
UNIVERSITY OF SZEGED
Faculty of Science and Informatics

Department of Computer Algorithms and Artificial Intellige nce

PhD School in Computer Science

A special class of fuzzy operators and its
application in modelling effects and decision

problems

Thesis of PhD Dissertation

József Dániel Dombi

Supervisor

Dr. János Csirik

Szeged, 2013



Contents

Introduction 1

1 Elements of fuzzy systems 4

1.1 Negation operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4

1.2 T-norm, t-conorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 History of Triangular Norms . . . . . . . . . . . . . . . . . . . . . .. 8

1.2.2 Triangular Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Triangular Conorms . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.4 Continuous t-norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Aggregative operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 17

1.4 Strict t-norms, t-conorms and aggregative operators . .. . . . . . . . . . . . . 19

1.4.1 General form of the aggregative operator . . . . . . . . . . .. . . . . 20

1.4.2 Aggregative operator and the self-DeMorgan identity. . . . . . . . . . 21

1.4.3 Weighted aggregative operator . . . . . . . . . . . . . . . . . . .. . . 21

1.4.4 General form of the weighted aggregative operator . . .. . . . . . . . 21

1.5 Modalities and hedges . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22

1.5.1 Introduction: Hedges in the Zadeh’s sense . . . . . . . . . .. . . . . . 27

1.5.2 Modalities and hedges . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5.3 The sharpness operator . . . . . . . . . . . . . . . . . . . . . . . . . .29

1.6 General form of modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30

2 Pliant system 33

2.1 DeMorgan law and general form of negation . . . . . . . . . . . . .. . . . . . 33

2.2 Operators with infinitely many negation operators . . . . .. . . . . . . . . . . 33

2.3 Distending function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 35

2.4 Pliant operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37

2.4.1 The Dombi operator system . . . . . . . . . . . . . . . . . . . . . . . 38

i



CONTENTS

3 Decision making 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

3.2 Meta-Brokering in Grid Systems . . . . . . . . . . . . . . . . . . . . .. . . . 40

3.3 Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 42

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Preliminary testing phase . . . . . . . . . . . . . . . . . . . . . . .. . 48

3.4.2 Main testing phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 The approximation of functions and function decomposition 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

4.2 Distending function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 60

4.2.1 Distending interval . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

4.3 Construction of the function . . . . . . . . . . . . . . . . . . . . . . .. . . . 64

4.4 Function decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 66

4.4.1 Algorithm for using the distending function . . . . . . . .. . . . . . . 67

4.4.2 Algorithm for the impulse approximation . . . . . . . . . . .. . . . . 69

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Cognitive systems 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

5.2 Pliant Cognitive Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73

5.3 Components of the PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Aggregator operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Creating influences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Construction of the PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 77

5.5 PCM Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5.1 Validation of the PCM concept and the Framework . . . . . .. . . . . 81

5.6 Heat exchanger applications . . . . . . . . . . . . . . . . . . . . . . .. . . . 84

5.6.1 Evaluate with the PCM . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography 91

Summary of the results of the thesis 99

ii



CONTENTS
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INTRODUCTION

Fuzzy sets were introduced by Lofti Zadeh in 1965 with the aimof reconciling mathematical

modeling and human knowledge in the engineering sciences. Most of the building blocks of

the theory of fuzzy sets were proposed by him, especially fuzzy extensions of classical basic

mathematical notions like logical connectives, rules, relations and quantifiers.

During the last decade fuzzy sets and fuzzy logic have becomemore popular areas for research,

and they are being applied in fields such as computer science,mathematics and engineering.

This has led to a truly enormous literature, where there are presently over thirty thousand pub-

lished papers dealing with fuzzy logic, and several hundreds books have appeared on the various

facets of the theory and the methodology. However, there is not a single, superior fuzzy logic

or fuzzy reasoning method available, although there are numerous competing theories.

The Pliant system is kind of fuzzy theory that is similar to a fuzzy system [21]. The difference

between the two systems lies in the choice of operators. In fuzzy theory the membership func-

tion plays an important role, but the exact definition of thisfunction is often unclear. In pliant

systems we use a so-called distending function, which represents a soft inequality. In the Pliant

system the various operators, which are called the conjunction, disjunction and aggregation op-

erators, are closely related to each other.

The main contribution of this thesis will be to show how the Pliant system can be applied to

a variety of problems in the real world. During my studies I was guided by pragmatism and

utility. First, by creating a dynamic system, we can create asystem like the Fuzzy Cognitive

Map. Second, we can apply the Pliant system by introducing function approximation tech-

niques, which have useful and practical aspects. And third,we can apply it in problems that use

decision-making techniques.

This thesis is organised as follows. In Chapter 1, we briefly review fuzzy set theory and op-

erators that are needed to understand fuzzy logic and its applications. We describe the most

important properties of the negation operator, the t-norm operator, t-conorm operator and ag-

gregative operator. Next, we explain the connection between modalities and hedges. Here, we
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INTRODUCTION

will also present the most important definitions and theorems.

In Chapter 2 we present the Pliant system, which is a subset offuzzy logic. We give a definition

of the Pliant system, and then we describe the various operators of this system. We also intro-

duce the distending function that will be used later when we make function approximations.

In the second part of the thesis we present some problems where the Pliant system may be

readily applied. In Chapter 3, we use the Pliant system in decision-making situations. Here, we

describe the Grid system, and we discuss the main problem in grids, which is to decide which

Grid system should execute the actual job. We create severalalgorithms that are used for deci-

sion making, then test them in a simulation environment. We show that the algorithm that uses

Pliant logic performs the best. The results of Chapter 3 werepublished in [29, 47].

In Chapter 4 we apply the Plaint system in the problem of function approximation. We describe

the basic approximation technique that may be inappropriate in some sense. We define two

different kinds of techniques based on the distending function. This algorithm has several good

properties e.g. we can modify only a part of the function and elements of the algorithm has a

semantic meaning. The results of Chapter 4 were published in[28, 45].

The last chapter deals with the Cognitive Map. Here, we present the Fuzzy Cognitive Map,

which was first proposed by Bart Kosko. We also describe a weakness of this system, and we

propose a new technique that is called the Pliant Cognitive Map. We explain how to build the

Cognitive Map and we also describe a framework that was developed by us. After, we describe

a real problem and evaluate the PCM for it. The results of Chapter 5 were published in [42, 44].
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Chapter 1

Elements of fuzzy systems

Fuzzy sets were introduced by Lofti Zadeh in 1965, with the aim of reconciling mathematical

modeling and human knowledge in the engineering sciences. Most of the building blocks of

fuzzy set theory were proposed by him, especially fuzzy extensions of classical basic mathe-

matical notions like logical connectives, rules, relations and quantifiers.

During the last decade fuzzy sets and fuzzy logic have becomemore popular areas for research,

and they are being applied in fields such as computer science,mathematics and engineering.

This has led to a truly enormous literature, where there are presently over thirty thousand pub-

lished papers dealing with fuzzy logic, and several hundredbooks have appeared on the various

facets of the theory and the methodology. However, there is not a single, superior fuzzy logic

or fuzzy reasoning method available, although there are numerous competing theories.

Before we introduce the Pliant system, we have to define basicelements of the fuzzy sets. First,

we define the negation operator and its properties, followedby a definition of the t-norm ope-

rator and t-conorm operator. Next we define the aggregation operator, which is also called a

uninorm in the literature. After, we will present hedges andmodalities, and explain the connec-

tion between them. Finally we introduce the general form of the modifiers.

1.1 Negation operators

Definition 1. We say that n(x) is a negation if n: [0,1]→ [0,1] satisfies the following conditions:

4



CHAPTER 1. ELEMENTS OF FUZZY SYSTEMS

C1: n : [0,1]→ [0,1] is continuous (Continuity)

C2: n(0) = 1, n(1) = 0 (Boundary conditions)

C3: n(x)< n(y) for x> y (Monotonicity)

C4: n(n(x)) = x (Involution)

From C1, C2 and C3, it follows that there exists a fix pointν∗ ∈ [0,1] of the negation where

n(ν∗) = ν∗ (1.1)

So another possible characterisation of negation is when weassign a so-called decision

valueν for a givenν0; i.e. a point(ν,ν0) can be specified such that the curve must intersect.

This tells us something about how strong the negation operator is.

n(ν) = ν0 (1.2)

If n(x) has a fix pointν∗, we use the notationnν∗(x) and if the decision value isν, then we

use the notationnν(x). If n(x) is employed without a suffix, then the parameter has no impor-

tance in the proofs. Later on we will characterise the negation operator in terms of theν∗, ν0

andν parameters.

For the strong negation, two representation theorems are known. Trillas [74] once showed

that every involutive negation operator has the following form

n(x) = f−1(1− f (x)), (1.3)

where f : [0,1] → [0,1] is a continuous strictly increasing (or decreasing) function. This

generator function corresponds to the nilpotent operators(nilpontent t-norms). For the strictly

monotonously increasing t-norms, another form of negationoperator given in [24] is

n(x) = f−1
(

1
f (x)

)

, (1.4)

where f : [0,1]→ [0,∞] is a continuous, increasing (or decreasing) function andf is the gener-

ator function of the strict monotone t-norm or t-conorm.

We can express these negation operators in terms of their neutral values to get a new form

of the negation operator.

For the strict monotone operators

nν∗(x) = f−1
(

f 2(ν∗)
f (x)

)

(1.5)
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Figure 1.1: The shape of the negation function

0 0,2 0,4 0,6 0,8 1,0
0

0,2

0,4

0,6

0,8

1,0

0 0,2 0,4 0,6 0,8 1,0
0

0,2

0,4

0,6

0,8

1,0

Figure 1.2:n0 strict andn1 non-strict negation

The other form of the negation operator in terms ofν0 andν (corresponding to (1.4)), is

nν(x) = f−1
(

f (ν0)
f (ν)
f (x)

)

(1.6)

In the following we will use (1.5) and (1.6) to represent the negation operator because here

we are just considering strict monotone operators.

In Figure 1.1, we explain the meaning of theν∗, ν, ν0 values and we sketch the shape of the

negation function.

Definition 2. If ν1 < ν2, then nν1(x) is a stricter negation than nν2(x).

Definition 3 (Drastic negation). We call n1(x) and n2(x) a drastic negation when

n1(x) =







1 if x 6= 1

0 if x = 1
n0(x) =







1 if x = 0

0 if x 6= 0

n0(x) is the strictest negation, whilen1(x) is the least strict negation. This is a non-continuous

negation, so it is not a negation in the original sense (see Figure 1.2).

Theorem 4. The negation operators nν(x) = f−1
(

f (ν0)
f (ν)
f (x)

)

, nν∗(x) = f−1
(

f 2(ν∗)
f (x)

)

have the following properties:

6



CHAPTER 1. ELEMENTS OF FUZZY SYSTEMS

a. They are continuous.

b. They are strictly monotonous and decreasing.

c. The correspondence principle is valid:

nν(0) = 1, nν(1) = 0, nν∗(0) = 1, nν∗(1) = 0

d) The involutive property holds:

nν(nν(x)) = x, nν∗(nν∗(x)) = x.

e) The neutral value property is valid:

nν(ν) = ν0, nν∗(ν∗) = ν∗.

Proof. It is trivial using the representation form of the negation operator.

In fuzzy theory, we utilise two types of negation operator. These are

Yager: nm(x) =
m
√

1−xm (1.7)

Hamacher, Sugeno: na(x) =
1−x
1+ax

(1.8)

We can express the parameters of the negation operator in terms of its neutral valuesn(ν∗) =

ν∗. So we have

ν∗ = n(ν∗) = m
√

1−νm∗ andm=− ln(2)
ln(ν∗)

Then the Yager negation operator has the form

nν∗(x) =
(

1−x−
ln2

lnν∗
)− lnν∗

ln2
(1.9)

In a similar way, for the Hamacher negation operator,

nν(x) =
1

1+ 1−ν0
ν0

1−ν
ν

x
1−x

, nν∗(x) =
1

1+(1−ν∗
ν∗ )2 x

1−x

(1.10)

This form of negation operator can be found in [22].

Definition 5. A negation nν1(x) is stricter than nν2(x), if ν1 < ν2.

7



CHAPTER 1. ELEMENTS OF FUZZY SYSTEMS

1.2 T-norm, t-conorm

1.2.1 History of Triangular Norms

Where did the name”t-norm” originate and when? It appeared naturally in the study of gen-

eralized triangle inequalities for statistical metric spaces - hence the name triangular norm, or

simply t-norm.

The name first appeared in a paper entitled Statistical Metrics [60] that was published on

27th october in 1942. A t-norm was supposed to act on the values of two distribution functions,

hence on the unit square. Here is the original definition by Menger.

Definition 6. A real-valued function T defined on a unit square is called a t-norm in the sense

of Menger if

(a) 0≤ T(α,β)≤ 1

(b) T is non-decreasing in either variable

(c) T(α,β) = T(β,α)

(d) T(1,1) = 1

(e) If α > 0 then T(α,1)> 0.

Note that here the notation from the original sources is used, hence it may vary slightly later

on.

In 1942 a t-norm was not supposed to be associative and the boundary conditions (a), (d),

(e) were rather weak. Any t-norm (and also each t-conorm) satisfied the axioms (a)-(e). But

for example, each convex combination of a t-norm T (and a t-conorm S) also satisfied axioms

(a)-(e).

Another original idea of Menger was the simple t-norm T, which satisfies the additional

condition (f) 0 < T(α,β)< 1 for 0< αβ.

We can see some kind of strictness in this condition. An Archimedean t-norm (t-conorm) is

a simple t-norm in this sense if and only if it is strict.

Perhaps just this vagueness in the definition was the origin of some critical remarks by

Wald [76] to Menger‘s approach and it impeded its development for several years.

Statistical matrix spaces in the forties and fifties were based on Wald‘s version of triangle

inequality (this corresponds to the convolution of two distributions). So Menger’s approach

was an ”overture”. The real starting point of t-norms came in1960, when Berthold Schweizer

and Abe Sklar, (two students of Menger) published their paper, Statistical Metric Spaces [70].

However, we recall a footnote of this paper ”as probably Menger informs us, even before the

8



CHAPTER 1. ELEMENTS OF FUZZY SYSTEMS

paper was written, both he and Wald in a number of conversations had come to feel that the

Wald inequality was in some respect too stringent a requirement to impose on all statistical

metric spaces”. In this thesis, the most common t-norms and t-conorms are introduced:

T1 : T(a,b) = max(a+b−1,0)

T2 : T(a,b) = ab

T3 : T(a,b) = min(a,b)

T4 : T(a,b) = max(a,b)

T5 : T(a,b) = a+b−ab

T6 : T(a,b) = min(a+b,1),
where the notation follows Schweizer and Sklar [70]. This list was arranged in order of

increasing ”strength”, whereT ′′ is said to be stronger thanT ′ (and T ′ weaker thanT ′′) if

T ′′(a,b) ≥ T ′(a,b) for all (a,b) in the unit square with strict inequality for at least one pair

(a,b). Schweizer and Sklar, motivated by some properties of statistical metric spaces, replaced

the boundary conditions (a), (d) and (e) by the condition

(a′) T(a,1) = a, T(0,0) = 0

(note thatT(0,0) is superfluous).

This new condition impliesT ≤ T3 = min. Thus, under(a′), min is the strongestT (we

have not yet assumed associativity). Similarly, the weakest T satisfying(a′), (b) and(c) was

introduced, henceforth denoted byTw, here

Tw(x,y) =







a if x= a,y= 1 ory= a,x= 1

0 otherwise

With conditions(a′), (b) and(c) imposed onT, Schweizer and Sklar decided to add the

associativity condition

(d′) T(T(a,b),c) = T(a,T(b,c)),

which permits the extension of a triangular inequality in statistical metric spaces to a polyg-

onal inequality.

Since 1960 a t-norm is always understood as an associative symmetric non-decreasing func-

tion on the unit square in the unit interval that fulfills the boundary conditionT(a,1) = a; i.e. 1

is a neutral element ofT.

Not long after, Schweizer and Sklar introduced several basic notions and properties. Namely,

they introduced triangular conorms (briefly, t-conorms) asa dual concept of t-norms. For a given

t-norm T, its dual t-conorm S is defined by

S(a,b) = 1−T(1−a,1−b).

9



CHAPTER 1. ELEMENTS OF FUZZY SYSTEMS

They pointed out that the boundary condition is the only difference between the t-norm and

t-conorm axioms: the t-norm boundary condition(a′) is transformed to

(a′′) S(1,1) = 1, S(a,0) = a

(recall once again thatS(1,1) is superfluous).

Note that using axioms(a′′), (b) and(d′), the definition of a t-conorm S does not depend on

the notion of a t-norm. Further, the necessity of characterizing t-norms (and hence t-conorms)

led Schweizer and Sklar to the study of associative functions (recall their paper entitled Associa-

tive functions and statistical triangle inequalities). So, in some sense, they went back to Abel [4]

who showed that, under some natural conditions, the construction of a two-place function from

a one place function always leads to an associative function.

Using the results of Abel, Aczél (1949) and other authors, they introduced the class of strict

t-norms, which, in addition to(a′), (b), (c) and(d′), has the following constraints:

• T is continuous (on[0,1]× [0,1])

• T(a,b)< T(c,b) whenever 0< a< c≤ 1 and 0< b≤ 1

• T(a,b)< T(a,d) whenever 0< a≤ 1 and 0< b< d ≤ 1 (strict monotonicity).

