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1 Introduction

Fuzzy sets were introduced by Lofti Zadeh in 1965 with the aimof recon-
ciling mathematical modeling and human knowledge in the engineering sci-
ences. Most of the building blocks of the theory of fuzzy setswere proposed
by him, especially fuzzy extensions of classical basic mathematical notions
like logical connectives, rules, relations and quantifiers.
Over the last decade fuzzy sets and fuzzy logic have become more popu-
lar areas for research, and they are being applied in fields such as computer
science, mathematics and engineering. This has led to a truly enormous liter-
ature, where there are presently over thirty thousand published papers dealing
with fuzzy logic, and several hundreds books have appeared on the various
facets of the theory and the methodology. However, there is not a single,
superior fuzzy logic or fuzzy reasoning method available, although there are
numerous competing theories.
The Pliant system is a kind of fuzzy theory that is similar to afuzzy system
[2]. The difference between the two systems lies in the choice of operators.
In fuzzy theory the membership function plays an important role, but the ex-
act definition of this function is often unclear. In pliant systems we use a
so-called distending function, which represents a soft inequality. In the Pliant
system the various operators, which are called the conjunction, disjunction
and aggregative operators, are closely related to each other.
The main contribution of this thesis will be to show how the Pliant system can
be applied to a variety of problems in the real world. During my studies I was
guided by pragmatism and utility. First, by creating a dynamic system, one
can create a system like the Fuzzy Cognitive Map. Second, onecan apply the
Pliant system by introducing function approximation techniques, which have
useful and practical aspects. And third, one can apply it in problems that use
decision-making techniques.

2 Definitions and basic notations

Here, we provide the basic definitions and notations that arerequired to un-
derstand fuzzy logic and concrete applications of it in the real world.

2.1 Negation operator

Definition 1. We say that n(x) is a negation if n: [0,1]→ [0,1] satisfies the
following conditions:
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C1: n : [0,1]→ [0,1] is continuous (Continuity)
C2: n(0) = 1, n(1) = 0 (Boundary conditions)
C3: n(x)< n(y) for x> y (Monotonicity)
C4: n(n(x)) = x (Involution)

2.2 Conjunctive, disjunctive operator and modifiers

In the Pliant concept we characterize the operator class (strict t-norm and
strict t-conorm) for which various negations exist and build a DeMorgan
class. The fixpointν∗ (or the neutral valueν) can be regarded as decision
threshold. Operators with various negations are useful because the threshold
can be varied.

Theorem 1. c(x,y) and d(x,y) build a DeMorgan system for nν∗(x) where
nν∗(ν∗) = ν∗ for all ν∗ ∈ (0,1) if and only if

fc(x) fd(x) = 1. (1)

For proof see [3].

Definition 2. The general form of the pliant system is

oα(x,y) = f−1
(

( f α(x)+ f α(y))1/α
)

(2)

nν(x) = f−1
(

f (ν0)
f (ν)
f (x)

)

or (3)

nν∗(x) = f−1
(

f 2(ν∗)
f (x)

)

, (4)

where f(x) is the generator function of the strict t-norm operator and f:
[0,1]→ [0,∞] continuous and strictly decreasing function.

Definition 3. The general form of the modifier operators in the pliant system
is

κ(λ)
ν,ν0(x) = f−1

(

f (ν0)

(

f (x)
f (ν)

)λ
)

(5)
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2.3 Aggregative operator

The termuninormwas first introduced by Yager and Rybalov [7]. Uninorms
are a generalization of t-norms and t-conorms, got by relaxing the constraint
on the identity element in the unit interval{0,1}. The paper of Fodor, Yager
and Rybalov [4] is notable since it defined a new subclass of uninorms called
representable uninorms.

