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INTRODUCTION

Fuzzy sets were introduced by Lofti Zadeh in 1965 with the afmeconciling mathematical
modeling and human knowledge in the engineering sciencesst bf the building blocks of
the theory of fuzzy sets were proposed by him, especiallgyfextensions of classical basic
mathematical notions like logical connectives, rulesatiehs and quantifiers.

During the last decade fuzzy sets and fuzzy logic have beeonane popular areas for research,
and they are being applied in fields such as computer sciemathematics and engineering.
This has led to a truly enormous literature, where there sgsgmtly over thirty thousand pub-
lished papers dealing with fuzzy logic, and several hunsllexbks have appeared on the various
facets of the theory and the methodology. However, thereti@rsingle, superior fuzzy logic
or fuzzy reasoning method available, although there aresmomns competing theories.

The Pliant system is kind of fuzzy theory that is similar tauady system [21]. The difference
between the two systems lies in the choice of operators.Zzyftheory the membership func-
tion plays an important role, but the exact definition of fisisction is often unclear. In pliant
systems we use a so-called distending function, which seits a soft inequality. In the Pliant
system the various operators, which are called the conpmalisjunction and aggregation op-
erators, are closely related to each other.

The main contribution of this thesis will be to show how th&aRi system can be applied to
a variety of problems in the real world. During my studies Isvgaiided by pragmatism and
utility. First, by creating a dynamic system, we can creasysiem like the Fuzzy Cognitive
Map. Second, we can apply the Pliant system by introducimgtfon approximation tech-
niques, which have useful and practical aspects. And thiedzan apply it in problems that use
decision-making techniques.

This thesis is organised as follows. In Chapter 1, we brieflyew fuzzy set theory and op-
erators that are needed to understand fuzzy logic and itgcappns. We describe the most
important properties of the negation operator, the t-noparator, t-conorm operator and ag-

gregative operator. Next, we explain the connection betweedalities and hedges. Here, we
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will also present the most important definitions and thea.em

In Chapter 2 we present the Pliant system, which is a sub$etoy logic. We give a definition
of the Pliant system, and then we describe the various apserat this system. We also intro-
duce the distending function that will be used later when vadefunction approximations.

In the second part of the thesis we present some problemseviherPliant system may be
readily applied. In Chapter 3, we use the Pliant system irsae¢making situations. Here, we
describe the Grid system, and we discuss the main problemds, gvhich is to decide which
Grid system should execute the actual job. We create seslg@ithms that are used for deci-
sion making, then test them in a simulation environment. Westhat the algorithm that uses
Pliant logic performs the best. The results of Chapter 3 \waldished in [29, 47].

In Chapter 4 we apply the Plaint system in the problem of fiencipproximation. We describe
the basic approximation technique that may be inapprapiresome sense. We define two
different kinds of techniques based on the distending fanciThis algorithm has several good
properties e.g. we can modify only a part of the function aedents of the algorithm has a
semantic meaning. The results of Chapter 4 were publishg8im5].

The last chapter deals with the Cognitive Map. Here, we miteee Fuzzy Cognitive Map,
which was first proposed by Bart Kosko. We also describe a messkof this system, and we
propose a new technique that is called the Pliant Cognitia@.MVe explain how to build the
Cognitive Map and we also describe a framework that was dpeel by us. After, we describe

a real problem and evaluate the PCM for it. The results of @rdpwere published in [42, 44].
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Chapter 1

Elements of fuzzy systems

Fuzzy sets were introduced by Lofti Zadeh in 1965, with the af reconciling mathematical
modeling and human knowledge in the engineering sciencesst bf the building blocks of
fuzzy set theory were proposed by him, especially fuzzyresitens of classical basic mathe-
matical notions like logical connectives, rules, relai@md quantifiers.

During the last decade fuzzy sets and fuzzy logic have beeonane popular areas for research,
and they are being applied in fields such as computer sciemaiematics and engineering.
This has led to a truly enormous literature, where there sgsgmtly over thirty thousand pub-
lished papers dealing with fuzzy logic, and several hun8igaaks have appeared on the various
facets of the theory and the methodology. However, thereti@rsingle, superior fuzzy logic
or fuzzy reasoning method available, although there aresmomns competing theories.

Before we introduce the Pliant system, we have to define leeigents of the fuzzy sets. First,
we define the negation operator and its properties, follomed definition of the t-norm ope-
rator and t-conorm operator. Next we define the aggregatanabor, which is also called a
uninorm in the literature. After, we will present hedges amatialities, and explain the connec-

tion between them. Finally we introduce the general formhefmodifiers.

1.1 Negation operators

Definition 1. We say that (x) is a negation if n [0,1] — [0, 1] satisfies the following conditions:
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C1: n:|[0, 1] — [0,1] is continuous  (Continuity)

C2: n0)=1,n(1)=0 (Boundary conditions)
C3: n(x) <n(y) forx>y (Monotonicity)
C4: n(n(x)) =x (Involution)

From C1, C2 and C3, it follows that there exists a fix paint [0, 1] of the negation where

N(V.) =V, (1.1)

So another possible characterisation of negation is whemassegn a so-called decision
valuev for a givenvyg; i.e. a point(v,vg) can be specified such that the curve must intersect.

This tells us something about how strong the negation opeisat

n(v) =vo (1.2)

If n(x) has a fix poinv,, we use the notation,, (x) and if the decision value i, then we
use the notationy (x). If n(x) is employed without a suffix, then the parameter has no impor-
tance in the proofs. Later on we will characterise the negatperator in terms of the,, vo

andv parameters.

For the strong negation, two representation theorems awrknTrillas [74] once showed

that every involutive negation operator has the followiogri

nx) = f 11— f(x), (1.3)

where f : [0,1] — [0,1] is a continuous strictly increasing (or decreasing) fuorcti This
generator function corresponds to the nilpotent operdtoligontent t-norms). For the strictly
monotonously increasing t-norms, another form of negatjerator given in [24] is

n(x) = £-1 (%X)) | (1.4)

wheref : [0,1] — [0, ] is a continuous, increasing (or decreasing) function aglthe gener-
ator function of the strict monotone t-norm or t-conorm.

We can express these negation operators in terms of therahgalues to get a new form
of the negation operator.

For the strict monotone operators

. ()= 1 ( fz(V”) (1.5)
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Figure 1.1: The shape of the negation function
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Figure 1.2:ng strict andn; non-strict negation

The other form of the negation operator in terms@andv (corresponding to (1.4)), is

=1 (1o ) (1.6)
In the following we will use (1.5) and (1.6) to represent tlegation operator because here
we are just considering strict monotone operators.
In Figure 1.1, we explain the meaning of the v, vg values and we sketch the shape of the

negation function.
Definition 2. If v1 < vy, then R, (X) is a stricter negation thany(x).
Definition 3 (Drastic negation)We call n(x) and n(x) a drastic negation when

1 if x#1 1 if x=0
M (X) = , No(X) = ,
0 if x=1 0 if x#0
no(X) is the strictest negation, whifg (x) is the least strict negation. This is a non-continuous

negation, so it is not a negation in the original sense (sger€il.2).

Theorem 4. The negation operators ,(x) = f—1 (f(v@%), Ny, (X) = f‘l(f?g’(;))

—h

have the following properties:
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a. They are continuous.
b. They are strictly monotonous and decreasing.

c. The correspondence principle is valid:

d) The involutive property holds:
(X)) =% My, (ny, (X)) =x
e) The neutral value property is valid:
nv(V) =Vvo, My, (Vi) =Vs.

Proof. It is trivial using the representation form of the negati@e@tor.

O
In fuzzy theory, we utilise two types of negation operatdre3e are
Yager: Np(X) = V1—xM (1.7)
Hamacher, Sugeno: ng(x) = 1-x (1.8)
» SUgeno: Nl =7772x '

We can express the parameters of the negation operatonis téiits neutral values(v..) =

V.. So we have

In(2
v, =n(v,) = {/1-vMandm= — (2)
In(v.,)
Then the Yager negation operator has the form
_ Invy
Ny, (X) = <1—x_':%> " (1.9)
In a similar way, for the Hamacher negation operator,
Ny(X) = ! Ny, (X) = (1.10)
R - e |

This form of negation operator can be found in [22].

Definition 5. A negation g, (x) is stricter than g, (x), if v1 < vo.
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1.2 T-norm, t-conorm

1.2.1 History of Triangular Norms

Where did the nam#&-norm” originate and when? It appeared naturally in the study of gen
eralized triangle inequalities for statistical metric sps- hence the name triangular norm, or
simply t-norm.

The name first appeared in a paper entitled Statistical betf60] that was published on
27th october in 1942. A t-norm was supposed to act on the salfisvo distribution functions,

hence on the unit square. Here is the original definition bydée.

Definition 6. A real-valued function T defined on a unit square is callechaitm in the sense
of Menger if

(@ 0<T(a.p)<1

(b) T is non-decreasing in either variable

(© T(a,B)=T(B,a)

d T(1,1)=1

(e) Ifa>0thenTa,1) > 0.

Note that here the notation from the original sources is Usewlce it may vary slightly later
on.

In 1942 a t-norm was not supposed to be associative and thedlhpuconditions (a), (d),
(e) were rather weak. Any t-norm (and also each t-conormgfgad the axioms (a)-(e). But
for example, each convex combination of a t-norm T (and anbom S) also satisfied axioms
(a)-(e).

Another original idea of Menger was the simple t-norm T, vbhgatisfies the additional
condition (f) 0 < T(a,B) < 1for0< ap.

We can see some kind of strictness in this condition. An Angdean t-norm (t-conorm) is
a simple t-norm in this sense if and only if it is strict.

Perhaps just this vagueness in the definition was the oriyjgome critical remarks by
Wald [76] to Menger's approach and it impeded its developrfarseveral years.

Statistical matrix spaces in the forties and fifties wereedasn Wald'‘s version of triangle
inequality (this corresponds to the convolution of two disfttions). So Menger’s approach
was an "overture”. The real starting point of t-norms cam&960, when Berthold Schweizer
and Abe Sklar, (two students of Menger) published their pepiatistical Metric Spaces [70].

However, we recall a footnote of this paper "as probably Merngforms us, even before the
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paper was written, both he and Wald in a number of conversati@d come to feel that the

Wald inequality was in some respect too stringent a requergno impose on all statistical

metric spaces”. In this thesis, the most common t-norms-@otdrms are introduced:

T1: T(a,b)=maxa+b—1,0)
T,: T(a,b)=ab

Tz: T(a,b)=min(a,b)

T4: T(ab)=maxab)

Ts: T(a,b)=a+b—ab

Te: T(ab)=min(a+b,1),

where the notation follows Schweizer and Sklar [70]. Thss Was arranged in order of

increasing "strength”, wherg@” is said to be stronger thal’ (and T’ weaker thanT”) if

T"(a,b) > T’'(a,b) for all (a,b) in the unit square with strict inequality for at least onerpai

(a,b). Schweizer and Sklar, motivated by some properties ofssizdl metric spaces, replaced

the boundary conditions (a), (d) and (e) by the condition

(@)

T(al)=a T(0,0)=0

(note thafT (0, 0) is superfluous).

This new condition implie§ < T3 = min. Thus, undefa’), min is the strongest (we

have not yet assumed associativity). Similarly, the weaKesatisfying(a'), (b) and(c) was

introduced, henceforth denoted Ty, here

Tw(X.y) a ifx=ay=1lory=ax=1
WX7y -
0 otherwise

With conditions(a’), (b) and (c) imposed onT, Schweizer and Sklar decided to add the

associativity condition

(d) T(T(ab),c)=T(a,T(b,c)),

which permits the extension of a triangular inequality attistical metric spaces to a polyg-

onal inequality.

Since 1960 a t-norm is always understood as an associativesiric non-decreasing func-

tion on the unit square in the unit interval that fulfills theumdary conditiorT (a,1) = a;i.e. 1

is a neutral element OF.

Not long after, Schweizer and Sklar introduced severaldyagions and properties. Namely,

they introduced triangular conorms (briefly, t-conorms) dsial concept of t-norms. For a given

t-norm T, its dual t-conorm S is defined by

Sab)=1-T(1-a1—b).
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They pointed out that the boundary condition is the onlyeddhce between the t-norm and
t-conorm axioms: the t-norm boundary conditi@)) is transformed to
@) S1,1)=1, Sa0) =a

(recall once again th&(1,1) is superfluous).

Note that using axiom&”), (b) and(d’), the definition of a t-conorm S does not depend on
the notion of a t-norm. Further, the necessity of charaategit-norms (and hence t-conorms)
led Schweizer and Sklar to the study of associative funst{oecall their paper entitled Associa-
tive functions and statistical triangle inequalities), Bosome sense, they went back to Abel [4]
who showed that, under some natural conditions, the carigiruof a two-place function from
a one place function always leads to an associative function

Using the results of Abel, Aczél (1949) and other authomsy thtroduced the class of strict

t-norms, which, in addition t¢a’), (b), (c) and(d’), has the following constraints:
e T is continuous (or0, 1] x [0,1])
e T(a,b) <T(c,b)wheneverCkca<c<landO<b<1
e T(a,b) < T(a,d)whenever < a<1andO0<b<d< 1 (strict monotonicity).

Based on these three conditions, a strict t-conorm wasdnted as a dual to a strict t-norm.
The order reversing property of the duality was respectedmax< S< Sy for any t-conorm
S where max an&y are the duals of min an@y, respectively.

Later, the first results characterizing t-norms (t-congwesre presented. Namely, the char-
acterization of a strict t-norm (t-conormS) through an additive generator.

The last substantial step in the foundation of t-norms acwhibrms was given in 1965 by
Ling [56]. Among other things, she recognised that contimubnorms and t-conorms form
a topological semigroup oj®, 1]. She preserved the semigroup theory notation and hence she
introduced Archimedean and nilpotent t-norms (and t-cors)r

Recall that a continuous t-norm (t-conorm) is called Arcbdétean if it fulfils(¢), (¢)

(¢) T(aa) <aforanyae (0,1)

(¢) S(a,a) >aforanyae (0,1).
A continuous non-strict Archimedean t-norm (t-conorm)aexd nilpotent. Note that a con-

tinuous Archimedean t-norm (t-conorm) is nilpotent if taés ana € (0,1) such thafl (a,a) =0

(Sa,a) =1).
Ling gave a complete characterization of continuous t-rsoamd t-conorms based on the

results of Aczél, Schweizer and Sklar, Mosert and ShieldsFaucett.

10
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Years later some complementary remarks were added. Ald®78 Frank [35] solved the
functional equation.

T(a,b)+Sab)=a+b

for continuous t-norm3 and t-conormsS. Based on earlier results of Climescu (1946), he
introduced the concept of ordinal sums, which play a keyirotee investigation of continuous
t-norms and t-conorms (and of pseudo-additions as furtbeeglizations).

Now both triangular norms and conorms have become impaxtalt in different contexts.
They play a fundamental role in probabilistic metric spaeesltiple-valued logic and espe-
cially in fuzzy set theory. In the latter area they are usegewoerate the fuzzy connectives of
the union and intersection of fuzzy sets.

The use of general t-norms and t-conorms for modelling ttexsection and union of fuzzy
sets most likely goes back to a suggestion by Ulrich Hohlenduhe First International Seminar
on Fuzzy Set Theory held in Linz (Austria) in 1979. The reagamthis was the fact that
monotonicity, commutativity, associativity and the boandconditions were generally treated
as indispensable properties of meaningful extensionseldpical "and” and "or” in (two-

valued) Boolean logic.

1.2.2 Triangular Norms

In order to formulate the triangle inequality property ip@babilistic metric spaceand fol-
lowing the ideas of K. Menger [60], B. Schweizer and A. SkB®][introduced a special class
of two-place functions on the unit square, the so-callexhgyular norms. Together with their
duals, the triangular conorms, they have been applied inwamathematical disciplines, such
asprobabilistic metric spacelf1], fuzzy set theory, multiple-valued logand in the theory of

non-additive measurd65].

Definition 7. A triangular norm (t-norm for short) is a function T[0, 1]% — [0, 1] such that for

all x,y,z < [0, 1], the following four axioms are satisfied:

(T1) Symmetry ™xy) =T(y,x)

(T2) Associativity ™T(y,2)=T(T(XY),2)

(T3) Monotonicity Tx,y) < T(x,z) whenever K z
(T4) Boundary condition % 1) =x

Alternatively, a t-norm has an algebraic definition:

Definition 8. A t-norm is a commutative lattice ordered semigroup on theiaterval [0, 1],

with unit 1.