Based on these three conditions, a strict t-conorm was introduced as a dual to a strict t-norm.

The order reversing property of the duality was respected; i.e. max≤ S≤ SW for any t-conorm

S, where max andSW are the duals of min andTW, respectively.

Later, the first results characterizing t-norms (t-conorms) were presented. Namely, the char-

acterization of a strict t-normT (t-conormS) through an additive generator.

The last substantial step in the foundation of t-norms and t-conorms was given in 1965 by

Ling [56]. Among other things, she recognised that continuous t-norms and t-conorms form

a topological semigroup on[0,1]. She preserved the semigroup theory notation and hence she

introduced Archimedean and nilpotent t-norms (and t-conorms).

Recall that a continuous t-norm (t-conorm) is called Archimedean if it fulfils(e′), (e′′)

(e′) T(a,a)< a for anya∈ (0,1)

(e′′) S(a,a)> a for anya∈ (0,1).
A continuous non-strict Archimedean t-norm (t-conorm) is called nilpotent. Note that a con-

tinuous Archimedean t-norm (t-conorm) is nilpotent if there is ana∈ (0,1) such thatT(a,a)= 0

(S(a,a) = 1).

Ling gave a complete characterization of continuous t-norms and t-conorms based on the

results of Aczél, Schweizer and Sklar, Mosert and Shields and Faucett.

10



CHAPTER 1. ELEMENTS OF FUZZY SYSTEMS

Years later some complementary remarks were added. Also, in1979 Frank [35] solved the

functional equation.

T(a,b)+S(a,b) = a+b

for continuous t-normsT and t-conormsS. Based on earlier results of Climescu (1946), he

introduced the concept of ordinal sums, which play a key rolein the investigation of continuous

t-norms and t-conorms (and of pseudo-additions as further generalizations).

Now both triangular norms and conorms have become importanttools in different contexts.

They play a fundamental role in probabilistic metric spaces, multiple-valued logic and espe-

cially in fuzzy set theory. In the latter area they are used togenerate the fuzzy connectives of

the union and intersection of fuzzy sets.

The use of general t-norms and t-conorms for modelling the intersection and union of fuzzy

sets most likely goes back to a suggestion by Ulrich Hõhle during the First International Seminar

on Fuzzy Set Theory held in Linz (Austria) in 1979. The reasonfor this was the fact that

monotonicity, commutativity, associativity and the boundary conditions were generally treated

as indispensable properties of meaningful extensions of the logical ”and” and ”or” in (two-

valued) Boolean logic.

1.2.2 Triangular Norms

In order to formulate the triangle inequality property in aprobabilistic metric space,and fol-

lowing the ideas of K. Menger [60], B. Schweizer and A. Sklar [69] introduced a special class

of two-place functions on the unit square, the so-called triangular norms. Together with their

duals, the triangular conorms, they have been applied in various mathematical disciplines, such

asprobabilistic metric spaces[71], fuzzy set theory, multiple-valued logic, and in the theory of

non-additive measures[65].

Definition 7. A triangular norm (t-norm for short) is a function T: [0,1]2 → [0,1] such that for

all x,y,z∈ [0,1], the following four axioms are satisfied:

(T1) Symmetry T(x,y)= T(y,x)

(T2) Associativity T(x,T(y,z))= T(T(x,y),z)

(T3) Monotonicity T(x,y)≤ T(x,z) whenever y≤ z

(T4) Boundary condition T(x,1)= x

Alternatively, a t-norm has an algebraic definition:

Definition 8. A t-norm is a commutative lattice ordered semigroup on the unit interval [0,1],

with unit 1.

11



CHAPTER 1. ELEMENTS OF FUZZY SYSTEMS

Clearly, the two definitions above are equivalent. (T1) is the commutativity, (T2) means

”semigroup”, (T3) is the expression ”lattice ordered on theunit interval” and (T4) means ”with

unit 1”.

There exist uncountably many t-norms.

Example 9. The four basic t-norms are:

(i) The minimum is given by

TM(x,y) = min(x,y)

(ii) The product is given by

TP(x,y) = xy (1.11)

(iii) The Lukasiewicz is given by

TL(x,y) = max(x+y−1,0) (1.12)

(iv) The Weakest t-norm (drastic product) is given by

TD(x,y) =







min(x,y) if max(x,y) = 1

0 otherwise

Axioms (T1)-(T4) are independent of each other, as can be seen from the following exam-

ples of operations on [0,1], where exactly one of the axioms fails to hold:

Example 10. Consider the following functions:

(i) The function F: [0,1]2 → [0,1] given by

F(x,y) =







0 if (x,y) ∈ [0,0.5]× [0,1)

min(x,y) otherwise

satisfies (T2), (T3) and (T4), but not (T1).

(ii) The function F: [0,1]2 → [0,1] given by

F(x,y) = xymax(x,y)

satisfies (T1), (T3) and (T4), but not (T2).

(iii) The function F: [0,1]2 → [0,1] given by

F(x,y) =







0.5 if (x,y) ∈ [0,1]2

min(x,y) otherwise

satisfies (T1), (T2) and (T4), but not (T3).

(iv) Let k∈ (0,1). The function F: [0,1]2 → [0,1] given by

F(x,y) = kxy

satisfies (T1), (T2) and (T3), but not (T4).

12
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Remark 11. (i) From (T1), (T3) and (T4) it is readily seen that for all x∈ [0,1] each t-norm

satisfies the following additional boundary conditions:

T(0,x) = T(x,0) = 0.

and

T(1,x) = x.

Whence, all t-norms coincide on the boundary of the unit square [0,1]2.

(ii) (T3) and (T1) together imply the following (joint) monotonicity in both components, i.e.,

T(x1,y1)≤ T(x2,y2) whenever x1 ≤ x2 and y1 ≤ y2.

Since t-norms can be regarded as functions mapped from the unit square into the unit inter-

val, a comparison of t-norms is made in the usual way, i.e., point-wise.

Definition 12. If for two t-norms T1 and T2 the inequality T1(x,y)≤T2(x,y) holds for all(x,y)∈
[0,1]2 then T1 is said to be weaker than T2, and we write in this case T1 ≤ T2. We write T1 < T2

whenever T1 ≤ T2 and T1 6= T2.

Remark 13. It is not hard to see that TD is the weakest t-norm and TM is the strongest t-norm;

that is, for all t-norm T

TD ≤ T ≤ TM.

We get the following ordering of the four basic t-norms:

TD < TL < TP < TM.

Definition 14. If ϕ is an automorphism, namely an increasing bijection of the closed unit inter-

val, then the following formula defines the so-calledϕ-transform of T (which is also a t-norm):

Tϕ(x,y) = ϕ−1(T(ϕ(x),ϕ(y))), x,y∈ [0,1].

This is clearly an order-isomorphism from an algebraic point of view.

In Definition 7, t-norms were introduced as binary operators. Since they are associative,

they can also be viewed as operations with more than two arguments.

Remark 15. The associativity (T2) property allows one to extend each t-norm T to ann-ary

operation for all n∈ N in the usual way by induction, defining on then-tuple(x1,x2, . . . ,xn) ∈
[0,1]n

T(x1,x2, . . . ,xn) = T(T(x1,x2, . . . ,xn−1),xn).

13
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The fact that each t-norm T is weaker than the minimum operator makes it possible to extend

it to a (countably) infinitary operation, putting for each(xi)i∈IN ∈ [0,1]IN :

T(x1,x2, . . . ,xk, . . .) = lim
n→∞

T(x1,x2, . . . ,xn).

The sequence on the right-hand side is clearly non-increasing and bounded from below.

Moreover, the definition can be extended to an arbitrary (notnecessarily countable) index

set I and(xi)i∈I as the infimum of all the T(x1,x2, . . . ,xk, . . .)‘s, where x1,x2, . . . ,xk, . . . is a

subsequence of(xi)i∈I .

1.2.3 Triangular Conorms

In Schweizer and Sklar’s papers [70, 69], triangular conorms were introduced as dual opera-

tions of t-norms. Here is the axiomatic definition.

Definition 16. A triangular conorm (t-conorm for short) is a function T: [0,1]2 → [0,1] such

that for all x,y,z∈ [0,1], the following four axioms are satisfied:

(S1) Symmetry S(x,y)= S(y,x)

(S2) Associativity S(x,S(y,z))= S(S(x,y),z)

(S3) Monotonicity S(x,y)≤ S(x,z) whenever y≤ z

(S4) Boundary condition S(x,0)= x

Alternatively, a t-conorm has an algebraic meaning:

Definition 17. A t-conorm is a commutative lattice ordered semigroup on theunit interval[0,1],

with unit 0.

Clearly, the two definitions above are equivalent. (S1) is the commutativity, (S2) means

”semigroup”, (S3) is the expression ”lattice ordered on theunit interval” and (S4) means ”with

unit 0”.

One can see that the axioms of commutativity, associativityand monotonicity are exactly the

same as in the case of t-norms. That means that, from an axiomatic point of view, t-norms and

t-conorms differ only with respect to the boundary conditions. In fact, the concept of t-norms

and t-conorms are dual in some sense.

First, we will give the most important examples.

Example 18. The four basic t-conorm:

(i) Maximum given by

SM(x,y) = max(x,y)

14
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(ii) Probabilistic sum given by

SP(x,y) = x+y−xy

(iii) Lukasiewicz given by

SL(x,y) = min(x+y,1)

(iv) Strongest t-conorm given by

SD(x,y) =







max(x,y) if max(x,y) = 1

1 otherwise

The original definition of t-conorms (Schweizer and Sklar [70] and [69]) is completely

equivalent to the axiomatic definition given above. Thus

Proposition 19. A function S: [0,1]2 → [0,1] is a t-conorm if and only if there exists a t-norm

T such that for all(x,y) ∈ [0,1]2

S(x,y) = 1−T(1−x,1−y) (1.13)

Proof. If T is a t-norm, then the operation defined by (1.13) satisfies (S1)-(S4). But if S is a

t-conorm, then we can define a functionT : [0,1]2 → [0,1] by

T(x,y) = 1−S(1−x,1−y).

It is trivial to check thatT is a t-norm and (1.13) holds. This duality allows us to translate

many properties of t-conorms. Also, every theorem about t-norms readily holds for t-conorms.

Remark 20. (TM,SM), (TP,SP), (TL,SL) and(TD,SD) are mutually dual to each other.

1.2.4 Continuous t-norms

Definition 21. A t-norm is said to be continuous if it is continuous as a two-place function.

Definition 22. A continuous t-norm T is called Archimedean if T(x,x) < x is true for all x∈
(0,1).

Definition 23. A t-norm T has 0-divisors if T(x,y) = 0 for some x,y∈ (0,1).

Definition 24. A t-norm T is strictly increasing if T(x,y)> T(x,z) whenever x,y,z∈ (0,1) and

y> z.

15
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Definition 25. A continuous Archimedean t-norm with 0-divisors is called nilpotent. An exam-

ple is the Lukasiewicz t-norm defined in (1.12).

Definition 26. A continuous Archimedean t-norm which is strictly increasing is called strict.

An example is the product t-norm defined in (1.11)

The origin of the following theorem goes back to Aczél [5]. See also Abel [4], Mostert

and Shields [62], Miranda [19] and Faucett [33]. The second theorem is due to Mostert and

Shields [62] and Miranda [19]. The present form of the theorems is:

Theorem 27. A t-norm T is strict if and only if T is aϕ-transformation of the product t-norm.

Theorem 28. A t-norm T is nilpotent if and only if T is aϕ-transformation of the Lukasiewicz

t-norm.

The following representation theorem of continuous Archimedean t-norms in its present

form is due to Ling [56]. See Abel [4], Mostert and Shields [62], Miranda [19], Aczél [5] and

Faucett [33] as well.

Theorem 29. A t-norm is T continuous and Archimedean if and only if there exists a strictly

decreasing and continuous function f: [0,1]→ [0,∞] with f(1) = 0 such that

T(x,y) = f (−1)( f (x)+ f (y)),

where f(−1) is the pseudoinverse of f defined by

f (−1)(x) =







f−1(x) if x ≤ f (0)

0 otherwise

• f (0) = ∞ if and only if T is strict.

• f (0) is finite if and only if T is nilpotent.

Moreover, this representation is unique up to a positive multiplicative constant.

Definition 30. If a t-norm T has the above representation, then the functionf is called an

additive generator of T.

The following method of constructing a new t-norm from a family of given t-norms is based

on the results of Climescu [16], Clifford [14], Clifford-Preston [15] concerning ordinal sums of

semigroups (see also Ling [56], Frank [35]). Here, we state the form of the theorem which is

applied to t-norms.
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Theorem 31. Suppose that{[ai ,bi]}i∈K is a countable family of non-over-lapping, closed,

proper subintervals of[0,1], denoted byτ. With each[ai ,bi] ∈ τ associate a t-norm Ti . Let

T be a function defined on[0,1]2 by

T(x,y) =







ai +(bi −ai)Ti

(
x−ai
bi−ai

, y−ai
bi−ai

)

if (x,y) ∈ [ai,bi]
2

min(x,y) otherwise
(1.14)

In this case T is denoted by< {([ai,bi ],Ti)}>i∈K and called the ordinal sum of{([ai ,bi],Ti)}i∈K,

and each Ti is called a summand. Then T is a t-norm.

Now we will present a characterization of continuous t-norms. The original result of Mostert

and Shields [62] corresponded to I-semigroups on[0,1] with 0 as zero and 1 as identity. In the

present form, this theorem first appeared in Ling [56]. She used a purely analytical proof.

Theorem 32. Suppose T is a continuous t-norm. Then either T is continuousArchimedean or

T = min or there exists a family{([ai ,bi],Ti)}i∈K with continuous Archimedean t-norms Ti such

that T is the ordinal sum of this family.

1.3 Aggregative operator

The termuninormwas first introduced by Yager and Rybalov [80]. Uninorms are ageneral-

ization of t-norms and t-conorms, get by relaxing the constraint on the identity element in the

unit interval{0,1}. Since then many articles have focused on uninorms, both from a theoretical

[54, 55, 39, 59, 73, 61] and a practical point of view [79]. Thepaper of Fodor, Yager and Ry-

balov [43] is notable since it defined a new subclass of uninorms called representable uninorms.

This characterization is similar to the representation theorem of strict t-norms and t-conorms,

in the sense that both originate from the solution of the associativity functional equation given

by Aczél [6].

The aggregative operators were first introduced in [20] by selecting a set of minimal con-

cepts that must be fulfilled by an evaluation-like operator.

Actually, as mentioned in [43], there is a close relationship between Dombi’s aggregative

operators and uninorms. In fact, they form a subclass of uninorms.

In 1982, Dombi [20] defined the aggregative operator in the following way:

Definition 33. An aggregative operator is a function a: [0,1]2 → [0,1] with the properties:

1. Continuous on[0,1]2\{(0,1),(1,0)}
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2. a(x,y)< a(x,y′) if y < y′,x 6= 0,x 6= 1

a(x,y)< a(x′,y) if x < x′,y 6= 0,y 6= 1

3. a(0,0) = 0 and a(1,1) = 1 (boundary conditions)

4. a(x,a(y,z)) = a(a(x,y),z) (associativity)

5. There exists a strong negation n such that a(x,y) = n(a(n(x),n(y))) (self-DeMorgan iden-

tity) if {x,y} 6= {0,1} or {x,y} 6= {1,0}

6. a(1,0) = a(0,1) = 0 or a(1,0) = a(0,1) = 1

The definition of uninorms, originally given by Yager and Rybalov [80], is the following:

Definition 34. A uninorm U is a mapping U: [0,1]2 → [0,1] having the following properties:

• U(x,y) =U(y,x) (commutativity)

• U(x1,y1)≥U(x2,y2) if x1 ≥ x2 and y1 ≥ y2 (monotonicity)

• U(x,U(y,z)) =U(U(x,y),z) (associativity)

• ∃ν∗ ∈ [0,1] ∀x∈ [0,1]U(x,ν∗) = x (neutral element)

The following representation theorem of strict, continuous on[0,1]× [0,1]\ ({0,1},{1,0})
uninorms (orrepresentable uninorms) was given by Fodor et al. [43] (see also Klement et

al. [30]).

Theorem 35. Let U : [0,1]→ [0,1] be a function andν∗ ∈]0,1[. The following are equivalent:

1. U is a uninorm with neutral elementν∗ which is strictly monotone on]0,1[2 and contin-

uous on[0,1]2\{(0,1),(1,0)}.

2. There exists a strictly increasing bijection gu : [0,1]→ [−∞,∞] with gu(ν∗) = 0 such that

for all (x,y) ∈ [0,1]2, we have

U(x,y) = g−1
u (gu(x)+gu(y)) , (1.15)

where, in the case of a conjunctive uninorm U, we use the convention ∞+(−∞) = −∞,

while, in the disjunctive case, we use∞+(−∞) = ∞ or there exists a strictly increasing
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continuous function fa : [0,1] → [0,∞] with fa(0) = 0 , f(ν) = 1 and fa(1) = ∞. The

binary operator is defined by

U(x,y) = f−1
a ( fa(x) fa(y)) (1.16)

for all (x,y) ∈ [0,1]× [0,1]/(0,1),(1,0) and either a(0,1) = a(1,0) = 0

or a(0,1) = a(1,0) = 1.

