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1. Bevezetés

A Fuzzy halmazokat 1965-ben vezette be Zadeh azért, hogy az emberi
gondolkodas matematikai modellezése megvalésithato legyen a szami-
tastudomanyban. Mar az els6 munkajaban meghatarozta a fuzzy el-
mélet alap definici6it, azaz a klasszikus matematikai jelolések fuzzy
kiterjesztését, igy a logikai operatorokat, szabalyok alkalmazasat, fuzzy
relacidkat és mennyiségi jellemzsk transzformacioit.

Az elmult évtizedekben a fuzzy halmazok és a fuzzy logika egyre nép-
szertibb teriilet lett és egyre tobb alkalmazas késziilt a segitségével. Igy
felhasznalta a szamitas tudoméany és mérnéki tudomény. Ennek kdvet-
kezménye, hogy nagyon sok cikket publikaltak, amely a fuzzy logikaval
foglalkozik. A konyvek szama is tobb széz, amelyek kiilonb6z6 modon
vizsgaljak a fuzzy elméletet és annak modszertanat. A sok tudoméanyos
eredmény ellenére nem lehet egy egységes fuzzy elméletrsl beszélni,
ugyanugy, ahogy egységes kovetkeztetési eljarasrol sem.

A fuzzy elmélet egy specialis osztalya a Pliant rendszer (rugalmas rend-
szer), amely a fuzzy elméletben felmeriils problémékra keres megoldast
[2]. A két rendszer kozott az operatorok véalasztasdban van kiilonb-
ség. A fuzzy elméletben fontos szerepet jatszik a halmazhoztartozasi
fliggvény, de ennek nincs rogzitett definicioja. A Pliant rendszerben
ugy nevezett felfajo fliggvény (distending) helyettesiti a halmazhoztar-
tozasi fliggvényt, amely "lagy (soft) egyenlStlenséget” reprezental. A
Pliant rendszerben az operatorok (conjunction, disjunction, aggrega-
tive operator) kozott egyértelmd kapcsolat van.

A disszertaciom f6bb célja, hogy bemutassam, hogy a Pliant rendszert
hogyan lehet alkalmazni valés problémakon. A kutatas soran a gyakor-
latiassagot és a pragmatikussagot tartottam folyamatosan szem elétt.
Els6ként a dinamikus rendszerek teriileteken alkalmaztam a Pliant kon-
cepciot. Itt hasonld rendszert hoztunk létre, mint a Fuzzy Cognitive
Map. Tovabba a Pliant rendszert fiiggvény kozelitésre alkalmaztam,
amely praktikus szempontbol bizonyult nagyon hasznosnak. Végiil
megmutattam, hogy a Pliant koncepciét dontés tamogatod eszkozként is
lehet alkalmazni.

2. Fogalmak és el6zmények

Ebben a fejezetben ismertetem azokat az altalanos fogalmakat jelolése-
ket, amelyek a tézishez sziikségesek.



2.1. Negacioés operator

1. Definici6é. Azt mondjuk, hogy n(x) negdcids operdtor, han: [0,1] —
[0,1] teljesiti az aldbbi feltételeket

C1: n:|0, 1] [0,1] (Continuity)

C2: n(0)=1, n(l ) =0 (Boundary conditions)
C3: n(z) <n(y) forx >y (Monotonicity)

C4: nin(z)) ==z (Involution)

2.2. Conjunctive, disjunctive és a moédositdé opera-
torok

A Pliant koncepci6 soran gy valasztjuk meg az operatorokat (szigo-
rian monoton t-norm és szigoriian monoton t-conorm), hogy kiillénb6z6
negaciokra is DeMorgan osztalyt alkossanak. A negécié v, fixpontjat
vagy a v neutralis értékét dontési szintnek tekinthetjiik. Azon operéa-
tor osztalyok, amelyekhez sok negéaci6 tartozhat kiilonosen hasznosak,
mert a kiiszob érték valtozhat.

1. Tétel. c(z,y) és d(x,y) DeMorgan osztilyt alkot az n, (x), ahol
Ny, (Vs) = vy minden v, € (0,1) akkor és csak akkor, ha

fe(w) fa(z) = 1. (1)
Bizonyitas itt talalhato [3].

