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1. Bevezetés
A Fuzzy halmazokat 1965-ben vezette be Zadeh azért, hogy az emberi
gondolkodás matematikai modellezése megvalósítható legyen a számí-
tástudományban. Már az első munkájában meghatározta a fuzzy el-
mélet alap definícióit, azaz a klasszikus matematikai jelölések fuzzy
kiterjesztését, így a logikai operátorokat, szabályok alkalmazását, fuzzy
relációkat és mennyiségi jellemzők transzformációit.
Az elmúlt évtizedekben a fuzzy halmazok és a fuzzy logika egyre nép-
szerűbb terület lett és egyre több alkalmazás készült a segítségével. Így
felhasználta a számítás tudomány és mérnöki tudomány. Ennek követ-
kezménye, hogy nagyon sok cikket publikáltak, amely a fuzzy logikával
foglalkozik. A könyvek száma is több száz, amelyek különböző módon
vizsgálják a fuzzy elméletet és annak módszertanát. A sok tudományos
eredmény ellenére nem lehet egy egységes fuzzy elméletről beszélni,
ugyanúgy, ahogy egységes következtetési eljárásról sem.
A fuzzy elmélet egy speciális osztálya a Pliant rendszer (rugalmas rend-
szer), amely a fuzzy elméletben felmerülő problémákra keres megoldást
[2]. A két rendszer között az operátorok választásában van különb-
ség. A fuzzy elméletben fontos szerepet játszik a halmazhoztartozási
függvény, de ennek nincs rögzített definíciója. A Pliant rendszerben
úgy nevezett felfújó függvény (distending) helyettesíti a halmazhoztar-
tozási függvényt, amely "lágy (soft) egyenlőtlenséget" reprezentál. A
Pliant rendszerben az operátorok (conjunction, disjunction, aggrega-
tive operátor) között egyértelmű kapcsolat van.
A disszertációm főbb célja, hogy bemutassam, hogy a Pliant rendszert
hogyan lehet alkalmazni valós problémákon. A kutatás során a gyakor-
latiasságot és a pragmatikusságot tartottam folyamatosan szem előtt.
Elsőként a dinamikus rendszerek területeken alkalmaztam a Pliant kon-
cepciót. Itt hasonló rendszert hoztunk létre, mint a Fuzzy Cognitive
Map. Továbbá a Pliant rendszert függvény közelítésre alkalmaztam,
amely praktikus szempontból bizonyult nagyon hasznosnak. Végül
megmutattam, hogy a Pliant koncepciót döntés támogató eszközként is
lehet alkalmazni.

2. Fogalmak és előzmények
Ebben a fejezetben ismertetem azokat az általános fogalmakat jelölése-
ket, amelyek a tézishez szükségesek.
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2.1. Negációs operator
1. Definíció. Azt mondjuk, hogy n(x) negációs operátor, ha n : [0, 1]→
[0, 1] teljesíti az alábbi feltételeket

C1: n : [0, 1]→ [0, 1] (Continuity)
C2: n(0) = 1, n(1) = 0 (Boundary conditions)
C3: n(x) < n(y) for x > y (Monotonicity)
C4: n(n(x)) = x (Involution)

2.2. Conjunctive, disjunctive és a módosító operá-
torok

A Pliant koncepció során úgy választjuk meg az operátorokat (szigo-
rúan monoton t-norm és szigorúan monoton t-conorm), hogy különböző
negációkra is DeMorgan osztályt alkossanak. A negáció ν∗ fixpontját
vagy a ν neutrális értékét döntési szintnek tekinthetjük. Azon operá-
tor osztályok, amelyekhez sok negáció tartozhat különösen hasznosak,
mert a küszöb érték változhat.

1. Tétel. c(x, y) és d(x, y) DeMorgan osztályt alkot az nν∗(x), ahol
nν∗(ν∗) = ν∗ minden ν∗ ∈ (0, 1) akkor és csak akkor, ha

fc(x)fd(x) = 1. (1)

Bizonyítás itt található [3].

