen (Carlsbad, CA). PAR-2-ANT
(H-Phe-Ser-Leu-Leu-Arg-Tyr-NH2) and PAR-2-AP (H-
Ser-Leu-Ile-Gly-Arg-Leu-amid trifluoroacetate salt)
were from Peptides International (Louisville, KY). For-
skolin were from Tocris (Ellisville, MO). Rabbit PAR-2
polyclonal antibody was purchased from Santa Cruz
Biotechnology (Heidelberg, Germany). All other chem-
icals were obtained from Sigma-Aldrich (Budapest,
Hungary).

Isolation of Pancreatic Ducts and Individual
Ductal Cells
Male guinea pigs weighing between 150 and 250 g

or mice (PAR-2�/� and PAR-2�/�) weighing between 18
and 21 g were humanely killed by cervical dislocation, the
pancreas was removed, and small intralobular proximal
ducts were isolated by microdissection as described pre-
viously.1 PAR-2�/� mice (B6.Cg-F2rl1tm1Mslb/J) were previ-
ously generated by Schmidlin et al1 and a kind gift from
Ashok Saluja.2 Isolated ducts were then cultured over-
night in a 37oC incubator gassed with 5% CO2/95% air.3

To obtain single pancreatic ductal cells, cultured ducts
were incubated for 50 minutes at 37°C in 50 U/mL
elastase dissolved in storage solution (Dulbecco’s modi-
fied Eagle medium containing 3% [wt/vol] bovine serum
albumin [pH 7.4 with NaOH]). Then the ducts were

transferred to a Ca2�/Mg2�-free HEPES-buffered solu-
tion and incubated for a further 10 minutes at 37°C.
After the incubation, the ducts were transferred to a
coverslip and teased apart using stainless steel needles.
The individual ductal cells were used for experiments
within 3 to 4 hours after isolation.

Measurement of pHi and Ca2� Concentration
Ducts were bathed in standard HEPES solution

and loaded with BCECF-AM (2 �mol/L) or FURA 2-AM
(5 �mol/L) for 30 to 60 minutes at room temperature.

Ducts were then transferred to a perfusion chamber
mounted on an IX71 inverted microscope (Olympus,
Budapest, Hungary) and perfused continuously with so-
lutions at 37oC both from the luminal and basolateral
side at a rate of 10 to 30 �L/min and 4 to 5 mL/min,
respectively. Four to 5 small areas (region of interests) of
5 to 10 cells in each intact duct were excited with light at
a given wavelength. Excitation of BCECF was at 495 and
440 nm, with emitted light monitored at 535 nm. Exci-
tation of FURA-2 was at 380 and 340 nm, with emitted
light monitored at 510 nm. The fluorescence emissions
were captured by a charge-coupled device camera and
digitized by a Cell imaging system (Olympus, Budapest,
Hungary). Ratio images were collected at 1-second inter-
vals. In situ calibration of pHi measured with BCECF was
performed using the high K�-nigericin technique.4,5

Electrophysiology
Guinea pig PDECs were isolated by an enzymatic

microdissection procedure as described previously. Using
a glass pipette, a few drops of cell suspension were placed
within a perfusion chamber mounted on the stage of an
inverted microscope (TMS; Nikon, Tokyo, Japan). The
ductal cells were allowed to settle and attach to
the bottom of the chamber for at least 30 minutes before
the perfusion was started.

Patch clamp micropipettes were fabricated from boro-
silicate glass capillaries (Clark, Reading, England) by us-
ing a P-97 Flaming/Brown micropipette puller (Sutter
Co, Novato, CA). These pipettes had resistances between
1.5 and 2.5 M	. Membrane currents were recorded with
an Axopatch 1D amplifier (Axon Instruments, Union
City, CA) using the whole cell configuration of the patch
clamp technique at 37oC. After establishing a high-resis-
tance seal (1–10 G	) by gentle suction, the cell mem-
brane beneath the tip of the pipette was disrupted by
suction or by application of short electrical pulses. The
series resistance was typically 4 to 8 M	 before compen-
sation (50%– 80%, depending on the voltage protocol).
Current-voltage (I/V) relationships were obtained by
holding Vm at 0 mV and clamping to �100 mV in 20-mV
increments. Membrane currents were digitized by using a
333-kHz analog-to-digital converter (Digidata 1200;
Axon Instruments) under software control (pClamp 6;
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Axon Instruments). Analyses were performed by using
pClamp 6 software after low-pass filtering at 1 kHz.

Expression and Purification of Human
Trypsinogens
Wild-type and R122H mutant human cationic

trypsinogen was expressed in Escherichia coli and purified
by ecotin-affinity chromatography as reported previ-
ously.6

Measuring Autoactivation of Trypsinogen
Autoactivation of trypsinogen was measured at 2

�mol/L concentration at 37oC in a polybuffer system
(American Bioanalytical Inc, Natick, MA) containing 100
mmol/L 2-(N-morpholino)ethanesulfonic acid, 100
mmol/L HEPES, and 100 mmol/L Tris in 100 �L final
volume. The pH of the Polybuffer was adjusted to given
values with HCl (pH 6.0 and 6.5) or NaOH (pH 7.0, 7.5,
8.0, and 8.5). Reactions also contained 1 mmol/L or 0.1
mmol/L CaCl2 and 100 mmol/L NaCl, as indicated. At
given times, 2-�L aliquots were removed and trypsin
activity was determined using the N-CBZ-Gly-Pro-Arg-p-
nitroanilide substrate at 150 �mol/L final concentration.

Immunohistochemistry
Pancreatic tissue from 5 guinea pigs, 15 patient

samples without pancreatic disease near neuroendocrine
tumors (average age, 59.5; female/male, 7:8), and 15 pa-
tients (average age, 56.6; female/male, 4:11) who had
chronic pancreatitis (13 alcohol, 2 gallstone) were inves-
tigated. The human samples were obtained with the per-
mission of the Regional Ethical Committee of Semmel-
weis University (#172/2003).

The pancreatic tissues were fixed in 10% neutral buff-
ered formalin for 24 hours, followed by paraffin embed-
ding, and were then cut and stained with H&E to estab-
lish the diagnosis. Paraffin-embedded, 3- to 4-�m-thick
sections were used for immunohistochemistry to detect
PAR-2 expression. The slides were treated for 30 minutes
with target retrieval solution (Dako, Glostrup, Denmark)
in a microwave oven, followed by incubation with the
primary rabbit polyclonal antibody (Santa Cruz Biotech-
nology Inc, Heidelberg, Germany) in 1:100 dilution over-
night at 4°C. Signal detection was achieved by using
ImPRESS reagent with secondary anti-rabbit immuno-
globulin G antibody (20 minutes) (Vector Laboratories,
Burlingame, CA). Diaminobenzidine was used to visual-
ize immune complexes, and nuclear counterstaining was
performed with hematoxylin. For negative controls, the
appropriate antibody was omitted and either the anti-
body diluent alone or isotype-matched immunoglobulin
G serum was used. The negative controls exhibited no
signal. Normal skin epithelial cells were used as positive
controls to confirm correct immunohistochemical stain-
ing for PAR-2 (results not shown).

The immunohistochemical reactions were digitalized
with a Mirax MIDI slide scanner (3DHistech Ltd, Buda-

pest, Hungary). Relative optical (RO) density was calcu-
lated using ImageJ program (National Institutes of
Health, Bethesda, MD). Pixel values (PV) were normalized
to erythrocyte density (PVNorm � PVMeasured – PVErythrocyte)
in all sections. RO-Density value was calculated from the
RO-Density � log10(255/PVNorm) equation, assuming that
the brightest value in the image equals 255.

Western blot analysis was used to determine the spec-
ificity of the PAR-2 antibody. Proteins were extracted
from fresh-frozen guinea pig (n � 3) and human (n � 3)
pancreatic tissue stored at �80°C. Isolation was per-
formed by using lysis buffer (20 mmol/L Tris, pH 7.5, 150
mmol/L NaCl, 2 mmol/L EDTA, 1% Triton X-100 con-
taining protease inhibitor complex [Sigma Aldrich Co,
Budapest, Hungary]). Samples (50 mg) were homoge-
nized, followed by centrifugation at 13,200 rpm at 4°C
for 5 minutes. Measurements of protein concentration
were performed using Bradford analysis.7 A total of 30 �g
of protein samples were loaded in each lane, run on 10%
sodium dodecyl sulfate/polyacrylamide electrophoresis
at 200 V for 35 minutes, and then transferred to nitro-
cellulose membranes at 100 V, 4°C, for 75 minutes. For
aspecific protein blocking, nonfat dry milk (5%, phos-
phate-buffered saline) was used for 30 minutes. Blots
were incubated with polyclonal PAR-2 rabbit antibody
(1:300; Santa Cruz Biotechnology Inc, Heidelberg, Ger-
many) and anti-GAPDH antibody (1:5000; AbDSerotec,
Kidlington, England) at 4°C overnight. After washing in
0.1% Tris, the secondary antibodies as anti-mouse
GAPDH (1:2000; AbDSerotec, Düsseldorf, Germany) and
horseradish peroxidase– conjugated anti-rabbit antibody
(1:2000, Dako Cytomation, Ghostrup, Denmark) were
applied at room temperature for 90 minutes. Following 3
series of washings in Tris-buffered saline with Tween 20,
signals were visualized by enhanced chemiluminescent
detection.

Real-Time Reverse-Transcription Polymerase
Chain Reaction
RNA extraction. Fifteen formalin-fixed, paraffin-

embedded normal pancreatic tissue samples and 15 sam-
ples of chronic pancreatitis tissue were selected for real-
time reverse-transcription polymerase chain reaction
analysis. Total RNA was isolated from five 5- to 10-�m
macrodissected sections (connective tissue excluded) using
RNeasy FFPE Kit (Qiagen, Hilden, Germany) in accordance
with the manufacturer’s instructions. RNA concentrations
were obtained using a NanoDrop Spectrophotometer ND-
1000 (Thermo Fisher Scientific Inc, Waltham, MA).

