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CHAPTER I. 

INTRODUCTION 

 

1 Problem statement 

 

Although nearly all fluid reservoirs contain a certain amount of natural fracturing, 

naturally fractured reservoirs include only those where the fractures have an effect (either 

positive or negative) on fluid flow. Although most of the world’s hydrocarbon accumulations 

occur in sandstone, carbonate (e.g., Ghaba North field in Oman – Al-Hadhrami and Blunt 

2001, Qarn Alam Field in Oman – Zellou et al. 2003, Tempa Rossa field, southern Apennines, 

Italy – Aydin 2000) igneous (e.g., Liaohe oilfield in China – Pan et al. 2002, Qingshen gas 

field in the Songliao Basin, NE China – Feng 2008, Serie Tobífera unit in the Austral Basin 

and the Precuyano unit in the Neuquén Basin, Argentina – Sruoga and Rubinstein 2007, 

Schutter 2003) and metamorphic (e.g., La Paz Field, Maracaibo Basin, Venezuela – Nelson et 

al. 2000, Liaohe basin, China – Luo et al. 2005, Li et al. 2009, Travis Peak Formation, East 

Texas basin – Becker et al. 2010) rocks can also make acceptable reservoir rock. The fractures 

form a kind of secondary porosity in these rock bodies which could be generated by the 

following (Aguilera, 1995): 

(1) faulting tends to generate cracks along the line of fault and could produce a zone of 

dilatancy, which is a good way for the migration and accumulation of petroleum (e.g., 

Lü et al. 2008); 

(2) deep erosion of overburden that permits the upper parts to expand, uplift and 

fracture through planes of weakness (e.g., Gudmundsson 1987); 

(3) volume shrinkage as in the case of shales that lose water, cooling of igneous rocks 

and desiccation of sedimentary rocks (e.g., Areshev et al. 1992); 

(4) paleokarstification and solution collapse (e.g., Gu et al. 2002); 

(5) fluid pressure release when pore fluid pressure approaches the lithostatic pressure. 

The storage capacity of naturally fractured reservoirs varies extremely, depending on (1) the 

degree of fracturing in the formation and value of primary porosity (Aguilera, 1995); (2) the 

fracture density and number of intersecting fracture sets (Salah and Alsharhan 1998); (3) the 

orientation of fracturing (Salah and Alsharhan 1998); (4) the diagenetic processes and related 

alteration phases of the basement which can also play an important role in reservoir 

characterisations (Salah and Alsharhan 1998); and (5) the morphology of the fractures, which 
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relates to the shape of natural fractures and four distinguishable types: open, deformed, 

mineral-filled, and vuggy fractures (Nelson 2001). The migration and accumulation of 

petroleum in naturally fractured reservoirs is possible in a dilatancy zone due to the vacuum 

produced by the fractures. In this theory (McNaugthon and Grab 1975) the fractures were 

formed after the generation of petroleum. According to another theory, the fractures usually 

form before the migration of petroleum; in the first step, fractures may generate in an uplifted 

hill, followed by coarse debris accumulation on the slopes. Afterwards, the hill is deeply 

buried by continuous subsidence; petroleum is generated and migrates up to the crest of the 

buried hill. As a consequence petroleum may be trapped in both the sediments and the 

fractured basement (McNaugthon and Grab 1975).  

 

 

Fig. I.1 Elements of the petroleum system in the Pannonian Basin. The source rocks and the reservoir 

formations are mainly Paleogene and Neogene in age, subordinate Mesozoic formations. In the course 

of the migration the Paleozoic crystalline basement also takes part in the accumulation. After Horváth 

& Tari, in: Mészáros E.-Schweitzer (2002) 

Legend: 1 –Paleozoic formations, 2 – Mesozoic formations, 3 - Paleogene and Neogene foramtions, 4 

- Quaternary formations, 5 – source rocks, 6 – migration pathways of oil, 7 - migration pathways of 

gas, 8 – reservoirs in the basin, 9 – reservoirs in the basement. 

 

The Pannonian Basin, surrounded by the Alpine-Carpathian-Dinaric orogenic belt, is 

filled with thick sedimentary layers due to basin subsidence in the Tertiary ages (Horváth et 

al. 1988). According to Teleki et al. (1994) most of the currently explored hydrocarbons come 

from the middle Miocene synrift sedimentary rocks and middle Miocene-Pliocene postrift 

sedimentary rocks; suggesting that percolation into the basement happened coeval to the main 

subsidence phase of the basin. A favourable circumstance was the contemporaneous high 

geothermic gradient of the basin (Hajnal et al. 1996). As a result the source rocks are at a 

depth of about one and a half kilometres, which would have required temperatures of oil and 



Chapter I. 

 

3 

 

gas formation to be reached. The reservoir rocks in the Pannonian Basin are mainly 

sandstones of Pannonian age, but there may also be Eocene, Oligocene and Miocene clastic 

sedimentary rocks, fractured Mesozoic limestones and dolomites, and Palaeozoic crystalline 

rocks, which originate from the direction of younger source rock with lateral migration of 

hydrocarbons reached (Fig. I.1). The Pannonian reservoirs usually form curved arches over the 

Palaeozoic highs (Dank 1985). 

M. Tóth et al. (2007) introduced a possible explanation in case of the Szeghalom Dome, 

regarding how the fractured metamorphic basement could develop as a hydrocarbon reservoir. 

In such cases, when the basement is approximately plane, no highs and deeps occur, low 

permeable and porous sedimentary layers (clay marl, calcareous marl) cover it and isolate the 

underlying basement rocks from further basin filling sediments. However, in several cases the 

basement is characterised morphologically by deep basins and trenches, with uplifted highs 

among them. Most of the crystalline highs exhumed during the Middle Miocene follow core 

complex formation mechanisms (Horváth et al. 2006, Posgay et al. 2006) and so reached the 

surface or a near surface position. In fact, the uplifted highs formed islands in the Pannonian 

Sea, which usually caused the absence of the impermeable sequence of the Endrőd Formation 

(clay marl) above the highs (Fig. I. 2).  

 

 

Fig. I. 2 Simplified petrological 

framework model of the Szeghalom 

Dome, and the hypothetical flow 

path; after M. Tóth et al. (2007). 

Legend:  

1 - metamorphic high,  

2 – Békés Formation 

(conglomerate), 

3 – Endrőd Fromation (clay marl),  

4 – abrasion conglomerate,  

5 – Szolnok Formation 

(sandstone), 

 6 - hypothetical flow path. 

The fracture system of these one-time islands played an important role as a flow path in the 

course of the early diagenesis of the basin sediments (Juhász et al. 2002). During the 

following thermal subsidence phase of the basin evolution, these fracture systems were 
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relegated to the background and closed. Because the tectonic inversion motions are still 

active, the metamorphic highs repeatedly uplift, and the previously closed fractures could 

reactivate and provide pathways for the fluid migration and/or storage, even at present. This 

mechanism enables the tapping of the over-pressured deep-basins by the chimney effect (Fig. 

I. 2). Although this model can be generalized for the whole Pannonian Basin, the individual 

characteristics of each reservoir may cause important differences in details. The lithology 

dependent rheological characteristics, fracture tendency, and fracture network, or the 

geometry of the permeable and impermeable rock bodies, as well as the presence and location 

of a shear zone can define the most essential differences. 

The Kiskunhalas-NE (KIHA-NE) hydrocarbon field has been produced since the mid-

1970s. In this area more than one reservoir block exists; there is a northern reservoir in the 

Palaeozoic metamorphic basement and a southern one in the Mesozoic carbonate basement. 

The reserving formations from different ages and material (Palaeozoic metamorphic rocks, 

Mesozoic carbonates and Miocene sediments) in certain cases behave as one hydraulic 

regime: the crystalline basement with the Miocene conglomerate, and the crystalline basement 

with the Mesozoic carbonates. The Miocene formations could also behave as an independent 

hydraulic regime. They are mainly oil reservoirs with gas cap (Dank 1985, and unpublished 

industrial reports). The focus of the present study is the reservoir in the metamorphic 

basement. Several different publications (T. Kovács 1973, Árkai 1978, Cserepes 1980, T. 

Kovács and Kurucz 1984, Cserepes-Meszéna 1986, Árkai 1993) and unpublished industrial 

reports noted several types of lithologies in the crystalline basement (gneiss, micaschist, 

amphibolite, different mylonitic types, migmatite, and a low-grade phyllite); however, in the 

interpretation of the reservoir the whole area was handled as a homogeneous block. Actually, 

the KIHA-NE reservoir has a highly compartmentalized nature, since there are at least ten 

independent hydraulic regimes in the field. This phenomenon may have several geological 

causes, such as:  

(1) The fault zones can provide good migration pathways and/or storage volume (e.g., 

Gudmundsson et al. 2001, Schubert and M. Tóth 2003), however, there are several 

cases where the faults behave as an impermeable zone (e.g., Edwards et al. 1993). 

(2) In a reservoir with heterogenic petrological built-up, the different rock types may 

exhibit different fracture tendencies that can cause various geometries from the 

unfractured rock masses to highly fractured bodies (e.g., M. Tóth et al. 2004). 



Chapter I. 

 

5 

 

(3) The recent stress field can close the permeable fracture system, and/or open others 

(the fractures with the proper orientation) (e.g., Teufel et al. 1991, Heffer and Lean 

1993, Laubach et al. 2004).  

The basement of the Pannonian Basin is a rather compartmentalized, heterogeneous 

mosaic of blocks; it has developed through a series of complicated tectonic events since the 

Variscan ages (e.g., Kovács et al. 2000). This basement is covered by several hundred metres 

(up to kilometres locally) of thick sediments; for this reason natural basement outcrop does 

not exist. Thus direct information comes exclusively from wells, borecores, well-logs, and in 

certain cases seismic sections. The level of exploration is virtually determined by industrial 

interest regarding the various fluids preserved by the basin sediments and the basement rocks, 

hydrocarbons, geothermal and drinking water. Therefore, exploration and thus knowledge 

about the areas without industrial interest in fluids has fallen behind areas which are the focus 

of such interest. The available data are point like and sporadic, usually archive (more than a 

decade old), and moreover, amounts of data and samples have decreased during the time 

elapsed after drilling. Because of this limited database, or even the lack of any data, efforts to 

get the maximum use out of the information still available are particularly important.  

In the case of KIHA-NE field, the situation is similar; there are numerous wells, but the 

number of borecores is limited, the archive well logs have no wide range, and seismic section 

is not available. Further valuable information is provided by daily reports of the drilling 

works and industrial reports and publications. It must be appreciated that the integrated usage 

of information about the field is especially necessary, and that this may provide the key to 

better understanding.  

 

2 Aims, Justification, Actuality 

 

On the one hand, the present study is situated within basic geological research. From 

time to time a review of a field is necessary because new methods and novel scientific ideas 

can enrich existing knowledge regarding those hardly studied fields and their wider geological 

environment. In this way it will be possible to enrich the highly sporadic information about 

the crystalline basement of the Pannonian Basin within the wider neighbourhood of the study 

area.  

On the other hand, this research also has an applied geological point of view. Newly 

acquired knowledge about the field provides more adequate framework regarding the 

characteristics of the reservoir. This can help to create a better reservoir model which can 
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contribute to more effective production, and can provide guidance about field development 

processes, even including the drilling of new wells. The new methods, data management, or 

the routine of test series learned or developed in the course of this project could be utilized in 

the future. The official review of the Kiskunhalas fields in the MOL Plc., begun in 2008, 

provides actuality for the research. In the wider environment (around Jánoshalma and 

Kiskunhalas) the RAG (Rohöl-Aufsuchungs Aktiengesellschaft) currently conducts research.  

 

The first objective of this project was to clarify the petrological build-up of the field, 

because of the contradictory previous descriptions within various publications and reports. In 

order to classify the lithology units, detailed macroscopic and microscopic examination and, 

because of the presence of sheared lithologies, prudent texture analyses were carried out. To 

find the genetic relationships between the identified lithologies, thermometric methods were 

used. The resulting comprehensive petrography and ideal rock column can be used in the 

course of further investigations. 

The reservoir features of the constituent lithologies of a fractured reservoir can be 

determined, among other factors, by:  

(1) the extent of the fracture tendency,  

(2) the quality of communication in the fracture network, which depends on the fracture 

connections,  

(3) and the presence of the preferred orientation in the rock. 

Investigations can be carried out on provoked, artificial fracture networks for each 

lithology of the field with conventional rock mechanical tests and evaluation of CT images. In 

this way it is possible to determine which lithology has a major role in the fluid storage, and 

also the main factors that influence these favourable characteristics. 

Finally, knowing the essential lithologies of the field and their most important reservoir 

features, the next obvious question concerns the spatial extension of all lithologies, with 

special interest on the rock body with the best reservoir parameters. To explore the geometry 

and the extent of the lithology blocks, each lithology must be identified on open-hole well-

logs in order to be able to estimate lithology boundaries, and, finally, to present the results 

along geological sections. Thereby the structural build-up of the reservoir can be revealed.  
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The forthcoming sections comprise a compilation of published and submitted papers 

about the fractured metamorphic hydrocarbon reservoir of Kiskunhalas-NE. These papers 

together serve as a state of the art understanding of the petrology, structural built-up and 

reservoir behaviour of the investigated area. Following the introduction (Chapter I.), Chapter 

II. focuses on the classification of the lithologies of the KIHA-NE field and their genetic 

relationships. Subsequently, the reservoir features of the identified rock units are determined 

by the evaluation of rock mechanical tests and computer tomography (CT) images in Chapter 

III. Next, Chapter IV. deals with lithology identification and boundary estimation using open-

hole well-log data. In Chapter V. the main results and conclusions of the whole thesis will be 

presented. An aggregated reference list of all chapters can be found at the end of the 

dissertation.  
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Petrology and tectonic evolution of the  

Kiskunhalas-NE fractured hydrocarbon reservoir, South Hungary 

by: Ágnes Nagy, Tivadar M. Tóth 

 

Abstract 

The Kiskunhalas-NE (KIHA-NE) fractured hydrocarbon reservoir is part of the structurally 

rather complex crystalline basement of the Great Hungarian Plain. In the course of petrologic 

and thermometric examinations various rock types of the investigated area have been 

classified and characterized. There are four basic lithological units in the area. In the lowest 

structural position orthogneiss is common, which according to its petrographic features is 

assumed to be identical to the orthogneiss body of the adjacent Jánoshalma (JH) basement 

high (metamorphic peak temperature T < 580 °C according to Zachar and M. Tóth 2004). The 

next rock unit upward is the highly mylonitized variety of the orthogneiss with textural 

features suggesting deformation in an extensional stress regime. In the higher section of the 

mylonite zone graphitic gneiss mylonite is characteristic, with a peak metamorphic T of 410 ± 

45 °C. The lithology in the shallowest position of the area is a graphitic carbonate phyllite, 

with a T of 375 ± 15 °C. Estimation of the deformation temperature for both mylonitic rocks 

results in approximately Tdef ~ 455 °C. All data together suggest that between the top 

(graphitic carbonate phyllite) and the bottom (orthogneiss) of the ideal rock column there is 

about 200 °C peak metamorphic temperature deviation. The two extreme metamorphic blocks 

probably became juxtaposed along an extensional fault zone in the basement at approximately 

15 km depth. 

 

1 Introduction 

 

In several places the crystalline basement of the Pannonian Basin accumulates 

significant amounts of hydrocarbon. Understanding these fractured reservoirs is rather 

challenging because of the complicated structural evolution of the metamorphic complexes. 

As there is no surface outcrop in the region, the metamorphic rock bodies can only be 

examined using the very limited number of core samples. Previous studies of numerous hard 

rock reservoirs in the Pannonian Basin (Zachar and M. Tóth 2001; Schubert and M. Tóth 

2002; M. Tóth et al. 2002; Zachar and M. Tóth 2004; M. Tóth and Zachar 2006; Zachar et al. 

2007) nevertheless pointed out that diverse rock types tend to show significantly different 

fracture characteristics and therefore reservoir behaviour. That is why understanding the 

lithological framework in each single fractured hydrocarbon field is crucial and requires a 

detailed study of petrology and microstructures of the given rock types. 

In the Kiskunhalas (KIHA)-NE Field 69 wells penetrated the metamorphic basement, 

but only specific segments of a few of them produce any fluid (water, oil or gas). The depth of 
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the oil-water contact is also significantly different in neighbouring wells, suggesting a highly 

compartmentalized reservoir. Previous studies (Cserepes 1980; T. Kovács and Kurucz 1984; 

Árkai 1991) suggest many different rock types in the KIHA-NE Field that may exhibit 

various petrophysical behaviours, providing a possible explanation for the coexistence of 

permeable and impermeable zones within the metamorphic rock body. 

The aim of the present study is to characterize and classify the basement rocks of the 

poorly-known KIHA-NE Field. Furthermore, we aim at presenting a thorough petrologic 

characterization of the most important rock types from the research area, sketching physical 

conditions of their metamorphic evolutions as well as outlining the spatial relationship of the 

main lithologies. Such a petrologic background may serve as a firm basis for modelling 

petrophysical properties of the complex rock body at reservoir scale in the future. 

 

2 Geologic setting 

 

Inside the Alpine-Carpathian-Dinaric orogenic belt the Pannonian Basin has a 

structurally rather complex crystalline basement, because of its complicated, multistage 

tectonic evolution. The essentially unknown Variscan tectonic events were followed by large 

scale extension during the Early Jurassic and nappe formation in the Cretaceous. Finally, the 

basement rocks were intensely deformed due to basin subsidence during the Miocene and 

Pliocene. As a result, at present the basement is a complicated mosaic of blocks with mutually 

incompatible metamorphic and structural evolutions. 

The KIHA-NE Field is situated south of the Mid-Hungarian tectonic zone that separates 

the Tisza Unit from the Alcapa Unit (Csontos and Nagymarosi 1998). According to recent 

interpretations the study area is located rather close to the assumed front of the Codru Nappe, 

which was formed as a result of Cretaceous tectonic activity. Although the KIHA-NE area has 

never been studied in detail petrologically, there are better-known neighboring metamorphic 

uplifts. Information concerning the petrologically well-known Jánoshalma High (JH) to the 

SW (Zachar and M. Tóth 2004; Zachar et al. 2007) and the Tázlár (T) area to the NE may be 

used for comparing results of the entire, relatively small region of the metamorphic basement 

(Fig. II.1). 

>> 

Fig. II.1. Location of the Kiskunhalas-NE Field on the Pre-Cenozoic geologic map of Hungary (after 

Haas et al. 2010).  

Legend: 1. Cretaceous sediments; 2. Cretaceous volcanites; 3. Jurassic sediments; 4. Triassic 

sediments; 5. Mesozoic rocks in general; 6. Permian rhyolite; 7. Variscan crystalline formations; 8. 

Unknown basement. 
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<< Fig. II.1 
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According to Zachar and M. Tóth (2004) JH is a uniform orthogneiss block with the 

presence of numerous amphibolite and eclogite enclaves of diverse metamorphic evolutions. 

Zachar et al. (2007) consider that these enclaves are in fact various xenoliths of the original 

igneous (granitoid) body and represent rock pieces of the mélange zone of an ancient 

subduction-accretionary complex. The gneiss body itself exhibits a clear two-phase evolution. 

Conditions of the first detectable, probably igneous event can only be estimated in a rather 

wide window of T ~ 700–850 °C and P < 0.65 GPa. The second phase of the history is 

characterized by the development of schistosity at T < 580 °C. Due to postmetamorphic 

ductile deformation, mylonite formed along the retrograde phase under greenschist facies 

conditions. Brittle deformation and widespread metasomatic overprint further complicated the 

current structure of the gneiss body. The most common mafic xenoliths are amphibolites and 

the occurrence of amphibole xenocrysts in the orthogneiss texture is common as well. The 

only eclogite xenolith is characterized by a T ~ 710±10 °C and P ~ 2.6±0.75 GPa peak 

followed by retrogression during decompression (Zachar et al. 2007). The original granitoid 

intrusion indicates a peraluminous composition and syn-collision origin (Zachar and M. Tóth 

2004). 

According to the small number of previous papers dealing with the KIHA-NE Field, 

gneiss, micaschist, amphibolite, different mylonitic types, migmatite, and a low-grade phyllite 

variety predominate in the study area, in an unknown structural arrangement (Cserepes 1980; 

Cserepes-Meszéna 1986; T. Kovács and Kurucz 1984). T. Kovács (1973) suggests that in 

relation to the general amphibolite facies metamorphism of Variscan age, in some places 

migmatite and diatexite formed. In the course of the following retrograde metamorphism, 

mylonite, chlorite schist and sericite schist evolved (Árkai 1991). Árkai (1978, 1991) suggests 

that the protolith of the phyllite was a marly sediment formed under reducing conditions. 

Using illite crystallinity indices it underwent a very low-grade metamorphism with a peak of 

about 270–300 °C (Árkai in Cserepes-Meszéna 1986). Árkai (1991) supposes that the very 

low-grade phyllite represents an exotic nappe, and consequently its contact to other rock types 

must be tectonic. Geochemical data infer weathering of the phyllite body under surface 

conditions. 

The Tázlár Field belongs morphologically to the same ridge as KIHA-NE, with highly 

similar rock types. Nevertheless it has not yet been studied in detail. Gneiss and various 

mylonite types are common, with subordinate amounts of graphitic carbonate phyllite and 

relatively fresh amphibolites. Migmatite and related lithologies are not reported from this area 

(Cserepes 1980). 
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3 Methodology 

 

In general, the crystalline formations of the Pannonian Basin are deep-seated and are 

deeply buried beneath a few thousands of meters of Miocene and Pliocene sediments. The 

metamorphic basement can only be investigated with cores and diverse geophysical methods. 