2. Definíció. A Pliant rendszer általános formulája a következő

oα(x, y) = f−1
(
(fα(x) + fα(y))

1/α
)

(2)

nν(x) = f−1
(
f(ν0)

f(ν)

f(x)

)
or (3)

nν∗(x) = f−1
(
f2(ν∗)

f(x)

)
, (4)

ahol f(x) egy szigorúan monoton t-norma operátor generátor függvénye
és f : [0, 1]→ [0,∞] folytonos és szigorúan monoton csökkenő függvény.
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3. Definíció. A Pliant rendszerben a módosító (modifier) operátor ál-
talános formája a következő

κ(λ)ν,ν0(x) = f−1

(
f(ν0)

(
f(x)

f(ν)

)λ)
(5)

2.3. Aggregative operátor
Yager and Rybalov [7] vezette be először az uninorm kifejezést. Az
uninormák a t-normák és t-conormák általánosítása, melynek során el-
hagyjuk az egység elemre vonatkozó feltételt a {0, 1} intervallumban.
Fodor, Yager és Rybalov [4] definiálták az uninormák egy részosztályát,
a reprezentatív uninormákat. Az alábbi módon definiáljuk az aggrega-
tive operátort [1]

4. Definíció. Az aggregative operátor egy a : [0, 1]2 → [0, 1] függvény
a következő tulajdonságokkal

1. Folytonos a [0, 1]2\{(0, 1), (1, 0)}

2. a(x, y) < a(x, y′) if y < y′, x 6= 0, x 6= 1
a(x, y) < a(x′, y) if x < x′, y 6= 0, y 6= 1

3. a(0, 0) = 0 és a(1, 1) = 1 (boundary conditions)

4. a(x, a(y, z)) = a(a(x, y), z) (associativity)

5. Létezik olyan n erős negáció, amelyre teljesül a(x, y) = n(a(n(x), n(y)))
(ön-DeMorgan azonosság) ha {x, y} 6= {0, 1} or {x, y} 6= {1, 0}

6. a(1, 0) = a(0, 1) = 0 vagy a(1, 0) = a(0, 1) = 1

Az aggregative operátor multiplikative formulája a következő

aν∗(w,x) = f−1a

f1− n∑
i=1

wi

a (ν∗)

n∏
i=1

fwi
a (xi)

 (6)

2.4. Felfújó függvény
A fuzzy koncepcióban a legfontosabb fogalom a halmazhoztartozási
függvény. Mind a mai napig a kutatói közösségi nem tudott egy egyér-
telmű definíciót meghatározni erre a fogalomra. A Pliant koncepcióban
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meg tudunk adni egy olyan definíciót, amely az operátor rendszerhez
szorosan kapcsolódik. A Pliant koncepcióban az alábbi jelölést hasz-
náljuk a felfújó függvényre

δ(x) = truth(0 < x) x ∈ R

Ezt tudjuk általánosítani a következő módon

δ(g(x)) = truth
(
0 < g(x)

)
xεRn

A klasszikus reláció helyett egy függvényt definiálunk, amely a re-
láció "érvényességéről" ad információ.

A fuzzy logika elméletében a halmazhoztartozási függvénynek más
jelentése van. A Pliant koncepcióban a halmazhoztartozási függvényt
"lágy intervallumra" cseréljük. A matematikai leírása az alábbi

δλ1,λ2

a,b (x) = truth(a <λ1
x <λ2

b)

5. Definíció. A Pliant rendszerben, ha az alábbi feltételek teljesülnek

δλ1,λ2

a,b (a) = ν0 δλ1,λ2

a,b (b) = ν0, (7)

akkor a felfújó intervallum a következő

δλ1,λ2

a,b (x) = f−1
(
1

A

(
A1e

−λ1(x−a) +A2e
−λ2(b−x)

))
, (8)

ahol

A =
1

f(ν0)

(
1− e−(λ1+λ2)(b−a)

)
A1 = 1− e−λ2(b−a)

A2 = 1− e−λ1(b−a)

(9)

2.5. Pliant rendszer
A Pliant rendszer operátorai az alábbiak
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c(x) =
1

1 +

(
n∑
i=1

wi

(
1−xi

xi

)α)1/α
(10)

d(x) =
1

1 +

(
n∑
i=1

wi

(
1−xi

xi

)−α)−1/α (11)

aν∗(x) =
1

1 +
(

1−ν∗
ν∗

)∏n
i=1

(
1−xi

xi

1−ν∗
ν∗

)wi
(12)

n(x) =
1

1 +
(

1−ν∗
ν∗

)2
x

1−x

, (13)

κ(λ)ν (x) =
1

1 + 1−ν0
ν0

(
ν

1−ν
1−x
x

)λ
ahol ν∗ ∈]0, 1[, a következő generátor függvényekkel

fc(x) =

(
1− x
x

)α
fd(x) =

(
1− x
x

)−α
, (14)

ahol α > 0. A c, d és n operátorok teljesítik a DeMorgan azonossá-
got minden ν-ra. Az a and n operátorok rész-DeMorgan azonosságot
adnak minden ν-ra és az aggregative operátor disztributív a szigorúan
monoton t-normára vagy szigorúan monoton t-conormára.