11
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Clearly, the two definitions above are equivalent. (T1) s tommutativity, (T2) means
"semigroup”, (T3) is the expression "lattice ordered onting interval” and (T4) means "with
unit 1”.

There exist uncountably many t-norms.

Example 9. The four basic t-norms are:
(i) The minimum is given by
Tm(X,y) = min(x,y)
(i) The product is given by
Te(X,y) =Xy (1.11)

(iii) The Lukasiewicz is given by
TL(X,Y) = maxx+y—1,0) (1.12)

(iv) The Weakest t-norm (drastic product) is given by

min(x,y) if maxx,y) =1
TD(X7 y) = .
0 otherwise

Axioms (T1)-(T4) are independent of each other, as can be fsem the following exam-

ples of operations on [0,1], where exactly one of the axiaals fo hold:

Example 10. Consider the following functions:

(i) The function F: [0,1]2 — [0, 1] given by

0 if (x,y) €]0,0.5] x [0,1)

Fxy) =9 ,
min(x,y) otherwise

satisfies (T2), (T3) and (T4), but not (T1).

(i) The function F. [0,1]%> — [0, 1] given by
F(Xxy) = xymax(x,y)

satisfies (T1), (T3) and (T4), but not (T2).

(iii) The function F [0,1]% — [0, 1] given by

F(xy) 0.5 if (x,y) €[0,1]2
XY) =
min(x,y) otherwise

satisfies (T1), (T2) and (T4), but not (T3).
(iv) Let ke (0,1). The function F. [0,1]?> — [0,1] given by

F(xy) =kxy
satisfies (T1), (T2) and (T3), but not (T4).

12
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Remark 11. (i) From (T1), (T3) and (T4) it is readily seen that for allex|0, 1] each t-norm

satisfies the following additional boundary conditions:
T(0,x) =T(x,0)=0.
and
T(1,X) =x.
Whence, all t-norms coincide on the boundary of the unit sgjfa1]2.
(i) (T3) and (T1) together imply the following (joint) monotaity in both components, i.e.,

T(X1,y1) <T(x2,y2)  whenever  x<xpandy <y».

Since t-norms can be regarded as functions mapped from thequmre into the unit inter-

val, a comparison of t-norms is made in the usual way, i.entpeise.

Definition 12. If for two t-norms T and b the inequality T(x,y) < T2(x,y) holds for all(x,y) €
0, 1]2 then T is said to be weaker tharp,Tand we write in this casei K To. We write T < To

whenever T< T, and | # T>.

Remark 13. It is not hard to see thatis the weakest t-norm andyTis the strongest t-norm;
that is, for all t-norm T

To<T<Tu.

We get the following ordering of the four basic t-norms:
Top<TL < Tp < Tu.

Definition 14. If ¢ is an automorphism, namely an increasing bijection of tleset! unit inter-

val, then the following formula defines the so-calfettansform of T (which is also a t-norm):

To(xY) =0 (T(0(¥),0(¥)),  xye[0.1].

This is clearly an order-isomorphism from an algebraic pofrview.
In Definition 7, t-norms were introduced as binary operat@sice they are associative,

they can also be viewed as operations with more than two argtsn

Remark 15. The associativity (T2) property allows one to extend eacbrth T to ann-ary
operation for all ne N in the usual way by induction, defining on theuple (x1,X2,...,X)) €
[0,1]"

T (X1, %2, .+, Xn) = T(T(X1,%2, -+, Xn—1),Xn)-

13
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The fact that each t-norm T is weaker than the minimum openasdkes it possible to extend

it to a (countably) infinitary operation, putting for eack )icin € [0,1]'N :

T(X1,X2, .y Xiy -+ ) = rI]iLT(l)OT(xl,xz,...,xn).

The sequence on the right-hand side is clearly non-incregand bounded from below.
Moreover, the definition can be extended to an arbitrary (matessarily countable) index
set | and(x)ic; as the infimum of all the g, %, ...,X,...)'s, where X,Xo,...,X,... IS &

subsequence ¢k;)ic .

1.2.3 Triangular Conorms

In Schweizer and Sklar’s papers [70, 69], triangular corsowere introduced as dual opera-

tions of t-norms. Here is the axiomatic definition.

Definition 16. A triangular conorm (t-conorm for short) is a function:T0,1]? — [0, 1] such

that for all x,y,z € [0, 1], the following four axioms are satisfied:

(S1) Symmetry ®Y) =S¥

(S2) Associativity & Sy,2)) = S(S(x,Y),2)

(S3) Monotonicity 8,y) < S(x,z) whenever ¥ z
(S4) Boundary condition (8,0)=x

Alternatively, a t-conorm has an algebraic meaning:

Definition 17. A t-conorm is a commutative lattice ordered semigroup onutfieinterval|0, 1],

with unit O.

Clearly, the two definitions above are equivalent. (S1) &s¢bmmutativity, (S2) means
"semigroup”, (S3) is the expression "lattice ordered onuhg interval” and (S4) means "with
unit 0”.

One can see that the axioms of commutativity, associativitmonotonicity are exactly the
same as in the case of t-norms. That means that, from an atxeopaént of view, t-norms and
t-conorms differ only with respect to the boundary conaisioIn fact, the concept of t-norms
and t-conorms are dual in some sense.

First, we will give the most important examples.

Example 18. The four basic t-conorm:
(i) Maximum given by

Su(X,y) = max(x,y)

14
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(ii) Probabilistic sum given by
S(Xy) = X+y—Xxy
(i) Lukasiewicz given by
S (X,y) = min(x+y,1)

(iv) Strongest t-conorm given by

1 otherwise

Sa(x,y>{ meey) I macey) =1

The original definition of t-conorms (Schweizer and Skla@][and [69]) is completely

equivalent to the axiomatic definition given above. Thus

Proposition 19. A function S [0,1]? — [0,1] is a t-conorm if and only if there exists a t-norm

T such that for all(x,y) € [0,1]?
S(X7y) = 1_T(1_X71_y) (113)

Proof. If T is a t-norm, then the operation defined by (1.13) satisfie}(&4). But ifSis a

t-conorm, then we can define a functidn [0,1]?> — [0,1] by
T(X7y> - 1_S(l_xvl_y)
(|

It is trivial to check thafT is a t-norm and (1.13) holds. This duality allows us to trates|

many properties of t-conorms. Also, every theorem abowtrtas readily holds for t-conorms.

Remark 20. (Tw,Sv), (Tp,Sp), (TL,S.) and(Tp, Sp) are mutually dual to each other.

1.2.4 Continuous t-norms

Definition 21. A t-norm is said to be continuous if it is continuous as a tiaee function.

Definition 22. A continuous t-norm T is called Archimedean ifx]x) < x is true for all xe
(0,1).

Definition 23. A t-norm T has 0-divisors if {x,y) = 0 for some xy € (0,1).

Definition 24. A t-norm T is strictly increasing if Tx,y) > T (x,z) whenever ¥,z < (0,1) and

y>z.
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Definition 25. A continuous Archimedean t-norm with O-divisors is callédatent. An exam-

ple is the Lukasiewicz t-norm defined in (1.12).

Definition 26. A continuous Archimedean t-norm which is strictly incregsis called strict.

An example is the product t-norm defined in (1.11)

The origin of the following theorem goes back to Aczél [5].eSaso Abel [4], Mostert
and Shields [62], Miranda [19] and Faucett [33]. The secdmbtem is due to Mostert and
Shields [62] and Miranda [19]. The present form of the thewés:

Theorem 27. A t-norm T is strict if and only if T is &@-transformation of the product t-norm.

Theorem 28. A t-norm T is nilpotent if and only if T is @-transformation of the Lukasiewicz

t-norm.

The following representation theorem of continuous Araii@an t-norms in its present
form is due to Ling [56]. See Abel [4], Mostert and Shields]j@2iranda [19], Aczél [5] and

Faucett [33] as well.

Theorem 29. A t-norm is T continuous and Archimedean if and only if thediste a strictly

decreasing and continuous function [0, 1] — [0, ] with f(1) = 0 such that
Tey) = VX + (),
where -V is the pseudoinverse of f defined by

f~1(x) ifx<f(0

(g _ | 700 iTx<TO
0 otherwise

e f(0)=oifandonlyif T is strict.

e f(0)isfinite if and only if T is nilpotent.

Moreover, this representation is unique up to a positivetiplidative constant.

Definition 30. If a t-norm T has the above representation, then the fundtiencalled an

additive generator of T.

The following method of constructing a new t-norm from a fgnoif given t-norms is based
on the results of Climescu [16], Clifford [14], Clifford-8ston [15] concerning ordinal sums of
semigroups (see also Ling [56], Frank [35]). Here, we stageform of the theorem which is

applied to t-norms.
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Theorem 31. Suppose tha{[a;,bi]};.« is a countable family of non-over-lapping, closed,
proper subintervals of0, 1], denoted byt. With each[a;,bj] € T associate a t-norm;T Let

T be a function defined d0, 1] by

(b —a)T (=&, 8 if (x,y) € [a,bi)?

Ty d 3+ a)T (3%, %) if (xy) € [ai,bi 110
min(x,y) otherwise

Inthis case T is denoted By{([a;, bi], Ti)} >ick and called the ordinal sum §f [&;, bi], Ti) };

and each fis called a summand. Then T is a t-norm.

Now we will present a characterization of continuous t-n@rithe original result of Mostert
and Shields [62] corresponded to I-semigroups$®] with 0 as zero and 1 as identity. In the

present form, this theorem first appeared in Ling [56]. Steslwspurely analytical proof.

Theorem 32. Suppose T is a continuous t-norm. Then either T is continAoclimedean or
T = min or there exists a family([a;, bi], Ti) }; . With continuous Archimedean t-normsstich

that T is the ordinal sum of this family.

1.3 Aggregative operator

The termuninormwas first introduced by Yager and Rybalov [80]. Uninorms ageaeral-
ization of t-norms and t-conorms, get by relaxing the caistron the identity element in the
unit interval{0, 1}. Since then many articles have focused on uninorms, both & theoretical
[54, 55, 39, 59, 73, 61] and a practical point of view [79]. Tdaper of Fodor, Yager and Ry-
balov [43] is notable since it defined a new subclass of uniisaralled representable uninorms.
This characterization is similar to the representatiomtém of strict t-norms and t-conorms,
in the sense that both originate from the solution of the @asiwity functional equation given
by Aczél [6].

The aggregative operators were first introduced in [20] bgcsimg a set of minimal con-
cepts that must be fulfilled by an evaluation-like operator.

Actually, as mentioned in [43], there is a close relatiopdbetween Dombi’s aggregative
operators and uninorms. In fact, they form a subclass ofarms.

In 1982, Dombi [20] defined the aggregative operator in thiefiong way:

Definition 33. An aggregative operator is a functiort €0, 1]> — [0, 1] with the properties:
1. Continuous o010, 1]2\{(0,1),(1,0)}
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2. axy)<akxy) if y<y,x#0,x#1
axy) <aX,y) if x<xX,y£0,y#1
3. a0,0) =0and &1,1) = 1 (boundary conditions)
4. a(x,a(y,z)) = a(a(x,y),z) (associativity)

5. There exists a strong negation n such that @) = n(a(n(x),n(y))) (self-DeMorgan iden-
tity) if {x,y} # {0,1} or {x,y} # {1,0}

6. a1,0)=a(0,1)=0 or a(1,0)=a(0,1)=1

The definition of uninorms, originally given by Yager and Rydy [80], is the following:
Definition 34. A uninorm U is a mapping U[0, 1]2 — [0, 1] having the following properties:
e U(xy) =U(y,x) (commutativity)
e U(x1,y1) > U(X2,¥2) if X1 > X2 and y1 > y» (Mmonotonicity)
e U(x,U(y,2)) =U(U(xy),2) (associativity)
e v, €[0,1] ¥x € [0,1] U(x,v,) = X (neutral element)

The following representation theorem of strict, continsion[0, 1] x [0,1] \ ({0,1},{1,0})
uninorms (orrepresentable uninormsvas given by Fodor et al. [43] (see also Klement et

al. [30]).
Theorem 35. Let U : [0,1] — [0, 1] be a function and.. €]0,1[. The following are equivalent:

1. U is a uninorm with neutral element which is strictly monotone o}, 1[% and contin-

uous onf0,1]%\{(0,1),(1,0)}.

2. There exists a strictly increasing bijectiopn:g0, 1] — [—o0, 0] with g,(v.) = 0 such that

for all (x,y) € [0,1]2, we have

U(x.y) =gy (9u(X) +9u(y)). (1.15)

where, in the case of a conjunctive uninorm U, we use the obioveo + (—o0) = —oo,

while, in the disjunctive case, we uset (—) = o or there exists a strictly increasing
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continuous function 4f: [0, 1] — [0, ] with f3(0) =0, f(v) =1 and {(1) = ». The

binary operator is defined by

U(xy) = fa 1 (fa(x) fa(y)) (1.16)

for all (x,y) € [0,1] x [0,1)/(0,1),(1,0) and either 40,1) = a(1,0) =0
ora(0,1) =a(1,0) =1.

If Eq.(1.15) holds, the function,gs uniquely determined by U up to a positive multiplica-
tive constant, and it is called an additive generator of timenorm U. Here, { is called the

multiplicative generator function of the operator.

Such uninorms are called representable uninorms and they previously introduced as ag-

gregative operators [20].

Definition 36. A representable uninorm is called an aggregative operaide.will denote it by

a(x,y).

Theorem 1 (Dombi [20]). Let a: [0,1]" — [0,1] be a function and let a be an aggregative n-
valued operator with additive generator g. The neutral eati the aggregative operator \s.

if and only ifX € [0,1]", Vx. It has the following form:

a.(x)=g" <g<v*) +_i<g(>q) - g(V*))> :

We will use the transformation definegdx) = In(f(x)) to get the multiplicative operator

av*<x>=fa1<fa<v*>,n ff:fvxf))z (fl” rlfa ) (1.17)

wheref, : [0,1] — [0, ] . In the following, we will use the multiplication form of theggrega-

form

tive operator.

1.4 Strict t-norms, t-conorms and aggregative operators

Let
c(xy) = feH(fe() + fe(y)  d(xy) = g (fa(¥) + fa(y)),

where f; and fy are the generator functions of the operators. The shapesé tunctions can

be seen in Figure 1.3.
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Figure 1.3: The generator function of thEigure 1.4: The generator function of the con-
conjunctive and disjunctive operators (additiyenctive and disjunctive operators (multiplica-

representation) tive representation)

Let
ge(X) =e ™ gy(x)=e fa®
Then
fe(x) = —In(ge(x)) fa(x) = —In(gq(x)).
So
c(x,y) = fe* (=In(ge(x)) —IN(ge(¥))) = g5 * (e%*'n<gc<x>>fln<gc<y>>>>
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Figure 1.5: The generator function of the adrigure 1.6: The generator function of the ag-
gregative operator in the additive represengregative operator in the multiplicative repre-

tion case sentation case

1.4.1 General form of the aggregative operator

We will use the transformation defined in (1.4) to get the iplittative operator

.9 = 1, (faw*) M fj@) -t (f&”(w) M fam-)) NCET:)
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wheref, : [0,1] — [0, ] . In the following, we will use the multiplication form of theggrega-

tive operator.
From an application point of view, the strict monotonousigreasing operators are quite

useful. They actually have a variety of applications. Thishie reason why we will focus on

strictly monotonously increasing operators.

1.4.2 Aggregative operator and the self-DeMorgan identity

1.4.3 Weighted aggregative operator

The general form of the weighted operator in the additiveesgntation case is

a(w,x) =g (iwig(m) : (1.19)

We will derive the weighted aggregative operators whers given.