In the KIHA-NE region 69 non-oriented wells penetrated the basement; among these only 25 

sampled it at different depth intervals, while core recovery was only a few per cent in the case 

of each well. At present, core samples of 15 wells are available for petrographic study, while 

several samples have disappeared in the last decades and are represented only by old thin 

sections. Altogether, more than 100 thin sections were investigated, most of which belong to 

the collection of the Hungarian Gas and Oil Company (MOL Plc.). In order to make the 

lithological classification in the study area as detailed as possible, petrographic investigation 

of each single core sample was carried out. Afterward, microstructural and thermometric 

examinations were done on selected samples. 

 

3.1 Carbonaceous material thermometer by Raman microspectroscopy 

 

During diagenesis and metamorphism of sedimentary rocks the carbonaceous material 

(CM) contained in it undergoes transformation from disordered CM to fully ordered graphite 

(graphitization). The degree of organization of metamorphic CM indicates the metamorphic 

grade, and especially the importance of temperature. The Raman spectra of metamorphic CM 

exhibit a significant evolution with metamorphic grade (e.g. Wopenka and Pasteris 1993; Yui 

et al. 1996). The process of graphitization has a strictly irreversible character; thus it primarily 

depends on the maximum temperature reached along a given PT path (e.g. Beyssac et al. 

2002; Beyssac et al. 2004; Wiederkehr et al. 2011; Aoya et al. 2010). Therefore the CM 

structure is insensitive to retrograde metamorphic overprint or polymetamorphic evolution 

(Wiederkehr et al. 2011; Beyssac et al. 2002; Wopenka and Pasteris 1993). Due to the high 

spatial resolution and the short acquisition time, which allows numerous spectra to be 

recorded and therefore to quantify the sample heterogeneity, Raman spectroscopy appears the 

most appropriate tool to characterize metamorphic CM. A further advantage of the method is 

that it can be obtained on conventional petrographic thin sections, which is a non-destructive, 

in situ measurement; thus the textural relationship of the CM in the surrounding matrix can be 

checked. The thin section has a better heat removal because of the mineral matrix and it is 
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possible to control the orientation of the CM with respect to the incident laser beam (Beyssac 

et al. 2002). 

A Raman spectrum of CM is composed of first-order (1100–1800 cm–1) and second-

order (2500–3100 cm–1) regions (Tuinstra and Koenig 1970; Nemanich and Solin 1979). In 

the first-order region, at 1580 cm–1, the G band (as graphite band) occurs, and three additional 

bands (the so-called defect bands), D1 (1350 cm–1), D2 (1620 cm–1) and D3 (1500 cm–1) are 

directly related to the degree of structural disorder (e.g. Tuinstra and Koenig 1970). With 

increasing metamorphic grade the defect bands become narrower and decreasing, while the G 

band becomes more intense. The second-order region is characterized by two further bands, 

S1 (2700 cm–1) and S2 (2900 cm–1); they also disappear gradually with increasing 

metamorphic grade. 

Each spectrum can be characterized with the peak intensity ratio (R1=D1/G) and the 

peak area ratio (R2=D1/(G+D1+D2). The more ordered the graphite the lower value of R2 it 

is characterized by. Beyssac et al. (2002) described an empirical equation to estimate the peak 

metamorphic temperature on the basis of the parameters of Raman spectra of metamorphic 

CM: 

 T (°C) = –445 (R2) + 641. (1) 

The peak temperature can be determined to ± 50 °C (due to the uncertainty of the 

calibration), within the range of 330 – 650 °C. Rahl et al. (2005) modified the thermometer, 

applicable from 100 up to 700 °C so that: 

 T (°C) = 737.3 + 320.9 (R1) – 1067 (R2) – 80.638 (R1)2 (2) 

Aoya et al. (2010) re-calibrated the geothermometer of Beyssac et al. (2002) for 

regional metamorphism, and found that the co-variation between R2 and T can be described 

by the following quadratic equation: 

 T (°C) = 91.4(R2)2 – 556.3(R2) + 676.3. (3) 

On the basis of abundant measurements (Wiederkehr et al. 2011) the methods of 

Beyssac et al. (2002) and of Rahl et al. (2005) provide similar temperature estimates, with 

discrepancies of less than 30 °C. Wiederkehr et al. (2011) recognized that the relative 

uncertainties in temperatures derived using the calibration of Rahl et al. (2005) are higher 

when compared to results using those of Beyssac et al. (2002), especially at temperatures 

above 480 °C. A discussion of calibration possibilities at lower temperatures (~200–300 °C) 

is given in Lahfid et al. (2010). 

The measurements were carried out on oriented (perpendicular to the foliation) thin 

sections with a THERMO DXR Raman microscope, at the Department of Mineralogy, 
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Geochemistry and Petrology, University of Szeged, with green laser source (532 nm laser, 

Nd-YAG). The laser passed through an optical microscope (Olympus BX41); for 

measurement the 100× lens was used in confocal mode. Irradiation power at the sample 

surface was 5 mW. The spectra were measured by high resolution grating with spectral 

window of 50–1861 cm–1, with a CCD detector. A minimum of 10 independent points were 

analyzed on each sample and the data were collected at 20×10 s length, with quadratic 

fluorescent correction (following the suggestions of Beyssac et al. 2002 and of Rahl et al. 

2005). 

The peak position, band area and band weight (FWHM) were determined using the 

Peak Fit 4.12 computer program with Voight-functions (combined Gaussian and Lorentzian 

profiles) after Beyssac et al. (2003). 

 

3.2 Sutured quartz grains as a deformation-related thermometer 

 

In metamorphic and igneous rocks complex interfingering (sutures) may occur along the 

monomineralic quartz–quartz grain boundaries. In numerous naturally deformed rocks 

Masuda and Fujimura (1981) and Hirth and Tullis (1992) studied the relationship between 

temperature, strain rate and the grain-boundary geometry, and found that the length of the 

suture segment increases with decreasing temperature. Kruhl and Nega (1996) established on 

natural samples derived from different metamorphic grades (low-greenschist to 

mediumgranulite facies) that the sutured quartz grain boundaries are statistically selfsimilar 

and so can be represented as fractal-like objects. On the calibrated geothermometer a linear 

function is suggested between the fractal dimension of the sutured quartz grain boundaries 

and the formation temperature. Kruhl and Nega (1996) also suggest that the result of the 

thermometer does not depend on the strain rate. This textural thermometer was refined by 

Takahashi et al. (1998) using artificial samples. The result of the thermometer is valid for an 

approximately 100 °C temperature interval. Among many others, Majumder and Mamtani 

(2009) successfully used the thermometer on deformed granite samples to determine the 

tectonic relationship and deformation history of the given rock unit. 

For measurements of grain boundaries normal microscopic thin sections (30 μm) with 

identical magnification (×10) were evaluated. The sutured grain boundaries were digitized 

manually. The fractal dimension values (D) were obtained by Benoit 1.0 fractal geometry 

software using the divider method (Mandelbrot 1967) following the suggestions of Kruhl and 
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Nega (1996). The slope of the regression line fitted onto the middle section of the log-log 

transformed L-r diagram defines D for each individual suture. 

 

4 Petrography 

 

4.1 Orthogneiss 

 

Slightly foliated, coarse-grained, biotite-dominated gneiss is representative for the 

KIHA-NE Field (Fig. II.2/a). The principal phases are K-feldspar, plagioclase, quartz and two 

micas; the accessories are apatite and zircon, which usually occur as idiomorphic grains. 

In all studied samples feldspar predominates over quartz (Fig. II.2/b). The grains are not 

deformed; they are commonly sericitized and altered to carbonate and an undetermined set of 

clay minerals. Several feldspar grains contain quartz inclusions forming a myrmekitic 

microtexture. The second main rock-forming mineral, quartz, shows marks of moderate 

ductile deformation exhibiting subgrains and slightly serrated grain boundaries. Biotite and 

muscovite coexist in the samples with a clear dominance of biotite which determines the 

foliation planes of the samples at macroscopic scale (Fig. II:2/b). The large biotite flakes are 

reddish brown, usually fresh, although in some cases slightly chloritized. Chlorite commonly 

forms pseudomorphs after single amphibole grains as well. These grains have a greenish-

colourless pleochroism and bright blue, locally yellowish interference colour. Small, 

secondary opaque and carbonate minerals are present in them as inclusions. 

The fractures of the gneiss samples are usually narrow; they contain carbonate infill and 

in some cases have a few cm-wide altered zone around them (Fig. II.2/a), where biotite is 

replaced by chlorite, while feldspar is sericitized. 

 

4.2 Amphibolite 

 

Only a few samples represent this rock type; all of them show slightly oriented 

(nematoblastic) texture. Samples are strongly altered (Fig. II:2/c); the chloritized amphibole 

grains with carbonate patches are resorbed and not oriented. The sericitized plagioclase 

feldspar grains form polysynthetic twins. Accessories are zircon, apatite, magnetite and 

ilmenite. Narrow quartz veins cut the fine-grained, dark greenish samples. 
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Fig. II:2 a–h >> 
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Fig. II.2 i–p >> 
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Fig. II.2. Rock types of the KIHA-NE Field.  

a) macroscopic appearance of the typical orthogneiss; b) biotite flakes defining orientation in the 

feldspar and quartz-dominated matrix (+N); c) texture of the altered amphibolite xenolith (+N); d) 

macroscopic appearance of the mica-poor granite; e) macroscopic appearance of the orthogneiss 

mylonite; f) common myrmekitic feldspar suggesting igneous origin (+N); g) C/S fabric in orthogneiss 

mylonite (+N); h) bookshelf-textured apatite in the orthogneiss mylonite (+N). (2010). i) macroscopic 

appearance of the graphitic gneiss mylonite; j) C/S fabric in graphitic gneiss mylonite (+N); k) 

narrow graphite stripes and small pyrite cubes in the quartz-sericite-carbonate matrix (+N); l) 

feldspar boudinage in the graphitic gneiss mylonite (+N); m) macroscopic appearance of the 

graphitic carbonate phyllite; n) wide graphite stripes in carbonatequartz- sericite matrix (+N); o) 

pyrite cubes with quartz fringe in carbonate matrix (+N); p) pressure fringe around a pyrite grain in 

the graphite carbonate phyllite (+N). Mineral abbreviations after Whitney and Evans (2010) 

 

 

4.3 Mica-poor granite 

 

The few coarse-grained granite samples exhibit equigranular texture with only moderate 

deformation but without any visible orientation (Fig. II.2/d). These samples are of rather 

simple mineralogy consisting mainly of quartz, K-feldspar with a little bit of muscovite. 

 

4.4 Orthogneiss mylonite 

 

The samples (Fig.II.2/e) are characterized by biotite and nearly equal amounts of 

feldspar and quartz with a texture similar to that of a typical orthogneiss (Fig. II.2/f). 

Accessories are rutile, apatite and zircon. In some cases the strongly sericitized feldspar grains 

are myrmekitic. The rock type exhibits mylonitic foliation (Fig. II.2/g); the S planes are 

formed by chlorite flakes after biotite, while the C planes show sericite bunches in the C/S 

fabric. Feldspar deformed in a brittle manner, forming microboudinage with formation of 

sericite, clay and carbonate minerals in the necks of the structure. Quartz grains in the samples 

show evidence of ductile deformation with strongly serrate grain boundaries, undulose 

extinction and presence of deformation lamellae. Biotite is almost entirely replaced by 

chlorite. The chlorite flakes with deep purple interference colour often show kink band 

deformation and undulose extinction. White mica flakes are folded and locally form mica 

fishes. Carbonate minerals are common in the matrix as a secondary mineral. Apatite shows 

clear evidence of microfaulting presenting bookshelf structure (Fig. II.2/h). 

The mylonite samples are significantly more fractured than the common orthogneiss is. 

Nevertheless, usually there is no metasomatized zone along the veins; they are mainly filled 

with carbonate minerals locally enclosing fragments of the adjacent rock. 
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4.5 Graphitic gneiss mylonite 

 

Texturally this lithology is a fine-grained mylonite characterized by a well developed 

C/S fabric (Fig. II.2/j). Unlike with orthogneiss mylonite, in this case graphite defines the S 

planes; sericite packets are typical along the C planes. There is no biotite in these samples; the 

role of feldspar is subordinate, while quartz is essential. Graphite and sulfide minerals (mainly 

pyrite) are present in significant amounts. 

Feldspar is altered to sericite. Carbonate minerals and the few larger porphyroclasts are 

fractured and exhibit microboudinage fabric (Fig. II.2/l). Quartz commonly appears as 

monocrystalline ribbons and shows the same markers of ductile deformation as in the 

orthogneiss mylonite. Sericite, the most frequent mica phase, is present in fine-grained 

aggregates and locally a form folded bunches. It coexists with graphite stripes in 

interfingering texture that sporadically also contain larger muscovite flakes. Graphite usually 

appears in narrow bands of various widths that play a remarkable role in determination of the 

foliation. Pyrite grains appear both in single crystals and in large aggregates; no other sulfide 

minerals have been determined. In some cases they are mantled by a narrow pressure fringe of 

quartz (Fig. 2/k). Accessories are zircon, rutile and apatite. The latter often takes on bookshelf 

structure similar to that observed in the orthogneiss mylonite. 

Carbonate minerals are essential matrix constituents. Due to their common dissolution, 

cavities of a few cm in size are frequently present in the samples. A few cores are completely 

brecciated and highly fractured. Veins are mainly filled by carbonate with a moderate amount 

of quartz. Most samples in cavities, breccias zones as well as along the numerous fractures are 

oil-spotted (Fig. II.2/i). 

 

4.6 Graphitic carbonate phyllite 

 

These samples distinctively consist of chaotically folded bands of fine-grained black 

and white material (Fig. II.2/m). The dark bands are characterized by graphite with some 

sericite and tiny muscovite flakes. Unlike with the graphitic gneiss mylonite, graphite is an 

essential rock-forming phase (Fig. II.2/n). Graphite is present in massive, thick bands 

interfingering with a small amount of white mica. Carbonate minerals and a subordinate 

amount of quartz form the white bands. Pyrite, the only sulfide mineral, is ubiquitous in this 

lithology (Fig. II.2/o). Their grains appear in varying size from sub-millimeter up to around 

half a centimeter, forming single idiomorphic crystals as well as aggregates. Individual 
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crystals are usually surrounded by fringes of quartz and a small amount of carbonate (Fig. 

II.2/p). The pressure fringes are face-controlled and usually deformed (Passchier and Trouw 

2005). Samples of this rock unit are fractured; the main vein filling mineral is carbonate with 

rare quartz. 

 

5 Results of Raman spectrometry 

 

Representative spectra for each measured rock unit are shown in Fig. II.3. The 

characteristic spectra of the graphitic carbonate phyllite and the graphitic gneiss mylonite 

samples are significantly different. The intensity of D1 of graphitic carbonate phyllite is 

slightly higher than that of the G band, while in the graphitic gneiss mylonite D1, the band is 

less intense than the G band. Furthermore, the G band of the mylonite is much narrower than 

that of the phyllite. The G band in both cases composes a prominent shoulder (D2) on the G 

band. Numerical results of the Raman spectral analyses are summarized in Table 1, based on 

10–13 spectra in each studied sample. The sample heterogeneity in the graphitic carbonate 

phyllite lithology was found to be generally small, with the average standard deviation on R2 

of 0.03. The results for graphitic gneiss mylonite have a greater average standard deviation 

(0.1). Plotting the results on a histogram (Fig. II.4), skewness can be observed toward the 

smaller R2 values. 

The results of the carbonaceous material thermometry are presented in Table II.1. The 

average difference between the result of Equation 1 (Beyssac et al. 2002) and Equation 2 

(Rahl et al. 2005) is about 25 °C. The temperature values for the graphitic carbonate phyllite 

(n=60) with the different calibrations are 368.1 ± 15 °C (Beyssac et al. 2002), 384.2 ± 38 °C 

(Rahl et al. 2005) and 369.8 ± 15 °C (Aoya et al. 2010), while for the graphitic gneiss 

mylonite (n=55) they are higher, being 411.9 ± 45 °C (Beyssac et al. 2002), 387.5 ± 35 °C 

(Rahl et al. 2005) and 415.6 ± 47 °C (Aoya et al. 2010). The Student's t-test, the statistical 

probe regularly used to compare means of independent populations, confirms that at a 0.01 

significance level the estimated metamorphic peak temperatures for the two units are 

different. 
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Fig. II.3. Typical examples of the first-order regions of the Raman spectra of the measured rock types 

following curve decomposition 

 

 

 

 

Fig. II.4. Distribution of R2 values of 

graphitic gneiss mylonite  

(Mean = 0.53, Mode = 0.52, Std. Dev. = 

0.13) 

>> 

Table II.1. Mean values and standard deviation (s) of the parameters (position, full width at half 

maximum FWHM) obtained from decomposition of Raman spectra of the measured samples 

Lithotype: "C" Graphitic gneiss mylonite, "D" Graphitic carbonate phyllite; Temperatures: 1: Beyssac 

et al. (2002), 2: Rahl et al. (2005), 3: Aoya et al. (2010); R1=D1/G peak height ratio, R2: 

D1/(G+D1+D2) peak area ratio 
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6 Results of sutured quartz grains geothermometry 

 

This geothermometer was used in cases of the orthogneiss mylonite and the graphitic 

gneiss mylonite in order to provide information about temperature conditions of the ductile 

deformation event. The D value of the sutured quartz grain boundaries was found to be 1.21 ± 

0.02 (15 cases) in the orthogneiss mylonite samples, while in the graphitic gneiss mylonite 

samples D=1.23 ± 0.05 (5 cases) is typical. Using the calibration scheme of Kruhl and Nega 

(1996) deformation temperatures of Tdef ~ 470 °C can be estimated for the orthogneiss 

mylonite and Tdef ~ 440 °C for graphitic gneiss mylonite, respectively (Fig. II.5). 

 

 

Fig. II.5. Estimation of the fractal dimension values (D) of serrated grain boundaries measured on 

quartz grains from graphitic gneiss mylonite and gneiss mylonite, respectively.  

Temperature data calculated using the method of Kruhl and Nega (1996) 

 

7 Discussion and conclusions 

 

7.1 Interpretation of the results of Raman spectrometry and the CM thermometer 

 

Raman spectroscopy of the carbonaceous material thermometer is quite a new method 

for estimating the characteristic temperature for CM containing-rocks. Several factors that 

may influence the measurement and the temperature estimation were previously discussed in 

numerous papers. The most essential points are summarized here. Measurement on polished 

surfaces may cause an anomalously high D band. To avoid this effect measurement should be 

carried out beneath the surface, or on transparent adjacent grains (Beyssac et al. 2003). 
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According to Beyssac et al. (2003) sample orientation may affect the Raman spectrum, 

especially in the case of well-crystallized graphite. Therefore it is worth measuring on thin 

sections oriented perpendicular to foliation. In this way the optical axis of the laser beam is set 

perpendicular to the mean CM axis. 

Aoya et al. (2010) investigated the orientation effect in almost deformation-free contact 

metamorphosed and deformed regional metamorphosed samples. The measurements were 

carried out both perpendicular and parallel to the graphite c axis. The result in R2 values 

shows as little as 0.004 difference (Aoya et al. 2010: fig 9.), suggesting that the Raman 

spectroscopy method can be used as a CM thermometer regardless of the crystallographic 

orientation of CM. Furthermore, for samples nearly free of orientation, R2 values depend on 

the sample heterogeneity, if a sufficient number of measurements is carried out (Aoya et al. 

2010). 

The basic measurement parameters, acquisition time and magnification (×50 vs. ×100) 

have no significant effect on the temperature determination (Aoya et al. 2010). It is proved 

that if the wavelength (514.5 nm vs. 532 nm) and the laser energy increase, the D1 intensity 

decreases compared to that of G. Nevertheless this systematic difference is negligible in 

temperature estimation (Aoya et al. 2010). 

Since the thermometer is based on the structural defects of the metamorphic CM, the 

effect of pressure or mechanical shearing must be discussed as well. According to Beyssac et 

al. (2004) mechanical shearing could be an important source of uncertainty, but based on their 

results this effect does not contribute more than a few °C uncertainty to the estimated 

temperature. Aoya et al. (2010) also studied the effect of high differential stress. They 

consider that the deformed metamorphic CM has higher R2 values because of a greater 

amount of crystal defects. According to Kwiecinska et al. (2010) pressure can have a distinct 

influence on the process of physical-structural graphitization. Nevertheless they emphasize 

the reliability of the thermometer calibrated by Beyssac et al. (2002). 

Beyond these factors the CM has a natural heterogeneity (Wiederkehr et al. 2011), 

which may have an influence on the results of the measurement and temperature estimation. 

During deposition CM types of various organic precursors that underwent heterogeneous 

graphitization may mix (Wiederkehr et al. 2011; Rantitsch et al. 2004). Aoya et al. (2010) 

note that graphitization is a time-dependent process before attaining thermal equilibrium, 

resulting in larger R2 values of the CM. Heterogeneity may also appear within a single grain 

(Aoya et al. 2010). Nevertheless, standard parameters, mean and standard deviation usually 

provide reliable characteristics of the data distribution (Rantitsch et al. 2004); when applying 
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the CM thermometer the average R2 value for the sample must be determined (Aoya et al. 

2010). To obtain a reliable metamorphic temperature a substantial number of measurements 

should be made for each sample (Aoya et al. 2010). 

Wiederkehr et al. (2011, fig. 9) compared Raman spectroscopy of CM-derived 

temperatures with literature data and established that these temperatures are consistently in 

coincidence with the peak temperature of the given rock unit. The authors studied in detail 

(2011, fig. 5) the relationship between the calibrations of Beyssac et al. (2002) and those of 

Rahl et al. (2005). In general the differences are within ±50 °C uncertainty, while the relative 

errors of the temperature data computed by Rahl et al. (2005) are higher compared to Beyssac 

et al. (2002), especially for temperatures above 480 °C. 

In the measured KIHA-NE samples co-variation of temperature data estimated by the 

two calibration methods fits well to that observed by Wiederkehr et al. (2011). Temperatures 

estimated by Aoya et al. (2010) essentially overlap with those derived from Beyssac et al. 