Reverse transcription of RNA. Complementary
DNA samples were prepared from 1 �g total RNA using
a High Capacity RNA-to-cDNA Kit (Applied Biosystems,
Carlsbad, CA) as specified by the manufacturer.

Primer design. Gene-specific primers were de-
signed by AlleleID 6.01 primer design software (Premier
Biosoft International, Palo Alto, CA) for real-time reverse-

December 2011 TRYPSIN REDUCES PANCREATIC BICARBONATE SECRETION 2239.e2



transcription polymerase chain reaction. Isoform speci-
ficity and primer sizes were checked by BioEdit biological
sequence alignment editor software (Tom Hall Ibis Ther-
apeutics, Carlsbad, CA). Primer specificity was checked by
BiSearch software (Hungarian Academy of Sciences, In-
stitute of Enzymology, Budapest, Hungary). Primer spe-
cific amplification degree (58°C) was optimized by gradi-
ent polymerase chain reaction. The used primer sequences
are shown in Supplementary Table 1.

Reverse-transcription polymerase chain reac-
tion. Real-time reverse-transcription polymerase chain
reaction analysis was performed using SYBR Green tech-
nology on an ABI Prism 7000 Sequence Detection System
(Applied Biosystems, Foster City, CA), according to the
manufacturer’s instructions. �-actin was used as the in-
ternal control gene. Primer-specific amplification was
controlled by 2% agarose gel electrophoresis, as well as by
melting temperature analysis. The final 20 �L reaction
mixture contained Power SYBR Green PCR Master Mix
(Applied Biosystems), 10 pmol/L of forward and reverse
primers, and 100 ng complementary DNA as template.
Amplification conditions were as follows: incubation at
95°C for 10 minutes, followed by 45 cycles at 95°C for 15
seconds, 60°C for 60 seconds, and 72°C for 15 seconds,
with subsequent melting analysis, heating to 95°C for 20
seconds, cooling to 45°C for 10 seconds, and then re-
heating to 95°C.

Statistical Analysis
Data are expressed as means � SEM. Significant

difference between groups was determined by analysis of

variance. Statistical analysis of the immunohistochemical
data was performed using the Mann–Whitney U test.
Probability values of P � .05 were accepted as being
significant.
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Supplementary Figure 1. Effects of PAR-2-AP and trypsin on [Ca2�]i in microperfused guinea pig pancreatic ducts at pH 8.0. (A) Light (1) and
fluorescent ratio images (2 and 3) of microperfused pancreatic ducts showing the effects of luminal administration of 10 �mol/L PAR-2-AP and 10
�mol/L PAR-2-ANT on [Ca2�]i at pH 8.0. Images were taken before (1 and 2) and after (3) exposure of the ducts to PAR-2-AP or trypsin. An increase
in [Ca2�]i is denoted by a change from a “cold” color (blue) to a “warmer” color (yellow to red); see scale on the right. (B and C) Representative
experimental traces and summary data of the changes in [Ca2�]i at pH 8.0. (D) The same protocol was used to evaluate the effects of trypsin. (E and
F) Representative experimental traces and summary data of the changes in [Ca2�]i. n � 3–4. *P � .05 vs 1 �mol/L PAR-2-AP or 0.1 �mol/L trypsin,
respectively. **P � .001 vs 10 �mol/L PAR-2-AP or 10 �mol/L trypsin, respectively.
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Supplementary Figure 2. Effects of PAR-2-AP and trypsin on [Ca2�]i in microperfused guinea pig pancreatic ducts at pH 6.8. (A) Light (1) and
fluorescent ratio images (2 and 3) of microperfused pancreatic ducts showing the effects of luminal administration of 10 �mol/L PAR-2-AP and 10
�mol/L PAR-2-ANT on [Ca2�]i at pH 6.8. Images were taken before (1 and 2) and after (3) exposure of the ducts to either PAR-2-AP or trypsin. The
colors are described in Supplementary Figure 1; see scale on the right. (B and C) Representative experimental traces and summary data of the
changes in [Ca2�]i at pH 6.8. (D) The same protocol was used to evaluate the effects of trypsin. (E and F) Representative experimental traces and
summary data of the changes in [Ca2�]i at pH 6.8. n � 3–4. *P � .05 vs 1 �mol/L PAR-2-AP or 0.1 �mol/L trypsin, respectively. **P � .001 vs 10
�mol/L PAR-2-AP or 10 �mol/L trypsin, respectively.
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Supplementary Figure 3. Summary of the effects of PAR-2-AP and trypsin on [Ca2�]i in microperfused guinea pig pancreatic ducts at different
extracellular pH values. (A) The elevation in [Ca2�]i evoked by 1 �mol/L PAR-2-AP and (B) 0.1 �mol/L trypsin at different extracellular pH values (6.8;
7.4; 8.0). n � 3–4. *P � .05 vs at pH 6.8.

Supplementary Figure 4. The vicious trypsin cycle. If trypsin is present in the duct lumen, PAR-2 receptors on the duct cell are activated, leading
to Ca2� release from intracellular stores and an increase in cytosolic Ca2� concentration. This causes inhibition of the luminal anion exchangers and
CFTR Cl� channels reducing bicarbonate secretion by the duct cell. The decrease in bicarbonate secretion will decrease luminal pH in the duct, which
strongly accelerates the autoactivation of trypsinogen to trypsin. The activated trypsin will further inhibit bicarbonate transport by the duct cells,
leading to a vicious cycle generating further decreases in luminal pH and enhanced trypsinogen activation with the potential for damaging the gland.
The cycle may eventually be broken by the down-regulation of duct cell PAR-2 expression once pancreatitis is established. N, nucleus.

Supplementary Table 1. Nucleotid Sequences of the Primers Used in the Study.

Gene name Primer sequence (5= to 3=)
Product length
(base pairs)

Annealing
temperature (°C)

�-actin GTACGCCAACACAGTGCTG (sense) 100 55
CTTCATTGTGCTGGGTGCC (antisense)

PAR-2 GGCACCATCCAAGGAACCAATAG(sense) 128 58
GCAGAAAACTCATCCACAGAAAAGAC (antisense)
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ABSTRACT 

OBJECTIVE: A common potentially fatal disease of the pancreas is acute pancreatitis, for 

which there is no treatment. Most studies of this disorder focus on the damage to acinar 

cells since they are assumed to be the primary target of multiple stressors affecting the 

pancreas. However, increasing evidence suggest that the ducts may also have a crucial role 

in induction of the disease. To test this hypothesis, we sought to determine the specific role 

of the duct in the induction of acute pancreatitis using well established disease models and 

mice with deletion of the Na
+
/H

+
 exchanger regulatory factor-1 (NHERF-1) that have 

selectively impaired ductal function.  

DESIGN: Randomized animal study. 

SETTING: Animal research laboratory. 

SUBJECTS: Wild-type and NHERF-1 knock-out mice.  

INTERVENTIONS: Acute necrotizing pancreatitis was induced by i.p. administration of 

cerulein or by intraductal administration of sodium-taurocholate. The pancreatic expression 

of NHERF-1 and cystic fibrosis transmembrane conductance regulator (CFTR, a key 

player in the control of ductal secretion) was analysed by immunohistochemistry. In vivo 

pancreatic ductal secretion was studied in anesthetized mice. Functions of pancreatic acinar 

and ductal cells, as well as inflammatory cells were analyzed in vitro.  

MEASUREMENTS AND MAIN RESULTS: Deletion of NHERF-1 resulted in gross 

mislocalization of CFTR, causing marked reduction in pancreatic ductal fluid and 

bicarbonate secretion. Importantly, deletion of NHERF-1 had no deleterious effect on 

functions of acinar and inflammatory cells. Deletion of NHERF-1 that specifically 

impaired ductal function increased the severity of acute pancreatitis in the two models 

tested.  
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CONCLUSIONS: Our findings provide the first direct evidence for the crucial role of 

ductal secretion in protecting the pancreas from acute pancreatitis, and strongly suggest 

that improved ductal function should be an important modality in prevention and treatment 

of the disease. 
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INTRODUCTION 

A major disease of the exocrine pancreas is acute pancreatitis (AP) that is caused 

by multiple stressors and for which there is no specific treatment. The disorder usually 

develops either as a result of gallstone disease or moderate to heavy ethanol consumption 

[1]. It can present as mild edematous (85%) or as severe necrotizing (15%) forms, the latter 

of which can lead to a very high mortality rate of up to 50% in the case of multi-organ 

failure [1]. Most studies of AP focus on the function and damage to acinar cells since they 

are assumed to be the key target of stressors. However, increasing evidence point to the 

duct as the primary target of the stressors, which may have crucial role in induction of the 

disease. 

The main function of the pancreatic duct is fluid and HCO3
-
 secretion that is 

mediated by basolateral HCO3
-
 influx due to Na

+
-HCO3

-
 contransport by NBCe1-B and 

luminal HCO3
-
 exit mediated by the concerted action of cystic fibrosis transmembrane 

conductance regulator (CFTR), DRA (down-regulated in adenoma or slc26a3) and PAT-1 

(putative anion transporter 1 or slc26a6) [2]. The interrelated function of CFTR and PAT-1 

requires their assembly into complexes through postsynaptic density-95/disc-large/zonula 

occludens (PDZ) domains by an unknown scaffolding protein [3].  

Na
+
/H

+
 exchanger regulatory factor-1 (NHERF-1) is a scaffolding protein involved 

in the apical targeting and trafficking of several membrane proteins and anchors them to 

the cytoskeleton via ezrin [4]. NHERF-1 also facilitates the association of multiprotein 

complexes via PDZ and ezrin-radixin-moesin binding domains, a process that is essential 

for the adequate function of transporters, channels, and signaling complexes [5]. The 

adapter protein has been shown to bind to the PDZ-binding motifs of CFTR, Na
+
/H

+
 

exchanger-3 (NHE3), as well as a number of other proteins that functionally interact with 
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CFTR or NHE3, such as the β2-adrenoreceptor [6, 7], or the Slc26 anion exchanger DRA 

[8].  

