Doktori értekezés

KÉTDIMENZIÓS RENDEZETT CINK-OXID NANOSTRUKTÚRÁK
OPTIKAI ÉS FLUORESZCENCIÁS TULAJDONSÁGAI

Ábrahám Nóra
okleveles vegyészmérnök

Témavezető:
Dr. Dékány Imre
egyetemi tanár, az MTA rendes tagja

Szegedi Tudományegyetem, Fizikai Kémiai és Anyagtudományi Tanszék
MTA-SZTE Szupramolekuláris és Nanoszerkezetű Anyagok Kutatócsoport
Szeged, 2013
TARTALOMJEGYZÉK

I. BEVEZETÉS .. 3

II. IRODALMI ÁTTEKINTÉS .. 5

II.1 A ZnO általános jellemzése .. 5
II.2 ZnO részecskék szintézise .. 6
II.3 Nanoméretű ZnO részecskék optikai tulajdonságai .. 9
 II.3.1 Fluoreszcencia emissziós sajátságok... 12
 II.3.2 ZnO részecskék és filmek kölcsönhatása nemesfémekkel.............................. 14
II.4 Nanorészecskék önszerveződése, rendezett struktúrák létrehozása 18
 II.4.1 A Langmuir-Blodget technika .. 21
 II.4.2 Mintázott felületek ... 23

III. CÉLKITŰZÉSEK .. 26

IV. KÍSÉRLETI RÉSZ ... 28

IV.1 ZnO és Au részecskék szintézise .. 28
 IV.1.1 ZnO részecskék előállítása a 3-7 nm mérettartományban 28
 IV.1.2 Polietiléniminnel (PEI) stabilizált ZnO részecskék előállítása 29
 IV.1.3 ZnO részecskék előállítása a 200-500 nm mérettartományban 29
 IV.1.4 Arany nanorészecskék preparálása .. 30
IV.2 Langmuir-filmek előállítása víz/levegő határfelületen .. 31

IV.3 Szilárd hordozós filmek készítése .. 33
 IV.3.1 Aranybevonatú hordozók készítése, felületkezelése 33
 IV.3.2 Langmuir-Blodgett-filmek ... 33
 IV.3.3 Mintázott felületek ... 34
 IV.3.4 Random szerkezetű filmek készítése ... 36

IV.4 Vizsgálati módszerek ... 36
 IV.4.1 Transzmissziós elektronmikroszkópia (TEM) ... 36
 IV.4.2 Röntgendiffrackiő (XRD) .. 36
 IV.4.3 Lézerdiffrakció ... 37
 IV.4.4 N₂ adszorpciós-deszorpciós mérések .. 38
 IV.4.5 Kisszögű röntgenszórás (SAXS) .. 38
 IV.4.6 Dinamikus fényzsórás mérése (DLS), ζ-potenciál mérése 38
 IV.4.7 UV-látható spektroszkópia ... 39
 IV.4.8 Atomerő mikroszkópia (AFM) .. 40
 IV.4.9 Pásztázó elektronmikroszkópia (SEM) ... 40
 IV.4.10 Fluoreszcencia spektroszkópia ... 41
V. EREDMÉNYEK I. RÉSZ: 3-7 NM-ES CINK-OXID RÉSZECKÉK ÉS FILMEK.......................42

V.1 ZnO és Au nanorészecskék jellemzése...42
 V.1.1 ZnO részecskék ..42
 V.1.2 Au részecskék ..49
V.2 ZnO részecskék vízfelszíni Langmuir-filmjeinek vizsgálata50
V.3 ZnO részecskék szilárd hordozós Langmuir-Blodgett-filmjeinek tulajdonságai51
V.4 Au és ZnO tartalmú hibrid filmek ...55
 V.4.1 Aranybevonatú hordozók jellemzése ...55
 V.4.2 Au-ZnO hibrid filmek tulajdonságai ...56

VI. EREDMÉNYEK II. RÉSZ 200-500 NM-ES CINK-OXID RÉSZECKÉK ÉS FILMEK63

VI.1 Monodiszperz, gömb alakú részecskék szintézise 200-500 nm mérettartományban ...63
VI.2 200-500 nm-es ZnO részecskék jellemzése ...64
VI.3 200-500 nm-es ZnO részecskék Langmuir-filmjeinek jellemzése69
VI.4 200-500 nm-es ZnO részecskék Langmuir-Blodgett-filmjeinek jellemzése71
VI.5 Mintázott felületek előállítása 341 nm-es ZnO részecskékkel81
 VI.5.1 Mintázatképzési paraméterek optimalizálása ...81
 VI.5.2 ZnO részecskék mintázatainak jellemzése ...84

VII. ÖSSZEFOGLALÁS ...89

VIII. SUMMARY ..91

IX. KÖSZÖNETNYILVÂNITÁS ..93

X. TUDOMÁNYOS KÖZLEMÉNYEK ..94

XI. FÜGGELEK ..97
 XI.1 Diszperz rendszerek kisszögű röntgenszórására vonatkozó általános összefüggések...97
 XI.2 Nanorészecskés filmek fajlagos tömegének meghatározása abszorbanciakalibráció és elméleti számítás alapján...98

XII. IRODALOMJEGYZÉK ...100
I. BEVEZETÉS

A nanotechnológia korunk egyik legdinamikusabban fejlődő és legintenzívebben kutatott tudományterülete. Az előrelépés az anyagszerkezeti vizsgálati módszerek jelentős fejlődésével, az anyag szerkezetét egyre kisebb léptékben vizsgálni képes új módszerek kidolgozásával vált lehetővé. A nanotechnológiai eljárások segítségével nanométeres méretű, különböző funkciókban működhető objektumok létrehozására vagyunk képesek. Ebben a mérettartományban megjelennek az anyagok méretkvántált fizikai jellemzői, ebből adódóan a tömbfázisban mutatott tulajdonságokhoz képest a nanoszerkezetű anyagok újszerű optikai, elektromos, mágneses, stb. sajátoságokkal rendelkeznek.

A nanoszerkezetű anyagok létrehozása és a tömbi fázistól eltérő tulajdonságaik minősítése az anyagtudományi kutatások középpontjában áll. A nanoméretű anyagokat tömbfázisú anyag bevonataként alkalmazva az eredeti tárgyat új, a szerkezeti tulajdonságokat meghaladó funkcióval láthatjuk el (például antireflexiós, öntisztuló vagy antibakteriális felületek). A nanorészecskék egyedi sajátoságain túl meghatározó szerepe van annak, hogy milyen struktúrába rendezzük őket. Egy meghatározott rend esetén olyan új tulajdonsága jelenik meg az anyagnak, ami sem a tömbfázis, sem pedig a nanorészecskék szabálytalan struktúrája esetén nem figyelhető meg. Jó példa erre a fotónikus kristály, ahol a nanoléptékű periodikusságnak köszönhetően fotónikus tiltott sáv megjelenése figyelhető meg.

hordozós bevonatok létrehozására. Ilyen rendezett nanostrukturált filmek előnyösen alkalmazhatók például a szenzorika, a fotonika területén, de antireflexiós bevonatokként is funkcionálhatnak.
II. IRODALMI ÁTTEKINTÉS

II.1 A ZnO általános jellemzése

A cink-oxid szilárd halmazállapotú fehér por, a természetben a hexagonális cinkit ásvány formájában található meg. Gyakran mangánnal vagy más elemekkel szennyezve fordul elő, amely sárga vagy vörös szín megjelenését eredményezi. A ZnO széleskörű alkalmazhatósága miatt meglehetősen elterjedt anyag. Az iparban a legnagyobb mennyiségben a gumiguártás során használják a vulkanizálási folyamat elősegítésére, valamint beton gyártása során a beton vízálló képességének növelésére. Antibakteriális hatásának köszönhetően számos kozmetikum tartalmazza, mint például testápolók, dezodorok és hintóporok, UV-elnélőképessége miatt napvédő krémek fontos alapanyaga.

A cink-oxid amfoter vegyület. Vízben nagyon kis mértékben oldható, de savak és lúgok hatására könnyen oldódik [1]. A különböző oldott formák koncentrációját a pH függvényében az 1. ábra mutatja.

![ZnO oldhatósági diagramja](image1.png)

1. ábra. A ZnO oldhatósági diagramja [2].

A természetben előforduló kristályformája a hexagonális wurtzit kristályrács, de ismertek a köbös cink-blende és a kőső típusú kristályformák is, azonban ezek termodinamikailag nem stabilak [3].
2. ábra. A hexagonális wurzit kristályszerkezetű ZnO rácsmodellje, illetve egy hidrotermális eljárással növesztett ZnO egykristály [4].

Az anyagtudomány területén félvezető tulajdonsága miatt vizsgálják és alkalmazzák rendkívül elterjedten. A ZnO a kristályban lévő oxigén hibahelyek, vakanciák miatt természetes n-típusú félvezető. Számos előnyös tulajdonsággal bír, mint a jó fényáteresztő-képesség, az elektronok relatív nagyfokú mobilitása, a széles tiltott sáv, a szobahőmérsékletű erős fotolumineszcencia, stb. [5].

II.2 ZnO részecskék szintézise

A cink-oxidot előnyös tulajdonságai miatt nagyon elterjedten használják a nanotechnológia területén, ennek megfelelően számos szintézismódszert dolgoztak ki a legalább egy dimenzióban nanométeres kiterjedésű ZnO részecskék szintézisére. Található eljárás vizes közegben [6, 7, 8, 9, 10, 11] illetve számos szerves oldószerben végzett szintézisre [12, 13, 14, 15], a részecskék mérete a néhány nm-től a több µm-es méretig terjedhet, alakjuk pedig rendkívüli változatosságot mutat. Az irodalom áttekintése során olyan változatos morfológiájú ZnO részecskékkel találkozhatunk, amely azt az érzést keltheti, hogy szinte csak a fantázia szab határt a lehetőségeknek. Ennek demonstrálására összegyűjtöttem néhány általam érdekesbébnek talált példát (3. ábra).
3. ábra. A szakirodalomban fellelhető néhány érdekesebb morfológiájú ZnO részecské:
a) hélix [16], b) fánk [17], c) virág [6], d) szál [18], e) rúd [19], f) prizma [6], g) százlábú [18].

A monodiszperz részecskék szintézisének fontossága a speciális felhasználhatósági lehetőségeikben mutatkozik meg: az egyforma méretű részecskékben pontosan szabályozható módon állíthatók el –optikai tulajdonságok szabályzására is alkalmazható felépítésű nanostruktúrák.

Az irodalomban található számos szintézis módszer közül csak néhány olyat lehet találni, amelyek valóban monodiszperz ZnO részecskéket eredményeznek. Vizes közégben szintetizálták egyforma méretű részecskékét Chittofratti és munkatársai [32], Zhong és munkatársai [33], valamint Jiang és munkatársai [34]. Inoguchi és szerzőtársainak [35] egy mikroemulziós eljárással sikerült monodiszperz részecskéket előállítani.

Szűk méreteloszlású, gömb alakú fém és fémoxid részecskék szintézise sikeresen kivitelezhető poliol közégben [36, 37, 38]. Jezequel és munkatársai [39] számoltak be elsőként monodiszperz ZnO részecskék előállításáról 200-400 nm méret tartományban dietil-glikolos közégben. Számos reakcióparaméter hatását vizsgálták a képződő részecskék méretére, úgymint a víz koncentrációja, az oldószer anyagi minősége, a prekurzor só koncentrációja, a reakció hőmérséklete és a felfűtési sebesség. Tapasztalataik szerint a víz jelenléte elengedhetetlen a részecskék képződéséhez, az optimális mennyiséget \(H_2O/Zn^{2+} = 2 \) mólaránnyal találták (ennek megfelelően kristályvizes Zn-acetátot alkalmaztak: \(\text{Zn(CH}_3\text{COO})_2\times2\text{H}_2\text{O} \)). A vizsgált oldószerek közül a szabályos, gömb alakú részecskék képzéséhez a dietilén-glikolt találták legmegfelelőbbnek. A
megfelelő méretű (szubmikronos) részecskék maximum 0,18 mol/dm³ sókoncentráció mellett keletkeztek. A részecskék méretének szabályozását a felfűtési sebesség változtatásával valósították meg.

Seelig és munkatársai [40] egy kétlépéses eljárással állítottak elő monodiszperz, gömb alakú ZnO részecskéket. Az első lépésben kapott polidiszperz szol centrifugálása után a felülősző bizonyos részletét a második reakcióegyhez adagolták. A képződött részecskék méretét a második lépésben hozzáadott felülősző mennyiségének változtatásával 100-600 nm mérettartományban tudták hangolni.