(2002). In the case of the graphitic carbonate phyllite unit heterogeneity of the CM is quite 

small; average standard deviation for R2 value is as low as 0.03. This may indicate a uniform 

CM which was formed at T ~ 370±15 °C peak temperature. The behavior of graphitic gneiss 

mylonite is just the opposite. Here R2 values show significantly larger average standard 

deviation (0.1). In addition, its distribution function (Fig. II.4) is asymmetric and exhibits a 

clear skewness towards smaller R2 values. If this high sample heterogeneity were caused by 

the above-mentioned factors, usually an increase of heterogeneity (deformation, imperfect 

graphitization), the data would shift toward the higher R2 values (smaller temperatures). That 

is why it is suggested that the above effects are not responsible for the observed 

heterogeneity. Instead, rock fragments of diverse metamorphic histories may have become 

juxtaposed in the mylonite zone. Although the most typical rock type is characterized by T ~ 

410 °C, some pieces probably represent even higher temperatures. In the graphitic gneiss 

mylonite, Raman spectrometry data indicate mixing of rocks of different peak metamorphic 

conditions along the single time shear zone. 

 

7.2 Petrologic interpretation 

 

According to the results of the petrologic and thermometric study, the KIHA-NE Field 

consists of four main lithological units with incompatible structural and metamorphic 

evolutions. Each well that samples more lithologies suggests the same systematic spatial order 

for the four block along the ideal rock column, with orthogneiss, orthogneiss mylonite, 
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graphitic gneiss mylonite and graphitic carbonate phyllite from the bottom to the top (Fig. 

II.6). The figure displays a summary of the thermometric results for the four units outlined 

above. 

Gneiss samples in the lowermost structural position are similar in all mineralogical and 

textural characteristics to those described by Zachar and M. Tóth (2004) for the JH uplift. 

Based on the presence of relic myrmekite as well as euhedral habit of the accessory phases 

(zircon, apatite) the protolith of this gneiss variety is of igneous origin. Similarly to the JH 

area, the sporadic appearance of amphibole xenocrysts in the gneiss matrix is typical. There 

are only a few amphibolite samples available in the KIHA-NE area. They all appear within 

the orthogneiss-dominated interval, so even if amphibolite pieces do not exhibit a clear 

evidence for the contact with the gneiss, they should be xenoliths in the orthogneiss body 

similar to the adjacent JH dome (Zachar and M. Tóth 2004). The presence of the mica-poor 

granite specimens further strengthens the similarity between the two neighboring localities. 

The gneiss mylonite samples have a very similar mineral assemblage and relic textural 

features to the lowermost orthogneiss body, suggesting that orthogneiss should have been the 

protolith of the gneiss mylonite and their evolution had to be identical prior to the last ductile 

deformation event. The typical deformation features, presence of mica fish, bookshelf texture, 

as well as microboudinage, all indicate mylonitic deformation in an extensional rather than 

compressive stress field (Passchier and Trouw 2005). According to the retrograde mineral 

assemblage (sericite, chlorite, carbonate minerals) the ductile deformation took place under 

low-grade conditions. The quantitative determination of the temperature of mylonitization 

gives Tdef ~ 470 °C, with a significant but poorly estimated error due to the rough calibration 

method and the uncertainty of image analysis. 

The graphitic gneiss mylonite, on the basis of its mineral composition, can clearly be 

separated from both the orthogneiss and the graphitic carbonate phyllite. Its undeformed 

protolith from the adjacent terrains of the basement is still unknown. The carbonaceous 

material thermometer allows estimating the peak metamorphic temperature of this rock type 

with T ~ 410±45 °C. The mylonitic deformation of this rock unit can be characterized by 

extensional textural features at Tdef ~ 440 °C.  

According to Árkai (1991) the graphitic carbonate phyllite probably had a marly 

protolith formed under euxinic facies conditions. Although the mineral assemblages of the 

two upper lithological units are similar, the evidently different Raman spectra of the 

carbonaceous materials of the graphitic carbonate phyllite and the graphitic gneiss mylonite 

samples prove their separate evolution. Furthermore, carbonaceous material is more 
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homogeneous in the case of the graphitic carbonate phyllite unit resulting in temperature 

estimations of much lower peak temperature, with smaller uncertainty (370±15 °C). 

 

 

Fig. II.6. The ideal rock column for the KIHA-NE field with the characteristic temperature data for the 

metamorphic, structural evolutions of the subsequent rock units. 

Legend: a – orthogneiss; b – orthogneiss mylonite; c – graphitic gneiss mylonite; d – graphitic 

carbonate phyllite; TCM – temperature of carbonaceous material thermometer by Raman 

microspectroscopy; Tdef – temperature of deformation by quartz suture thermometer; T1 and T2 – 

characteristic temperatures (Zachar and M. Tóth 2004) 

 

 

7.3 PTd evolution 

 

Core data from several wells suggest that at the deepest structural position of the ideal 

rock column orthogneiss is common in the KIHA-NE Field. Based on textural features this 

rock type might be identical to that described in detail by Zachar and M. Tóth (2004) and 

Zachar et al. (2007). The existence of a SW–NE extending orthogneiss zone in the southern 

part of the Pannonian Basin was already assumed by Szepesházy (1962) who found that the 

JH block is the westernmost part of this belt. Assuming the identical nature of the neighboring 

orthogneiss blocks, the metamorphic conditions of the JH gneiss (T < 580 °C; Zachar and M. 

Tóth 2004) can be applied to the KIHA-NE block as well. 

Although beside the orthogneiss samples, a highly mylonitized variety is also known 

from the KIHA-NE area, the transition between the two lithologies is not exposed. In the JH 

block only a few samples remind of the effect of the postmetamorphic greenschist facies 
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mylonitization event (Zachar and M. Tóth 2004), without any information about the spatial 

context. A much better-represented situation is reported from the Szeghalom-N area (NE of 

the KIHA-NE Field) by Schubert and M. Tóth (2002). Here wells penetrated and sampled an 

almost 150 m-thick shear zone from the undeformed orthogneiss down to the mylonitic core 

zone, proving continuous change. In spite of missing transitional rock types between 

orthogneiss and mylonite, a similar situation is assumed for the KIHA-NE area. In the 

Szeghalom-N Field a mylonitic deformation temperature of Tdef ~ 430 °C was calculated in 

the orthogneiss using the quartz suture thermometer (Jánosi et al. 2007). A rather similar 

value can be estimated for the KIHA-NE orthogneiss mylonite samples, suggesting 

comparable post-metamorphic evolution. 

Although the metamorphic evolution of the next block upward along the KIHA-NE 

ideal rock column is essentially different, the mylonitic deformation temperature of graphitic 

gneiss mylonite is comparable to that calculated for the orthogneiss mylonite. These Tdef 

values are also coherent with the textural observation that in both sample groups feldspar 

deforms in a brittle way (Voll 1980). 

The two uppermost lithological blocks consist of similar, but slightly different 

mineralogical compositions. Calculated metamorphic peak temperatures are also different, but 

have a slight overlap. 

All thermometry data together suggest that the present lithological section exposed in 

the upper few hundred meters of the KIHA-NE area does not represent an undisturbed piece 

of the original Variscan lithosphere. Instead, the total thickness of the missing portion is 

significant. In fact, between the top and the bottom of the ideal rock column there is about 200 

°C peak metamorphic temperature deviation. Depending on the local thermal gradient this 

may mean even reach 5–10 km total difference in formation depth. The metamorphic peak 

temperature of the graphitic carbonate phyllite is the lowest; it must represent the shallowest 

portion of the one-time lithosphere. After a several hundred meter-thick hiatus the 

undeformed variety of graphitic gneiss mylonite follows downward. The position of the 

orthogneiss block in the original metamorphic column was several km deeper. This picture 

necessarily implies the presence of post-metamorphic tectonic boundaries between the 

subsequent lithological units. 

Taking the uncertainty of the applied thermometry methods into account, the 

estimations of peak metamorphic temperature and that calculated for deformation overlap 

significantly, suggesting mylonitization occurred close to the deepest point of the 

metamorphic evolution of the graphitic gneiss mylonite. Furthermore, this value is identical to 
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that calculated for mylonitization of the orthogneiss block. So, both the textural features 

implying deformation in extensional regime and the estimated temperatures (~455 °C), are 

rather similar for the two mylonitic lithologies. This suggests that although physical 

conditions of the peak metamorphism were significantly different, the last deformation events 

of the two bodies are in close relationship. The two contrasting metamorphic blocks became 

juxtaposed along an extensional fault zone in the basement at approximately 15 km depth 

(Fig. II.7). We assume that the same event may have been responsible for transportation of the 

graphitic carbonate phyllite on top of the graphitic gneiss unit. As a result of the large-scale 

motion several km of material has disappeared due to tectonic erosion. 

 

 

Fig. II.7. A hypothetical outline sketched for 

the development of the current rock bodies 

along the mylonitic shear zone 

The appearance of blocks of contrasting metamorphic evolution in a relatively small 

region is not uncommon in the basement of the Pannonian Basin. A similar situation has 

previously been inferred in the Mezősas-Furta, Szeghalom and Dorozsma areas (M. Tóth and 

Zachar 2006; Schubert and M. Tóth 2002; M. Tóth and Zachar 2002; M. Tóth et al. 2002). 

The age of this tectonic event, essential for a significant part of the metamorphic basement, is 

still unknown. Following mylonitization the entire basement block was consolidated, uplifted 

and probably exhumed to the surface, as is indicated by surface weathering of the graphitic 

carbonate phyllite, proved by Árkai (1991). 
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Integrated core study of a fractured metamorphic HC-reservoir;  

Kiskunhalas-NE, Pannonian Basin 

by: Ágnes Nagy, Tivadar M. Tóth, Balázs Vásárhelyi, Tamás Földes 

 

Abstract  

The petrologic interpretation of the coexisting lithologies in the KIHA-NE metamorphic block 

suggests that two of the four rock units may have a significant role in the migration and/or 

storage of hydrocarbons. The strongly sheared mylonite samples exhibit remarkable fracture 

systems with clear evidence of one-time oil migration. In the course of the integrated core 

study, in addition to the petrological methods, 3D CT scans and destructive and non-

destructive rock mechanical treatments were fulfilled on representative samples and 

evaluated. On the basis of the results we can state that the petrologically different rock types 

have remarkably different brittle behaviours. The orthognesis mylonite is characterised by 

moderate anisotropy and fracture tendency. However, the fractal dimension and cumulative 

fracture length values do not suggest the formation of complicated and connected fracture 

systems. High anisotropy and a large and possibly communicating fracture system 

characterise the graphitic gneiss mylonite, achieved by a much lower work investment than 

for any other rock type. 

 

1 Introduction 

 

The fracture system of hard rock bodies serves as migration pathways and/or storage for 

various fluids of industrial importance: hydrocarbons, geothermal and drinking water. A 

single crystalline basement block may be characterised by different rock types with different 

rheology parameters and structural evolutions and thus the capacity for brittle deformation 

may be extremely heterogeneous inside the complex. Consequently, blocks with significantly 

different kinds of fracture systems with diverse characteristics may evolve in the same 

reservoir. To understand the behaviour of these fluid reservoirs, knowledge of their petrology 

is necessary and in this regard well-core investigations are among the most important facets. 

Because of the small number of cores compared with the number of wells, it is important to 

obtain as much information as possible from each sample. For efficiency it is desirable to 

integrate the results of the various core examination approaches in a coherent system. The 

main subjects that should be addressed are: a complex petrographic analysis, microstructure 

analysis, rock mechanics and an evaluation of fracture patterns both of natural and provoked 

origin. 

The Pannonian Basin is situated inside the Alpine-Carpathian-Dinaric orogenic belt. Its 

crystalline basement is extremely complex, both petrologically and structurally. As a 

consequence of the complicated subsidence history of the basin during the Neogene (e.g., Tari 
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et al. 1992; Horváth 1995; Csontos and Nagymarosy 1998; Horváth et al. 2006) uplifted 

metamorphic basement highs also formed (e.g., Tari et al. 1992; M. Tóth and Zachar 2006; 

Zachar et al. 2007; M. Tóth et al. 2009). These blocks serve as excellent fractured reservoirs 

of hydrocarbon (e.g., M. Tóth et al. 2002, 2004; Schubert et al. 2007) and thermal water (e.g., 

Stegena et al. 1992) and make the understanding of this region especially important. The aim 

of the present study is to understand the lithologies and their reservoir properties of a 

basement fluid reservoir (example of KIHA-NE) using the method of an integrated core 

examination. The region of the Kiskunhalas-NE (KIHA-NE) basement high is one of the most 

remarkable fractured metamorphic HC-reservoirs in the Pannonian Basin. 

 

2 Geological background 

 

The Pannonian Basin is a complicated mosaic of blocks with incompatible evolutions, 

because of its complex, multistage tectonic history (D. Lőrincz 1996). The basement is 

composed mainly of Variscan age crystalline rocks (Szederkényi 1984; Lelkes-Felvári et al. 

2003; Lelkes-Felvári and Frank 2006). It underwent large scale extension during the early 

Jurassic (Csontos et al. 1992; Haas and Péró 2004) and nappe formation in the Cretaceous 

(Tari et al. 1999). During the Neogene basin subsidence, deep sub-basins evolved surrounded 

by basement highs. The metamorphic basement of the Pannonian Basin can be investigated by 

several borecores, which penetrated these uplifted regions. 

The Kiskunhalas-NE Field is situated south of the Mid-Hungarian tectonic zone that 

separates the Tisza Unit from the ALCAPA Unit (Csontos and Nagymarosy 1998). According 

to recent interpretations, the study area is located close to the assumed front of the Codru 

Nappe, which formed due to Cretaceous tectonic activity. There are two neighbouring 

metamorphic domes that have been previously studied; the petrologically well-known 

metamorphic block Jánoshalma High (JH) to the SW and the less well-known Tázlár (T) to 

the NE (Fig. III.1). 

According to the small number of papers that have previously dealt with the KIHA-NE 

Field: gneiss, micaschist, amphibolite, different mylonite types, migmatite and a lowgrade 

phyllite variety predominate in the study area with an unknown structural arrangement 

(Cserepes 1980; Cserepes-Meszéna 1986; T. Kovács and Kurucz 1984). T. Kovács (1973) 

suggests that in relation to the general amphibolite facies metamorphism of Variscan age, at 

certain places migmatites and diatexites formed. In the course of the following retrograde 

metamorphism, mylonite, chlorite schist and sericite schist evolved (Árkai 1991). Árkai 
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(1978, 1991) suggests that the protolith of the phyllites was marly sediment formed under 

reductive conditions. Using illite crystallinity indices it is thought to have undergone a very 

low-grade metamorphism with a peak of about 270–300 °C (Árkai, in Cserepes-Meszéna 

1986). Árkai (1991) supposes that the low-grade phyllite represents an exotic nappe and 

consequently its contact to other rock types must be tectonic. Geochemical data infer 

weathering of the phyllite body under surface conditions. 

 

 

Fig. III.1. Simplified geological map of the Pannonian Basin in the Alpine-Carpathian-Dinaric system 

showing the position of the Kiskunhalas and the neighbouring fields. The dashed lines referred to the 

subunits of Tisza Unit 

 

The latest examinations (Nagy and M. Tóth 2012) based on themacroscopic, 

microscopic and thermometric studies of borecore samples identified four main rock types. 

The ideal rock column was defined using all available borecore specimens. The following 

petrological characterisation is after Nagy and M. Tóth (2012). At the lowermost structural 

position an unaltered orthogneiss (OG) is characteristic (Fig. III.2/a). This gneiss variety 

contains amphibolites xenoliths and was intruded by mica-poor post-metamorphic granitoid 

intrusions. From the textural features and the mineral assemblage the orthogneiss is identical 

to that described in the neighbouring Jánoshalma high by Zachar and M. Tóth (2004). It 

exhibits a twostage evolution with very poorly constrained metamorphic conditions of T1 ∼ 
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700–850 °C at P1 < 0.65 GPa, and T2 < 580 °C. From a geological reservoir point of view, 

this block has only minor significance because of the small amount of natural fractures. The 

next lithological zone upwards consists of orthogneiss mylonite (OGM) (Fig. III.2/b) 

exhibiting textural features of ductile deformation, which took place in an extensional regime 

(C/S fabric, apatite bookshelf, plastically deformed quartz grains). On the basis of the biotite-

muscovite feldspar- quartz mineral assemblage and the relic magmatic textures, like 

mirmekitic feldspar grains and the idiomorphic habit of accessory phases (zircon), the 

protolith of the mylonite prior to ductile deformation should have been the lowermost 

orthogneiss. Some gneiss mylonite samples are locally oil spotted suggesting that the 

generally moderately fractured OGM zone may be important from a geological reservoir point 

of view. Further upwards, mylonites occur with extensional fabric elements (C/S fabric, 

apatite bookshelf, boudinaged clasts, deformed quartz grains) similar to those that characterise 

the OGM unit. This zone however, exhibits significantly different mineralogy. The diagnostic 

phases of the orthogneiss are missing (biotite) or play only a subordinate role (feldspar), while 

graphite, pyrite and carbonate become characteristic phases. According to the results of 

different thermometers that use Raman spectral parameters of carbonaceous material (Beyssac 

et al. 2002; Rahl et al. 2005; Aoya et al. 2010), the peak metamorphism of this graphitic 

gneiss mylonite zone (GGM) (Fig. III.2/c) was T of 410±45 °C. The carbonate minerals occur 

in small-sized nests in the matrix, which locally could have been dissolved. Strongly 

fractured, locally brecciated borecore samples of this rock unit are often oil spotted. 

Estimations of the deformation temperature for both mylonitic rocks give approximately Tdef 

∼ 455 °C (using the quartz suture thermometer of Kruhl and Nega 1996). The uppermost 

member of the rock column is graphitic carbonate phyllite (Fig. III.2/d) represented by just a 

small number of samples. This rock unit can be characterised by T of 370 ± 15 °C, estimated 

by the Raman spectroscopy carbonaceous material thermometer. This rock type is not 

mylonitic. 

Results of previous and current geothermometric calculations suggest that there is an 

approximately 200 °C difference between the peak metamorphic temperatures of the two 

extreme lithologies (orthogneiss and carbonate phyllite) in the rock column. This means a 5–

10 km difference in formation depth depending on the one-time geothermal gradient. This 

result, together with presence of the extensional mylonites, implies that the study area evolved 

in an extensional stress regime following the thermal peak; blocks of different metamorphic 

conditions became juxtaposed along a shear zone at a depth corresponding to ∼455 °C (Nagy 

and M. Tóth 2012). The entire rock column behaved uniformly during the following tectonic 
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development; at shallower positions it deformed in a brittle way. Nevertheless, the different 

lithology types not necessarily fractured in a same extent and mode. 

 

 

Fig.III. 2. The idealised rock 

column of KIHA-NE Field 

(after Nagy and M. Tóth 

2012).  

Representative macroscopic 

pictures of the lithologies 

and its characteristic 

temperatures: (a) 

orthogneiss, (b) orthogneiss 

mylonite, (c) graphitic 

gneiss mylonite, (d) 

graphitic carbonate phyllite 

TCM—temperature of 

carbonaceous material 

thermometer by Raman 

microspectroscopy; Tdef—

temperature of deformation 

by quartz suture 

thermometer; T1 and T2—

characteristic temperatures 

(Zachar and M. Tóth 2004)

 

The petrologic interpretation of the coexisting lithologies in the KIHA-NE metamorphic 

blocks suggests that two of the four rock units may have a significant role in migration and/or 

storage of hydrocarbons. The strongly sheared mylonite samples exhibit remarkable fracture 

systems with clear evidence for one-time oil migration. In the course of the rock mechanical 

investigations we focus on these two mylonitic rock types. 

 

3 Methods 

 

In the course of the integrated core study, the following list of examinations was 

fulfilled and evaluated: 
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(1) Identification and classification of the rock specimens by conventional petrographic 

and petrological methods; macroscopic and microscopic description, interpretation of 

the microtextures and geothermobarometric calculations. Using all these data the 

metamorphic and structural evolution of the investigated area can be sketched out and a 

reliable geological framework model can be established. 

(2) Preparation of representative samples from the important lithologies with standardised 

circumstances for rock mechanical treatment. Careful selection of samples without 

fractures is essential, because even closed or cemented natural fractures may 

significantly modify the rock mechanical behaviour of the rock matrix. 

(3) 3-dimensional scan of the specimens with Computed Tomography (CT) using 

standardised setup. 

(4) Destructive and non-destructive rock mechanical treatment on the intact specimens. 

(5) 3D CT scan of the treated specimens. 

(6) Evaluation of rock mechanical data and the CT images using image analysis methods 

and statistical data processing. 

Following several experiments (not detailed here) settings for all steps were optimised 

and the above list was used as a standard routine afterwards. 

 

3.1 X-ray computed tomography (CT) 

 

3.1.1 Overview of the X-ray computed tomography 

 

X-ray CT allows visualisation of the internal structure of objects by mapping the variation of 

the X-ray attenuation within the object. The resulting image displays the differences in 

density according to the X-ray attenuation law; the smaller the attenuation coefficient of the 

body, the darker the image. CT provides three-dimensional information about the 

heterogeneities within the samples in relation to the density and chemical composition of the 

object and the energy of the incident X-ray beam. This non-destructive method allows the 

detection of boundaries between phases and materials, or discontinuities (pores, fractures) of 

the samples. Furthermore, the data are digital, which aids easy quantitative analysis and the 

interpretation by image processing software (Ikeda et al. 2000; Ketcham and Carlson 2001; 

Mees et al. 2003). The radiological density is expressed in Hounsfield units (HU), which is a 

dimensionless number normalised by the linear attenuation coefficient of water (HU=−1000 

for air, HU = 0 for water, Hounsfield 1973). 



Chapter III. 

 

38 

 

3.1.2 CT applications in geology 

 

CT was developed for medical applications and was later extended and widely-adopted 

in many industrial fields. The first geological application was inspired by the fact that CT 

could acquire interior information from irreplaceable specimens in a non-destructive manner. 