The role of NHERF-1 in the pancreas has not yet been investigated, despite the fact 

that CFTR, a key regulator of epithelial function, is controlled by this scaffolding protein 

[4]. CFTR has very important roles in pancreatic ductal physiology [9] and in the 

pathogenesis of diseases like cystic fibrosis [5] and AP [10, 11]. We reasoned that the 

central role of NHERF-1 in CFTR function offered a unique opportunity to directly 

evaluate, for the first time, the role of pancreatic ducts in AP by analyzing ductal function 

in mice with deletion of NHERF-1 and their response to induction of AP. 
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MATERIALS AND METHODS 

Brief outline of the methods is given below. For further details, please see the 

supplemental material. 

 

Ethics 

All experiments were conducted in compliance with the Guide for the Care and 

Use of Laboratory Animals (National Academies Press, Eight Edition, 2011), and were 

approved by Committees on investigations involving animals at the University of Szeged 

and at the Hannover Medical School and also by independent committees assembled by 

local authorities.  

 

Animals 

NHERF-1-deficient mice were originally generated and described at Duke 

University Medical Center [12]. NHERF-1 mutation was congenic for the FVB/N 

background for at least 15 generations. Genotyping was performed by PCR.  

 

Isolation and culture of pancreatic ducts and acini 

Intra-/interlobular pancreatic ducts were isolated and cultured overnight at 37°C in 

a humidified atmosphere containing 5% CO2 as described previously [13]. Acinar cells 

were isolated by collagenase digestion and were used for experiments immediately 

thereafter [14]. 

 

mRNA expression of CFTR, PAT-1, DRA and NHERFs 

Pancreatic ducts were homogenized by sonication in lysis-buffer and RNA was 

isolated with a NucleoSpin RNA XS Total RNA Isolation Kit. Reverse transcription was 
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performed using Superscript III RT. The primer sequences and PCR protocol used for the 

determination of the mRNA expression of transporters and NHERF-1-3 are described in 

the supplementary methods. 

 

Localization of NHERF-1 and CFTR proteins by immunohistochemistry 

Immunohistochemistry of the mouse pancreas was performed as described by Cinar 

et al [15] using rabbit polyclonal antibodies against NHERF-1 and CFTR.  

 

Microperfusion and measurement of intracellular pH, Ca
2+

 concentration 

The luminal and basolateral perfusions of the cultured ducts were performed as 

described previously [16]. Intracellular pH (pHi) and Ca
2+

 concentration ([Ca
2+

]i) were 

assessed using the fluorescent dye BCECF-AM[17] and FURA 2-AM, respectively. 

 

Determination of HCO3
-
 efflux 

To determine the HCO3
-
 efflux across the apical membrane of the pancreatic ductal 

epithelia, we used three methods: inhibitory stop, alkali load and luminal Cl
-
 withdrawal. 

The measured rates of pHi change (dpH/dt) were converted to transmembrane base flux 

[J(B
-
)] which reflects the rate of HCO3

-
 efflux (i.e. secretion) on luminal Cl

-
/HCO3

-
 

exchangers [18]. 

 

Measurement of fluid secretion  

Fluid secretion into the closed luminal space of in vitro cultured pancreatic ducts 

was analysed using a swelling method [19]. Basal and secretin-stimulated pancreatic fluid 

secretion in vivo was determined in anesthetized mice.  
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Induction of acute pancreatitis 

 

Cerulein-induced pancreatitis  

Mice were administered 1, 7 or 10 hourly i.p. injections of cerulein (50μg/kg per 

injection). Control mice were given physiological saline (PS: 0.9% NaCl) solution i.p. 

instead of cerulein.  

Sodium-taurocholate-induced pancreatitis  

Na-taurocholate was administered intraductally as described previously by Perides 

et al [20].  

 

Assays 

Amylase and lactate dehydrogenase (LDH) activities were measured with 

commercial kits. Acinar cell viability was determined using the trypan-blue exclusion test. 

Interleukin-1β (IL-1β) levels were measured by ELISA. Expression of heat shock 

protein72 (HSP72), IκB-α and IκB-β were determined by Western blot analysis [21]. 

Myeloperoxidase (MPO) activity, as a marker of tissue leukocyte infiltration, was assessed 

by the method of Kuebler et al [22]. 

 

Histologic examination 

Pancreatic injury was evaluated by semiquantitative grading of interstitial edema, 

haemorrhage and leukocyte infiltration [21]. The extent (%) of cell damage was confirmed 

by analysis with ImageJ software (NIH, Bethesda, MD, USA). Apoptotic cells were 

quantified in 1mm
2
 of pancreatic tissue by TUNEL assay using an In Situ Cell Death 

Detection Kit according to the manufacturer’s instructions.  
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Statistical analysis 

Statistical analysis was performed by SigmaPlot (Systat Software Inc., Chicago, IL, 

USA). Data are presented as means±SEM. Both parametric (one– or two-way analysis of 

variance) and non-parametric (Kruskal-Wallis) tests were used based on the normality of 

data distribution (analyzed by the Shapiro-Wilk test). Post-hoc analysis (either Dunn's or 

Bonferroni's test) was performed according to the recommendations made by SigmaPlot. 

²-test was used to determine differences between groups in the proportion of mice who 

died. A P<0.05 was accepted as statistically significant. 
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RESULTS 

mRNA expression of CFTR, DRA, PAT-1 and NHERFs in mouse pancreatic ducts 

CFTR, DRA, PAT-1, NHERF-1 and NHERF-2, but not NHERF-3 mRNA were 

expressed in isolated pancreatic ducts of WT mice (Fig.1). Notably, quantitative RT-PCR 

indicated that NHERF-1 was expressed more abundantly than the other two CFTR-binding 

NHERFs (NHERF-2 and NHERF-3). 

 

Apical NHERF-1 and CFTR localization in pancreatic ducts is reduced in NHERF-1-

knock-out mice 

NHERF-1 was highly expressed in the apical membrane of pancreatic duct cells, 

but only weakly expressed in some acinar cells of WT mice (Fig.2A,B). No or weak 

staining was detected in NHERF-1-KO mice (Fig.2G,H). The weak staining is non-specific 

and was not localized to the luminal membrane.  

Next, we determined whether NHERF-1 affects the localization of CFTR which 

was expressed in both pancreatic acinar and ductal cells. Compared to WT animals 

(Fig.2C), apical CFTR staining in pancreatic ducts was markedly reduced and overall 

CFTR staining in the pancreas appeared more diffuse in the absence of NHERF-1 (Fig.2I). 

Suppl.Fig. 1 shows that although the CFTR antibody gave a small amount of nonspecific 

staining, this was not localized to the luminal membrane. The strong cytoplasmic staining 

by the CFTR antibody correlates with the high CFTR mRNA expression levels in murine 

pancreas as compared to other gastrointestinal tissues (i.e. some cytoplasmic and 

basolateral staining in the duodenum [7], but not the ileum or colon of this mouse strain - 

unpublished observations). Expression of pancreatic ductal CFTR mRNA was not 

significantly different in WT and NHERF-1-KO mice (results not shown). 
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Pancreatic ductal HCO3
-
 secretion is decreased in NHERF-1-knock-out mice 

To determine if mislocalization of CFTR affects pancreatic ductal function, we 

investigated HCO3
-
 secretion in isolated ducts using three different, but complementary 

methods that measure the rate at which HCO3
-
 is secreted across the luminal membrane via 

Cl
-
/HCO3

-
 exchangers and/or CFTR [18]. 

(1) Inhibitor stop. The administration of dihydro-4,4’-diisothiocyanostilbene-2,2’-

disulfonic acid (H2DIDS, 0.2mM) and amiloride (0.2mM) resulted in a rate of J(B
-
) which 

was more than 4-fold lower in NHERF-1-KO compared to WT mice (Figs.3A,D). 

(2) Alkali load. Here the recovery of pHi from an alkali load induced by exposure 

to 20mM NH4Cl in a HCO3
-
/CO2-containing solution reflects the rate of HCO3

-
 secretion 

[16]. Figs.3B and 3E show that the recovery from alkali load was about 2-fold lower in 

NHERF-1-KO vs. WT animals.  

(3) Chloride removal. Figs.3C and 3F show that pHi alkalinisation induced by 

removal of luminal Cl
-
 was significantly reduced in NHERF-1-KO compared to WT mice. 

These data show that pancreatic ductal HCO3
-
 secretion was significantly reduced 

in NHERF-1-KO compared to WT mice.  

 

Fluid secretion is decreased in NHERF-1-knock-out mice 

To investigate if fluid secretion was also compromised in KO mice, the rate of fluid 

secretion was measured using sealed ducts. In the absence of secretagogue, we could not 

detect any significant changes in the volume of WT and NHERF-1-KO ducts (Fig.4A). 

Stimulation of WT ducts with 5μM forskolin caused dynamic swelling of the ducts as a 

result of fluid secretion into the closed luminal space. In contrast, ducts from NHERF-1-

KO mice had a blunted response to forskolin (Fig.4B).  
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We also examined the rate of pancreatic juice secretion in vivo in anesthetized 

mice. Under basal conditions, WT animals secreted pancreatic juice at a rate of 0.12±0.02 

μl/h/g body weight (Fig.4C). In contrast, we could not detect any basal secretion in 

NHERF-1-KO animals. In response to secretin stimulation, we observed about 4-fold 

higher rates of pancreatic juice secretion in WT vs. NHERF-1-KO mice. These results 

demonstrate that pancreatic fluid secretion was significantly reduced in NHERF-1-KO 

compared to WT animals under both basal and secretin-stimulated conditions. 

To rule out secondary alterations in pancreatic fluid secretion by changes in 

microcirculation due to loss of NHERF-1, we measured baseline microcirculatory plasma 

velocities in the capillaries of the pancreas, which were similar in WT and NHERF-1-KO 

animals (Suppl.Fig.2). 