If Eq.(1.15) holds, the function gu is uniquely determined by U up to a positive multiplica-

tive constant, and it is called an additive generator of the uninorm U. Here, fa is called the

multiplicative generator function of the operator.

Such uninorms are called representable uninorms and they were previously introduced as ag-

gregative operators [20].

Definition 36. A representable uninorm is called an aggregative operator.We will denote it by

a(x,y).

Theorem 1 (Dombi [20]). Let a : [0,1]n → [0,1] be a function and let a be an aggregative n-

valued operator with additive generator g. The neutral value of the aggregative operator isν∗

if and only if~x∈ [0,1]n,∀x. It has the following form:

aν∗(x) = g−1

(

g(ν∗)+
n

∑
i=1

(g(xi)−g(ν∗))

)

.

We will use the transformation definedg(x) = ln( f (x)) to get the multiplicative operator

form

aν∗(x) = f−1
a

(

fa(ν∗)
n

∏
i=1

fa(xi)

fa(ν∗)

)

= f−1
a

(

f 1−n
a (ν∗)

n

∏
i=1

fa(xi)

)

, (1.17)

where fa : [0,1]→ [0,∞] . In the following, we will use the multiplication form of theaggrega-

tive operator.

1.4 Strict t-norms, t-conorms and aggregative operators

Let

c(x,y) = f−1
c ( fc(x)+ fc(y)) d(x,y) = f−1

d ( fd(x)+ fd(y)) ,

where fc and fd are the generator functions of the operators. The shape of these functions can

be seen in Figure 1.3.
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Figure 1.3: The generator function of the

conjunctive and disjunctive operators (additive

representation)

Figure 1.4: The generator function of the con-

junctive and disjunctive operators (multiplica-

tive representation)

Let

gc(x) = e− fc(x) gd(x) = e− fd(x)

Then

fc(x) =− ln(gc(x)) fd(x) =− ln(gd(x)).

So

c(x,y) = f−1
c (− ln(gc(x))− ln(gc(y))) = g−1

c

(

e−(− ln(gc(x))−ln(gc(y)))
)

Figure 1.5: The generator function of the ag-

gregative operator in the additive representa-

tion case

Figure 1.6: The generator function of the ag-

gregative operator in the multiplicative repre-

sentation case

1.4.1 General form of the aggregative operator

We will use the transformation defined in (1.4) to get the multiplicative operator

aν∗(x) = f−1
a

(

fa(ν∗)
n

∏
i=1

fa(xi)

fa(ν∗)

)

= f−1
a

(

f 1−n
a (ν∗)

n

∏
i=1

fa(xi)

)

, (1.18)
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where fa : [0,1]→ [0,∞] . In the following, we will use the multiplication form of theaggrega-

tive operator.

From an application point of view, the strict monotonously increasing operators are quite

useful. They actually have a variety of applications. This is the reason why we will focus on

strictly monotonously increasing operators.

1.4.2 Aggregative operator and the self-DeMorgan identity

1.4.3 Weighted aggregative operator

The general form of the weighted operator in the additive representation case is

a(w,x) = g−1

(
n

∑
i=1

wig(xi)

)

. (1.19)

We will derive the weighted aggregative operators whenν∗ is given.

First, we use the construction

g1(x) = ga(x)−ga(ν∗) g−1
1 (x) = ga(x+g(ν∗)),

whereν∗ ∈ (0,1).

aν∗(w,x) = g−1
1

(
n

∑
i=1

wig1(xi)

)

=

= g−1
a

(
n

∑
i=1

wi(ga(xi)−ga(ν∗))+ga(ν∗)

)

= g−1
a

(
n

∑
i=1

wiga(xi)+g(ν∗)

(

1−
n

∑
i=1

wi

))

(1.20)

1.4.4 General form of the weighted aggregative operator

The multiplicative form of the aggregative operator is

aν∗(w,x) = f−1
a

(

fa(ν∗)
n

∏
i=1

(
fa(x)
fa(ν∗)

)wi
)

= f−1
a



 f
1−

n
∑

i=1
wi

a (ν∗)
n

∏
i=1

f wi
a (xi)



 (1.21)

From (1.4.3) if
n
∑

i=1
wi = 1, thenaν∗(w,x) is independent ofν∗ and

a(w,x) = f−1
a

(
n

∏
i=1

f wi
a (xi)

)

. (1.22)
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In the Dombi operator case,

aν∗(w,x) =
1

1+ 1−ν∗
ν∗

n
∏
i=1

(
1−xi

xi

ν∗
1−ν∗

)wi
(1.23)

aν∗(w,x) =
ν∗(1−ν∗)

n
∑

i=1
wi n

∏
i=1

xwi
i

ν∗(1−ν∗)
n
∑

i=1
wi n

∏
i=1

xwi
i +(1−ν∗)ν

n
∏
i=1

wi

∗
n
∏
i=1

(1−xi)wi

(1.24)

If wi = 1, then

a(w,x) =

n
∏
i=1

xwi
i

n
∏
i=1

xwi
i +

n
∏
i=1

(1−xi)wi

. (1.25)

aν∗(x) =
(1−ν∗)n−1

n
∏
i=1

xi

(1−ν∗)n−1
n
∏
i=1

xi +νn−1
∗

n
∏
i=1

(1−xi)
(1.26)

If ν∗ = 1
2, then we get

a1
2
(x) =

n
∏
i=1

xi

n
∏
i=1

xi +
n
∏
i=1

(1−xi)
. (1.27)

Figure 1.7:ν∗ is the neutral element of the aggregative operator

Eq. (1.27) is called the 3Π operator because it contains of three product operators. This

operator was first introduced by Dombi [20].

1.5 Modalities and hedges

In logic theory, modal operators have a variety of applications and even from a theoretical per-

spective they are interesting to study. Here, we will present different approaches for obtaining
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the form of the necessity and possibility operators. These have a simple parametrical form. By

changing the parameter value, we get different modalities.

Modal logic has been used in rough sets, where the sets are approximated by elements

of a partition induced by an equivalence relation. A naturalchoice for rough set logic is S5

(Orlowska [63, 64]). Here, the possibility and necessity modalities express outer and inner

approximation operators.

To obtain this structure, we equip it with another type of negation operator. In modal logic, it

is called an intuitionistic negation operator. In our system, the modalities induced by a suitable

composition of the two negation operators generate a modal system with the full distributivity

property of the modal operators. The necessity operator is simultaneously distributive over the

conjunctive and disjunctive operator and the possibility operator is also simultaneously distribu-

tive over the conjunctive and disjunctive operators.

Fuzzy logic is a kind of many-valued logic. If we want to introduce hedges into the theory,

we need to provide a proper logical structure. Zadeh introduced the modifier function of fuzzy

sets, which plays an important role because fuzzy concepts are related to natural language ex-

pressions. The popularity of the fuzzy concept is due to the cognitive aspects of the parameters

in the mathematical expressions.

In our system we will use the negation operator with the following properties:

dM1 n(n(x1)) = x

dM2 n(c(x,y)) = d(n(x),n(y))
(1.28)

The greatest element 1 is interpreted as true, while the negation of false is 0 and 1 isn(0).

τN[0,1] → [0,1] is unary operator that satisfies the following conditions for the necessity

operator.

N1. τN(1) = 1 (N principle) (1.29)

N2. τN(x)≤ x (T principle) (1.30)

N3. x≤ y implies τN(x)≤ τN(y) (K principle) (1.31)

N4. τP(x) = n(τN(n(x))) (DF♦ principle) (1.32)

[N5. τP(x) = τN(τP(x)) (τN principle)] (1.33)

In our system,N5 is not required. Only a special parametrical form ofτP andτN satisfiesN5.
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Instead ofN5, we will demand that the so-called neutrality principle, i.e.

N
′
(5) τN(τP(x)) = x (Nprinciple) (1.34)

Usually in a modal system the distributivity law is also valid:

MDc(N) c(τN(x),τN(y)) = τN(c(x,y)) (1.35)

In a paper by Cattaeno et al,MDc(N) the distributivity property is not needed for the con-

junctive operators, but it is for the disjunctive operators.

MDc(N) d(τN(x),τN(y)) = τN(d(x,y)) (1.36)

The consequence of this unusual requirement produces a non-trivial structure [36].

In our system, we will provide the necessary and sufficient conditions for whenMDc(N)

andMDd(N) both hold.

τP[0,1]→ [0,1] is unary operator that satisfies the following conditions for the possibility

operator.

P1. τP(0) = 0 (P principle) (1.37)

P2. x≤ τP(x) (T principle) (1.38)

P3. x≤ y implies τP(x)≤ τP(y) (K principle) (1.39)

P4. τN(x) = n(τP(n(x))) (DF� principle) (1.40)

[P5. τN(x) = τP(τN(x)) (τ principle)] (1.41)

In our system,P5 is not required. Only a special parametrical form ofτN andτP satisfiesP5.

Instead ofP5, we will demand that the so-called neutrality principle hold i.e.

P
′
(5) τP(τN(x)) = x (Nprinciple) (1.42)

Usually in a modal system the distributivity law is also valid:

MDd(P) d(τP(x),τP(y)) = τP(d(x,y)) (1.43)

Similar to the necessity operator, in a paper by Cattaeno et al, MDd(P) the distributivity

property is not needed for the disjunctive operators, but itis for the conjunctive operators.

24



CHAPTER 1. ELEMENTS OF FUZZY SYSTEMS

MDd(P) c(τP(x),τP(y)) = τP(c(x,y)) (1.44)

Similar to the necessity operator, in our system we will provide the necessary and sufficient

conditions for whenMDd(P) andMDc(P) both hold.

The linguistic hedge “very” always expresses a tight interval, whereas ”more or less” ex-

presses a looser interval (less tight). In this sense, "very" corresponds to the necessity operator

and "‘more or less"’ the possibility operator.

With this starting point, the necessity and possibility operators used in fuzzy logic are based on

an extension of modal logic to the continuous case. We begin with the negation operator and

we make use of two types of this operator; one that is strict, and one that is less strict. We will

show that with these two negation operators we can define the modal hedges.

Modal logic, which is an area of mathematical logic, can be viewed as a logical system ob-

tained by adding logical symbols and inference rules.

This issue is also related in part to linguistic hedges and the corresponding reverse effects

("very", "more or less"), and to the modal operators with mutually reverse modal concepts

as well, i.e. one can define the necessity hedge by�x and the possibility hedge by♦x, which

have a mutually reverse effect onx.

We will construct linguistic modal hedges called necessityand possibility hedges. The con-

struction is based on the fact that modal operators can be realized by combining two kinds of

negation operators.

In intuitionistic logic, another kind of negation operatoralso has to be taken into account. Here,

∼x means the negated value ofx. ∼1 x and∼2 x are two negation operator.

In modal logic,∼1 x means "x" is impossible. In other words,∼1 a stronger negation than

not "x", i.e.∼2 x. Because∼1 x in modal logic, it means "x is impossible".

We can write

impossible x= necessity(not x) (1.45)
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∼1 x := impossible x

∼2 x := not x
(1.46)

∼1 x=�∼2 x (1.47)

As we mentioned above, in modal logic we have two more operators than the classical logic

case, namely necessity and possibility; and in modal logic there are two basic identities. These

are

∼1 x= impossible(x) = necessity(not(x)) =�∼2 x (1.48)

♦x= possible(x) = not(impossible(x)) =∼2 (∼1 x) (1.49)

If in Eq.(1.48) we replacex by∼2 x and using the fact that∼2 x is involutive, we get

�x=∼1 (∼2 x), (1.50)

and with Eq.(1.49), we have

♦x=∼2 (∼1 x). (1.51)

Definition 37. The general form of the modalities is

τν1,ν2(x) = nν1 (nν2(x)) , (1.52)

whereν1 and ν2 are neutral values. Ifν1 < ν2, thenτν1,ν2(x) is a necessity operator and if

ν2 < ν1, thenτν1,ν2(x) is a possibility operator.

From the above definition, we get

τν1,ν2(x) = f−1
(

f (ν1)
f (x)
f (ν2)

)

,

(1.53)

This can be rewritten as

τν,ν0(x) = f−1
(

f (ν0)
f (x)
f (ν)

)

.

(1.54)
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Definition 38. We call graded modalities a k composition of the modalities.

τ� (τ�(. . . τ�(x))) =�(�(. . . �
︸ ︷︷ ︸

K

(x)) . . .) =�
K(x) (1.55)

τ♦ (τ♦(. . . τ�(x))) =♦(♦(. . . ♦
︸ ︷︷ ︸

K

(x)) . . .) =♦K(x) (1.56)

In fuzzy theory, we use two types of negation operator.

By making use of (1.9) and (1.10) we can define the concrete forms of the necessity and

possibility operators.

τ(x) = nν1(nν2(x)) =

(

1−
(

1−x
− ln2

lnν2

) lnν2
lnν1

)− lnν1
ln2

τν∗(x) = nν1(nν2(x)) =
1

1+
(

1−ν∗
ν∗

)2
1−x

x

or τν∗(x) =
1

1+
(

ν∗
1−ν∗

)2
1−x

x

Figure 1.8: Necessity, possibility

This form of negation operator can be found in [22].

1.5.1 Introduction: Hedges in the Zadeh’s sense

Zadeh introduced modifier functions of fuzzy sets called linguistic hedges. A number of stud-

ies [18, 17, 37] were made which discussed fuzzy logic and fuzzy reasoning with linguistic truth

values. However, a systematic view of it has not been presented in the construction of linguistic

hedges, which have corresponding reverse effects, such as in the case of “very” and “more or

less”.

In the early 1970s, Zadeh [86] introduced a class of poweringmodifiers that defined the

concept of linguistic variables and hedges. He proposed computing with words as an extension

of fuzzy sets and logic theory (Zadeh [87, 88]). The linguistic hedges (LHs) change the meaning
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of primary term values. Many theoretical studies have contributed to the computation with

words and to the LH concepts (see De Cock and Kerre [17]; Huynh, Ho, and Nakamori [40];

Rubin [67]; Türksen [75]).

As pointed out by Zadeh [82, 83, 84], linguistic variables and terms are closer to human

thinking (which emphasise importance more than certainty)and are used in everyday life. For

this reason, words and linguistic terms can be used to model human thinking systems (Liu et

al. [57]; Zadeh [81]).

Zadeh [86] said that a proposition such as "The sea is very rough" can be interpreted as "It is

very true that the sea is rough." Consequently, the sentences "The sea is very rough," "It is very

true that the sea is rough," "(The sea is rough) is very true" can be considered equivalent. In

fact, truth function modification permits an algorithmic approach to the calculus of deduction in

approximate reasoning [9], by strengthening the liaison connection with classical logic. Since

in traditional prepositional logic the validity of a reasoning depends on the simple truth proof

of logic propositions [10], in a fuzzy logic we have the truthvalues that determine the fuzzy set

associated with the conclusion of a deduction [78]. Hence, the transformation of a proposition

"X is mA" into "(X is A) is mTrue" stresses the dependence of the conclusion on the initial

conditions, as is the case in traditional binary logic. For this reason, in a deduction process the

analytic representation of expressions such as "very true," "more or less true," "absolutely true"

play an important role.

The adverbial locutions "very," "more or less," "absolutely" modify the truth value of the words

"true" and "false." The first are called linguistic modifiers, while the second are called linguistic

truth values. Different problems arise with them, such as how to build the related characteristic

function, for a given combination of modifiers with logic connectives, and how to label the re-

sulting set.

Basic notions of linguistic variables were formalized in different works by Zadeh in the mid

1970s [82, 83, 84]. These papers sought to provide a mathematical model for linguistic vari-

ables.

1.5.2 Modalities and hedges

When we apply the Pliant concept the necessity and possibility operators have the same form

and the parameters are different. This common form is distributive with both conjunction and
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disjunction operators. If we have a logical expression and before the logical expression there

are modal operators, we can apply these modal operators directly on the variables. In the fuzzy

concept, the variables are membership functions. Now, how should we interpret this action on

the membership function? The simple answer is that this is a Hedge. Thus, here there is a

simple correspondence between a Hedge and modalities.

In this case, "very true" is the same as "necessarily true", or "who is very young" is the same

as "he/she is in our opinion necessarily young". In Figure 1.9, we show the effect of the modal

operators on a membership function, where

µ(x) =
1

1+e
4
15(x−25)

(1.57)

τN(x) =
1

1+ 0.8
1−0.8

1−x
x

(1.58)

τP(x) =
1

1+ 0.2
1−0.2

1−x
x

(1.59)

Figure 1.9: Very young (necessarily young), young, more or less young (possible young)

1.5.3 The sharpness operator

As we saw previously, modifiers can be introduced by repeating the arguments of conjunctive

and disjunctive operators n-times. In the next step,n will be extended to any real number.

We will introduce the sharpness operator by repeating the arguments of the aggregation operator.

Because in the Pliant system we have [25],

a(x1,x2, . . . ,xn) = f−1

(
n

∏
i=1

f (xi)

)

and

a(x,x, . . . ,x
︸ ︷︷ ︸

n

) = f−1( f n(x)) ,
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we can introduce the following definition.