The aggregative operator is defined [1] in the following way:

Definition 4. An aggregative operator is a function a: [0,1]2 → [0,1] with
the properties:

1. Continuous on[0,1]2\{(0,1),(1,0)}

2. a(x,y)< a(x,y′) if y < y′,x 6= 0,x 6= 1
a(x,y)< a(x′,y) if x < x′,y 6= 0,y 6= 1

3. a(0,0) = 0 and a(1,1) = 1 (boundary conditions)

4. a(x,a(y,z)) = a(a(x,y),z) (associativity)

5. There exists a strong negation n such that a(x,y) = n(a(n(x),n(y)))
(self-DeMorgan identity) if{x,y} 6= {0,1} or {x,y} 6= {1,0}

6. a(1,0) = a(0,1) = 0 or a(1,0) = a(0,1) = 1

The multiplicative form of the aggregative operator is

aν∗(w,x) = f−1
a



 f
1−

n
∑

i=1
wi

a (ν∗)
n

∏
i=1

f wi
a (xi)



 (6)

2.4 Distending function

In fuzzy concepts the most powerful term is the membership function. Up
until now the research community could not give an unambiguous definition
of this term. In the Pliant concept we give one which is connected to the oper-
ator system. In the Pliant concept, we will introduce the distending function.
We will use the notation

δ(x) = truth(0< x) x∈ R

We can generalize this in the following way

δ(g(x)) = truth
(

0< g(x)
)

xεRn
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Instead of a strict relation, we will define a function which provides infor-
mation on the validity of the relation.

In fuzzy logic theory, the membership function has a different interpre-
tation. In the Pliant concept, the membership function is replaced by a soft
interval. Its mathematical description is

δλ1,λ2
a,b (x) = truth(a<λ1

x<λ2
b)

Definition 5. In a pliant system if the initial conditions are

δλ1,λ2
a,b (a) = ν0 δλ1,λ2

a,b (b) = ν0, (7)

then the distending interval is

δλ1,λ2
a,b (x) = f−1

(

1
A

(

A1e−λ1(x−a)+A2e
−λ2(b−x)

)

)

, (8)

where

A =
1

f (ν0)

(

1−e−(λ1+λ2)(b−a)
)

A1 = 1−e−λ2(b−a)

A2 = 1−e−λ1(b−a)

(9)

2.5 The Pliant system

The operators of the Pliant system are

c(x) =
1

1+

(

n
∑

i=1
wi

(

1−xi
xi

)α
)1/α (10)

d(x) =
1

1+

(

n
∑

i=1
wi

(

1−xi
xi

)−α
)−1/α (11)

aν∗(x) =
1

1+
(

1−ν∗
ν∗

)

∏n
i=1

(

1−xi
xi

1−ν∗
ν∗

)wi
(12)

n(x) =
1

1+
(

1−ν∗
ν∗

)2
x

1−x

, (13)
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κ(λ)
ν (x) =

1

1+ 1−ν0
ν0

( ν
1−ν

1−x
x

)λ

whereν∗ ∈]0,1[, with generator functions

fc(x) =

(

1− x
x

)α
fd(x) =

(

1− x
x

)−α
, (14)

whereα > 0. The operatorsc, d andn fulfil the DeMorgan identity for allν, a
andn fulfil the self-DeMorgan identity for allν, and the aggregative operator
is distributive with the strict t-norm or t-conorm.

3 Results of the dissertation

3.1 Decision making

I applied the Pliant system in the Grid environment as a decision support
algorithm. In the first part of the related chapter in the dissertation, I in-
troduced the history and unit elements of the Grid environment. The Grid
Meta-Broker itself is a standalone Web-Service unit element that can serve
both users and grid portals, and it has a direct connection with brokers. The
novel enhanced scheduling solutions allows a higher level,interoperable bro-
kering by utilising existing resource brokers of differentgrid middleware. The
Grid Meta-Broker gathers and utilises meta-data about brokers from various
grid systems to establish an adaptive meta-brokering service. To improve the
scheduling performance of the Meta-Broker we need to send the job to the
broker that best fits the requirements; and it executes the job without failures
in the shortest possible execution time. Each broker hasfour propertiesthat
the algorithm can rely on: a success counter, a failure counter, a load counter
and the running jobs counter.

Here, I introduced several new scheduling components for this Meta-
Broker. These algorithms utilise the Broker’s properties for making decisions.
The best one, called Decision Maker, uses Pliant functions with a random
generation (which in the figure is called Decision 5) in orderto select a good
performing broker for user jobs even under conditions of high uncertainty.
This algorithm defines a score number for each broker and usesthe generator
function to select a broker, and it uses the kappa function todetermine the
broker’s score number. The best algorithm performs the following steps.
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Figure 1: Normalising the failed jobs
counter using Sigmoid function
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Figure 2: Normalized parameter values
using the Kappa function

Because the Pliant system is defined in the[0,1] interval, we need tonor-
malizethe input value. This algorithm uses the sigmoid function tonormalise
the input values.