Tay és munkatársai [41] a dietilén-glikolos közegű ZnO részecskék képződési mechanizmusát vizsgálták. Megállapították, hogy a részecskék individuálisan instabil primer kristályok, kolloid alegységek aggregációjával jönnek létre. Az alegységek gömb alakú aggregátuma esetén a felületi szabadenergia minimuma, ezáltal a legnagyobb stabilitás valósul meg.

II.3 Nanoméretű ZnO részecskék optikai tulajdonságai

A ZnO nanorészecskék jellemzőinek, a méretkvantált effektusnak köszönhetően megjelenő új tulajdonságainak felderítése az utóbbi időben nagy hangsúlyt kapott [3, 42, 43, 44, 45]. A témában meglehetősen nagyszámú kísérleti munka született, ennek köszönhetően nehéz az eredmények teljes és szisztematikus tárgyalása. Erre a feladatra nem is vállalkoznák, inkább azokat a fontosabb szempontokat, eredményeket emelem ki, amelyek a dolgozat szempontjából leginkább relevánsak.

Ahogyan korábban már említettem a ZnO félvezető tulajdonságú. A félvezetők fajlagos vezetőképessége definiáció szerint 10^{-9} és $10^3 \, \Omega^{-1}\,\text{cm}^{-1}$ közti tartományban van, jellemzőjük, hogy a vezetést elektronok (nem ionok) közvetítik, illetve a hőmérséklettel csökken az ellenállásuk. A vezetők, szigetelők és félvezetők elkövetését legjobban az elektronszerkezetüket leíró sávmodell alapján lehet szemléltetni. Kristályos anyagok esetén a kristályban található elektronok csak bizonyos intervállumrendszerbe eső energia értékeket vehetnek fel, ez az ún. sávszerkezet (4. ábra). Félvezetők esetén az elektronokat viszonylag kis energiaközéssel gerjeszthetjük a vezetési sávba, közben maguk után hagynak egy lyukat, amely pozitív töltésű részecskéként viselkedik. Ezek az elektron-lyuk párok felelősek a vezetés létrejöttéért. Félvezetőkben a kristály termikus energiája
elegendő ahhoz, hogy az elektronok leküzdjék a tiltott sáv általi küszöböt és a vezetési sávba kerüljenek, azaz megvalósuljon a töltésszeparáció.

4. ábra. A kristályos anyagok sávelmélete: vegyérték és vezetési sávok relatív helyzete vezetők, félvezetők és szigetelők esetén.

A ZnO vegyület félvezető, a kristályban relatíve nagy hézagok találhatók, amely lehetőséget ad rácsközi atomok beépülésére. Hőkezelés hatására oxigén atomok lépnek ki a rácsból. A kristályban lévő oxigén vakanciáknak és a rácsközi cink atomoknak köszönhetően n-típusú félvezető, tehát a többségi töltéshordozók az elektronok. A tömbfázisú ZnO-ra jellemző tiltott sáv (‘band gap’) szélessége 3,37 eV [46], a szabad töltéshordozók kötési energiája viszonylag magas, 60 meV [46], ami az optoelektronikai felhasználások szempontjából előnyös.

Ha a ZnO-ot a tiltott sáv szélességét meghaladó energiájú fényvel világítjuk meg, akkor a fény egy részét elnyeli. Az abszorpcióhoz szükséges minimális energiát gerjesztési küszöbenergiának nevezzük (tulajdonképpen megegyezik a tiltott sáv energiájának nagyságával, mindössze megközelítésbeli különbségről van szó). A 3,37 eV gerjesztési küszöbenergia 368 nm hullámhosszú fénynek felel meg, tehát a ZnO elnyelési spektrumán ennél kisebb hullámhosszaknál várható elnyelés.

Ismert, hogy a félvezető részecske méretének csökkentésével elérhetünk egy tartományt, amelyben megjelenik az ún. méretkvantálási hatás, azaz ebben a tartományban a részecskék tulajdonságai méretfüggőek és eltérnek a tömbi fázisra jellemzőektől. Ez a mérettartomány a szabadon mozgó törtéshordozók (excitonok) átlagos távolságával van összefüggésben, amelyet az excitonok Bohr sugarának nevezzünk. A mérettartomány a törtéshordozók szabad mozgásának korlátozódása miatt jön létre. A korlátozás dimenzióinak száma alapján megkülönböztethetünk kvantumhullámokat (QW, quantum well), kvantumszálokat (QWR, quantum wire) és kvantumpöttyöket (QD, quantum dot), amelyeknél a szabad mozgást lehetővé tevő dimenziók száma rendre 2, 1,
illetve 0. A ZnO esetén az excitonok Bohr sugara 2,34 nm [47], ezért ebben a nagyságrendben várható a méretfüggő hatások megjelenése.

A félvezetők egyik legfontosabb jellemzője a tiltott sáv szélessége. A gerjesztési küszöbenergia (tiltott sáv szélessége) UV-látható abszorbancia spektrumok kiértékelésével, mérések útján meghatározható, de elméleti megfontolások alapján számítható is.

Többféle módszert használnak a gerjesztési küszöbenergia UV-látható abszorbancia spektrumokból történő meghatározására, a legelterjedtebb a Tauc módszer [48]:

\[(\alpha h \nu)^2 = A \cdot (h \nu - E_g)\]

ahol \(\alpha \) az abszorpciós koefficciens, \(A \) konstans, \(h \nu \) a fotonenergia (eV). Az \((\alpha h \nu)^2 \) vs. \((h \nu)\) függvény lineáris részére illesztett egyenes és az abszcissza metszéspontja adja meg a gerjesztési küszöbenergia értékét. Egy másik, egyszerű, praktikus és megbízható eredményt adó megoldás, ha a gerjesztési küszöbenergiát azzal a hullámhosszú fényel azonosítjuk, amelynél az abszorbancia fele az abszorpcióss csúcsnál mért értéknek \((\lambda_{\nu}) \) [21].

A részecskemérettől függő tiltott sáv szélességének \((E_g, \text{eV})\) elméleti számításához ZnO esetén klasszikusan a Brus [49] által levezetett egyenletet alkalmazzák:

\[E_g = E_{g,\text{tömb}} + \frac{h^2}{8R^2} \left(\frac{1}{m_e} + \frac{1}{m_h} \right) - \frac{1.8e^2}{4\pi\varepsilon_0 R} + \text{kisebb tagok},\]

ahol \(E_g \) a részecske gerjesztési küszöbenergiája, \(E_{g,\text{tömb}} \) a tömbi fázisra jellemző gerjesztési küszöbenergia, \(h \) a Planck-állandó, \(R \) a részecske sugara, \(m_e \) az elektron effektív tömege, \(m_h \) a lyuk effektív tömege, \(e \) az elektron töltése, \(\varepsilon \) a félvezető relatív dielektromos állandója, \(\varepsilon_0 \) pedig a vákuum dielektromos állandója. A fenti kifejezés alapján a tiltott sáv szélesedését a részecskeméret függvényében két részre lehet bontani [50]:

\[E(e) = E_g + \frac{h^2}{8m_e R^2} - \frac{0.9e^2}{4\pi\varepsilon_0 R},\]

\[E(h) = \frac{h^2}{8m_h R^2} - \frac{0.9e^2}{4\pi\varepsilon_0 R},\]

ahol \(E(e) \) és \(E(h) \) a vezetési- és a vegyérték sávok szélső energia értékeit jelölik. A két kifejezés közt a töltéshordozó részecskék tömegében van különbség, ezek értéke határozza meg az eltérő méretfüggő energiaszint-eltolódást.
II.3.1 Fluoreszcencia emissziós sajátságok

A szakirodalomban széleskörűen tanulmányozzák a különböző módszerrel előállított ZnO nanostruktúrák (részecskék, filmek) fluoreszcencia emissziós sajátságait. Az emissziós spektrum jelentős mértékben függ az előállítási körülményektől, de legtöbbször egy UV és egy látható tartományaba eső emisszió jelenik meg [42, 51, 52, 53]. Az UV emisszió (amelyet általában exciton emissziának neveznek) a fény által gerjesztett töltéshordozók direkt rekombinációjának eredménye. A látható tartománya eső emissziót általában a felületi hibahelyeken csapdázott elektronoknak köztes energiaszinteken történő relaxációjával magyarázzák (5. ábra).

![5. ábra. A ZnO emissziós folyamatainak szemléltetése az energiaszintek tükrében: (I.): direkt rekombináció, (II.) és (III.): relaxálás felületi hibahelyeken keresztül.](image)

Habár a látható emisszió pontos magyarázata nem ismert, egyértelműnek látszik a felületi hibahelyek fontos szerepe, amelyek közül a legtöbb szerző az oxigén hibahelyeket említi meg [53, 54, 55], de más hibahelyek említése is előfordul: cink vakanciák [56], rácsközi oxigén atomok [57], rácsközi cink atomok [58] és az ún. ‘antisite oxygen’ [59], azaz a Zn rácsponthoz lévő O atom. A ZnO kristályokban a meghatározó hibahelyek a rácsközi cink atomok, illetve az oxigén vakanciák, amelyek donor hibahelyek, a cink vakanciák pedig akceptor hibahelyek. Az egyes hibahelyekhez tartozó energiaszintekre történtek becslések [60, 61], azonban viszonylag nagy különbségek vannak egyes szerzők eredményei közt.

Az említett két relaxációs folyamat egymással versengő folyamatok. Az UV és a látható emisszió helye és intenzitása függ a részecskeméréttől [62], a kémiai összetételtől (esetlegesen hozzáadott szennyezők) [6, 12] illetve a részecskék kémiai környezetétől
Irodalmi áttekintés

13

6. ábra. A tiltott sáv szélességének függése a részecskemérettől feltüntetve a lehetőséges relaxációs utakat: (A) relaxáció lyuk csapdahelyen, illetve (B) elektron csapdahelyen keresztül [50]. (exciton emission: exciton emisszió, trap emission: csapdahelyekhez köthető emisszió)

A ZnO részecskék alkalmazása során számos esetben elengedhetetlen a részecskék felületének borítása, esetleg szennyező komponensek adagolása bizonyos tulajdonságait módosítására. Ezek a kompononsek mind befolyásolhatják az emissziós spektrumot.

A részecskék felületmódosítását követően vizsgálták a ZnO részecskék emissziós tulajdonságait Liu és munkatársai [64], akik Spanhel módszerével előállított ZnO részecskék felületét 3-glicidiloxipropil-trimetoxiszilánnaal borították majd szilika-titánia szol-gél vékony rétegbe építették be. A kapott hibrid, fluoreszcens filmnek számos előnyös
tulajdonságát mutatták meg, mint a hosszútávú stabilitás, a nagyfokú fényátérési képesség és a rendkívül sima felület.

Guo és munkatársai [26, 65, 66] PVP-t használtak a ZnO részecskék méretővekedésének megakadályozására. Részletesen vizsgálták a különböző arányban PVP-vel borított ZnO részecskék fluoreszcencia emissziós tulajdonságait. Azt tapasztalták, hogy a PVP jelentős mértékben megnövelte az UV emisszió intenzitását, a látható emissziót azonban a felület passzíválása miatt kibocsátta.

II.3.2 ZnO részecskék és filmek kölcsönhatása nemesfémekkel

Felületi plazmonokkal kapcsolatos alapvető ismeretek

A nemesfém nanostruktúrákhoz kapcsolódó kutatások régóta nagy figyelmet kapnak a változatos és komplex optikai tulajdonságaik miatt. Remek példája annak, hogy első látásra kevésbé érdekesnek tűnő anyagokkal (mint a fémek) különböző sajátosságokat, illetve gyakran váratlan jelenségeket lehet felfedezni, ha az anyag a fény hullámhosszánál jóval kisebb méretű diszkontinuitásokat tartalmaz.

A nemesfém nanostruktúrák kapcsolata két fő részre különíthető el a plazmonika: a folytonos filmekhez kapcsolható felületi plazmon polaritonok, és a nanorészecskékhez köthető lokalizált felületi plazmonok. Habár a két terület elméletileg világosan elkülöníthető, a különböző jelenségek helyes megítélése a két terület szoros összefonódása miatt nem mindig egyszerű [68].