First, we use the construction

01(X) =0a(X) —Ga(vs) 97 1(X) = a(x+9(vs)),

wherev, € (0,1).

ay, (W,x) =g _iwigl(xo> =

= g; __iwi<ga<xi> —ga<v*>>+ga<v*>) (1.20)

=0a" _iwi Ga(Xi) +9(v+) (1 - _iwi> )

1.4.4 General form of the weighted aggregative operator

The multiplicative form of the aggregative operator is

n Wi 1—_§Wi n
av*<w,x>=fa1<fa<v*>_|1(ffa""((vxf>) )fal(fa <v*>_rlf;w<xi>) (1.21)

n
From (1.4.3) if ¥ w; = 1, thenay, (W, X) is independent of.. and
i=1

a(w,x) = f 31 (_'ﬂlfa‘{"i (xi)> : (1.22)
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In the Dombi operator case,

1
av, (W,x) = 0 W (1.23)
e ()
v.(1—v s R
ay, (W,X) = - =1 (1.24)
Wi
v*(l—v*)iZl X"+ (L—v )it Ul(l—xu)w'
If wi =1, then ]
X"
a(w,x) = ——— : (1.25)
X" + 1 (1 =x)™
i=1 i=1
(1=v)" %
ay, (X) = - (1.26)

(1=vr A [ +vE 2 (1-x)

=1

If v, = 1, then we get

n
(X) = = : (1.27)
il

Figure 1.7:v, is the neutral element of the aggregative operator

Eq. (1.27) is called the Bl operator because it contains of three product operatorss Th

operator was first introduced by Dombi [20].

1.5 Modalities and hedges

In logic theory, modal operators have a variety of applaaiand even from a theoretical per-

spective they are interesting to study. Here, we will pregéferent approaches for obtaining
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the form of the necessity and possibility operators. These la simple parametrical form. By
changing the parameter value, we get different modalities.

Modal logic has been used in rough sets, where the sets arexappted by elements
of a partition induced by an equivalence relation. A natetadice for rough set logic is S5
(Orlowska [63, 64]). Here, the possibility and necessitydalidies express outer and inner
approximation operators.

To obtain this structure, we equip it with another type ofatesn operator. In modal logic, it
is called an intuitionistic negation operator. In our syst¢he modalities induced by a suitable
composition of the two negation operators generate a mgstdis with the full distributivity
property of the modal operators. The necessity operatamisl&neously distributive over the
conjunctive and disjunctive operator and the possibilggrator is also simultaneously distribu-
tive over the conjunctive and disjunctive operators.

Fuzzy logic is a kind of many-valued logic. If we want to irdiece hedges into the theory,
we need to provide a proper logical structure. Zadeh intteduhe modifier function of fuzzy
sets, which plays an important role because fuzzy conceptetated to natural language ex-
pressions. The popularity of the fuzzy concept is due to tigmitive aspects of the parameters
in the mathematical expressions.

In our system we will use the negation operator with the feillg properties:

dMy n(n(xl)) =X
dMz  n(c(x,y)) = d(n(x),n(y))

The greatest element 1 is interpreted as true, while thetioegaf false is 0 and 1 i8(0).

(1.28)

Tn[0,1] — [0,1] is unary operator that satisfies the following conditionstf@e necessity

operator.
N1 1twnv(D)=1 (N principle) (1.29)
N2, tn(X) <X (T principle) (1.30)
N3. x<y implies tn(X) <Tn(Y) (K principle) (1.31)
N4. tp(X) =n(tn(n(X))) (DF < principle) (1.32)
IN5.  1p(X) = Tn(TP(X)) (tn principle)] (1.33)

In our systemN5 is not required. Only a special parametrical formwandty satisfiedN5.
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Instead ofN5, we will demand that the so-called neutrality principle, i
N (5) IN(TP(X)) = X (N principle) (1.34)
Usually in a modal system the distributivity law is also dali
MDc(N)  c(tn(X), Tn(y)) = Tn(e(x,Y)) (1.35)
In a paper by Cattaeno et &MD(N) the distributivity property is not needed for the con-

junctive operators, but it is for the disjunctive operators

MDc(N)  d(Tn(X), Tn(Y)) = Tn(d(X,Y)) (1.36)

The consequence of this unusual requirement produces &im@hstructure [36].
In our system, we will provide the necessary and sufficiemdd®mns for whenMD¢(N)
andMDq4(N) both hold.

1p[0,1] — [0,1] is unary operator that satisfies the following conditionstfee possibility

operator.
Pl tp(0)=0 (P principle) (1.37)
P2. x<1p(X) (T principle) (1.38)
P3. x<y implies tp(X) <Tp(y) (K principle) (1.39)
P4. tn(X) =n(tp(N(X))) (DFO principle) (1.40)
[P5.  ™N(X) =Tp(TN(X)) (T principle)] (1.412)

In our systemP5 is not required. Only a special parametrical formmeandtp satisfied5.

Instead ofP5, we will demand that the so-called neutrality principléchice.
P (5) Tp(Tn(X)) = X (N principle) (1.42)
Usually in a modal system the distributivity law is also dali
MDy(P)  d(tr(x),Tr(Y)) = TP(d(XY)) (1.43)

Similar to the necessity operator, in a paper by Cattaend, &4 (P) the distributivity

property is not needed for the disjunctive operators, bstfiir the conjunctive operators.
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MDg(P)  c(Tp(X), Te(y)) = Tr(c(x.Y)) (1.44)

Similar to the necessity operator, in our system we will ptevthe necessary and sufficient
conditions for wherMDq4(P) andMD¢(P) both hold.

The linguistic hedge “very” always expresses a tight iraérwhereas "more or less” ex-
presses a looser interval (less tight). In this sense, "w@sresponds to the necessity operator
and "‘more or less™ the possibility operator.

With this starting point, the necessity and possibility @pers used in fuzzy logic are based on
an extension of modal logic to the continuous case. We bedmtive negation operator and
we make use of two types of this operator; one that is stntt,ane that is less strict. We will

show that with these two negation operators we can define tiiahhedges.

Modal logic, which is an area of mathematical logic, can bewad as a logical system ob-

tained by adding logical symbols and inference rules.

This issue is also related in part to linguistic hedges amdcibrresponding reverse effects
("very", "more or less"), and to the modal operators with mally reverse modal concepts
as well, i.e. one can define the necessity hedgehbwynd the possibility hedge b§x, which
have a mutually reverse effect an

We will construct linguistic modal hedges called necesaitg possibility hedges. The con-
struction is based on the fact that modal operators can liegedy combining two kinds of

negation operators.

In intuitionistic logic, another kind of negation operasiso has to be taken into account. Here,

~yx means the negated value»of~; x and~» x are two negation operator.

In modal logic,~1 x means "X" is impossible. In other words; a stronger negation than
not "x", i.e. ~2 X. Becausev1 x in modal logic, it meansx'is impossible”.
We can write

impossible x= necessitynot x) (1.45)
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~1 X:=impossible x
(1.46)
~7 X:=not X

~ X=0O~9oX (1.47)

As we mentioned above, in modal logic we have two more opesdhan the classical logic
case, namely necessity and possibility; and in modal Idggcet are two basic identities. These
are

~1 X = impossibléx) = necessitynot(x)) = O ~2 X (1.48)
{x = possibléx) = not(impossibléx)) =~ (~1 X) (1.49)

If in Eg.(1.48) we replace by ~» x and using the fact that, x is involutive, we get

OX =n~1 (~2 X), (1.50)

and with Eq.(1.49), we have

X =~ (~1X). (1.51)

Definition 37. The general form of the modalities is

TV17V2(X) =Ny, (n\)z (X>) ) (1.52)

wherev; andv; are neutral values. 11 < vy, thenty, y,(X) is a necessity operator and if

V2 < V1, thenty, y,(X) is a possibility operator.

From the above definition, we get

Tuy v, (X) = f-1 <f(V1) ey ) (1.53)

This can be rewritten as

Ty = 11 (f(vwf—) (1.54)
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Definition 38. We call graded modalities a k composition of the modalities.

oo X)) =00(.. Ox)...)=0%%x) (1.55)
K

o (oo TaX)) =00, OX)...) =KX (1.56)
K

In fuzzy theory, we use two types of negation operator.
By making use of (1.9) and (1.10) we can define the concretadaf the necessity and

possibility operators.

Figure 1.8: Necessity, possibility

This form of negation operator can be found in [22].

1.5.1 Introduction: Hedges in the Zadeh'’s sense

Zadeh introduced modifier functions of fuzzy sets calleduistic hedges. A number of stud-
ies [18, 17, 37] were made which discussed fuzzy logic angyfegasoning with linguistic truth
values. However, a systematic view of it has not been predentthe construction of linguistic
hedges, which have corresponding reverse effects, suchthe case of “very” and “more or
less”.

In the early 1970s, Zadeh [86] introduced a class of powemiglifiers that defined the
concept of linguistic variables and hedges. He proposegating with words as an extension

of fuzzy sets and logic theory (Zadeh [87, 88]). The lingaisedges (LHs) change the meaning
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of primary term values. Many theoretical studies have douted to the computation with
words and to the LH concepts (see De Cock and Kerre [17]; Hulioh and Nakamori [40];
Rubin [67]; Turksen [75]).

As pointed out by Zadeh [82, 83, 84], linguistic variablesl &arms are closer to human
thinking (which emphasise importance more than certaiauty) are used in everyday life. For
this reason, words and linguistic terms can be used to madehh thinking systems (Liu et
al. [57]; Zadeh [81]).

Zadeh [86] said that a proposition such as "The sea is veghtoran be interpreted as "It is
very true that the sea is rough.” Consequently, the serdefite sea is very rough,” "It is very
true that the sea is rough,” "(The sea is rough) is very tra@'lwe considered equivalent. In
fact, truth function modification permits an algorithmigapach to the calculus of deduction in
approximate reasoning [9], by strengthening the liaisameation with classical logic. Since
in traditional prepositional logic the validity of a reasog depends on the simple truth proof
of logic propositions [10], in a fuzzy logic we have the trvdilues that determine the fuzzy set
associated with the conclusion of a deduction [78]. Herleefrtansformation of a proposition
"X is mA' into "(X is A) is mTrue" stresses the dependence of the conclusion on thel initi
conditions, as is the case in traditional binary logic. Fas teason, in a deduction process the
analytic representation of expressions such as "very'tto@re or less true," "absolutely true"

play an important role.

The adverbial locutions "very," "more or less," "absolytehodify the truth value of the words

"true” and "false." The first are called linguistic modifiengile the second are called linguistic
truth values. Different problems arise with them, such asg twobuild the related characteristic
function, for a given combination of modifiers with logic cwectives, and how to label the re-

sulting set.

Basic notions of linguistic variables were formalized iffelient works by Zadeh in the mid
1970s [82, 83, 84]. These papers sought to provide a mathehatodel for linguistic vari-

ables.

1.5.2 Modalities and hedges

When we apply the Pliant concept the necessity and posgibperators have the same form

and the parameters are different. This common form is digikie with both conjunction and
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disjunction operators. If we have a logical expression agfdre the logical expression there
are modal operators, we can apply these modal operatocdldiom the variables. In the fuzzy
concept, the variables are membership functions. Now, Hmuld we interpret this action on
the membership function? The simple answer is that this i®dgd. Thus, here there is a
simple correspondence between a Hedge and modalities.

In this case, "very true" is the same as "necessarily truéWbo is very young" is the same
as "he/she is in our opinion necessarily young". In Figuée we show the effect of the modal

operators on a membership function, where

1
X)=—— 1.57
K(X) T (1.57)
1
N =—F38 1x (1.58)
1+ 1558 %
1
X)) =07 1x (1.59)
I+ 15 %

0.9 0.9 0.9
0.8 0.8 0.8
0.7 0.7 0.7
0.6 0.64 0.6

0.54 0.5 054

0.3 0.3 03
0.2 0.2 0.2

0.1 0.1 0.1

Figure 1.9: Very young (necessarily young), young, moreess lyoung (possible young)

1.5.3 The sharpness operator

As we saw previously, modifiers can be introduced by repgdtie arguments of conjunctive

and disjunctive operators n-times. In the next stepill be extended to any real number.

We will introduce the sharpness operator by repeating thenaents of the aggregation operator.

Because in the Pliant system we have [25],

a(xXg, X2, ..., Xy) = 1 (ﬁf(x;)) and

ax,x,...,x) = f1(f"(x)),

n
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we can introduce the following definition.

Definition 39. The sharpness operator is

XM (x) = 1 (f)‘(x)> AER (1.60)

0,8
0,6
0,4

0,2

Figure 1.10: The sharpness operator with 1,2,4,1/2 1/4 values.

1.6 General form of modifiers
Three types of modifiers were introduced earlier. Thesetare t

1. Negation operator:

- f(v)
Ny.vo(X) = 1<f(vo)m) (1.61)
2. Hedge operators, necessity and possibility operators:
_ f(x)
_ -1 1\
o = 14 (Fv0) ¢ (1.62)
3. Sharpness operator:
XM (x) = f1 (fo)) (1.63)

These three types of operators can be represented in a coforman

Definition 40. The general form of the modifier operators is

K0 = 11 (f(vw (%” (1.64)
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v=173 S

Figure 1.11:k as a modifier withA = 1,v = Figure 1.12:K as a negation with = —1,v =

1/3,2/3 1/3,2/3

Theorem 41. Negation (1.61), hedge (1.62) and sharpness (1.63) areiapegses of this

modifier.
A= -1 Is the negation operator
A= 1 is the hedge operator
f(vo)=f(v) = 1 isthe sharpness operator

Because the generator functionfis) = (1%")0 in Dombi operator case:

) 1
Ky (X) = — b\
1+ 55 (15 5)
1. IfA=-1, thenk|, ¥ = ny(X) is a negation
2. IfA=1, thenK\(,l) = Ty(X) is a modifier

if v < vo, thenty(x) is a possibility operator

if v > v, thenty(X) is a necessity operator
3. fA=Xo=13, thenk{ = x*(x) is a sharpness operator

In figures [1.11 to 1.16], we plot the different curves for ﬂﬁ,@ (x) function.
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— 1.0
0.9
o rA=4 0.8
r=2 0 r=12 /
0.6
0.5 A=1/4
0.4
03
02 02
/" 0.1
0 02 0‘4 0.6 08 1

Figure 1.13k as a sharpness operator with- Figure 1.14x as a sharpness operator Witk

1/2A=24 1/2A=1/2,1/4
I — 10
S 094
084 / 0.8 //
/ pd
i3/ 0.7
/ v=1/3
0.6 / 0.6
/ V=23 1
041 044 d V=23
/ 03 /
024 02/
// 0.1
) 02 04 06 08 1 0 02 04 06 08 1

Figure 1.15: The<\(,)‘) (x) function with the pa- Figure 1.16: The<\(,7‘)(x) function with the pa-
rameters\ =2,v=1/3,2/3 rameters\ =1/2,v=1/3,2/3
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Chapter 2

Pliant system

2.1 DeMorgan law and general form of negation

We will use the generalized operator based on strict t-n@amalsstrict t-conorms introduced by

the authors. Calvo [13] and Yager [77].

Definition 1. Generalized operators based on strict t-norms and t-cosominich are

n
C(W,X) = C(W1, X1} W2, X2; . .. ; Wi, Xn) = ot <Z\Wi fc<Xi)> ; (2.1)
i=
n
d(W,X) = d(W1, X1; Wo, X2; - .. Wn, Xn) = ft lei fa(x) |, (2.2)
i=
where w > 0.
If wi =1 we get the t-norm and t-conorm. \W; = % then we get mean operators. |If

n
> w; = 1, then we get weighted operators.
i=1

2.2 Operators with infinitely many negation operators

Now we will characterize the operator class (strict t-nord strict t-conorm) for which various
negations exist and build a DeMorgan class. The fixpeindr the neutral value can be re-
garded as decision threshold. Operators with various regadre useful because the threshold
can be varied.

It is straightforward to see that the min and max operatolsngeto this class, as does the
drastic operator. The next theorem characterizes thasesgierator systems that have infinitely

many negations and build a DeMorgan system. It is easy totsge(x,y) = xy, d(x,y) =
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X+y—xyandn(x) = 1—x build a DeMorgan system. There are no other negations fédibgi

a DeMorgan system, as we will see below.

Theorem 1. c(x,y) and dx,y) build a DeMorgan system for,nx) where R, (v.) = v, for all
v, € (0,1) if and only if
fe(X) fg(x) = 1. (2.3)

For proof see [27].