Definition 39. The sharpness operator is

χ(λ)(x) = f−1
(

f λ(x)
)

λ ∈ R (1.60)

0 0,2 0,4 0,6 0,8 1,0
0

0,2

0,4

0,6

0,8

1,0

Figure 1.10: The sharpness operator withλ = 1,2,4,1/2,1/4 values.

1.6 General form of modifiers

Three types of modifiers were introduced earlier. These are the

1. Negation operator:

nν,ν0(x) = f−1
(

f (ν0)
f (ν)
f (x)

)

(1.61)

2. Hedge operators, necessity and possibility operators:

τν,ν0(x) = f−1
(

f (ν0)
f (x)
f (ν)

)

(1.62)

3. Sharpness operator:

χ(λ)(x) = f−1
(

f λ(x)
)

(1.63)

These three types of operators can be represented in a commonform.

Definition 40. The general form of the modifier operators is

κ(λ)
ν,ν0(x) = f−1

(

f (ν0)

(
f (x)
f (ν)

)λ
)

(1.64)
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Figure 1.11:κ as a modifier withλ = 1,ν =

1/3,2/3

Figure 1.12:κ as a negation withλ =−1,ν =

1/3,2/3

Theorem 41. Negation (1.61), hedge (1.62) and sharpness (1.63) are special cases of this

modifier.

λ = −1 is the negation operator

λ = 1 is the hedge operator

f (ν0) = f (ν) = 1 is the sharpness operator

Because the generator function isf (x) =
(

1−x
x

)α
in Dombi operator case:

κ(λ)
ν (x) =

1

1+ 1−ν0
ν0

( ν
1−ν

1−x
x

)λ

1. If λ =−1, thenκ(−1)
ν = nν(x) is a negation

2. If λ = 1, thenκ(1)
ν = τν(x) is a modifier

if ν < ν0, thenτν(x) is a possibility operator

if ν > ν0, thenτν(x) is a necessity operator

3. If λ = λ0 =
1
2, thenκ(λ)

ν = χλ(x) is a sharpness operator

In figures [1.11 to 1.16], we plot the different curves for theκ(λ)
ν (x) function.
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Figure 1.13:κ as a sharpness operator withν=

1/2,λ = 2,4

Figure 1.14:κ as a sharpness operator withν=

1/2,λ = 1/2,1/4

Figure 1.15: Theκ(λ)
ν (x) function with the pa-

rametersλ = 2,ν = 1/3,2/3

Figure 1.16: Theκ(λ)
ν (x) function with the pa-

rametersλ = 1/2,ν = 1/3,2/3
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Pliant system

2.1 DeMorgan law and general form of negation

We will use the generalized operator based on strict t-normsand strict t-conorms introduced by

the authors. Calvo [13] and Yager [77].

Definition 1. Generalized operators based on strict t-norms and t-conorms which are

c(w,x) = c(w1,x1;w2,x2; . . . ;wn,xn) = f−1
c

(
n

∑
i=1

wi fc(xi)

)

, (2.1)

d(w,x) = d(w1,x1;w2,x2; . . .wn,xn) = f−1
d

(
n

∑
i=1

wi fd(xi)

)

, (2.2)

where wi ≥ 0.

If wi = 1 we get the t-norm and t-conorm. Ifwi =
1
n, then we get mean operators. If

n
∑

i=1
wi = 1, then we get weighted operators.

2.2 Operators with infinitely many negation operators

Now we will characterize the operator class (strict t-norm and strict t-conorm) for which various

negations exist and build a DeMorgan class. The fixpointν∗ or the neutral valueν can be re-

garded as decision threshold. Operators with various negations are useful because the threshold

can be varied.

It is straightforward to see that the min and max operators belong to this class, as does the

drastic operator. The next theorem characterizes those strict operator systems that have infinitely

many negations and build a DeMorgan system. It is easy to see that c(x,y) = xy, d(x,y) =
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x+y−xyandn(x) = 1−x build a DeMorgan system. There are no other negations for building

a DeMorgan system, as we will see below.

Theorem 1. c(x,y) and d(x,y) build a DeMorgan system for nν∗(x) where nν∗(ν∗) = ν∗ for all

ν∗ ∈ (0,1) if and only if

fc(x) fd(x) = 1. (2.3)

For proof see [27].

Theorem 2. The general form of the multiplicative pliant system is

oα(x,y) = f−1
(

( f α(x)+ f α(y))1/α
)

(2.4)

nν(x) = f−1
(

f (ν0)
f (ν)
f (x)

)

or (2.5)

nν∗(x) = f−1
(

f 2(ν∗)
f (x)

)

, (2.6)

where f(x) is the generator function of the strict t-norm operator and f: [0,1]→ [0,∞] contin-

uous and strictly decreasing function. Depending on the value ofα, the operator is

α > 0 oα(x,y) = c(x,y)

α < 0 oα(x,y) = d(x,y)
(2.7)

lim
α→∞

oα(x,y) = min(x,y)

lim
α→−∞

oα(x,y) = max(x,y)
(2.8)

α = 0+ lim
α→0+

oα(x,y) =







x if y= 1

y if x= 1

0 otherwise

(2.9)

α = 0− lim
α→0−

oα(x,y) =







x if y= 0

y if x= 0

1 otherwise

(2.10)

This operator called the drastic operator.

For proof see [27].
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2.3 Distending function

In fuzzy concepts the most powerful term is the membership function. Up until now the research

community could not give an unambiguous definition of this term. In the Pliant concept we give

one which is connected to the operator system. Our starting point is that the fuzzy terms are

so-called polar terms. In the table below we summarize some of the most common ones.

Let us choose the often used term “old”. The same example exists in Zadeh’s seminal

paper[85]. We suppose now that the term “old” depends only onage, and we do not care

whether most polar terms are always context dependent, i.e.an old professor is defined in

another domain than old student. In classical logic we have to fix a dividing line; in our case let

it be 63 years old (a= 63). If somebody is older than 63 years, then they belongs to the class

(set) of old people; otherwise they do not. We can express this as an inequality form, using a

characteristic function:

χa(x) =







1 if a< x

0 if a≥ x

The expressiona< x is equivalent to the expression 0< x−a, so the above could be written

as:

χ(x−a) =







1 if 0 < x−a

0 if 0 ≥ x−a

Generally, on the left hand side of the inequality we can haveanyg(x) function.

χ
(
g(x)

)
=







1 if 0 < g(x)

0 if 0 ≥ g(x)

In the Pliant concept, we will introduce the distending function. We will use the notation

δ(x) = truth(0< x) x∈ R

We can generalize this in the following way

δ(g(x)) = truth
(
0< g(x)

)
x ∈ Rn

Instead of a strict relation, we will define a function which provides information on the

validity of the relation. Remark: Introducing the distending function in this way allows one to
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generalize the concept toRn (in fuzzy set theory the membership functions is usually defined

onR).

Roughly speaking, if the value ofg(x) is large and positive, thentruth(0< g(x)) ≈ 1, if g(x)

is large and negative, then thetruth(0< g(x)) = 0 (i.e. false) and ifg(x) = 0, thentruth(0<

g(x) = 1/2, i.e. we are uncertain.δ(x) can be interpreted as a distending of the inequality

relation.

The distending function is an approximation of the characteristic function. In classical math-

ematics, we speak of an open or closed interval and, according to this, the characteristic function

takes the value 0 or 1 on the border. In our case, we will ignorethis definition and define the

characteristic function such that on the borders it takes the value of12. We should mention that

a border with 50% probability belongs to the set and 50% to thecomplementer set.

If we define the set 0< x, then our approach is

χ(x) =







1 if x> 0

1
2 if x= 0

0 if x< 0

(2.11)

If the set is described by 0< g(x), then the corresponding characteristic function isχ(g(x)).

The distending function is an approximation ofχ(x) defined by (2.11) in the following sense.

δ(λ)ν0 (x) =







> ν0 if x> 0

= ν0 if x= 0

< ν0 if x< 0

(2.12)

The sigmoid function has the following properties:

σ(x) =
1

1+e−x =







σ(x)> 1
2 if x> 0

σ(x) = 1
2 if x= 0

σ(x)< 1
2 if x< 0

The sigmoid function is able to model an inequality. If we substitutex with a giveng(x) func-
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tion, then

σ(g(x)) =
1

1+e−g(x)
=







σ(g(x))> 1
2 if g(x)> 0

σ(g(x)) = 1
2 if g(x) = 0

σ(g(x))< 1
2 if g(x)< 0

2.4 Pliant operators

In multiplicative pliant systems the corresponding aggregative operators of the strict t-norm and

strict t-conorm are equivalent, and DeMorgan’s law is obeyed with the (common) correspond-

ing strong negation of the strict t-norm or t-conorm.

We can summarize the properties of the multiplicative pliant system like so:

c(x) = f−1

(
n

∑
i=1

f (xi)

)

c(w,x) = f−1

(
n

∑
i=1

wi f (xi)

)

(2.13)

d(x) = f−1







1
n
∑

i=1

1
f (xi)







d(w,x) = f−1







1
n
∑

i=1

wi
f (xi)







(2.14)

aν∗(x) = f−1

(

f (ν∗)
n

∏
i=1

f (xi)

f (ν∗)

)

aν∗(w,x) = f−1

(

f (ν∗)
n

∏
i=1

(
f (xi)

f (ν∗)

)wi
)

(2.15)

a(x) = f−1

(
n

∏
i=1

f (xi)

)

a(w,x) = f−1

(
n

∏
i=1

f wi (xi)

)

(2.16)

n(x) = f−1
(

f 2(ν∗)
f (x)

)

, (2.17)

κ(λ)
ν,ν0(x) = f−1

(

f (ν0)

(
f (x)
f (ν)

)λ
)

where f (x) is the generator function of the strict t-norm.

It was shown in [23] that the multiplicative pliant system fulfils the DeMorgan identity and the

correct strong negation is defined by Eq.(2.17).

For example, letfc(x) = − lnx, the additive generator of the product operator. Assuming

we have a pliant system,fd(x) = (− lnx)−1 is a valid generator of a strict t-conorm. Their

corresponding strong negation operators are the same asnc(x) = nd(x) = n(x) = exp[ (ln(ν∗))
2

lnx ],
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so thatn(1) = limx→1n(x), for whichc(x,y) = xy and

d(x,y) = exp

[
lnxlny
lnxy

]

(2.18)

form a DeMorgan triplet.

2.4.1 The Dombi operator system

In another example, the Dombi operators form a pliant system. The operators are

c(x) =
1

1+

(
n
∑

i=1

(
1−xi

xi

)α
)1/α c(x) =

1

1+

(
n
∑

i=1
wi

(
1−xi

xi

)α
)1/α (2.19)

d(x) =
1

1+

(
n
∑

i=1

(
1−xi

xi

)−α
)−1/α d(x) =

1

1+

(
n
∑

i=1
wi

(
1−xi

xi

)−α
)−1/α (2.20)

aν∗(x) =
1

1+ 1−ν∗
ν∗ ∏n

i=1

(
1−xi

xi

ν∗
1−ν∗

) aν∗(x) =
1

1+
(

1−ν∗
ν∗

)

∏n
i=1

(
1−xi

xi

1−ν∗
ν∗

)wi
(2.21)

n(x) =
1

1+
(

1−ν∗
ν∗

)2
x

1−x

, (2.22)

κ(λ)
ν (x) =

1

1+ 1−ν0
ν0

( ν
1−ν

1−x
x

)λ

whereν∗ ∈]0,1[, with generator functions

fc(x) =

(
1−x

x

)α
fd(x) =

(
1−x

x

)−α
, (2.23)

whereα > 0. The operatorsc, d andn fulfil the DeMorgan identity for allν, a andn fulfil

the self-DeMorgan identity for allν and the aggregative operator is distributive with the strict

t-norm or t-conorm.

Eqs.(2.19), (2.20), (2.21), (2.22) can be found in various articles of Dombi. Eqs.(2.19) and

(2.20) can be found in [21], Eq.(2.21) in [20] and Eq.(2.22) can be found in [23].

Eq. (2.21) is called the 3Π operator because it can be written in the following form:

a(x) =

n
∏
i=1

xi

n
∏
i=1

xi +
n
∏
i=1

(1−xi)
(2.24)
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Decision making

3.1 Introduction

A decade ago a new computing infrastructure called the Grid was born. Ian Foster et. al. made

this technology immortal by publishing the bible of the Grid[48] in 1998. Grid Computing has

become a separate research area since then: currently gridsare targeted by many world-wide

projects. A decade is a long time. Although the initial goal of grids to serve various scien-

tific communities by providing a robust hardware and software environment is still unchanged,

different middleware solutions have been developed (Globus Toolkit [34], EGEE [1], UNI-

CORE [32], etc.). The realizations of these grid middlewaresystems formed production grids

that are mature enough to serve scientists having computation and data intensive applications.

Nowadays research directions are focusing on user needs, where more efficient utilization and

interoperability play key roles. To solve these problems, grid researchers have two options: as a

member of a middleware developer group they can come up with new ideas or newly identified

requirements and go through the long process of designing, standardizing and implementing the

new feature, then wait for the next release containing the solution. Researchers sitting on the

other side or unwilling to wait for years for the new release,need to rely on the currently avail-

able interfaces of the middleware components and have to useadvanced techniques of other

related research domains (peer-to-peer, Web computing, artificial intelligence, etc.). Here, we

went for the second option to improve grid resource utilization with an interoperable resource

management service.

Since the management and beneficial utilization of highly dynamic grid resources cannot

be handled by the users themselves, various grid resource management tools must be devel-

oped and must support different grids. User requirements create certain properties that resource
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managers must learn to support. This development is still continuing, and users need to dis-

tinguish between brokers and to migrate their applicationswhen they move to a different grid.

Interoperability problems and multi-broker utilization have led to the need for higher level bro-

kering solutions. The meta-brokering approach requires a higher level resource management

by allowing the automatic and simultaneous utilization of grid brokers. Scheduling at this level

requires sophisticated approaches because high uncertainty exists at each stage of grid resource

management. Despite these difficulties, this work addresses the resource management layer of

middleware systems and offers an enhanced scheduling technique for improving grid utilization

in a high-level brokering service. The main contribution ofhere lies in an enhanced scheduling

solution based on thePliant System, which is applied to the resource management layer of grid

middleware systems.

3.2 Meta-Brokering in Grid Systems

Meta-brokeringrefers to a higher level of resource management, which utilizes an existing

resource or service brokers to access various resources. Insome generalized way, it acts as a

mediator between users or higher level tools and environment-specific resource managers. The

main tasks of this component are togatherstatic and dynamic broker properties, and toschedule

user requests to lower level brokers; that is, to match job descriptions with broker properties.

Afterwards, the job needs to beforwardedto the selected broker.

Figure 3.1: Components of the Meta-Broker.

Figure 3.1 provides a schematic diagram of the Meta-Broker (MB) architecture [46], includ-

ing the components needed to fulfil the above-mentioned tasks. Different brokers use different

service or resource specification descriptions to interpret the user request. These documents

need to be written by the users to specify the different kindsof service-related requirements. For

the resource utilization in Grids, OGF [2] developed a resource specification language standard

called JSDL [7]. As JSDL is sufficiently general to describe the jobs and services of differ-
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ent grids and brokers, this is the default description format of MB. TheTranslatorcomponent

of the Meta-Broker is responsible for translating the resource specification defined by the user

to the language of the appropriate resource broker that MB selects for a given request. These

brokers have various features for supporting different user needs, hence an extendable Broker

Property Description Language (BPDL) [46] is required to express metadata about brokers and

the services they provide. TheInformation Collector(IC) component of MB stores data about

the accessible brokers and historical data about previous submissions. This information tells

us whether the chosen broker is available, and/or how reliable its services are. During broker

utilization the successful submissions and failures are tracked, and for these events a ranking

is updated for each special attribute in the BPDL of the appropriate broker (these attributes are

listed above). In this way, the BPDL documents represent andstore the dynamic states of the

brokers. In order to support load balancing, there is anIS Agent(IS stands for Information Sys-

tem) reporting to the IC, which regularly checks the load of the underlying resources of each

linked broker, and stores this data. The matchmaking process consists of the following steps:

The MatchMaker(MM) compares the received descriptions with the BPDL of theregistered

brokers. This selection determines a group of brokers that can provide the required service.

Otherwise, the request is rejected. In the second phase the MM counts a rank for each of the

remaining brokers. This rank is calculated from the broker properties that the IS Agent updates

regularly, and from the service completion rate that is updated in the BPDL for each broker.

When all the ranks have been counted, the list of the brokers is ordered by these ranks. Lastly,

the first broker of the priority list is selected, and theInvokercomponent forwards the request

to the broker.

As regards related works, other approaches usually try to define common protocols and in-

terfaces among scheduler instances enabling inter-grid usage. The meta-scheduling project in

LA Grid [66] seeks to support grid applications with resources located and managed in different

domains. They define broker instances with a set of functional modules. Each broker instance

collects resource information from its neighbours and saves the information in its resource

repository. The resource information is distributed over the different grid domains and each

instance will have a view of the available all resources. TheKoala grid scheduler [41] was de-

signed to work on DAS-2 interacting with Globus middleware services with the main features of

data and processor co-allocation; later it was extended to support DAS-3 and Grid’5000. Their

policy is to use a remote grid only if the local one is saturated. They use a so-called delegated

matchmaking (DMM), where Koala instances delegate resource information in a peer-to-peer

manner. Gridway introduces a Scheduling Architectures Taxonomy [53]. Its Multiple Meta-
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Scheduler Layers use Gridway instances to communicate and interact through grid gateways.