A nemesfém nanorészecskék különleges méret, alak, összetétel és kémiai környezetől függő tulajdonságainak oka a fényel való egyedülálló kölcsönhatásuk [69, 70, 71]. Az optikai viselkedésük magyarázata, annak kvantitatív leírása Gustav Mie-től származik 1908-ból, amikor a Maxwell egyenletek megoldását adta meg homogén gömb
esetére [72]. A nemesfém nanorészcskék esetén megfigyelhető lokalizált felületi plazmon
tulajdonképpen a fém-dielektrikum határfelületen lévő kollektív elektron oszcilláció
(7. ábra a.), amelyet a megfelelő energiájú fénygy أعلى gerjesztve létrejön a felületi plazmon
rezonancia, amelynek eredményeképpen erős plazmon abszorpciót, erőteljes fényszórást és
magnövekedett lokális elektromos erőteret figyelték meg [73].

![Diagram](image)

7. ábra. a) A nemesfém nanorészcskék plazmon oszcillációja, b) rezonancia esetén megfigyelt
plazmon elnyelés függése a részecskék minőségétől és alakjától [74].

A plazmon rezonancia energiája rendkívül érzékeny a részecskék anyagi
minőségére, alakjára, méretére és kémiai környezetére, a plazmon abszorpció helye,
valamint az elnyelési csúcsok száma UV-látható spektrumon nagymértékben függ az
említett paraméterektől (7. ábra b.) [75, 76].

A sík fém-dielektrikum határfelületen is megfigyelhető a felületi plazmon
rezonancia, az elektromágneses tér csatolódása során létrejövő felületi plazmon
polaritonok tulajdonképpen elektronsűrűség hullámként foghatók fel, amelyek a
határfelület síkjában, a határfelületbe kényszerítve terjednek [68, 77]. Ez a terjedő hullám,
lényegében egy evanszcens hullám, egy erős elektromos erőteret hoz létre a határfelület kis
környezetében, amely a határfelülettől haladva exponenciális lecsengést mutat (8. ábra). Ez
az elektromos erőtér a nanorészcskék körül kialakuló erőtérhez hasonlóan rendkívül
érzékeny a benne létrejövő törésmutató változására, ennek kihasználására épül a felületi
plazmon rezonancia spektroszkópia (SPR) módszere.
Irodalmi áttekintés

16
dielektrikum
fém

8. ábra. A fém-dielektrikum határfelületen létrejövő elektronsűrűség hullámok reprezentációja és az evanescens tér lecsengése.

Lényegében ezek azok a tulajdonságok, amelyek folyamatos és intenzív kutatásokra sarkallják a kutatókat, ugyanis a felületi plazmon rezonancia nagyon változatos módon és módszerekkel alkalmazható a nanoléptékő optikában és a fotonikában. A kémiai környezetre való nagy érzékenység olyan szenzorok kifejlesztését teszik lehetővé, amelyekkel akár nanomolós koncentrációban is kimutathatók bizonyos anyagok [78, 79]. Mindemellett fontos megemlíteni a folyamatosan bővülő orvosbiológiai alkalmazásokat is: a diagnosztika és a terápia területén is számos újdonságot hoztak [80, 81].

ZnO részecskék és filmek viselkedése plazmonikus kölcsönhatásokban

A plazmonika fejlődésével egyre több dolgozat születik a ZnO és nemesfém nanorészecskék, nanofilmez plazmonikus kölcsönhatásának jellemzésére. Ezen kísérletek egyik célja a ZnO fotokatalitikus hatékonyságának növelése [82, 83] vagy a fluoreszcencia emisszió erősítése, amelyet azután sikeresen alkalmazhatnak szenzorok fejlesztésénél, fénykibocsátó diódák hatékonyságának növelésénél [84, 85, 86]. Az elmúlt néhány évben számos dolgozat került publikálásra a ZnO-ot és Au-at tartalmazó nanostruktúrák előállításáról és fluoreszcencia vagy fotokatalitikus tulajdonságai jellemzéséről, ennek ellenére kevés olyan munka született, amelyben a kölcsönhatás mechanizmusának felderítését célozták meg.
Több szerző is vizsgálta ZnO rudak felszínére kapcsolt arany, illetve ezüst részecskék hatását az emisszióra [87, 88, 89, 90, 91]. Az eredmények viszonylag jó egyezést mutatnak: az UV emisszió erősödését és a látható emisszió csökkenését vagy teljes kioltságát tapasztalták. A folyamat mechanizmusának a töltésátvitelt valószínűsíti (9. ábra): a nemesfém és a ZnO Fermi szintje közel esik egymáshoz, kapcsolás esetén létrejöhet a Fermi szintek kiegyenlítődése, amely révén töltésátvitel valósulhat meg a ZnO-tól a fém felé. Ezek az elektronok a fémben magasabb energiaszintre jutva újabb átvitellel a ZnO vezetési sávjába jutnak vissza, ahonnan UV vagy látható fény kibocsátása közben visszakerülnek az alapállapotba. Mivel a gerjesztett állapotú töltéshordozók direkt rekombinációja mellett nem mehet végbe a fenti folyamat, ezért összességében az UV emisszió aránya nőni, a látható pedig csökkenni fog.

Subramanian és munkatársai [93] részletesen tanulmányozták ZnO részecskék fluoreszcencia emissziós tulajdonságait etanolos közegű szoljaikban: töltésviszonyokat tanulmányoztak fém jelenlétében, illetve nélküle. Eredmények azt mutatták, hogy a vezetési sávban felhalmozódó elektronok a látható emisszió kioltságát okozzák, azonban kimutatták, hogy az elektronfelesleg oldott oxigén segítségével eltávolítható. A platinával és arannyal borított ZnO részecskék eltérő viselkedést mutattak: a platina esetében megfigyelt ohmos kölcsönhatás elősegíti a töltésmentesítést az oldat felé, míg az arannyal borított ZnO esetén az elektronok megoszlanak a fém és a félvezető között, amelynek eredménye a Fermi-szintek kiegyenlítődése és az UV emisszió kioltsága.

Arannyal borított ZnO filmeket állítottak elő Li és munkatársai [94]. Fluoreszcencia emissziós mérések az UV emisszió jelentős erősítését és a látható emisszió teljes kioltságát mutatták ki, amelyet a fém és a félvezető közti direkt töltéstranszferrel magyaráztak. A
Irodalmi áttekintés

18 fém/félvezető határfelületen létrejövő lokalizált felületi plazmonok rezonanciájának következtében kialakuló kölcsönhatás lehetővé teszi az elektronoknak a csapdahelyekről a vezetési sávba való átjutását elősegítve az UV emissziót.

Haglund, Lawrie és Mu [95, 96] részletesen vizsgálták Ag és Au filmek hatását egy 70 nm-es ZnO film emissziós sajátságaira, a kettő közti távolság szabályozására különböző vastagságú MgO távtartó réteget építettek be. Eredményeik az UV és a látható emisszió erősödését mutatták, a jelenségeket a fém film szerkezetének (részecskés vagy kvázifolytonos) és az emisszió típusának függvényében értelmezték. A látható emisszió esetén a részecskés és a kvázifolytonos filmekkel való kölcsönhatást is a lokalizált felületi plazmonok dipól-dipól szórásával magyarázták. Az UV emisszió esetében bonyolultabb a magyarázat: a részecskés film esetén a lokalizált felületi plazmonok hatását és a gerjesztett elektronok alagutazását feltételezik, míg a kvázifolytonos filmknél a felületi plazmon polaritonok hatására bekövetkező Purcell-erősítést említik meg.

Régóta ismert, hogy a ZnO jelentős fotokatalitikus aktivitást mutat, újabb kutatások során az Au-ZnO kompozitok fluoreszcenciás vizsgálata mellett nagy érdeklődésre tart számot ezeknek az új anyagoknak a katalitikus teljesítményének jellemzése. Több tanulmányban is beszámolnak Au-ZnO kompozit anyagok fotokatalitikus hatásáról összevetve az azonos módon, Au hozzáadása nélkül készült katalizátorokkal és szerencsére található néhány példa párhuzamosan végzett fluoreszcencia emissziós mérésekre is [82, 83, 97, 98]. Ezeket az eredményeket áttekintve azt tapasztaljuk, hogy a nemesfém segítségével növelhető a katalizátort aktivitása, azonban a jobb katalizátorok gyengébb emissziót mutatnak és fordítva.

II.4 Nanorészecskék önszerveződése, rendezett struktúrák létrehozása

A nanotechnológia egyik nagy kihívása a nanorészecskék rendezett vagy akár hierarchikus struktúrákba történő szervezése. A megfelelő rendezettség elérésével olyan új elektromos, optikai, mechanikai vagy mágneses tulajdonságai jelenhetnek meg az anyagnak, amely számos alkalmazás szempontjából lehet kiemelkedően fontos. Kiváló példa erre a fotonikus kristály, amely az anyag nanoléptékű periodicitásának köszönhetően mutat speciális optikai tulajdonságokat (ún. fotonikus tiltott sáv).
A szabályos struktúrák létrehozásának jelentős igénye magával vont a számos különböző eljárás kifejlesztését, amelyekkel különböző elven és megvalósításban lehet irányítani a részecskék önszerveződését [99, 100, 101]. A kolloid méretű egységekből történő építkezés nagy előnye, hogy a paraméterek megfelelő optimálása mellett az eljárások jelentős része viszonylag olcsó, gyors és az esetek többségében jól kontrollálható. A rendezett struktúrák létrehozásának követelménye, hogy az azt felépítő egységek is szabályosak legyenek mind alak, mind méret szempontjából [102].

A részecskék önszerveződése kivitelezhető egyszerű üleptéssel, kapilláris erők vagy külső tér által irányítva, adszorpciós vagy más biospecifikus kölcsönhatások által vezérelve, de sikeresen alkalmaznak különböző templátokat is [103]. A rendezett egységekbe tömörült kolloid rendszerek között megkülönböztethetünk 3, 2 illetve 1 dimenziós szervezett struktúrákat (10. ábra).

A háromdimenziós rendszereket a monodiszperz egységek egyszerű üleptéssel elő lehet állítani [40]. Az üleptétes folyamat felgyorsítására alkalmaznak centrifugálást, elektroforézist, szűrést és egyéb módszereket [103], illetve a kétdimenziós technikák közül is van olyan, amelyekkel 3D struktúrák hozhatók létre.

A részecskék diszperziós közegeinek párolgása (11. ábra B) közben létrejövő mozgó folyadékmeniszkusz mentén ható kapilláris erőket is ki lehet használni a részecskék önrendezésénél. A párolgás következtében elvénkonyodó folyadékmeniszkusz közélepben a részecskékre vonzó kapilláris erők hatnak, amelyek a folyadéksepp széléhez juttatják őket. Ez az elv számos kísérleti elrendezésben megvalósítható: a hordozóra cseppentett megfelelő koncentrációjú diszperzió közegének kontrollált elpárologtatása [110], a részecskéket tartalmazó diszperzióba vertikálisan bemerített hordozó lassú kihúzása illetve a diszperzió közeg elpárologtatása [111], a konvektív önrendeződés [112] (itt egy mozgó tárgylemez szabályozza a folyadékmeniszkusz mozgását), továbbá alkalmazható a forgatásos filmképzés (spin coating) [113] is. A párologtatás paramétereinek illetve a részecskék koncentrációjának változtatásával széles tartományban szabályozható vastagságú filmeket lehet előállítani [114], ezzel a módszerrel 3D kolloid kristályok is előállíthatók.

Külső elektromos erőtér hatására (11. ábra C) is bekövetkezhet a részecskék önrendeződése. Elektroforetikus filmképzés során a részecskék két elektróda közti elektromos térben haladnak, megfelelően nagy erőtér mellett a hordozóra tapadt részecskék képesek elmozdulni és tömör, hexagonális illeszkedésű filmet létrehozni [102].

Egydimenziós struktúrák létrehozásakor általában külső elektromos vagy mágneses tér irányítja a részecskék mozgását, illetve egy másik lehetőség a különböző templátok alkalmazása [103].

A fentebb részlezezett módon, önszerveződéssel előállítható rendezett struktúrákhoz a szabályos, monodiszperz építőkövek gömb alakúak, ugyanis alakjuk miatt ezekkel a legegyszerűbb a megvalósítás. Ennek ellenére anizometrikus részecskékkel is végeznek kísérleteket, rúd alakú részecskék Langmuir-Blodgett-filmjeit vizsgálták Kim és munkatársai [115].

A monodiszperz gömbök kémiai minőségét illetően messze legtöbbet alkalmazott anyagok a Stöber [116] módszerével előállított szilika, valamint a poliszirol részecskék

11. ábra. Gömb alakú részecskék hexagonálisan rendezett struktúráinak előállítása [102].
Ezek a részecskék további felületmódosítás nélkül is kiváló tulajdonságokkal bírnak az önszerveződés szempontjából: viszonylag könnyedén létrehozhatók gyakorlatilag tökéletes struktúráik. A részecskék méretének hatását is meg kell említenem: azonos felületi tulajdonság esetén a méret növekedésével általában egyre könnyebbé válik az önszerveződés.