3. A disszertáció új tudományos eredményei

3.1. Döntés támogatás
A Pliant rendszert döntéstámogató algoritmusként alkalmaztam Grid
rendszereknél. A disszertáció harmadik fejezet elején bemutattam a
Grid rendszereket és azok alapelemeit. A Grid Metabróker egy olyan
web szolgáltatás alapú elem, amely ki tudja szolgálni a felhasználókat
és a grid portálokat és a brókerekkel közvetlen kapcsolatban áll. Egy
újszerű ütemező algoritmus felhasználása lehetővé tesz egy magasabb
szintű, együttműködő bróker használatot úgy, hogy felhasználunk már
meglévő más grid rendszerben lévő brókereket. A Grid Metabróker
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normalized value
0 0,2 0,4 0,6 0,8 1,0

Score

0

0,2

0,4

0,6

0,8

1,0

2. ábra. Normalizált paraméter ér-
ték a Kappa függvény segítségével

azért gyűjti össze és hasznosítja a különböző rendszerben lévő brókerek
metaadatait, hogy létrehozzon egy adaptív metabróker szolgáltatást.
A Meta-Broker ütemező algoritmus teljesítményét úgy tudjuk növelni,
ha a feladatot annak a brókernek küldjük el, amely megfelel a feltéte-
leknek, a feladatot hiba nélkül képes lefuttatni és a feladatot a lehető
leghamarabb lefuttatja. A brókereknek négy tulajdonsága van, amelyre
az algoritmus támaszkodhat: siker mutató, hiba mutató, terhelési mu-
tató és aktuálisan futó feladat mutató.

A disszertációban bemutatok több ütemező komponenst, amely a
Metabrókerhez készült. Ezen algoritmusok a fent nevezett bróker tulaj-
donságokat használják fel a döntéshozásban. A legjobb algoritmus "Pli-
ant function with random generation" nevű algoritmus adta, amely még
nagy bizonytalanság mellett is képes a megfelelő brókert kiválasztani
a megadott feladatnak. Ez az algoritmus minden brókerhez egy pont
értéket rendel és egy generátor függvényt használ a brókerek kiválasz-
tásánál. A brókerek pont érték meghatározásakor a Kappa függvény
kerül alkalmazásra. Az algoritmus főbb lépései a következőek. Mivel a
Pliant rendszer a [0, 1] intervallumon van értelmezve ezért normalizál-
nunk kell a bemenő adatokat. Ez az algoritmus a szigmoid függvényt
használja az adatok normalizálására.

Továbbra is hangsúlyozni szeretném, hogy pont (score) érték meg-
határozásakor az érték minél közelebb van az egyhez, annál jobbnak
számít a bróker, és az érték minél közelebb van a nullához akkor a
bróker annál rosszabb. Például ha a hibás számláló magas, akkor nor-
malizált értéknek nullához közelinek kell lennie, mert nem jó, ha egy
bróker sokszor nem tudja lefuttatni a feladatot (lásd 1 képen). A "siker
mutató" pont ennek ellentétje.
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A következő lépésben a normalizált értéken ugyanazt a Kappa függ-
vényt alkalmazzuk (lásd a 2 ábrán). Ennek során ν és λ paramétereket
határoztuk meg, amelyekkel az elvárt értéket határoztuk meg.

Az adott pont (score) érték kiszámításához a conjunction, vagy agg-
regative operátort tudjuk használni. Több teszt futtatást elvégezve arra
a megállapításra jutottam, hogy az aggregation operátor használatával
jobb eredményt kapunk. Az eredmény minden esetben egy valós szám
lesz a [0, 1] intervallumban, amelyet megszoroztunk százzal, hogy meg-
kapjuk a brókerek pont értékét.

