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1 Introduction

Fuzzy sets were introduced by Lofti Zadeh in 1965 with the afmecon-
ciling mathematical modeling and human knowledge in tharexeging sci-
ences. Most of the building blocks of the theory of fuzzy setse proposed
by him, especially fuzzy extensions of classical basic matitical notions
like logical connectives, rules, relations and quantifiers

Over the last decade fuzzy sets and fuzzy logic have beconme pupu-
lar areas for research, and they are being applied in fielcts &8s computer
science, mathematics and engineering. This has led toyeetinairmous liter-
ature, where there are presently over thirty thousand gluddi papers dealing
with fuzzy logic, and several hundreds books have appeardtevarious
facets of the theory and the methodology. However, thereisansingle,
superior fuzzy logic or fuzzy reasoning method availablgcaigh there are
numerous competing theories.

The Pliant system is a kind of fuzzy theory that is similar tuzzy system
[2]. The difference between the two systems lies in the @ofcoperators.
In fuzzy theory the membership function plays an importale,rbut the ex-
act definition of this function is often unclear. In pliantstggms we use a
so-called distending function, which represents a sofjuadity. In the Pliant
system the various operators, which are called the conpmatlisjunction
and aggregative operators, are closely related to each othe

The main contribution of this thesis will be to show how thelRl system can
be applied to a variety of problems in the real world. Duringstudies | was
guided by pragmatism and utility. First, by creating a dyiagystem, one
can create a system like the Fuzzy Cognitive Map. Second;amapply the
Pliant system by introducing function approximation teigues, which have
useful and practical aspects. And third, one can apply itablems that use
decision-making techniques.

2 Definitions and basic notations

Here, we provide the basic definitions and notations thatexgeired to un-
derstand fuzzy logic and concrete applications of it in &ed world.

2.1 Negation operator

Definition 1. We say that (x) is a negation if n [0,1] — [0, 1] satisfies the
following conditions:



C1: n:|[O, 1] — [0,1] is continuous  (Continuity)

C2: n0)=1,n1)=0 (Boundary conditions)
C3: n(x) <n(y)forx>y (Monotonicity)
C4: n(n(x)) =x (Involution)

2.2 Conjunctive, disjunctive operator and modifiers

In the Pliant concept we characterize the operator classt(sthorm and
strict t-conorm) for which various negations exist and ¢l DeMorgan
class. The fixpoint, (or the neutral valu®) can be regarded as decision
threshold. Operators with various negations are useflidimethe threshold
can be varied.

Theorem 1. c(x,y) and d(x,y) build a DeMorgan system for,n(x) where
Ny, (v«) =V, forall v, € (0,1) if and only if

fe(X) fa(x) = 1. (1)
For proof see [3].

Definition 2. The general form of the pliant system is

0alxy) = 7 ((£() + 1)) /%) @)
ny(x) = £ (f(vw%) or @)

2
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where f(x) is the generator function of the strict t-norm operator and f
[0,1] — [0, ] continuous and strictly decreasing function.

Definition 3. The general form of the modifier operators in the pliant syste

is
A



2.3 Aggregative operator

The termuninormwas first introduced by Yager and Rybalov [7]. Uninorms
are a generalization of t-norms and t-conorms, got by reattie constraint
on the identity element in the unit intervfD, 1}. The paper of Fodor, Yager
and Rybalov [4] is notable since it defined a new subclass iofoums called
representable uninorms.