II.4.1A Langmuir-Blodgett technika

![Langmuir-Blodgett technika diagrama](image)

A határfelületi folyamatok követése a határfelületen ható erő mérésén keresztül a felületi feszültség, illetve az oldalnyomás segítségével valósul meg [121]. A felületi feszültség a határfelületen fellépő, az új felület létrehozása ellen ható összetartó erő, az oldalnyomás (π) pedig a filmmel borított folyadék felszín esetén mérhető felületi feszültség
Irodalmi áttekintés

Irodalmi áttekintés

22

\[\gamma = \gamma_v - \gamma \]. Az oldalnyomás felfogható a vizsgált molekulák, illetve részecskék által a korlát(ok)ra kifejett nyomásként, innen egyenes út vezet a háromdimenziós rendszerekkel való analógához. A vízfelszíni film oldalnyomását a molekulák rendelkezésére álló terület függvényében mérve megkaphatjuk a kétdimenziós állapotgörbét. A felület csökkentésével az oldalnyomás nő: a film ideális gáz analógja, majd kondenzációs szakasz következik. Tovább csökkentve a vízfelszín területét a kondenzált fázisnak megfelelő szakasz mérhető, ennél nagyobb nyomásnál a film összeroppan (kollapsz következik be). Az oldalnyomás vs. terület izotermája alakja az egyes anyagok esetén nagyon változatos: gyakran nem különhető el egyértelműen az egyes fázisoknak megfelelő szakaszok.

A kísérlet során először a részecskéket (vagy molekulákat) megfelelő oldószerben kell diszpergálni (illetve felodani). A diszperziós közegek szemben támasztott követelmény, hogy stabil, aggregációtól mentes diszperzót lehessen vele létrehozni, a mérés során használt szubfázissal (általában víz) ne elegyedjen, terítést követően szélterüljön az alsó fázison, illetve hogy illékony legyen. A leggyakrabban használt közegek a kloroform, a diklór-metán, a hexán és a toluol. A részecskéket tartalmazó úgynevezett terítőszolt a vízfelszíni filmre juttatjuk, az oldószer elpárolgását követően tömöríthető a vízfelszíni film. A kompresszió során felvett oldalnyomás vs. terület izotermája alapján a részecske-részecske kölcsönhatásokra, illetve a részecske-szubfázis kölcsönhatásokra lehet következtetni [122, 123].

ZnO részecskék vízfelszíni Langmuir- és szilárd hordozós Langmuir-Blodgett-filmjeinek előállítására, jellemzésére kevés példa található az irodalomban. Magyarországon Hórvölgyi Zoltán kutatócsoportjában született ezzel kapcsolatosan néhány publikáció [124, 125, 126, 127], én magam is ebben a kutatócsoportban kezdtem el ZnO nanorészecskékkel és rendezett filmjeikkel foglalkozni. A különböző méretű ZnO és SiO₂ részecskék felhasználásával készített többrétegű, változó összetételű bevonatokat optikai (antireflexiós) és fotokatalitikus tulajdonságai szempontjából vizsgáltuk.

Tudomásom szerint ezen kívül két dolgozatban számoltak be ZnO részecskék vízfelszíni filmjeinek vizsgálatáról. Shortell és munkatársai [128] dodekántiollal borított ZnO részecskék vízfelszíni filmjeit állították elő, majd a Langmuir-Blodgett és a
Langmuir-Schäfer technikákat is alkalmazták a vízfelszíni film szilárd hordozóra történő átviteléhez. Váratlan és érdekes jelenséget figyeltek meg: a TEM gridre elkészített filmeknél rúd alakba rendeződött részecskéket láttak (13. ábra). Ezt azzal magyarázták, hogy a felületmódosító dodekántiol hosszú, rúd alakú micellákat képez és a részecskék a micella belsejében rendeződnek.

![Image](200nm)

13. ábra. 1D ZnO struktúra TEM képe: hosszú, rúd alakú dodekánti ol micellákba zárt ZnO részecskék filmje Langmuir-Schäfer technikával [128].

II.4.2 Mintázott felületek

A nanorészecskék önszerveződő struktúrákba rendezése során egyre gyakrabban láthatunk példát arra, hogy a részecskék mozgását valamilyen templát irányítja. A különböző felületi struktúrájú templát lehetőséget ad szubmikrométeres periodicitásokat tartalmazó, mintázott felületek létrehozására kolloidkémiai módszerekkel. Elterjedten használnak templátként PDMS-t (polidimetil-sziloxán), amely egy rugalmas, gumiszerű anyag. A PDMS felszín strukturálásának lényege, hogy a különböző irányokban megnyújtott gumit oxidálják, ennek hatására egy merev réteg alakul ki felszínén, amely relaxálás után periodikus mintázatokat formáz. Az alkalmazott megnyújtás irányától és erősségétől függően különböző felületeket kaphatunk (14. ábra) [130, 131].
Hullámos felszínű (párhuzamos hullámok) PDMS templát létrehozásának és alkalmazásának különböző részecskék mintázatainak kialakításában részletes munkát végeztek Andreas Fery kutatócsoportjában [132]. Megállapították, hogy a létrejövő hullámok hullámhossza az alkalmazott oxigén plazma kezelés idejével (lényegében a felső, oxidált réteg vastagságától), az amplitúdója pedig az alkalmazott feszültség nagyságától (megnyújtás) függ.

14. ábra. PDMS gumi felszínén különböző feszültség terek alkalmazásával létrehozható mintázatok [131].

A strukturált felszínű bélyegző alkalmazható részecskék mintázatokba rendezésén kívül az úgynevezett mikrokontakt nyomtatás eljáráshoz is [132]. Ennek az eljárásnak az elve rendkívül egyszerű, talán éppen az adja a szépségét. A kezelt felületű bélyegző felszínére különböző molekulákat (általában tiolokat vagy polielektrolitokat) adsorbeáltatnak, majd ezt egy megfelelően előkezelt szubsztirátra nyomva az adsorbeált molekulák csak arról a részről fognak áttapadni a hordozóra, ahol közvetlenül érintkeztek vele (15. ábra).

15. ábra. A mikrokontakt nyomtatás folyamata.
A sávos felszínű PDMS bélyegzők nanorészecskék mintázatainak kialakításához való felhasználása viszonylag új eljárásnak számít, azonban egyszerű és olcsó felhasználhatósága miatt az alkalmazások szempontjából nagyon előnyös. A részecskék rendezése a hordozó és a bélyegző közötti bezárt térben kapilláris erők irányításával történik (16. ábra) [133, 134]. A módszert többek között alkalmazták arany nanorészecskék sávos mintázatokba történő rendezésére, így olyan plazmonikus felületeket hoztak létre, amelyek a felület által érzékenyített Raman-szórás technikánál használhatók előnyösen [131, 135].

16. ábra. A hullámosított felszínű bélyegző létrehozása és alkalmazása a nanorészecskék önszerveződő módon mintázatokba rendezéséhez [135].
III. CÉLKITŰZÉSEK

A ZnO nanorészecskék szintézisének és vizsgálatának kiterjedt irodalma van köszönhetően a széleskörű alkalmazási lehetőségeinek. Található példa olyan eljárásokra, amelyekkel közel monodiszperz, gömb alakú részecskék nyerhetők. Kevés olyan dolgozat született azonban, amelyben szabályos részecskékből önszerveződéses technika segítségével létrehozott rendezett struktúrákról számolnának be. Doktori munkám során rendezett nanorészecskés filmek létrehozását tüzem ki célul, amelyeket potenciális alkalmazási lehetőségeik szempontjából kívántam jellemezni. Ezek figyelembe vételével a kísérleti munkámat az alább megfogalmazott célok megvalósítása köré építtettem fel.

♦ Meulenkamp módszerét választottam 3-7 nm-es mérettartományba eső közel monodiszperz ZnO nanorészecskék szintéziséhez. A részecskék fluoreszcens elven működő szenzorként való alkalmazhatóságának érdekében célmot volt részletesen tanulmányozni az emissziós sajátságait etanolos közeg szenzorként való alkalmazhatóságának érdekében és monodiszperz ZnO nanorészecskék szintéziséhez. A részecskék alapos szerkezetvizsgálatával célom volt a szilárd hordozók optikai modellezéséhez szükséges paraméterek meghatározása. A részecskék alapos szerkezetvizsgálatával célom volt a szilárd hordozó filmjeik optikai modellezéséhez szükséges paraméterek meghatározása. A részecskék alapos szerkezetvizsgálatával célom volt a szilárd hordozó filmjeik optikai modellezéséhez szükséges paraméterek meghatározása. A részecskék alapos szerkezetvizsgálatával célom volt a szilárd hordozó filmjeik optikai modellezéséhez szükséges paraméterek meghatározása.

♦ Autoklávban 200-500 nm mérettartományba eső monodiszperz, gömb alakú ZnO részecskék alapos szerkezetvizsgálatával célom volt a szilárd hordozó filmjeik optikai modellezéséhez szükséges paraméterek meghatározása. A részecskék alapos szerkezetvizsgálatával célom volt a szilárd hordozó filmjeik optikai modellezéséhez szükséges paraméterek meghatározása. A részecskék alapos szerkezetvizsgálatával célom volt a szilárd hordozó filmjeik optikai modellezéséhez szükséges paraméterek meghatározása. A részecskék alapos szerkezetvizsgálatával célom volt a szilárd hordozó filmjeik optikai modellezéséhez szükséges paraméterek meghatározása.
A 200-500 nm mérettartományban előállított részecskék felhasználásával templát által irányított önrendeződéses elven mintázott felületek előállítását tűzem ki célul kvarc- és arannyal bevont üveghordozókon. Ehhez a részecskék, a hordozó és a hullámosított felszínű templát felületi tulajdonságainak egyidejű optimalizálását kellett megvalósítani. A megfelelően rendezett mintázatok létrehozását követően UV-látható transzmittancia és fluoreszcencia emissziós vizsgálatokat végeztem.
IV. KÍSÉRLETI RÉSZ

IV.1 ZnO és Au részecskék szintézise

IV.1.1 ZnO részecskék előállítása a 3-7 nm mérettartományban

A szolokat egy Meulenkamp által kidolgozott eljárás [21] szerint állítottam elő. Ezzel a módszerrel 3-7 nm átlagos átmérőjű, izometrikus ZnO részecskéket tartalmazó etanoloros közeg szolt nyertem. A nagyjából 3 nm átmérőjű részecskék mérete a szintézist követően lassan tovább növekszik, bizonyos idő után azonban elér egy maximális értéket (kb. 7 nm). A dolgozat további részében az adott méretű ZnO részecskék elnevezést fogom használni, de ez természetesen minden esetben átlagos átmérő értékre vonatkozik.

Az eljárás során 1,10 g Zn(AcO)\(_2\).2H\(_2\)O-ot (>98,0%, purum, Fluka) 50 ml abszolút etanolban (> 99,9%, a.r., Molar Chemicals) forralás és keverés közben feloldottam, majd az oldatot hirtelen lehútve vízmentes Zn(AcO)\(_2\) vált ki. Eközben 0,29 g LiOH.H\(_2\)O-t (>99% SigmaUltra, Sigma) 50 ml abszolút etanolban szobahőmérsékleten ultrahangfürdőben feloldottam. A LiOH oldatát csepegtető tölcser segítségével kb. egy óra alatt hozzáadagoltam a Zn(AcO)\(_2\) oldatához, miközben az elegy hőmérséklete végig 0°C körül volt. Néhány órás kevertetés után a kész szolt két részre osztottam: az egyik részletet szobahőmérsékleten (~22°C), a másik részletet hűtőszekrényben (~5°C) tároltam. A szol szárazanyag tartalma 0,4 g/ 100 ml.

Porminta előállítása

IV.1.2 Polietiléniminnel (PEI) stabilizált ZnO részecskék előállítása

A 3 nm-es részecskék a szintézist követően tovább növekednek, a szolok stabilizálása érdekében polietiléniminnel borítottam a ZnO részecskék felszínét. A negatív felületi töltésű részecskékre elektrosztatikus vonzó kölcsönhatások miatt egyszerűen kapcsolható a pozitív töltésű kationos polielektrolit, a PEI. A ZnO részecskék szintézisét PEI jelenlétében végeztem. Az eljárás során a kiindulási 50 ml etanolhoz (> 99,99%, a.r., Molar Chemicals) a Zn(AcO)\textsubscript{2}.2H\textsubscript{2}O (>98,0%, purum, Fluka) bemérése előtt hozzáadtam 0,4 g PEI-t (M.W.:~800, Aldrich), a hozzáadandó mennyiséget itt nem részletezett előkísérletek eredménye alapján választottam. Ezek után a ZnO részecskék szintézise megegyezett a IV.1.1 pontban leírtakkal.