 

Cerulein-induced pancreatitis is more severe in NHERF-1-knock-out mice 

To determine if the observed changes in pancreatic secretion could influence the 

development of AP, mice were given 10 hourly i.p. injections of either PS (control) or 

supramaximal doses of cerulein to induce AP (Fig.5A). The control animals had normal 

pancreatic histology (Fig.5A.a,d). I.p. injections of cerulein caused extensive cell damage 

(Fig.5A.b,c,e,f), the rates of necrosis (Fig.5B) and apoptosis (Fig.5C) were markedly 

higher in the NHERF-1-KO vs. WT mice. However, no significant differences were 

observed in the extent of interstitial edema (2.0±0.11 for WT vs. 2.2±0.2 for KO) or 

leukocyte infiltration (1.72±0.08 for WT vs. 1.95±0.13 for KO, p=0.08) in cerulein-treated 

groups. 

There were also no significant differences between WT and NHERF-1-KO control 

groups in all laboratory parameters, except for the level of IκB-β. 
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Serum amylase activities were greatly elevated in cerulein-treated WT and 

NHERF-1-KO vs. the control groups (Fig.6A). Importantly, amylase activity was 

significantly higher in the cerulein-treated NHERF-1-KO vs. WT mice. Pancreatic MPO 

activity was significantly increased in cerulein-treated vs. control groups, but not different 

in WT compared to KO mice exposed to cerulein (Fig.6B). Pancreatic HSP72 expression 

(a sensitive marker of tissue injury) was significantly increased in cerulein-treated vs. 

control groups (Fig.6C), and significant differences were also observed between cerulein–

treated WT and NHERF-1-KO groups. 

Key events in the pathogenesis of AP include premature activation of trypsinogen 

[23, 24] and the activation of the proinflammatory transcription factor nuclear factor- B 

(NF- B) [25]. To exclude any potential effects of NHERF-1 deletion on early trypsinogen 

and NF- B activation (regulated by IĸBs), we measured pancreatic trypsin activity 

(Fig.6D) and expression of IĸBs (Suppl.Figs.3A-B) in mice injected i.p. with 1x50μg/kg 

cerulein. Trypsin activity was increased by about 4-fold 0.5h after the injection of cerulein 

compared to the control group (Fig.6D), however, there were no significant differences 

between WT and NHERF-1-KO mice. Also, with respect to IκB-α expression, there was 

no significant differences between WT and NHERF-1-KO animals in cerulein-treated 

groups (Suppl.Fig.3A). The basal level of IκB-β was significantly higher in NHERF-1-KO 

vs. WT control mice, and no differences were observed in cerulein-treated WT and 

NHERF-1-KO groups (Suppl.Fig.3B). These data demonstrate that the difference in AP 

severity between WT and NHERF-1-KO mice is independent of pancreatic trypsinogen 

and NF-κB activation. 

The expression of the proinflammatory cytokine IL-1β was significantly elevated in 

the pancreas of cerulein-treated WT and NHERF-1-KO mice vs. the control groups 
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(Suppl.Fig.3C), but there was no difference between the cerulein-treated WT vs. NHERF-

1-KO mice.  

Of note, i.p. administration of 7x50μg/kg cerulein in WT and NHERF-1-KO mice 

caused similar effects in the investigated histological and laboratory parameters as shown 

for the higher cerulein dose. A summary of these results can be found in Suppl.Figs.4-5. 

Overall, our results clearly demonstrate that the severity of cerulein-induced AP is lower in 

mice expressing NHERF-1. 

To exclude any possible deleterious effects of NHERF-1 deletion on 

cholecystokinin receptor function, we tested the sensitivity of acinar cells to cerulein. 

Amylase secretion of acinar cells from WT and NHERF-1-KO animals showed no 

significant differences in response to cerulein stimulation (Suppl.Fig.6).  

 

Intraductal administration of 4% sodium-taurocholate causes more extensive acinar 

cell necrosis in NHERF-1-knock-out compared to wild-type mice 

We also investigated if NHERF-1-KO mice responded differently than WT mice 

when AP was induced by intraductal infusion of 4% Na-taurocholate. Postoperative 

mortality after administration of Na-taurocholate in KO mice (2/14 animals) was not 

significantly different vs. WT animals (0/10).  

Intraductal infusion of PS caused no postoperative mortality, but mild pancreatic 

edema and inflammation was seen on histology without any significant necrosis 

(Fig.7A,B). The rate of leukocyte infiltration was significantly higher in the NHERF-1-KO 

vs. WT mice (Table1). The infusion of 4% Na-taurocholate into the pancreatic duct 

induced necrotizing AP in the head (Fig.7C,D), but not in the tail of the pancreas (not 

shown). The latter finding is in accord with that of others [20]. Therefore, only the 

pancreatic heads were used for analysis. Approximately 24% of acinar cells were necrotic 
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in WT (Fig.7C,E) and about 47% in NHERF-1-KO mice (Figs.7D,E). Table1 summarizes 

the histopathological changes in the various groups. Significantly higher rates of leukocyte 

infiltration were detected in Na-taurocholate-treated vs. PS-treated WT groups. In contrast, 

there were no differences in leukocyte infiltration between the Na-taurocholate-treated vs. 

PS-treated NHERF-1-KO groups, and Na-taurocholate-treated NHERF-1-KO vs. WT 

groups.  

 Serum amylase activities were significantly higher in Na-taurocholate-treated vs. 

control WT and NHERF-1-KO groups (Suppl.Fig.7A), but there were no differences 

between Na-taurocholate-treated NHERF-1-KO and WT mice. We did not observe any 

significant differences in MPO activity between WT and NHERF-1-KO mice after 

intraductal PS infusion (Suppl.Fig.7B). However, MPO activity was increased in Na-

taurocholate-treated vs. control NHERF-1-KO mice, and even higher in the KO compared 

to the WT Na-taurocholate-treated mice. Pancreatic IL-1β expression was elevated in Na-

taurocholate-treated WT and NHERF-1-KO mice vs. the control groups (Suppl.Fig.7C). 

However, there were no significant differences in the levels of IL-1β of Na-taurocholate-

treated WT and NHERF-1-KO animals.  

These data indicate that NHERF-1 expression reduces Na-taurocholate-induced 

pancreatic injury, but does not necessarily influence other laboratory parameters of the 

disease. 

 

Functions of inflammatory cells are unaltered by deletion of NHERF-1 

Since inflammatory cells are implicated in the pathogenesis of AP and NHERF-1 

expression has been shown in neutrophils [26], we checked the bacterial killing efficiency 

of polymorphonuclear cells and the phagocytic activity of peritoneal macrophages. The 
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results in Suppl.Fig.8 demonstrate that knocking out NHERF-1 did not alter these 

functions. 

 

NHERF-1 expression does not influence intracellular calcium signaling and the 

degree of cell damage caused by high concentrations of cerulein or sodium-

taurocholate in isolated acini 

To further investigate whether acinar cells are affected by the deletion of NHERF-

1, we tested the effects of cerulein and Na-taurocholate on the critical intracellular Ca
2+

 

signaling pathway in induction of AP, and on cell damage of isolated acini prepared from 

WT and NHERF-1-KO mice. Suppl.Fig.9. shows no significant differences in elevation of 

[Ca
2+

]i induced by cerulein or Na-taurocholate on isolated acinar cell from WT and 

NHERF-1-KO mice (n=5-8). Next, we looked at the extent of in vitro cell damage induced 

by the administration of high concentrations (based on literature data) of cerulein (10
-8

M) 

[27] and Na-taurocholate (1mM) [28]. Acinar viability of WT and NHERF-1-KO mice was 

99.5±0.5% and 97.6±1.0% immediately after isolation, respectively (n=7); LDH release 

was 9.2±1.2% and 7.6±1.0%, respectively (n=7). Acinar viability significantly decreased 

with time and in response to cerulein or Na-taurocholate administration (Fig.8). However, 

we did not find any significant differences in cell viability parameters of treated WT and 

NHERF-1-KO acini. 
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DISCUSSION 

We have demonstrated that NHERF-1 mRNA is highly expressed in mouse 

pancreatic ducts, but not acini. Furthermore, the genetic deletion of NHERF-1 greatly 

reduced the localisation of CFTR in the luminal ductal cell membrane and also decreased 

both in vitro and in vivo pancreatic bicarbonate and fluid secretion. Both basal and cAMP-

stimulated secretion was reduced in the transgenic animals, but this effect was not caused 

by alterations in pancreatic blood flow. The diminished ductal secretion in NHERF-1-KO 

mice was associated with increased severity of necrotizing AP in two independent models 

of the disease. Importantly, early acinar events associated with AP, such as intracellular 

Ca
2+

 signaling, trypsinogen and NF- B activation were unaltered by deletion of NHERF-1, 

but late events such as apoptosis and necrosis were increased in the KO animals. Notably, 

deletion of NHERF-1 had no deleterious effect on functions of acinar and inflammatory 

cells independent of AP, indicating that increased severity of the disease is specifically due 

to impaired ductal secretion.  

NHERF-1 has been identified as a CFTR-interacting PDZ domain protein, which is 

involved in the apical targeting of CFTR, signal complex formation with a variety of 

receptors, and possibly the interaction with other membrane transport proteins, in a cell- 

and signal-specific manner [26, 29-34]. In our study, the absence of NHERF-1 greatly 

reduced CFTR abundance in the apical membrane of pancreatic ducts, whereas CFTR 

mRNA expression was unaltered. The gross mislocalization of CFTR resulted in decreased 

ductal fluid and HCO3
-
 secretion. Consistent with our findings, mutations in CFTR that 

cause cystic fibrosis, impair the stability of the Cl
-
 channel in the plasma membrane and 

also result in markedly reduced bicarbonate and fluid secretion [35]. Our study does not 

differentiate between a loss of HCO3
-
 and fluid secretion via CFTR or via a disruption 

between CFTR and other transporters involved in pancreatic bicarbonate and fluid 
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secretion, such as SLC26 anion exchangers. Of note, both DRA and PAT-1 are known to 

have PDZ domain binding motifs [4], and to bind to NHERF-1 [8, 36, 37]. In addition, 

activation of CFTR by SLC26 transporters was shown to be facilitated by PDZ ligands [3]. 