We should alsoemphasizethat the closer the value is to one, the better
the broker is, and if the value is close to zero, it means that the broker is not
good. For example if the failure counter is high, both normalization algo-
rithms should give a value close to zero because it is not a good thing if the
broker has a lot of failed jobs (see Figure 1). The opposite istrue for the
success counter.

In the next step, we can modify the normalised property valueby using
the same Kappa function (see Figure 2). We can also define the expected
value of the normalisation via theν andλ parameters.

To calculatethe score value, we can make use of the conjunctive or aggre-
gation operator. After running some tests, we found that we got better results
if we used the aggregation operator. In this step, the resultis always a real
number lying in the[0,1] interval and then we multiply it by 100 to get the
broker’s score number.

To further enhance the scheduling we developed atraining processthat
can be executed before the simulation in order to initialisethe first and second
properties. This process sends a small number of jobs with various properties
to the brokers and sets the successful and failed jobs numberat the BPDLs
of the brokers. We evaluated our algorithms in a grid-simulation environment
based on GridSim, and performed simulations with real-world workload sam-
ples.

The simulation results for the algorithms with training canbe seen in
Figure 3. As we mentioned earlier, we used a training processto initialize
the performance values of the brokers before job submissions. In this way,
the quality of the decisions for the first round of jobs can be improved. Upon
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Figure 3: Simulation results for three decision algorithmswith training compared with
the random decision maker

examining the results, Decision4 still performs about the same as Decision3,
but Decision5 clearlyoutperformsthe other two.

Figure 4: Simulation in the main evaluation environment

In Figure 4, we provide a graphical summary of the various evaluation
phases. The columns show the average values of each evaluation run with
the same parameter values. The results clearly demonstratethat the more
intelligence (more sophisticated methods) we put into the system, the better
the performance.

The evaluation results accord with our expected utilisation gains; namely,
the enhanced scheduling provided by the revised Decision Maker resulted in
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a more efficient job execution.

3.2 Function approximation

In Chapter 4, I described a simple approximation technique that may be in-
appropriate in some sense. Then I developed a new type of non-linear re-
gression method that is based on the distending function andprovides a nat-
ural description of the function. In the approximation method, the distending
function could be applied in two different ways. During the creation of the
distending function in the first method we could use the peak of the function,
and in the second method we could use the length of an interval. Next, I
defined a function and showed how to create a function with this technique.
Because the aggregation has a neutral value, we have to transform the inter-
val into [0,ν] or [ν,1]. I will define positive and negative effects using the
distending interval. That is,

Pλ1,λ2
a1,a2

(x) =
1
2

(

1+ γσλ1,λ2
a,b (x)

)

(15)

Nλ1,λ2
a1,a2

(x) =
1
2

(

1− γσλ1,λ2
a,b (x)

)

, (16)

where the scaling factorγ ∈ [0,1] controls the intensity of the effect.

We can use the impulse function to interpolate the function.To create the
function we will use the aggregation operator. Ifλ1 andλ2 are not too large,
then we can get a smooth approximation.

Next, I defined a function and showed how to decompose a function using
this technique. In general, the function here will be definedby coordinates.
Now, we will use a function with a dense sampling procedure. In each exam-
ple we will use 100 equidistant coordinates on the given interval. Now choose
a functionF : R→ [0,1] to be approximated. Our task is to decompose it into
effects. This can be done via our distending function (approximation) or im-
pulse function (interpolation) procedures. First, the usual step is to smooth
the functionF(x).