The aggregative operator is defined [1] in the following way:

Definition 4. An aggregative operator is a function:d0,1]> — [0,1] with
the properties:

1. Continuous 010, 1]2\{(0,1), (1,0)}

2. axy) <axy) if y<y,x#0,x#1
a(x,y) <a(x,y) if x<x,y#0,y#1

3. a0,0) =0and a1,1) = 1 (boundary conditions)
4. ax,a(y,z)) = a(a(x,y),z) (associativity)

5. There exists a strong negation n such théat,g) = n(a(n(x),n(y)))
(self-DeMorgan identity) ifx,y} # {0,1} or {x,y} # {1,0}

6. a1,0)=a(0,1)=0 or a(1,0)=a(0,1)=1

The multiplicative form of the aggregative operator is
173 Wi n
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2.4 Distending function

In fuzzy concepts the most powerful term is the membershigtfan. Up
until now the research community could not give an unamhigudefinition
of this term. In the Pliant concept we give one which is coteeto the oper-
ator system. In the Pliant concept, we will introduce theetiding function.
We will use the notation

0(x) =truth(0 < x) xeR
We can generalize this in the following way

3(g(x)) =truth(0 < g(x))  xeR"



Instead of a strict relation, we will define a function whialoyides infor-
mation on the validity of the relation.

In fuzzy logic theory, the membership function has a differiaterpre-
tation. In the Pliant concept, the membership function daeed by a soft
interval. Its mathematical description is

62}5"2 (x) =truth(a <), x <), b)
Definition 5. In a pliant system if the initial conditions are
Sh%@=vo  8}"(b)=vo, )

then the distending interval is

62,16)\2 (X) = §-1 (% (Ale—)\l(x—a) +A2e‘A2(b_x))) ) (8)
where
A1 (1_e*()\1+>\2)(b*a))
f(vo)
Al=1- e_)\Z(b_a) (9)

Ay =1—ehilb-3)

2.5 The Pliant system

The operators of the Pliant system are

e(x) = —— e (10)
12X
“(%WCT))
d(x) = - ! s (11)
b (B (%))
1
aV*(X): Wi (12)
1 (52 i (S 5)
nX) = ———— (13)
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wherev, €]0, 1], with generator functions

fo(x) = (1;X> fa() = (ﬂ> (14)

X X

wherea > 0. The operators, d andn fulfil the DeMorgan identity for alb, a
andn fulfil the self-DeMorgan identity for ab, and the aggregative operator
is distributive with the strict t-norm or t-conorm.

3 Results of the dissertation

3.1 Decision making

| applied the Pliant system in the Grid environment as a dmtisupport
algorithm. In the first part of the related chapter in the elitgtion, | in-
troduced the history and unit elements of the Grid envirammé&he Grid
Meta-Broker itself is a standalone Web-Service unit elentlesit can serve
both users and grid portals, and it has a direct connectitmlwvokers. The
novel enhanced scheduling solutions allows a higher lavel;operable bro-
kering by utilising existing resource brokers of differgnid middleware. The
Grid Meta-Broker gathers and utilises meta-data aboutdreokom various
grid systems to establish an adaptive meta-brokeringsri¥o improve the
scheduling performance of the Meta-Broker we need to seagothto the
broker that best fits the requirements; and it executes theithout failures
in the shortest possible execution time. Each brokerftaspropertiesthat
the algorithm can rely on: a success counter, a failure evuatoad counter
and the running jobs counter.

Here, | introduced several new scheduling components fisr Nfeta-
Broker. These algorithms utilise the Broker’s propert@sfiaking decisions.
The best one, called Decision Maker, uses Pliant functioitts & random
generation (which in the figure is called Decision 5) in oreselect a good
performing broker for user jobs even under conditions ohhigcertainty.
This algorithm defines a score number for each broker andtheagenerator
function to select a broker, and it uses the kappa functioshetermine the
broker’s score number. The best algorithm performs theioiig steps.



normalized value

Figure 1: Normalising the failed job$-igure 2: Normalized parameter values
counter using Sigmoid function using the Kappa function

Because the Pliant system is defined in[thd] interval, we need toor-
malizethe input value. This algorithm uses the sigmoid functiondomalise
the input values.

We should alsemphasizéhat the closer the value is to one, the better
the broker is, and if the value is close to zero, it means tiabtoker is not
good. For example if the failure counter is high, both noiraion algo-
rithms should give a value close to zero because it is not d ffung if the
broker has a lot of failed jobs (see Figure 1). The oppositeuis for the
success counter.