IV.1.3 ZnO részecskék előállítása a 200-500 nm mérettartományban

Az előállítás során 1,1-2,2g Zn(AcO)\textsubscript{2}.2H\textsubscript{2}O–ot (>98,0%, purum, Fluka) és 100 ml dietilén-glikolt (>99,9%, puriss, Molar Chemicals) bemért a további paraméterekhez: 160°C hőmérséklet, 3,5°C/perc felfűtési sebesség, 400 rpm keverési sebesség. A reakció végén a sótétben tárolt szolokat szombaton átvittük.

<table>
<thead>
<tr>
<th>d\textsubscript{TEM}, nm</th>
<th>234±11</th>
<th>301±12</th>
<th>341±15</th>
<th>349±14</th>
<th>457±16</th>
</tr>
</thead>
<tbody>
<tr>
<td>m(Zn(AcO)\textsubscript{2}.2H\textsubscript{2}O), g</td>
<td>1,1</td>
<td>2,2</td>
<td>1,6</td>
<td>2,2</td>
<td>1,1</td>
</tr>
<tr>
<td>c (g / 100 ml)</td>
<td>0,407</td>
<td>0,814</td>
<td>0,61</td>
<td>0,814</td>
<td>0,407</td>
</tr>
</tbody>
</table>
Porminta előállítása

341 nm átlagos átmérőjű ZnO részecskék átmosása vízességbe

A mintázatok készítéséhez a 341 nm-es ZnO részecskék vízes közegű diszperziójára volt szükségem. Ehhez a törzsszol 300 µl-es részletét eppendorf csőben 5 percig centrifugáltam (Eppendorf MiniSpin) 12500 rpm fordulatszámon, a felülüsző eltávolítása után nagy tisztaságú vízzel (Millipore, MilliQ Integral 3, vezetőképesség: 18,2 mS/cm) öntöttem fel a kiindulási koncentrációra, majd 1 perces ultrahangozással diszpergáltam. A mosási ciklust még kétszer ismételtem meg, végül a törzsszollal megegyező koncentrációban nagy tisztaságú vízben diszpergáltam a részecskéket.

IV.1.4 Arany nanorészecskék preparálása

Az arany nanorészecskék szintézisét a széleskörben használt Turkevich módszerrel végeztem [136]. A szintézis nagy előnye, hogy monodiszperz, szabályos gömb alakú részecskék képződnek, valamint a szintézis paramétereinek változtatásával hangolható a részecskeméret [137, 138]. Munkámhoz 10 nm átlagos átmérőjű részecskékéket állítottam elő.

A szintézis során 58,25 ml 0,209 mmol/dm3 H\textsubscript{2}AuCl\textsubscript{4} (>99% Sigma Aldrich) vizes oldatot kevert és közben forrásig melegítetek. Amikor az oldat hőmérséklete eléri a ~80°C-ot, 1,75 ml 0,035 mol/dm3 trinátrium-citrát (> 99% Sigma Aldrich) oldatot mérek hozzá. A reakcióeleget 1 órán át forralom, majd a fűtés lekapcsolása után még néhány órát kevertetem. Az élénk vöröses színű szolt hűtőszekekrényben tároltam.
IV.2 Langmuir-filmek előállítása víz/levegő határfelületen

A kétféle mérettartományban előállított ZnO részecskék, valamint sztearinsav vízfelszíni filmjeinek előállítását és jellemzését a Kibron MicroroughS típusú kétkorlátos Langmuir-mérlegben végezem. A kétkorlátos modell jellemzője, hogy a monorétegű film kompresziójára a két korlát egymás felé mozgásával valósul meg, szemben az egykorlátos modellel, amikor is a film a kád egyik végébe tömör ül. A korlátok mozgásának megfelelően a felületi feszültség mérése a kád középső részénél történik. Ennek a típusnak a jellemzője egy speciálisan kialakított kád, amellyel jelentősen csökkent a szubfázis térfogata. Ahogyan a képen is látszik a kád a felület jelentős részén nagyon sekély, a középső részén azonban egy mélyedést alakítottak ki, így lehetőség van a vízfelszíni film szilárd hordozóra történő átvitelére a Langmuir-Blodgett technikával. (Itt meg kell jegyezni, hogy az eredeti üveg kád elszennyezódése miatt teflontól készített másolattal dolgoztam.)

A mintaelőkészítés során a törzsszolt 1 percre ultrahangfürdőbe tettem. A 3-7 nm-es ZnO és PEI-vel stabilizált ZnO részecskék etanolos közlég változainhoz 1:2 térzsgatárányban kloroformot (CHROMASOLV® Plus for HPLC, etanolos stabilizált, Sigma Aldrich) adtam, a 200-500 nm-es ZnO részecskék dietilén-glikolos közlég változait 1:1 térzsgatárányban hígítottam kloroformmal, a sztearinsavból (>99,5%, Fluka) 0,1 mg/ml koncentrációjú kloroformos oldatot készítettem. A terítendő szolokat közvetlenül a vízfelszínre juttatás előtt 1 percre ultrahangfürdőbe tettem.

A kád előkészítése során etanolal nedvesített papírvattával többször áttöröltem azt, majd feltöltöttem ultratiszta vízzel (Millipore, MilliQ Integral 3, vezetőképesség: 18,2
Kísérleti rész

32

mS/cm). Ezután vízsgárszivattyú segítségével megtisztítottam a vízfelszínt és beállítottam a vízszintet.

A korlátok szélső állásában (maximális vízfelszín terület) egy mikrofecsckendő segítségével a vízfelszínre vittem a megfelelő mennyiségű terítőszolót vagy oldatot. A terítőfolyadék elpárolgását követően (5 perc) a korlátok egyenletes sebességgő mozgatásával (815 mm²/perc) csökkentettem a vízfelszín film területét, miközben a műszert irányító számítógép regisztrálta az erömő r által mért oldalnyomást a vízfelszín területének függvényében.

Az oldalnyomás - terület izotermából meghatározható a Langmuir-filmre jellemző kontakt keresztmetszeti terület (Aₖ, nm²), valamint a kollapszus pont paraméterei: oldalnyomás (πₜ, mN/m) és terület (Aₜ, mN/m), a paramétereket az alábbi ábrán mutatom be (18. ábra).

A kontakt keresztmetszeti területből a vízfelszínre vitt részecskék számának ismeretében meghatározható az egy részecskére jutó terület (A₁, nm²):

\[A₁ = \frac{Aₖ}{N} = \frac{Aₖ \cdot d³ \rho p}{6m}, \]

ahol N a részecskék száma a vízfelszín Langmuir-filmben, d a részecskék átlagos átmérője, ρₚ a részecskék sűrűsége és m a részecskék tömege a filmben. Egyetlen részecske területigénye elméleti számolás alapján is meghatározható a részecske köré írt hatszög területével (Aₜ, nm²):

\[Aₜ = \frac{\sqrt{3}}{2} d². \]
IV.3 Szilárd hordozós filmek készítése

IV.3.1 Aranybevonatú hordozók készítése, felületkezelése

A ZnO részecskék arannyal való plazmonikus csatolásának vizsgálatára arannyal bevont hordozókra készítettem filmeket, mintázatokat ZnO részecskékkel. Ezekhez a vizsgálatokhoz kétféle arany filmet használtam: (i) a IV.1.4 fejezetben leírtak szerint előállított arany nanorészecskék ún. spray coating (magyarákul nagyjából porlasztásos filmmépítés) technikával készített bevonata kvarc hordozón, (ii) SPR spektroszkópiában használatos 50 nm vastagságú folytonos arany filmmmel bevont üveglap.

(ii) Az 50 nm vastag Au filmmel borított üveglapot a Platypus Technologies cégtől vásároltuk (típus: AU.0500.ALSI). A felszínét friss perkénsav oldatban (cc. H_2SO_4 és 30% H_2O_2 3:1 térfogatarányú elegye) tisztítottam meg 5 perc alatt, majd desztillált vízzel öblítettem és nitrogén áramban szárítottam. Az így nyert felület túlságosan hidrofób volt a további célokra, így hidrofilizáltam azt: 24 órára 2%-os 2-merkaptoetanol (>99,0%, Sigma-Aldrich) etanolos oldatába merítettem, majd ezzel és desztillált vízzel öblítettem, végül nitrogén áramban szárítottam.

IV.3.2 Langmuir-Blodgett-filmek

A ZnO részecskék esetén hordozóként üvegből készült mikroszkóp tárgylemezt használtam, melyek mérete átlagosan 2,6 cm × 3,8 cm volt. A pástázó elektronmikroszkópos felvételekhez a vizsgálandó filmeket Si lapra építettem fel, a fluoreszcencia spektrumok méréséhez pedig kvarchordozás filmeket készítettem. Az
előkészítés során a célom hidrofil felület előállítása volt, ehhez a hordozókat krómkénsavba meríttettem legalább egy órára, majd desztillált vízzel öblítettem, és nitrogén áramban szárítottam. Sztearinsav esetében kvarc lapot vagy különböző aranybevonatú hordozókat használtam, ezek előkészítése a már ismertetett módon történt (IV.3.1).

A kád előkészítése (IV.2) után a korlátok szélső pozíciójában a filmhúzó feltét (lásd 17. ábra) segítségével a hordozót a vízbe meríttettem kb a 2/3 részéig. Ezt követően a terítőszolt vagy oldatot apró cseppekben, mikrofecskenő segítségével a vízfelszínre juttattam. A terítőfolyadék elpárolgása után a vízfelszín területét egyenletes sebességgel csökkentettem a megfelelő tömörségű film eléréséig. A Langmuir-Blodgett-filmeket állandó oldalnyomás mellett 2 mm/perc sebességgel húztam ki, majd levegőn szárítottam. Többrétegű filmek ezen eljárás ismétlésével állíthatók elő. Sztearinsav esetén a Z-típusú depozíciós módot alkalmaztam, ahol a molekulák a filmképzéskor féj-lánc érintkezésben vannak.

a) AuNPs/SA(n)/ZnO: Au nanorészecskék filme (porlasztásos filmképzés) + n rétegszámú sztearinsav (Langmuir-Blodgett technika) + 1 réteg ZnO (Langmuir-Blodgett technika)

b) AuF/SA(n)/ZnO: Au folytonos filmmel borított üveglap + n rétegszámú sztearinsav (Langmuir-Blodgett technika) + 1 réteg ZnO (Langmuir-Blodgett technika)

IV.3.3 Mintázott felületek

A mintázatok készítéséhez önrendeződésen alapuló technikát használtam: hullámosított felszínű PDMS (polidimetilsziloxán) béllyegzők irányítják a részecskék rendeződését. A technika elvét a II.4.2. fejezetben mutattam be.

A hullámos felszínű béllyegző előállításához a PDMS prekurzor (Sylgard 184, Dow Corning, USA) és a térhálósító ágens (Sylgard 184 curing agent, Dow Corning, USA) 10:1
tömegarányú keverékét egy 10 cm x 10 cm x 1 cm-es lapos üveg kádba öntöttem, Petri-csészvel lefedve 1 nap alatt képződik és megszilárdul a térhálós PDMS gumi. A tömböt az üveg kádból kivéve kb 1 cm x 4 cm-es darabokra vágtam fel. A PDMS csíkok két végénél egy erre alkalmas szerkezetbe befogtam, majd az eredeti hosszának 125%-ára nyújtottam meg és oxigén plazmában (Flecto10, Plasma Technolog y, Németország) oxidáltam a felszínét 10 vagy 20 perc kezelési idő, 0,2 mbar nyomás és 0,1 kW mellett. A plazma kezelés után a rugalmas PDMS tömb relaxálásakor az oxidálás hatására merevvé vált felszíni réteg hullámos alakot vesz fel. A bélyegzők felszíne az előállítást követően hidrofil jellegű, de nagyjából 3 hét öregítés után teljesen hidrofóbba válik. A felület oxigén plazmában történő kezeléssel újra hidrofilizálható.