Theorem 2. The general form of the multiplicative pliant system is

0a(x,y) = (1900 + F(y) V%) (2.4)
n(x)=f1 (f(vo):(—‘;))) or (2.5)

2
0= 11 (S ). (2.6)

where f(x) is the generator function of the strict t-norm operator and[®, 1] — [0, co] contin-

uous and strictly decreasing function. Depending on theealfa, the operator is

a>0  oa(xy)=c(xy) 2.7

a<0 oa(xy)=d(xy)
lim oa(x,y) = min(x,y)
O—o0 (2.8)

Jim_oa(x,y) = max(x,y)

4

xify=1
a=0" lim oa(x,y) =< vifx — 2.9
aoF (x,y) yifx=1 (2.9)
0 otherwise
xify=0
a=0" lim oa(x,y) = qyifx=0 (2.10)
a—0-
1 otherwise

\

This operator called the drastic operator.
For proof see [27].
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2.3 Distending function

In fuzzy concepts the most powerful term is the membershiptfan. Up until now the research
community could not give an unambiguous definition of thisteln the Pliant concept we give
one which is connected to the operator system. Our starting s that the fuzzy terms are
so-called polar terms. In the table below we summarize sdrtteeanost common ones.

Let us choose the often used term “old”. The same exampldésexisZadeh’s seminal
paper[85]. We suppose now that the term “old” depends onlyag® and we do not care
whether most polar terms are always context dependent,aneold professor is defined in
another domain than old student. In classical logic we havi & dividing line; in our case let
it be 63 years oldg = 63). If somebody is older than 63 years, then they belongsdalass
(set) of old people; otherwise they do not. We can expressathian inequality form, using a

characteristic function:

1 ifa<x
Xa(X) =
0 ifa>x
The expressiona < x is equivalent to the expressiond{0x — a, so the above could be written

as:

1 if0<x—a
X(x—a) =
0 ifO>x—a
Generally, on the left hand side of the inequality we can feaeg(x) function.
1 if0<g(x)

x(9(x)) =
0 if0O>g(x)

In the Pliant concept, we will introduce the distending fiime. \We will use the notation

O(x) = truth(0 < x) XxeR

We can generalize this in the following way

3(g(x)) =truth(0<g(x)) xeR"

Instead of a strict relation, we will define a function whictoyides information on the

validity of the relation. Remark: Introducing the distemglifunction in this way allows one to
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generalize the concept ®' (in fuzzy set theory the membership functions is usuallyrdefi
onR).

Roughly speaking, if the value gf(x) is large and positive, themuth(0 < g(x)) ~ 1, if g(X)

is large and negative, then theuth(0 < g(x)) = 0 (i.e. false) and ifj(x) = 0, thentruth(0 <

g(x) = 1/2, i.e. we are uncertaind(x) can be interpreted as a distending of the inequality
relation.

The distending function is an approximation of the charastie function. In classical math-
ematics, we speak of an open or closed interval and, acgptalihis, the characteristic function
takes the value 0 or 1 on the border. In our case, we will igtlmgedefinition and define the
characteristic function such that on the borders it takes/éiue of%. We should mention that

a border with 50% probability belongs to the set and 50% tatmeplementer set.

If we define the set & x, then our approach is

.

1 if x>0
X)=1<1 if x=0 (2.11)
0 if x<O
\

If the set is described by @ g(x), then the corresponding characteristic functiog(ig(x)).

The distending function is an approximationygk) defined by (2.11) in the following sense.

(

>vg If x>0

SV =4 —vy if x=0 (2.12)

< Vo if x<0O
\

The sigmoid function has the following properties:

o(x) >3 if x>0

1
U(X)=1+e_x— ox)=3% if x=0
o(x)<3 if x<O

The sigmoid function is able to model an inequality. If we stititex with a giveng(x) func-
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tion, then )
o(g(x)) >3 if g(x)>0
_ 1 _ 1
(009) = 1 oow = (oOx) =3 if gx) =0
o(g(x)) <3 if g(x) <0

2.4 Pliant operators

In multiplicative pliant systems the corresponding aggteg operators of the strict t-norm and
strict t-conorm are equivalent, and DeMorgan’s law is olbleyéh the (common) correspond-

ing strong negation of the strict t-norm or t-conorm.

We can summarize the properties of the multiplicative plgystem like so:

c(x) = if(m) c(w,x) = f* iwif(m) (2.13)
dix)=f1 nll d(w,x) =1 nl (2.14)
2,700 2,700
. (x) = £ f<v*>_|_2!ff<<vxf)) ) = 174 100 (1) ) (2.15)
a(x) = f* _ﬁfm)) a(w,x) = f* _ani(Xi)> (2.16)
2
n(x) = 2 ( ffii;)) , (2.17)

wheref (X) is the generator function of the strict t-norm.

It was shown in [23] that the multiplicative pliant systenififa the DeMorgan identity and the
correct strong negation is defined by Eq.(2.17).

For example, letfc(x) = —Inx, the additive generator of the product operator. Assuming
we have a pliant systenfy(x) = (—Inx)~1 is a valid generator of a strict t-conorm. Their

corresponding strong negation operators are the samgxXs= ng(x) = n(x) = exp[%],

37



CHAPTER 2. PLIANT SYSTEM

so thain(1) = limy_,1 n(x), for whichc(x,y) = xyand

InxIny
d(x,y) _exp{ inxy } (2.18)
form a DeMorgan triplet.
2.4.1 The Dombi operator system
In another example, the Dombi operators form a pliant sysfidme operators are
c(X) = ! c(x) = ! (2.19)
. <n (1_Xi>a)1/°‘ L (n (1_)(')0()1/0(
+ ~ + wi | ==
2\ 2K
d(x) = ! (x) = ! (2.20)
N\ @ —1/a n 1\ @ —1/a
1+ (El <T.) ) 1+ (|§1W| <T.) )
., (x) = ! ., (x) = : (2.21)
* - - o\ * - B v 1 Wi .
L A (B2 %) L (5) M (B2 5%
1
n(x) — 5 , (222)
1+ (52) 2
) 1
Ky (X) = — by
+ 350 (i)
wherev, €]0,1[, with generator functions
1—x\° 1—x\ ¢
w9 = () = (7). (2.239)

wherea > 0. The operators, d andn fulfil the DeMorgan identity for allv, a and n fulfil
the self-DeMorgan identity for all and the aggregative operator is distributive with the stric
t-norm or t-conorm.

Egs.(2.19), (2.20), (2.21), (2.22) can be found in variatislas of Dombi. Egs.(2.19) and
(2.20) can be found in [21], Eq.(2.21) in [20] and Eq.(2.2&) e found in [23].

Eq. (2.21) is called thel3 operator because it can be written in the following form:

nx
ax) = (2.24)
|£|1Xi+igl<l_X|)
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Chapter 3

Decision making

3.1 Introduction

A decade ago a new computing infrastructure called the Gaisllvorn. lan Foster et. al. made
this technology immortal by publishing the bible of the GA&] in 1998. Grid Computing has
become a separate research area since then: currentlyageidargeted by many world-wide
projects. A decade is a long time. Although the initial gobods to serve various scien-
tific communities by providing a robust hardware and sofeaamvironment is still unchanged,
different middleware solutions have been developed (Globwolkit [34], EGEE [1], UNI-
CORE [32], etc.). The realizations of these grid middlewsarstems formed production grids
that are mature enough to serve scientists having compntatid data intensive applications.
Nowadays research directions are focusing on user need@sewtfore efficient utilization and
interoperability play key roles. To solve these problenng] gesearchers have two options: as a
member of a middleware developer group they can come up withidleas or newly identified
requirements and go through the long process of desigraggardizing and implementing the
new feature, then wait for the next release containing thetison. Researchers sitting on the
other side or unwilling to wait for years for the new releaseed to rely on the currently avail-
able interfaces of the middleware components and have tadsnced techniques of other
related research domains (peer-to-peer, Web computitificiat intelligence, etc.). Here, we
went for the second option to improve grid resource utiia@atvith an interoperable resource
management service.

Since the management and beneficial utilization of highlgashgic grid resources cannot
be handled by the users themselves, various grid resournagement tools must be devel-

oped and must support different grids. User requiremeptstercertain properties that resource
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managers must learn to support. This development is stillicoing, and users need to dis-
tinguish between brokers and to migrate their applicatishen they move to a different grid.
Interoperability problems and multi-broker utilizatioave led to the need for higher level bro-
kering solutions. The meta-brokering approach requiregylehn level resource management
by allowing the automatic and simultaneous utilization éidprokers. Scheduling at this level
requires sophisticated approaches because high unt¢geaists at each stage of grid resource
management. Despite these difficulties, this work addssbseresource management layer of
middleware systems and offers an enhanced schedulingd¢eehior improving grid utilization

in a high-level brokering service. The main contributiorhefe lies in an enhanced scheduling
solution based on thigliant Systemwhich is applied to the resource management layer of grid

middleware systems.

3.2 Meta-Brokering in Grid Systems

Meta-brokeringrefers to a higher level of resource management, whichzasilian existing
resource or service brokers to access various resource®ima generalized way, it acts as a
mediator between users or higher level tools and envirotusi@gcific resource managers. The
main tasks of this component aregatherstatic and dynamic broker properties, andt¢bedule
user requests to lower level brokers; that is, to match jdemietions with broker properties.

Afterwards, the job needs to lberwardedto the selected broker.

nnnnnnnnnnnnn

g 2
,‘/\ VAN
Meta-Broker
| Core —

\ \ [—
Translator Infor

[“Parser n
Collector
BPDL List

Figure 3.1: Components of the Meta-Broker.

Figure 3.1 provides a schematic diagram of the Meta-Brd{&)(architecture [46], includ-
ing the components needed to fulfil the above-mentionedidsitferent brokers use different
service or resource specification descriptions to intérnpre user request. These documents
need to be written by the users to specify the different kafdervice-related requirements. For
the resource utilization in Grids, OGF [2] developed a resespecification language standard

called JSDL [7]. As JSDL is sufficiently general to describe jobs and services of differ-
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ent grids and brokers, this is the default description faroidB. The Translatorcomponent
of the Meta-Broker is responsible for translating the resewspecification defined by the user
to the language of the appropriate resource broker that N tsefor a given request. These
brokers have various features for supporting different ngeds, hence an extendable Broker
Property Description Language (BPDL) [46] is required tpress metadata about brokers and
the services they provide. Theformation Collector(IC) component of MB stores data about
the accessible brokers and historical data about previgdisissions. This information tells
us whether the chosen broker is available, and/or how teligbservices are. During broker
utilization the successful submissions and failures aeked, and for these events a ranking
is updated for each special attribute in the BPDL of the appate broker (these attributes are
listed above). In this way, the BPDL documents representsém@ the dynamic states of the
brokers. In order to support load balancing, there i£SaAgent{(IS stands for Information Sys-
tem) reporting to the IC, which regularly checks the loadh& underlying resources of each
linked broker, and stores this data. The matchmaking psocessists of the following steps:
The MatchMaker(MM) compares the received descriptions with the BPDL of ribgistered
brokers. This selection determines a group of brokers thatprovide the required service.
Otherwise, the request is rejected. In the second phase kheddnts a rank for each of the
remaining brokers. This rank is calculated from the brokepprties that the IS Agent updates
regularly, and from the service completion rate that is tedian the BPDL for each broker.
When all the ranks have been counted, the list of the brokeyediered by these ranks. Lastly,
the first broker of the priority list is selected, and theokercomponent forwards the request
to the broker.

As regards related works, other approaches usually tryfineleommon protocols and in-
terfaces among scheduler instances enabling inter-gageusThe meta-scheduling project in
LA Grid [66] seeks to support grid applications with res@gtocated and managed in different
domains. They define broker instances with a set of functiomaules. Each broker instance
collects resource information from its neighbours and sahe information in its resource
repository. The resource information is distributed ovex different grid domains and each
instance will have a view of the available all resources. Kbala grid scheduler [41] was de-
signed to work on DAS-2 interacting with Globus middlewage/sces with the main features of
data and processor co-allocation; later it was extendedgpat DAS-3 and Grid’5000. Their
policy is to use a remote grid only if the local one is satutatEhey use a so-called delegated
matchmaking (DMM), where Koala instances delegate regomformation in a peer-to-peer

manner. Gridway introduces a Scheduling Architectureomary [53]. Its Multiple Meta-
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Scheduler Layers use Gridway instances to communicateraechct through grid gateways.

These instances can access resources belonging to diffeh@mistrative domains. They also
pass user requests to another domain in cases where thetameeis overloaded. Comparing
these related approaches, we can state that all of them wse m@thod to expand current grid
resource management boundaries. Meta-brokering appetire sense that different domains
are being examined as a whole, but they rather delegatercesimfiormation among domains,

broker instances or gateways through their own, implentiem@lependent interfaces. Their
scheduling policies focus on resource selection by usiggesated resource information shar-

ing, but our approach targets broker selection based orebprkperties and performances.

3.3 Scheduling Algorithms

Earlier on we introduced the Pliant System and Grid MetakBroand showed how the de-
fault matchmaking process is carried out. The main contiobwf this part is tosee howthe
scheduling part of this matchmaking process can be enhari@edchieve this, we created a
Decision Maker component based on functions of Btient systemand inserted it into the
MatchMaker component of the Meta-Broker. The first part ef tmatchmaking is unchanged:
the list of the available brokers is filtered according to tbguirements of the actual job read
from its JSDL. Then a list of the remaining brokers along witkir performance data and the
background grid load are sent to the Decision Maker in ordetetermine the most suitable
broker for the actual job. The scheduling techniques angtheduling process are described
below.

Decision Maker uses a random number generator, and we clids@aolution that gener-
ates pseudorandom numbers. The JAVA random generatorudass uniform distribution and
48-bit seed, and the latter is modified by a linear congraéfarmula [49]. We also developed
a unigue random number generator that generates randomensimtih a given distribution.
We call this algorithm the generator function. In our cased&éned a score value for each
broker, and we created a distribution based on the score v&lr example, the broker which
has the highest score has the biggest chance of being chosen.

In this algorithm, the inputs are the broker id and the brakere, which are integer valued
(see Table 3.1).

The next step is to choose a broker and put it into a temponaay:athe cardinality is
determined by the score value (see Table 3.2).

After the temporary array is filled, we shuffle this array ahdase an array element using
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Table 3.1: Inputs of the algorithm

BrokerID | Score
3 2
4 3
5 1
6 2

Table 3.2: Elements in the temporary array

BrokerID|{3|3/4|4|4|/5|6|6
ArrayID |12 3(4|5|6|7|8

the JAVA random generator. In the example shown in TabletBe8generator function chose

the broker with id 4.

Table 3.3: Shuffled temporary array

BrokerID|4|3|6|3|1 4]14|5]|6
ArrayID |1(2|3|4) 5|6 |78

Java Random generatd:

To improve the scheduling performance of the Meta-Brokeneed to send the job to the
broker that best fits the requirements; and it executes thevjthout failures in the shortest
possible execution time. Each broker Hasr propertiesthat the algorithm can rely on: a

success counter, a failure counter, a load counter and timén@ijobs counter.

e The success counter gives the number of jobs that finishémutibny errors.
e The failure counter shows the number of failed jobs.

e The load counter tells us the actual load of the grid behimdkitoker (in percentage

terms).

e The running jobs counter shows the number of jobs sent tortiieebwhich have not yet

finished.
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We developed five different [47, 29] kinds of decision algums. The trivial algorithm uses
only a random generator to select a broker. The first thremigthgns take into account the first
three broker properties. These algorithms define a scordeufar each broker and use the
generator function to select one. To calculate the scorgeyale build a weighted sum of the
evaluated properties. This number is always an integer euntturthermore, the second and
third decision algorithms take into account the maximunuegaidf the failure and load counter.
This means that we extract the maximum value of the propdogéore multiplying them by the
weight. The generator function of the third algorithm chema broker whose score number is
not smaller than the half of the highest score value.

After testing different kinds of weighted systems, we fouhdt the most useful weights

(see in Table 3.4) that represent the weights of the decagurithms applied here [47]:

Table 3.4: The weights of the decision makers

Decision Maker| Success_weight Failed_weight| Load_weight
Decision I. 3 0.5 1
Decision Il. 4 4 4
Decision IlI. 4 4 4

We developedwo other types of decision algorithms [29] that took into actoall the
broker properties. These algorithms define a score numbeati broker and use the generator
function to select a broker. Algorithms that are relatedhe Pliant system use the kappa
function to determine the broker’s score number.

Because the Pliant system is defined in Bid] interval, we need tmormalizethe input

value. These two algorithms differ only in this step:

1. The first algorithm uses a linear transformation callediflen4.

2. The second algorithm uses the sigmoid function to nogeadhe input values, which is

called Decision5.