The reduced expression of CFTR in the apical membrane in NHERF-1-KO pancreatic 

ducts thus will likely decrease the activities of PAT-1 and DRA [38, 39]. 

Several groups have shown that binding of CFTR to NHERF may regulate CFTR 

activity. Two studies [7, 40] have demonstrated that NHERF-1 is required for full 

activation of transepithelial Cl
-
 and HCO3

-
 secretion by cAMP- and cGMP-linked agonists 

in the duodenum and jejunum. This reduced activation of anion currents in NHERF-1-KO 

mice was independent of the total amount of CFTR expression in epithelial cells, and 

appeared to be due to a defect in apical targeting and/or retention of CFTR [40]. In 

addition, the NHERF-1 assisted formation of receptor-transporter signaling complexes in 

the apical membrane were disrupted [7]. A recent study has shown that CFTR activity is 

also dependent on NHERF-1 regulated cAMP compartmentalization and local protein 

kinase A activity in human airway epithelial cells [41]. The particularly high expression of 

NHERF-1 and CFTR in pancreatic ducts is quite different from that found in the small 

intestine [42, 43]. These findings suggest to us that CFTR-NHERF-1 interaction may be 

crucial to pancreatic ductal secretion. 

Accumulating evidence suggests that pancreatic ducts not only have prominent 

roles physiologically, but also pathophysiologically. It is well known that insufficient 

electrolyte and fluid secretion by ductal cells in cystic fibrosis (caused by mutations in the 

CFTR gene) leads to destruction of acini [9]. Numerous CFTR mutations predispose to 

chronic pancreatitis [44]. Pancreatic biopsies from patients with autoimmune pancreatitis 

showed mislocalization of CFTR in the ducts and secretin-stimulated fluid and HCO3
-
 

secretion was reduced in these patients [45]. Until quite recently, the pathophysiological 
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relevance of pancreatic ducts in AP has been neglected. It is commonly assumed that the 

primary target of all stressors is the acinar cells since they are damaged in all forms of AP. 

However, both clinical and experimental data suggest that pancreatic ductal cells may also 

have fundamental roles in the development of AP [11]. Cavesto et al [10] have found 

statistically significant association of CFTR gene mutations in patients with recurrent AP. 

Pancreatic fluid secretion is greatly increased at the initiation of AP [46]. Also, in vitro 

administration of agents inducing AP such as bile acids, viruses or ethanol to pancreatic 

duct cells stimulate bicarbonate secretion
 
[11, 16]. Our hypothesis is that ductal secretion 

serves to defend the pancreas by washing out toxic agents such as activated digestive 

enzymes. If this ductal defence mechanism is insufficient, ductal secretion will be inhibited 

and the harmful enzymes cannot leave the pancreas. The beneficial effect of ductal fluid 

hypersecretion is indicated by the fact that secretin, a major mediator of pancreatic ductal 

secretion, has been shown to protect against cerulein-induced AP [47, 48]. Furthermore, 

the severity of AP in galanin (a neuropeptide which has a potent inhibitory effect on 

pancreatic HCO3
-
 secretion) KO mice was significantly reduced compared to WT 

littermates [49]. 

A striking finding of this study was that the severity of cerulein-induced acute 

necrotizing pancreatitis was significantly greater in animals lacking NHERF-1 (and thus 

reduced pancreatic ductal secretion), which suggests that normal ductal secretion in WT 

mice protects acinar cells against necrosis and apoptosis. This effect was independent of a 

change in cerulein sensitivity of acinar cells, and shows that NHERF-1 expression is not 

necessary for cholecystokinin receptor function. Furthermore, we did not find any 

significant differences in intracellular Ca
2+

 signaling and pancreatic activation of 

trypsinogen and NF- B in mice lacking NHERF-1. Taken together, the latter findings 

show that early acinar events leading to AP are unaltered by NHERF-1 expression. Similar 
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to our findings, another group has shown that transgenic mice with reduced CFTR 

expression were more susceptible to cerulein-induced AP [50, 51]. As CFTR-KO mice 

exhibited constitutive overexpression of pancreatic proinflammatory mediators, this is not 

that surprising. However, we did not find any differences in basal pancreatic 

proinflammatory parameters between WT and NHERF-1-KO mice. Furthermore, in the 

studies by DiMagno et al, only the cerulein-induced AP model was tested and the acinar- 

vs. ductal-specific effects were not investigated. To confirm that the effect of diminished 

secretion on AP severity was not specific to the cerulein-induced model, we also 

determined disease severity in the clinically more relevant Na-taurocholate model [52]. 

Similar to the results observed in the cerulein-induced pancreatitis model, the degree of 

acinar cell damage in Na-taurocholate-induced AP was significantly greater in NHERF-1-

KO vs. WT mice. Notably, the lower degree of necrosis was not necessarily accompanied 

by markedly reduced levels of inflammatory infiltration. Interestingly, leukocyte 

infiltration was higher in NHERF-1-KO vs. WT mice injected intraductally with PS. The 

latter data indicate that KO animals may even be more sensitive to increased ductal 

pressure.  

Importantly, NHERF-1 expression did not influence the degree of cell damage 

caused by high concentrations of cerulein or sodium-taurocholate in isolated acini. These 

data indicate that the general deletion of NHERF-1 does not affect acinar cell damage 

caused by the latter agents. Therefore, it is likely that factors other than variations in the 

direct effects of cerulein or sodium-taurocholate on acinar cells are responsible for the 

differences in AP severities of WT and NHERF-1-KO mice.  

 

CONCLUSIONS 
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Our results show for the first time that NHERF-1 plays a critical role in regulating 

the apical localization of CFTR in mouse pancreatic duct cells and ductal secretion which 

significantly influences the severity of acute necrotizing pancreatitis. Importantly, we 

provide in vivo data that strongly suggests the involvement of pancreatic ductal secretion in 

the pathogenesis of AP. The results obtained from this study may eventually open up new 

therapeutic possibilities (targeting ductal secretion) in the treatment of pancreatic 

inflammation which have to date mainly focused on acinar cells. 
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FIGURES 

 

 

Fig. 1. mRNA expression of CFTR, DRA, PAT1, NHERF-1, NHERF-2 and NHERF-3 

in isolated mouse pancreatic ducts. Total RNA was prepared from isolated interlobular 

pancreatic ducts of wild-type (WT) mice (n=6) after overnight culture and mRNA 

expression of transporters/NHERF1-3 was measured by real-time RT-PCR. Data are 

shown as means ± SEM. 
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Fig. 2. NHERF-1 and CFTR staining in wild-type and NHERF-1-knock-out 

pancreata.  

Representative immunohistochemical staining of NHERF1 (A, B, G, H) and CFTR (C, I) 

in the pancreas of WT and NHERF-1-knock-out (KO) mice. NHERF-1 was localized in 

the apical membrane of intra- and interlobular duct cells; only weak staining was noted in 

some acinar cells of WT mice (A, B). No or weak staining was detected in NHERF-1-KO 

mice (G, H). CFTR staining in the pancreas of WT and NHERF-1-KO mice showed that 

apical (white arrow) CFTR localization (green) was reduced in NHERF-1-KO (I) vs. WT 

(C) ducts. Red staining shows F-actin expression (D, J). E, K show merged images of 

CFTR and F-actin (yellow color indicates co-localization). F, L are phase contrast pictures. 

Scale bar = 50 μm. 
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Fig. 3. Pancreatic ductal HCO3
-
 secretion is decreased in NHERF-1-knock-out mice. 

Panels A-C show representative intracellular pH traces of isolated pancreatic ducts bathed 

in standard HCO3
-
/CO2 solution demonstrating the effects of 0.2mM amiloride and 0.2mM 

H2DIDS administered from the basolateral membrane (A), the recovery from alkalosis via 

administration of 20mM NH4Cl (B), or after luminal Cl
-
 removal (C). Bar charts show 

summary data for the base fluxes [-J(B
-
/min)] after exposure of the transport inhibitors (D), 

20mM NH4Cl (E) or luminal Cl
-
 removal (F) in WT (closed columns) and NHERF-1-KO 

(open columns) mice. Means  SEM are from 30-50 regions of interest from 5-8 ducts.  

a: P<0.05 vs. the respective WT group. 
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Fig. 4. Fluid secretion is decreased in NHERF-1-knock-out vs. wild-type mice. A and 

B show changes in the relative luminal volume of pancreatic ducts from WT (black line, 

n=8 from 3 animals) and NHERF-1-KO (gray line, n=8 from 3 animals) mice. Initially, 

ducts were perfused with HEPES-buffered solution, then perfusion was switched to 

standard HCO3
−
/CO2-buffered solution (A). In some cases the ductal secretion was 

stimulated with 5 μM forskolin (B). Panel C shows the volume of pancreatic juice 

collected in vivo under basal (secretin -) and secretin-stimulated (secretin +, 0.75 CU/kg 

i.v.) conditions from WT (closed columns) and NHERF-1-KO (open column) mice 

anesthetized with urethane. Means  SEM are from 5-6 animals. P<0.05 vs. a: the 
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respective secretin– group or b: vs. the WT secretin+ group. N.D.: not detected in case of 

NHERF-1-KO mice. 
 