These instances can access resources belonging to different administrative domains. They also

pass user requests to another domain in cases where the current one is overloaded. Comparing

these related approaches, we can state that all of them use a new method to expand current grid

resource management boundaries. Meta-brokering appears in the sense that different domains

are being examined as a whole, but they rather delegate resource information among domains,

broker instances or gateways through their own, implementation-dependent interfaces. Their

scheduling policies focus on resource selection by using aggregated resource information shar-

ing, but our approach targets broker selection based on broker properties and performances.

3.3 Scheduling Algorithms

Earlier on we introduced the Pliant System and Grid Meta-Broker, and showed how the de-

fault matchmaking process is carried out. The main contribution of this part is tosee howthe

scheduling part of this matchmaking process can be enhanced. To achieve this, we created a

Decision Maker component based on functions of thePliant system, and inserted it into the

MatchMaker component of the Meta-Broker. The first part of the matchmaking is unchanged:

the list of the available brokers is filtered according to therequirements of the actual job read

from its JSDL. Then a list of the remaining brokers along withtheir performance data and the

background grid load are sent to the Decision Maker in order to determine the most suitable

broker for the actual job. The scheduling techniques and thescheduling process are described

below.

Decision Maker uses a random number generator, and we chose aJAVA solution that gener-

ates pseudorandom numbers. The JAVA random generator classuses a uniform distribution and

48-bit seed, and the latter is modified by a linear congruential formula [49]. We also developed

a unique random number generator that generates random numbers with a given distribution.

We call this algorithm the generator function. In our case wedefined a score value for each

broker, and we created a distribution based on the score value. For example, the broker which

has the highest score has the biggest chance of being chosen.

In this algorithm, the inputs are the broker id and the brokerscore, which are integer valued

(see Table 3.1).

The next step is to choose a broker and put it into a temporary array: the cardinality is

determined by the score value (see Table 3.2).

After the temporary array is filled, we shuffle this array and choose an array element using
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Table 3.1: Inputs of the algorithm

BrokerID Score

3 2

4 3

5 1

6 2

Table 3.2: Elements in the temporary array

Broker ID 3 3 4 4 4 5 6 6

Array ID 1 2 3 4 5 6 7 8

the JAVA random generator. In the example shown in Table 3.3,the generator function chose

the broker with id 4.

Table 3.3: Shuffled temporary array

Broker ID 4 3 6 3 4 4 5 6

Array ID 1 2 3 4 5 6 7 8

Java Random generator:5

To improve the scheduling performance of the Meta-Broker weneed to send the job to the

broker that best fits the requirements; and it executes the job without failures in the shortest

possible execution time. Each broker hasfour propertiesthat the algorithm can rely on: a

success counter, a failure counter, a load counter and the running jobs counter.

• The success counter gives the number of jobs that finished without any errors.

• The failure counter shows the number of failed jobs.

• The load counter tells us the actual load of the grid behind the broker (in percentage

terms).

• The running jobs counter shows the number of jobs sent to the broker which have not yet

finished.
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We developed five different [47, 29] kinds of decision algorithms. The trivial algorithm uses

only a random generator to select a broker. The first three algorithms take into account the first

three broker properties. These algorithms define a score number for each broker and use the

generator function to select one. To calculate the score value, we build a weighted sum of the

evaluated properties. This number is always an integer number. Furthermore, the second and

third decision algorithms take into account the maximum value of the failure and load counter.

This means that we extract the maximum value of the properties before multiplying them by the

weight. The generator function of the third algorithm chooses a broker whose score number is

not smaller than the half of the highest score value.

After testing different kinds of weighted systems, we foundthat the most useful weights

(see in Table 3.4) that represent the weights of the decisionalgorithms applied here [47]:

Table 3.4: The weights of the decision makers

Decision Maker Success_weight Failed_weight Load_weight

Decision I. 3 0.5 1

Decision II. 4 4 4

Decision III. 4 4 4

We developedtwo other types of decision algorithms [29] that took into account all the

broker properties. These algorithms define a score number for each broker and use the generator

function to select a broker. Algorithms that are related to the Pliant system use the kappa

function to determine the broker’s score number.

Because the Pliant system is defined in the[0,1] interval, we need tonormalizethe input

value. These two algorithms differ only in this step:

1. The first algorithm uses a linear transformation called Decision4.

2. The second algorithm uses the sigmoid function to normalise the input values, which is

called Decision5.

We should alsoemphasizethat the closer the value is to one, the better the broker is, and if

the value is close to zero, it means that the broker is not good. For example if the failure counter

is high, both normalization algorithms should give a value close to zero because it is not a good

thing if the broker has a lot of failed jobs (see Figure 3.2). The opposite of this case is true for

the success counter (see Figure 3.3).
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Figure 3.2: Normalising the failed jobs counter using Sigmoid function
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Figure 3.3: Normalising the success counter using the Sigmoid function

In the next step we can modify the normalised property value by using the same Kappa

function (see Figure 3.4). We can also define the expected value of the normalisation via theν

andλ parameters.

normalized value
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Figure 3.4: Normalized parameter values using the Kappa function

To calculatethe score value, we can make use of the conjunctive or aggregation operator.

After running some tests, we found that we got better resultsif we used the aggregation operator.
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In this step the result is always a real number lying in the[0,1] interval and then we multiply it

by 100 to get the broker’s score number.

When the Meta-Broker is running, the first two broker properties (the success and failure

counters) are incremented via a feedback method that the simulator (or a user or portal in real-

world cases) calls after the job has finished. The third and fourth properties, the load value and

the running jobs, are handled by the IS Agent of the Meta-Broker, queried from an information

provider (Information System) of a Grid. During a simulation this data is saved to a database

by the Broker entities of the simulator. This means that by the time we start the evaluation and

before we receive feedback from finished jobs, the algorithms can only rely on the background

load and running processes of the grids. To further enhance the scheduling we developed a

training processthat can be executed before the simulation in order to initialise the first and

second properties. This process sends a small number of jobswith various properties to the

brokers and sets the successful and failed jobs number at theBPDLs of the brokers. With this

additional training method, we can expect shorter execution times because we will select more

reliable brokers.

3.4 Evaluation

In order to evaluate our proposed scheduling solution, we created a general simulation en-

vironment, where all the related grid resource management entities could be simulated and

coordinated. The GridSim toolkit [12] is a fully extendable, widely used and accepted grid

simulation tool; and these are the main reasons why we chose this toolkit for our simulations.

It can be used for evaluating VO-based resource allocation,workflow scheduling, and dynamic

resource provisioning techniques in global grids. It supports modeling and the simulation of

heterogeneous grid resources, users, applications, brokers and schedulers in a grid computing

environment. It provides primitives for the creation of jobs (called gridlets), mapping of these

jobs to resources, and their management, hence resource schedulers can be simulated to study

scheduling algorithms. GridSim provides a multilayered design architecture based on SimJava

[38], a general purpose discrete-event simulation packageimplemented in Java. It is used for

handling the interactions or events among GridSim components. All components in GridSim

communicate with each other through message passing operations defined by SimJava.

Our general simulation architecture can be seen in Figure 3.5. In the right hand corner we

can see that the GridSim components were used for the simulated grid systems. Resources can

be defined with different grid-types. Resources consist of more machines, to which workloads
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Figure 3.5: Meta-Brokering simulation environment based on GridSim

can be set. On top of this simulated grid infrastructure we can set up brokers. The Broker and

Simulator entities were developed by us to enable the simulation of meta-brokering. Brokers

are extended GridUser entities:

• They can be connected to one or more resources;

• Different properties can be set to these brokers (agreementhandling, co-allocation, ad-

vance reservation, etc.);

• Some properties can be marked as unreliable;

• Various scheduling policies can be defined (pre-defined ones: rnd – random resource

selection, fcpu – resources having more free cpus or fewer waiting jobs are selected,

nfailed – resources having fewer machine failures are selected);

• Generally resubmission is used when a job fails due to resource failure;

• Next, they report to the IS Grid load database by calling the feedback method of the Meta-

Broker with the results of the job submissions (this database has a similar purpose to that

of a grid Information System).

The Simulator is an extended GridSim entity:

• It can generate a requested number of gridlets (jobs) with different properties, start and

run times (lengths);

• It is related to the brokers and is able to submit jobs to them;
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• The default job distribution is the random broker selection(but the middleware types are

taken into account at least);

• In the case of job failures, a different broker is selected for the given job;

• It is also related to the Grid Meta-Broker through its Web service interface and is able to

call its matchmaking service for broker selection.

3.4.1 Preliminary testing phase

Table 3.5: Preliminary evaluation setup.

Broker Scheduling Properties Resources Workload

1. fcpu A 8 20*8

2. fcpu B 8 20*8

3. fcpu C 8 20*8

4. fcpu AF 8 20*8

5. fcpu BF 8 20*8

6. fcpu CF 8 20*8

7. nfail AFB 10 20*10

8. nfail ACF 10 20*10

9. nfail BFC 10 20*10

10. rnd - 16 20*16

Table 3.5 shows the details of the preliminary evaluation environment. 10 brokers can be

used in this simulation environment. The second column denotes the scheduling policies used

by the brokers: fcpu means the jobs are scheduled to the resource with the most free cpus, nfail

means those resources are selected that have fewer machine failures, and rnd means random-

ized resource selection. The third column shows the capabilities/properties (e.g.: coallocation,

checkpointing, ...) of the brokers: three properties are used in this environment. Here, subscript

F means unreliability; a broker having such a property may fail to execute a job with the re-

quested service with a probablity of 0.5. The fourth column contains the number of resources

utilized by a broker, while the fifth column contains the number of background jobs submit-

ted to the broker (SDSC BLUE workload logs taken from the Parallel Workloads Archive [3])

during the evaluation timeframe.
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Figure 3.6: Diagrams of the preliminary evaluation for eachalgorithm

As shown in the table, we utilised 10 brokers to perform our first experiment. In this case

we submitted 100 jobs to the system, and measured the makespan of all the jobs (time past

from submission up to a successful completion, including the waiting time in the queue of the

resources and resubmissions on failures). Out of the 100 jobs, 40 had no special property (this

means all the brokers could successfully execute them), while for the rest of the jobs the three

properties were distributed equally: 20 jobs had property A, 20 had B and 20 had C. Each

resource of the simulated grids was utilised by 20 background jobs (workload) with different

submission times based on the distribution defined by the SDSC BLUE workload logs.

Figure 3.6 shows the detailed evaluation runs with the scheduling algorithms Decision 1

(D1), 2 (D2), 3 (D3) and without the use of the Meta-Broker (randomized broker selection

– Rnd), respectively. In Figure 3.7 we can see the averages ofthe tests with the different

algorithms. This illustrates best the differences betweenthe simulations with and without the
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use of the Meta-Broker.

Figure 3.7: Summary diagram of the preliminary evaluation

After reviewing the diagrams of the preliminary evaluations, we can state that all the pro-

posed scheduling algorithms (D1, D2 and D3) provide shorterexecution times than the random

broker selection. In the main evaluation phases, our goal will be to set up a more realistic

environment and test it using a bigger number of jobs.

3.4.2 Main testing phase

We created two different kinds of evaluation environment. Based on the findings of [47] we

tested the first three Decision algorithm, and the best algorithm was tested with the Pliant algo-

rithm [29].

Test environment I.

Table 3.6 shows the evaluation environment used in the main evaluation. The simulation setup

was derived from real-life production grids: current gridsand brokers support ony a few special

properties: we used four. To determine the (proportional) number of resources in our simulated

grids, we compared the sizes of current production grids (EGEE VOs, DAS3, NGS, Grid5000,

OSG, ...). We employed the same notations in this table as before.

In the main evaluation we utilised 14 brokers. In this case, we submitted 1000 jobs to

the system, and again measured the makespan of all the jobs. Out of the 1000 jobs, 100 had

no special property, while for the rest of the jobs, the four properties were distributed in the

following way: 30 jobs had property A, 30 had B, 20 had C and 10 had D. The workload logs
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Table 3.6: Main evaluation setup.

Broker Scheduling Properties Resources Workload

1. fcpu A 6 50*6

2. fcpu AF 8 50*8

3. fcpu A 12 50*12

4. fcpu B 10 50*10

5. fcpu BF 10 50*10

6. fcpu B 12 50*12

7. fcpu BF 12 50*12

8. fcpu C 4 50*4

9. fcpu C 4 50*4

10. fcpu AFD 8 50*8

11. fcpu AD 10 50*10

12. fcpu ADF 8 50*8

13. fcpu ABF 6 50*6

14. fcpu ABCF 10 50*10

Figure 3.8: Simulation in the main evaluation environment

contain 50 jobs for each resource. Figure 3.8 gives a graphical representation of the simulation

environment.

In the first phase of the main evaluation the simulator submitted all the jobs at once, just like

in the preliminary evaluation. The results for the first three algorithms of this phase can be seen
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in Figure 3.9.

Figure 3.9: Diagram of the first phase of the main evaluation

In the first phase, we could not exploit all the features of thealgorithms because we submit-

ted all the jobs at once and the performance data of the brokers were not updated early enough

for the matchmaking process. To avoid this, in the last phaseof the main evaluation we sub-

mitted the jobs periodically: 1/3 of the jobs were submittedat the beginning then the simulator

waited for 200 jobs to finish and update the performances of the brokers. After this, the simu-

lator again submitted 1/3 of all the jobs and waited for 300 more to finish. Then, the rest of the

jobs (1/3 again) were submitted. In this way, the broker performance results could be used by

the scheduling algorithms. Figure 3.10 shows the results ofthe last evaluation phase. Here, we

can see that the runs with training did a lot with trained values because the feedback of the first

submission period compensateed for the lack of training.

Figure 3.11 provides a visual summary of the different evaluation phases. The above

columns show the average values of each evaluation run with the same parameters. The re-

sults clearly show that with more intelligence (more sophisticated methods) in the system, the

performance increases. The most advanced version of the first three proposed meta-brokering

solution is the Decision Maker with the algorithm called Decision3 with training. Once the

number of brokers and job properties are big enough to set up this Grid Meta-Broker Service

for inter-connecting several Grids, with the above scheduling algorithms our service will be

ready to serve thousands of users even under hcondition of high uncertainty.
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Figure 3.10: Diagram of the second phase of the main evaluation

Figure 3.11: Summary of the evaluation results

Test environment II.

Table 3.7 shows theevaluation environmentused in our evaluation. The simulation setup was

derived from real-life production grids: current grids andbrokers support only a few special

properties: here we used four. To determine the number of resources in our simulated grids

we compared the sizes of current production grids (EGEE VOs,DAS3, NGS, Grid5000, OSG,

etc.). In the evaluation we utilised 14 brokers. We submitted 1000 jobs to the system, and

measured the makespan of all the jobs. Out of the 1000 jobs 100had no special properties,

while for the rest of the jobs four key properties were distributed in the following way: 300 jobs
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Table 3.7: Evaluation environment setup.

Broker Scheduling Properties Resources

1. fcpu A 6

2. fcpu AF 8

3. fcpu A 12

4. fcpu B 10

5. fcpu BF 10

6. fcpu B 12

7. fcpu BF 12

8. fcpu C 4

9. fcpu C 4

10. fcpu AFD 8

11. fcpu AD 10

12. fcpu ADF 8

13. fcpu ABF 6

14. fcpu ABCF 10

had property A, 300 had B, 200 had C and 100 had D. The second column above denotes the

scheduling policies used by the brokers: fcpu means the jobsare scheduled to the resource with

the highest free cpu time. The third column shows the capabilities/properties (like coallocation,

checkpointing) of the brokers: here we used A, B, C and D in thesimulations. The F subscript

means unreliability, a broker having the kind of property that may fail to execute a job with the

requested service with a probablity of 0.5. The fourth column contains the number of resources

utilized by a broker. As a background workload, 50 jobs were submitted to each resource by

the simulation workload entities during the evaluation timeframe. The SDSC BLUE workload

logs were used for this purpose, taken from the Parallel Workloads Archive [3].

In order to test all the features of the algorithms, we submitted the jobs periodically: 1/3

of the jobs were submitted at the beginning then the simulator waited for 200 jobs to finish

and update the performances of the brokers. After this phasethe simulator again submitted 1/3

of all the jobs and waited for 200 more to finish. Lastly the remaining jobs (1/3 again) were

submitted. In this way, the broker performance results could be updated and monitored by the

scheduling algorithms.

In the previous section we explained how the two algorithms called Decision4 and Decision5
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Figure 3.12: Results of the Decision 4 algorithm

(both based on the Pliant system) work. For the evaluation part we repeated each experiment

three times. The measured simulation results of the Decision4 algorithm can be seen in Figure

3.12. We noticed that the measured runtimes for the jobs werevery close to each other. When

comparing the various simulation types we always used the median: we counted the average

runtime of the jobs in each of the three series and discarded the best and the worst simulations.