Kifejlesztettünk egy "tanító" eljárást, hogy tovább növeljük az üte-
mező algoritmus hatékonyságát. Ez az eljárás a szimuláció előtt fut le
azért, hogy az első és második jellemző releváns értéket tartalmazzon.
Ez a kis eljárás kisméretű különböző jellemzőkkel ellátott feladatokat
küld a brókereknek, hogy meg tudjuk határozni a sikeres és hibás mé-
rőszámot.

A kifejlesztett algoritmusokat Grid alapú grid szimulációs környe-
zetben futtattuk. A szimuláció során valós terhelési adatokkal dolgoz-
tunk.

3. ábra. Három döntéstámogató algoritmus szimulációs eredménye a
véletlen döntéshozóval összehasonlítva

A tanító eljárással futtatott szimulációs eredmények láthatóak a 3
ábrán. Ahogy korábban említettem a szimuláció futtatása előtt egy
tanító eljárás segítségével a brókerek jellemzőit beállítottam. Ez által
az első körben beküldött feladatok gyorsabban teljesültek. Az eredmé-
nyeket elemezve azt láttam, hogy a Decision 4 nevű algoritmus hasonló
eredményt ért el, mint a Decision3 algoritmus, de a Decision5 nevű
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algoritmus határozottan jobban teljesít a többihez képest.

4. ábra. Szimulációs eredmények összehasonlítása

A 4 ábrán felhasználásával megmutattam, hogy az egyes döntéstá-
mogató algoritmusok milyen eredményt értek el. Az egyes oszlopok az
átlagos futási értékét mutatják a szimulációknak ugyanazon paraméter
használat mellett. Az eredmények azt mutatják, hogy minél szofisz-
tikáltabb megoldást rakunk a rendszerbe annál jobb lesz a rendszer
teljesítménye. Az eredmények nagy nyereséget mutattak, azaz a javí-
tott ütemező algoritmus sokkal hatékonyabb feladat futási eredményt
adott.

3.2. Függvény közelítés
A disszertáció negyedik fejezetben általános közelítő eljárásokat ismer-
tettem. Rámutattam ezen eljárások néhány hiányosságára. Ezek alap-
ján kifejlesztettem egy új típusú nem lineáris regressziós eljárást, amely
a felfújó függvényen alapul és a függvény természetes leírását adja. A
közelítés során a felfújó függvényt két féle módon is lehet alkalmazni.
A felfújó függvény létrehozása során az egyik esetben a függvény csú-
csát, a másikban egy intervallumot használtam fel. A következőben a
függvény létrehozást ismertetem.
Mivel az aggregációnak van egy neutrális értéke, ezért el kell transzfor-
málnunk az intervallumot erre [0, ν] intervallumra, vagy [ν, 1] interval-
lumra. Definiáltam a pozitív és negatív hatásokat, amelynek során a
felfújó függvényt használtam. Ez a következő:
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Pλ1,λ2
a1,a2 (x) =

1

2

(
1 + γσλ1,λ2

a,b (x)
)

(15)

Nλ1,λ2
a1,a2 (x) =

1

2

(
1− γσλ1,λ2

a,b (x)
)
, (16)

amelyben γ ∈ [0, 1] nagyítás paraméter a hatás intenzitását hatá-
rozza meg.

Ezt az impulzus függvényt tudjuk felhasználni a függvény interpoláci-
óhoz. A függvény létrehozására az aggregációs operátort használtam.
Ha λ1, λ2 értékei nem túl magasak, akkor sima közelítést kaptam.

A következőben egy adott függvény felbontását fogom megmutatni
ezen eszközök felhasználásával. Ebben az esetben a függvényt koordi-
nátákkal határozzuk meg. Egy sűrű mintavételezésű eljárást használok.
Minden egyes példa során 100 ekvidisztáns koordinátát használtam a
megadott intervallumon. Válasszuk egy alábbi F : R → [0, 1] függ-
vényt, amelyet közelíteni szeretnénk. A feladatunk e függvény felbon-
tása hatásokra. Ezt a korábban ismertetett felfújó függvény, vagy az
impulse függvény segítségével tudjuk megtenni. Első lépésként az F (x)
függvényen végrehajtunk egy simítást.