The early application and subsequent discovery of the further potential of CT is thoroughly 

discussed by Ketcham and Carlson (2001) and Mees et al. (2003). 

Before the application of CT, the most widely available examination of rock samples 

was in 2D. Although there were some circumstantial and time-consuming methods to get 3D 

information about the structural or textural features of a sample, like using successive 

digitised images acquired by serial thin sectioning or lapping (Bryon et al. 1995; Cooper and 

Hunter 1995; Marschallinger 1998), or by partial melting experiments (Philpotts et al. 1998), 

these were not applicable to all rock types (Ikeda et al. 2000). The propagation of the CT 

method in geology provided the opportunity for visualisation and quantitative textural 

analysis of igneous (e.g., Carlson et al. 2000; Ikeda et al. 2000) and metamorphic rocks (e.g., 

Denison et al. 1997; Denison and Carlson 1997; Ikeda et al. 2000; Ketcham 2005; 

Huddlestone-Holmes and Ketcham 2010). 

In the case of conventional reservoir lithologies (sedimentary rocks), CT was used to 

determine the porosity of the rocks and investigate the fluid flow in the samples (e.g., 

Wellington and Vinegar 1987; Van Geet et al. 2000; Földes et al. 2004). In non-conventional 

(fractured hard rock) reservoirs, the porosity relates to the fracture properties of the rock, 

which can also be investigated by CT methods. A combination of breaking tests and CT 

scanning was applied by Raynaud et al. (1989) among others. They deformed and fractured 

four different rock types in a triaxial cell and then compared the experimental results with the 

radiological density data. Vinegar et al. (1991), in addition to strain localisation examinations 

on sandstone, observed the correlation between Hounsfield units and the porosity and grain 

density of each section of the samples. Be’suelle et al. (2003) also crushed the samples in a 

triaxial cell to investigate the strain localisation and then quantitatively characterised the 

damage state in thin sections. Other authors have examined faults in sandstone (Antonellini et 

al. 1994) or in granite (Kawakata et al. 1999) with CT. 

This study aims to obtain images of the internal structure and the provoked fractures in 

the specimens on a millimetre scale and therefore, a conventional medical CT was the 

appropriate technique for scanning (Mees et al. 2003). The measurements were carried out on 

the S40 spiral Siemens Somatom Sensation CT scanner in the Institute of Diagnostic Imaging 
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and Radiation Oncology, University of Kaposvár, Hungary. This is high-performance 

equipment with a dual-focus X-ray tube with rotating anode and Xe detectors. The voltage 

and current of the X-ray tube were 140 kV and 189 mA, respectively. The X-ray exposure 

time for each slice was 1.5 s and the thickness of each slice was 1 mm. The voxel size was 

0.25×0.25×1 mm. 

 

3.2 CT data processing  

 

The HU values of the CT datasets are proportional to the density of the scanned object. 

These numerical data can be handled by statistical methods that give an opportunity to 

compare the density conditions of the intact and crushed samples. For this purpose we 

calculated the standard descriptive statistical parameters, mean, modus and standard deviation 

of the HU data, both for the whole 3D data blocks and for each slice independently, in order 

to understand the response of the different lithologies to stress. When evaluating the CT data 

only those parts of the images that related to the rock material were taken into consideration. 

Background (air) appears in the pixels of wider fractures in the crushed samples and was 

filtered out by choosing an appropriate threshold value. During the petrographic image 

analysis the Fiji (ImageJA 1.45i) software package was used. 

To characterise quantitatively the ability for fracturing, a size-independent parameter 

should be defined. For this process CT images of the crushed samples were evaluated. The 

most straightforward way to measure the amount of fractures is to count pixels that contain 

provoked discontinuity. This value normalised by the area of the studied CT section results in 

a parameter called cumulative fracture length (CFL). It is rather similar to the widely-used 

fracture intensity measured by m/m2 (e.g., Liu et al. 2004; Ortega et al. 2006). 

Nevertheless, explicit selection of those pixels that represent cracks in the CT image is 

rather difficult because of the wide spectrum of gray colours of the host rock itself. Therefore, 

the original data set should be treated with image analysis tools (brightness, contrast and 

intensity) to transform it to a black and white image, where one extreme (e.g. black) 

represents the fractures, whilst the other is for the rock material. For this process the Osiris 

4.19 software was used. 

The complexity of the fracture network can be characterised by numerous quantitative 

parameters, among which the fractal dimension of the pattern is a widely-used choice (e.g., 

Barton and Larsen 1985; Hirata 1989; Matsumoto et al. 1992; Tsuchiya and Nakatsuka 1995). 

In contrast to any other possible parameter, fractal dimension not only determines fracture 

density, but also the measure of scale independency of the network. Fractal dimension (D) 
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values for each treated sample were determined by the common box-counting method (e.g., 

Barton 1995; Li et al. 2009) on representative CT sections parallel to the sample axis. 

 

3.3 Rock mechanical tests 

 

In the course of rock mechanical tests we investigated the mechanical behaviour of the 

fracture free rock body. Careful sample selection and the standardised laboratory 

measurements should provide a reliable sample set. Through the sample selection procedure 

we chose intact borecores, which were not affected by natural brittle deformation events. 

Following pre-selection using a hand lens and binocular microscopy and after appropriate 

internal structures had been tested by evaluating CT images, non-destructive and destructive 

rock mechanical methods were applied. 

The aim in cutting samples was the creation of regular cylindrical shapes with the 

standard 2:1 (axis:diameter) size and 50 mm diameter. In a few cases, when borecore size did 

not allow cutting standard sized samples, rock mechanical data were converted using the 

suggestions of the ISRM (ISRM 2006). The American Society for Testing and Materials 

(ASTM) size effect corrections (ASTM 2004) were used for the compressive strength. When 

possible, more than one sample was taken from a single borecore. Considering the intensely 

deformed lithology, samples were prepared both parallel and perpendicular to the dominant 

foliation from the same lithologies. In total, 22 samples were prepared from the three basic 

lithologies representing 9 borecores from the KIHA-NE Field (Table III.1). 

 

3.3.1 Non-destructive tests 

 

After cutting the samples, their ultrasonic wave velocity was measured in accordance 

with the suggestion of the International Society for Rock Mechanics (ISRM 2006). 

 

3.3.2 Destructive tests 

 

The most common approach to study the mechanical properties of rocks is by using an 

unconfirmed compressive test. If the lateral surface of the rock is traction-free, the 

configuration is referred to as uniaxial compression (σ1 > 0, σ2 = σ3 = 0). 
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Samp. Lit. Or. CFL D vUH      m.σc   c.σc   E υ E/σc Wd 

 Nr.     (km/s) (Mpa) (Mpa) (GPa)    

II/1 OG PL 11 1.46 44.90 42.4 56.8 9.58 - 169 0.337 

VII/1 OG PP 9 1.40 51.65 60.1 80.3 22.55 0.07 281 0.286 

VIII/1 OG PP 5 1.07 38.41 59.7 85.0 17.83 0.10 210 0.405 

VIII/2 OG PP 13 1.40 41.28 34.9 49.5 8.64 0.34 175 0.284 

IV/1 OGM PL 14 1.42 50.74 44.0 58.9 11.04 0.33 187 0.314 

IV/2 OGM PL 14 1.56 45.07 39.8 52.7 13.04 - 247 0.213 

III/1 OGM PL 9 1.50 44.48 41.9 55.8 12.00 0.12 215 0.259 

III/2 OGM PL 6 1.28 43.89 44.2 60.2 15.00 0.10 249 0.242 

III/3 OGM PL 8 1.24 42.11 65.3 88.2 16.70 0.03 189 0.466 

IV/3 OGM PP 7 1.35 40.90 41.6 55.7 8.56 - 154 0.362 

IX/1 OGM PP 6 1.31 50.08 71.5 100.0 34.50 0.12 345 0.290 

VI/1 GGM PL 13 1.53 46.60 37.0 49.1 15.40 0.00 314 0.157 

VI/3 GGM PL 21 1.67 44.87 20.3 26.9 6.14 - 228 0.118 

V/1 GGM PL 11 1.35 43.81 24.0 32.2 7.64 0.00 237 0.136 

V/2 GGM PL 11 1.35 47.46 34.3 45.5 8.28 0.30 182 0.250 

V/3 GGM PL 13 1.57 44.80 31.8 41.9 8.24 0.00 197 0.213 

X/1 GGM PP 7 1.39 60.23 17.8 24.2 12.60 - 521 0.046 

X/2 GGM PP 7 1.41 36.93 71.8 97.2 13.30 0.02 137 0.710 

X/3 GGM PP 6 1.32 53.95 53.3 71.1 14.52 0.10 204 0.348 

X/4 GGM PP 6 1.50 42.67 32.1 41.5 10.30 0.28 248 0.167 

X/5 GGM PP 9 1.44 48.50 59.9 78.0 11.30 0.50 145 0.538 

VI/2 GGM PP 5 1.06 30.15 52.4 67.8 9.20 0.22 136 0.500 

 

Table III.1. Measured data of the samples 

Samp. Nr.—sample number, Lit.—Lithology (OG—orthogneiss, OGM—orthogneiss mylonite, GGM— 

graphitic gneiss mylonite), Or.—orientation (PL—parallel, PP—perpendicular), CFL—cumulative 

fracture length, D—fractal dimension value, vUH—ultrasonic wave velocity, mσc—measured 

compressive strength, cσc—corrected compressive strength, E—Young’s modulus, υ—Poisson’s ration, 

Wd —destruction work. 

 

Using this configuration, the uniaxial strain (ε) depends upon uniaxial stress (σ ) and 

can be measured. If σ is plotted against ε given the stress-strain curve, the point at which it 

reaches the maximum stress value is the uniaxial compressive strength (σc) [MPa] and this 

point marks the transition from ductile to brittle behaviour. From the slope of a stressstrain 

curve at 50 % of the ultimate stress, Young’s modulus (elasticity modulus (E) [GPa]) can be 

experimentally determined; the elastic modulus is calculated at 50 % of the ultimate strength, 

according to the ISRM (2006). This material property describes well the rigidity of the 

samples. The Poisson’s rate value (ν) is the ratio of the axial and lateral strains. Most rocks 

have Poisson’s ratio values ranging between 0.2 and 0.4. A perfectly incompressible material 

deforms elastically at small strains and would have a Poisson’s ratio of exactly 0.5 (Jaeger et 

al. 2007). Due to the different rock samples and the uncertainty of the measuring methods, 

this material constant could be not determined absolutely (Gercek 2007). Destruction work (or 
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strain energy—Wd ) can be calculated from the measured stress-strain curves. It is equal to 

the area under the measured curve and it is equal to the energy necessary for breaking the 

rock.  

 

 

Fig. III.3. Stress-strain diagram of a rock showing the stages of crack development (after Martin 

1993).  

For the further explanation see the text. 

 

Several characteristic stress levels can be determined through laboratory tests that are 

substantial in understanding the failure (damage) process of brittle rocks during compression. 

The complete axial stress–strain relations by Cai (2010) and Martin (1993) illustrated on Fig. 

III.3. The symbols are the following: 

• σcc is the crack closure stress level, 

• σci is the crack initiation stress level, 

• σcd is called the crack propagation stress level. This latter parameter is close to the 

long-term rock strength (Martin 1993; Cai 2010). 

The above three stress levels, i.e., σci, σcd, and σcc, show important stages in the 

macroscopic damage process of intact rocks. Crack initiation starts at stress levels of about 
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1/3 to 2/3 times the peak uniaxial load (σf ) for most brittle rocks (Bieniawski 1967; Cai et al. 

2004). 

The crack initiation stress (σci) can be identified on intact rocks in the course of 

laboratory tests by the onset of stable crack growth or dilatancy. This can be defined from the 

stress–volumetric strain curve as the point of the departure of the volumetric strain observed 

at a given mean stress from that observed in uniform loading to the corresponding pressure 

(Bieniawski 1967). In the case of a uniaxial (or triaxial) test, the volumetric strain v is defined 

by: 

 lav  2   (1) 

where: a and l are the axial and lateral strains, respectively. The crack volumetric strain εcv 

is defined by Martin (1993), so that: 

 
avcv

E





21


  (2) 

where: a is the axial stress, E is the Young’s modulus, and  is Poisson’s ratio. As the Fig. 3 

illustrates, both the volumetric strain and the crack volumetric strain plots can be used to 

determine the crack initiation stress level (ci). This parameter can also be identified as the 

point where the volumetric strain starts to differ from the straight line of the elastic 

deformation stage (stage II), or the crack volumetric strain deviates from zero, as shown in 

Fig. III.3. 

Microscopic observations indicate that newly generated cracks are tensile in nature, 

generated by extension train, and mostly aligned in the same direction as the maximum 

compressive stress. After crack initiation, the propagation of the microcracks is a stable 

process, which means that the cracks only extend by limited amounts in response to given 

increments in stress (Cai 2010). 

Unfortunately, we have no opportunity to measure the Acoustic Emission (AE), so the 

data were determined only the measured stress and strain parameters. 

Destructive tests were carried out in the RockMechanics Laboratory at the Budapest 

University of Technology and the Economics. Under the experimental procedure the 

following conditions were used: periodic loading-unloading velocity, gradually grown 

amplitude and 3–4 loading cycles. The loading cycles were designed so that the samples were 

charged over the damage limit, but before fracturing, that is the hypothetic main fracturing 

zone. The following parameters were determined in the above detailed theoretical 

background: ultrasonic wave velocity, compressive strength, elastic (Young’s) modulus, 

Poisson’s ratio and destructive work. 
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3.4 Statistical methods for data processing 

 

In the course of the rock mechanical measurements and image analysis of CT scans, 

several numerical data were determined. This data set concludes the mechanical behaviour of 

the most essential rock types of the KIHA-NE Field. As reservoir properties in a hard rock 

reservoir are basically determined by fracture network characteristics, the question to be 

addressed by the statistical analysis of this data set, was whether or not known rock types 

behave differently concerning their rock mechanical parameters. To test how well they can be 

distinguished, discriminant function analysis is a suitable method. The calculations were 

performed in the computer program SPSS 18. 

 

4 Results 

 

4.1 Results of CT measurements 

 

The size of the samples did not cause abnormal radiation absorption. CT images 

following rock mechanical treatment exhibit significantly different fracture patterns for the 

three studied lithologies and also sample orientation (Fig. III.4). For samples perpendicular to 

the foliation, markedly fewer fractures appear compared with parallel samples in all cases. 

Moreover, GGM tends to break more intensively than the two other rock varieties. 

 

4.2 Results of CT data processing 

 

For the quantitative comparison of the intact and crushed rock matrices, the HU of the 

CT images were used. The means and the modi of the whole scans and individual slices, as 

well as the HU histograms (Fig. III.5/a) of the samples were investigated. 

The characteristic CT scan histograms of the samples are skewed, because the rock 

characteristic densities appear in the determined rock material interval. Therefore, the mean of 

the HU values are less useful than their mode. The intact samples cannot be separated by their 

HU distributions. They have quite similar shapes (Fig. III.5/a); narrow and nearly symmetric, 

while the modi of the histograms (Fig. III.5/b) are in same interval. The differences appear 

between the crushed and intact samples that belong to the same rock material. The histograms 

(Fig. III.5/a) of the crushed samples are shifted towards the higher HU values and are also 



Chapter III. 

 

45 

 

more skewed in that direction. The box plots also suggest (Fig. III.5/b) that the largest 

difference is typical for the GGM samples. The diversity of OG samples is nevertheless rather 

uncertain because of the small sample number. 

 

Fig.III.4. Characteristic CT scan section of the treated samples considering the sample orientation. 

The indicated CFL and D values are valid for the presented sample. The evolved fracture network is 

shown by black colour inside the samples.  

Legend: OG—orthogneiss, OGM—orthogneiss mylonite, GGM—graphitic gneiss mylonite; FL—

cumulative fracture length, D—fractal dimension value 

 

From the CT scans transformed to 1-bit images, the CFL and the D values of the 

fracture network were determined for each treated sample (Table III.1). The mylonite samples 
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were cut perpendicular to the foliation and are characterised by similar CFL means (OGMpp = 

6.25, GGMpp = 6.62); these are lower values than those typical for the parallel samples 

(OGMpl = 10.2, GGMpl = 13.8). A similar tendency is shown for the fractal dimension values; 

the parallel GGM samples are in the higher interval of the D values. The two fracture network 

geometry parameters, CFL and D seem able to discriminate between the lithologies (Fig. 

III.5). 

 

4.3 Rock mechanical test results 

 

4.3.1 Results of non-destructive test 

 

The results of ultrasonic wave velocity measurements are presented in the Table III.1. 

 

4.3.2 Results of destructive tests 

 

Using the standard unconfirmed compressive tests, the following parameters were 

determined: uniaxial compressive strength (σc), elastic modulus (or Young’s modulus) (E) 

and the Poisson’s rate value (ν) (Table III.1). In Fig. III.6, typical measured stress-stain 

curves are presented, which also show the elastic lines. 

Generally the perpendicular samples have higher compressive strength values (meanpl 

= 51.1 MPa, meanpp = 66.9MPa) (Table III.1). Concerning the elastic modulus, the GGM 

lithology can be characterised by a large standard deviation, while its mean is the lowest. The 

Young’s modulus of GGM is slightly lower (meanpl = 9.1 GPa, meanpp = 11.87 GPa) than the 

OGM samples (meanpl = 13.56 GPa). In the case of GGM the specimens with parallel 

orientation are situated at the bottom of the range. 

According to the commonly used rock engineering classification system, the rock 

material can be classified using the ratio of the elastic modulus and the compressive strength. 

Deere and Miller (1966) suggested a classification system presented in Fig. III.7. The KIHA 

NE samples exhibit a close to linear variation on this plot and they lie at the boundary of the 

low and average modulus ratio fields. Although the rock types appear mixed on the plot, all 

parallel GGM samples show significantly lower strength data than the other samples. 
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Fig. III.5. a) Characteristic histogram of the intact and crushed samples; b) boxplot of the mode 

values of the HU.  

Legend: OG—orthogneiss, OGM—orthogneiss mylonite, GGM—graphitic gneiss mylonite; PL—

parallel with the foliation sample, PP—perpendicular to the foliation sample 
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The Poisson’s ratio values were also measured and calculated. However, the Poisson’s 

ratio could not be measured for some samples (Table III.1). While the OGM results range in a 

well-defined interval (0.03–0.12 MPa), the GGM results vary in a rather wide range (0.02– 

0.5 MPa). With respect to the orientation, the specimens cannot be separated. 

The destruction work shows big differences depending both on the lithology and the 

sample orientation (Table III.1). Plotted with compressive strength data, samples exhibit a 

monotone, close to linear function (Fig. III.8/a). The parallel samples are presented in the 

lower interval of the parameters, while the GGM and especially the parallel GGM samples 

show the lowest values. 

 

4.3.3 Relationships between the rock mechanical and fracture network parameters 

 

Systematic evaluation of different parameters suggests that several of them are in tight 

relationship with each other. Fractal dimension of the fracture pattern decreases with 

increasing destruction work (Fig. III.8/b). The separation tendency of the parallel samples, 

especially the parallel GGM samples is evident on this plot. In these specimens, a dense 

fracture network with high D values evolved by low destruction work. The two geometric 

parameters of the fracture pattern, D and CFL, increase together (Fig. III.8/c). On the other 

hand with increasing Young’s modulus, the CFL values show a slightly decreasing trend (Fig. 

III:8/d); the parallel GGM samples are shifted towards the region of a lower Young’s 

modulus and higher CFL values. 

 

4.4 Results of statistical methods 

 

In order to determine those parameters that can be used to distinguish the a priori known 

petrological groups, discriminant function analyses were carried out. 

In the first step of the analysis the two petrologically most different units, the OG with 

its mylonite (OGM) and GGM were investigated. The coinciding histogram (Fig. III.9/a) 

suggests that the two groups can clearly be separated using the discriminant score (DA): 

 DA = 2.3Wd - 2.8(E/ σc) – CFL + 0.8HU + 0.8E + 0.7D (3) 

where:Wd is the destruction work, E is the Young’s modulus, σc is the compressive strength, 

HU is the mode of the CT scan histogram, CFL is the cumulative fracture length and D is the 

fractal dimension of the fracture network. In the next step, the separation of OG and OGM on 

the basis of rock mechanical data was attempted. The results suggest that the two groups 
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cannot be distinguished as they exhibit a unimodal histogram (Fig. III.9/b). The discriminant 

function in this case is: 

 DB = 9.7Wd + 10.4(E/σc) – 12σc + 1.3E – 0.8HU + 0.5CFL (4) 

Finally, inside the GGM lithology the parallel samples were compared with those that 

were cut perpendicularly. The resulting plot (Fig. III.9/c) shows two distinct groups separated 

by scores calculated based on the discriminant function of: 

 DC = 7.3D – 8.5CFL – 7.5E + 5.6HU + 5.2 vUH + 4.3 σc (5) 

where vUH is the ultrasonic wave velocity. 