In the next step, we can modify the normalised property valpesing
the same Kappa function (see Figure 2). We can also definex{fecied
value of the normalisation via theandA parameters.

To calculatethe score value, we can make use of the conjunctive or aggre-
gation operator. After running some tests, we found that @tdgtter results
if we used the aggregation operator. In this step, the résaliways a real
number lying in thel0, 1] interval and then we multiply it by 100 to get the
broker’s score number.

To further enhance the scheduling we developédiaing procesghat
can be executed before the simulation in order to initiahedirst and second
properties. This process sends a small number of jobs witbugproperties
to the brokers and sets the successful and failed jobs nuattiee BPDLs
of the brokers. We evaluated our algorithms in a grid-simofeenvironment
based on GridSim, and performed simulations with real-evadrkload sam-
ples.

The simulation results for the algorithms with training daa seen in
Figure 3. As we mentioned earlier, we used a training proteegsitialize
the performance values of the brokers before job submissiomthis way,
the quality of the decisions for the first round of jobs canrhprioved. Upon
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Figure 3: Simulation results for three decision algoritwith training compared with
the random decision maker

examining the results, Decision4 still performs about t@e as Decision3,
but Decision5 clearlputperformghe other two.
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Figure 4: Simulation in the main evaluation environment

In Figure 4, we provide a graphical summary of the variouduatan
phases. The columns show the average values of each ewaluati with
the same parameter values. The results clearly demonstigt¢he more
intelligence (more sophisticated methods) we put into {fstesn, the better
the performance.

The evaluation results accord with our expected utilisagjains; namely,
the enhanced scheduling provided by the revised DecisidreMasulted in



a more efficient job execution.

3.2 Function approximation

In Chapter 4, | described a simple approximation technityaé may be in-
appropriate in some sense. Then | developed a new type ofimear-re-
gression method that is based on the distending functiorpemddes a nat-
ural description of the function. In the approximation negththe distending
function could be applied in two different ways. During threation of the
distending function in the first method we could use the pdakeofunction,
and in the second method we could use the length of an inteiNekt, |
defined a function and showed how to create a function withtdghnique.
Because the aggregation has a neutral value, we have téamarthe inter-
val into [0,v] or [v,1]. | will define positive and negative effects using the
distending interval. That is,

1

PR2200 = 5 (140052 () (15)
1

32200 = 5 (1-v0hs"0) (16)

where the scaling factgre [0, 1] controls the intensity of the effect.

We can use the impulse function to interpolate the functido.create the
function we will use the aggregation operatorA{fandA, are not too large,
then we can get a smooth approximation.

Next, | defined a function and showed how to decompose a fumaBing
this technique. In general, the function here will be defibgaoordinates.
Now, we will use a function with a dense sampling proceduredch exam-
ple we will use 100 equidistant coordinates on the givermiate Now choose
a functionF : R— [0, 1] to be approximated. Our task is to decompose it into
effects. This can be done via our distending function (ayipmation) or im-
pulse function (interpolation) procedures. First, thealstep is to smooth
the functionF (x).

Algorithm for using the distending function
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Figure 6: The function and its approxima-

Figure 5: Optimal components tion

1. Letus find the the local minimum and maximum of the functdr)

F(c)=A such that
F(x) <A if xe(ci—g,c+¢)

F(cj) =A; such that
F(x)>A; if xe(c—¢gc+¢g)

2. Letus define thég;, by] intervals

C1+C2 Ci1+C2
al:C]_—T, blzT,...
Ch—1+Cn Ch-1+Cn
= 5 b =G A
2 n n—+ 5

where
C1<C<C3<...<Ck

3. Let us define the initial values af, andA;, by

N = He)—f@) o)~ fle)
! Ci—a 2 bi —a;

4. Let us build the initial values of the function and get

)\Ila)\lz

)\1 )\2
21631 bj

See Figure (5).