 

Fig. 5. Histopathologic changes of the pancreas in response to intraperitoneal 

administration of cerulein in wild-type and NHERF-1-knock-out mice. Acute 

pancreatitis was induced by administering 10 hourly i.p. injections of cerulein (50 μg/kg 

per injection, cerulein+). Control mice were given PS (cerulein-) instead of cerulein. Mice 

were exsanguinated through the inferior vena cava 12 h after the first i.p. injection. (A)The 

pictures show representative light micrographs (H&E staining) of the pancreata of WT 

control (a) and cerulein-treated (b-c) and NHERF-1-KO control (d) and cerulein-treated 

(e-f) mice. Scale bar=100μm. The bar diagrams show the rates of pancreatic necrosis (B) 

(n=9-10) and apoptosis (C) (n=4-6). Data are shown as means SEM. P<0.05 vs. a: the 

respective control group or b: vs. the WT cerulein+ group. WT (closed columns), NHERF-

1-KO (open columns). 
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Fig. 6. Severity of cerulein-induced acute pancreatitis and pancreatic trypsinogen 

activation in wild-type and NHERF-1-knock-out mice. Acute pancreatitis was induced 

in WT (closed columns) and NHERF-1-KO (open columns) mice by administering 

1x50μg/kg (for measurement of trypsin activity) or 10 hourly i.p. injections of 50 μg/kg 

cerulein (cerulein+). Control mice were given PS (cerulein-) instead of cerulein. Mice were 

exsanguinated through the inferior vena cava 0.5h (in case of measurement of trypsin 

activity) or 12h after the first i.p. injection. The bar diagrams show serum amylase activity 

(A), the pancreatic myeloperoxidase (MPO) activity (B), heat shock protein-72 (HSP72) 

expression (C) and trypsin (D) activities. Data are shown as means  SEM, n=4-6. P<0.05 

vs. a: the respective control group or b: vs. the WT cerulein+ group. N.D.: not detected. 
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Fig. 7. Histopathologic changes of the pancreatic head in response to intraductal 

administration of physiological saline and 4% sodium-taurocholate in wild-type and 

NHERF-1-knock-out mice. The diagrams show representative light micrographs (H&E 

staining) of pancreata of WT (A, C) and NHERF-1-KO (B, D) mice 24 h after intraductal 

treatment with 50μl (10μl/min) PS (4%TC-) (A, B) or 4% Na-taurocholate (4%TC+) (C, 

D). Inflammatory infiltration was significantly higher in NHERF-1-KO (A) vs. WT (B) 

PS-treated mice. Intraductal infusion with 4% Na-taurocholate caused the development of 

severe acute necrotizing pancreatitis in WT (C) and NHERF-1-KO (D) mice. The bar 

diagram shows the rates of pancreatic necrosis (E) in the various groups. Data are shown 

as means  SEM, n=5-7. P<0.05 vs. a: the respective control group or b: vs. the WT 

4%TC+ group. N.D.: not detected in the WT group. Scale bar = 200 μm. WT (closed 

columns), NHERF-1-KO (open columns). 
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Fig. 8. NHERF-1 expression does not influence the degree of cell damage caused by 

high concentrations of cerulein or sodium-taurocholate in isolated acinar cells. Acinar 

cells were isolated from WT and NHERF-1-KO mice by collagenase digestion. In vitro 

cell damage was induced by the administration of high concentrations of 10
-8 

M cerulein 

(cerulein+) for 2h or 1 mM Na-taurocholate (TC+) for 3h. Alternatively, cells were treated 

with the vehicle for cerulein (cerulein-) or Na-taurocholate (TC-) for the same time-

periods. Cell viability was determined by trypan blue staining (A, B) and measurement of 

lactate dehydrogenase (LDH) release (C, D) from acini. Data are shown as means  SEM, 

n=7. P<0.05 vs. a: the respective control group. WT (closed columns), NHERF-1-KO 

(open columns). 
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TABLE 

 

 

 

Table 1. Histopathological changes in response to intraductal infusion of 4% sodium-

taurocholate and physiological saline in wild-type and NHERF-1-knock-out mice. WT 

and NHERF-1-KO mice were infused intraductally with 4% Na-taurocholate or 

physiological saline (PS, control) and were sacrificed after 24h. Histological scores are 

shown as means  SEM for 5-7 animals. P<0.05 vs. a: the respective PS-treated group or b: 

vs. the WT PS-treated group. 
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SUPPLEMENTARY MATERIALS AND METHODS 

 

Materials 

All laboratory chemicals were obtained from Sigma-Aldrich (Munich, Germany) 

unless indicated otherwise. Forskolin was from Tocris Bioscience (Bristol, UK), purified 

CLSPA collagenase was from Worthington Biochemical Corporation (Lakewood, NJ, 

USA) and cerulein was from American Peptide Company (Sunnyvale, CA, USA). 

H2DIDS, Superscript III RT, TrypLE™ Express solution, Alexa Fluor 488-labelled goat 

anti-rabbit IgG, phalloidin-633 and SlowFade Gold antifade reagent were purchased from 

Invitrogen Corporation (Carlsbad, CA, USA). CP-Ketamine (10%) and CP-Xylazine (2%) 

were obtained from CP-Pharma-Handelsgesellschaft MBH (Burgdorf, Germany). Urethane 

was from Reanal (Budapest, Hungary) and pentobarbital was from Bimeda MTC 

(Cambridge, Canada). DirectPCR (Tail) reagent was obtained from Viagen Biotech Inc. 

(Los Angeles, CA, USA). NucleoSpin RNA XS Total RNA Isolation Kit was from 

Machery & Nagel (Düren, Germany). MesaGreen was from Eurogentec (Seraing, Liège, 

Belgium). CellTak was purchased from Becton Dickinson Labware (Bedford, 

Massachusetts, USA). Background reducing buffer was from DAKO (Glostrup, Denmark). 

Mr Pink rabbit polyclonal antibody against human CFTR provided by W.E. Balch, Scripps 

Research Institute (La Jolla, CA, USA). An IL-1β ELISA kit was purchased from R&D 

Systems (Minneapolis, MN, USA). Laboratory chow was from Biofarm (Zagyvaszántó, 

Hungary). Dulbecco's Modified Eagle Medium (DMEM) and heat-inactivated fetal bovine 

serum were purchased from Lonza (Basel, Switzerland). Amylase and lactate 

dehydrogenase activities were determined using commercial kits (DIALAB GmbH, 

Neudorf, Austria and Diagnosticum ZRt., Budapest, Hungary, respectively). Isolation of 

polymorphonuclear cells was performed by Polymorphprep (Axis-Shield, Oslo, Norway). 

http://en.wikipedia.org/wiki/Seraing
http://en.wikipedia.org/wiki/Li%C3%A8ge
http://en.wikipedia.org/wiki/Belgium
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Apoptotic cells were quantitated by using an In Situ Cell Death Detection Kit from Roche 

Diagnostics (Mannheim, Germany). Concentrated stock solutions of forskolin (100mM), 

cerulein (4mM) and amiloride (50mM) were prepared in dimethylsulfoxide. 2% stock 

solution of dextran was dissolved in physiological saline (PS). 

 

Maintenance and genotyping of mice 

The mice were housed in a standard animal care facility with a 12-h light/12-h dark 

cycle and were allowed free access to water and standard laboratory chow. Genotyping of 

mice was performed after DNA extraction from tail samples using the DirectPCR (Tail) 

reagent supplemented with proteinase K. The primer sequences for genotyping NHERF-1 

mice were as follows: wild-type forward, 5’-TCGGGGTTGTTGGCTGGAGAC-3’; 

common reverse, 5’-AGCCCAACCCGCACTTACCA-3’; KO forward, 5’-

AGGGCTGGCACTCTGTCG-3’. Amplicons generated by PCR were 294 bp for the WT 

gene and 242 bp for the KO gene.  

 

mRNA expression of CFTR, PAT-1, DRA, NHERF-1, NHERF-2 and 

NHERF-3 in mouse pancreatic ducts 

The primer sequences for CFTR Homolog NM_021050 are forward: 5´-

TTCTTCACGCCCCTATGTCGA-3´ reverse: 5´-GCTCCAATCACAATGAACACCA-3´ 

(PCR product length: 145 bp), for slc26a3 (DRA) NM_021353 are forward: 5´-

TTCCCCTCAACATCACCATCC-3´, reverse: 5´-GTAAAATCGTTCTGAGGCCCC-3´ 

(PCR-product length: 110 bp), for NHERF-2 NM_023449:2 are forward: 5´-

TAGTCGATCCTGAGACTGATG-3´, reverse: 5´-ATTGTCCTTCTCTGAGCCTG-3´ 

(PCR-product length: 173 bp), and for NHERF-3 NM_021517:1 are forward: 5´- 

TGACGGTGTGGTGGAAATG-3´, reverse: 5´-TGGCAGTAAAGAAGTGGAGAC-3´ 
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(PCR-product length: 117 bp) were designed with “Primer Express” (Applied Biosystems, 

Foster City, CA, USA). The primers sequences for slc26a6 (putative anion transporter-1, 

PAT-1) and NHERF-1 were published before [1, 2]. Real-time polymerase chain reactions 

(qRT-PCR) were carried out using MesaGreen in the Applied Biosystems 7300 Real-time 

PCR System. PCR extension was performed at 60 °C with 40 repeats. Data were analyzed 

using Sequence Detection Software 1.2.3 (Applied Biosystems) and exported to Microsoft 

Excel. Relative quantification was carried out using β-actin as a reference gene [3]. 

 

Immunohistochemistry 

Briefly, for NHERF-1 staining, paraformaldehyde-fixed, paraffin-embedded tissue 

sections (5 μm) from mice of different genotypes were prepared on the same slide. After 

deparaffinization with xylene, sections were treated with 0.01 M sodium citrate solution at 

100 °C for 10 min. For CFTR staining, pancreata were fixed in 2% paraformaldehyde (in 

PBS). Fixed tissue was rinsed with PBS and transferred to 30% sucrose in PBS overnight. 

The tissue was embedded in tissue-freezing medium (TissueTec O.C.T., Sakura). 

Cryosectioning was done with a microtome cryostat at −20 °C and 10 μm thick sections 

were collected on microscope slides (SuperFrost Plus, Menzel-Gläser, Germany). 