2. Definicié. A Pliant rendszer dltaldnos formuldja a kévetkezd

oalw,y) = 17 (@) + 12 w)') 2
n(@) =17 (10 52) o 0
o) = 1 (L), (@)

ahol f(x) egy szigorian monoton t-norma operdtor generdtor fiigguénye
és f:0,1] = [0, o0] folytonos és szigorian monoton csékkend fiigguény.



3. Definicié. A Pliant rendszerben a mddositd (modifier) operdtor dl-
taldnos formdja a kévetkezd

A
féﬁ&x)j‘1<f0@)<;$3) ) (5)

2.3. Aggregative operator

Yager and Rybalov [7] vezette be elGszor az uninorm kifejezést. Az
uninorméak a t-norméak és t-conorméak altalanositédsa, melynek soran el-
hagyjuk az egység elemre vonatkozo feltételt a {0,1} intervallumban.
Fodor, Yager és Rybalov [4] definidltak az uninormék egy részosztalyat,
a reprezentativ uninormékat. Az alabbi moédon definialjuk az aggrega-
tive operatort [1]

4. Definicié. Az aggregative operdtor egy a : [0,1]2 — [0,1] fiiggvény
a kévetkezd tulajdonsdgokkal

1. Folytonos a [0,1]2\{(0,1), (1,0)}

2. alz,y) <alz,y) if y<y,z#0,z#1
a(z,y) <ale',y) of z<a',y#0,y#1

3. a(0,0) =0 és a(l,1) =1 (boundary conditions)

4. a(z,a(y, 2)) = ala(z,y), z) (associativity)

5. Létezik olyan n erds negdcio, amelyre teljesiil a(x,y) = n(a(n(x),n(y)))

(6n-DeMorgan azonossdg) ha {x,y} # {0,1} or {z,y} # {1,0}
6. a(1,0) =a(0,1) =0 wagy a(1,0) =a(0,1) =1

Az aggregative operator multiplikative formulaja a kdvetkez6

1—‘§: w; n
ay, (w,x) = f ' | fa T () [ £2 (@) (6)

i=1

2.4. Felfujo fiiggvény

A fuzzy koncepcioban a legfontosabb fogalom a halmazhoztartozasi
fliggvény. Mind a mai napig a kutatoi kozosségi nem tudott egy egyér-
telmii definiciét meghatéarozni erre a fogalomra. A Pliant koncepcioban



meg tudunk adni egy olyan definiciot, amely az operator rendszerhez
szorosan kapcsolodik. A Pliant koncepcioban az alabbi jelolést hasz-
naljuk a felfujo fliggvényre

d(z) = truth(0 < ) rER
Ezt tudjuk altalanositani a kévetkezé moédon
6(g(x)) = truth(0 < g(x)) xeR"
A Kklasszikus relacio helyett egy fiiggvényt definidlunk, amely a re-
lacio "érvényességérdl" ad informécio.
A fuzzy logika elméletében a halmazhoztartozasi fiiggvénynek mas

jelentése van. A Pliant koncepcidban a halmazhoztartozési fliggvényt
"agy intervallumra" cseréljiik. A matematikai leirasa az alabbi

6(’1\"17”\2 (x) = truth(a <y, © <x, b)
5. Definicié. A Pliant rendszerben, ha az aldbbi feltételek teljestiinek
o) =v 63 (0) = w, (7)

akkor a felfijo intervallum a kdvetkezd

1
52711;)‘2(58) _ f—l (A (Ale—)\l(x—a) +A26—/\2(b—9€))) , (8)

ahol

A = ﬁ (1 — ef(A1+/\2)(b7a))

Al -1 ef)\Q(bfa) (9)

A2 = ]. — 6_/\1(b_a)

2.5. Pliant rendszer

A Pliant rendszer operatorai az alabbiak



c(x) = (10)

. n 1 S (11)
1+ l;’wl (PTI) >

) 1

ay, (x) = 14 (1:/) ITi-, (%1%/) "
- 1

) = 1+ (1;—”) 137 h

1

I{(y)\)(x) = 1+1;TV0 (ﬁ%)A

ahol v, €]0, 1], a kovetkezd generator fiiggvényekkel

o) = (22) - (1) aw

T T

ahol @ > 0. A ¢, d és n operatorok teljesitik a DeMorgan azonossa-
got minden v-ra. Az a and n operéatorok rész-DeMorgan azonossagot
adnak minden v-ra és az aggregative operator disztributiv a szigortian
monoton t-normara vagy szigorian monoton t-conormara.