A felfújó függvényt használó algoritmus

1. Keressük meg az F (x) függvény lokális minimum és maximum
pontjait

F (ci) = Ai úgy mint
F (x) < Ai ha x ∈ (ci − ε, ci + ε)

F (cj) = Aj úgy mint
F (x) > Aj ha x ∈ (ci − ε, ci + ε)

2. Határozzuk meg az [ai, bi] intervallumokat

a1 = c1 −
c1 + c2

2
, b1 =

c1 + c2
2

, . . .

an =
cn−1 + cn

2
, bn = cn +

cn−1 + cn
2

,

ahol
c1 < c2 < c3 < . . . < ck
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5. ábra. Optimális komponensek
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6. ábra. A függvény és közelítése.

3. Határozzuk meg a kezdeti λi1 és λi2 paraméter értékeket

λi1 =
f(ci)− f(ai)

ci − ai
λi2 = 2

f(bi)− f(ci)
bi − ai

4. Határozzuk meg a kezdeti értékek alapján a függvényt

Gλ1,λ2

a,b (x) =

n∑
i=1

δ
λi1

,λi2

ai,bi
(x)

Lásd a (5) ábra.

5. Ezek után pedig keressük meg az ai, bi, λi1 , λi2 optimális értékeit
a korábban meghatározott kezdeti értékeket felhasználva.

min
a,b,λ1,λ2

∑(
G
λ1,λ2

a,b (xi)− F (xi)
)2

A megtalált minimum nem biztos, hogy globális minimum, mivel azon-
ban a kezdeti értékeket megfelelően állítottuk be, ezért a globális mi-
nimumot legtöbbször megkapjuk. A közelítés eredménye a (6) ábrán
látható.

Impulzus függvényt használó algoritmus
Keressük meg a minimum és maximum értékeit az F (x) függvény-

nek
c1 < c2 < c3 < . . . < ck,

ahol ci és ci+1 a minimum maximum (vagy maximum minimum) pont-
párok.

Ha f(ci) = Ai, legyen a közelítő függvény kezdeti értéke a következő:

Ai = f(ci)−
1

2
, λ1i =

ci − ci−1
Ai −Ai−1

és λ2i =
ci+1 − ci
Ai+1 −Ai
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7. ábra. Eredeti és optimális hatás
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8. ábra. Az eredeti függvény és a
közelítés eredménye.

Lásd a (7) ábra. Az eljárás további lépései ugyanazok, mint a korábbi
esetben.

A (8) ábrán az eljárás egyik eredménye látható. Ez az algoritmus a
BFGS eljárást is használja. Így pontosabb közelítést érhető el. Megmu-
tattam, hogy az eljárás gyors, hatékony (csak néhány lépést szükséges
az optimalizáló eljárásnak) és egyszerűen használható. Ezzel a mód-
szerrel lehetséges a függvény egy részét direkt módon megváltoztatni
szemben a szokásos közelítő eljárásokkal.

3.3. Cognitive Map
A disszertáció utolsó fejezetében a "Cognitive Map"-el foglalkozom.
Célom a komplex, dinamikusan változó rendszerek modellezése volt a
Pliant rendszer segítségével. A kidolgozott koncepció hasonló az iroda-
lomban már ismert "Fuzzy Cognitive Map"-hez. Az általam kidolgozott
esetben mind, az alkalmazott függvények és mind az összegzések mások.
A klasszikus FCM egy hibrid megoldásnak tekinthető, amely egyszerre
tekinthető fuzzy rendszernek és neurális hálónak. A rendszerben itt
is állapotok és események vannak. Mindegyik numerikus értékkel jel-
lemzett. A 9. ábrán egy tipikus FCM modellt láthatunk, amely egy
irányított gráf.