Algorithm for using the distending function
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Figure 5: Optimal components
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Figure 6: The function and its approxima-
tion

1. Let us find the the local minimum and maximum of the functionF(x)

F(ci) = Ai such that

F(x)< Ai if x∈ (ci − ε,ci + ε)

F(c j) = A j such that

F(x)> A j if x∈ (ci − ε,ci + ε)

2. Let us define the[ai ,bi ] intervals

a1 = c1−
c1+ c2

2
, b1 =

c1+ c2

2
, . . .

an =
cn−1+ cn

2
, bn = cn+

cn−1+ cn

2
,

where
c1 < c2 < c3 < .. . < ck

3. Let us define the initial values ofλi1 andλi2 by

λi1 =
f (ci)− f (ai)

ci −ai
λi2 = 2

f (bi)− f (ci)

bi −ai

4. Let us build the initial values of the function and get

Gλ1,λ2
a,b (x) =

n

∑
i=1

δ
λi1 ,λi2
ai ,bi

(x)

See Figure (5).
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Figure 7: Main and optimal effects in the
interpolative case for the function
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Figure 8: The function and its interpola-
tive approximation

5. Now find the optimal solution of theai ,bi ,λi1,λi2 values with the sug-
gested initial values.

min
a,b,λ1,λ2

∑
(

Gλ1,λ2
a,b (xi)−F(xi)

)2

It is not easy to minimize this because a given minimum may notbe the global

minimum. However, becauseGλ1,λ2
a,b (x) is a continuous function of its param-

eters and the initial values are well chosen, we can get good results.

The results of this approximation are shown in Figure (6).
Algorithm for the impulse approximation
Let us find the maximum and minimum values ofF(x)

c1 < c2 < c3 < .. . < ck,

whereci andci+1 are the minimum and maximum (or maximum and mini-
mum) points.

If f (ci) = Ai , let the initial value of the approximation function be the
following:

Ai = f (ci)−
1
2
, λ1i =

ci − ci−1

Ai −Ai−1
and λ2i =

ci+1− ci

Ai+1−Ai

See Figure (7).

The procedure used here is the same as that for the interval approximation.

In Figure (8), we plotted the results of applying this procedure.
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This algorithm uses the BFGS method to get accurate results.I found that
this method was fast (only a few iteration steps were required for the optimi-
sation method), it was efficient and easy to use. Using this technique, it is
possible to change only a part of the function, instead of theusual case where
it is not possible to do so.

3.3 Cognitive Map

In the final chapter of the dissertation, I presented the Cognitive Map. Here,
my intention was handle complex dynamic systems using the Pliant system.
This concept is similar to the Fuzzy Cognitive Map, but the functions and the
aggregation procedures are quite different. FCMs are hybrid methods that lie
in some sense between fuzzy systems and neural networks. Knowledge is
represented in a symbolic way using states, processes and events. Each piece
of information has a numerical value. In Figure 9 we can see a typical FCM
model, which is a directed graph.

Figure 9: The FCM model

Our method is based on a continuous-valued logic and all the parameters
have a semantic meaning. In thePliant Cognitive Map, we can define influ-
ences. The sigmoid function naturally maps the values to the(0,1) interval.
Positive (negative) influences can be built with the help oftwo sigmoid func-
tions and the conjunctive operator. Hence, we get the generalized positive
impulse function

c(t,u,v,a,b) =
1

1+ue−λ1(t−a)+ ve−λ2(t−b)

whereu andv are weights. In Figure 3.3, we observe a basic influence. If
the influence is neutral, we can represent it by a 1/2 value. Ifthere are no
influences, then we can continuously order the 1/2 values in the system. If we
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Figure 10: An average influence.
Figure 11: The aggregation of the influ-
ences.

want to model positive influences, we order a value which is larger than 1/2,
and maximal value is 1. The negative influence is the negationof the positive
influence. To create these influences, we will use the following transforma-
tions:

P(t,u,v,a,b) =
1
2
(1+ c(t,u,v,a,b))

N(t,u,v,a,b) =
1
2
(1− c(t,u,v,a,b))

In Figure 3.3 we have plotted the aggregation of positive andnegative effects.
It is also possible to create an effect by usingsigmoid functions alone.

This has another meaning, which is useful when we do not know the size of
the effect. So in this case we model the effect as an impulse. The domain is
the same as before, so the neutral value is 1/2. To satisfy these requirements,
all we have to do is to transform the sigmoid function into [0.5,1.0] if we
want to create a positive impulse or [0.0,0.5] if we want to represent a nega-
tive impulse. To create an effect we will utilize the following transformation
functions:

P(x,a,λ1) =
1
2
(1+σ(x,a,λ1))

N(x,a,λ2) =
1
2
(1−σ(x,a,λ2)) ,

whereλ1 > 0 andλ2 > 0. It should be mentioned that if the value of the effect
attains zero or one then the aggregation of the effect remains 1. So we need
to transform the sigmoid function into something slightly smaller than 1 and
slightly larger to 0. Here, we will use the[0.15,0.95] interval.