3. A disszertaci6 1) tudomanyos eredményei

3.1. Dontés tamogatas

A Pliant rendszert dontéstamogaté algoritmusként alkalmaztam Grid
rendszereknél. A disszertacié harmadik fejezet elején bemutattam a
Grid rendszereket és azok alapelemeit. A Grid Metabroker egy olyan
web szolgaltatas alapu elem, amely ki tudja szolgalni a felhasznalokat
és a grid portalokat és a brokerekkel kozvetlen kapcsolatban all. Egy
ujszerd temezd algoritmus felhasznaldsa lehetévé tesz egy magasabb
szinti, egylittmiik6ds broker hasznalatot ugy, hogy felhasznalunk méar
meglévé méas grid rendszerben 1évé brokereket. A Grid Metabroker
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1. 4bra. A hibas feladat mutato
normalizalasanak szigmoid fliggvé-
nye

2. abra. Normalizalt paraméter ér-
ték a Kappa fiiggvény segitségével

azért gytijti Ossze és hasznositja a kiilonb6z6 rendszerben 1évs brokerek
metaadatait, hogy létrehozzon egy adaptiv metabroker szolgaltatést.
A Meta-Broker iitemezd algoritmus teljesitményét tgy tudjuk novelni,
ha a feladatot annak a brokernek kiildjiik el, amely megfelel a feltéte-
leknek, a feladatot hiba nélkiil képes lefuttatni és a feladatot a lehetd
leghamarabb lefuttatja. A brokereknek négy tulajdonsiga van, amelyre
az algoritmus tamaszkodhat: siker mutato, hiba mutato, terhelési mu-
tato és aktualisan futo feladat mutato.

A disszertaciéban bemutatok tobb {itemez6 komponenst, amely a
Metabrokerhez késziilt. Ezen algoritmusok a fent nevezett broker tulaj-
donsagokat hasznaljak fel a dontéshozéasban. A legjobb algoritmus "Pli-
ant function with random generation" nevii algoritmus adta, amely még
nagy bizonytalansdg mellett is képes a megfelel6 brokert kivalasztani
a megadott feladatnak. Ez az algoritmus minden brokerhez egy pont
értéket rendel és egy generator fiiggvényt hasznal a brokerek kivalasz-
tasanal. A brokerek pont érték meghatéarozasakor a Kappa fiiggvény
keriil alkalmazasra. Az algoritmus f6bb lépései a kévetkezek. Mivel a
Pliant rendszer a [0, 1] intervallumon van értelmezve ezért normalizal-
nunk kell a bemend adatokat. Ez az algoritmus a szigmoid fliggvényt
hasznalja az adatok normalizalasara.

Tovabbra is hangstlyozni szeretném, hogy pont (score) érték meg-
hatarozasakor az érték minél kozelebb van az egyhez, annal jobbnak
szamit a broker, és az érték minél kozelebb van a nulldhoz akkor a
broker annal rosszabb. Példaul ha a hibas szamlalé magas, akkor nor-
malizalt értéknek nulldhoz kozelinek kell lennie, mert nem jo, ha egy
broker sokszor nem tudja lefuttatni a feladatot (lasd 1 képen). A "siker
mutato" pont ennek ellentétje.



A kovetkezo lépésben a normalizalt értéken ugyanazt a Kappa fiigg-
vényt alkalmazzuk (lasd a 2 abran). Ennek soran v és \ paramétereket
hataroztuk meg, amelyekkel az elvart értéket hataroztuk meg.

Az adott pont (score) érték kiszamitasahoz a conjunction, vagy agg-
regative operatort tudjuk hasznalni. TSbb teszt futtatast elvégezve arra
a megallapitasra jutottam, hogy az aggregation operator hasznalatéval
jobb eredményt kapunk. Az eredmény minden esetben egy valés szam
lesz a [0, 1] intervallumban, amelyet megszoroztunk szazzal, hogy meg-
kapjuk a brokerek pont értékét.

Kifejlesztettiink egy "tanité" eljarast, hogy tovabb néveljiik az tite-
mez6 algoritmus hatékonysagat. Ez az eljaras a szimulécié el6tt fut le
azért, hogy az elsé és masodik jellemzd relevans értéket tartalmazzon.
Ez a kis eljaras kisméretid kiilonbozd jellemzokkel ellatott feladatokat
kiild a brokereknek, hogy meg tudjuk hatarozni a sikeres és hibas mé-
részamot.