Figure 7: Main and optimal effects in th&igure 8: The function and its interpola-
interpolative case for the function tive approximation

5. Now find the optimal solution of tha, bj,Ai,, A, values with the sug-
gested initial values.

min 3 ( Alb’Az(xi)—F(xi))z
abri Ay &

Itis not easy to minimize this because a given minimum mayedhe global

minimum. However, becauﬁ%ﬁ;&z (x) is a continuous function of its param-
eters and the initial values are well chosen, we can get gemdts.

The results of this approximation are shown in Figure (6).
Algorithm for the impulse approximation
Let us find the maximum and minimum valuesraix)

Ci1<Cr<C3<...<C,

wherec; andci; are the minimum and maximum (or maximum and mini-
mum) points.

If f(c) = A, let the initial value of the approximation function be the
following:
Cir1—Gi

and Ay = ———

G—GC
A
: " ALA

1
= f(c)— =, =
A=t -3 A A
See Figure (7).
The procedure used here is the same as that for the intepabamation.

In Figure (8), we plotted the results of applying this praeed

10



This algorithm uses the BFGS method to get accurate re$fiisnd that
this method was fast (only a few iteration steps were reduethe optimi-
sation method), it was efficient and easy to use. Using tleisriigue, it is
possible to change only a part of the function, instead otith&al case where
it is not possible to do so.

3.3 Cognitive Map

In the final chapter of the dissertation, | presented the @iogrMap. Here,
my intention was handle complex dynamic systems using tla@tystem.
This concept is similar to the Fuzzy Cognitive Map, but thections and the
aggregation procedures are quite different. FCMs are tyheathods that lie
in some sense between fuzzy systems and neural networkswléage is
represented in a symbolic way using states, processes antseach piece
of information has a numerical value. In Figure 9 we can sg@iadl FCM
model, which is a directed graph.

Figure 9: The FCM model

Our method is based on a continuous-valued logic and allahanpeters
have a semantic meaning. In tRéant Cognitive Mapwe can define influ-
ences. The sigmoid function naturally maps the values tq@tie interval.
Positive (negative) influences can be built with the helpaaf sigmoid func-
tions and the conjunctive operatoHence, we get the generalized positive
impulse function

1
1+ ue Mt-a) 4 ygAra(t-b)

c(t,u,v,a,b) =

whereu andv are weights. In Figure 3.3, we observe a basic influence. If
the influence is neutral, we can represent it by a 1/2 value¢hefe are no
influences, then we can continuously order the 1/2 valudsisystem. If we

11



Figure 11: The aggregation of the influ-

Figure 10: An average influence.
nces.

want to model positive influences, we order a value whichrigdathan 1/2,
and maximal value is 1. The negative influence is the negafitime positive
influence. To create these influences, we will use the follgwransforma-

tions:
P(t,u,v,a,b) = = (1+c(t,u,v,a,b))

N(t,u,v,a,b) = = (1—c(t,u,v,a,b))

NI~ NI

In Figure 3.3 we have plotted the aggregation of positiverseghtive effects.

It is also possible to create an effect by ussigmoid functions alone
This has another meaning, which is useful when we do not khevsize of
the effect. So in this case we model the effect as an impulse.dbmain is
the same as before, so the neutral value is 1/2. To satisfg tleguirements,
all we have to do is to transform the sigmoid function intc5[Q.0] if we
want to create a positive impulse or [0.0,0.5] if we want foresent a nega-
tive impulse. To create an effect we will utilize the followg transformation
functions:

P(xahs) = 3 (1+0(xa )

N(x,a,A2) = %(1— o(x,a,A2)),

whereA1 > 0 andA, > 0. It should be mentioned that if the value of the effect
attains zero or one then the aggregation of the effect resriairso we need
to transform the sigmoid function into something slighttyadler than 1 and
slightly larger to 0. Here, we will use thj8.15,0.95] interval.

In Figure 13, we see the aggregation of positive and negaffeets by
just using sigmoid functions.