If all three groups (OG and OGM, GGM parallel, GGM perpendicular) are involved in 

the analysis simultaneously (Fig. III.9/d) they can be separated unambiguously using the 

discriminant functions: 

Function1 = 6.3Wd – 7.2σc – 3.6CFL + 2.3E + 1.9vUH + 1.4D + 1.3HU (6) 

Function2= 8.1Wd – 7.7σc + 5.4(E/σc) – 1.5D+1.5vUH. (7) 

 

5 Discussion 

 

5.1 The nature of the KIHA-NE reservoir rocks 

 

According to previous investigations (unpublished reports), the metamorphic basement 

of the KIHA-NE Field forms a heterogeneous fractured reservoir with oil-water phase 

boundaries at three different depths inside the rock body. Moreover, numerous neighbouring 

wells do not communicate with each other hydrodynamically, suggesting a highly 

compartmentalised fractured reservoir. The reservoir features are extremely heterogeneous 

throughout the rock body; in a CH productive interval the porosity is 2–20 %, whilst in a 

barren section it is 0 %. Nevertheless, a potential connection between the reservoir properties 

and lithological characteristics has never been previously studied. In the course of rock 

classification, we identified four blocks with different lithologies (Fig. III.2); the orthogneiss 

with amphibolites xenoliths and granite intrusions, the orthogneiss mylonite, the graphitic 

gneiss mylonite and the graphitic carbonate phyllite (Nagy and M. Tóth 2012). On the basis 

of macroscopic and microscopic descriptions, the intensity of natural fracturing as well as the 

presence of oil spots, suggests that the GGM and the OGM units may serve as the main 

migration pathways and as reservoir rocks. In the case of the GGM samples the cavities and 

dissolved carbonate nets seem to contribute to the enhancement of the reservoir properties. 
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Fig. III.6. Characteristic stress-stain curves of: (a) orthogneiss, (b) orthogneiss mylonite, (c) graphitic 

gneiss mylonite parallel, (d) graphitic gneiss mylonite perpendicular. 

Legend: (1–3) results of the measurements, (4) elastic line 
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Ultrasonic wave velocity (Table III.1) and CT scan measurement (Fig. III.5) were 

carried out as non-destructive tests on the intact samples. The results do not show any 

significant differences between the lithologies; the measured values vary in narrow intervals 

in the case of each rock type, except for the HU values of the OGM samples; its wide range is 

probably caused by the mineralogical and microstructural heterogeneities of this lithology. 

Even slight variations in chemical composition of the protolith may cause remarkable 

differences in mica content, while different intensities of deformation may result in 

heterogeneous grain size reduction and various mineral alterations. Interaction of all these 

factors may have significantly modified rock density and thus the HU values measured by 

CT. 

 

5.2 The provoked fracturing of the rock types 

 

In the course of compression tests, an artificial fracture network was evolved in the rock 

samples. Cracks can be evolved in the rock body, when the local stress exceeds the local 

strength (Batzle et al. 1980). According to Gottschalk (1990) the stress concentration in the 

granitic and the mechanically similar gneissic rocks, has four main sources:  

(1) presence of micropores, grainscale cavities and heterogeneities, 

(2) pre-existing microcracks, 

(3) elastic mismatches between constituent minerals, and 

(4) slip and frictional sliding on favourably oriented phylosillicate cleavage planes. 

The role of the preferred orientation of biotite grains in microcrack nucleation within 

the neighbouring phases is also emphasised (Gottschalk 1990; Seo et al. 2002). Batzle et al. 

(1980) also notes the role of the pre-existing microcrack and grainscale cavity orientation, 

which decides opening or closing as a function of the stress field. 

The fracture network evolved in the course of the compression treatment could be 

visualised in 3D by CT scans. In evaluating the vertical and horizontal sections, remarkable 

differences concerning both lithology and orientation become conspicuous (Fig. III.4). Whilst 

in the samples perpendicular to the foliation just a few fractures evolved, whereas in the 

parallel samples numerous fractures were created. Mylonites, especially the GGM samples 

exhibit an even more dense fracture network than any other set of specimens. In addition to 

visualisation, numerical data derived from CT sections (cumulative fracture length (CFL), and 

the fractal dimension value (D) of the created fracture network) further confirm these 

differences (Table III.1); the parallel GGM samples are characterised by the highest CFL and 
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D values. Further numerical data, the compressive strength, the Young’s modulus, the Poisson 

ratio and the destruction work were provided by the compression tests (Table III.1). Although 

the number of the specimens was not sufficient to obtain statistically reliable data, the results 

do show the most important rock mechanical behaviour of the rock materials. 

 

Fig. III.7. The concept of the Modulus Ratio (MR): a strength-deformation representation for rock 

materials and rock masses (Deere and Miller 1966) with the characteristic intervals of the 

metamorphic and sedimentary rocks.  

The KIHA-NE data were plotted (n = 22) 
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There are several rock mechanical classification schemes and interpretations used by 

rock engineers to describe the behaviour of rock masses (e.g., Q-system by Barton et al. 1974; 

NAMT by Rabcewicz 1964a, 1964b; Rock Mass Rating (RMR) system by Bieniawski 1989). 

These methods are mostly based on empirical observations and are developed for special rock 

mechanical problems. Although they define relative rather than absolute metrics, these 

schemes may be suitable for comparing the mechanical behaviour of diverse rock types within 

a given field. According to Deer and Miller’s (1966) diagram (σc − E), most studied samples 

plot into the sedimentary rather than the expected metamorphic rocks field, even if they are 

close to the boundary of the two fields (Fig. III.7). This suggests that the samples behave as 

sedimentary rocks in a mechanical sense; they do not show the features of classical 

metamorphic rocks. Although, their strength does not change significantly, the investigated 

samples have lower elasticity modulus than expected in the case of normal metamorphic 

rocks. 

The different mechanical and fracture network parameters show characteristic 

relationships and co-variation trends (Fig. III.8). The CFL correlates with the D values; they 

increase together suggesting a more complicated fracture network consists of longer fractures. 

Fractal dimension is also in tight relationship with destruction work, such that the fracture 

system is more prone to better communicate when it was evolved by lower destruction work. 

It also suggests that the rock material with high D values is more brittle and easier to crush. 

According to the plots on Fig. 8/b–c, CFL could be useful in differentiating the samples by 

orientation, whilst the D value could be used for lithology differentiation. The plot of Wd − σc 

(Fig. III.8/a) may discriminate both concerning orientation and lithology. On each plot the 

OGM samples usually plot with intermediate values close to the few data points of OG. In the 

case of GGM lithology however, the data points of the parallel samples usually separate from 

the others; in addition, in several cases they separate from the perpendicular GGM data too. 

The remarkable influence of sample orientation on fracturing tendency suggests the highly 

anisotropic behaviour of the GGM lithology. In general, on the basis of all these plots, the 

parallel GGM samples need the lowest destruction work to create high CFL and D data that is 

a complex system. Consequently, this rock type has the best chance to form a communicating 

fracture network. Furthermore, orientation of the recent stress field may have an important 

role on the closing or opening tendency of the natural fractures of the GGM block inside the 

reservoir, because of the highly anisotropic behaviour of this lithology. 
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Fig. III.8. Cross plots of KIHA-NE data (n = 22): (a) Wd −σc, (b) CFL−D, (c) D −Wd , (d) CFL−E 

 

Analysis of the CT images also makes the study of changes in the uncrushed rock 

matrix possible. This kind of evaluation can be carried out by omitting the fractures of the 

analysis. The results of intact and crushed samples were compared (Fig. III.5) in the case of 

the mylonitised rock units (OGM, GGM). Data obtained for the crushed OGM samples vary 

in a rather wide range, nearly overlapping with the original interval measured for the intact 

samples (Fig. III.5/b). As the HU values correlate with the rock density, the results suggest 

that in the case of the OGM, there was a slight density increase during the compressive test 

inside the rock matrix. Both the macroscopic and microscopic description, as well as the CT 

interpretation of this rock type, implies that the original OGM samples do not include a 

visible amount of microcracks or microcavities, which could become closed during the 
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compressive test. Although, microcracks usually nucleate in mica neighbouring mineral 

phases, causing a density decrease and the OGM samples contain abundant amounts of 

phylosillicates (biotite, chlorite and sericite), the effect of this behaviour is not detectable on 

the CT scans. Even if this phenomenon may be important, the size and the amount of these 

microcracks in the samples are probably too low to appear in the HU values. 

During deformation, as a result of the migrating fluids, fine grained muscovite + quartz 

assemblages form replacing relatively strong feldspars. Due to this process, the reaction 

softening (also called secondary) (e.g., White and Knipe 1978; Williams and Dixon 1982; 

Wibberley 1999) generates a softer, looser zone in the rock body. The muscovitisation 

reactions can facilitate the deformation (Wibberley 1999) and these reactions indicate fluid 

mobility in the shear zones during the deformation process (Williams and Dixon 1982). These 

softer zones afterwards undergo further loosening in the course of the uplift of the rock unit. 

Rock mechanical compression tests could generate compaction in these looser zones that may 

cause a density increase in the HU values of the specimens. 

On the other hand, in the case of GGM, the HU parameters of the intact and crushed 

samples exhibit a characteristic difference. The difference between the HU modi (Fig. III.5/b) 

as well as the histograms of the crushed and intact GGM samples (Fig. III.5/a) clearly 

indicate a density increase during the mechanical treatment. This behaviour implies some 

essential rock characteristics may have an influence on the rock fracturing process. The GGM 

samples in their natural appearance contain abundant cracks, cavities and dissolved carbonate 

nests, which are probably accompanied by smaller microcracks and microcavities invisible to 

the naked eye. This microscopic and/or submicroscopic pore space could behave as 

significant matrix porosity that assigns a sedimentary feature for the rock, in accordance with 

the suggestion of the Deere and Miller (1966) plot (Fig. III.7). 

Although, prior to sample preparation, naturally unfractured intact specimens were 

selected, the presence of a few microcracks, microcavies and dissolved nests cannot be 

discounted. During the compressive test these tiny unconformities may have closed and 

caused the density increase. As this phenomenon takes place on the microscopic scale and the 

CT scan has a 1 mm resolution, only the HU value distribution could serve information about 

the density change. Moreover, compaction of the loosened mica rich zones also plays a 

notable part in the density increase during the compression test. 

In summary, we can state that the petrologically different rock types have remarkably 

different brittle behaviours. The low fracture network parameters (CFL, D) and the few 

provoked fractures detected on the CT images, confirm the former suggestion that the OG 
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block does not behave as a good fractured reservoir. The OGM lithology is characterised by 

moderate anisotropy and fracture tendency; the fractal dimension and CFL values do not 

suggest formation of a complicated and connected fracture system. High anisotropy and the 

large, possibly communicating fracture system that characterises the GGM, is achieved by 

much lower work investment than for any other rock type. In fact, this mylonite variety 

behaves as a sedimentary rock based on its rock mechanical parameters. On the other hand, 

although this lithology is the best candidate to contain large fractured zones in the whole 

reservoir, at reservoir pressure conditions microcracks and microcavities may become closed, 

significantly decreasing the original matrix porosity. Otherwise, overpressure in the reservoir 

may keep the cracks open as well resulting just in the opposite effect. 

 

5.3 Discrimination of the lithology groups 

 

Detailed data evaluation clearly infers that the four rock types are different not only 

concerning their petrological characteristics, but also in their rock mechanical behaviour, 

especially in the ability to form mutual fracture systems. To quantify how well the lithology 

groups can be distinguished based on the measured numerical parameters, discriminant 

function analysis was applied. Furthermore, this approach also can identify those rock 

mechanical parameters that are responsible for characterising each group. In the first step, one 

can see that the OG and the OGM samples can be separated from the GGM specimens (Fig. 

III.9/a) using the discriminant function DA (Eq. 3) that is based mainly on destruction work 

and elasticity/compressive strength. The plots of the rock mechanical parameters also showed 

that the lithotypes can be separated using the Wd − σc (Fig. III.8/a) and the E − σc (Fig. III.7) 

pairs of variables. Observing these plots, the OG with OGM group with higher strength and a 

slightly higher elasticity modulus, clearly needs more invested work to crush compared to the 

GGM samples. Furthermore, CFL, the third most important parameter of the DA discriminant 

function (Eq. 3), is in a reverse relationship with the destruction work, suggesting that 

samples crushed using less work tend to generate more a complex fracture network. As the 

GGM needs less destruction work to be broken, coinciding with higher CFL values, the GGM 

lithology exhibits the better reservoir features. 

Using discriminant analysis, no straightforward separation between the OG and OGM 

samples is possible (Fig. III.9/b). It is caused by gradual transition between the two rock types 

in all rock mechanical features (Fig. III.7), suggesting a continuous increase in the measure of 

shearing towards the highly deformed samples (mylonites). 
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Thirdly, inside the GGM unit a remarkable difference can be computed between the 

parallel and the perpendicular samples. The bimodal feature of this lithology is slightly 

observable on Fig. III.9/a, whilst in Fig. III.9/c the separation of the differently orientated 

samples becomes obvious. In the DC discriminant function (Eq. 5) that is responsible for 

separating samples of different orientations, the main factors are CFL and D that are the main 

geometric parameters of the fracture network. Absence of the rock mechanical variables 

indicates that there is no difference in the material itself, rather the behaviour of the GGM 

lithology is characterised by high anisotropy due to mylonitic foliation. 

 

Fig. III.9. Histograms of the discriminant scores for the lithology groups. 

a) orthogneiss (OG) with its mylonite (OGM) and graphitic gneiss mylonite (GGM),  

b) orthogneiss (OG) and orthogneiss mylonite (OGM),  

c) the parallel (PL) and the perpendicular (PP) graphitic gneiss mylonite (GGM) 

 

Discriminant function analysis of all three petrologically different groups of rocks 

shows coincident results. In Fig. III 9/d three sample groups are separated; the OG and OGM 

form one cluster, while the parallel and perpendicular GGM samples create two additional 

groups. In the discriminant functions F1 and F2 (Eqs. 6, 7) the primary differentiating factors 

are destruction work and compressive strength, while the secondly factors are cumulative 

fracture length and the fractal dimension value. The other rock mechanical and petrophysical 
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parameters, like HU values, or the ultrasonic wave velocity have subordinate roles in the 

group formation. 

 

6 Conclusions 

 

The Kiskunhalas-NE fractured metamorphic reservoir is characterised by the presence 

of rock types with different metamorphic and structural evolutions. On the basis of complex 

investigation we can state that the petrologically different rock types have remarkably 

different rock mechanical behaviours. We suggest that graphitic gneiss mylonite zone may 

offer the best reservoir characteristics. The results also show that all mechanical parameters 

are highly anisotropic and are determined by previous structures of the rock types. Therefore, 

beyond the lithology, the relationships between the recent stress field and the orientation of 

the preserved foliation of the metamorphic rocks have an important role in the reservoir 

features. 
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Lithology identification with well-log interpretation  

in the metamorphic Kiskunhalas-NE hydrocarbon reservoir, South Hungary 

by: Ágnes Fiser-Nagy, Tivadar M. Tóth, Ilona Vargáné Tóth 

 

Abstract  

There are four main rock types along the ideal rock column of the Kiskunhalas-NE field; in 

order from the bottom upwards, orthogneiss, orthogneiss mylonite, graphitic gneiss mylonite 

and graphitic carbonate phyllite. These main rock types are characterized by significantly 

different reservoir features, as was proved by previous rock mechanical investigation. The 

geophysical information of well-logs (gamma, resistivity, neutron, density and acoustic logs) 

allow an understanding of the spatial extension of the good reservoir blocks. In the course of 

the examination of conventionally used plots, MN plots and discriminant function analysis 

were used. Three rock types were successfully identified along the wells, the graphitic 

carbonate phyllite, the mylonite and the orthogneiss. On the basis of the results, lithology 

boundaries could be estimated in numerous wells. These boundaries were presented along 

geological sections. Taking also the independent hydraulic regimes of the reservoir into 

account, a series of south-dipping normal fault-bounded blocks are assumed. Inside each 

block shallow-dipping mylonite/gneiss boundaries with a north-northeast dip direction are 

typical. The existence of this low-angled (less than 5°) mylonitized zone refers to a presence 

of a one-time detachment fault linked to the formation of a metamorphic core complex. 

 

1. Introduction 

 

Fluid production from a fractured hard rock reservoir with heterogeneous petrological 

build-up is a real challenge. Hydrodynamic features of the reservoir may differ significantly 

for diverse rock types, because of their various rheological behaviours. In certain cases, not 

only lithology, but also spatial position of rock bodies with considerable internal structures 

(bedding, foliation, etc.), may play a role in the resulting brittle deformation. In fact, the 

spatial relationship between the directions of the rock structures and the brittle stress field is 

crucial. All lithological and structural features may finally define the hydrodynamic 

characteristics of the reservoir, which commonly exhibits a highly compartmentalized nature. 

The study area of this research is the Kiskunhalas-NE (KIHA-NE) fractured 

metamorphic basement reservoir from the southern part of the Pannonian Basin. Previous 

studies (Nagy et al. 2013) showed that the four basic rock types of this basement high behave 

in a remarkably different way in the brittle field, causing diverse fracture geometries. While 

various mylonitic rock types tend to produce a dense fracture network, orthogneiss is free 

from communicating fracture systems. Keeping also in mind that, in the KIHA-NE field at 

present, not less than ten independent domains are defined hydrodynamically, a complicated 
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mosaic of differently fractured rock bodies must be supposed. In order to better understand 

the spatial position of blocks of rock types that tend to provide good reservoir qualities, a 

lithological framework should be put together. While the role of borecores is essential in 

petrological and petrophysical characterization, due to their very limited number well-logs 

must also be involved to spatially extend the information. 

The aim of the present study is to maximize petrological and well-log information so as 

to construct a reliable framework of all rock types that play a remarkable role in the behaviour 

of the KIHA-NE reservoir. 

 

2. Geological settings 

 

The highly fragmented Pannonian Basin is built-up from microplates enclosed by the 

Carpathians, Alps and Dinarides. The rather complex structural evolution of the region started 

with the less known Variscan orogeny (Szederkényi 1984, Lelkes-Felvári et al. 2003, Lelkes-

Felvári & Frank 2006), followed by an extensive extension, known as the Jurassic (Csontos et 

al. 1992, Haas & Péró 2004) and then the nappe formation in the Cretaceous (Rozlozsnik 

1936, Ianovici et al. 1976, Bleahu et al. 1994, Német-Varga 1983, Tari et al. 1999). As a 

result of the complicated subsidence history of the Neogene (eg. Tari et al. 1992, Horváth 

1995, Csontos & Nagymarosi 1998, Horváth et al. 2006), even more kilometre-deep sub-

basins (Békés Basin, Makó Trench) and metamorphic highs, covered with just a few-hundred-

metre-thick sediment (eg. Jánoshalma Dome, Szeghalom Dome), were formed (Fig. IV.1a). 

The so formed varied topography and structural setup of the basement significantly affect the 

fluid flow system of the basin (eg. Vass et al. 2009); therefore, knowledge of them is 

essential, especially with respect to the production of the industrially important fluids, like 

thermal water and hydrocarbons. 

The KIHA-NE fractured metamorphic hydrocarbon-reservoir is situated inside the Tisza 

Unit, NE from the Jánoshalma Dome and southwest from the Tázlár field (Fig. IV.1/a). The 

69 wells of the field reach the metamorphic basement at 1800–2000 m deep and generally 

extend for tens or even hundreds of metres. The previous papers (T. Kovács 1973, Árkai 

1978, Cserepes 1980, T. Kovács & Kurucz 1984, Cserepes-Meszéna 1986, Árkai 1993) 

dealing with the field outline a diverse petrological build-up and various developments. 
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Figure IV.1. a) Location of the Kiskunhalas-NE field in the Pannonian Basin (After Haas et al. 2010). 

b) Representative macroscopic picture of the litotypes in the order of the ideal rock column and 

metamorphic evolution of them (after Nagy & M. Tóth, 2012). 

 

According to Nagy and M. Tóth (2012) there are four main rock types in the 

metamorphic basement of KIHA-NE in the ideal rock column (Fig. IV.1/b), as follows. In the 
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lowermost structural position, an orthogneiss with amphibolite xenoliths is common. On the 

basis of the petrological characteristics it is similar to the orthogneiss body of the 

neighbouring Jánoshalma Dome (T1 ~ 700–850 °C, P1 <0.65 GPa and T2 < 580 °C, Zachar 

and M. Tóth 2004). The next lithology unit upwards is the mylonitized orthogneiss that, in the 

mineral assemblage sense, clearly deviates from the next graphitic gneiss mylonite type. The 

extensional fabric elements (C/S fabric, apatite bookshelf, boudinaged clasts and deformed 

quartz grains) are common in both mylonite types. In accordance with the quartz suture 

thermometer (Kruhl and Nega 1996), the temperature of the deformation event of these two 

mylonite types is estimated as Tdef ~455 °C and the metamorphic temperature of the graphitic 

gneiss mylonite is T ~ 410 ± 45 °C using a carbonaceous material thermometer by Raman 

microspectroscopy (Beyssac et al. 2002, Rahl et al. 2005, Ayoa et al. 2010). The uppermost 

member of the ideal rock column, a graphitic carbonate phyllite, occurs only in a limited area 

of the site. Its carbonaceous material thermometer results suggest a T ~ 370 ±15 °C. In 

accordance with the previous and more recent outcomes between the bottom (orthogneiss) 

and the top (graphitic carbonate phyllite) of the rock column, there is approximately 200 °C 

difference in the characteristic metamorphic temperatures. The evolution of the two extreme 

rock bodies is significantly different and they were probably juxtaposed along an extensional 

shear zone (Nagy and M. Tóth 2012). 

 

3. Methods 

 

There is no outcrop in the basement; we only have information from several wells, 

penetrating the metamorphic mass around 100 m deep. Because of the limited sources of 

information, we have to involve all data from the wells; the drilling documentation, the 

borecore samples and cuttings, as well as the well-logs; as follows (Fig. IV.2). 

 

3.1 Drilling documentation 

 

Drilling documentation is the primary information about a well; it follows the “life” of 

the well from planning to closure. The daily report provides essential information about the 

presence and the extension of the lithotypes in the intervals without borecores. The lithotypes 

and the depths of the lithotype changes were determined primarily on the basis of the cuttings. 

Nevertheless, detailed petrographic examination could not be carried out based on on-the-spot 

cuttings because of their small size and the short time available for description. Therefore, the 
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lithology classification on the well site is restricted to the macroscopically obvious 

differences. 

 

 
Figure IV.2. Flow chart of the methods (see further in the text).  