A kifejlesztett algoritmusokat Grid alapu grid szimulécios kérnye-
zetben futtattuk. A szimuléci6é soran valos terhelési adatokkal dolgoz-
tunk.

20100000 J /
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3. dbra. Harom dontéstamogatéd algoritmus szimulaciés eredménye a
véletlen dontéshozdval Gsszehasonlitva

A tanito eljarassal futtatott szimulaciés eredmények lathatoak a 3
abran. Ahogy korabban emlitettem a szimulacié futtatasa el6tt egy
tanité eljaras segitségével a brokerek jellemzsit beallitottam. Ez altal
az elsd korben bekiildott feladatok gyorsabban teljesiiltek. Az eredmé-
nyeket elemezve azt lattam, hogy a Decision 4 nevi algoritmus hasonld
eredményt ért el, mint a Decision3 algoritmus, de a Decision5 nevii



algoritmus hatarozottan jobban teljesit a tobbihez képest.

Meta-Brokering with 14 brokers
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4. dbra. Szimulaciés eredmények Gsszehasonlitasa

A 4 abran felhasznalasaval megmutattam, hogy az egyes dontésta-
mogaté algoritmusok milyen eredményt értek el. Az egyes oszlopok az
atlagos futasi értékét mutatjak a szimulacioknak ugyanazon paraméter
hasznalat mellett. Az eredmények azt mutatjak, hogy minél szofisz-
tikaltabb megoldast rakunk a rendszerbe annél jobb lesz a rendszer
teljesitménye. Az eredmények nagy nyereséget mutattak, azaz a javi-
tott {itemez6 algoritmus sokkal hatékonyabb feladat futasi eredményt
adott.

3.2. Fiiggvény kozelités

A disszertacio negyedik fejezetben altalanos kozelits eljarasokat ismer-
tettem. Ramutattam ezen eljarasok néhany hidnyossagara. Ezek alap-
jan kifejlesztettem egy 0j tipusi nem linearis regresszios eljarast, amely
a felfujo fiiggvényen alapul és a fiiggvény természetes leirasat adja. A
kozelités soran a felfajo fiiggvényt két féle modon is lehet alkalmazni.
A felfujo fiiggvény létrehozésa soran az egyik esetben a fliggvény csi-
csat, a méasikban egy intervallumot hasznaltam fel. A kovetkezdében a
fliggvény létrehozast ismertetem.

Mivel az aggregacionak van egy neutralis értéke, ezért el kell transzfor-
mélnunk az intervallumot erre [0, v] intervallumra, vagy [v, 1] interval-
lumra. Definidltam a pozitiv és negativ hatasokat, amelynek soran a
felfijo fiiggvényt hasznaltam. Ez a kovetkezd:



1
Pz @) =5 (149003 (@) (15)

1
N @) =5 (1-900 @), (16)

amelyben v € [0, 1] nagyitas paraméter a hatas intenzitasat hata-
rozza meg.

Ezt az impulzus fliiggvényt tudjuk felhasznalni a fiiggvény interpoléci-
6hoz. A fiiggvény létrehozésara az aggregacios operatort hasznaltam.
Ha A\, Ao értékei nem tul magasak, akkor sima kozelitést kaptam.

A kovetkezdben egy adott fliggvény felbontasat fogom megmutatni
ezen eszkozok felhasznalasaval. Ebben az esetben a fiiggvényt koordi-
natakkal hatarozzuk meg. Egy stirti mintavételezést eljarast hasznalok.
Minden egyes példa sordn 100 ekvidiszténs koordinatat hasznaltam a
megadott intervallumon. Valasszuk egy alabbi F' : R — [0,1] fiige-
vényt, amelyet kozeliteni szeretnénk. A feladatunk e fliggvény felbon-
tasa hatasokra. Ezt a korabban ismertetett felfujo fiiggvény, vagy az
impulse fiiggvény segitségével tudjuk megtenni. Els6 lépésként az F'(z)
fliggvényen végrehajtunk egy simitast.