A mintázatok hordozójaként perkénsavban megtisztított kvarc- és üveglapokat vagy hidrofilizált arany felületeket (IV.3.1) használtam. A perkénsav oldatban megtisztított üvegfelszín negatív felületi töltésű. A hordozó felületmódosítására aminopropil-trietoxiszilánt (APTES />99%, Aldrich/, vákuum exszikkátorban 1 óra gözadsorpció), poli-L-lizin-polietilénglikol kopolimert (PLL-g-PEG /PLL(20 kDa)-hez oldalláncként kapcsolva PEG(2 kDa), g = 3,0 - 4,0, SuSoS AG, Svájc/, 1 mg/mL vizes oldat, 20 perc adsorpció) és kétféle molekulatömegű polietilénmint (PEI_LMW /elágazó, MW: 800/, Aldrich és PEI_HMW /MW: 25000, Aldrich/, 1g/L vizes oldat, 5 perc adsorpció) használtam.

A 341 nm-es ZnO részecskéket minden kísérlethez frissen vittem át vízbe (IV.1.3. fejezet), ugyanis vizes közegben csak viszonylag rövid ideig maradnak egyedi részecskékként diszpergálva (nagyjából 1 nap után megjelennek a néhány részecskékől álló aggregátumok, azonban nagymértékű aggregáció több hónap elteltével sem tapasztalható). A pozitív felületi töltésű ZnO részecskék felületmódosítására negatív töltésű polimereket, polishtirol-szulfonátot (PSS, MW: 70,000, Aldich) és poliakrilsavat (PAA, a. r., Fluka) használtam (vizes közegű törzsszol centrifugálása után újradiszpergálás 1g/L polimer oldatban, keverés 20 percig, majd centrifugálás és mosás 3-szor desztillált vízbén).

A mintázatkészési eljárás rendkívül egyszerű: a megfelelően előkészített hordozó felszínére cseppentettem 10 µl ZnO részecskékét tartalmazó szolt majd óvatosan rátettem a bélyegzőt és az egészet lefedtem egy petri-csészével. Száradás után (12 óra) óvatosan eltávolítottam a bélyegzőt.
IV.3.4 Random szerkezetű filmek készítése

A ZnO részecskéket szabálytalan elrendezésben tartalmazó filmeket adszorpcióval hoztam létre. A 341 nm-es részecskék szolját vizes közegbe vittem át (IV.1.3. fejezet), a kvarc-, üveg- és arannyal bevont üveghordozók felszínét friss perkénsav oldatban tisztítottam, további kezelés nem történt. A filmkészítéshez a hordozókat lefektettem egy tiszta felszínre, 200 µl ZnO részecskékét tartalmazó szolt cseppentettem a felületükre, majd 1 perc elteltével desztillált vízzel öblítettem és nitrogén áramban szárítottam a filmeket.

IV.4 Vizsgálati módszerek

IV.4.1 Transzmissziós elektronmikroszkópia (TEM)

A ZnO és Au részecskék méretét transzmissziós elektronmikroszkóppal (Philips CM-10, SZTE, ÁOK, Pathológiai Intézet; FEI Tecnai G² 20 X-TWIN, SZTE, TTIK, Alkalmazott és Környezetkémiai Tanszék; valamint Hitachi S-4700 pásztázó elektronmikroszkóp transzmissziós üzemmód, SZTE, TTIK, Alkalmazott és Környezetkémiai Tanszék) készített felvételek alapján jellemeztem. A részecskeméret-eloszlás meghatározását az Image Tool 3.0 szoftver segítségével végeztem, minden esetben legalább 200 db részecske méretének figyelembe vételeivel.

IV.4.2 Röntgendiffrakció (XRD)

Az előállított ZnO részecskék kristállyosságát röntgendiffrakciós mérésekkel jellemeztem. A mérések a IV.1.1 és a IV.1.3 pontokban leírtak szerint előállított pormintákrol a Philips röntgendiffraktométerrel (PW 1830 generátor, PW 1820 goniométer, CuKα sugárzás: \(\lambda = 0.1542 \) nm, 40 kV, 35 mA, 1 mm-es rés)
szobahőmérsékleten a 20 - 80° (2Θ) szögtartományban. A sztearinsavból felépített többrétegű Langmuir-Blodgett-filmek szerkezetének jellemzésére is XRD mérések készültek, amelyeknél a mérési szögtartomány 0,5 - 60° (2Θ) volt. A Scherrer-egyenlet felhasználásával a csúcsok vonalszélesedése alapján kiszámoltam a mintára jellemző átlagos kristályméretet (d):

\[d = \frac{k\lambda}{β\cos Θ}, \]

ahol \(λ \) a röntgensugárzás hullámhossza (\(λ = 0,1542 \) nm), \(β \) a félértékszélesség, \(Θ \) a diffakció szöge, \(k \) pedig konstans.

IV.4.3 Lézerdiffakció

A ZnO részecskékből kialakított sávos mintázatok hullámhosszát lézerdiffrakciós módszerrel is meghatároztam egy házilag összeállított berendezéssel. Az üveghordozón kialakított mintázatot piros (670 ± 10 nm, Class IIIa laser pionter, teljesítménye max. 3 mW) illetve zöld (532 ± 10 nm, Class II laser pointer, teljesítménye < 1 mW) lézerforrással felülről megvilágítottam, majd a meghatározott távolságban alatta lévő fehér lapon bejelöltem az áteső direkt fényt, továbbá az első- és a másodrendű diffakciók helyét. A mintázat hullámhossza (\(Λ \), nm) a következő egyenlettel meghatározható [139]:

\[Λ = \frac{2π}{q}, \]

ahol \(q \) szórásvektor az alábbi kifejezéssel számolható [139]:

\[q = \frac{4π}{λ} \sin \frac{θ}{2}, \]

ahol \(λ \) a lézerfény hullámhossza (nm), \(θ \) a diffakciós szög. A (9) képlet azonos a SAXS méréseknél (IV.4.5) a szórásvektor (XI.1) meghatározására használt egyenlettel.

![20. ábra. A lézerdiffakciós mérés elve.](image-url)
IV.4.4 \(\text{N}_2 \) adsorpciós-deszorpciós mérések

A ZnO részecskék fajlagos felületét, pórusosságát és sűrűségét \(\text{N}_2 \) gázadsorpciós izotermák mérése alapján jellemeztem. Az izotermák felvételéhez a korábban leírtak (IV.1.3. alfejezet) szerint nyert pormintákat használtam fel, amelyeket 100°C-on egy éjszakán át \(10^{-2} \) Torr nyomáson előkezeltem. A mérések a Micrometrics Gemini 2375 típusú automata szorptométerrel készültek 77 K hőmérsékleten, a mért adsorpciós és deszorpciós izotermák kiértékelését program végezte: a BET egyenlet alapján fajlagos felület értékeket, a BJH módszer felhasználásával pedig pórusméret-eloszlást kaptam [140]. A BJH módszerrel nyert pórútréfogat eredményeket használtam fel a részecskék porozitásának és sűrűségének kiszámítására.

IV.4.5 Kisszögű röntgenszórás (SAXS)

A kisszögű röntgenszórási mérések során a 200-500 nm-es ZnO részecskék szerkezetét, strukturáltságát jellemeztem. A szolokból nyert pormintákat (IV.1.3. alfejezet) analízise egy Philips PW 1820 típusú generátorral előállított CuK\(\alpha \) sugárzás alkalmazásával (\(\lambda = 0,154 \) nm, 40 kV, 30 mA) készült. A primer sugárzás egy Ni filteren keresztül jut a KCEC/3 típusú kompakt Kratky-kamerába, amelyben a sugár szélessége 15 mm, vastagsága 40 µm. A mérések vákuum atmoszférában történtek. A porminták egy 0,5 mm vastagságú mintatartóban lettek elhelyezve. A szűrt sugárzás intenzitását az ASA szoftver által vezérelt helyérzékeny detektor (PDS 50M) határoza meg a \(2\Theta = 0,05 - 8^\circ \) szögartományban. A röntgenabszorpciós intenzitások (\(A_S, A_B \)) a mozgó rés módszerrel lettek meghatározva. A Kratky-kamerában mért \(I_S(h) \) szórásfüggvényből a háttér szórását \(I_B(h) \) le kell vonni és az adatokat normálni kell, hogy a minta szerkezeti paramétereinek meghatározására alkalmas függvényt kapjunk. Az eredmények kiértékelésének menetét a Függelék XI.1 fejezetében részletezem.

IV.4.6 Dinamikus fényszórásmerés (DLS), \(\zeta \)-potenciál mérése

A dinamikus fényszórási (DLS) és elektrokinetikai potenciál (\(\zeta \)-potenciál) méréseket a Malvern Zetasizer NanoZs típusú készülékkel végeztem, amely egy 632,8 nm
hullámhosszú He-Ne lézer fényforrással működik. DLS mérésekkel jellemeztem a 3-7 nm-es ZnO részecskék ill. aggregátumaik méretét, a 341 nm átlagos átmérőjű ZnO részecskék vizes közegű szoljain pedig a DLS mérések mellett ζ-potenciál méréseket is végeztem. A vizsgálatokhoz a törzsszolokat további hígítás nélkül használtam fel. A méret meghatározásához a mintákat üveg mintatartó küvettába, az elektrokinetikai potenciál meghatározásához pedig polisztrolból készült U-alakú kapilláris mintatartóba töltöttem, a mérési eredményeket három párhuzamos mérés átlagából számítottam.

IV.4.7 UV-látható spektroszkópia

A 3-7 nm-es ZnO részecskék tartalmazó etanolos közegű szolok UV-látható abszorbancia spektrumait a részecskék méreteinek és gerjesztési küszöbenergiájának meghatározására használtam. A spektrumokat az Ocean Optics USB2000 típusú spektrofotométerrel méret kvarc küvettában, a fotométer felbontása 0,3 nm, háttérként abszolút étanolt használtam, a mérésekhez a törzssolt minden esetben 50-szeresre hígítottam abszolút étanolal.

Az abszorbancia spektrumokból meghatározható a részecskék gerjesztési küszöbenergiája valamint a részecskék mérete is [21]. Az abszorbancia spektrumokból a részecskeméret az

\[
\frac{1240}{\lambda_{1/2}} = 3,301 + 294/D^2 + 1,09/D
\]

egyenlet alapján számolható, ahol \(\lambda_{1/2}\) az abszorbancia spektrum 300-400 nm közötti részének inflexiós pontja (meghatározható a mért spektrum differenciálásával), \(D\) pedig a részecskék átmérője Å mértékegységben. A ZnO részecskék mértékvantált tulajdonságának jellemzéséhez kiszámoltam a részecskék gerjesztési küszöbenergiáját a Tauc-módszer segítségével. Ennek során ábrázoltam az \((Ahv)^2\) vs. \((hv)\) függvényt, ahol \(A\) az adott hullámhosszon mért abszorbancia, \(hv\) pedig a fotonenergia (eV). A lineáris részre illesztett egyenes és az abszcissza metszéspontja adja meg a gerjesztési küszöbenergia értékét.

A 10 nm-es Au részecskék tartalmazó szolok UV-Vis spektrumait a részecskék plazmonikus tulajdonságának jellemzésére mértém az Ocean Optics USB2000 típusú spektrofotométerrel kvarc küvettában, a fotométer felbontása 0,3 nm, háttérként nagy tisztaságú vizet, a mérésekhez a törzssolt további hígítás nélkül használtam.
A 3-7 nm-es és a 200-500 nm-es ZnO részecskék ből üveg és kvarc hordozóra felépített Langmuir-Blodgett-filmeket, mintázatokat és random szerkezetű filmeket jellemeztem UV-látható abszorbancia illetve transzmittancia spektrumokkal. A méréseket az Ocean Optics USB4000 és az Ocean Optics CHEM 2000 típusú diódasoros spektrofotóméterekkel végeztem, a felbontás 0,3 nm, referenciaként a levegő spektrumát mérem. A 234 nm-es átlagos átmérőjű ZnO részecskék többrétegű filmjeinek reflexió spektrumát az Ocean Optics USB4000 típusú diódasoros fotométerrel végeztem, amelyhez optikai kábelben keresztül egy házi tervezésű reflexiós mérőcellát csatlakoztattam, a spektrumok felvételét 45°-os elrendezésben valósítottam meg, referenciaként tiszta üveglapot használtam, a készülék felbontása 0,3 nm.