 

3.2 Lithological classification 

 

Accurate petrological information can be achieved only at the points of the borecores. In 

the borecores with conventional petrographic investigation (macro- and microscopic 

examination) the mineralogical composition, textural characteristics, and the extent of 

deformation could be established. On the basis of these characteristics, we can classify the 
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rock types of the field. Estimation of the metamorphic pathway (thermo- and barometric) 

helps in understanding the genetic relationship between the separated lithotypes that allow the 

definition of the (approximate) order in the ideal rock column. Even so, our lithological 

knowledge is limited to the sporadic borecores. 

 

3.3 Well-log data evaluation 

 

The several-decades-old well-logs were digitalized and only the good quality borehole 

logs were selected. If necessary, correction was applied to the logs. As only the metamorphic 

basement was the object of the present study, only these intervals were examined, the other 

sections were cut off. Most of the wells’ own good quality logs do not contain a borecore, 

thus we could not apply a direct borecore–log dataset. Instead, only the results of the 

petrological descriptions of the identified lithotypes and their ideal sequence along the rock 

column were considered. 

On the digital data of the geophysical measurement, two-log (cross plots) and multi-log 

(MN plot) quantifications were computed, in order to group the log values and identify the 

known lithotypes. Further statistical investigations (discriminant function analysis) were 

fulfilled to find the best separation algorithm between the lithology units. Furthermore, to 

estimate the rock type boundaries, the “predicted group” option of discriminant function 

analysis was used. 

Cross plot is a simple graphical method to solve fairly complex relationships using two 

(or three) geophysical measurements; it can help to estimate the formation lithology. It has a 

general format; one measurement is displayed along the x-axis and another is displayed along 

the y-axis (Asyuith and Krygowsky 2004). The third measurement can be plotted with a 

colour scale. We can group the well-log values to define fields, also taking into account the 

depth of the data points, and relations between the two variables (Riden 1996, Steckham and 

Sauer 2010). 

MN plot is a multi-log quantification; it combines the data of all three porosity logs to 

provide the lithology-dependent quantities M and N. M and N are simply the slopes of the 

individual lithology lines on the sonic-density and density-neutron cross plot charts, 

respectively. Thus, M and N are essentially independent of porosity and a cross plot provides 

lithological identification (Schlumberger 1989). M and N are defined as: 

M = (Δtfl – Δt) / (ρb – ρfl) x 0.01 (x 0.03 metric) (1) 

N = (ϕNfl – ϕN) / (ρb – ρfl) (2) 
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where Δt is the interval transit time in the formation (from the log), Δtfl the interval transit 

time in the fluid in the formation, ρb the formation bulk density (from the log), ρfl fluid 

density in the formation, ϕN neutron porosity (from the log), ϕNfl neutron porosity of the 

fluid of the formation (usually = 1.0). A number of common mineral points are plotted on the 

MN plot; conventionally this defines the limestone-sandstone-anhydrite-dolomite quadrangle 

(Asyuith and Krygowsky 2004), which are the common (sedimentary) reservoir lithologies. 

Although, in this case, the KIHA-NE reservoir is a hard rock reservoir, this conventional 

quadrangle was used to facilitate the simple orientation inside the MN plots. 

Discriminant function analysis is a suitable statistical method of assigning lithotypes to 

the log values; its task is to find the class, among those currently available, and that which 

most closely matches each unclassified sample. Therefore, this calculation requires a priori 

knowledge of classes (Benaouda et al. 1999). We aim to find the best separations in the 

datasets and estimate or evaluate the boundaries among the lithotypes along the wells. 

 

3.4 The available open-hole well-logs 

 

The gamma (GR) log, a measurement of the natural radioactivity of the formations, 

derives from 40K, 238U, 232Th and their daughter elements. In a non-radioactive formation, the 

potassium content is the dominant accompanied by clay minerals and potassium feldspar 

(Schlumberger 1989). 

Because dry rocks are good electrical insulators, the resistivity log (RT) shows the fluid 

in the pores of the formations or that absorbed in their interstitial clay. The resistance of a 

formation depends on the amount and the resistivity of formation water and the pore structure 

geometry (Schlumberger 1989). Each formation without fluids could have a different 

resistivity because of the different amount of included conductive minerals. The resistivity log 

is on the logarithmic scale, unlike the others; therefore, the following transformation 

commonly used in the case of metamorphic rocks, was applied to them. 

GYRT = 1 / √RT (3) 

The sonic log measures interval transit time (Δt or DT) of a compressional sound wave 

travelling through the formation along the axis of the borehole (Asyuith & Krygowsky 2004). 

In the simplest form, a sonic tool consist of a transmitter that emits a sound pulse and a 

receiver that picks up and records the pulse as it passes the receiver. Porosity decreases the 

velocity of the sound through the rock material and, correspondingly, increases the interval 
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transit time. The interval transit time for a given formation depends on its lithology and 

porosity (Schlumberger 1989). 

The density log measures the matrix density and the density of the fluid in the pores 

(Asyuith & Krygowsky 2004). A radioactive source applied to the borehole wall emits 

gamma rays into the formation (Schlumberger 1989). When the emitted gamma rays collide 

with electrons in the formation, the collisions result in a loss of energy from the gamma ray 

particle. The scattered gamma rays returned to the detectors in the tool measured on high 

energy range, are proportional to the electron density of the formation. In most earth materials 

of interest in hydrocarbon exploration, the electron density is related to the formation true 

bulk density (ρb) through a constant (Tittman & Wahl 1965). The formation bulk density is a 

function of matrix density, porosity and density of the fluid filling the pores (Asyuith & 

Krygowsky 2004). 

Neutron logs (ϕN) respond primarily to the hydrogen concentration in a formation. In a 

shale-free porous formation, where pores are filled with water or oil, the neutron log reflects 

the liquid filled porosity. Neutrons are created from a chemical source in the neutron logging 

tool. These neutrons collide with nuclei of the formations and with each collision the neutron 

loses some of its energy. With enough collision, the neutron is absorbed by a nuclei and a 

gamma ray is emitted. Because the hydrogen atom is almost equal in mass to the neutron, 

maximum energy loss is dominated by a hydrogen atom. Therefore, the energy loss is 

dominated by the hydrogen concentration of the formation. The neutron log responses depend 

on the detector type and the lithology (Asyuith & Krygowsky 2004, Schlumberger 1989). 

As, in this case, the porosity of the known basement lithologies of the investigated area 

is rather low, the porosity logs practically respond to the lithology features. 

 

4. Data 

 

4.1 Drilling documentation 

 

In the basement of the KIHA-NE field, the daily reports separate two different rock 

types on the basis of cuttings; the graphitic carbonate phyllite and some kind of gneiss (Fig. 

IV.2). Due to the rather characteristic appearance of the graphitic carbonate phyllite (black 

colour), its location and the exact extension are well documented in the whole area. 
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4.2 Petrological information 

 

The lithological classification and detailed petrographical description of the lithological 

units of Nagy and M. Tóth (2012) were used in the course of the present examination. 

The orthogneiss of the KIHA-NE area consists of unweathered feldspar and quartz, and 

various amounts of biotite and muscovite flakes determine the slight foliation. Moderate 

weathering presents in just some places in the samples, while along the small number of 

narrow cracks small-scale alteration zones are common. There are a few amphibolite 

xenoliths and mica-poor granite dykes intercalated in the orthogneiss body (Fig. IV.1/b). 

The mineral assemblage and fabric elements (myrmekitic feldspar grains) of the 

orthogneiss mylonites suggest the relation to the orthogneiss underneath. The protolith 

orthogneiss underwent a strong shearing effect. As a consequence, the feldspars were 

sericitized, the biotite altered to chlorite, while mylonitic (C/S) foliation developed. A 

moderate amount of fractures and cracks is characteristic without any alteration zone and 

considerable open pore space in the orthogneiss mylonite rock body does not exist (Fig. 

IV.1/b). 

In the case of the graphitic gneiss mylonite, the intensive sericitization, the C/S foliation 

and mylonitic fabric elements are the same as in the orthogneiss mylonite samples. However, 

the absence of biotite and/or chlorite, and the presence of graphite and sulphide minerals as 

index phases, clearly separate this block from the underlying orthogneiss mylonite. The 

samples are commonly fractured and oil spotted, containing significant open pore spaces (Fig. 

IV.1/b). 

On the top of the basement, the mostly chaotically folded graphitic carbonate phyllite 

appears. In this low grade metamorphic rock, black bands alternate with white bands (Fig. 

IV.1/b). The major rock forming minerals are graphite (black bands), carbonate and white 

mica (white bands), with subordinates containing sulphide minerals and some quartz too. The 

mylonitic features are absent; nevertheless, extensional fabric elements (pressure fringes 

around pyrite cubes) are characteristic of its texture. 

 

4.3 Well-logs 

 

As mentioned above, the only geophysical data available in the KIHA-NE field are the 

several-decade-old digitalized well-logs; a seismic section does not pass through the 

investigated area. Fifteen out of the total of 69 wells have invaluable well-logs with porosity 
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logs. Altogether, nine wells have all three porosity logs, two have five wells without any 

borecores, and one has only the neutron log, but it also has borecores. Further four wells, with 

only the gamma and resistivity logs, were used in the course of the evaluation because of their 

lithologically various borecores (Table IV.1). 

 Avaiable porosity 

logs 

Discriminant fuction 

analysis 

 Plot Lithology 

boundary 

Well N D S Core N-D-S  N-D  N-S  N  N  GR-RT  lit  

A # # #  OK      G / M 

B # # #  OK      G / M 

C # # #  OK      G / M 

D # # #  OK      G / M 

E # # #  OK      G / M 

F # # #  DD((11))  DD((22))  DD((33))  DD((44))  OK  G / M 

G # # #  OK      G / M 

H # # #  OK      G / M 

I    #      X M / M 

J    #      OK - X G/M/M 

K # #    OK     G / M 

L # #    OK     G / M 

M # #    OK     G / M 

N # #    OK     G / M 

O #  #    X    G / M 

P #  #    X    G / M 

Q #   #    OK DD((55))  OK G / M 

R # # #  DD((66))      OK P / M 

S    #      OK P / M 

 

Table IV.1. Summary of the used wells and results of them. 

Legend: N – neutron log, D – density log, S – sonic log, D(1) – number of the discriminant function, 

OK – the discriminant analysis was worked, X – the discriminant analysis was not worked, G/M – 

gneiss/mylonite lithology boundary, M/M – mylonite/mylonite lithology boundary, P/M – graphitic 

carbonate phyllite/mylonite lithology boundary.  

 

5. Results and discussion 

 

5.1 Separation and identification of the orthogneiss and the mylonitic lithologies 

 

First, let us look at those wells, which, according to the cuttings, did not contain 

graphitic carbonate phyllite. Consequently, the “gneissic” lithology of the field notes could be 

identified as one of the remaining three rock types (mylonites and orthogneiss). There are 

some wells with a limited porosity log range, but which have numerous borecores from the 

gneiss and some from the mylonitic rock types. In the case of Well-Q, there are several 
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borecores belonging to the orthogneiss and its mylonitic variety. On the plot of gamma-

resistivity, the data points of its borecores (the coloured circles) appear separately (Fig. 

IV.3/a), and the further values are grouped around them. The points around the gneiss 

mylonite connect to the upper section of the well, while the other group, around the gneiss 

borecore data points, belongs to the lower section of the well. The mylonitic interval is 

characterized by higher gamma values and lower resistivity than those typical of the gneiss 

group. 

In Well-J, according to the numerous borecores, three lithotypes are represented; 

graphitic gneiss mylonite, orthogneiss mylonite and orthogneiss. Even so, on its gamma-

resistivity cross plot, just two groups exist (Fig. IV.3/b); the datapoints of the orthogneiss 

samples are separated from the mylonitic samples. The graphitic gneiss mylonite and the 

orthogneiss mylonite borecore values appear as overlapping groups; thus, despite the clear 

petrological difference, the two mylonitic lithotypes do not deviate in a well-log sense. The 

result of Well-I corroborates that the mylonitic lithologies of KIHA-NE are not separable in a 

well-logging way, since its graphitic gneiss mylonite and orthogneiss mylonite borecores do 

not deviate on its cross plots. In Well-J, the log values of the short interval without borecores 

coincide with the orthogneiss group, confirming the suggested identification by their depth. 

The group of mylontic lithotypes presents with higher gamma values compared with the 

orthogneiss datapoints. 

Eight wells have all porosity logs, but without any available borecores. In these cases, 

all the porosity logs were plotted with each other in every possible variation in all cases. The 

points of all the wells suggest the existence of diverse groups in these diagrams. The best 

separation is shown by Well-F, where the two groups clearly appear on each plot, being the 

most spectacular on the density-sonic plot (Fig. IV.3/c). Furthermore, samples of these groups 

cluster separately along the well; the upper section of the well is characterized by lower 

density and higher Δt compared to the lower section. Nevertheless, the two separated intervals 

of the well do not show any noticeable deviation in gamma values. 

The lithology sensitive MN plot needs all three porosity logs, so it was completed only 

for those wells with all of them. To assists the orientation on the MN plot, merely for the sake 

of simplicity, the conventionally used quadrangle of anhydrite (A) – sandstone (S) – 

limestone (L) – dolomite (D) was used. The obtained MN plots generally show two groups 

with varied standard deviations, and, in some cases, only one of the groups is present. The 

best example to exhibit the strength of the MN plot is Well-F (Fig. IV.3/d), where both groups 

exist separately. The upper section of the well is represented by points along the lower side 
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(A–S) of the quadrangle, while the lower section of the well exists along the upper side (D–

L). Two further separated groups appear on this plot; namely the data points of the potassium 

feldspar-rich intervals (Fig. IV.3/d) and the calcium and sodium feldspar-rich intervals (Fig. 

IV.3/d). These short intervals are dispersed along the well. 

 

 

Figure IV.3. Plots of gneiss and mylonitic lithologies: a) Gamma-Resistivity plot of well-Q; b) 

Gamma-Resistivity log of well-J; c) Sonic – Density plot of well-F; d) MN plot of well-F. 

Legend: A – anhydrite, S – sandstone, L – limestone, D – dolomite. 

 

The two groups of the MN plot along the lower and the upper sides of the quadrangle 

coincide with the groups separated on the cross plots previously (Fig. IV.3/c). The upper 
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interval of the well is characterized by lower density and higher sonic values compared to the 

underneath section. This could mean that the upper interval is looser and has higher mica 

content; the latter also is responsible for higher gamma values (Fig. IV.3/a, b). These features 

together with considering the ideal sequence along the rock column (Fig. IV.1/b), suggest that 

the group along the A–S side of the quadrangle belongs to the mylonitic rock types. Because 

of shearing and its attendant alteration process, the mylonitic zones are looser and are richer 

in micas than the non-deformed orthogneiss body. As a result, the other group along the D–L 

side of the quadrangle is identified as the orthogneiss lithology. In the cases where only one 

of these groups appears on the MN plot, there is just one lithology along the whole well: 

orthogneiss or mylonite. 

 

5.2 Estimation of the boundary between orthogneiss and mylonitic lithologies 

 

After the separation and identification of the gneiss and mylonite lithotypes, we would 

like to know which well-log measurements and the extent to which the separation between the 

two lithologies are defined. For this purpose, discriminant function analysis was carried out. 

In the first step, all porosity log data of Well-F were used with the aim of defining the 

function which best separates the two lithologies. In the second step, this function can be 

applied to all other wells. As a result, the boundary between the separated lithology units can 

be estimated using the predicted membership values computed by discriminant analysis. 

Figure IV.4/a shows the histogram of the discriminant scores of Well-F with the two 

fairly well separated groups of mylonite and gneiss values. The higher discriminant score 

values concern the mylonite lithology, while the lower discriminant score values refer to 

orthogneiss. According to the discriminant function: 

D(1)= (0.361*S +2.146*D + 5.393*R) – (0.389*N +26.297) (4) 

the dominant parameters in the separation are density (D) and resistivity (R) besides the 

neutron (N) and sonic (S) logs. In Figure IV.4/b discriminant scores along the depth are 

present; the boundary between the two lithologies can be estimated at 2094.7 m on the basis 

of the predicted group membership values calculated for the D(1) discriminant function. 

Afterwards, the D(1) function was applied for the remaining seven wells with all 

porosity logs. One example is demonstrated, the case of Well-D, in Figure IV.4/c, d. The 

resulting scores of D(1) are plotted with the depth (Fig. IV.4/d); the upper section of the well 

belongs to the mylonite lithology and has higher discriminant score values compared to the 

lower interval of the borehole, that is, the non-deformed gneiss. This identification is 
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confirmed by the MN plot results also, shown on Figure IV.4/c. The boundary was estimated 

at 2100.8 m between the mylonite and the gneiss units. The extremely high values of the 

gneiss unit (Fig. IV.4/b, d) might belong to narrow sheared zones, while the much lower score 

values inside the mylonite unit could represent less mylonitized bands, as the log features of 

these intervals are closer to that common for the gneiss type. 

 

 

Figure IV.4. Discriminant function analysis (D1) of gneiss and mylonite with density, sonic, neutron 

logs: a) histogram of the discriminant scores (D1)  of well-F; b) discriminant scores (D1)  of well-F 

along the well; c) MN plot of well-119; d) discriminant scores (D1)  of well-119 along the well.  

Legend: A – anhydrite, S – sandstone, L – limestone, D - dolomite  
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Figure IV.5. Discriminant function analysis (D2) of gneiss and mylonite with density and neutron 

logs: a) histogram of the discriminant scores (D2) of well-F; b) discriminant scores (D2) of well-N 

along the well. Discriminant function analysis (D3) of gneiss and mylonite with sonic and neutron 

logs: c) histogram of the discriminant score(D3) of well-F; d) discriminant scores of well-O along the 

well. 

 

There are some wells without the whole range of porosity logs; either the density or the 

sonic is absent. Although, in these cases, the MN plot is unusable, the discriminant function 

analysis might be successful. Identically to the previous seven cases, the discriminant scores 

of the D(1) function consistently show that the mylonites have higher values (ca. > 0) and the 

orthogneiss have lower values (ca. ≤ 0). So, as the results of MN plots and discriminant 
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analysis coincide, in all cases when the MN plot cannot be applied in the absence of any of 

the porosity logs, lithologies can be separated using the statistical approach alone. The 

previously efficiently used dataset of Well-F was used in the cases where one of the porosity 

logs is absent. At first, calculation without sonic measurements was carried out. In this case, 

the gneiss and mylonite zones of Well-F could well be separated (Fig. IV.5/a) using the 

function of: 

D(2) = (3.357*D + 33.337*R) – (0.208*N + 0.007G +11.157). (5) 

The resistivity (R) and the density (D) logs are the main parameters in the separation besides 

the neutron (N), while the gamma log (G) has a very low effect on it. The D(2) function was 

applied successfully on all wells with only density and neutron porosity and without sonic 

logs; the lithology and the boundary of all these wells could be estimated convincingly. As in 

the case of Well-N (Fig. IV.5/b), the upper interval of the well is mylonite up to 2099.4 m, 

while further down orthogneiss is common. 

In the other case, where the density log is missing and sonic and neutron are involved 

from the porosity logs, the discriminant analysis of Well-F produces the histogram in Figure 

5c, where the separation of the mylonite and gneiss lithology is quite good, using the function 

of: 

D(3)= (0.377*S) – (0.366*N +21.021). (6) 

But the application of the D(3) function for the wells does not work; in the example of Well-O 

the discriminant scores (Fig. IV.5/d) do not show any pattern similar to the previous ones, 

neither the identity of the lithologies nor the boundary between them could be established. 

Nonetheless, this experiment further confirms that, when separating gneiss and mylonite, the 

density measurement plays the major role (together with the resistivity), and the sonic log is 

not suitable. 

Finally, Well-Q, with only the neutron measurements from the porosity logs, explores 

some borecore samples from both orthogneiss and its mylonite. According to the previous 

practice, the dataset of Well-F was the starting point of the discriminant function analysis. On 

the histogram of the discriminant scores (Fig. IV.6/a) separation of the two lithologies is 

satisfactory using only the neutron, gamma and resistivity measurements; the function is: 

D(4)= 30.834*R – (0.245*G + 2.714) (7) 

The main separating log is the resistivity (R), the gamma (G) log is subordinate, while the 

neutron (N) has no role. The D(4) function was applied on the dataset of Well-Q and the 

resulting discriminant scores along the depth are shown in Figure IV.6/b with locations of the 

known borecores (coloured circles). The known intervals fit into the separated sections of 
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mylonite and orthogneiss. The boundary between the two lithology units was estimated at a 

depth of 2081.7 m. There is an interval (without sample) around the 2160 m depth in the 

orthogneiss unit, with consistently higher discriminant score values; this might be a sheared 

zone inside the otherwise non-deformed orthogneiss unit. 

 

 

Figure IV.6. Discriminant function analysis (D4) of gneiss and mylonite with neutron: a) histogram of 

the discriminant scores of well-F; b) discriminant scores (D4) of well-Q along the well; c) histogram 

of the discriminant score (D5) of well-Q d) discriminant scores (D5) of well-F along the well. 

 

Finally, discriminant analysis was carried out on the dataset of Well-Q too in order to 

check whether the D(5) function works satisfactorily on the dataset of Well-F. The 
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discriminant scores of Well-Q appear with quite good separation (Fig. IV.6/c), with the 

function of: 

D(5) = (11.035*R + 2.580*N + 0.081*G) – 13.107  (8) 

Similar to D(4), the most dominant measurement is the resistivity (R); but the neutron log (N) 

has a greater role than the gamma (G), contrary to Equation 7. The plot of the discriminant 

scores of Well-F by Equation 8 are presented in Figure IV.6/d. The previously identified 

lithologies (Fig. IV.3/a, b, Fig. IV.4/a, b) are indicated in it. Although the separation is not as 

adequate, it is clear that the upper section of the well has higher discriminant score values 

than the lower. Thus, the previously identified lithologies on the MN plot are proved by a 

direct link with the exactly known borecores of Well-Q. 