Figure 3.13: Simulation results for the three decision algorithms compared with the random

decision maker

A comparison of the simulation results can be seen in Figure 3.13. We found that in our

previous work [47] we used only random number generators to boost the Decision Maker, and

proposed three algorithms called Decision1, Decision2 andDecision3. Because Decision3 gave

the best results, we will compare our new measurements with the results of this algorithm. We
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can see that for around 1/3 of the simulations, Decision3 provides better results, but the overall

makespans are better for the new algorithms.

Figure 3.14: Simulation results for three decision algorithms with training compared with the

random decision maker

The simulation results for the algorithms with training canbe seen in Figure 3.14. As we

mentioned earlier, we used a training process to initiate the performance values of the brokers

before job submissions. In this way, the decisions for the first round of jobs can be made

better. Upon examining the results, Decision4 still performs about the same as Decision3, but

Decision5 clearlyoutperformsthe other two.

Figure 3.15: Simulation in the main evaluation environment

In Figure 3.15, we provide a graphical summary of the variousevaluation phases. The

columns show the average values of each evaluation run with the same parameter values. The re-

sults clearly demonstrate that the more intelligence (moresophisticated methods) we put into the
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system, the better the performance. Themost advancedversion of our proposed meta-brokering

solution is called the Decision Maker using the algorithm called Decision5 with training. Once

the number of brokers and job properties are sufficiently high to set up this Grid Meta-Broker

Service for inter-connecting several Grids, the new scheduling algorithms will be ready to serve

thousands of users even under conditions ofhigh uncertainty.

3.5 Summary

In this chapter we discussed decision-related problems in the Grid environment. The Grid

Meta-Broker itself is a standalone Web-Service that can serve both users and grid portals. This

novel enhanced scheduling solution permits a higher level,interoperable brokering by utilising

existing resource brokers of different grid middleware. Itgathers and utilises meta-data about

brokers taken from various grid systems to establish an adaptive meta-brokering service. We

developed several new scheduling components for this Meta-Broker. The best one, called Deci-

sion Maker, usesPliant functionswith a random generation in order to select a good performing

broker for user jobs even under conditions of high uncertainty. We evaluated our algorithms in

a grid simulation environment based on GridSim, and performed simulations with real work-

load samples. The evaluation results accord with our expected utilisation gains; namely, the

enhanced scheduling provided by the modified Decision Makerresults in amore efficientjob

execution.
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Chapter 4

The approximation of functions and

function decomposition

4.1 Introduction

Functions have a very important role in science and technology and in our everyday lives. They

can be represented in terms of their coordinates or by using some mathematical expression.

Usually, if the coordinates are given, then it is important to know what kind of expression ap-

proximately describes it, because sometimes interpolation or extrapolation questions have to be

addressed. The function can also be used to calculate valuesat any given point. In this way, we

can construct a function and define its parameters. In other words, we can compress this infor-

mation using a function, which will involve some learning process. In science and technology

in most cases we can get samples to determine the relationship between the input and output

values, which is called curve-fitting, because usually we donot require an exact fit, but only

an approximation. One way to approximate a function with coordinates is via an interpolation

process. Interpolation is a method where we determine a function (which may be a polynomial)

that best fits the given data points and using this result we can determine the function value

if new data points are given. We can regard interpolation as aspecific kind of curve-fitting,

where the function must go through the data points. There is arange of interpolation methods

available for this problem such as linear, polynomial, spline and trigonometric methods. It is

also possible to use neural networks for approximation purposes.

The polynomial interpolation has the following general form:

y(w,x) =
n

∑
i=0

wix
i , (4.1)

wheren is the order of the polynomial. The polynomial coefficientsw0, . . .wn will be collec-
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Figure 4.1: Plots of polynomials with different orders ofn

tively denoted by the vectorw. Note that although the polynomial function y(w,x) is a nonlinear

function inx, it is a linear function inw. Here, the values of the coefficients will be determined

by fitting the polynomial to the training points.

Using an interpolation method we have to determinen parameters in Equation (4.1), and we

have justn coordinates, so we cannot verify any compression. Interpolation nowadays is of

less interest than it once was a few years ago. Curve-fitting can be done by minimizing the

error function that measures the misfit between the functionfor any given value ofw and the

data points. One simple and widely used error function is thesum of the squares of the errors

between the predictedy(w,xn) for each data pointxn and the corresponding target valuesyn, so

in effect we have to minimise the ’energy function’:

E(w) =
1
2

n

∑
i=1

(y(xi ,w)−yi)
2 (4.2)

Clearly, it is a nonnegative quantity that would be zero if and only if the functiony(w,x)

were to pass exactly through each training data point; that is, if it were a perfect fit.

We can solve the curve-fitting problem by choosing aw for which E(w) is as small as

possible. However, every type of method has its drawbacks and this one is no different.

1. The main problem here is how to choose the ordern of the polynomial and, as we shall

see, this will turn out to be the problem of model comparison or model selection. In

Figure (4.1) we give four examples of fitting polynomials of orders M = 0, 1, 3, and 9 to

a data set, where we use sample data taken from a sine functionwith noise.

2. They are not accurate enough.

3. The parameters that we get after optimization provide no direct information about the

behaviour of the function; i.e. varying a parameter does notaffect this function.
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4. It would be nice if we could modify a certain part of the function by varying the parameter.

For example, if we would like to increase the maximum value ata certain point, we could

do this by varying a parameter using an approximation or interpolation (Fourier series,

Taylor series, etc.). It is not possible to vary a parameter so as to modify just a part of the

function as the parameter and the rest of the function describe the whole of it.

5. Very often it would be useful to describe a function by its variations, e.g. "it slowly

increases, then suddenly changes its behaviour and speeds up and after reaching its max-

imum value, it suddenly goes down". Using classical function construction procedures,

it is not so easy to find a parametrical mathematical expression which corresponds to the

natural language description of the function, but it would be useful in fields like eco-

nomics and marketing.

Here, we will present a solution that solves some of these problems [28, 45]. Our aim is

to approximate the function with the help of membership-like functions. We need a kind of

membership function which approximates the characteristic function. We get it by introduc-

ing the distending function which describes inequalities.Using the conjunction operator with

the distending function, we get the desired function class.We will also call this positive and

negative effects, whose mathematical description can be realised by using continuous-valued

logic. Here we will use a special one called the Pliant concept with Dombi operators included.

After an aggregative procedure we get the derived function.Aggregation was first introduced

by Dombi [26], but later the fuzzy community rediscovered and generalized the concept and

called it the uninorm. Instead of the membership function weshall use soft inequalities and soft

intervals which are called distending functions. All of theparameters introduced have a definite

meaning. Also, it can be proved that certain function classes may be uniformly approximated.

4.2 Distending function

In Chapter 2 we show how important is the Distending function. In this section we provide

additional information that is used for the approximation technique. In fuzzy logic theory, the

membership function plays an important role. In Pliant logic we use a soft inequality and we

call it the distending function.

Here f is the generator function of the logical connectives,λ is responsible for the sharpness

anda is the threshold value.
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The approximation process is developed within the framework of the Pliant system.

Definition 2. The Pliant system is a strict, monotonously increasing t-norm and t-conorm. The

following expression is valid for the generator function:

fc(x) · fd(x) = 1

Definition 3. The general form of distending function is

δ(λ)a (x) = f−1
(

e−λ(x−a)
)

λ ∈ R,a∈ R

The semantic meaning ofδ(λ)a is

truth(a<λ x) = δ(λ)a (x)

Remark 1:

1. In the Pliant systemf could be the generator function of the conjunctive operatoror the

disjunctive operator. The form ofδ(λ)a (x) is the same in both cases.

2. In the Pliant concept, the operators and membership are closely related.

3. Using the soft inequality with the distending function, we cannot describe a membership

like "middle age".

The distending function in the Dombi operator case is the sigmoid (logistic) function:

σ(λ)
a (x) =

1

1+e−λ(x−a)

4.2.1 Distending interval

In fuzzy logic theory, the membership function has a different interpretation. In the Pliant

concept, the membership function is replaced by a soft interval. Its mathematical description is

δλ1,λ2
a,b (x) = truth(a<λ1

x<λ2
b)

Using the Pliant concept, we translate it into two inequalities corresponding to an "and" (con-

junctive) operator.

truth(a<λ1
x) and truth(x<λ2

b)
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Theorem 2. In a pliant system if the initial conditions are

δλ1,λ2
a,b (a) = ν0 δλ1,λ2

a,b (b) = ν0, (4.3)

then the distending interval is

δλ1,λ2
a,b (x) = f−1

(
1
A

(

A1e−λ1(x−a)+A2e−λ2(b−x)
))

, (4.4)

where

A =
1

f (ν0)

(

1−e−(λ1+λ2)(b−a)
)

A1 = 1−e−λ2(b−a)

A2 = 1−e−λ1(b−a)

(4.5)

Proof 1. It is a straightforward calculation.

In the Dombi operator case, the distending function has the following form:

σλ1,λ2
a,b (x) =

1

1+ 1−ν0
ν0

1
A

(
A1e−λ1(x−a)+A2e−λ2(b−x)

) , (4.6)

where

A = 1−e−(λ1+λ2)(b−a)

A1 = 1−e−λ2(b−a)

A2 = 1−e−λ1(b−a)

In Figure (4.2), we have plottedσλ1,λ2
a,b (x) using different parameter values.

x
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0,1
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0,6

0,7

Figure 4.2:σλ1,λ2
a,b (x) if a= 5,b= 9,ν0 =

1
2,λ1 =

1
2,λ2 = 2 andλ1 =

1
4,λ2 = 1

The following properties hold for the distending interval:
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Theorem 3.

δa,b(x) = lim
λ1→∞,λ2→∞

δλ1,λ2
a,b (x) =







0 if x < a

ν0 if x = a

1 if a < x< b

ν0 if x = b

0 if b < x

(4.7)

See Figure (4.3)

Proof 2. Becauseδλ1,λ2
a,b (a) = δλ1,λ2

a,b (b) = ν0, we have to prove just 3 cases:

if x < a then lim
λ1,λ2

(

A1e−λ1(x−a)+A2e−λ2(b−x)
)

→ ∞

if x > b then lim
λ1,λ2

(

A1e−λ1(x−a)+A2e−λ2(b−x)
)

→ ∞

if a < x< b then lim
λ1,λ2

(

A1e−λ1(x−a)+A2e−λ2(b−x)
)

→ 0

This is obvious because of the properties of the exponentialfunction.

Figure 4.3:δa,b(x) function

From (4.6) we can derive another type of function wherea andb are equal, which will call

an impulse function. This means that the intervals are not given, but just the value where the

function is a maximum.

Theorem 4. The following limit property holds:

δλ1,λ2
a (x) = lim

a→b
δλ1,λ2

a,b (x) = (4.8)

f−1
(

f (ν0)

(
λ2

λ1+λ2
e−λ1(x−a)+

λ1

λ1+λ2
e−λ2(a−x)

))
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In the Dombi operator case

σλ1,λ2
a (x) = lim

a→b
σλ1,λ2

a,b (x) = (4.9)

1

1+ 1−ν0
ν0

(
λ2

λ1+λ2
e−λ1(x−a)+ λ1

λ1+λ2
e−λ2(a−x)

)

Proof 3. The proof is based on a limes property and we use the L’Hospital rule.

In Figure (4.4),σλ1,λ2
a (x) is shown with typical values.

x
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0,1
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0,4

0,5

Figure 4.4:σλ1,λ2
a (x) if a= 3,ν0 =

1
2,λ1 = 2,λ2 =

1
2

We can get an impulse function fromδλ1,λ2
a (x).

Theorem 5.

δa(x) = lim
λ1,λ2→∞

δλ1,λ2
a (x) =







ν0 if x = a

0 if x 6= a
(4.10)

Proof 4. It is similar to the proof of Theorem 2.

Now we can use Equation (4.6) ifa andb are given and Equation (4.8) if the maximum pointa

is given.

4.3 Construction of the function

Because the aggregation has a neutral value, we have to transform the interval into[0,ν] or

[ν,1]. We will define positive and negative effects using the distending interval. That is,

Pλ1,λ2
a1,a2

(x) =
1
2

(

1+ γσλ1,λ2
a,b (x)

)

(4.11)

Nλ1,λ2
a1,a2

(x) =
1
2

(

1− γσλ1,λ2
a,b (x)

)

, (4.12)
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where the scaling factorγ ∈ [0,1] controls the intensity of the effect.

Equations (4.11) and (4.12) have a common form ifγ ∈ [−1,1]; namely,

Eλ1,λ2
a1,a2

(γ,x) =
1
2

(

1+ γσλ1,λ2
a,b (x)

)

(4.13)

Here, ifγ > 0 then we have a positive effects and ifγ < 0 we have negative effects.

If the functions belong to the integrable function in the Riemannian sense, then there exist

upper or lower approximations of rectangles.

We will use this fact in the next theorem.

Theorem 6. Let f(x) be an integrable function in the Riemannian sense, and let a1 < a2 . . . < an

be a discretisation of the interval of the domain of the approximated function and let

G(x) =
m

∑
i=1

yiδ
λi ,λi+1
ai ,ai+1 (x). (4.14)

Then
∫
‖ f (x)−G(x)‖→ 0 if max‖ai+1−ai‖→ 0 andλi → ∞.

See Figure (4.5).
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Figure 4.5: Rectangles without constructing an approximation, λ = 16 andλ = 1
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Figure 4.6: Rectangles after constructing an approximation if λ = 16 andλ = 1

Becauseδa,b(x) is a rectangle and the aggregation of the rectangles are rectangles, we can

define an interval where 0< a1 < a2 . . . < an < 1. The discretisation of an interval rectangle
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approximation will be sufficiently good if theai ,a j intervals are small enough. So our method

can use any function that is integrable in the Riemannian sense.

We can use the impulse function to interpolate the function.
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Figure 4.7: Interpolative approximation without aggregation if λ = 16 andλ = 1

If λ1,λ2 are not too large, then we can get a smooth approximation.

Similarly, Theorem 5 is valid if we use the impulse function

H(x) =
m

∑
i=1

yiδλ1,λ2
ai

(x) (4.15)

In Figure (4.6) we show the rectangle approximation of a function, whereλ = 16 andλ = 1,

while in Figure (4.7) we show the interpolation whenλ = 16 andλ = 1.

4.4 Function decomposition

In the previous section we saw that we could construct a desired function using the aggregation

operator and functions that model the effects. When applying it, the reverse case may some-

times be helpful too. That is, if the function is given, we need to decompose it into positive

and negative effects. We will show that we can do this using anoptimization method. We can

find a wide variety of optimization techniques. If the initial values are properly chosen, it is

not hard to get the global minimum by using a local search algorithm. Here, we will apply the

well-known BFGS method [68]. This is one of the hill-climbing optimization techniques that

look for the stationary point of a function where the gradient is zero. Because we can define

initial points that are not far away from the optimum, the BFGS method should be able to find

the optimal solution within a couple of iterations.

In general, the function here will be defined by coordinates.Now, we will use a function

with a dense sampling procedure. In each example we will use 100 equidistant coordinates on
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the given interval.

The global procedure seeks to find all the effects simultaneously.

Now let we choose a functionF : R→ [0,1] to be approximated. Our task is to decompose

it into effects. This can be done by our distending function (approximation) or impulse function

(interpolation) procedures. First, the usual step is to smooth the functionF(x).

4.4.1 Algorithm for using the distending function

1. Let us find the the local minimum and maximum of the functionF(x)

F(ci) = Ai such that

F(x)< Ai if x∈ (ci − ε,ci + ε)

F(c j) = A j such that

F(x)> A j if x∈ (ci − ε,ci + ε)

2. Let us define the[ai,bi] intervals

a1 = c1−
c1+c2

2
, b1 =

c1+c2

2
,

a2 =
c1+c2

2
, b2 =

c2+c3

2
. . .

an =
cn−1+cn

2
, bn = cn+

cn−1+cn

2
,

where

c1 < c2 < c3 < .. . < ck

We will suppose that there is a maximum or minimum value like that shown in Figure

(4.8) below.

Figure 4.8: Extreme values and intervals for the sample function
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3. Let us define the initial values ofλi1 andλi2 by

λi1 =
f (ci)− f (ai)

ci −ai
λi2 = 2

f (bi)− f (ci)

bi −ai

4. Let us build the initial values of the function and use equations 4.14 and 4.15 to get

Gλ1,λ2
a,b (x) =

n

∑
i=1

δ
λi1,λi2
ai ,bi

(x)

See Figure (4.9).

x
K20 K10 0 10 20 30 40 50 60

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Figure 4.9: Optimal components

5. Now find the optimal solution of theai,bi ,λi1,λi2 values with the suggested initial values.

min
a,b,λ1,λ2

∑
(

Gλ1,λ2
a,b (xi)−F(xi)

)2

It is not easy to minimize this because a given minimum may notbe the global minimum. How-

ever, becauseGλ1,λ2
a,b (x) is a continuous function of its parameters and the initial values are well

chosen, we can get good results.

The results of this approximation are shown in Figure (4.10).
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Figure 4.10: The function and its approximation
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Figure 4.11: Extreme values of the function

4.4.2 Algorithm for the impulse approximation

Let us find the maximum and minimum values ofF(x)

c1 < c2 < c3 < .. . < ck,

whereci andci+1 are the minimum and maximum (or maximum and minimum) points.(See

Figure (4.11)).