We should als@emphasiz¢hat the closer the value is to one, the better the brokentsjfa
the value is close to zero, it means that the broker is not geodexample if the failure counter
is high, both normalization algorithms should give a vallose to zero because it is not a good
thing if the broker has a lot of failed jobs (see Figure 3.2)e Dpposite of this case is true for

the success counter (see Figure 3.3).
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Figure 3.2: Normalising the failed jobs counter using Sighfonction
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Figure 3.3: Normalising the success counter using the Sdjfoaction

In the next step we can modify the normalised property vajpeiding the same Kappa
function (see Figure 3.4). We can also define the expecter wdlthe normalisation via the

andA parameters.

0,84
0,64
Score

0,4+

0,24

T T T T 1
0 0,2 04 0,6 0.8 1,0
normalized value

Figure 3.4: Normalized parameter values using the Kappetitum

To calculatethe score value, we can make use of the conjunctive or aggyagsperator.

After running some tests, we found that we got better regiulis used the aggregation operator.
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In this step the result is always a real number lying in[h&] interval and then we multiply it
by 100 to get the broker’s score number.

When the Meta-Broker is running, the first two broker projgsr{the success and failure
counters) are incremented via a feedback method that thdagion (or a user or portal in real-
world cases) calls after the job has finished. The third andfigproperties, the load value and
the running jobs, are handled by the IS Agent of the Meta-Brofueried from an information
provider (Information System) of a Grid. During a simulatithis data is saved to a database
by the Broker entities of the simulator. This means that leytiime we start the evaluation and
before we receive feedback from finished jobs, the algostban only rely on the background
load and running processes of the grids. To further enhamesdheduling we developed a
training procesghat can be executed before the simulation in order to liséghe first and
second properties. This process sends a small number ofritihsarious properties to the
brokers and sets the successful and failed jobs number 8RbBé.s of the brokers. With this
additional training method, we can expect shorter exenutioes because we will select more

reliable brokers.

3.4 Evaluation

In order to evaluate our proposed scheduling solution, veated a general simulation en-
vironment, where all the related grid resource managemetities could be simulated and
coordinated. The GridSim toolkit [12] is a fully extendableidely used and accepted grid
simulation tool; and these are the main reasons why we chas&oblkit for our simulations.
It can be used for evaluating VO-based resource allocatiorkflow scheduling, and dynamic
resource provisioning techniques in global grids. It sufgpmodeling and the simulation of
heterogeneous grid resources, users, applications, israke schedulers in a grid computing
environment. It provides primitives for the creation of ofzalled gridlets), mapping of these
jobs to resources, and their management, hence resoumegusets can be simulated to study
scheduling algorithms. GridSim provides a multilayeredige architecture based on SimJava
[38], a general purpose discrete-event simulation packaggeemented in Java. It is used for
handling the interactions or events among GridSim compisnekll components in GridSim
communicate with each other through message passing mperdefined by SimJava.

Our general simulation architecture can be seen in FiglrelB.the right hand corner we
can see that the GridSim components were used for the sedujaid systems. Resources can

be defined with different grid-types. Resources consist@fenmachines, to which workloads
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Figure 3.5: Meta-Brokering simulation environment basedoidSim

can be set. On top of this simulated grid infrastructure wesedt up brokers. The Broker and
Simulator entities were developed by us to enable the siionlaf meta-brokering. Brokers

are extended GridUser entities:

e They can be connected to one or more resources;

¢ Different properties can be set to these brokers (agreehsamdling, co-allocation, ad-

vance reservation, etc.);
e Some properties can be marked as unreliable;

e Various scheduling policies can be defined (pre-defined:one$ — random resource
selection, fcpu — resources having more free cpus or fewdinggobs are selected,

nfailed — resources having fewer machine failures are tal§gc
e Generally resubmission is used when a job fails due to resdailure;

e Next, they report to the IS Grid load database by calling éeelback method of the Meta-
Broker with the results of the job submissions (this dataltes a similar purpose to that

of a grid Information System).
The Simulator is an extended GridSim entity:

e It can generate a requested number of gridlets (jobs) withrdnt properties, start and

run times (lengths);

e Itis related to the brokers and is able to submit jobs to them;
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e The default job distribution is the random broker selectiout the middleware types are

taken into account at least);
¢ Inthe case of job failures, a different broker is selectedtie given job;

e Itis also related to the Grid Meta-Broker through its Welvgmr interface and is able to

call its matchmaking service for broker selection.

3.4.1 Preliminary testing phase

Table 3.5: Preliminary evaluation setup.

Broker | Scheduling| Properties| Resources Workload
1. fcpu A 8 20*8
2. fcpu B 8 20*8
3. fcpu C 8 20*8
4. fcpu Ar 8 20*8
5. fcpu Br 8 20*8
6. fcpu Ce 8 20*8
7. nfail ArB 10 20*10
8. nfail AC: 10 20*10
9. nfail BeC 10 20*10
10. rnd - 16 20*16

Table 3.5 shows the details of the preliminary evaluatiorirenment. 10 brokers can be
used in this simulation environment. The second column esnithe scheduling policies used
by the brokers: fcpu means the jobs are scheduled to thermesaith the most free cpus, nfalil
means those resources are selected that have fewer maaimesf, and rnd means random-
ized resource selection. The third column shows the capablproperties (e.g.: coallocation,
checkpointing, ...) of the brokers: three properties aesgluis this environment. Here, subscript
F means unreliability; a broker having such a property maytdaexecute a job with the re-
quested service with a probablity of 0.5. The fourth colurantains the number of resources
utilized by a broker, while the fifth column contains the nwenbf background jobs submit-
ted to the broker (SDSC BLUE workload logs taken from the Rard/orkloads Archive [3])

during the evaluation timeframe.
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Figure 3.6: Diagrams of the preliminary evaluation for ealgorithm

As shown in the table, we utilised 10 brokers to perform owt fixperiment. In this case
we submitted 100 jobs to the system, and measured the make$dl the jobs (time past
from submission up to a successful completion, includirgwhiting time in the queue of the
resources and resubmissions on failures). Out of the 1&) fgbhad no special property (this
means all the brokers could successfully execute them)evidn the rest of the jobs the three
properties were distributed equally: 20 jobs had property2@ had B and 20 had C. Each
resource of the simulated grids was utilised by 20 backgiqabs (workload) with different
submission times based on the distribution defined by theCSBISJE workload logs.

Figure 3.6 shows the detailed evaluation runs with the adiveglalgorithms Decision 1
(D1), 2 (D2), 3 (D3) and without the use of the Meta-Brokem(tamized broker selection
— Rnd), respectively. In Figure 3.7 we can see the averagéseofests with the different

algorithms. This illustrates best the differences betwibersimulations with and without the
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use of the Meta-Broker.

801000,00
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401000,00

201000,00

Figure 3.7: Summary diagram of the preliminary evaluation

After reviewing the diagrams of the preliminary evaluapwe can state that all the pro-
posed scheduling algorithms (D1, D2 and D3) provide shastecution times than the random
broker selection. In the main evaluation phases, our gollb&ito set up a more realistic

environment and test it using a bigger number of jobs.

3.4.2 Main testing phase

We created two different kinds of evaluation environmenas&l on the findings of [47] we
tested the first three Decision algorithm, and the best délgowas tested with the Pliant algo-

rithm [29].

Test environment |.

Table 3.6 shows the evaluation environment used in the nvaili&ion. The simulation setup
was derived from real-life production grids: current grashgl brokers support ony a few special
properties: we used four. To determine the (proportionamber of resources in our simulated
grids, we compared the sizes of current production gridsHEGOs, DAS3, NGS, Grid5000,
0OSG, ...). We employed the same notations in this table asdef

In the main evaluation we utilised 14 brokers. In this case,swbmitted 1000 jobs to
the system, and again measured the makespan of all the jalisof e 1000 jobs, 100 had
no special property, while for the rest of the jobs, the foroperties were distributed in the

following way: 30 jobs had property A, 30 had B, 20 had C and 40 B. The workload logs
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Table 3.6: Main evaluation setup.

Broker | Scheduling| Properties| Resources Workload
1. fcpu A 6 50*6
2. fcpu Ar 8 50*8
3. fcpu A 12 50*12
4. fcpu B 10 50*10
5. fcpu Br 10 50*10
6. fcpu B 12 50*12
7. fcpu Br 12 50*12
8. fcpu C 4 50*4
9. fcpu C 4 50*4
10. fcpu AeD 8 50*8
11. fcpu AD 10 50*10
12. fcpu ADg 8 50*8
13. fcpu AB: 6 50*6
14. fcpu ABG: 10 50*10

Meta-Broker with GridSim

FEEEFFRH |

_—

Be B Br B A- C C A AD A.D A AB AD: A.BC:

22292299 999

Basurce ,,.;.,,,. Resaure

\1//// //;fg/

Figure 3.8: Simulation in the main evaluation environment

H¢\;

7

contain 50 jobs for each resource. Figure 3.8 gives a grapt@presentation of the simulation
environment.
In the first phase of the main evaluation the simulator suiechill the jobs at once, just like

in the preliminary evaluation. The results for the first thadgorithms of this phase can be seen
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in Figure 3.9.
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Figure 3.9: Diagram of the first phase of the main evaluation

In the first phase, we could not exploit all the features ofalgerithms because we submit-
ted all the jobs at once and the performance data of the lmokere not updated early enough
for the matchmaking process. To avoid this, in the last plodskee main evaluation we sub-
mitted the jobs periodically: 1/3 of the jobs were submitithe beginning then the simulator
waited for 200 jobs to finish and update the performancesebtbkers. After this, the simu-
lator again submitted 1/3 of all the jobs and waited for 300erto finish. Then, the rest of the
jobs (1/3 again) were submitted. In this way, the brokerqrentince results could be used by
the scheduling algorithms. Figure 3.10 shows the resultiseofast evaluation phase. Here, we
can see that the runs with training did a lot with trained galbecause the feedback of the first
submission period compensateed for the lack of training.

Figure 3.11 provides a visual summary of the different estaduin phases. The above
columns show the average values of each evaluation run hatlsame parameters. The re-
sults clearly show that with more intelligence (more soptéded methods) in the system, the
performance increases. The most advanced version of théhfiee proposed meta-brokering
solution is the Decision Maker with the algorithm called B&mn3 with training. Once the
number of brokers and job properties are big enough to sehigg&rid Meta-Broker Service
for inter-connecting several Grids, with the above scheduhlgorithms our service will be

ready to serve thousands of users even under hconditioglofumcertainty.
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Figure 3.11: Summary of the evaluation results

Test environment Il.

Table 3.7 shows thevaluation environmenised in our evaluation. The simulation setup was
derived from real-life production grids: current grids amakers support only a few special
properties: here we used four. To determine the number ofress in our simulated grids
we compared the sizes of current production grids (EGEE BB§3, NGS, Grid5000, OSG,
etc.). In the evaluation we utilised 14 brokers. We submi®800 jobs to the system, and
measured the makespan of all the jobs. Out of the 1000 job$ha@Mo special properties,

while for the rest of the jobs four key properties were digtted in the following way: 300 jobs
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Table 3.7: Evaluation environment setup.

Broker | Scheduling| Properties| Resources
1. fcpu A 6
2. fcpu Ar 8
3. fcpu A 12
4. fcpu B 10
5. fcpu Br 10
6. fcpu B 12
7. fcpu Be 12
8. fcpu C 4
9. fcpu C 4
10. fcpu ArD 8
11. fcpu AD 10
12. fcpu ADg 8
13. fcpu ABe 6
14. fcpu ABG: 10

had property A, 300 had B, 200 had C and 100 had D. The seconcthoakbove denotes the
scheduling policies used by the brokers: fcpu means thegabscheduled to the resource with
the highest free cpu time. The third column shows the capiasiroperties (like coallocation,
checkpointing) of the brokers: here we used A, B, C and D irsthulations. The F subscript
means unreliability, a broker having the kind of propertgttinay fail to execute a job with the
requested service with a probablity of 0.5. The fourth calwwontains the number of resources
utilized by a broker. As a background workload, 50 jobs werensitted to each resource by
the simulation workload entities during the evaluationgframe. The SDSC BLUE workload
logs were used for this purpose, taken from the Parallel Wads Archive [3].

In order to test all the features of the algorithms, we sutedithe jobs periodically: 1/3
of the jobs were submitted at the beginning then the simulatoted for 200 jobs to finish
and update the performances of the brokers. After this pim@ssimulator again submitted 1/3
of all the jobs and waited for 200 more to finish. Lastly the aamng jobs (1/3 again) were
submitted. In this way, the broker performance resultsattwel updated and monitored by the
scheduling algorithms.

In the previous section we explained how the two algorithatied Decision4 and Decision5
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Figure 3.12: Results of the Decision 4 algorithm

(both based on the Pliant system) work. For the evaluatiohvparepeated each experiment
three times The measured simulation results of the Decision4 algoritan be seen in Figure

3.12. We noticed that the measured runtimes for the jobs waeclose to each other. When
comparing the various simulation types we always used thdiane we counted the average

runtime of the jobs in each of the three series and discatgeddst and the worst simulations.
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Figure 3.13: Simulation results for the three decision algms compared with the random

decision maker

A comparison of the simulation results can be seen in Figut8.3We found that in our
previous work [47] we used only random number generator®tsiithe Decision Maker, and
proposed three algorithms called Decisionl, DecisionZ2Zewision3. Because Decision3 gave

the best results, we will compare our new measurements hgthetsults of this algorithm. We
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can see that for around 1/3 of the simulations, Decision8iges better results, but the overall
makespans are better for the new algorithms.
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Figure 3.14: Simulation results for three decision aldonis with training compared with the
random decision maker

The simulation results for the algorithms with training daseen in Figure 3.14. As we

mentioned earlier, we used a training process to initiadgogrformance values of the brokers

before job submissions. In this way, the decisions for th& fiound of jobs can be made

better. Upon examining the results, Decision4 still paerferabout the same as Decision3, but
Decision5 clearlyoutperformghe other two.
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Figure 3.15: Simulation in the main evaluation environment

In Figure 3.15, we provide a graphical summary of the varievsluation phases. The
columns show the average values of each evaluation runhdgtbeme parameter values. The re-

sults clearly demonstrate that the more intelligence (mophisticated methods) we put into the
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system, the better the performance. Tinest advancedersion of our proposed meta-brokering
solution is called the Decision Maker using the algorithriecBDecision5 with training Once
the number of brokers and job properties are sufficiently higset up this Grid Meta-Broker
Service for inter-connecting several Grids, the new scheglalgorithms will be ready to serve

thousands of users even under conditionsigh uncertainty

3.5 Summary

In this chapter we discussed decision-related problem&enGrid environment. The Grid
Meta-Broker itself is a standalone Web-Service that cavesleoth users and grid portals. This
novel enhanced scheduling solution permits a higher l@vielioperable brokering by utilising
existing resource brokers of different grid middlewaregdthers and utilises meta-data about
brokers taken from various grid systems to establish antagameta-brokering service. We
developed several new scheduling components for this Bet&er. The best one, called Deci-
sion Maker, useBliant functionswith a random generation in order to select a good performing
broker for user jobs even under conditions of high uncetyaWVe evaluated our algorithms in
a grid simulation environment based on GridSim, and peréarsimulations with real work-
load samples. The evaluation results accord with our eggegtilisation gains; namely, the
enhanced scheduling provided by the modified Decision Medults in amnore efficienjob

execution.
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Chapter 4

The approximation of functions and

function decomposition

4.1 Introduction

Functions have a very important role in science and teclyyand in our everyday lives. They
can be represented in terms of their coordinates or by ugsingegnathematical expression.
Usually, if the coordinates are given, then it is importankhow what kind of expression ap-
proximately describes it, because sometimes interpolati@xtrapolation questions have to be
addressed. The function can also be used to calculate \atlaey given point. In this way, we
can construct a function and define its parameters. In otbedsywe can compress this infor-
mation using a function, which will involve some learningppess. In science and technology
In most cases we can get samples to determine the relagiohstween the input and output
values, which is called curve-fitting, because usually wendbrequire an exact fit, but only
an approximation. One way to approximate a function withrdowtes is via an interpolation
process. Interpolation is a method where we determine ditm@vhich may be a polynomial)
that best fits the given data points and using this result wededermine the function value
if new data points are given. We can regard interpolation sgegific kind of curve-fitting,
where the function must go through the data points. Thergamge of interpolation methods
available for this problem such as linear, polynomial, spland trigonometric methods. It is
also possible to use neural networks for approximation gaep.