 

5.3 Separation and boundary estimation between graphitic carbonate phyllite and mylonitic 

lithologies 

 

Second, look at the wells that, according to the cuttings, explore the graphitic carbonate 

phyllite lithology. In Well-R, all the porosity logs are available and the upper section of the 

explored rock column belongs to the graphitic carbonate phyllite. The cross plots of the 

porosity measurements of the well show two slightly separate groups, presented on the 

density-neutron plot (Fig. IV.7/a). The graphitic carbonate phyllite values have a higher 

standard deviation in the neutron measurements, compared to the remaining “some gneiss” 

section. On the gamma-resistivity plot (Fig. IV.7/b) the extremely low resistivity values of the 

graphitic carbonate phyllite are conspicuous. Furthermore, its gamma measurements clearly 

show lower values than those characteristic of the “some gneiss” unit. Well-S has some 

graphitic carbonate phyllite and graphitic gneiss mylonite borecores, but does not have any 

porosity logs. Its gamma-resistivity plot shows a rather similar sight to the case of Well-R 

(Fig. IV.7/b); the borecores of graphitic carbonate phyllite appear with high standard 

deviation in the low resistivity field, while the mylonitic borecores and the remaining 

intervals of the well have higher resistivity and gamma values. 

On the MN plot, the known graphitic carbonate phyllite and the remaining values are 

aligned with the lower side (A–S) of the anhydrite (A) – sandstone (S) – limestone (L) – 

dolomite (D) quadrangle. This position, according to the orthogneiss vs. mylonite MN plots 

(Fig. IV.3/b, Fig. IV. 4/c), suggests that the “some gneiss” lithology in this well should be the 

mylonitic lithology. The gamma-resistivity plot of Well-S is also confirmed. 
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Figure IV.7. The a) neutron-density, the b) gamma-resistivity and the c) MN plot of the well-R; d) 

results of the discriminant function analysis (D6) for graphitic carbonate phyllite and mylonite in the 

well-R.  

Legend: A – anhydrite, S – sandstone, L – limestone, D – dolomite. 

 

Discriminant function analysis was fulfilled for these two lithologies (graphitic 

carbonate phyllite and mylonite) on Well-R. The result shows a fairly good separation (Fig. 

IV.7/d), using the function of: 

D(6)= (0.021*S + 0.474*N +1.824*D + 7.348*R) – (0.059*G + 4.229). (9) 
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Besides, the resistivity (R), the density (D) and neutron (N) measurements have the main role 

in the separation, while the sonic (S) and the gamma (G) logs are subordinate. The boundary 

between the two rock units is estimated at 2061 m. This depth coincides well with the noted 

boundary in the drilling documentation. As none of the other wells that contain graphitic 

carbonate phyllite have porosity logs, further application of the D(6) function is not possible. 

 

5.4 Spatial extension of the estimated lithology boundaries 

 

There is insufficient data to construct an entire 3D rockwork model for the whole study 

area; nevertheless, along certain geological sections it is possible to extend information in 2D. 

Neighbouring wells were used with a mylonite/gneiss boundary along two lines, which pass 

through the field (Figs. IV.8, IV.9). These sections could provide information about the 

structural build-up of the area. In the course of the interpretation of the sections we took into 

consideration the ten known hydraulic regimes in the field (unpublished industry report, Fig. 

IV.8). Within each regime, all wells communicate with each other, but have no hydraulic 

connectivity with any other well outside that sub-area. Such communication among the wells 

might be in relation to the structural geometry of the field. As common examples, 

impermeable fault zones or even unfractured rock masses may define regime boundaries. 

Along the AB section (Fig. IV.9) the two regime boundaries could be interpreted as 

normal faults with a southern dip. The mylonite/gneiss boundaries inside all the three regimes 

have a very similar, moderate northern dip. Along the AC section (Fig. IV.9) one of the 

regime boundaries could be interpreted as a normal fault (as in the case of the AB section); 

the mylonite/gneiss boundaries inside both separated blocks have a moderate northern dip as 

well. Inside the northern block along the AC section, three independent hydraulic regimes 

exist (Fig. IV.8), but there is no indication of the presence of additional normal faults. 

Consequently, there should be another factor responsible for separation inside the hydraulic 

system. Although the well-logs record it as a homogenous block, it is known from the 

previous petrological studies that the mylonite is petrologically extremely heterogeneous. The 

two different mylonite types exhibit different reservoir features; so the orthogneiss mylonite 

samples have a small amount of natural fractures and, according to the previous rock 

mechanical tests (Nagy et al. 2013), this block is characterized by moderate anisotropy and 

tendency to fracture. In this body, formation of a complicated and connected fracture system 

is unlikely. The graphitic gneiss mylonite block contains strongly fractured, locally 

brecciated, and oil spotted borecore samples. Rock mechanical tests pointed out that a 
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possible communicating fracture system can be achieved by much lower work investment 

than for other lithologies. Furthermore, these tests clearly indicate that the orientation of the 

mylonitic foliation also has a significant influence on the reservoir features; the graphitic 

gneiss mylonite samples show high anisotropy depending on the sample orientation in the 

compressive test. A remarkable difference can be computed between the samples tested 

parallel and perpendicular to the preserved foliation of the rock (Nagy et al. 2013). Therefore, 

we could assume that, in addition to post-metamorphic, impermeable fault zones also change 

in petrographic characteristics and that orientation of the main structures inside the lithology 

blocks determines the hydraulic behaviour of the field. 

The eminent role of the mylonite zone in the behaviour of the whole fractured reservoir 

is also proved by the positions of hydrocarbon productive intervals. As is indicated in Figure 

IV.9, in each case where a restricted productive interval can be localized, the hydrocarbon 

production clearly comes from the mylonitized zone. In the other cases, the perforation 

covered a significant interval of the wells involving also the lowermost orthogneiss. In fact, 

almost the whole depth of these wells is open for fluid flow and there is no way to point the 

most productive intervals. Nevertheless, also keeping in mind the rock mechanical data, one 

can suppose that the main productive zones, even in these cases, can be linked to mylonitic 

horizons. The overlying Miocene limestone is also productive for hydrocarbon in certain 

wells, clearly proving hydrodynamic communication between the fractured basement 

reservoir and the sedimentary cover. 

Inside each fault-bounded regime, the orientation (dip and dip angle) of the 

mylonite/gneiss boundary surface could be calculated, if more than two data points exist. 

According to three independent calculations, this dip direction is rather consequent, being 

north-northeast (13°–18°), and the angle is systematically less than 5°. So the investigated 

KIHA-NE area is characterized by a shallow-dipping extensional mylonite zone. This wide 

zone separates blocks of systematically different metamorphic evolution and peak conditions. 

Formation of such a shear zone is typical when metamorphic core complexes develop during 

continental extension along low-angle (<30°) detachment faults (Lister & Davis 1989). 

Mylonitic gneiss formation at several-kilometre depths along major shallow-dipping ductile 

shear zones is linked to activity of these detachment faults. The detachment faults usually 

form at the beginning of the extension process; however, they do not remain active throughout 

the entire geological history of the metamorphic core complex (Lister & Davis 1989). Later, 

when these mylonitized zones uplift and deform in the brittle deformation zone, they may be 
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overprinted by cataclasis of brecciation (Lister & Davis 1989) or even become fragmented 

along normal faults of younger tectonic movements. 

 

Figure IV.8. KIHA-NE wells situated on the 

metamorphic topography, with the ten 

hydraulic regimes and the lines of the 

geological sections of Figure 9. 

Legend:  

1 – counter lines of the metamorphic 

basement depth,  

2 – hydraulic regime,  

3 – well spot inside the reservoir,  

4 – well spot outside the reservoir,  

5 – lines of the geological sections. 

 

 

 

Figure IV.9. Geological sections through the field. 

Legend: 1 – mylonite, 2 – probably mylonite, 3 – orthogneiss, 4 – probably orthogneiss, 5 – 

„some gneiss” (mylonite or gneiss) 6 – CH productive interval along the well; estimated 7 – 

mylonite or 8 – orthogneiss body; 9 – hydraulic regime boundary, 10 – assumed normal fault. 
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6. Summary 

On the basis of well-log data, basic lithologies of the KIHA-NE metamorphic basement 

high can be distinguished; we can separate orthogneiss from mylonite and mylonite from 

graphitic carbonate phyllite by using conventional plots (especially the MN plot) and a 

statistical approach (discriminant function analysis). In the separation algorithms, the density 

and resistivity logs have a major role. The lithologically different mylonitized rock types 

cannot be separated by these methods. 

In the course of the spatial extension of the results, spatial positions of the independent 

hydraulic regimes can also be taken into account. On the resultant geological sections, several 

south-dipping normal fault-bounded blocks are assumed, which clearly record shallow-

dipping mylonite/gneiss boundaries with a north-northeast dip direction. Existence of this 

low-angle mylonitized zone refers to the presence of a one-time detachment fault linked to the 

formation of a metamorphic core complex. Based on this structural image, the spatial position 

of the mylonite zone can be extended for the whole area. As mylonite is the only basement 

lithology that serves remarkable fractured porosity, the spatial model may contribute 

significantly to producing more accurate reservoir models. 
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CHAPTER V. 

CONCLUSIONS 

 

1 Summary of the results 

 

At the starting point of the present study of the KIHA-NE hydrocarbon field, it was only 

known that various rock types – gneiss, micaschist, amphibolite, different mylonitic types, 

migmatite, and a low-grade phyllite (T. Kovács 1973, Árkai 1978, Cserepes 1980, T. Kovács 

and Kurucz 1984, Cserepes-Meszéna 1986, Árkai 1993) – constitute the basement in an 

unknown structural build-up. The whole area was handled as a unified rock body in the 

reservoir models. 

In the course of the present study, four main rock types were identified (orthogneiss, 

orthogneiss mylonite, graphitic gneiss mylonite, graphitic carbonate phyllite; Chapter II.) in 

the KIHA-NE metamorphic basement, characterised by significantly different metamorphic 

and tectonic evolutions. In order to compare the reservoir features of the three prevalent rock 

types (orthogneiss, orthogneiss mylonite, graphitic gneiss mylonite), rock mechanical tests 

and CT images were evaluated; also with regard to the foliation and the stress field 

relationship. On the basis of the results it can be stated that the petrologically different rock 

types have remarkably different brittle behaviours. In this way the hypothetically best 

reservoir lithology of the field could be recognised, and its favourable features (Chapter III.). 

By the usage of open-hole well-log datasets it was possible to extend the point like 

information of the borecores and sketch a spatial image detailing the geometry and extent of 

the best reservoir rock units, and the structural build-up of the whole field (Chapter IV.). The 

remainder of this section outlines the obtained results (Fig. V.1).  

In the lowest structural position orthogneiss is common, which according to its 

petrographic features (fsp+qz+bt+mu±chl mineral assemblage, myrmekitic feldspars, 

amphibolite xenocrysts and xenoliths; Chapter II.4.1) is assumed to be identical to the 

orthogneiss body of the adjacent Jánoshalma basement high (metamorphic peak temperature T 

< 580 °C according to Zachar and M. Tóth 2004). On the samples a few narrow fractures are 

present, with carbonate infill and narrow alteration zone. There is no oil spotted sample which 

should refer to petroleum migration along the explored borecores. The standard unconfirmed 

compressive tests created only a small number of fractures (cumulative fracture length varies 

around 9) with poor connection (with a fractal dimension of around 1.3) by relatively high 

invested work (Wd) (Table III. 1); thus orthogneiss is obviously not the best reservoir 
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lithology in the field (Fig. V.1). In the parameter space of all rock mechanical variables, the 

data points of the orthogneiss appear separately (Fig. III.9b) but close to the orthogneiss 

mylonite samples (Fig. III.9d), and so the two clusters can be distinguished. Orthogneiss can 

be separated from the mylonite types on the open-hole well-logs, by using conventional plots 

(especially the MN plot) and a statistical approach (discriminant function analysis) (Fig. IV.3-

4). In the separation algorithms, the density and resistivity logs have a major role.  

 

 

Fig. V.1. Summary of the result for the Kiskunhalas-NE field 

 

The next rock unit upward is the highly mylonitized variety of orthogneiss on the basis 

of the similar mineral assemblages of the two rock types (Chapter II.4.4). The samples are 

usually moderately fractured, with thin veins filled with carbonate minerals, and locally 

enclose fragments of the host rock. According to the rock mechanical tests, the orthogneiss 

mylonite is characterised by moderate anisotropy and fracture tendency. The fractal dimension 

and cumulative fracture length values do not suggest the possibility for formation of 

complicated and connected fracture systems.  

In the higher section of the sheared zone another type of mylonite is present; its mineral 

assemblage is consequently different from the lower orthogneiss mylonite (presence of 

graphite and pyrite as index minerals; Chap. II.4.5). The graphitic gneiss mylonite can be 

characterised with a peak metamorphic T of 410 ± 45 °C (carbonaceous material thermometer 

by Raman microspectroscopy; using the methods of Beyssac et al. 2002, Rahl et al. 2005, 

Aoya et al. 2010; Fig. II. 3). The graphitic gneiss mylonite has the most fractured samples in 

the field, some samples are completely brecciated. A few centimetre large cavities (vuggy 

fractures) are frequently present in the cores, and they are commonly oil spotted. In the 
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parameter space of all rock mechanical variables, the data points of the graphitic gneiss 

mylonite appear clearly separated from both the orthogneiss and its mylonitic variety (Fig. 

III.9d). High anisotropy (Fig. III.9c) and a large and possibly communicating fracture system 

characterise this lithology unit, achieved by a much lower work investment than for any other 

rock type of the field.  

The mylonite zone, consists of two petrologically different rock types; both are 

characterised by mylonitic foliation (C/S structure, Fig II.2g, j), quartz ribbons and lenses 

deformed in ductile mode (strongly serrate grain boundaries, undulose extinction, deformation 

lamellae), and textural markers of bookshelf structure (Fig. II.2h), microboudinage (Fig. 

II.2l), and mica fish. Estimation of the deformation temperature for both mylonitic rocks 

results in approximately Tdef ~ 455 °C (sutured quartz grain thermometer by Kruhl and Nega 

1996; Fig. II.5). The lithologically different mylonitized rock types cannot be separated by the 

open-hole well-log datasets (Fig. IV.3b). 

The lithology in the shallowest structural position of the area is a graphitic carbonate 

phyllite, with a T of 375 ± 15 °C (carbonaceous material thermometer by Raman 

microspectroscopy using the methods of Beyssac et al. 2002, Rahl et al. 2005, Aoya et al. 

2010; Fig. II.3). There was not enough sample for the rock mechanical test, although this is a 

subordinate rock type in the KIHA-NE area, possibly due to its uppermost position in the 

ideal rock column. Most probably it had been exhumed at the surface for a long time, as is 

indicated by surface weathering of the graphitic carbonate phyllite (proved by Árkai, 1991). 

Using open-hole well-logs one can separate mylonite from graphitic carbonate phyllite by 

conventional plots (especially the MN plot, Fig. IV.7c) and statistical approach (discriminant 

function analysis Fig. IV.7d).  

On the basis of all these results, an ideal rock column is manifested with rock units of 

incompatible metamorphic evolutions (Fig. II.6) and significantly different reservoir features 

(Fig. III.9). Nearly 200 °C metamorphic temperature deviation exists between the top 

(graphitic carbonate phyllite) and the bottom (orthogneiss) units; it is probable that the two 

extreme blocks got juxtaposed along a shear zone in the basement at approximately 15 km 

depth (Fig. II.7). The estimated lithology boundaries can be represented along geological 

sections (Fig. IV.9), where shallow dipping mylonite/gneiss boundaries with north-

northeastern dip direction become clear. Although the mylonitised zone shows textural 

markers clearly developed in the extensional stress field, the direction of the maximum 

extension of the rock body cannot exactly be defined. The natural strain will practically 

always be inhomogeneous at most scales of observation, but it may be considered 
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homogeneous in small volumes of fine-grained rock, for example, at the scale of a thin section 

(Passchier and Trouw 2005). Although investigations of macrostructures in an outcrop should 

provide unequivocal evidence for the stress field character of a shear zone (e.g., extensional, 

compressional), such a judgement seems to be impossible under small scale circumstances. 

After the current sequence of the lithologies was formed, the entire rock column exhumed to a 

shallower position and deformed in a brittle way during the next stages of the tectonic 

development. The different lithology types did not fracture to the same extent because of their 

different rheological features. These dissimilarities have a significant influence on the 

reservoir features. In the course of further structural evolution, normal faults fragmented the 

rock body. As is presented in Fig. IV.9, these normal faults can probably define hydraulical 

regime boundaries in certain cases, so behave as impermeable faults. Nevertheless, the 

hydraulical regime boundaries may also be influenced by the petrological differences inside 

the mylonite zone, and the relative orientations of its foliation and the stress field, because of 

the highly anisotropic behaviour of the graphitic gneiss mylonite. This effect could cause 

presence of the hydraulical regime boundaries e.g. in the northern part of section AC (Fig. 

IV.9). 

In summary, it can be stated that these new results contribute significantly to the 

understanding of basic geological circumstances, petrological characteristics and structural 

build-up of the metamorphic basement in the Kiskunhalas region. The new models may also 

assist applied geological progress, especially in reservoir modelling and field development. 

Considering the new results, one can conclude that when re-interpreting old hydrocarbon 

reservoirs, even a lack of essential geological data can be handled by integrated data 

management. Practically in cases where there is only old and poor data and information 

available from the investigated area (borecore samples, thin sections, drilling documentation, 

first examination and documentations of the borecores, ancient well-logs, industrial reports), a 

maximized and harmonized application of all available is required. This kind of complex view 

and the application of a wide spectrum of methods applied in the course of the present study 

(standard routine of the integrated core study with petrology, rock mechanical test and CT 

image analysis; the available open-hole well-log usage for lithology identification) should be 

used in the future in similarly favoured areas.  
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2 Outlook 

 

There are several localities in the basement of the Pannonian Basin where incompatible 

metamorphic rocks constitute the ideal rock column (e.g., Baksa Complex – Nagy and M. 

Tóth 2009, Mezősas-Furta – M. Tóth and Zachar 2006, Jánoshalma – Zachar and M. Tóth 

2004, Dorozsma – M. Tóth et al. 2002, Kiskunhalas – Nagy and M. Tóth 2012). Orthogneiss 

varieties are the most widespread rock types in the basement (Szepesházy 1973), nevertheless 

their mineral assemblage and metamorphic evolution can vary on a wide scale. In several 

orthogneiss bodies, xenoliths and lenses of metabasic composition (e.g. amphibolite) are 

common (e.g.: Kiskunhalas – Nagy and M. Tóth 2012; Kömpöc – Csólyos-K - Nagy and M. 

Tóth 2012; Jánoshalma – Zachar and M. Tóth 2004, Mezősas-Furta – M. Tóth and Zachar 

2006) and xenoliths of exotic compositions are also present, for example eclogite in 

Jánoshalma Dome (Zachar et al. 2007), and actinolite schist and serpentinite in Mezősas-Furta 

(Zachar and M. Tóth 2006). In the case of Jánoshalma, Zachar and M. Tóth (2004) have 

suggested an accretionaly prism origin of these xenoliths.  

In numerous fields the incompatible rock column is accompanied by sheared lithologies 

(e.g., Mezősas-Furta – M. Tóth and Zachar 2006, Szeghalom – Schubert and M. Tóth 2001, 

Jánoshalma – Zachar and M. Tóth 2004, Dorozsma – M. Tóth et al. 2002, Kiskunhalas – 

Nagy and M. Tóth 2012), suggesting that the current order of rock units was created by post-

metamorphic tectonic movements. Along a shear zone the character of the deformation varies 

with the depth; mylonite can form in the deeper regions, while cataclasite and fault breccia 

form in the upper region of the crust. In the basement of the Pannonian Basin both wide 

mylonite (Kiskunhalas, Nagy and M. Tóth 2012) and cataclasite (Szeghalom, e.g., Molnár et 

al. 2013) zones exist. In certain cases a brittle deformation event can overprint the previous 

ductile one, such as in the Kömpöc – Csólyos-K area (Nagy and M. Tóth 2012). In some 

localities gouge is also an important part of the shear zones (Molnár et al. 2013). 

Unfortunately, just a little information and data is available in publications and industrial 

reports about the physical condition and ages of these shear zones and there is no clear theory 

about the structural evolution of these horizons; rather, there are many contradictory 

hypotheses (e.g., Lelkes-Felvári et al. 2005, Balogh et al. 2009, M. Tóth 2013).  

After the Variscan ages there were several optional large scale tectonic events, which 

might have caused the development of the fault related rocks in the basement. The first 

detected metamorphic events of these orthogneiss happened during the Variscan orogeny 

(e.g., Szederkényi 1996, Kovács et al. 2000, Balogh et al., 2009), although the age constraints 
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regarding the detailed metamorphic evolution is still rather limited. There are numerous 330 

Ma and junger Variscan ages relating to different states of the complicated metamorphic 

history (e.g., Szederkényi et al. 1991, Lelkes-Felvári et al 2003, 2005, Balogh et al. 2009). 

Regarding the Variscan uplift and the synchronous shear events only very poor data is 

available. In Szeghalom, a deformation age of the Permian (280.2 ± 10.5 Ma from mylonitic 

white mica, K/Ar age) is documented (M. Tóth 2013). In the Dorozsma basement, Dunkl 

(1994) provides an Early Triassic FT age, which refers to the age of its post-metamorphic 

uplift.  

The effect of the Jurassic continental rifting (Haas and Péró 2004) caused, for example, 

the coal formation of the Mecsek Mountains in half graben structures; this large scale 

extension event may have had a relationship with the Jurassic (186.9 ± 7.1 Ma feldspar K/Ar 

age; 160.2 ± 8.7 Ma zircon FT age) ages in the sheared metamorphic basement mentioned by 

Balogh et al. (2009).  