If f (ci) = Ai, let the initial value of the approximation function be the following:

Ai = f (ci)−
1
2
, λ1i =

ci −ci−1

Ai −Ai−1
and λ2i =

ci+1−ci

Ai+1−Ai

See Figure (4.12).

The procedure used here is the same as that for the interval approximation.
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Figure 4.12: Main and optimal effects for the interpolativecase
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In Figure (4.13) we plotted the results of applying this procedure.
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Figure 4.13: The function and its interpolative approximation

4.5 Summary

Here, we developed a new type of non-linear regression method that is based on the distending

function and provides a natural description of the function. Our algorithm used the BFGS

method to get accurate effects. Then we showed that this procedure is effective if all the data

points given are based on the distending function. We found that this method is fast (only a few

iteration steps are required for the optimisation method) and easy to use. With this technique, it

is possible to change only a part of the function, instead of the usual case where we cannot.

70



Chapter 5

Cognitive systems

5.1 Introduction

When we have to deal with a sophisticated system, we are confronted by certain difficulties

as we have to represent it as a dynamic system. Using a dynamicsystem model can be hard

computationally. In addition, representing a system with amathematical model may be difficult,

or even impossible. Developing a model requires effort and specialized knowledge. Usually

a system involves complicated causal chains, which might benon-linear. It should also be

mentioned that numerical data may be hard to obtain, or it maycontain certain errors, noise and

incomplete values. Our approach seeks to overcome the above-mentioned difficulties. It is a

qualitative approach where it is sufficient to have a rough description of the system and deep

expert knowledge is not necessary. A similar approach was proposed by Kosko [50, 52, 51],

and it is called the Fuzzy Cognitive Map (FCM). FCMs are hybrid methods that lie in some

sense between fuzzy systems and neural networks. Knowledgeis represented in a symbolic

way using states, processes and events. Each piece of information has a numerical value. In

Figure 5.1 we can see a typical FCM model, which is a directed graph.

FCM allows us to perform qualitative simulations and experiment with a dynamic model. It

has better properties than expert systems or neural networks since it is relatively easy to use, it

represents structured knowledge and inferences can be computed by numeric matrix operations

instead of applying rules. Here we will use another method, (which is a modification of the

FCM concept) which better matches real world modeling and itis called Pliant Cognitive Maps

[44, 42]. We use cognitive maps to represent knowledge and tomodel decision making, which

was first introduced by Axelrod [8]. Kosko used fuzzy values and matrix multiplication to

calculate the next state of a system. Here instead of values,we use time dependent functions
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Figure 5.1: The FCM model

that are similar to impulse functions that represent positive and negative influences. Another

improvement is that we can drop the concept of matrix multiplication. On the one hand, matrix

multiplication is not well-suited in continuous logic (or fuzzy logic), where the truth value is one

and the false value is zero. On the other hand, general operators are more efficient for calculating

the next step of a simulation. Logic and the cognitive map model correspond to each other in

the PCM case. It is easier to construct a PCM and after we have run PCM simulations and

compared them with the real world, extracting knowledge is much easier. Combining cognitive

maps with logic helps us to extract knowledge more efficiently in contrast to those that use rule-

based systems. The standard knowledge representation in expert systems is achieved through a

decision tree. This form of knowledge representation in most cases cannot model the dynamic

behaviour of the real world. The cognitive map describes thewhole system by a graph showing

the cause-effects that connect concepts. It is a directed graph with feedback that describes the

real-world concepts and the casual influences between them.From a logic point of view, causal

concepts are unary operators of a continuous-valued logic containing negation operators in the

case of inhibition effects. The value of the node reflects thedegree of system activity at any

given time. Concept values are expressed on a normal [0,1] range. Values do not denote exact

quantities, but the degree of activation. The inverse of thenormalization might express the

values coming from the real world; i.e. using a sigmoid function. Unlike Fuzzy Cognitive Map,

we do not use thresholds to force it to take values between zero and one. The mapping is a

variation of the "fuzzification" process in fuzzy logic, andit always hinders our desire to get

quantitative results. In Pliant logic we map the real world into the logical model. These maps

are continuous, strictly monotonous increasing functions, and so the inverse of these functions

yields data about the real world.
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5.2 Pliant Cognitive Maps

In the FCM, the causal relationship is expressed by either positive or negative functions having

different weights. As we mentioned earlier, this will be replaced by unary operators in the PCM.

Let {C1, . . . ,Cm} be a set of concepts. Define a directed graph over the concepts. A directed

edge has a weightwi j from conceptCi to conceptCj . The weight measures the influence ofCi

onCj , where

• 0.5 is the neutral value,

• 0 is maximum negative and

• 1 is maximal positive influence or causality.

In the FCM, the weight valuewi j ∈ [−1,0,1] . In our case,

• wi j > 0.5 means there is a direct (positive) causal relationship between conceptsCi and

Cj . That is, the increase (decrease) in the value ofCi leads to an increase (decrease) in the

value ofCj .

• wi j < 0.5 means there is an inverse (negative) causal relationship between conceptsCi

andCj . That is, the increase (decrease) in the value ofCi leads to a decrease (increase) in

the value ofCj .

• wi j = 0.5 means there is no causal relationship betweenCi andCj .

During the simulation, the activation levelai of conceptCi is calculated in an iterative way.

In the FCM, the calculation rule was introduced to calculatethe value of each concept based

only on the influence of the interconnected concepts

At
i = f

(

∑
i 6= j

At−1
j ·Wji

)

,

whereAt
i is the value of conceptCi at time stept, At−1

j is the value of conceptCj at time step

t −1, Wji is the weight of the causal interconnection from conceptjth toward conceptith and

f is a threshold function. One of the most popular threshold functions is the sigmoid function,

whereλ > 0 determines the steepness of the continuous function f and squashes the content of

the function in the interval [0,1]:

f (x) =
1

1+e−λx
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. A more general FCM formula was proposed By Stylios et al. [72] to calculate the values of

concepts at each time step. Namely,

At
i = f

(

ki
1 ∑

i 6= j

At−1
j ·Wji +ki

2At−1
i

)

The coefficientski
1 and ki

2 must satisfy the conditions 0≤ ki
1 ≤ 1 and 0≤ ki

2 ≤ 1. The

coefficientki
1 expresses the influence of the interconnected concepts in the configuration of

the new value of conceptAi. The coefficientki
2 represents the proportion of the contribution

of the previous value of the concept in the computation of thenew value. The FCM has the

advantage that we get a new state vector by multiplying the previous state vector a by the

edge matrix W, which shows the effect of the change in the activation level of one concept on

another. In the Pliant concept we aggregate the influences instead of summing up the values.

The result always remains between 0 and 1, so we do not need normalization as an additional

step. The aggregation in Pliant logic is a general operationthat contains conjunctive operators

and disjunctive operators as well. Depending on the parameter - called the neutral value - of

the aggregation operator, we can build logical operators like Dombi operators. Using PCMs

(Pliant Cognitive Maps) we can answer "what if" questions based on some initial scenario.

For example, letAi be the initial state vector. The new state is calculated repeatedly with the

aggregation operator until the system converges to
∣
∣
∣At

i −At−1
i

∣
∣
∣ < ε. We will get the resulting

equilibrium vector, and this will provide a set of answers toour "what-if" questions. Our PCM

can be used in any area covered by the FCM.

5.3 Components of the PCM

Now we will introduce the components of the Pliant CognitiveMaps.

5.3.1 Aggregator operator

Besides the logical operators constructed in fuzzy theory,a non-logical operator also appears.

The reason for this is the insufficiency of using either conjunctive or disjunction operators for

real-world situations [89]. The rational form of an aggregation operator is [20]:

a(x1, . . . ,xn) =
1

1+ 1−ν0
ν0

·
( ν

1−ν
)∑wi−1 ·∏n

i=1(
1−xi

xi
)wi

We can model conjunctive and disjunctive operators with theaggregation operator. If v is

close to 0, then the operation has a disjunctive characteristic; and if v is close to 1, then the
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operation has a conjunctive characteristic. From this property it can be seen that by using the

aggregation we have more possibilities than that got simplyby using the sum function in the

FCM. By altering the neutral values at the nodes, different operations can be performed.

5.3.2 Creating influences

In the Pliant Cognitive Map, we can define influences. The sigmoid function naturally maps

the values to the (0,1) interval. Positive (negative) influences can be built with the help oftwo

sigmoid functions and the conjunctive operator. Hence, we get the generalized positive impulse

function

c(t,u,v,a,b) =
1

1+ue−λ1(t−a)+ve−λ2(t−b)

whereu andv are weights. In Figure 5.2, we observe a basic influence like that mentioned in

[44]. If the influence is neutral, we can represent it by a 1/2 value. If there are no influences,

then we can continuously order the 1/2 values in the system. If we want to model positive

influences, we order a value which is larger than 1/2, and maximal value is 1. The negative

influence is the negation of the positive influence. To createthese influences, we will use the

following transformations:

P(t,u,v,a,b) =
1
2
(1+c(t,u,v,a,b))

N(t,u,v,a,b) =
1
2
(1−c(t,u,v,a,b))

Figure 5.2: An average influence.

In Figure 5.3 we have plotted the aggregation of positive andnegative effects.

It is also possible to create an effect by usingsigmoid functions alone. This has another

meaning, which is useful when we do not know the size of the effect. So in this case we model

the effect as an impulse. The domain is the same as before, so the netural value is 1/2. To
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Figure 5.3: The aggregation of influences.

satisfy these requirements all we have to do is to transform the sigmoid function into [0.5,1.0]

if we want to create a positive impulse or [0.0,0.5] if we wantto represent negative impulse. To

create an effect we will utilize the following transformation functions:

P(x,a,λ1) =
1
2
(1+σ(x,a,λ1))

N(x,a,λ2) =
1
2
(1−σ(x,a,λ2)) ,

whereλ1 > 0 andλ2 > 0. It should be mentioned that if the value of the effect attains zero or

one then the aggregation of the effect remains 1. So we need totransform the sigmoid function

into something slightly smaller than 1 and slightes larger to 0. Here, we will use the[0.15,0.95]

domain. In Figure 5.4, we can see main effects by just using sigmoid functions.

Figure 5.4: An average influence got by using sigmoids.

In Figure 5.5, we see the aggregation of positive and negative effects by just using sigmoid

functions.
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Figure 5.5: The aggregation of sigmoid influences.

5.4 Construction of the PCM

To simulate the system, all we have to do is to aggregate the influences. The aggregation

operator is a guarantee that we will use influences in the right way. This means the requirements

of the simulation is fulfilled. The following steps should becarried out to simulate the system:

1. Collect the concepts.

2. Define the expectation values of the nodes (i.e. thresholdvalues of the aggregations).

3. Build a cognitive map (i.e. draw a directed graph between the concepts).

4. Define the influences (i.e. whether they are positive or negative).

The iterative method:

1. Use the proper function or give a timetable for the input nodes.

2. Calculate the positive and negative influences using step4.

3. Aggregate the positive and negative influences, where theν0 value of the aggregation

parameter is the previous value of the conceptCj .

5.5 PCM Framework

Now we are ready to make a simulation test. For this, we developed a program to test the system

[44]. First we will study fixed, predefined situations. Thesesituations tell us that the system

is very flexible and is easy to adapt to different situations.The simulation is based on directed

graphs. The nodes are illustrated with squares. Between thenodes there are edges. Instead of
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using arrows, we represent the direction of the edge by a filled circle. If the edge leads from

the vertex v to vertex u, then we place the filled circle closerto u. In Figure 5.6, an example is

given with two nodes and the direction between the nodes is from 2 to 1.

Figure 5.6: Graph representation.

There are two kinds of nodes:

• Input nodes (i-nodes): Here, no edges lead to the node. The index of the input node is not

in the centre of the square.

• Inner nodes (inner nodes): Here all other types of nodes are inner nodes. The index of the

node is in centre of the square.

In Figure 5.6, index 2 is an i-node and 1 is an inner node. Thereare two ways to add a new

node. If the node is an inner node, then we set:

• The name of the node.

• The initial value, i.e. the expectation value (in our model it is the neutral value 0.5).

• The 2D coordinates (for visualization).

We can also provide a brief description of the node. See figures 5.7 and 5.8.

Figure 5.7: New Node dialogue box.

If the node is an i-node, then instead of giving the initial value we can provide input data.

There are three ways of doing this. These are via

• a table, we can set input data by our self in every time period.
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Figure 5.8: The result of adding new node.

• algebraic functions, (sin, cos, exp, sigmoid, etc.), calculate the selected function values.

• generating noise. We generate random values by a normal distribution between[0.5− ε,0.5+ ε]

(default:ε = 0.1s), which is simulated noise.

In figures 5.9 and 5.10 we see how the data can be entered.

Figure 5.9: Input and Inner Node in the GUI.

Figure 5.10: Input node dialogue box.

The input values are transformed into [0,1] with the sigmoidfunction wherea is the basic

value (the expectation level), andλ is the sharpness of the function. It is reasonable to set

λ = 4
xmax−xmin

, becauseλ is the slope of the sigmoid function, wherexmax/xmin is the largest /

smallest value. The sigmoid transformation is necessary because our system is always works

between zero and one.
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The next step is to connect the nodes. To add a new edge, we define

• the index of the source node,

• the index of the destination node,

• the influence (positive or negative),

• the expectation value(ν ).

See figures 5.11 and 5.12.

Figure 5.11: New edge dialogue box.

Figure 5.12: Input and inner node related with positive influences

Now we have defined the system. Next we can describe the simulation. In one cycle, the

following calculations are performed:

1. • We find the source of the edge.

• We transform the source value by the intensity:

fedge=
1

1+ ν
1−ν

1−node(value)
node(value)

• We calculate the edge influence using a sigmoid function:

fnewedge=
1

1+e−4∗λ(x−0.5)
,

whereν is the edge expectation value.
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If λ = 1, the influence is positive. Ifλ = −1, the influence is negative. We use

the sigmoid function, because in the real world the influences never reach extreme

values, i.e. they always lie between zero and one.

2. Calculate the new value of the nodes.

• We collect the influences that lead to the node.

• We transform the influences and then multiply them byfin f tr = ∏ 1− fin f (value)
fin f (value)

• We use the following function to get the actual value:fnodenew(value)= 1
1+ fin f tr

1−node(value)
node(value)

,

which is an aggregation.

3. Set the actual value of i-node.

5.5.1 Validation of the PCM concept and the Framework

First we will check whether our PCM concept fulfils the basic properties.

1. We have two input nodes with the sameν value. These two input nodes have one common

inner node. The input nodes always have the same value, and ontheir edge they have

an opposite influence; i.e. one is positive and the other is negative. The result of the

aggregation should be the neutral value (0.5). See Figures 5.13 - 5.16.

Figure 5.13: Graph representation of the simulation.

Figure 5.14: Input node values.

2. 2. The configuration here is the same as in the first experiment. Here, we change only the

ν values. We can see the effect of the new value. See Figures 5.17 - 5.20.
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Figure 5.15: Positive influence.

Figure 5.16: Negative influence.

Figure 5.17: The input values (the minimum value is 0.4, and the maximum value is 0.6).

Figure 5.18: Positive influences whenν = 0.4

Figure 5.19: Positive influences whenν = 0.6

Figure 5.20: The result of aggregating the influences.
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3. Now we have two positive influences with the same neutral values, but the input values are

just the opposite (input2(value) = 1-input1(value)) of each other. The result should also

be a neutral value. See Figures 5.21 - 5.23. We also repeat this test using the functions

sin(x) andcos(x+ π
2). See Figure 5.24 and 5.25.

Figure 5.21: Input node1 values (the minimum value is 0.4 andthe maximum value is 0.6)

Figure 5.22: Input node2 values (the minimum value is 0.4 andthe maximum value is 0.6)

Figure 5.23: The result of the aggregating two positive influences.

Figure 5.24: Positive influences ofsin(x) function.

Figure 5.25: Positive influences of thecos(x+ π
2) function.
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4. In this test we have a small complex system with three inputs and two inner nodes. Two

input nodes generate noise of different intensity, while the third one is a periodic function.

See Figure 5.26.

Figure 5.26: Small complex system.

5.6 Heat exchanger applications

A heat exchanger is a standard device in the chemical and process industry [58]. This is a special

tank where the temperature control is still a major challenge as the heat exchanger is used over

a wide range of operating conditions. The system, which has anon-linear behaviour, strongly

depends on the flow rates and on the temperature of the medium.A cross-flow water/air heat

exchanger is considered, which is subject to immeasurable or non-modeled disturbances that

require the use of knowledge-based techniques. In this problem our task is to construct be-

havioural model for the heat exchanger system, which will control the water outlet temperature

by modifying the flow rate of the air.

Figure 5.27: Typical heat exchanger system.

In Figure 5.27, we have a typical system setup. It is well known that the FCM can be

used to model and control the heat exchanger process [72]. Inmost process industries, the

thermal plant comprises two heat exchangers, but in our example (see in Figure 5.2) we just
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have the secondary circuit. The system contains two circuitsW1 nadW2. HereW1 is a circuit

that is a tubular steam/water heat exchanger, whileW2 is the cross-flow water/air exchanger.