Pancreatic sections were incubated sequentially with PBS for 5 min, washing buffer 

of PBS with 50 mM NH4Cl twice for 10 min each, background reducing buffer for 20 min 

and 5-10% goat serum for 30 min for blocking and incubated with rabbit anti-NHERF-1 

(1:500) [4] antibody or Mr. Pink rabbit polyclonal antibody against human CFTR (1:100) 

in background reducing buffer overnight at 4 °C. Washing 4 times for 5 min in the washing 

buffer was followed by secondary antibody (Alexa Fluor 488-labelled goat anti-rabbit IgG) 

incubation for 1 h at room temperature at a dilution of 1:300-1:500 in background reducing 

buffer. After 2-4 washes for 5 min each, in case of NHERF-1 staining, the sections were 
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treated with 5U/ml phalloidin-633 in PBS with 1% bovine serum albumin, 0.2% Triton X-

100 for 30 min which was followed by washes with washing buffer (six times). After 

washing, each cover slide was mounted with SlowFade Gold antifade reagent with DAPI, 

and slides were imaged on a confocal microscope (TCS SP2; Leica, Wetzlar, Germany). 

Excitation wavelengths used were 405, 488, and 633 nm, and emission was taken at 415–

450, 490–540, and 560–700nm for detection of DAPI, Alexa Fluor 488, and phalloidin 

633, respectively. 

 

Solutions used for the determination of pancreatic ductal HCO3
-
 and 

fluid secretion in vivo 

The HEPES-buffered solution contained (in mM): 130 NaCl, 5 KCl, 1 CaCl2, 1 

MgCl2, 10 glucose and 10 Na-HEPES and its pH was set to 7.4 with HCl at 37 °C. The 

standard HCO3
−
-buffered solution contained (in mM): 115 NaCl, 25 NaHCO3, 5 KCl, 1 

CaCl2, 1 MgCl2, 10 Glucose. In the NH4
+
 pulse experiments in HCO3

-
-buffered soultion, 

20 mM NaCl was repleaced with NH4Cl. The Cl
-
-free HCO3

-
 solution contained (in mM): 

25 NaHCO3, 115 Na-gluconate, 1 Mg-gluconate, 6 Ca-gluconate, 2.5 KH2-sulfate and 10 

glucose. The HCO3
-
-containing solutions were equilibrated with 95% O2 and 5% CO2 to 

maintain pH at 7.4 at 37 °C.  

 

Determination of HCO3
-
 efflux 

To determine the HCO3
-
 efflux across the apical membrane of the pancreatic ductal 

epithelia, we used three methods: inhibitory stop, alkali load and luminal Cl
-
 withdrawal. 

The measured rates of pHi change (dpH/dt) were converted to J(B
-
) using the equation: 

J(B
-
)=(dpH/dt)xβtotal where βtotal is the total buffering capacity of the cells. J(B

-
) reflects the 

rate of HCO3
-
 efflux (i.e. secretion) on luminal Cl

-
/HCO3

-
 exchangers [5]. 
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Measurement of fluid secretion  

In vitro 

Fluid secretion into the closed luminal space of the cultured pancreatic ducts was 

analysed using a swelling method developed by Fernandez-Salazar et al [6]. Briefly, the 

ducts were transferred to a perfusion chamber (0.45 ml) and were attached to a coverslip 

precoated with CellTak in the base of the chamber. Bright-field images were acquired at 1 

min intervals using a CCD camera (CFW 1308C, Scion Corporation, Frederick, MD, 

USA). The integrity of the duct wall was checked at the end of each experiment by 

perfusing the chamber with a hypotonic solution (standard HEPES-buffered solution 

diluted 1:1 with distilled water). Digital images of the ducts were analysed using Scion 

Image software (Scion Corporation, Frederick, MD, USA) to obtain values for the area 

corresponding to the luminal space in each image. 

In vivo 

Mice were anesthetized with 1.5 g/kg urethane by i.p. injection. The body 

temperature of mice was maintained by placing the animals on a warm pad (37°C) during 

the experiments. The abdomen was opened, and the lumen of the common biliopancreatic 

duct was cannulated with a blunt-end 31-gauge needle. Then the proximal end of the 

common duct was occluded with a microvessel clip to prevent contamination with bile, and 

the pancreatic juice was collected in PE-10 tube for 30 min. Using an operating 

microscope, the jugular vein was cannulated for i.v. administration of secretin (0.75 

CU/kg) and the pancreatic juice was collected for an additional 120 min.  

 

Isolation of pancreatic acini 
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Mouse pancreatic acinar cells were isolated according to the method of Pandol et al 

[7]. Briefly, mice were anaesthetized with 85 mg/kg pentobarbital by i.p. injection. The 

pancreas was quickly removed, and was cleaned from fat and lymph nodes. The 

extracellular solution for cell isolation contained (in mM) 120 NaCl, 5 KCl, 25 HEPES, 2 

NaH2PO4, 2 CaCl2, 1 MgCl2, 5 pyruvate, 4 Na-fumarate, 4 Na-glutamate, 12 mM D-

glucose, as well as 0.02% (wt/vol) soybean trypsin inhibitor, 0.2% (wt/vol) bovine serum 

albumin, 0.025% (vol/vol) minimal essential amino acids and 0.01% (vol/vol) vitamins 

eagle. The pancreas was inflated with 5ml of extracellular solution containing collagenase 

(105 U/ml) then subjected to three successive 20-min incubations in this solution with 

vigorous shaking at 37 °C. For each 20-min incubation, the extracellular solution 

containing collagenase was replaced with a fresh oxygenated aliquot. Acinar cells were 

then washed three times with extracellular solution, followed by resuspension in Medium 

199 and incubated for 30 min. Acinar cells were used for experiments thereafter. Cells 

were incubated with cerulein (10
-8

-10
-12

 M), 1 mM Na
+
-taurocholate or physiological 

saline. Amylase secretion was determined in response to cerulein and is given as the 

percentage of total amylase content. The extent of cytotoxicity (in response to 10
-8

 M 

cerulein and 1 mM Na
+
-taurocholate) as quantified by trypan-blue staining and by 

measuring the amount of lactate dehydrogenase (LDH) released into the incubation 

medium of acinar cells. LDH activity was measured spectrophotometrically as the 

production of NAD from pyruvic acid and NADH. Values for LDH release are presented 

as the percentage of total LDH activity (medium/medium+cells). 

 

Isolation of polymorphonuclear cells and bacterial killing assay 

Mouse polymorphonuclear cells (PMNs) were isolated from freshly drawn, 

heparinized blood using Polymorphprep (Axis-Shield) according to the manufacturer’s 
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instructions. Isolated PMNs were immadiately plated in round-bottom 96-well plastic cell 

culture plates (10
5
 PMNs/well) in DMEM supplemented with 10% autologous serum. E. 

coli bacteria were added to the cultures at an effector/target ratio of 1:5. As a control, the 

same number of bacterial cells were incubated in the appropriate cell culture medium 

without PMNs. After a 1 h incubation period, PMNs were treated with distilled water and 

the lysates were plated on LB agar plates and incubated overnight at 37 °C. Then, the 

number of colony forming units was determined and the efficiency of killing was 

calculated as follows: (number of live E. coli cells in control wells – number of live E. coli 

cells in co-cultures) / number of live E. coli cells in control wells x 100. 

 

Culturing and FITC labeling of E. coli bacteria 

E. coli (ATCC 25922) bacteria were grown overnight in LB medium (1% NaCl, 1% 

tryptone, 0.5% yeast extract). Cells were harvested by centrifugation, washed twice with 

PBS, counted in a Bürker-chamber and adjusted to the proper concentration used in 

subsequent experiments. For phagocytosis assay, E. coli were heat-killed (15 min, 100 °C), 

and incubated in hydrogen carbonate buffer (50 mM NaHCO3, 100 mM NaCl) containing 

200 µg/ml fluorescein isothiocyanate (FITC). After 1 h incubation, cells were washed 

extensively with PBS and adjusted to the proper concentration used in subsequent 

experiments. 

 

Isolation of peritoneal macrophages and phagocytosis assay 

Mouse peritoneal macrophages were obtained by lavage [8] and plated in 24-well 

(8x10
5
 cells/well) flat-bottomed plates in DMEM supplemented with 10% heat-inactivated 

fetal bovine serum and 1% 100x penicillin-streptomycin solution. Macrophages were 

allowed to attach for 2 h, and their medium was replaced therafter.  
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Macrophages were co-cultured with the FITC-labeled E. coli at a ratio of 1:5 for 1 h 

to allow phagocytosis. After the incubation period, the cell culture medium was removed, 

and macrophages were washed gently with PBS. Subsequently, 500 µl TrypLE™ Express 

solution was added to the cultures and incubated for 45 min at 37 °C in order to detach 

cells from the bottom of cell culture plates. Macrophages were then gently resuspended to 

a single cell suspension by pipetting, harvested by centrifugation, resuspended in 400 µl 

PBS and measured on a FACSCalibur instrument (BD Biosciences, San Jose, CA, USA). 

Experiments were performed in triplicate. Data were analysed using the FlowJo software.  

 

Intravital video microscopy and data analysis 

A separate experimental series was performed to assess the possible consequences 

of secretin treatment on the microcirculation of the pancreas in mice anaesthetized with 1.5 

g/kg urethane i.p. (n=3-4 in each group). Using an operating microscope, the right jugular 

vein was cannulated (with polyethylene tubing ID: 0.28 mm, OD: 0.61 mm, Smiths 

Medical International Ltd, Kent, UK) for i.v. administration of secretin and the 

fluorescence marker used for the intravital microscopic examination. The animals were 

placed in a supine position on a heating pad to maintain the body temperature between 36 

and 37 
o
C, and a midline laparotomy performed. The majority of the intestines were 

exteriorized to gain good assess to the pancreas which was carefully placed on a specially 

designed stage and covered with a microscopic cover slip. The rest of the exteriorized 

abdominal organs were also covered with Saran wrap to minimize the fluid and heat loss.  

The microcirculation of the pancreas was visualized by intravital fluorescence 

microscopy (Zeiss Axiotech Vario 100HD microscope, 100 W HBO mercury lamp, 

Acroplan 20x water immersion objective) using a single i.v. bolus of fluorescein 

isothiocyanate-labeled dextran (150 kDa; 75 µl/animal for plasma labeling). The 
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microscopic images were recorded with a charge-coupled device video camera (AVT 

HORN-BC 12; Aalen, Germany) attached to an S-VHS video recorder (Panasonic AG-MD 

830, Budapest, Hungary) and a personal computer. Video images of the microcirculatory 

network of the pancreatic tail were recorded at baseline and 20 min after the i.v. 

application of secretin. 