IV.4.8 Atomerő mikroszkópia (AFM)

A 3-7 nm-es ZnO részecskék ből épített többrétegű Langmuir-Blodgett-filmek valamint az arannyal bevont hordozók szerkezetét atomerő mikroszkóppal készített felvételekkel jellemeztem. A vizsgálatokhoz üveghordozóra készítettem el a filmeket. A méréseket a Digital Instruments Nanoscope III típusú atomerő mikroszkóppal készített tapogató (tapping) üzemmódban, a készülék piezo kristálya x és y irányban 12,5 µm, z irányban 3 µm mozgásra képes. A leképezéshez szilícium tapping tűt (Veeco Nanoprobe Tips RTESP modell) használtam (125 µm, 300 kHz). A kiértékelés során meghatároztam a mintákra jellemző felületi érdesség értékét a következő egyenlet segítségével:

$$RMS = \sqrt{\frac{N}{i=1} (Z_i - Z_{ad})^2}$$

ahol Z_{ad} egy adott területre jellemző átlagos magasság érték, Z_i az i-edik pontban mért magasság, N az adott területen található adatpontok száma.

IV.4.9 Pásztázó elektronmikroszkópia (SEM)

Az autoklávban előállított 200-500 nm-es ZnO részecskék morfológiáját, felületi struktúráját, Langmuir-Blodgett-filmjeik és a mintázatok rendezettségét pásztázó elektronmikroszkópos képekkel jellemeztem. A kvarchordozóon elkészített minták felszínére vékony (néhány nm) arany filmet párologattam a mintafelszín elektromos

IV.4.10 Fluoreszcencia spektroszkópia

A ZnO részecskés szolok illetve filmek fotoemissziós tulajdonságainak jellemzéséhez fluoreszcencia emissziós spektrumokat mért a Horiba Jobin Yvone Fluoromax-4 spektrofluoriméteren. A 3-7 nm-es ZnO részecskék etanolos közegű szoljait abszolút etanolal 50-szeresre hígítottam. A filmek méréséhez egy porminták és hordozós vékonyrétegek számára kialakított speciális mintatartó feltétet használtam. A mérésekhez a készülék kalibrációja a desztillált víz 397 nm-nél található Raman emissziójához történt, gerjesztő forrásként 280 nm, 300 nm, valamint 350 nm-es hullámhosszú fénysugarat alkalmaztam, a belépő és a kilépő rés egyaránt 5 nm, a felbontás 1 nm volt, az integrációs idő pedig 0,1 s volt. A spektrumok kiértékelésénél az oldószert (etanol) illetve az Au-ZnO hibrid filmeknél a csak ZnO-t tartalmazó filmeket használtam referenciaként.
V. EREDMÉNYEK I. RÉSZ: 3-7 NM-ES CINK-OXID RÉSZECSKÉK ÉS FILMJEIK

V.1 ZnO és Au nanorészecskék jellemzése

V.1.1 ZnO részecskék

Az etanolos közegben szintetizált ZnO részecskék és a PEI-vel stabilizált ZnO részecskék morfológiájának jellemzésére transzmissziós elektronmikroszkópos képek készültek (21. ábra). A felvételekről megállapítható, hogy a részecskék közel gömb alakúak és a méretük 5 nm alatt van, azonban a pontos méret és méreteloszlás nem határozható meg. A részecskék kristályosságának jellemzésére röntgendiffrakciós mérések készültek. A 22. ábra mutatja a ZnO részecskék diffraktogramját, amelyen 31,70°-nál, 34,39°-nál és 36,18°-nál jelentkeznek reflexiók. A wurtzit kristályos ZnO-ra jellemző reflexiók helye a JCPDS 36-1451 kártya szerint 31,77° [100], 34,42° [002] és 36,25° [101], amelyekkel jó egyezést mutatnak a mért diffraktogramok, így megállapítható, hogy az előállított részecskék wurtzit kristályos ZnO nanorészecskék.
Eredmények I. rész:

3-7 nm-es cink-oxid részecskék és filmjeik

21. ábra. A módosítatlan és a PEI-vel borított ZnO részecskék TEM képe.

22. ábra. A ZnO részecskék pormintájáról készült XRD diffraktogram.

A részecskék Ostwald-féle öregedését a módosítatlan, szobahőmérsékleten tárolt ZnO szol esetén tanulmányoztam alaposabban. UV-Vis abszorbancia mérésekkel és röntgendiffrakciós módszerrel jellemeztem a részecskék méretét, dinamikus fényesfórumméressel pedig jellemeztem az aggregációt.

A 23. ábra a) részében látható a módosítatlan, szobahőmérsékleten tárolt ZnO részecskék UV-Vis abszorbancia spektrumának változása a szintézist követő 10 napos időintervallumban. Vörös eltolódás figyelhető meg a spektrumokon, aminek az oka a részecskék méretének növekedése. Az Ostwald-féle öregedési folyamat során a kisebb részecskék a nagyobb oldhatóságuk miatt nagyobb arányban oldódnak fel, miközben az oldhatósági korlát miatt kiváló anyag a nagyobb részecskék felületére kristályosodik ki. A mért spektrumokból a (10) egyenlet alapján kiszámítható a részecskeméret. Az abszorbancia spektrumokból meghatározható továbbá a részecskék gerjesztési küszöbenergia (‘‘band gap’’) értéke (IV.4.7 alfejezet), amely jellemző a részecskék
Eredmények I. rész:

3-7 nm-es cink-oxid részecskék és filmjeik méretkvantáltságára. A 23. ábra b) része a részecskék abszorbancia spektrumának Tauc-representációját mutatja, amelyből meghatározta a gerjesztési küszöbenergiáit. A 24. ábra összefoglalja a módosítatlan, szobahőmérsékleten tárolt ZnO részecskék UV-Vis spektrumai alapján kapott eredményeket: a részecskeméret és a gerjesztési küszöbenergia változása időben. Látható, hogy a vizsgált 10 napos időintervallumban a részecskék mérete 3 nm-ről nagyjából 7 nm-re nő és ezzel párhuzamosan a gerjesztési küszöbenergia értéke 3,63 eV-ról lecsökken 3,37 eV-ra, vagyis a tömbfázisú ZnO-nak megfelelő értékre.

23. ábra. a) A ZnO részecskéket tartalmazó szol UV-Vis abszorbancia spektrumai a szintézist követő napokban. b) A mért abszorbancia spektrumok Tauc-representációja a részecskék gerjesztési küszöbenergiájának meghatározásához.

24. ábra. A részecskék mérete és gerjesztési küszöbenergia az idő függvényében.

A módosítatlan, szobahőmérsékleten tárolt ZnO szolokat jellemeztem továbbá XRD és DLS mérésekkel is, a vizsgált 10 napos időintervallumban kapott eredményeket a 2. táblázatban foglaltam össze. A jobb megértés kedvéért a táblázatban feltüntettem az UV-Vis abszorbancia spektrumok alapján meghatározott értékeket is. Látható, hogy az abszorbancia spektrumokból és a röntgendiffrakciós módszerrel a Scherrer-egyenlet
Eredmények I. rész:

alapján ((7) egyenlet) meghatározott értékek jó egyezést mutatnak, ugyanakkor a dinamikus fényszórás mérés során nagyobb értékeket kaptam. A DLS mérések a részecskék hidrodinamikai átmérőjéről adnak információt, amely minden esetben nagyobb a tényleges méretnél. A részecskeméret növekedése mellett egyre jelentősebb a részecskék aggregációja is. A szintézist követően az aggregáció nem vagy nagyon kis mértékben figyelhető meg. Idővel azonban a részecskék összetapadnak, aggregálódnak, melynek eredményeképpen a tizedik napzelte közel 100 nm átmérőjű aggregátumok találhatók a szolban.

2. táblázat. A részecskeméret követése az előállítás utáni napokban UV-Vis abszorbancia, XRD és DLS módszerekkel.

<table>
<thead>
<tr>
<th>Idő (nap)</th>
<th>UV-Vis</th>
<th>XRD</th>
<th>DLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,2</td>
<td>3,7</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>3,8</td>
<td>4,1</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>4,7</td>
<td>4,9</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>5,2</td>
<td>5,5</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>5,6</td>
<td>5,8</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>6,4</td>
<td>6,7</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>7,1</td>
<td>7,2</td>
<td>91</td>
</tr>
</tbody>
</table>

A szolok stabilitásának növelésére kétféle módszert alkalmaztam: alacsony hőmérsékletű (~5°C) tárolás, illetve polietilénimin (PEI) mint szterikus stabilizáló ágens jelenléteben állítottam elő a ZnO részecskéket. A különböző módon stabilizált szolok jellemzésére UV-Vis abszorbancia spektrumokat mért, majd a (10) egyenlet segítségével meghatároztam a részecskeméretet. A 25. ábra foglalja össze a különböző módon kezelt és tárolt szolok esetében kapott eredményeket.

25. ábra. A módosítatlan és a PEI-vel borított részecskék méretének változása az időben, szobahőmérsékletű és alacsony hőmérsékletű tárolás esetén.
Látható, hogy mind a tárolási hőmérséklet csökkentésével, mind a PEI alkalmazásával jelentős mértékben sikerült lassítani az öregedési folyamatot. A pozitív töltésű PEI fizikai adsorpció révén a negatív töltésű ZnO részecskék felületére kötődött, gátolva a részecskék Ostwald-féle öregedését. Meg kell említeni, hogy a részecskék felületének polielektrolittal való borítása sikeresen lassította az öregedést, azonban nem állította meg azt. Megállapítható továbbá, hogy PEI jelenlétében végzett szintézis során kisebb méretű részecskék képződnek, ugyanis a polielektrolit a részecskék képződését követően azonnal képesek azok felületére adsorbeálódni és gátolni a további növekedést. A tárolási hőmérséklet fontos szerepe szintén jól látszik a görbéken. Alacsony hőmérsékletű tárolással jelentősen lassítható az öregedési folyamat. A PEI-vel stabilizált, alacsony hőmérsékleten tárolt minta mutatja a legnagyobb stabilitást, az öregedési folyamatot gyakorlatilag sikerült megállítani.

Ahogy fentebb részleteztem, a ZnO részecskék esetében látott öregedési folyamat során a részecskeméret nő. Ezt a folyamatot használtam fel arra, hogy meghatározzam a részecskék méretfüggő fluoreszcencia emissziós tulajdonságait. A fluoreszcencia emissziós méréseket párhuzamosan elvégeztél abszorbancia mérésekkel megállapítottam a részecskék méretét, a fluoreszcencia emissziós spektrumok kiértékelésével pedig jellemzett az emissziós tulajdonságokat. Három különböző gerjesztési hullámhossz esetén végezt méréseket, hogy tanulmányozzam a gerjesztési energia hatását.

A 26. ábra a) részében látható a módosítatlan ZnO részecskék esetén 280 nm-es gerjesztő forrással mért emissziós spektrumai az UV tartományban, a b) ábrarészen pedig a látható tartományban. A 27. ábra a PEI-vel módosított ZnO részecskék 350 nm-es gerjesztő forrás esetén mért emissziós spektrumait mutatja be a látható tartományban.

![26. ábra. A módosítatlan ZnO részecskék fluoreszcencia emissziós spektruma a) az UV és a b) látható tartományban 280 nm-es gerjesztő forrás alkalmazásával.](image-url)
Eredmények I. rész:

3-7 nm-es cink-oxid részecskék és filmjeik

27. ábra. A PEI-vel borított ZnO részecskék fluoreszcencia emissziós spektruma 350 nm-es gerjesztő forrás alkalmazásával.

A módosítatlan ZnO részecskék esetében az emissziós spektrumban megjelenik egy gyenge, éles UV csúcs és egy intenzív, széles látható csúcs. A PEI-vel módosított ZnO részecskék esetében csak a látható emisszió jelenik meg, az UV csúcs eltűnik. Megállapítható, hogy mind az UV emisszió, mind a látható emisszió mutat méretfüggést, azonban ez az effektus sokkal jelentősebb a látható tartományban.

A látható tartományban jelentkező emissziós csúcsok kiértékelése során meghatározottam az emissziós maximum helyének és intenzitásának változását a részecskemérettől. Az emissziós maximum helyének tanulmányozása során megállapítható, hogy a részecskeméret növekedésével a maximum a nagyobb hullámhosszak felé tolódik („red shift”) mindhárom gerjesztő forrásnál. Az eltolódás mértéke körülbelül 30 nm a
módosítatlan ZnO részecskék esetén. Adott átmérő esetén a PEI-vel stabilizált részecskék emissziós maximuma a módosítatlan részecskékhez képest rövidebb hullámhossznál jelentkezik. Az ábráról leolvasható, hogy a vizsgált részecskeméret-tartomány a sima és a PEI-vel borított részecskék esetén eltér egymástól. Ennek oka, hogy a PEI jelenlétében szintetizált részecskék kisebb méretűek lesznek és a stabilizáló hatás miatt nem is nőnek meg akkorára, mint a módosítatlan társaik. Megállapítható továbbá, hogy a gerjesztő forrásnak nincs szignifikáns hatása az emissziós maximum helyére, minimális eltérés van az egyes esetekben.