The water in the given circuit is heated by means ofW1. On the left hand side of the circuit,

the water is cooled in the cross-flow water/air heat exchanger W2. A fan sucks in cold air

from the environment (temperatureTai). After passing the heat exchanger and the fan, the air

is blown out back into the environment. The water temperature Two is controlled by varying

the fan speedSf . The control variableTwo depends on the manipulated variableSf and the

measurable disturbances: inlet water temperatureTwi, air temperatureTai and water flow rate

Fw. In most systems, the water flow rate is usually regulated by aPI-controlled pneumatic valve,

which strongly influences the behaviour of the heat exchanger W2 and it is a major challenge

to design a temperature controller forTwo when the flow rates vary over a wide range [11, 31].

The operators of the heat exchanger gather oprating data that can be used to build a model.

To develop a Cognitive system we have to determine the concepts. Here, concepts represent

the physical input and output variables of the process[72].Experts define five concepts for this

situation:

• Concept1: The fan speedSf , which is the manipulated variable.

• Concept2: The water flow rateFw.

• Concept3: The water inlet temperatureTwi.

• Concept4: The air inlet temperatureTai. The environmental temperature cannot be altered

as it depends on the weather and season.

• Concept5: The water outlet temperatureTwo, which is the output of the model.

In the next step the causal interconnections between any twoconcepts have to be determined.

Experts can describe the relation between concepts according to the system. The connections

between concepts are

• Linkage1: It connects concept1 (fan speedSf ) with concept5 (water outlet temperature

Two). When the value ofSf increases, the value ofTwo decreases.

• Linkage2: It connects concept2 (flow rateFw) with concept5 (water outlet temperature

Two). When the value ofFw increases, the value ofTwo increases.

• Linkage3: It connects concept2 (flow rateFw) with concept1 (fan speedSf ). When the

value ofFw increases, the value ofSf increases.
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• Linkage4: It connects concept3 (water inlet temperatureTwi) with concept5 (water outlet

temperatureTwo). When the value ofTwi increases, the value ofTwo increases.

• Linkage5: It connects concept3 (water inlet temperatureTwi) with concept1 (fan speed

Sf ). When the value ofTwi increases, the value ofSf increases.

• Linkage6: It connects concept3 (water inlet temperatureTwi) with concept2 (flow rate

Fw). When the value ofTwi increases, the value ofFw decreases.

• Linkage7: It connects concept4 (air inlet temperatureTai) with concept5 (water outlet

temperatureTwo). When the value ofTai increases, the value ofTwo increases.

• Linkage8: It connects concept4 (air inlet temperatureTai) with concept1 (fan speedSf ).

When the value ofTai increases, the value ofSf decreases.

• Linkage9: It connects concept5 (water outlet temperatureTwo) with concept2 (flow rate

Fw). When the value ofTwo increases, the value ofFw decreases.

• Linkage10: It connects concept5 (water outlet temperatureTwo) with concept1 (fan speed

Sf ). When the value ofTwo increases, the value ofSf increases.

Figure 5.28: FCM model for heat exhanger system.

Figure 5.28 shows the system that describes models and controls the heat exchanger system.

The FCM model for the heat exchanger is in accordance with themodels and experiments

described in [58, 31]. It is also possible to create an influence matrix of the system like that

given in Table 5.1.

To simulate the real environment in the FCM, the values of concepts correspond to real

measurements that have been transformed to the interval [0,1]. The corresponding mecha-

nism is needed that will transform the measures of the systemto their representative values

of concepts in the FCM model and vice versa. The initial measurements of the heat ex-

changer system have been transformed to concept values and the initial vector of the FCM
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Table 5.1: The weighted matrix of the model.

Sf Fw Twi Tai Two

0 0.625 0.75 -0.25 0.625

0 0 -0.75 0 -0.75

0 0 0 0 0

0 0 0 0 0

-0.75 0.125 0.25 -0.75 0

is theA0 = [0.3 0.65 0.45 0.15 0.3]. In Figure 5.28, the initial value of each concept and the in-

terconnections with their weights have also been included.For these initial values of concepts,

the FCM starts to simulate the behaviour of the process. In the FCM domain, a running step

is defined as the time step during which the values of the concepts are calculated. The value

of each concept is defined by taking all the causal linkage weights pointing to this concept and

multiplying each weight by the value of the concept that causes the linkage, and adding the last

value of each concept. Afterwards, the sigmoid function with λ = 1 is applied and hence the

result falls in the range [0,1]. After performing the simulation we got the following results:

Table 5.2: Simulation results using the FCM

Iteration Sf Fw Two Improvement:

1 0.77 0.52 0.56 0.8577

2 0.85 0.44 0.54 0.1906

3 0.85 0.43 0.51 0.0419

4 0.85 0.43 0.5 0.0107

5 0.85 0.43 0.5 0.0036

This table doesn’t contain input node values where the values are same all the time. Eval-

uating the results we see that the fan speedSf has increased, the value of flow rateFw has

decreased and after the third step, the water outlet temperatureTwo falls below 0.50. We also

observe that the values between the two simulation steps aredecreasing, but this decrease is not

uniform, which is not as good as we initially expected. Theseconcepts control physical devices,

so ideally we should change values in a smooth way.
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5.6.1 Evaluate with the PCM

Our method works on real measurements, which means that we donot need to transform it to

real value between [0,1]. In our model we use the same concepts and relations, and the initial

values of the concepts are the same as before. So first of all toevaluate the our method, we need

to identify the range of each concept parameters. Because previous articles do not mention

these values, we decided to use the following values:

Table 5.3: The range values of the concept.

Concept Minimum Maximum Default

Sf 100 500 250

Fw 2 20 6

Twi 20 50 30

Tai 18 35 24

Two 20 40 30

The default value is used to specify the real values of the first step. With these range values

we can define a sigmoid function that can be used for the calculation. For example the initial

value of theSf is 0.3, and we will use the following sigmoid function:

Sf (x) =
1

1+e−
4

500(x−250)

In this case, the real value ofSf should be 144.08. With these calculations, we can compute

the initial values of the concepts: This method also shows that with each simulation step it is

Table 5.4: The initial values of the concepts.

S f Fw Twi Tai Two

144.08 3.7 27.5 8.8 21.52

easy to obtain the real value. In the classical FCM method, the influence does not change during

the simulation. In order to compare it with our method, we will also define a constant influence.

Hence in a simulation step we will calculate the new concept value in the following way. For

each node we will create a set that contains all incoming nodes. For each node in the set we

will apply the following expression to calculate the strength of the incoming node:
(

1−xi

xi

)wi j

,

wherexi is the actual value of the node andwi j is the value of the influence between concept

Ci andCj , for a given i and j. After, we can calculate each node in the set then we will use the
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aggregation operator to calculate the new value of the concept. For example, the new value of

theFw is calculated by using the following expression:

1

1+
(1−0.45

0.45

)−0.75(1−0.3
0.3

)−0.75

Now we can run the simulation until it exceeds a given limit. The following table shows the

results of our simulation.

Evaluating the results, we can see that the results are different from those got by applying

the FCM method. In Figure 5.29 we can see how the parameter value varies.

Figure 5.29: Results of the PCM model.

The fan speedSf has decreased, the value of flow rateFw has decreased, the water outlet

temperatureTwo now has a value below 0.50. We can also see that the value changes between

two simulation steps is decreasing (see Figure 5.30), but the decrease is smooth, and this is why

it requires more simulation steps to model it.

Figure 5.30: Sum of value change in each step.

5.7 Summary

In this chapter we used numerical methods to model complex systems based on positive and

negative influences. This concept is similar to the FCM, but the functions and the aggregation
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Table 5.5: Simulation results of the PCM.
Iteration Sf Fw Two Improvement:

1 0.53 0.68 0.75 0.7262

2 0.81 0.33 0.59 0.7870

3 0.52 0.46 0.31 0.7024

4 0.42 0.67 0.57 0.5787

5 0.71 0.47 0.67 0.5881

6 0.66 0.40 0.42 0.3810

7 0.46 0.59 0.46 0.4327

8 0.60 0.56 0.63 0.3492

9 0.69 0.43 0.53 0.3310

10 0.54 0.51 0.44 0.3176

11 0.54 0.58 0.56 0.1951

12 0.65 0.48 0.57 0.2203

13 0.60 0.47 0.47 0.1590

14 0.54 0.55 0.51 0.1829

15 0.61 0.52 0.57 0.1602

16 0.63 0.47 0.51 0.1224

17 0.56 0.52 0.49 0.1266

18 0.58 0.53 0.55 0.0833

19 0.62 0.49 0.54 0.0908

20 0.59 0.50 0.50 0.0734

21 0.57 0.53 0.52 0.0712

22 0.60 0.51 0.54 0.0675

23 0.60 0.50 0.52 0.0405

24 0.58 0.52 0.51 0.0462

25 0.59 0.52 0.54 0.0337

26 0.60 0.50 0.53 0.0380

27 0.59 0.51 0.51 0.0336

28 0.59 0.52 0.53 0.0256

29 0.60 0.51 0.53 0.0264

30 0.60 0.51 0.52 0.0174

31 0.59 0.51 0.52 0.0191

32 0.59 0.51 0.53 0.0155

33 0.60 0.51 0.52 0.0148

34 0.59 0.51 0.52 0.0141

35 0.59 0.51 0.53 0.0084

procedures are quite different. It is based on a continuous-valued logic and all the parameters

have a semantic meaning. We developed two different kinds ofmethod to create effects. We
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also described a framework that was developed by us. With this framework, we gave some basic

examples that explained how Pliant Cognitive Maps work. Here, we showed that we can use

this method in a real-world environment. The values betweenthe simulation steps smoothly

decrease, but it requires more simulation steps. In our example we used the same influence

for each concept all the time, but it is possible to change thestrength of the influence and

mathematically model real-world situations better.
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SUMMARY OF THE RESULTS OF THE

THESIS

In Chapter 1 I reviewed fuzzy sets and operators that are related to this thesis. I introduced and

described the most important properties and theorems of negation operator, the t-norm opera-

tor, t-conorm operator and aggregative operator. After, I explained the connection between the

modalities and hedges, and the general form of the modalities.

In Chapter 2 I presented the Plaint system, which is a subset of Fuzzy system. I gave a definition

of the Pliant system, and then I explained the operators of Pliant system. I also introduced the

distending function that is used in making function approximations.

In Chapter 3, I applied the Plaint system in the Grid environment as a decision support algo-

rithm. In the first part I introduced the history and unit elements of the Grid environment. The

Grid Meta-Broker itself is a standalone Web-Service unit element that can serve both users and

grid portals, and it has a direct connection with brokers. The novel enhanced scheduling so-

lutions allows a higher level, interoperable brokering by utilising existing resource brokers of

different grid middleware. The Grid Meta-Broker gathers and utilises meta-data about brokers

from various grid systems to establish an adaptive meta-brokering service. Here, I introduced

several new scheduling components for this Meta-Broker. These algorithms utilise the Broker’s

properties for making decisions. The best one, called Decision Maker, uses Pliant functions

with a random generation in order to select a good performingbroker for user jobs even under

conditions of high uncertainty. After, I presented our results. We evaluated our algorithms in

a grid-simulation environment based on GridSim, and performed simulations with real-world

workload samples. The evaluation results accord with our expected utilisation gains; namely,

the enhanced scheduling provided by the revised Decision Maker resulted in a more efficient

job execution.

The main results presented in Chapter 4 are as follows. First, I described the basic approxi-

mation technique that may be inappropriate in some sense. Then I developed a new type of
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non-linear regression method that is based on the distending function and provides a natural

description of the function. In the approximation method, the distending function could be ap-

plied in two different ways. During the creation of the distending function in the first method

we could use the peak of the function, and in the second methodwe could use the length of an

interval. Next, I defined a function and showed how to create and decompose it with this tech-

nique. This algorithm uses the BFGS method to get accurate results. I found that this method

was fast (only a few iteration steps were required for the optimisation method), it was efficient

and easy to use. Using this technique, it is possible to change only a part of the function, instead

of the usual case where it is not possible to do so.

In the final chapter I presented the Cognitive Map. Here, our intention was handle complex

dynamic systems using the Pliant system. This concept is similar to the Fuzzy Cognitive Map,

but the functions and the aggregation procedures are quite different. It is based on a continuous-

valued logic and all the parameters have a semantic meaning.I defined two different kinds of

method to create an effect and I showed how to build the PliantCognitive Map. A framework

was also described that was developed by the author. By usingthis framework, I provided some

basic examples to illustrate how Pliant Cognitive Maps work. Then I demonstrated that this

method could be used in a real-world environment. Evaluating the results, I found that the val-

ues between the simulation steps smoothly decrease, but required more simulation steps. In this

example I used the same influence for each concept all the time, but it is also possible to change

the strength of the influence and model real-world situations better.
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Az els̋o fejezetben tézishez köthető fogalmak kerültek bevezetésre, így a fuzzy halmazok és

operátorok. Továbbá ismertettem a negációs operátort, t-normát, t-conormát és aggregative

operátort. Ezekre vonatkozó alapvető tételek bemutatásra kerültek. Végezetül ismertettem a

módosító szavak és a modál operátorok közötti kapcsolatot megadva ezek általános formuláját.

A második fejezetben bemutattam a Pliant rendszer, amely tekinthet̋o a Fuzzy rendszerek spe-

ciális alrendszerének. Ebben a fejezetben kerül sor a Pliant rendszer definíciójára, speciális

operátoraira. A Fuzzy elmélet halmazhoztartozási függvényének szerepét itt a distending függ-

vény veszi át, amelynek megadása is ebben a fejezetben történt meg.

A harmadik fejezett̋ol kezdve kerülnek ismertetésre a saját eredményeim. Így a Pliant rendszert

döntéstámogató algoritmusként alkalmaztam Grid rendszereknél. A harmadik fejezet elején

bemutattam a Grid rendszereket és azok alapelemeit. A Grid Metabróker egy olyan webszol-

gáltatás alapú elem, amely ki tudja szolgálni a felhasználókat, a grid portálokat és a brókerek-

kel közvetlen kapcsolatban áll. Egy újszerű ütemező algoritmus felhasználása lehetővé tesz

egy magasabb szintű, együttműködő bróker használatot úgy, hogy felhasználunk már meglévő

más grid rendszerben lévő brókereket. A Grid Metabróker azért gyűjti össze és hasznosítja a

különböz̋o rendszerben lévő brókerek metaadatait, hogy létrehozzon egy adaptív metabróker

szolgáltatást. A fejezetben bemutattok néhány döntéstámogató ütemez̋o algoritmust, amely a

Metabróker komponenshez készült. Ezen algoritmusok a döntés meghozatalához a brókerek

jellemz̋oit használja fel. A legjobb megoldást a "Pliant function with random generation" nevű

algoritmus adta. Ez a felhasználó által beküldött feladathoz - a rendszer nagy bizonytalansága

mellett is - a legjobban teljesítő brókert választja. A fejezet végén kerül sor az eredmények

bemutatására. A tesztek valós terhelési adatokon a GridSimszimulációs környezetben kerültek

kiértékelésre. Az eredmények nagy nyereséget mutattak, azaz a javított ütemez̋o algoritmus

sokkal hatékonyabb feladat futási eredményt adott.

A negyedik fejezetben általános közelítő eljárásokat ismertetem. Rámutatok ezen eljárások

néhány hiányosságára. Ezek alapján kifejlesztettem egy újtípusú nem lineáris regressziós
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eljárást, amely a felfújó függvényen alapul és a függvény természetes leírását adja. A közelítés

során a felfújó függvényt két féle módon is lehet alkalmazni. A felfújó függvény létrehozása

során az egyik esetben a függvény csúcsát, a másikban egy intervallumot használtam fel. Az

algoritmusom a BFGS eljárást is használja, így pontosabb közelítést érhet̋o el. Megmutattam,

hogy az eljárás gyors, hatékony (csak néhány lépés szükséges az optimalizáló eljárásnak) és

egyszerűen használható. Ezzel a módszerrel lehetséges a függvény egy részét direkt módon

megváltoztatni szemben a szokásos közelítő eljárásokkal.

Az utolsó fejezet a "Cognitive Map"-el foglalkozik. Célom akomplex, dinamikusan változó

rendszerek modellezése volt a Pliant rendszer segítségével. A kidolgozott koncepció hasonló az

irodalomban már ismert "Fuzzy Cognitive Map"-hez. Az általam kidolgozott esetben mind az

alkalmazott függvények és az összegzések is mások. A módszer a folytonos logikán alapul és a

paramétereknek szemantikus jelentése is van. Két módszerthatároztam meg a hatások leírására

és azt is bemutatom, hogy miként kell felépíteni a "Pliant Coginitve Map"-et. Továbbá be-

mutattam az általam kifejlesztett keretrendszert. Példákon keresztül mutatom be, hogy hogyan

működik a "Pliant Cognitive Map". Végezetül megmutatom azt is, hogy a rendszer valós példán

is megfelel̋oen működik. A szimuláció kiértékelése során megállapítottam, hogy a szimulá-

ciós lépések közötti értékváltozások egyenletesen csökkennek, azonban több lépés szükséges

a kiegyensúlyozott állapot eléréséhez. A valós példán a hatások értékeit nem változtattam a

szimuláció során. A modell segítségével azonban lehetséges a hatások paramétereinek a vál-

toztatása és véleményem szerint a valós folyamatok így jobban modellezhetőek.
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