A módszer a folytonos logikán alapul és a paramétereknek szeman-
tikus jelentése is van. A Pliant Cognitive Map-ben új tipusú hatásokat
tudunk definiálni. A szigmoid függvény az értékeket természetes mó-
don a (0,1) intervallumra transzformálja. Pozitív hatást úgy definiálok,
hogy két szigmoid függvényre alkalmazom a conjunction operátort. Az
általános pozitív, negatív hatást a kövekező függvénnyel írható le
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9. ábra. Az FCM modell

10. ábra. Egy általános hatás. 11. ábra. Hatások aggregációja.

c(t, u, v, a, b) =
1

1 + ue−λ1(t−a) + ve−λ2(t−b)

ahol u és v súlyok. A 11. ábrán egy általános hatás látható. Ha
rendszerben nem definiálunk hatásokat, akkor 1/2 értéket rendelünk
az elemekhez. Pozitív hatást akkor érünk el, ha az érték 1/2-nél na-
gyobb és a hatás maximuma 1 is lehet. Negatív hatás a pozitív hatás
ellentettje. Ezen hatásokat az alábbi transzformációval hoztam létre

P (t, u, v, a, b) =
1

2
(1 + c(t, u, v, a, b))

N(t, u, v, a, b) =
1

2
(1− c(t, u, v, a, b))

A 11. ábrán bemutatom a pozitív és negatív hatások aggregációját.
Itt a Pliant függvényre aggregative operátorát használtam. Megmutat-
tam azt is, hogy arra is van lehetőség, hogy csupán a szigmoid függ-
vényeket használjak fel a hatás létrehozására. Ez esetben a modellnek
más jelentése van. A módszer akkor hasznos, ha nem tudjuk a hatás
hosszát. Ebben az esetben a hatást, mint egy létrejövő impulzust mo-
dellezzük. Az értékkészlet megegyezik a korábbi módszerrel, azaz az

12



12. ábra. Általános hatás leírása
szigmoid függvénnyel.

13. ábra. Szigmoid függvények
aggregációja.

1/2 érték jelzi a neutrális értéket. A pozitív hatást úgy definiáltam,
hogy a szigmoid függvényt transzformáltam a [0.5,1.0] tartományra, a
negatív hatás esetében pedig [0.0,0.5]-re. A fentiek alapján a hatások
létrehozását az alábbi módon határoztam meg

P (x, a, λ1) =
1

2
(1 + σ(x, a, λ1))

N(x, a, λ2) =
1

2
(1− σ(x, a, λ2)) ,

ahol λ1 > 0 és λ2 > 0. Meg kell említenünk, hogy ha a a hatás eléri a
nulla vagy egy értéket, akkor a hatások aggregációja nem értelmezhető.
Ennek elkerülésére a szigmoid függvény összenyomtam a [0.15, 0.95] ér-
ték készletre tartományra.

A 13. ábrán bemutatom a pozitív és negatív hatások aggregációját,
amelyeknél csak a szigmoid függvényt használtam fel.

PCM létrehozása A rendszer szimulációjához a hatásokat kell
aggregálnunk. Összefoglalva a szimuláció végrehajtásához az alábbi
lépések kell megtenni:

1. Gyűjtsük össze a koncepciókat.

2. Határozzuk meg az egyes koncepciókhoz tartozó elvárt értékét
(Az aggregative operátor küszöbértéke lesz).

3. Építsük fel a "Cognitive Map"-et, azaz határozzuk meg a kon-
cepciók közötti irányított éleket.

4. Határozzuk meg a hatásokat (minden egyes élre adjuk meg, hogy
az pozitív, vagy negatív).

Az iterációs eljárás:
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1. Olvassuk be a bemenő adatokat, amelyet meghatározhat egy függ-
vény, vagy pontpárok sorozata.

2. Számítsuk ki a pozitív és negatív hatások értékét.

3. Alkalmazzuk az aggregative operátort a hatások összegzésére, ahol
ν0 értéknek a Cj koncepció korábbi értékét válasszuk.

A disszertációban bemutattam az általam kifejlesztett keretrend-
szert. Példákon keresztül mutattam be, hogy hogyan működik a "Pliant
Cognitive Map". Végezetül megmutattam, hogy a rendszer klasszikus
hőcserélő példán is megfelelően működik. A hőcserélő a vegyi és feldol-
gozó ipar egy általános eszköze [5]. Ez egy speciális tartály, ahol a hő
kontrollálása komoly problémákat jelent, mivel különböző feltételeket
kell egyidejűleg figyelembe venni. A rendszer nem lineáris viselkedésű
és erősen függ a hűtőközeg áramlástól és köztes réteg hőmérsékleté-
től. Erre a problémára a klasszikus FCM modell is alkalmazható [6].
A dolgozatomban a PCM modellt alkalmaztam erre a problémára. A
szimuláció kiértékelése során megállapítottam, hogy a szimulációs lépé-
sek közötti értékváltozások egyenletesebben csökkennek, amely a sza-
bályozás szempontjából jóval jobb, azonban több lépés szükséges az
egyensúlyi állapot eléréséhez. A valós példán a hatások értékeit nem
változtattam meg. A PCM modell segítségével azonban lehetséges a
hatások paramétereinek időbeni változtatása és így a valós folyamatok
jobban modellezhetőek.