The polynomial interpolation has the following generahfior
n .
yw,x) = § wx, (4.1)
2,
wherenis the order of the polynomial. The polynomial coefficiewts. . .w, will be collec-
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Figure 4.1: Plots of polynomials with different ordersrof

tively denoted by the vectav. Note that although the polynomial functionw) is a nonlinear
function inx, it is a linear function irw. Here, the values of the coefficients will be determined
by fitting the polynomial to the training points.

Using an interpolation method we have to determin@arameters in Equation (4.1), and we
have justn coordinates, so we cannot verify any compression. Intatjwsl nowadays is of
less interest than it once was a few years ago. Curve-fitiimybe done by minimizing the
error function that measures the misfit between the fundbony given value ofv and the
data points. One simple and widely used error function isstiva of the squares of the errors
between the predictedw, x,) for each data point, and the corresponding target valygsso

in effect we have to minimise the energy function’:

E(w) = 3 3, (Y0%.w) ) @2

Clearly, it is a nonnegative quantity that would be zero il @amly if the functiony(w, x)
were to pass exactly through each training data point; fhdtit were a perfect fit.
We can solve the curve-fitting problem by choosingvdor which E(w) is as small as

possible. However, every type of method has its drawbac#t$has one is no different.

1. The main problem here is how to choose the ordef the polynomial and, as we shall
see, this will turn out to be the problem of model comparisomodel selection. In
Figure (4.1) we give four examples of fitting polynomials oflers M = 0, 1, 3, and 9 to

a data set, where we use sample data taken from a sine fumgtionoise.
2. They are not accurate enough.

3. The parameters that we get after optimization provide inectlinformation about the

behaviour of the function; i.e. varying a parameter doesaffett this function.
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4. Itwould be nice if we could modify a certain part of the ftino by varying the parameter.
For example, if we would like to increase the maximum value @rtain point, we could
do this by varying a parameter using an approximation orpai@tion (Fourier series,
Taylor series, etc.). Itis not possible to vary a parameierssto modify just a part of the

function as the parameter and the rest of the function desthnie whole of it.

5. Very often it would be useful to describe a function by itgiations, e.g. "it slowly
increases, then suddenly changes its behaviour and speats! after reaching its max-
imum value, it suddenly goes down". Using classical functonstruction procedures,
it is not so easy to find a parametrical mathematical expyasshich corresponds to the
natural language description of the function, but it woued useful in fields like eco-

nomics and marketing.

Here, we will present a solution that solves some of thesbl@nas [28, 45]. Our aim is
to approximate the function with the help of membershig-liknctions. We need a kind of
membership function which approximates the characterfatiction. We get it by introduc-
ing the distending function which describes inequalitigsing the conjunction operator with
the distending function, we get the desired function cla&s. will also call this positive and
negative effects, whose mathematical description can dleseel by using continuous-valued
logic. Here we will use a special one called the Pliant cohesfth Dombi operators included.
After an aggregative procedure we get the derived functiggregation was first introduced
by Dombi [26], but later the fuzzy community rediscovered @eneralized the concept and
called it the uninorm. Instead of the membership functiorshal use soft inequalities and soft
intervals which are called distending functions. All of frerameters introduced have a definite

meaning. Also, it can be proved that certain function classay be uniformly approximated.

4.2 Distending function

In Chapter 2 we show how important is the Distending functiém this section we provide
additional information that is used for the approximatieahnique. In fuzzy logic theory, the
membership function plays an important role. In Pliant doge use a soft inequality and we
call it the distending function.

Heref is the generator function of the logical connectivess responsible for the sharpness

andais the threshold value.
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The approximation process is developed within the framkwbthe Pliant system.

Definition 2. The Pliant system is a strict, monotonously increasingrtmand t-conorm. The

following expression is valid for the generator function:
fe(x)- fg(x) =1
Definition 3. The general form of distending function is
5N (x) = £ (e—MX—a>) AeRacR
The semantic meaning 69) is
truth(a < x) = 85" (x)

Remark 1:

1. In the Pliant systenf could be the generator function of the conjunctive operatdhe

disjunctive operator. The form (Eﬁ‘) (x) is the same in both cases.
2. In the Pliant concept, the operators and membership aselgirelated.

3. Using the soft inequality with the distending functiore sannot describe a membership

like "middle age".

The distending function in the Dombi operator case is thmsid (logistic) function:

(N gy — 1
Oa (@—m

4.2.1 Distending interval

In fuzzy logic theory, the membership function has a diffeermterpretation. In the Pliant

concept, the membership function is replaced by a softuatetlts mathematical description is
6)‘1’)‘2(x) =truth(a<), x<), b
a,b - A X<, )

Using the Pliant concept, we translate it into two ineqieditorresponding to an "and" (con-

junctive) operator.

truth(a <,, x) and truth(x <, b)
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DECOMPOSITION
Theorem 2. In a pliant system if the initial conditions are
SiM(a)=vo 8" (b) =vo, (4.3)
then the distending interval is
1
00 = 115 (e 00 e 200 ), (4.4
where
A 1T (1_e—<xl+xz><b—a>)
f(Vo)
AL =1— e te(d-2) (4.5)

Ap=1—g NP3

Proof 1. It is a straightforward calculation.

In the Dombi operator case, the distending function hasdhewing form:

N2 (x) = L (4.6)

1 + 1;—:0% (Ale*)‘l(xfa) + Aze*AZ(b*X)) ,

where

A = 1— e AitAz)(b-a)
A =1—g P23

Ap=1—e ™Mb

In Figure (4.2), we have plottemiglt;)‘z(x) using different parameter values.

Figure 4.2:0072(x) if a=5,b=9,vo= 3, A1 =1 Aa=2and\ = 2 Ap =1

The following properties hold for the distending interval:
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Theorem 3. )
0 if x<a
vg if x=a
dap(X) =_ lim 52715)\2(X) =41 if a<x<b (4.7)

A1—00 Ap—00

vog if x=Db

See Figure (4.3)

Proof 2. BecauseS,L2(a) = 62}5)‘2(b) = Vo, we have to prove just 3 cases:
ifx<a thenlim (Ale*Al(X*a) n AZe%z(bfx)) e
1,A2

ifx>Db then)!ir? (Ale"‘l(x—a) +Aze—?\z(b—><)> o
1,72

ifa<x<b thenlim (Ale"‘l(x—a) +Aze—?\z(b—><)> -0

A1 A2

This is obvious because of the properties of the exponduntiation.

Figure 4.3:8, p(x) function

From (4.6) we can derive another type of function wheeendb are equal, which will call
an impulse function. This means that the intervals are narmgibut just the value where the

function is a maximum.

Theorem 4. The following limit property holds:
172 (x) = lim 82 (x) = (4.8)
a a—b ab ’

_ A2 ke M e
f 1 f(v e A1(x a)_|_ e Ao (a x)))
( (Vo) ()\1+?\2 A +A2
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DECOMPOSITION
In the Dombi operator case
ohrh2(x) = Ilmboglb)‘z( X) = (4.9)
1
1- - Ao
1+ V:O (Alf?\ze Ml a)—i_>\1+l>\2e P2l X)>

Proof 3. The proof is based on a limes property and we use the L'Hdgjpilz

In Figure (4. 4)0)‘1’)‘2( X) is shown with typical values.

0.5+
0.4+
0.2+

Figure 4.4:05*2() if a = 3Vo=32A1=2MN=3

We can get an impulse function fro&l’)‘z(x)
Theorem 5.

vo If x=a
Sa) = lim (=4 (4.10)

Mhg=e 0 if x#a
Proof 4. It is similar to the proof of Theorem 2.

Now we can use Equation (4.6)afandb are given and Equation (4.8) if the maximum pant

is given.

4.3 Construction of the function

Because the aggregation has a neutral value, we have tdotmanthe interval into[O,v] or

[v,1]. We will define positive and negative effects using the didieg interval. That is,

PA200 = 7 (14 y02 () (4.11)
N0 = 5 (12200, (4.12)
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where the scaling factgre [0, 1] controls the intensity of the effect.

Equations (4.11) and (4.12) have a common formdf[—1, 1]; namely,
1
ENAZ () = 5 (1+voh(0) (4.13)

Here, ify > 0 then we have a positive effects ang i 0 we have negative effects.

If the functions belong to the integrable function in the iR@nnian sense, then there exist
upper or lower approximations of rectangles.

We will use this fact in the next theorem.

Theorem 6. Let f(x) be an integrable function in the Riemannian sense, and leta@. .. < an

be a discretisation of the interval of the domain of the appr@ated function and let
m
G(9 = 3 YA (. (4.14)
i=
Then[ || f(X) — G(X)|| — 0if max||aj+1 — &/ — 0 andA; — oo.

See Figure (4.5).
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0.6 0.6
05 L{—}_j 05

Figure 4.5: Rectangles without constructing an approxmnah = 16 andA = 1

1,0+ 1,0+
0.9+ 0.0
0.8 0.5
0,7 4 0.7 ;
0.6 0.6
0.5~ 0.5
0.4+ 0.4

0.3 0.3

Figure 4.6: Rectangles after constructing an approximatid =16 and\ =1

Becaused,p(X) is a rectangle and the aggregation of the rectangles amnigies, we can

define an interval where @ a; < a»... < a, < 1. The discretisation of an interval rectangle
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approximation will be sufficiently good if tha , a; intervals are small enough. So our method
can use any function that is integrable in the Riemanniasesen

We can use the impulse function to interpolate the function.

Figure 4.7: Interpolative approximation without aggrégaif A = 16 and\ = 1

If A1,A2 are not too large, then we can get a smooth approximation.

Similarly, Theorem 5 is valid if we use the impulse function
m
H(x) = Zyiégm(x) (4.15)
i=

In Figure (4.6) we show the rectangle approximation of a fieng wherehA = 16 andA = 1,

while in Figure (4.7) we show the interpolation whegr- 16 and\ = 1.

4.4 Function decomposition

In the previous section we saw that we could construct ae&imction using the aggregation
operator and functions that model the effects. When apglitirthe reverse case may some-
times be helpful too. That is, if the function is given, we dé¢e decompose it into positive
and negative effects. We will show that we can do this using@timization method. We can
find a wide variety of optimization techniques. If the initi@lues are properly chosen, it is
not hard to get the global minimum by using a local searchrdlyn. Here, we will apply the
well-known BFGS method [68]. This is one of the hill-climbioptimization techniques that
look for the stationary point of a function where the gradlisrzero. Because we can define
initial points that are not far away from the optimum, the BEF-@ethod should be able to find

the optimal solution within a couple of iterations.

In general, the function here will be defined by coordinatdew, we will use a function

with a dense sampling procedure. In each example we will 08estjuidistant coordinates on
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the given interval.
The global procedure seeks to find all the effects simultasigo

Now let we choose a functiof : R — [0, 1] to be approximated. Our task is to decompose
itinto effects. This can be done by our distending functeyopfoximation) or impulse function

(interpolation) procedures. First, the usual step is toatinthe functiorF (X).

4.4.1 Algorithm for using the distending function
1. Let us find the the local minimum and maximum of the func#dr)

F(c)=A such that

F(x) <A if xe(c—¢gc+eg)
F(cj) = A such that
F(x) >A; if xe(c—¢,ci+e)

2. Let us define thég;, by] intervals

C1+C2 C1+C2

1 1 2 P 1 2 ;

C1+C2 C2+C3

dp = , b2:
2 2

Ch—1+Cn Ch—1+Cn
- - b, =cC - -
2 ) n n+ 2 )

where

C1<Cr<C3<...<Ck

We will suppose that there is a maximum or minimum value |kt tshown in Figure
(4.8) below.

0.2
07
0.6 |
0.5

0,3 -

0,z -

0.1 -

—20 -10 o 10 [zo0 T a0 0 30 a0 2
c1 cz c©3 az bz

Figure 4.8: Extreme values and intervals for the sampletionc
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3. Let us define the initial values af, andA;, by

o f@)t@) oty (@)

Ci—a bi — &
4. Let us build the initial values of the function and use egqumes 4.14 and 4.15 to get

G (x)__Z 12 (x)
1=

See Figure (4.9).

0,8 o
0.7 o

0.6 1

.5
0.3

Figure 4.9: Optimal components

5. Now find the optimal solution of tha, bj, Aj,, Ai, values with the suggested initial values.

min 3 (G35%(x) - F(x;))z
abig &\ 2P

It is not easy to minimize this because a given minimum mayedhe global minimum. How-
AAy o s : . . N
ever, becaus€;}™*(x) is a continuous function of its parameters and the initilleaare well

chosen, we can get good results.

The results of this approximation are shown in Figure (4.10)

1.0

0,1

Figure 4.10: The function and its approximation
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1.0 H

0.5

0.8 |
0,7 ]
0.5 )
0.5 ]

0,4 -
0,3
0.2 -

0,1

Figure 4.11: Extreme values of the function

4.4.2 Algorithm for the impulse approximation

Let us find the maximum and minimum valuesrfx)
C1<Cr<C3<...<C,

wherec; andc; 1 are the minimum and maximum (or maximum and minimum) poi(Bee
Figure (4.11)).

If f(ci) = A, let the initial value of the approximation function be tlodldwing:

1 Ci—Ci_1

_ = A — =2
2’ YTACALL

Ci+1—0G

and Ap = ————
2T A -A

A = f(g)

See Figure (4.12).

The procedure used here is the same as that for the intewadamation.

Figure 4.12: Main and optimal effects for the interpolatase
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In Figure (4.13) we plotted the results of applying this @aare.

T

0.6 1
0.5 J
0.4 ;
0.3 ;
0.2 ;

0,1+

Figure 4.13: The function and its interpolative approxXiioat

4.5 Summary

Here, we developed a new type of non-linear regression rddttad is based on the distending
function and provides a natural description of the functiddur algorithm used the BFGS
method to get accurate effects. Then we showed that thigguoe is effective if all the data
points given are based on the distending function. We fohatithis method is fast (only a few
iteration steps are required for the optimisation method)easy to use. With this technique, it

is possible to change only a part of the function, insteatt®iusual case where we cannot.
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Chapter 5

Cognitive systems

5.1 Introduction

When we have to deal with a sophisticated system, we are aueft by certain difficulties
as we have to represent it as a dynamic system. Using a dyrsystem model can be hard
computationally. In addition, representing a system wittedhematical model may be difficult,
or even impossible. Developing a model requires effort goetimlized knowledge. Usually
a system involves complicated causal chains, which mightdselinear. It should also be
mentioned that numerical data may be hard to obtain, or iteoayain certain errors, noise and
incomplete values. Our approach seeks to overcome the abemgoned difficulties. It is a
qualitative approach where it is sufficient to have a rougscdption of the system and deep
expert knowledge is not necessary. A similar approach waggsed by Kosko [50, 52, 51],
and it is called the Fuzzy Cognitive Map (FCM). FCMs are hgbriethods that lie in some
sense between fuzzy systems and neural networks. Knowledgeresented in a symbolic
way using states, processes and events. Each piece of atformhas a numerical value. In
Figure 5.1 we can see a typical FCM model, which is a directegly

FCM allows us to perform qualitative simulations and expemt with a dynamic model. It
has better properties than expert systems or neural netvgmke it is relatively easy to use, it
represents structured knowledge and inferences can beutednpy numeric matrix operations
instead of applying rules. Here we will use another methadhich is a modification of the
FCM concept) which better matches real world modeling aridalled Pliant Cognitive Maps
[44, 42]. We use cognitive maps to represent knowledge anabtiel decision making, which
was first introduced by Axelrod [8]. Kosko used fuzzy valuesl anatrix multiplication to

calculate the next state of a system. Here instead of valesise time dependent functions
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Figure 5.1: The FCM model
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that are similar to impulse functions that represent pasiéind negative influences. Another
improvement is that we can drop the concept of matrix mudigion. On the one hand, matrix
multiplication is not well-suited in continuous logic (aZzy logic), where the truth value is one
and the false value is zero. On the other hand, general a@pgeat more efficient for calculating
the next step of a simulation. Logic and the cognitive map ehadrrespond to each other in
the PCM case. It is easier to construct a PCM and after we havé€M simulations and
compared them with the real world, extracting knowledge ugmeasier. Combining cognitive
maps with logic helps us to extract knowledge more efficieintcontrast to those that use rule-
based systems. The standard knowledge representatiopent eystems is achieved through a
decision tree. This form of knowledge representation intreases cannot model the dynamic
behaviour of the real world. The cognitive map describesithele system by a graph showing
the cause-effects that connect concepts. It is a direcegehgwith feedback that describes the
real-world concepts and the casual influences between them a logic point of view, causal
concepts are unary operators of a continuous-valued lagitaming negation operators in the
case of inhibition effects. The value of the node reflectsdibgree of system activity at any
given time. Concept values are expressed on a normal [(hfjpravalues do not denote exact
guantities, but the degree of activation. The inverse ofrtbiemalization might express the
values coming from the real world; i.e. using a sigmoid fiortt Unlike Fuzzy Cognitive Map,
we do not use thresholds to force it to take values betweenm a®i one. The mapping is a
variation of the "fuzzification" process in fuzzy logic, aiicilways hinders our desire to get
guantitative results. In Pliant logic we map the real worltbithe logical model. These maps
are continuous, strictly monotonous increasing functiansl so the inverse of these functions

yields data about the real world.
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5.2 Pliant Cognitive Maps

In the FCM, the causal relationship is expressed by eithsitige or negative functions having
different weights. As we mentioned earlier, this will belesy@d by unary operators in the PCM.
Let {C1,...,Cn} be a set of concepts. Define a directed graph over the concéptsected
edge has a weight;; from concepC; to concepC;. The weight measures the influenceGpf

onC;j, where
e 0.5is the neutral value,
e 0is maximum negative and
¢ 1is maximal positive influence or causality.