In the course of the Alpine orogeny (Cretaceous and younger) north vergent nappes 

(e.g., Codru nappe system) and slices formed inside the Tisza Unit (e.g., Rozlozsnik 1936, 

Német-Varga 1983, Tari 1999). Cretaceous ages (95.2±1.8 – 58.4±1.3 Ma; Ar/Ar muscovite 

ages; Lelkes-Felvári et al. 2005) were measured, among many others in metamorphic rocks of 

the Algyő complex.  

The Miocene back-arc basin extension related to the Alpine orogeny (Hajnal et al. 1996) 

generated a number of uplifted and tilted blocks and a set of pull-apart basins (Tari et al. 

1992). Seismic measurements suggest uplifted metamorphic highs interpreted as metamorphic 

core complexes (Horváth et al. 2006). A series of subhorizontal reflections were detected in 

the basement around Szeghalom, related to this rather quick uplift (Posgay et al. 2006). 

All these tectonic events may have caused wide tectonic zones (either mylonitic or 

cataclastic) and contributed to the development of the juxtaposed block with different 

metamorphic evolutions and ages inside the metamorphic basement. The resulting mosaic 

structure of the basement essentially determines its capacity in fluid migration and/or storage. 

So, the characteristic petrologic heterogeneity of the basement highs can determine the 

storage volume geometry, since the different rock types have different tendencies to create a 

connected fracture system. Previous studies suggest that orthogneiss has not proved to be a 

good reservoir, while its mafic xenoliths (e.g., Schubert and M. Tóth 2003, M. Tóth et al. 

2004) or the mylonites (e.g., in Kiskunhalas) frequently show quite good production zones. In 

fact the role of the shear and fault zones may be various, since they can behave both as 
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permeable and impermeable zones (e.g., Szeghalom, Molnár et al., 2013) and may also act as 

migration pathways and/or storage bodies (e.g., Kiskunhalas – Nagy et al. 2013). 

In the future, significant scientific effort should be put into deep understanding of the 

structure and evolution of the numerous and different shear zones inside the metamorphic 

basement of the Pannonian Basin. Considering our current knowledge, these horizons are of 

key importance concerning both the basic and applied geological point of view. 
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SUMMARY 

 

Background 

 

The crystalline basement of the Great Plain of Hungary has provided an interesting 

research topic for decades; its basic and also applied research aspects are multiple. Although 

industrial interest largely determines its exploration, samples and geophysical data obtained in 

this way could give a good insight into the geology of the area. 

The Kiskunhalas-NE hydrocarbon field has been produced since the mid-1970s. In this 

area more than one reservoir block exists; there is a northern reservoir with a Palaeozoic 

metamorphic basement and a southern one with a Mesozoic carbonate basement. The 

reserving formations from different ages and material (Palaeozoic metamorphic rocks, 

Mesozoic carbonates and Miocene sediments) in certain cases behave as one hydraulic 

regime. The focus of the present study is the reservoir with the metamorphic basement. 

Several different publications (T. Kovács 1973, Árkai 1978, Cserepes 1980, T. Kovács and 

Kurucz 1984, Cserepes-Meszéna 1986, Árkai 1993) and unpublished industrial reports have 

noted several rock types in the crystalline basement (gneiss, micaschist, amphibolite, different 

mylonitic types, migmatite, and a low-grade phyllite); however, in interpreting the reservoir 

the whole area has been handled as a homogeneous block. Actually, the KIHA-NE reservoir 

has a highly compartmentalized nature, since there are at least ten independent hydraulic 

regimes in the field. 

On the one hand, this present study is situated within basic geological research. A review 

on any hydrocarbon field is necessary from time to time because new methods and novel 

scientific theories can enrich existing knowledge about the narrowly studied fields and their 

wider geological environment. In this way it will be possible to enrich the highly sporadic 

information about the crystalline basement of the Pannonian Basin in the wider 

neighbourhood of the study area.  

On the other hand, this research also has an applied geological point of view. Newly 

acquired knowledge about the field provides more adequate framework about the 

characteristics of the reservoir. It can help to create a better reservoir model which can 

contribute to more effective production, and which can provide guidance about field 

development processes, even regarding the drilling of new wells. The new methods, data 

management or the routine of test series learned or developed in the course of this project 
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could be utilized in the future. The official review of the Kiskunhalas fields in the MOL Plc., 

begun in 2008, provides actuality for this research. In the wider environment (around 

Jánoshalma and Kiskunhalas) the RAG (Rohöl-Aufsuchungs Aktiengesellschaft) currently 

conducts research. 

 

Methods applied 

 

For the purpose of the identification and classification of the lithology units of the field, and 

to give a detailed petrographic and textural description, macroscopic and microscopic 

examination and prudent microtexture analyses were carried out. In the course of the 

pertographic study, the available core samples of 15 wells and more than 100 thin sections 

were investigated.  

Thermometric examinations were also carried out on the samples to clarify the genetic 

relations between the rock units. The sutured quartz grain boundaries of the mylonitised 

lithologies were used for the deformation-related thermometer of Kruhl and Nega (1996). On 

the calibrated textural thermometer a linear function is suggested between the fractal 

dimension of the sutured quartz grain boundaries and the formation temperature. Two 

lithologies of the field contained representative amounts of carbonaceous material that 

allowed the possibility of using the carbonaceous material thermometer using Raman 

microspectroscopy (Beyssac et al. 2002, Rahl et al. 2005, Aoya et al. 2010). The method is 

based on the irreversible and temperature dependent character of the graphitisation process. 

The resulting temperature estimate is the maximum temperature the rock reached along a 

given PT path.  

On the representative samples, destructive and non-destructive rock mechanical treatment and 

a 3-dimensional scan with X-ray Computed Tomography (CT) were fulfilled, parallel and 

perpendicular to the foliation. In this way the fracture tendency and the brittle behaviour of 

the petrologically different rock types were estimated. The amount (cumulated fracture 

length) and the geometry (fractal dimension) of the provoked fracture system determine the 

reservoir features of the lithologies. 

For spatial extension of the point such as geological information along the wells, datasets of 

over a decade old digitalised open-hole well-logs (gamma, resistivity, neutron, density, and 

acoustic logs) were used. For lithology identification and lithology boundary estimation 

conventional cross plots, lithology sensitive MN plot (Schlumberger, 1989) and discriminant 
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analysis were carried out. The estimated lithology boundaries were represented along 

geological sections to explore the geometry and the structural build-up of the field. 

 

New scientific results 

 

The following new scientific results have emerged in the course of these investigations: 

 

1.) In the Kiskunhalas-NE field, four main rock units were identified. On the basis of 

neighbourhood relations, these types define the following ideal rock column from the 

bottom upwards: orthogneiss, orthogneiss mylonite, graphitic gneiss mylonite and 

graphitic carbonate phyllite.  

2.) The deepest known formation is an orthogneiss body with amphibolite xenoliths and mica-

poor granitic dykes. According to its mineral assemblage and relict igneous textures 

(mirmekite, idiomorphic zircons) one can assume that it is identical to the neighbouring 

Jánoshalma orthogneiss characterised by T < 580 °C metamorphic temperature. Because of 

the similar mineral assemblages and the presence of the relict igneous textures, this 

orthogneiss might be the protolith of the orthogneiss mylonite following the orthogneiss 

upwards.  

3.) The other lithology type of the mylonitised zone, the graphitic gneiss mylonite, is clearly 

different from the orthogneiss based on its index minerals (graphite, pyrite). It is also 

different from the uppermost graphitic carbonate phyllite because of the high 

quartz+feldspar+sericite content of the graphitic gneiss mylonite; its undeformed protolith 

is unknown in the field. The Raman microspectroscopy based carbonaceous material 

thermometer result for this lithology is T = 410±45 °C. 

4.) The uppermost structural position, characterised by graphitic carbonate phyllite, has a 

subordinate role in the field. It consists of chaotically folded light 

(carbonate+sericite+some quartz) and dark (graphite, pyrite, clay minerals) bands. The 

Raman microspectroscopy based carbonaceous material thermometer result for this 

lithology is T = 375±15 °C. 

5.) The mylonitised zone, constituting a significant part of the rock mass, is built-up by two 

petrologically different lithologies, uniformly bearing textural elements (bookshelf 

structure, microboudinage, mica fish) developed in an extensional stress field on a micro 

scale. The sutured quartz thermometer results of both mylonitised lithologies give around 

Tdef ~ 455 °C.  
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6.) Along the incompatible rock column, nearly 200 °C metamorphic peak temperature 

difference exists. The Tdef ~ 455 °C value for the mylonitised zone could mean a shear zone 

was active at approximately 15 km depth, depending on the geothermic gradient. The 

recent order of the rock units might have developed in the course of this post-metamorphic 

tectonic event. Although the presence of extensional textural markers in the mylonite zone 

do not preclude a compressional stress field in respect of the whole rock body, the 

possibility of a shear zone in the extensional stress field is more likely. 

7.) On the basis of the rock mechanical investigations, the reservoir features of three 

predominant rock types in the area (orthogneiss, orthogneiss mylonite, graphitic gneiss 

mylonite) are significantly different. The graphitic gneiss mylonite has the best reservoir 

features, as it tends to have a large and connecting fracture network, achieved by lower 

invested work relative to the other lithologies. A characteristic feature of each measured 

parameter is the high anisotropy. The samples crushed parallel to the mylonitic foliation 

have much more favourable properties from the reservoir point of view, than the samples 

crushed perpendicular to the mylonitic foliation.  

8.) With the available open-hole well-log datasets, the orthogneiss and mylonite lithologies 

could be separated along the given wells; the resistivity and the density logs have a major 

role in the separation. The mylonite and the graphitic carbonate phyllite zones could also 

be separated. Nevertheless, the two petrologically different mylonite lithologies 

(orthogneiss mylonite, graphitic gneiss mylonite) could not be separated on the available 

open-hole well-logs. In this way, three rock units were identified (orthogneiss, mylonite, 

graphitic carbonate phyllite), and the lithology boundaries were estimated between them 

along the wells.  

9.) The estimated lithology boundaries were represented along geological sections. The 

gneiss/mylonite boundaries appear as a low angle (<5°) plane with northern dip (13-18°); 

interpreted as a onetime detachment fault linked to a formation of a core complex if it 

worked in the extensional stress field.  

10.) Also taking into consideration the hydraulic regimes of the field, several normal faults of 

a later brittle deformation event could be identified. These normal faults behave as 

impermeable faults between the productive mylonitised bodies. Nevertheless, the presence 

of some regime boundaries should be the result of the petrological diversity of the mylonite 

zone, which also means rock bodies with different fracture tendency. The high anisotropy 

of the mylonite lithologies further modifies the reservoir body geometry. 
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ÖSSZEGZÉS 

 

Előzmények 

 

Az Alföld kristályos aljzatának fejlődése, felépítése évtizedek óta izgalmas kutatási 

téma, melynek mind alap-, mind alkalmazott kutatási vonatkozásai igen sokrétűek. Habár a 

feltártságot nagyban meghatározza az ipari érdeklődés, az így nyert minták és adatok jó 

betekintést engednek az adott terület földtanába.  

A Kiskunhalas-ÉK szénhidrogén rezervoárt az 1970-es évek közepe óta termelik. Két 

mezőre osztható, egy kristályos aljzatú északi és egy karbonátos aljzatú déli mezőre; jelen 

kutatás tárgya az északi. A különböző tudományos közlemények (T. Kovács 1973, Árkai 

1978, Cserepes 1980, T. Kovács és Kurucz 1984, Cserepes-Meszéna 1986, Árkai 1993) és 

nem publikált ipari jelentések számos kőzettípust leírtak a területen: gneisz, csillámpala, 

amfibolit, különböző milonit típusok, migmatit, és kis metamorf fokú fillit. Ennek ellenére az 

aljzati tárolót a modellekben rezervoárgeológiai értelemben egységesnek kezelik, habár a 

mezőn belül legalább tíz hidraulikai rezsimet különítenek el.  

A kutatás célja egyrészt alapkutatási jellegű, mivel az egyes területek időről időre 

történő újra vizsgálata, új módszerekkel vagy új elméletek szempontjából, gazdagíthatja az 

általános földtani ismereteket a szűkebb (Jánoshalma, Tázlár) és tágabb (Tisza Egység aljzata) 

földtani környezetben. Másrészt alkalmazott föltani kérdéseket is célunk megválaszolni, mivel 

a kutatási terület egy aktív, szénhidrogén termelő mező. Az újonnan nyert ismeretek 

segíthetik a rezervoár jobb megértését, annak további művelését, fejlesztését. A kutatás során 

megismert és/vagy kidolgozott módszerek, adatkezelési eljárás, integrált vizsgálat sorozat 

más, hasonló területeken is alkalmazhatóak lehetnek. Különös aktualitást ad a kutatásnak, 

hogy 2008-ban indult el a terület reambulációja a MOL-csoportban; illetve hogy a környéken 

(Jánoshalma, Kiskunhalas) a Rohöl-Aufsuchungs Aktiengesellschaft (RAG) jelenleg is új 

termelési lehetőségek után kutat.  

 

Alkalmazott módszerek 

 

A területen előforduló kőzettípusok azonosítása és osztályozása érdekében 

makroszkópos és mikroszkópos vizsgálatokat végeztünk, 15 kútban rendelkezésre álló 

fúrómagokon és több mint 100 vékony csiszolaton. A nyírt kőzetek jelenléte miatt alapos 
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mikroszöveti megfigyeléseket is végeztünk. A meghatározott litológiai egységek részletes 

petrográfiai és szöveti leírása a további vizsgálatok alapját képezték.  

A megismert kőzettípusok genetikai viszonyainak tisztázása érdekében termometriai 

módszereket alkalmaztunk. A milonitosodott litológiákban szuturált szemcsehatárú kvarc 

szemcsehalmazokon Kruhl és Nega (1996) deformációval összefüggő termométerét 

használtuk. Ez a szöveti termométer a szemcsehatár geometriája (fraktál dimenzió érték) és az 

azt létrehozó hőmérséklet közti lineáris kapcsolatot használja ki a hőmérséklet becslésére.  

Mivel két kőzettípus is tartalmaz reprezentatív mennyiségű szenes anyagot, ez 

lehetőséget ad a Raman spektroszkópiai alapú szenes anyag termométer (Beyssac et al. 2002, 

Rahl et al. 2005, Aoya et al. 2010) használatára. Mivel a szenes anyag grafitizációja szigorúan 

irreverzibilis és hőmérséklet függő folyamat, a termométer a kőzetre jellemző, a PT út során 

maximálisan elért metamorf hőmérsékletet tudja becsülni.  

A terület három, uralkodó kőzettípusát destruktív (visszaterheléses egyirányú 

nyomóvizsgálat, Brazil vagy húzóvizsgálat) és nem destruktív (UH sebesség) 

kőzetmechanikai teszteknek vetettük alá, illetve 3-dimenziós CT (Computed Tomography) 

felvételek készültek a roncsolás előtti és utáni állapotokról. A mintatestek foliációval 

párhuzamosan és foliációra merőlegesen lettek kialakítva, így a törési hajlam irány függőségét 

is tudtuk vizsgálni. Az így mesterségesen kialakított töréshálózat mennyiségi (kumulatív 

repedés hossz) és geometriai (fraktál dimenzió érték) tulajdonságai, illetve a törésteszt során 

kapott mérőszámok (nyomószilárdság; húzószilárdság; Young vagy rugalmassági modulus; 

relatív térfogat változás; törési munka) jellemzik a kőzettípusok lehetséges vezető és/vagy 

tároló képességét.  

A geológiai információ térbeli kiterjesztéséhez a rendelkezésre álló több évtizedes 

lukgeofizikai szelvények (gamma, ellenállás, neutron, sűrűség és akusztikus szelvények) 

digitalizált adatsorait használtuk. A korábban elkülönített kőzettípusokat hagyományos cross 

plotokkal, a litológia érzékeny MN plottal (Schlumberger, 1989) és diszkriminancia 

analízíssel azonosítottuk, majd a kutak menti kiterjesztéssel becsültük a litológiai határokat. 

Az így kapott kőzettípus határokat földtani szelvények mentén ábrázoltuk, hogy feltáruljon a 

területet felépítő kőzettestek geometriája és szerkezeti felépítése. 
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Az eredmények tézisszerű összefoglalása 

 

A dolgozatban bemutatott kutatás során az alábbi új tudományos eredmények születtek: 

 

1.) A Kiskunhalas-ÉK mezőben négy fő kőzettípust különítettünk el, melyek a kutakban 

tapasztalt szomszédsági viszonyok alapján az ideális kőzetoszlopban alulról felfelé a 

következők: ortogneisz, ortogneisz milonit, grafitos gneisz milonit és grafitos karbonát 

fillit. 

2.) A legalsó ismert szerkezeti helyzetben lévő ortogneisz test amfibolit xenolitot és csillám 

mentes granitoid teléreket tartalmaz. Ásványos összetétele és mélységi magmás szöveti 

reliktumok (mirmekit, saját alakú cirkon) alapján feltételezzük, hogy a szomszédos 

Jánoshalma ortogneisszel azonos, melyet T < 580 °C metamorf átalakulási hőmérséklet 

jellemez. Ez az ortogneisz a protolitja, a milonit zóna alsó részét alkotó ortogneisz 

milonitnak, az ásványos összetétel és a jellegzetes mélységi magmás szövet jelenléte 

alapján.  

3.) A milonit zónát felépítő másik litológia jellemző index ásványai (grafit, pirit) miatt 

egyértelműen elkülönül az alsó ortogneisztől. Nem deformált protolitja a területen 

ismeretlen; hasonlóan elkülönül a legfelső szerkezeti helyzetben előforduló grafitos 

karbonát fillittől, annak nagy kvarc+földpát+szericit tartalma miatt. A Raman 

spektroszkópiás szenes anyag termométerrel meghatározott jellemző metamorf 

hőmérséklete T = 410±45 °C.  

4.) A viszonylag kis kiterjedésű, legfelső szerkezeti helyzetben lévő grafitos karbonát fillit 

jellegzetes, kaotikusan gyűrt sötét (szenes anyag, pirit, agyagásványok) és világos 

(karbonát, szericit, kevés kvarc) sávokból áll. A Raman spektroszkópiás szenes anyag 

termométerrel meghatározott jellemző metamorf hőmérséklete T = 375±15 °C.  

5.) A kőzettest jelentős részét adó milonitos zóna petrológiailag két különböző kőzettípusból 

épül fel. Ezek egységesen olyan szöveti bélyegeket viselnek magukon, melyek arra 

utalnak, hogy a milonitosodás során mikro léptékben extenziós feszültségtér alakult ki. A 

mindkét litológiai egységre alkalmazott kvarc szutúra termométerrel meghatározott 

deformáció kori hőmérsékletük azonosan körülbelül Tdef ~ 455 °C-nak adódott.  

6.) Az inkompatibilis kőzetoszlop mentén közel 200 °C metamorf hőmérséklet különbség 

jelentkezik. A milonitosodott kőzettípusokban becsült deformációs hőmérséklet alapján, a 

geotermikus gradienstől függően, hozzávetőlegesen 15 km mélyen egy vetőzóna működése 

során kerülhettek egymás mellé, a mai sorrendbe a kőzetoszlopot felépítő kőzettestek. Bár 
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a milonitokban leírt extenziós feszültségtérben kialakult szöveti bélyegek jelenléte, nem 

zárja ki az egész kőzettest vonatkozásában a kompressziós feszültségteret, mindazonáltal 

inkább azt valószínűsíti, hogy az egykori nyírási zóna extenziós feszültségtérben 

működhetett. 

7.) Három, a területen uralkodó kőzettípus (ortogneisz, ortogneisz milonit, grafitos gneisz 

milonit) kőzetmechanikai vizsgálatai azt mutatják, hogy azok rezervoár tulajdonságai 

szignifikánsan különböznek. A legjobb tároló tulajdonsággal a grafitos gneisz milonit bír, 

mely nagy és kommunikáló töréshálózat kialakulására hajlamos, melyet kevesebb 

befektetett munkával lehet elérni a többi litológiához képest (ortogneisz, ortogneisz 

milonit). Jellemző továbbá a mért paraméterek nagy anizotrópiája, a milonitos foliációval 

párhuzamosan tört minták rezervoár szempontból jellemzően kedvezőbb tulajdonságokat 

mutatnak, szemben a foliációra merőleges mintákkal.  

8.) A rendelkezésre álló karotázs szelvény adatsorok alapján el tudtuk különíteni adott kutak 

mentén az ortogneiszt a milonittól, melyben az ellenállás és a sűrűség szelvény játszott 

döntő szerepet, illetve a grafitos karbonát fillitet a milonittól. A két kőzettanilag elkülönülő 

milonitosodott kőzettípus (ortogneisz milonit, grafitos gneisz milonit) a rendelkezésre álló 

lukgeofizikai adatok alapján nem elkülöníthető. Ilyen módon három litológiai egység 

(ortogneisz, milonit, grafitos karbonát fillit) között becsültünk litológia határokat, melyeket 

földtani szelvényen ábrázoltunk.  

9.) Az így kapott földtani szelvényeken a gneisz/milonit határ lapos szögű (<5°), északias 

dőlésű (13-18°) síknak adódik, melyet a nyírási zóna két oldalán felismert kőzettestek 

szignifikánsan eltérő metamorf fejlődéstörténete alapján elválasztó vetőként értelmeztünk. 

10.) A hidraulikai rezsimek figyelembe vételével a szelvényeken a későbbi töréses 

deformáció eredményeként kialakult néhány normál vető azonosítható, melyek 

rekesztőként viselkednek a termelő tulajdonságú milonitos testek között. Egyes rezsim 

határokat azonban nem vető, hanem feltételezhetően a milonit zóna kőzettani 

inhomogenitása okozhat. Mivel a két milonitosodott kőzettípus törési hajlama 

szignifikánsan eltér, ez jelentős különbségeket eredményezhet a tároló kapacitásban. A 

tároló testek geometriáját, s így rezervoár tulajdonságait tovább árnyalhatja a milonitok 

számottevő szerkezeti, s az ehhez kapcsolódó kőzetmechanikai anizotrópiája.  
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