A felfujo fiiggvényt hasznalé algoritmus

1. Keressiikk meg az F(z) fliggvény lokailis minimum és maximum
pontjait

F(e;) = A; gy mint
F(z)<A;, ha z€(¢—¢e¢+¢)

F(cj) = A; gy mint
F(z)>A; ha z€(c;—e,¢+¢)

2. Hatéarozzuk meg az [a;, b;] intervallumokat

al:cl_c1+02 b1_01+02
5 b=
Cp— C Cp— C
an:%ﬂ, bn:CnJr%*n’

ahol
cp<cp<cez<...<c
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5. abra. Optimalis komponensek 6. abra. A fiiggvény és kozelitése.

3. Hatarozzuk meg a kezdeti A\;; és \;, paraméter értékeket

flei) — flai) \ Qf(bi) — f(a)
i — a " b — a;

Aiy =

4. Hatarozzuk meg a kezdeti értékek alapjan a fiiggvényt

n
Gy () = D (@)

i=1
Lasd a (5) abra.

5. Ezek utan pedig keressiik meg az a;, b;, i, , A, optimalis értékeit
a korabban meghatarozott kezdeti értékeket felhasznalva.

min (GA“AQ(x») —F(az»))2
a,b.A; 0, ab A !
A megtalalt minimum nem biztos, hogy globéalis minimum, mivel azon-
ban a kezdeti értékeket megfelelGen allitottuk be, ezért a globalis mi-
nimumot legtébbszoér megkapjuk. A kozelités eredménye a (6) abran
lathato.

Impulzus fiiggvényt hasznal6é algoritmus

Keressiik meg a minimum és maximum értékeit az F(z) fliggvény-
nek

g1 <cp<cz<...<CcCg,

ahol ¢; és ¢;11 a minimum maximum (vagy maximum minimum) pont-
parok.
Ha f(c;) = A;, legyen a kozelits fliggvény kezdeti értéke a kovetkezo:

1 Ci — Ci—1

Cit1 — G
- A, = ———=% &5 Ay =
2’ ¢ Ai _Ai—l

A= fle) = A A

10
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8. abra. Az eredeti fiiggvény és a

7. abra. Eredeti és optimalis hatas Kozelités eredmenye.

Lasd a (7) abra. Az eljaras tovabbi lépései ugyanazok, mint a korabbi
esetben.

A (8) abran az eljaras egyik eredménye lathato. Ez az algoritmus a
BFGS eljarast is hasznalja. Igy pontosabb kozelitést érhets el. Megmu-
tattam, hogy az eljaras gyors, hatékony (csak néhéany lépést sziikséges
az optimalizalo eljarasnak) és egyszertien hasznalhato. Ezzel a mod-
szerrel lehetséges a fliggvény egy részét direkt modon megvaltoztatni
szemben a szokasos kozelits eljarasokkal.

3.3. Cognitive Map

A disszertacio utols6 fejezetében a "Cognitive Map"-el foglalkozom.
Célom a komplex, dinamikusan véltozé rendszerek modellezése volt a
Pliant rendszer segitségével. A kidolgozott koncepcio hasonlé az iroda-
lomban mar ismert "Fuzzy Cognitive Map"-hez. Az altalam kidolgozott
esetben mind, az alkalmazott fliggvények és mind az Gsszegzések mésok.
A klasszikus FCM egy hibrid megoldasnak tekinthets, amely egyszerre
tekinthets fuzzy rendszernek és neuralis halonak. A rendszerben itt
is allapotok és események vannak. Mindegyik numerikus értékkel jel-
lemzett. A 9. abran egy tipikus FCM modellt lathatunk, amely egy
iranyitott graf.

A modszer a folytonos logikan alapul és a paramétereknek szeman-
tikus jelentése is van. A Pliant Cognitive Map-ben 1j tipusi hatasokat
tudunk definialni. A szigmoid fliggvény az értékeket természetes mo-
don a (0,1) intervallumra transzforméalja. Pozitiv hatast ugy definialok,
hogy két szigmoid fliggvényre alkalmazom a conjunction operatort. Az
altalanos pozitiv, negativ hatast a kovekezs fliggvénnyel irhato le

11
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9. 4bra. Az FCM modell
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10. abra. Egy altalanos hatés. 11. abra. Hatésok aggregacioja.