In the FCM, the weight valuwsj € [-1,0,1] . In our case,

e Wj; > 0.5 means there is a direct (positive) causal relationshiwédeh concept€; and
Cj. Thatis, the increase (decrease) in the valug ¢¢ads to an increase (decrease) in the

value ofC;.

e Wij < 0.5 means there is an inverse (negative) causal relationgitvpelen concepts;
andCj. That s, the increase (decrease) in the valug ¢éads to a decrease (increase) in

the value ofC;.

e Wj; = 0.5 means there is no causal relationship betwgemndC;.

During the simulation, the activation levalof concep(C; is calculated in an iterative way.
In the FCM, the calculation rule was introduced to calcutae value of each concept based

only on the influence of the interconnected concepts

4=(zam)

whereAl is the value of conce@; at time ste, Aﬂfl is the value of concell; at time step
t —1, Wi is the weight of the causal interconnection from conggjpttoward concepith and
f is a threshold function. One of the most popular threshahdtions is the sigmoid function,
whereA > 0 determines the steepness of the continuous function fgumasbes the content of

the function in the interval [0,1]:
1

T lte M

f(X)
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. A more general FCM formula was proposed By Stylios et al] {@dzZalculate the values of

concepts at each time step. Namely,

A= f (k‘l_; AW +ki2A}_1>
7]

The coefficientk| andk, must satisfy the conditions € k| <1 and 0< kK, < 1. The
coefficientki1 expresses the influence of the interconnected conceptsioadhfiguration of
the new value of conce@. The coefficiemkf2 represents the proportion of the contribution
of the previous value of the concept in the computation ofrtee value. The FCM has the
advantage that we get a new state vector by multiplying tleeipus state vector a by the
edge matrix W, which shows the effect of the change in thevaiotin level of one concept on
another. In the Pliant concept we aggregate the influenstsad of summing up the values.
The result always remains between 0 and 1, so we do not neathhpation as an additional
step. The aggregation in Pliant logic is a general operdhiahcontains conjunctive operators
and disjunctive operators as well. Depending on the paemetalled the neutral value - of
the aggregation operator, we can build logical operatées Dombi operators. Using PCMs
(Pliant Cognitive Maps) we can answer "what if" questionsdshon some initial scenario.
For example, let\ be the initial state vector. The new state is calculatedatesuly with the
aggregation operator until the system convergeW& A}*l’ < €. We will get the resulting
equilibrium vector, and this will provide a set of answersto "what-if' questions. Our PCM

can be used in any area covered by the FCM.

5.3 Components of the PCM

Now we will introduce the components of the Pliant Cognititaps.

5.3.1 Aggregator operator

Besides the logical operators constructed in fuzzy thengn-logical operator also appears.
The reason for this is the insufficiency of using either cagjive or disjunction operators for
real-world situations [89]. The rational form of an aggregiaoperator is [20]:

1
14 Vo, (L)Z"Vi—l. M, (2w

Vo 1-v Xi

a(Xg,...,Xn) =

We can model conjunctive and disjunctive operators withafygregation operator. If v is

close to 0, then the operation has a disjunctive charatterand if v is close to 1, then the
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operation has a conjunctive characteristic. From this gyt can be seen that by using the
aggregation we have more possibilities than that got sirbglusing the sum function in the

FCM. By altering the neutral values at the nodes, differgr@rations can be performed.

5.3.2 Creating influences

In the Pliant Cognitive Map we can define influences. The sigmoid function naturally snap
the values to the (0,1) interval. Positive (negative) infleess can be built with the help oo
sigmoid functions and the conjunctive operatidence, we get the generalized positive impulse

function
1

c(t,u,v,a,b) = 11 ueM(t-a) § yeha(t-b)

whereu andv are weights. In Figure 5.2, we observe a basic influence ikermentioned in
[44]. If the influence is neutral, we can represent it by a HRie. If there are no influences,
then we can continuously order the 1/2 values in the systdnwe Iwant to model positive
influences, we order a value which is larger than 1/2, and malxvalue is 1. The negative
influence is the negation of the positive influence. To créagse influences, we will use the

following transformations:

P(t,u,v,a,b) = = (1+c(t,u,v,a,b))

N(t,u,v,a,b) = = (1—c(t,u,v,a,b))

NI~ NI

0.7+

044

0.3

0.4+

034

024

014

Figure 5.2: An average influence.

In Figure 5.3 we have plotted the aggregation of positiversgghtive effects.
It is also possible to create an effect by ussigmoid functions aloneThis has another
meaning, which is useful when we do not know the size of theceffSo in this case we model

the effect as an impulse. The domain is the same as beforéesoetural value is 1/2. To
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0gq

07

Figure 5.3: The aggregation of influences.

satisfy these requirements all we have to do is to transfoersigmoid function into [0.5,1.0]
if we want to create a positive impulse or [0.0,0.5] if we wamtepresent negative impulse. To

create an effect we will utilize the following transformatifunctions:

P(x,a,A1) = = (1+0(x,a,A1))

NI NI

N(x,a,A2) = = (1—a(x,a,A2)),

whereA; > 0 andA, > 0. It should be mentioned that if the value of the effect ataero or
one then the aggregation of the effect remains 1. So we ndeahsform the sigmoid function
into something slightly smaller than 1 and slightes larged.tHere, we will use thf.15,0.95]
domain. In Figure 5.4, we can see main effects by just usgmmaid functions.

0.7

0.6

44

03

024
014
T

r T T |
-10 0 0 20 30 40
x

Figure 5.4: An average influence got by using sigmoids.

In Figure 5.5, we see the aggregation of positive and negatfiects by just using sigmoid

functions.
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Figure 5.5: The aggregation of sigmoid influences.
5.4 Construction of the PCM

To simulate the system, all we have to do is to aggregate theenctes. The aggregation
operator is a guarantee that we will use influences in thé wgly. This means the requirements

of the simulation is fulfilled. The following steps should terried out to simulate the system:
1. Collect the concepts.
2. Define the expectation values of the nodes (i.e. threstadlees of the aggregations).
3. Build a cognitive map (i.e. draw a directed graph betwéerconcepts).
4. Define the influences (i.e. whether they are positive oatiag).
The iterative method:
1. Use the proper function or give a timetable for the inpude®
2. Calculate the positive and negative influences using4step

3. Aggregate the positive and negative influences, where/ghalue of the aggregation

parameter is the previous value of the conegpt

55 PCM Framework

Now we are ready to make a simulation test. For this, we deeela program to test the system
[44]. First we will study fixed, predefined situations. Tha#®ations tell us that the system
is very flexible and is easy to adapt to different situatiofise simulation is based on directed

graphs. The nodes are illustrated with squares. Betweendthes there are edges. Instead of
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using arrows, we represent the direction of the edge by al filiecle. If the edge leads from
the vertex v to vertex u, then we place the filled circle clasar. In Figure 5.6, an example is

given with two nodes and the direction between the nodesis £ to 1.

2—>1

Figure 5.6: Graph representation.

There are two kinds of nodes:

e Input nodes (i-nodes): Here, no edges lead to the node. Te& of the input node is not

in the centre of the square.

¢ Inner nodes (inner nodes): Here all other types of nodes)ae¥ hodes. The index of the

node is in centre of the square.

In Figure 5.6, index 2 is an i-node and 1 is an inner node. Tae¥éwo ways to add a new

node. If the node is an inner node, then we set:

e The name of the node.
e The initial value, i.e. the expectation value (in our modés the neutral value 0.5).

e The 2D coordinates (for visualization).

We can also provide a brief description of the node. See figbizand 5.8.

]
Name CoordX CoordY
(nnation | 30 [40 ]
Value Expectation value

[os | [0 i

Description
[inflation of foods

| Ok || cancel |

Figure 5.7: New Node dialogue box.

If the node is an i-node, then instead of giving the initidixeawe can provide input data.

There are three ways of doing this. These are via

e atable, we can set input data by our self in every time period.

78



CHAPTER 5. COGNITIVE SYSTEMS

R
File Graph Help
a-s
Name Value Index
Inflation 05 1
[start |[ ston |

Figure 5.8: The result of adding new node.

e algebraic functions, (sin, cos, exp, sigmoid, etc.), daleuthe selected function values.

e generating noise. We generate random values by a norm@abdisgin betweer0.5—¢,0.5+ €|

(default:e = 0.1s), which is simulated noise.

In figures 5.9 and 5.10 we see how the data can be entered.

x|

Name _ CoordX CoordY
[Proguction 2001 |20 | a0 ]
Description

Production of grain 2001

@ Table () Algebraic function ) Noise

Time N Valug
3 1480
i 452
B 475
& JELC
10 1485

| ECACTe ]

i Ok || Cancel

Figure 5.10: Input node dialogue box.

The input values are transformed into [0,1] with the signfaiaction wherea is the basic
value (the expectation level), ardis the sharpness of the function. It is reasonable to set
A= Xmaxfxmm , becausa is the slope of the sigmoid function, whexgax/Xmin is the largest /

smallest value. The sigmoid transformation is necessacgus® our system is always works

between zero and one.
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The next step is to connect the nodes. To add a new edge, we defin

¢ the index of the source node,

¢ the index of the destination node,
¢ the influence (positive or negative),
e the expectation value().

See figures 5.11 and 5.12.

NodeFrom
12

_ NodeTo
| 1

x|

Influence

postve | v | 05

Intensity (Expectation value)

. Ok H Cancel

Figure 5.11: New edge dialogue box.

Figure 5.12: Input and inner node related with positive ierfices

Now we have defined the system. Next we can describe the gionuldn one cycle, the

following calculations are performed:

1. e We find the source of the edge.

e We transform the source value by the intensity:

1

fed ge—

_v_1-noddgvalug
1-v nodégvalue)

¢ We calculate the edge influence using a sigmoid function:

1:newed ge—

1
1+ e #A(x-05)’

wherev is the edge expectation value.
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If A =1, the influence is positive. ik = —1, the influence is negative. We use
the sigmoid function, because in the real world the influenoever reach extreme

values, i.e. they always lie between zero and one.

2. Calculate the new value of the nodes.

e We collect the influences that lead to the node.

1—fin (value

e We transform the influences and then multiply themfay;,r = [ o (Valu®

1
1-—nod€value) !
nodgvalue

¢ We use the following function to get the actual valtigsgenev value) = w
inftr

which is an aggregation.

3. Set the actual value of i-node.

5.5.1 Validation of the PCM concept and the Framework

First we will check whether our PCM concept fulfils the basioperties.

1. We have two input nodes with the samealue. These two input nodes have one common
inner node. The input nodes always have the same value, atitkredge they have
an opposite influence; i.e. one is positive and the other gatnge. The result of the

aggregation should be the neutral value (0.5). See Figui8s-%.16.

Figure 5.13: Graph representation of the simulation.

Name Value Index
InpNodel 0.5 2

_— =

Figure 5.14: Input node values.

2. 2. The configuration here is the same as in the first expatiriere, we change only the

v values. We can see the effect of the new value. See Figurés 5.20.
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NodeFrom NodeTo
2 1

Index Value

1

Figure 5.15: Positive influence.

Nodefrom NodeTo
3 1
Index Value
2 05

e T

Figure 5.16: Negative influence.

Name Value Index
InpNode1 05 2

Figure 5.17: The input values (the minimum value is 0.4, dednhaximum value is 0.6).

NodeFrom NodeTo
2 1
Index Value

1 0.598687660112452

|

Figure 5.18: Positive influences whers 0.4

NodeFrom NodeTo

3 1

Index Value

2 0.401312333887548

|

Figure 5.19: Positive influences whers 0.6

Name Value Index
MNode1 0.5000969810761778 1

Figure 5.20: The result of aggregating the influences.
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3. Now we have two positive influences with the same neuttakg but the input values are
just the opposite (input2(value) = 1-inputl(value)) ofleather. The result should also

be a neutral value. See Figures 5.21 - 5.23. We also repsaestiusing the functions
sin(x) andcogx+ 7). See Figure 5.24 and 5.25.

Name Value Index
InpNode1 0.5 2

w

Figure 5.21: Input nodel values (the minimum value is 0.4taednaximum value is 0.6)

Name Value Index
InpNode2 05 3

—/—\ﬁ

Figure 5.22: Input node2 values (the minimum value is 0.4thednaximum value is 0.6)

Name Value Index
Nodet

0.5000000000000007 1

Figure 5.23: The result of the aggregating two positive grilces.

NodeFrom NodeTo
2

1
Index

1

Value

0.48363815439593477

Figure 5.24: Positive influences sih(x) function.

NodeFrom NodeTo
3

1
Index

Value
2

0.5163618456040643

VAVAVAVA

Figure 5.25: Positive influences of thegx+ 3) function.
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4. In this test we have a small complex system with three mpatl two inner nodes. Two
input nodes generate noise of different intensity, whiketttird one is a periodic function.

See Figure 5.26.

.....

Figure 5.26: Small complex system.

5.6 Heat exchanger applications

A heat exchanger is a standard device in the chemical andgsaedustry [58]. Thisis a special
tank where the temperature control is still a major chakeag the heat exchanger is used over
a wide range of operating conditions. The system, which hasnalinear behaviour, strongly
depends on the flow rates and on the temperature of the mediwross-flow water/air heat
exchanger is considered, which is subject to immeasurabt®m-modeled disturbances that
require the use of knowledge-based techniques. In thislgmolour task is to construct be-
havioural model for the heat exchanger system, which williem the water outlet temperature

by modifying the flow rate of the air.

(tubular)

Steam/water heat exchanger

Figure 5.27: Typical heat exchanger system.

In Figure 5.27, we have a typical system setup. It is well kmdahat the FCM can be
used to model and control the heat exchanger process [72obt process industries, the

thermal plant comprises two heat exchangers, but in our pka(see in Figure 5.2) we just
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have the secondary circuit. The system contains two cg®itnadWs,. HereW, is a circuit
that is a tubular steam/water heat exchanger, Wwhlas the cross-flow water/air exchanger.
The water in the given circuit is heated by mean$\gf On the left hand side of the circuit,
the water is cooled in the cross-flow water/air heat exchaWge A fan sucks in cold air
from the environment (temperatufg). After passing the heat exchanger and the fan, the air
is blown out back into the environment. The water tempeeafiyp is controlled by varying
the fan speed;. The control variabléely,, depends on the manipulated variaBeand the
measurable disturbances: inlet water temperafifeair temperaturd,; and water flow rate
Fw. In most systems, the water flow rate is usually regulated®lycantrolled pneumatic valve,
which strongly influences the behaviour of the heat exchangeand it is a major challenge
to design a temperature controller fiyo when the flow rates vary over a wide range [11, 31].
The operators of the heat exchanger gather oprating datadahabe used to build a model.
To develop a Cognitive system we have to determine the césicéfere, concepts represent
the physical input and output variables of the process[ERperts define five concepts for this

situation:

e Conceptl: The fan spe&, which is the manipulated variable.

Concept2: The water flow ratgy.

Concept3: The water inlet temperatUig.

Concept4: The air inlet temperatufg. The environmental temperature cannot be altered

as it depends on the weather and season.

Concept5: The water outlet temperatiiyg, which is the output of the model.