In Figure 13, we see the aggregation of positive and negativeeffects by
just using sigmoid functions.

Construction of the PCM To simulate the system, all we have to do is
to aggregate the influences. The aggregation operator provides a guarantee
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Figure 12: An average influence got by
using sigmoids.

Figure 13: The aggregation of sigmoid in-
fluences.

that we will use influences in the right way. This means that the requirements
of the simulation are fulfilled. The following steps should be carried out to
simulate the system:

1. Collect the concepts.

2. Define the expectation values of the nodes (i.e. thresholdvalues of the
aggregations).

3. Build a cognitive map (i.e. draw a directed graph between the con-
cepts).

4. Define the influences (i.e. whether they are positive or negative).

The iterative method:

1. Use the proper function or give a timetable for the input nodes.

2. Calculate the positive and negative influences using step4.

3. Aggregate the positive and negative influences, where theν0 value of
the aggregation parameter is the previous value of the conceptCj .

A framework was also described that was developed by the author. By using
this framework, I provided some basic examples to illustrate how Pliant Cog-
nitive Maps work. Then I demonstrated that this method couldbe used in a
heat exchanger real-world environment. A heat exchanger isa standard de-
vice in the chemical and process industry [5]. This is a special tank where the
temperature control is still a major challenge as the heat exchanger is used
over a wide range of operating conditions. The system, whichhas a non-
linear behaviour, strongly depends on the flow rates and on the temperature
of the medium. It is well known that the FCM can be used to modeland
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control the heat exchanger process [6]. I applied the PCM in this problem.
Evaluating the results, I found that the values between the PCM simulation
steps smoothly decrease, but required more simulation steps. In this example
I used the same influence for each concept all the time, but it is also possible
to change the strength of the influence and model real-world situations better.

4 Summary of the thesis points

The results achieved in the dissertation are summarized in three thesis groups.

4.1 Decision making

I applied the Pliant system in the Grid environment as a decision support
algorithm. Here, I introduced several new scheduling components for this
Meta-Broker. These algorithms utilize the Broker’s properties for making
decisions. The best one, called Decision Maker, uses Pliantfunctions with a
random generation in order to select a good performing broker for user jobs
even under conditions of high uncertainty. I evaluated my algorithms in a
grid-simulation environment based on GridSim, and performed simulations
with real-world workload samples. The evaluation results accord with our
expected utilization gains; namely, the enhanced scheduling provided by the
revised Decision Maker resulted in a more efficient job execution.

4.2 Function approximation

I described the basic approximation technique that may be inappropriate in
some sense. I developed a new type of non-linear regression method that is
based on the distending function and provides a natural description of the
function. In the approximation method, the distending function could be ap-
plied in two different ways. During the creation of the distending function
in the first method we could use the peak of the function, and inthe sec-
ond method we could use the length of an interval. I defined a function and
showed how to create and decompose it with this technique. This algorithm
uses the BFGS method to get accurate results. I found that this method was
fast (only a few iteration steps were required for the optimisation method), it
was efficient and easy to apply. With this technique, it is possible to change
only a part of the function, instead of the usual case where itis not possible
to do so.
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4.3 The Cognitive Map

I ivestigated the Cognitive Map. Here, my intention was to handle a complex
dynamic system using the Pliant system. This concept is similar to the Fuzzy
Cognitive Map, but the functions and the aggregation procedures are quite
different. It is based on a continuous-valued logic and all the parameters have
a semantic meaning. I defined two different kinds of method tocreate an
effect and I showed how to build the Pliant Cognitive Map. A framework
was also described that was developed by the author. With this framework,
I gave some basic examples to illustrate how Pliant Cognitive Maps work.
I demonstrated that this method could be used in a real-worldenvironment.
Evaluating the results, I found that the values between the simulation steps
smoothly decrease, but required more simulation steps. In this example I
used the same influence for each concept all the time, but it isalso possible to
change the strength of the influence and model real-world situations better.

5 Author’s publications related to the thesis

Thesis point 1
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