Construction of the PCM To simulate the system, all we have to do is
to aggregate the influences. The aggregation operatorde®w guarantee

12
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Figure 12: An average influence got byigure 13: The aggregation of sigmoid in-
using sigmoids. fluences.

that we will use influences in the right way. This means thatdguirements
of the simulation are fulfilled. The following steps shoulel tarried out to
simulate the system:

1. Collect the concepts.

2. Define the expectation values of the nodes (i.e. threstadlees of the
aggregations).

3. Build a cognitive map (i.e. draw a directed graph betwdmndon-
cepts).

4. Define the influences (i.e. whether they are positive oatieg).
The iterative method:

1. Use the proper function or give a timetable for the inpude®

2. Calculate the positive and negative influences using4step

3. Aggregate the positive and negative influences, wherggdhvalue of
the aggregation parameter is the previous value of the pbage

A framework was also described that was developed by theoalBly using

this framework, | provided some basic examples to illusttadw Pliant Cog-
nitive Maps work. Then | demonstrated that this method cheadised in a
heat exchanger real-world environment. A heat exchangeistandard de-
vice in the chemical and process industry [5]. This is a si¢ank where the
temperature control is still a major challenge as the heelhaxger is used
over a wide range of operating conditions. The system, whiha non-
linear behaviour, strongly depends on the flow rates and eteiimperature
of the medium. It is well known that the FCM can be used to meuatel
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control the heat exchanger process [6]. | applied the PCMigsgroblem.
Evaluating the results, | found that the values between @&l Bimulation
steps smoothly decrease, but required more simulatios.skephis example
| used the same influence for each concept all the time, baiaiso possible
to change the strength of the influence and model real-widdtgons better.

4 Summary of the thesis points

The results achieved in the dissertation are summarizéulee thesis groups.

4.1 Decision making

| applied the Pliant system in the Grid environment as a dmtisupport
algorithm. Here, | introduced several new scheduling camepds for this
Meta-Broker. These algorithms utilize the Broker’s prdigsr for making
decisions. The best one, called Decision Maker, uses Hiiactions with a
random generation in order to select a good performing brikeuser jobs
even under conditions of high uncertainty. | evaluated ngoalhms in a
grid-simulation environment based on GridSim, and pergmrsimulations
with real-world workload samples. The evaluation resuttsoad with our
expected utilization gains; namely, the enhanced scheglpliovided by the
revised Decision Maker resulted in a more efficient job ekeou

4.2 Function approximation

| described the basic approximation technique that may appropriate in
some sense. | developed a new type of non-linear regresstimochthat is
based on the distending function and provides a naturaligésn of the

function. In the approximation method, the distending fiorccould be ap-
plied in two different ways. During the creation of the disdéeng function

in the first method we could use the peak of the function, anthénsec-
ond method we could use the length of an interval. | definechatfon and
showed how to create and decompose it with this techniquis. algorithm

uses the BFGS method to get accurate results. | found trsattéihod was
fast (only a few iteration steps were required for the oation method), it
was efficient and easy to apply. With this technique, it issgide to change
only a part of the function, instead of the usual case wheigeribt possible
to do so.
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4.3 The Cognitive Map

| ivestigated the Cognitive Map. Here, my intention was tadia a complex
dynamic system using the Pliant system. This concept idaita the Fuzzy
Cognitive Map, but the functions and the aggregation propesiare quite
different. Itis based on a continuous-valued logic andnalgarameters have
a semantic meaning. | defined two different kinds of methodraate an
effect and | showed how to build the Pliant Cognitive Map. Anfrework
was also described that was developed by the author. WaHridanework,
| gave some basic examples to illustrate how Pliant Cognithaps work.
| demonstrated that this method could be used in a real-veanlitonment.
Evaluating the results, | found that the values between ithelation steps
smoothly decrease, but required more simulation stepshigneixample |
used the same influence for each concept all the time, budlsdspossible to
change the strength of the influence and model real-wouratiins better.
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