1
1 + ue=1(t=a) 4 ye—r2(t=b)
ahol u és v silyok. A 11. &bran egy altalanos hatas lathato. Ha
rendszerben nem definialunk hatasokat, akkor 1/2 értéket rendeliink
az elemekhez. Pozitiv hatast akkor ériink el, ha az érték 1/2-nél na-
gyobb és a hatds maximuma 1 is lehet. Negativ hatas a pozitiv hatas
ellentettje. Ezen hatasokat az alabbi transzforméaciéval hoztam létre

c(t,u,v,a,b) =

P(tauav7avb) = (1 -l—c(t,u,v,a,b))

1

2
1

N(t,u,v,a,b) = 3 (1 —c(t,u,v,a,b))

A 11. abran bemutatom a pozitiv és negativ hatasok aggregaciojat.
Itt a Pliant fiiggvényre aggregative operatorat hasznaltam. Megmutat-
tam azt is, hogy arra is van lehetdség, hogy csupan a szigmoid fligg-
vényeket hasznaljak fel a hatéas létrehozasara. Ez esetben a modellnek
mas jelentése van. A modszer akkor hasznos, ha nem tudjuk a hatéas
hosszat. Ebben az esetben a hatast, mint egy létrejévé impulzust mo-
dellezziik. Az értékkészlet megegyezik a korabbi modszerrel, azaz az

12
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12. abra. Altalanos hatas leirasa 13. abra. Szigmoid fiiggvények
szigmoid fiiggvénnyel. aggregacidja.
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1/2 érték jelzi a neutralis értéket. A pozitiv hatast tgy definidltam,
hogy a szigmoid fiiggvényt transzformaltam a [0.5,1.0] tartomanyra, a
negativ hatas esetében pedig [0.0,0.5]-re. A fentiek alapjan a hatasok
létrehozéaséat az alabbi moédon hataroztam meg

P(z,a, ) == (1+0o(z,a,\))

i NN

N(z,a, ) = 5 (1—-o0(x,a,N)),

ahol Ay > 0 és Ay > 0. Meg kell emliteniink, hogy ha a a hatés eléri a
nulla vagy egy értéket, akkor a hatasok aggregécidja nem értelmezhetd.
Ennek elkeriilésére a szigmoid fliggvény 6sszenyomtam a [0.15,0.95] ér-
ték készletre tartoményra.

A 13. abran bemutatom a pozitiv és negativ hatasok aggregéaciojat,
amelyeknél csak a szigmoid fliggvényt hasznaltam fel.
aggregalnunk. Osszefoglalva a szimulacio végrehajtasahoz az alabbi
lépések kell megtenni:

1. Gytjtsiik Ossze a koncepcidkat.

2. Hatarozzuk meg az egyes koncepcidkhoz tartozé elvart értékét
(Az aggregative operator kiiszobértéke lesz).

3. Epitsiik fel a "Cognitive Map"-et, azaz hatarozzuk meg a kon-
cepciok kozotti iranyitott éleket.

4. Hatarozzuk meg a hatasokat (minden egyes élre adjuk meg, hogy
az pozitiv, vagy negativ).

Az iteréacios eljaras:
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1. Olvassuk be a bemend adatokat, amelyet meghatarozhat egy fiigg-
vény, vagy pontparok sorozata.

2. Szamitsuk ki a pozitiv és negativ hatasok értékét.

3. Alkalmazzuk az aggregative operatort a hatasok dsszegzésére, ahol
vy értéknek a C; koncepcié kordbbi értékét valasszuk.

A disszertacioban bemutattam az altalam kifejlesztett keretrend-
szert. Példakon keresztiil mutattam be, hogy hogyan miikddik a "Pliant
Cognitive Map". Végezetiil megmutattam, hogy a rendszer klasszikus
hécseréls példan is megfelel6en miikodik. A hécseréls a vegyi és feldol-
gozo ipar egy altalanos eszkoze [5]. Ez egy specialis tartaly, ahol a hé
kontrollalasa komoly problémakat jelent, mivel kiilonbozd feltételeket
kell egyidejtileg figyelembe venni. A rendszer nem linearis viselkedésii
és erGsen fligg a hiit6kozeg aramléastol és koztes réteg hémérsékleté-
t6l. Erre a problémara a klasszikus FCM modell is alkalmazhato [6].
A dolgozatomban a PCM modellt alkalmaztam erre a problémara. A
szimulacio kiértékelése soran megallapitottam, hogy a szimulacios 1épé-
sek kozotti értékvaltozasok egyenletesebben cstkkennek, amely a sza-
balyozas szempontjabol joval jobb, azonban tSbb lépés sziikséges az
egyensilyi allapot eléréséhez. A valos példan a hatasok értékeit nem
valtoztattam meg. A PCM modell segitségével azonban lehetséges a
hatasok paramétereinek idébeni valtoztatasa és igy a valos folyamatok
jobban modellezhetGek.