Plasma velocity in the pancreatic capillaries was assessed off-line by frame-to-

frame analysis of the videotaped images, using image analysis software (IVM, Pictron 

Ltd., Budapest, Hungary). Average velocity values were measured in 3-5 separate 

capillaries per 3-5 microscopic fields in each animal. 

 

Sodium-taurocholate-induced pancreatitis  

Na-taurocholate was administered intraductally as described previously by Perides 

et al [9]. Briefly, anesthesia was achieved with a 125 mg/kg ketamine and 12.5 mg/kg 

xylazine cocktail. After median laparotomy, the duodenum was punctured with a 0.4mm 

diameter needle connected to polyethylene tubing. Leakage of Na-taurocholate was 

prevented by temporary ligature of the biliopancreatic duct, while the proximal bile duct 

was temporarily occluded with a microvessel clip. 4% Na-taurocholate or PS solution was 

infused with an infusion pump (10 μl/min) (TSE System GmbH, Bad Homburg, Germany) 

for 5 min. After the infusion, the microvessel clip, the injection needle, as well as the distal 

ligature were removed, and the abdominal wall and the skin were closed separately. Mice 

were sacrificed 24h later. 

 

Sacrifice of animals, sample processing 

Mice were anesthetized with pentobarbital (85 mg/kg i.p.). The animals were 

exsanguinated through the inferior vena cava and the pancreas was quickly removed, 
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cleaned from fat and lymph nodes and frozen in liquid nitrogen and stored at -80 °C until 

use for assays or put into 6% neutral formaldehyde solution for histologic examinations. In 

case of taurocholate-induced pancreatitis, the pancreas was removed with attached 

duodenum and spleen for histologic examinations. Only the pancreatic head was used for 

laboratory measurements. The pancreatic head (defined as the portion of the pancreas 

located within 5 mm of the lesser duodenal curvature) was separated from the pancreatic 

body/tail regions.  

The pancreas fixed in 6% neutral formaldehyde solution was subsequently 

embedded in paraffin. Sections were cut at 4µm thickness and stained with hematoxylin 

and eosin. The slides were coded and read by two independent observers who were blind to 

the experimental protocol. In case of taurocholate-induced pancreatitis only the pancreatic 

head (defined as the portion of the pancreas located within 5 mm of the lesser duodenal 

curvature) was investigated. The observers investigated 4-6 low-power fields in the head of 

the pancreas. 
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SUPPLEMENTARY FIGURES 

 

Supplementary figure 1. Specificity of Mr Pink rabbit polyclonal CFTR antibody 

tested in the pancreas of CFTR-knock-out mouse. Representative immunohistochemical 

stainings in the pancreas of WT (A-D) and CFTR-KO (E-H) mice. KO mice showed no 

apical-specific staining of CFTR (green) in the KO (E) vs. the WT (A) tissue. Red color 

indicates the staining of F-actin (B, F). The nuclei are stained with DAPI (blue) (C, G). D 

and H show merged images of CFTR, F-actin and nucleus. Scale bar=50 μm. 
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Supplementary figure 2. Pancreatic microcirculation shows similar changes in wild-

type and NHERF-1-knock-out mice. The microcirculation of the pancreatic tail was 

visualized by intravital fluorescence microscopy (see supplementary methods) using a 

single i.v. bolus of fluorescein isothiocyanate-labelled dextran for plasma labeling in wild-

type (closed columns) or NHERF-1-KO (open columns) mice anesthetized with urethane 

(1.5 g/kg i.p.). Video images were recorded at baseline (secretin -) and 20 min after the i.v. 

administration of secretin (0.75 CU/kg, secretin +). 20min after the i.v. injection of 

secretin, significantly lower plasma velocity values were observed in both experimental 

groups. These reduced microcirculatory velocities, however, were not due to the effect of 

secretin, but most likely resulted from the 20-min exteriorization period of the pancreas, 

since a similar degree of reduction (by about 10%) in plasma velocities was also observed 

in time-matched pilot studies where mice were treated with PS vehicle (data not shown). a: 

P<0.05 vs. the respective secretin – group. 
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Supplementary figure 3. Effects of cerulein administration on pancreatic IκB-α, IκB-

β, interleukin-1β in wild-type and NHERF-1-knock-out mice. Acute pancreatitis was 

induced by administering 1x50 μg/kg (for measurements of pancreatic IκB-α, IκB-β levels) 

or 10 hourly (A-C) i.p. injection of 50 μg/kg cerulein (cerulein+) in WT (closed columns) 

and NHERF-1-KO (open columns) mice. Control animals were given PS (cerulein-) 

instead of cerulein. Mice were sacrificed by exsanguination through the inferior vena cava 

0.5h (in case of administration of 1x50 μg/kg cerulein) or 12 h after the first i.p. injection. 

The bar diagrams and the representative Western immunoblot analysis (A, B) of protein 

lysates (40 μg/lane) from the pancreas of mice, showing the expression of IκB-α (A) and 

IκB-β (B). Equal loading/transfer of proteins was checked by Ponceau S staining of the 

nitrocellulose membrane. IL-1β expression (C) was determined from the pancreatic 

homogenates by ELISA. Means ± SEM for 4-6 animals are shown. P<0.05 vs. a: the 

respective control group or b: vs. the WT cerulein+ group. N.D.: not detected. 



 

49 

 

 

 

Supplementary figure 4. Histopathologic changes of the pancreas in response to 

intraperitoneal administration of cerulein in wild-type and NHERF-1-knock-out 

mice. Acute pancreatitis was induced in WT (closed columns) and NHERF-1-KO (open 

columns) mice by administering 7 hourly i.p. injections of cerulein (50 μg/kg per 

injection). The mice were sacrificed by exsanguination through the inferior vena cava 12 h 

after the first i.p. injection. The diagrams show representative light micrographs 

(hematoxylin and eosin staining) of the pancreata of cerulein-treated WT (A) and NHERF-

1-KO (B) mice. The bar diagrams show the rates of pancreatic necrosis (C) (n=8) and 

apoptosis (D) (n=4). Data are shown as means  SEM. a: P<0.05 vs. the WT group. Scale 

bar=100 μm. 

 



 

50 

 

 

 
 

Supplementary figure 5. Severity of cerulein-induced acute pancreatitis in wild-type 

and NHERF-1-knock-out mice. Acute pancreatitis was induced in WT (closed columns) 

and NHERF-1-KO (open columns) mice by administering 7 hourly i.p. injections of 50 

μg/kg cerulein. The mice were sacrificed by exsanguination through the inferior vena cava 

12 h after the first i.p. injection. There was no significant difference in serum amylase 

activity of WT and NHERF-1-KO mice (A). Pancreatic MPO activity was significantly 

increased in NHERF-1-KO vs. WT mice (B). No significant difference was detected 

between WT and NHERF-1-KO mice in expression of pancreatic I B-α (C). The 

expression of pancreatic I B-β was significantly lower in NHERF-1-KO vs. WT mice (D). 

The expression of pancreatic IL-1β (E) and HSP72 (F) were significantly higher in 

NHERF-1-KO vs. WT animals. Data are shown as means  SEM, n=4-6. a: P<0.05 vs. the 

respective control group. 
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Supplementary figure 6. Acinar sensitivity to cerulein is unaltered by NHERF-1 

expression. To determine the sensitivity of dispersed acinar cells (see supplementary 

methods) of WT (black line) and NHERF-1-KO (grey line) mice to cerulein, amylase 

secretion was determined in response to various concentrations (10
-12

-10
-8

 M) of cerulein 

for 30 min. Amylase secretion was calculated as the percent of total release 

(medium/medium+cells). a: P<0.05 vs. 0 M cerulein, n=4-6 animals. 
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Supplementary figure 7. Severity of sodium-taurocholate-induced acute pancreatitis 

in wild-type and NHERF-1-knock-out mice. WT and NHERF-1-KO mice were treated 

as described in Figure 8. The mice were sacrificed by exsanguination through the inferior 

vena cava 24 h after the infusion. There were no significant differences in serum amylase 

(A) and pancreatic MPO (B) activities between Na
+
-taurocholate-treated WT (closed 

columns) and NHERF-1-KO (open columns) mice. There was no significant difference in 

the levels of pancreatic IL-1β (C) of Na
+
-taurocholate-treated WT and NHERF-1-KO 

mice. Data are shown as means  SEM, n=4-6. P<0.05 vs. a: the respective control group 

or b: vs. the WT 4% TC+ group. 
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Supplementary figure 8. Functions of inflammatory cells are unaltered by deletion of 

NHERF-1. Blood polymorphonuclear cells and peritoneal macrophages were isolated 

from WT and NHERF-1-KO mice. (A) Bacterial killing efficiency of polymorphonuclear 

cells (PMNs) after a 1 h incubation period with E. coli was deduced from the number of 

colony forming units from control wells (without PMNs) and co-cultured wells (containing 

PMNs). (B) Phagocytosis by macrophages was determined on FITC-labeled, heat-killed E. 

coli. Data are shown as means  SEM. WT (closed columns), NHERF-1-KO (open 

columns). 
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Supplementary figure 9. NHERF-1 expression does not influence the changes in 

intracellular Ca
2+

 concentration caused by cerulein or sodium-taurocholate in 

isolated acinar cells. Acinar cells were isolated from WT and NHERF-1-KO mice by 

collagenase digestion. Summary data show the maximal changes of [Ca
2+

]i induced by 

administration of cerulein or Na
+
-taurocholate (TC). There were no significant differences 

between WT and NHERF-1 KO mice in the changes of [Ca
2+

]i on isolated acinar cell in 

response to different concentrations of cerulein (10
-8

-10
-12

 M) (A) or TC (1-10 mM) (B). 

Data are shown as means  SEM, n=5-8. WT (closed columns), NHERF-1-KO (open 

columns). 
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