4. Tézispontok
A disszertációban elért eredmények három tézispontba csoportosítha-
tóak.

4.1. Döntés támogatás
A Pliant rendszert döntéstámogató algoritmusként alkalmaztam Grid
rendszereknél. A fejezetben bemutattam az általam kifejlesztett dön-
téstámogató ütemező algoritmusokat, amely a Metabróker komponens-
hez készültek. Ezen algoritmusok a döntés meghozatalához a brókerek
jellemzőit használják fel. A legjobb megoldást a "Pliant function with
random generation" nevű algoritmus adta. Ez a felhasználó által be-
küldött feladatokhoz a rendszer nagy bizonytalansága mellett is a leg-
jobban teljesítő brókert választotta. A tesztek valós terhelési adatokon
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a GridSim szimulációs környezetben kerültek kiértékelésre. Az ered-
mények nagy nyereséget mutattak, azaz a javított ütemező algoritmus
sokkal hatékonyabb feladat futási eredményt adott.

4.2. Függvény közelítés
A általános közelítő eljárásokat ismertettem. Rámutattam ezen eljárá-
sok néhány hiányosságára. Ezek alapján kifejlesztettem egy új típusú
nem lineáris regressziós eljárást, amely a felfújó függvényen alapul és
a függvény természetes leírását is megadja. A közelítés során a felfújó
függvényt kétféle módon is lehet alkalmazni. A felfújó függvény lét-
rehozása során az egyik esetben a függvény csúcsát, a másikban egy
intervallumot használtam fel. Példafüggvényeken megmutattam, hogy
hogyan lehet létrehozni és felbontani az általam definiált technikával
komponensekre a függvényt. Az algoritmusom a BFGS eljárást is hasz-
nálja. Így nagy pontosságú közelítést érhető el. Megmutattam, hogy az
eljárás gyors, hatékony (csak néhány lépést szükséges az optimalizáló
eljárásnak) és egyszerűen használható. Ezzel a módszerrel lehetséges
a függvény egy részét direkt módon változtatni ellentétben a szokásos
közelítő eljárásokkal.

4.3. Cognitive Map
Megvizsgáltam a "Cognitive Map"-et. Célom a komplex, dinamiku-
san változó rendszerek modellezése volt a Pliant rendszer segítségével.
A kidolgozott koncepció hasonló az irodalomban már ismert "Fuzzy
Cognitive Map"-hez. Az általam kidolgozott algoritmus esetében mind
az alkalmazott függvények és mind az összegzések mások. A módszer
a folytonos logikán alapul és a paramétereknek szemantikus jelentés
tulajdonítható. Két módszert is meghatároztam a hatások leírására.
Megmutattam, hogy miként kell felépíteni a "Pliant Coginitve Map"-
et. Továbbá bemutattam az általam kifejlesztett keretrendszert. Pél-
dákon keresztül mutattam be, hogy hogyan működik a "Pliant Cogni-
tive Map". Végezetül megmutattam, hogy a rendszer valós példákon
is megfelelően működik. A szimuláció kiértékelése során megállapítot-
tam, hogy a szimulációs lépések közötti értékváltozások egyenletesen
csökkennek, több lépés szükséges a kiegyensúlyozott állapot eléréséhez.
A valós példán a hatások értékeit nem változtattam meg. A PCM mo-
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dell segítségével azonban lehetséges a hatások paramétereinek időbeni
változtatása és így a valós folyamatok jobban modellezhetőek.
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Romania (2009)

• 2010: József Dániel Dombi, József Dombi: Create and decom-
pose function by using fuzzy functions, In 12th International
Conference on Enterprise Information System, Funchal-Madeira-
Portugal (2010)
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• 2005: József Dombi, József Dániel Dombi: Cognitive Maps based
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6
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junctive operator In: Proceedings of IEEE International Work-
shop on Soft Computing Applications, Szeged-Hungary and Arad-
Romania (2005)
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