4. Tézispontok

A disszertacioban elért eredmények harom tézispontba csoportositha-
toak.

4.1. Dontés tamogatas

A Pliant rendszert déntéstdmogato algoritmusként alkalmaztam Grid
rendszereknél. A fejezetben bemutattam az altalam kifejlesztett don-
téstamogato litemezd algoritmusokat, amely a Metabroker komponens-
hez késziiltek. Ezen algoritmusok a dontés meghozatalahoz a brokerek
jellemzd&it hasznaljak fel. A legjobb megoldast a "Pliant function with
random generation" nevd algoritmus adta. Ez a felhasznalo altal be-
kiildott feladatokhoz a rendszer nagy bizonytalansaga mellett is a leg-
jobban teljesits brokert valasztotta. A tesztek valos terhelési adatokon
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a GridSim szimulaciés kornyezetben keriiltek kiértékelésre. Az ered-
mények nagy nyereséget mutattak, azaz a javitott iitemezé algoritmus
sokkal hatékonyabb feladat futési eredményt adott.

4.2. Filiggvény kozelités

A altalanos kozelits eljarasokat ismertettem. Ramutattam ezen eljara-
sok néhany hidnyossagara. Ezek alapjan kifejlesztettem egy 0j tipusu
nem lineéris regresszios eljarast, amely a felfajo fliggvényen alapul és
a fiiggvény természetes leirasat is megadja. A kozelités soran a felfdjo
fiiggvényt kétféle modon is lehet alkalmazni. A felfujo fiiggvény lét-
rehozésa soran az egyik esetben a fiiggvény csicsat, a masikban egy
intervallumot hasznaltam fel. Példafiiggvényeken megmutattam, hogy
hogyan lehet létrehozni és felbontani az altalam definialt technikaval
komponensekre a fiiggvényt. Az algoritmusom a BFGS eljarast is hasz-
nalja. Igy nagy pontossagi kozelitést érhets el. Megmutattam, hogy az
eljaras gyors, hatékony (csak néhany lépést sziikséges az optimalizalo
eljarasnak) és egyszertien hasznalhat6. Ezzel a modszerrel lehetséges
a fliggvény egy részét direkt modon valtoztatni ellentétben a szokasos
kozelits eljarasokkal.

4.3. Cognitive Map

Megvizsgaltam a "Cognitive Map"-et. Célom a komplex, dinamiku-
san valtozo rendszerek modellezése volt a Pliant rendszer segitségével.
A kidolgozott koncepcié hasonloé az irodalomban mar ismert "Fuzzy
Cognitive Map"-hez. Az altalam kidolgozott algoritmus esetében mind
az alkalmazott fiiggvények és mind az Osszegzések mésok. A modszer
a folytonos logikan alapul és a paramétereknek szemantikus jelentés
tulajdonithato. Két modszert is meghataroztam a hatésok leiraséra.
Megmutattam, hogy miként kell felépiteni a "Pliant Coginitve Map"-
et. Tovabba bemutattam az altalam kifejlesztett keretrendszert. Pél-
déakon keresztiil mutattam be, hogy hogyan miikédik a "Pliant Cogni-
tive Map". Végezetiil megmutattam, hogy a rendszer valés példakon
is megfelel6en miikédik. A szimuléci6é kiértékelése sordn megéllapitot-
tam, hogy a szimulacios 1épések kozotti értékvaltozasok egyenletesen
csOkkennek, t6bb 1épés sziikséges a kiegyenstulyozott allapot eléréséhez.
A valos példan a hatasok értékeit nem valtoztattam meg. A PCM mo-
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dell segitségével azonban lehetséges a hatasok paramétereinek idébeni
valtoztatéasa és igy a valos folyamatok jobban modellezhetGek.

5. A tézisponthoz kapcsol6dé kozlemények
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