In the next step the causal interconnections between angdnaepts have to be determined.
Experts can describe the relation between concepts aogotalithe system. The connections

between concepts are

e Linkagel: It connects conceptl (fan sp&kd with concept5 (water outlet temperature

Two). When the value 0$; increases, the value @, decreases.

e Linkage2: It connects concept2 (flow rdtg) with concept5 (water outlet temperature

Two). When the value o, increases, the value @, increases.

e Linkage3: It connects concept2 (flow reg) with conceptl (fan spee$; ). When the

value ofF,, increases, the value & increases.

85



CHAPTER 5. COGNITIVE SYSTEMS

Linkage4: It connects concept3 (water inlet temperalysewith concept5 (water outlet

temperaturdy,o). When the value ofy; increases, the value @j,, increases.

Linkage5: It connects concept3 (water inlet temperaliysg with conceptl (fan speed

St). When the value ofy,; increases, the value & increases.

Linkage6: It connects concept3 (water inlet temperatiy;¢ with concept2 (flow rate

Fw). When the value ofy; increases, the value 6§, decreases.

Linkage7: It connects concept4 (air inlet temperaftyig¢ with concept5 (water outlet

temperaturdy,). When the value of; increases, the value 0§, increases.

Linkage8: It connects concept4 (air inlet temperaflgwith conceptl (fan spees ).

When the value ol increases, the value & decreases.

Linkage9: It connects concept5 (water outlet temperatiyge with concept2 (flow rate

Fw). When the value ofy,, increases, the value &f, decreases.

Linkagel0: It connects concept5 (water outlet temperaipgewith conceptl (fan speed

St ). When the value of, increases, the value & increases.

Figure 5.28: FCM model for heat exhanger system.

Figure 5.28 shows the system that describes models andttfie heat exchanger system.

The FCM model for the heat exchanger is in accordance withntbdels and experiments

described in [58, 31]. It is also possible to create an infleematrix of the system like that

givenin Table 5.1.

To simulate the real environment in the FCM, the values ofcepis correspond to real

measurements that have been transformed to the interddl [The corresponding mecha-

nism is needed that will transform the measures of the sysbetheir representative values

of concepts in the FCM model and vice versa. The initial mesaments of the heat ex-

changer system have been transformed to concept valueanditial vector of the FCM
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Table 5.1: The weighted matrix of the model.
St Fw | Twi | Tai | Two
0 |0.625| 0.75 | -0.25| 0.625
0 0 |-075 0 |-0.75
0 0 0 0 0
0 0 0 0 0
-0.75| 0.125| 0.25 | -0.75| O

is theAp = [0.3 0.65 045 015 03]. In Figure 5.28, the initial value of each concept and the in-
terconnections with their weights have also been incluéfed these initial values of concepts,
the FCM starts to simulate the behaviour of the process. érFtBM domain, a running step
is defined as the time step during which the values of the qaeae calculated. The value
of each concept is defined by taking all the causal linkagghisipointing to this concept and
multiplying each weight by the value of the concept that eaube linkage, and adding the last
value of each concept. Afterwards, the sigmoid functiorhwit= 1 is applied and hence the

result falls in the range [0,1]. After performing the simtida we got the following results:

Table 5.2: Simulation results using the FCM
lteration| S Fv Two Improvement:

1 0.77 0.52 0.56 0.8577
0.85 0.44 0.54 0.1906
0.85 0.43 0.51 0.0419
0.85 043 0.5 0.0107
0.85 0.43 0.5 0.0036

a A W N

This table doesn’t contain input node values where the gadwe same all the time. Eval-
uating the results we see that the fan sp8edhas increased, the value of flow rd&g has
decreased and after the third step, the water outlet tetyperg,, falls below 0.50. We also
observe that the values between the two simulation stepteareasing, but this decrease is not
uniform, which is not as good as we initially expected. Thesscepts control physical devices,

so ideally we should change values in a smooth way.
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5.6.1 Evaluate with the PCM

Our method works on real measurements, which means that wetdeeed to transform it to
real value between [0,1]. In our model we use the same comegypt relations, and the initial
values of the concepts are the same as before. So first ofeadhtoate the our method, we need
to identify the range of each concept parameters. Becawseops articles do not mention

these values, we decided to use the following values:

Table 5.3: The range values of the concept.

Concept| Minimum | Maximum | Default
St 100 500 250
Fw 2 20 6
Twi 20 50 30
Tai 18 35 24
Two 20 40 30

The default value is used to specify the real values of thediep. With these range values
we can define a sigmoid function that can be used for the @dlonl For example the initial

value of theS; is 0.3, and we will use the following sigmoid function:

Si(X) = ——

1 1 e 500(x~250)
In this case, the real value 8f should be 144.08. With these calculations, we can compute

the initial values of the concepts: This method also showswhth each simulation step it is

Table 5.4: The initial values of the concepts.
Sf Fw | Twi | Tai| Two

144.08| 3.7 | 27.5| 8.8 | 21.52

easy to obtain the real value. In the classical FCM methedntfuence does not change during
the simulation. In order to compare it with our method, wd algo define a constant influence.
Hence in a simulation step we will calculate the new concepierin the following way. For

each node we will create a set that contains all incoming sioéfer each node in the set we

will apply the following expression to calculate the stréngf the incoming node:

()
X )

wherey; is the actual value of the node ang is the value of the influence between concept

Ci andCj, for a given i and j. After, we can calculate each node in thérs we will use the
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aggregation operator to calculate the new value of the @iné®r example, the new value of

theFy is calculated by using the following expression:

1

045,075 ;103,075
1+ (%as0)  (%03°)

Now we can run the simulation until it exceeds a given limieTollowing table shows the
results of our simulation.
Evaluating the results, we can see that the results areeaffférom those got by applying

the FCM method. In Figure 5.29 we can see how the parametee vaties.

09

EZ \I/\ M A A A
boce=— _.

—Fw

Two

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35

Figure 5.29: Results of the PCM model.

The fan spee®; has decreased, the value of flow r&ghas decreased, the water outlet
temperaturd,,0 now has a value below 0.50. We can also see that the value ehaetween
two simulation steps is decreasing (see Figure 5.30), leuddicrease is smooth, and this is why

it requires more simulation steps to model it.
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0,1 \,\'\
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Figure 5.30: Sum of value change in each step.

5.7 Summary

In this chapter we used numerical methods to model complstesys based on positive and

negative influences. This concept is similar to the FCM, batftunctions and the aggregation
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Table 5.5: Simulation results of the PCM.

lteration| S Fv Two Improvement:
1 0.53 0.68 0.75 0.7262
2 0.81 0.33 0.59 0.7870
3 0.52 0.46 0.31 0.7024
4 0.42 0.67 0.57 0.5787
5 0.71 0.47 0.67 0.5881
6 0.66 0.40 0.42 0.3810
7 0.46 0.59 0.46 0.4327
8 0.60 0.56 0.63 0.3492
9 0.69 0.43 0.53 0.3310
10 0.54 0.51 0.44 0.3176
11 0.54 0.58 0.56 0.1951
12 0.65 0.48 0.57 0.2203
13 0.60 0.47 0.47 0.1590
14 0.54 0.55 0.51 0.1829
15 0.61 052 0.57 0.1602
16 0.63 0.47 0.1 0.1224
17 0.56 0.52 0.49 0.1266
18 0.58 0.53 0.55 0.0833
19 0.62 0.49 0.54 0.0908
20 0.59 0.50 0.50 0.0734
21 0.57 0.53 0.52 0.0712
22 0.60 0.51 0.54 0.0675
23 0.60 0.50 0.52 0.0405
24 0.58 0.52 0.51 0.0462
25 0.59 052 0.54 0.0337
26 0.60 0.50 0.53 0.0380
27 0.59 051 051 0.0336
28 0.59 052 0.3 0.0256
29 0.60 0.51 0.53 0.0264
30 0.60 0.51 0.52 0.0174
31 0.59 051 0.52 0.0191
32 0.59 0.51 0.3 0.0155
33 0.60 0.51 0.52 0.0148
34 0.59 0.51 0.52 0.0141
35 0.59 051 0.53 0.0084

procedures are quite different. It is based on a continwailged logic and all the parameters

have a semantic meaning. We developed two different kindseihod to create effects. We
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also described a framework that was developed by us. Wtirdanework, we gave some basic
examples that explained how Pliant Cognitive Maps work. e-lere showed that we can use
this method in a real-world environment. The values betwitaensimulation steps smoothly
decrease, but it requires more simulation steps. In our pkame used the same influence
for each concept all the time, but it is possible to changesthength of the influence and

mathematically model real-world situations better.
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SUMMARY OF THE RESULTS OF THE
THESIS

In Chapter 1 | reviewed fuzzy sets and operators that areeckta this thesis. | introduced and
described the most important properties and theorems @tioegoperator, the t-norm opera-
tor, t-conorm operator and aggregative operator. Aftexplaned the connection between the
modalities and hedges, and the general form of the modalitie

In Chapter 2 | presented the Plaint system, which is a sulbsetzay system. | gave a definition
of the Pliant system, and then | explained the operatorsiahPsystem. | also introduced the
distending function that is used in making function appneaiions.

In Chapter 3, | applied the Plaint system in the Grid envirentras a decision support algo-
rithm. In the first part | introduced the history and unit etnts of the Grid environment. The
Grid Meta-Broker itself is a standalone Web-Service urgtrednt that can serve both users and
grid portals, and it has a direct connection with brokerse fbvel enhanced scheduling so-
lutions allows a higher level, interoperable brokering yising existing resource brokers of
different grid middleware. The Grid Meta-Broker gatherd atilises meta-data about brokers
from various grid systems to establish an adaptive metkebing service. Here, | introduced
several new scheduling components for this Meta-Brokeesé&lalgorithms utilise the Broker’s
properties for making decisions. The best one, called Detislaker, uses Pliant functions
with a random generation in order to select a good perforromger for user jobs even under
conditions of high uncertainty. After, | presented our tesuWe evaluated our algorithms in
a grid-simulation environment based on GridSim, and peréat simulations with real-world
workload samples. The evaluation results accord with opeeted utilisation gains; namely,
the enhanced scheduling provided by the revised DecisickeMasulted in a more efficient
job execution.

The main results presented in Chapter 4 are as follows., Fidgscribed the basic approxi-

mation technique that may be inappropriate in some sensen Theveloped a new type of
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non-linear regression method that is based on the distgridirction and provides a natural
description of the function. In the approximation methde, tistending function could be ap-
plied in two different ways. During the creation of the diedéng function in the first method
we could use the peak of the function, and in the second metiearbuld use the length of an
interval. Next, | defined a function and showed how to creatédecompose it with this tech-
nigque. This algorithm uses the BFGS method to get accuratétse | found that this method
was fast (only a few iteration steps were required for thenaipation method), it was efficient
and easy to use. Using this technique, it is possible to ahanly a part of the function, instead
of the usual case where it is not possible to do so.

In the final chapter | presented the Cognitive Map. Here, otention was handle complex
dynamic systems using the Pliant system. This concept idasito the Fuzzy Cognitive Map,
but the functions and the aggregation procedures are (tfeeestht. It is based on a continuous-
valued logic and all the parameters have a semantic meahdejined two different kinds of
method to create an effect and | showed how to build the PCaxgitive Map. A framework
was also described that was developed by the author. By thesxfyfamework, | provided some
basic examples to illustrate how Pliant Cognitive Maps wofken | demonstrated that this
method could be used in a real-world environment. Evalgatie results, | found that the val-
ues between the simulation steps smoothly decrease, luitedanore simulation steps. In this
example | used the same influence for each concept all the lbimé is also possible to change

the strength of the influence and model real-world situatiostter.
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MAGYAR NYELV U OSSZEFOGLALO

Az els) fejezetben tézishez kotltetogalmak kerultek bevezetésre, igy a fuzzy halmazok és
operatorok. Tovabba ismertettem a negaciés operatodrntdt, t-conormat és aggregative
operatort. Ezekre vonatkoz6 alapydételek bemutatasra kertltek. Végezetil ismertettem a
modosito szavak és a modal operatorok kdzotti kapcsolagandva ezek altalanos formulgjat.
A masodik fejezetben bemutattam a Pliant rendszer, amlelytbe a Fuzzy rendszerek spe-
cidlis alrendszerének. Ebben a fejezetben kerll sor atRigmlszer definicidjara, specialis
operatoraira. A Fuzzy elmélet halmazhoztartozasi flggeprek szerepét itt a distending figg-
vény veszi at, amelynek megadasa is ebben a fejezetbentting.

A harmadik fejezetil kezdve keriilnek ismertetésre a sajat eredményeim. idgipatPendszert
dontéstamogat6 algoritmuskeént alkalmaztam Grid rendknéf. A harmadik fejezet elején
bemutattam a Grid rendszereket és azok alapelemeit. A Geididioker egy olyan webszol-
galtatas alapu elem, amely ki tudja szolgalni a felhaskad)@ grid portalokat és a brokerek-
kel kozvetlen kapcsolatban all. Egy Ujszer( Utethafgoritmus felhasznalasa lebieé tesz
egy magasabb szint(, egyuttmikdaréker hasznalatot agy, hogy felhasznalunk mar méglév
mas grid rendszerben Ié\brdkereket. A Grid Metabroker azeért gy(jti 6ssze és hasitja a
kilénb6d rendszerben I&brokerek metaadatait, hogy Iétrehozzon egy adaptiv mikab
szolgaltatast. A fejezetben bemutattok néhany dontégfatbaitemei algoritmust, amely a
Metabréker komponenshez késziilt. Ezen algoritmusok aéddmeghozatalahoz a brékerek
jellemzit hasznalja fel. A legjobb megoldast a "Pliant functionhaiandom generation™ nevii
algoritmus adta. Ez a felhasznal¢ altal bekuldott felaotatha rendszer nagy bizonytalansaga
mellett is - a legjobban teljeditbrokert valasztja. A fejezet végén kerll sor az eredmények
bemutataséra. A tesztek valos terhelési adatokon a Grid8mulacios kornyezetben keriltek
kiértékelésre. Az eredmények nagy nyereséget mutattalz, @javitott itemez algoritmus
sokkal hatékonyabb feladat futasi eredményt adott.

A negyedik fejezetben &ltalanos kozéliljardsokat ismertetem. Ramutatok ezen eljarasok

néhany hianyossagara. Ezek alapjan kifejlesztettem edipuigi nem linearis regressziés
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eljarast, amely a felfujo fiiggvényen alapul és a fliggvényészetes leirasat adja. A kozelités
soran a felfujo fuggvenyt két féle modon is lehet alkalmazifelfujé figgvény létrehozasa
soran az egyik esetben a fiiggvény csucsat, a masikban egyalhimot hasznaltam fel. Az
algoritmusom a BFGS eljarést is hasznalja, igy pontosabkblkést érhét el. Megmutattam,
hogy az eljaras gyors, hatékony (csak néhany lépés sziksegaptimalizalo eljarasnak) és
egyszerlen hasznalhatd. Ezzel a modszerrel lehetségegeehy egy részeét direkt médon
megvaltoztatni szemben a szokasos koadijarasokkal.

Az utolso fejezet a "Cognitive Map"-el foglalkozik. Célomkamplex, dinamikusan valtozo
rendszerek modellezése volt a Pliant rendszer segitdegekieolgozott koncepcié hasonlo az
irodalomban mar ismert "Fuzzy Cognitive Map"-hez. Az @talkidolgozott esetben mind az
alkalmazott fliggvények és az 6sszegzések is masok. A méalfagtonos logikan alapul és a
paramétereknek szemantikus jelentése is van. Két mods#téroztam meg a hatasok leirasara
és azt is bemutatom, hogy miként kell felépiteni a "Pliangi@ive Map"-et. Tovabba be-
mutattam az altalam kifejlesztett keretrendszert. P@d&eresztiil mutatom be, hogy hogyan
mikodik a "Pliant Cognitive Map". Végezetll megmutatorniszhogy a rendszer valos példan
is megfeleben mikddik. A szimulacio kiértékelése soran megalldgaito, hogy a szimula-
cios lépések kozotti értékvaltozasok egyenletesen ceibldie azonban tobb |épés szlikséges
a kiegyensulyozott allapot eléréséhez. A valGs példan asbhtértékeit nem valtoztattam a
szimulacio soran. A modell segitségével azonban leheisdatasok paramétereinek a val-

toztatasa és véleményem szerint a valds folyamatok igyajobiiodellezhétek.
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