29. ábra. Különböző méretű ZnO részecskéket tartalmazó szolok emissziójának színe UV lámpa alatt.

Az emisszió intenzitását vizsgálva megállapítható, hogy a PEI-vel borított részecskék jóval intenzívebb emissziót mutatnak. Mindkét típusú részecskés (simca és PEI-vel borított) esetén azonos tendencia fedezhető fel a gerjesztő fény hullámhosszával: egy adott átmérőnél nagyobb részecskék esetén a 350 nm-es fényforrás esetén tapasztalható a legintenzívebb emisszió. A 350 nm-es gerjesztő forrás esetében mind a sima, mind a PEI-vel borított ZnO részecskék esetén nagyobb intenzitást mutatnak, mint azok, amelyekhez a PEI-vel stabilizálva voltak. A polielektrolit hatását vizsgálva megállapítható, hogy a ZnO részecskék emissziójának mechanizmusától függ, hogy a gerjesztő forrás a részecskék emisszióját milyen mértékben befolyásolja. A PEI-vel borított ZnO részecskék esetében mind az emissziós maximum helye, mind az emisszió intenzitása változik a módosítatlan részecskékhez képest.
relaxációja kétféle, egymással versengő úton valósulhat meg: az excitonok direkt rekombinációja okozza az UV emissziót, a felületi hibahelyeken keresztül történő relaxáció pedig a látható emisszióhoz vezet. PEI hatására megnő a látható emisszió intenzitása, valamint az UV emisszió kiöltődik. Ebből következik, hogy a felület beborítása kedvezőtlenül hat a direkt rekombinációs folyamatra, ugyanakkor elősegíti az elektronok felületi hibahelyekhez kötött relaxációját.

V.1.2 Au részecskék

A vizes közegben szintetizált arany nanorészecskék jellemzésére TEM felvételek készültek (30. ábra a)). A képeken jól látszik, hogy a részecskék gömb alakúak és közel azonos méretűek, ezt jól mutatja a méreteloszlási diagram is (30. ábra b)). A szintézis előnye, hogy szabályos gömb alakú, monodiszperz részecskék nyerhetők vele, valamint a prekurzor (AuCl₄⁻) és a redukálószer (trinátrium-citrát) molarányának változtatásával irányítható a képződő részecskék mérete. Munkám során nem volt cél többféle méretű részecskével dolgozni, így nem használtam ki a szintézis ezen lehetőségét.

30. ábra. Az Au részecskékről készült TEM felvétel (a) és a jellemző méreteloszlási görbe (b).

V.2 ZnO részecskék vízfelszíni Langmuir-filmjeinek vizsgálata

A részecskék ből mindkét esetben kialakítható megfelelő vízfelszíni film, amely kompresszióval megfelelő tömörségüre toltóható össze, ezáltal szilárd hordozóra vihető át a Langmuir-Blodgett módszerrel. Az izotermák alapján megállapítottam, hogy a részecskék kohezív filmet képeznek, vonzó jellegű hidrofób kölcsönhatás lép fel közöttük. Erre utal az is, hogy a mért görbék nem olyan simák, mint a 200-500 nm-es ZnO részecskék esetén mértek (51. ábra): a kompresszió során az összetapadt részecskék szigeteinek rendeződésekor fellépő enyhé törések tapasztalhatók a mért görbén. Látható, hogy a két görbe tendenciájában nem mutat jelentős eltérést, tehát a felületmódosító PEI-nek nincs alapvető módosító hatása a részecskék vízfelszíni viselkedésére. Egyik izotermán sem különíthetők el egyértelműen az egyes fázisoknak megfelelő szakaszok, ami a felületaktív anyagtól mentes nanorészecskés filmeknél általános.
Eredmények I. rész:

3-7 nm-es cink-oxid részecskék és filmjeik

32. ábra. A módosítatlan és a PEI-vel borított ZnO részecskék víz/levegő határfelületen kialakított
filmjeinek oldalnyomás vs. terület izotermái.

A vízfelszínre terített ZnO mennyiség alapján megállapítható, hogy a PEI-vel
borított részecskék esetében több anyagra van szükség a megfelelő tömörségű
filmhez. Ez azzal magyarázható, hogy a ZnO részecskék egy része elhagyja a
határfelületet. A folyamat végbemegy a részecskék vízfelszínre terítésekor vagy a
részecskék kompressziójakor, illetve mindkét esetben is. A részecskék felületét
borító polielektrolit jól oldódik vízben, így az elősegíti a részecskék szubfázisban
történő diszpergálását. Mindezek ellenére a PEI-vel borított részecskék
ből is előállítható megfelelő tömörségű vízfelszíni film, amely alkalmas a
szilárd hordozóra történő átvitelre. A filmek szobahőmérsékleten történő
száradása után a filmképzési eljárás ismétlésével többrétegű
filmek is előállíthatók.

V.3 ZnO részecskék szilárd hordozós Langmuir-Blodgett-filmjeinek
tulajdonságai

A szilárd hordozóra átvitt többrétegű filmeket többféle módszerrel jellemeztem. A
filmépítés folyamatát rétegenkénti UV-Vis absorbancia spektrumok mérésével követtem,
az elkészült filmek szerkezetét atomerő mikroszkópos (AFM) technikával jellemeztem.
Fluoreszcencia spektrumok mérésével vizsgáltam, hogy hogyan változik meg a részecskék
emissziós tulajdonsága a szilárd hordozós filmekben.

Ötrétegű, kvarchordozós filmek építését UV-Vis absorbancia spektrumok mérésén
keresztül követtem, a 33. ábra mutatja a 3,5 nm-es módosítatlan és a 4 nm-es
PEI-vel borított ZnO részecskék esetében felvett spektrumokat. Jól követhető a film
rétegenkénti épülése, a beillesztett ábra mindkét esetben lineáris összefüggést mutat az abszorbancia és a rétegszám között.

![3D and 2D absorption spectra](image)

33. ábra. A módosítatlan és a PEI-vel borított ZnO részecskék 1-5 rétegű Langmuir-Blodgett-filmeinek UV-Vis abszorbancia spektrumai.

A nanorészecskéket tartalmazó szolok esetében felvettem egy abszorbancia vs. koncentráció kalibrációs egyenest. A 3D-s koncentrációt (mg/cm\(^3\)) megfeleltettem 2D-s koncentrációknak, azaz fajlagos film tömegnek (mg/cm\(^2\)), így a film abszorbanciáját leolvasva a kalibrációs görbe felhasználásával meg tudtam határozni a filmek tömegét területégen. Összehasonlításként elméleti úton is kiszámoltam az egységnyi területű, hexagonálisan rendezett monodiszperz részecskék filmjének tömegét figyelembe véve, hogy a film a hordozó mindkét oldalán jelen van, így összesen tehát 2x5, azaz 10 réteget kellett számításba venni (a számítások részletei a Függelék XI.2 fejezetében). Az eredményeket a 3. táblázat tartalmazza. Látható, hogy a kétféle módon meghatározott értékek megfelelő egyezést mutatnak. A módosítatlan és a PEI-vel borított ZnO részecskék filmeinek elméleti tömegértékei azért nem egyeznek meg, mert eltérő méretű részecskék alkotják a filmet, így a film vastagsága és ezáltal a tömege is különböző lesz.

3. táblázat. A módosítatlan és a PEI-vel borított ZnO részecskés filmek fajlagos tömegének meghatározása kétféle módszerrel.

<table>
<thead>
<tr>
<th></th>
<th>ZnO film tömeg (µg/cm(^2))</th>
<th>ZnO-PEI film tömeg (µg/cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalibrációs módszer</td>
<td>9,7</td>
<td>8,5</td>
</tr>
<tr>
<td>Elméleti számítás</td>
<td>8,0</td>
<td>9,0</td>
</tr>
</tbody>
</table>
A többrétegű, üveghordozóra felépített filmek szerkezetét atomerő mikroszkópos (AFM) technikával jellemeztem. A 34. ábra mutatja a 3,8 nm-es ZnO részecskékből, valamint a 4,0 nm-es PEI-vel borított ZnO részecskékből épített 5 rétegű film AFM képét. A tapogató tű felbontóképességének korlátja miatt a kisméretű részecskék nem különíthetők el individuálisan a képeken, az egymáshoz közel fekvő részecskék a képen egy nagyobb részecskékének látszanak. A két képet összehasonlítva megállapítható, hogy a PEI-vel borított részecskékből egyenletesebb film építhető, kevesebb a hiba a film szerkezetében.

34. ábra. A módosítatlan (a) és a PEI-vel borított (b) ZnO részecskék 5 rétegű Langmuir-Blodgett-filmjeinek AFM képei.

Fluoreszcencia emissziós méréseket végeztem a ZnO részecskékből kvarchordozóra felépített egy és többrétegű filmjein a részecskék filmbeli emissziós sajátságainak jellemzésére. A 35. ábra mutatja a módosítatlan és a PEI-vel borított részecskék 1-5 rétegű filmjeinek emissziós spektrumait 350 nm gerjesztési forrással, a 36. ábra pedig az 5 rétegű filmek emisszióját három különböző gerjesztő forrás (280, 300 és 350 nm) esetén.

A ZnO és a PEI-vel módosított ZnO részecskék 1-5 rétegű filmjeinek spektrumai azt mutatják, hogy már 1 rétegben felvitt film is jelentős fluoreszcencia emissziót mutat, a további rétegszám növeléssel már csak kismértékben erősödik az emisszió a ZnO mennyiség növekedésének következtében.
Eredmények I. rész:

3.5 nm-es és cink-oxid részecskék és filmjeik

35. ábra. A módosítatlan és a PEI-vel borított ZnO részecskék 1-5 rétegű filmjeinek fluoreszcencia emissziós spektruma.

36. ábra. A módosítatlan és a PEI-vel borított ZnO részecskék 5 rétegű filmjeinek fluoreszcencia emissziós spektrumai különböző gerjesztési hullámhosszak mellett.

folyamata során a vízfelszínre felvitt filmből a polielektrolit egy jelentős része a szubfázisban való jó oldhatósága miatt elhagyja a határfelületet, valószínűleg magával ragadva a ZnO részecskék bizonyos hányadát. Ezt alátámasztja az a korábbi megállapítás, hogy a módosítatlan és a PEI-vel borított részecskék oldalnyomás-terület izotermái nagyon hasonlóak. A szilárd hordozóra átvitt nanorészecskés film tehát feltehetően a csökkent polielektrolit tartalma miatt a módosítatlan részecskékhez hasonlóan viselkedik.

Megállapítható tehát, hogy a ZnO részecskék megörzözik látható emissziójukat a filmben, azonban az etanolos közegű szolban méretű UV emisszió a filmekben kioltódik. A részecskék méretének változtatásával változtatható a filmek emissziós maximumának helye, ezáltal hangolható emissziójú filmek előállítására van lehetőség.

V.4 Au és ZnO tartalmú hibrid filmek

V.4.1 Aranybevonatú hordozók jellemzése

Az arany és a ZnO plazmonikus kölcsönhatásának jellemzésére arannyal bevont hordozóra építtettem fel a ZnO részecskék Langmuir-Blodgett-filmjeit. Ezekhez a vizsgálatokhoz kétféle arannyal bevont hordozót használtam: spray coating technikával, 10 nm Au részecskékkel bevont kvarclapot, illetve 50 nm vastagságú folytonos Au filmmel borított üveglapot. A kétféle aranybevonat szekeztetett AFM technikával készült képek segítségével hasonlítottam össze.

A 10 nm-es Au részecskék filmjéről készült képen (37. ábra) látható, hogy a hordozó nagyjából egyenletesen borított a részecskékkel, de nem alakult ki folytonos réteg. A hordozón egyedi részecskék találhatók, amelyek egymás közelében helyezkednek el, de nincsenek a felületen aggregált részecske halmok. A képen négy nagyobb méretű, feketével színezett mélyedés látható a hordozón, ezek az üveghordozó hőkezelése során keletkezett üregek. Ahogyan korábban részleteztem (IV.3.1. alfejezet), technikai okok miatt az AFM mérésekhez a filmeket kvarc helyett üveglapokra készítettem el. A minták azonos kezelése véget az üveghordozós minták hőkezelését is fontosnak tartottam, ennek következtében alakultak ki a képen látható üregek.

A filmen az egyedi részecskék jelenlétét mutatja a kép keresztszetesi analízise is: nagyjából 10 nm-es, egyedi részecskékkel mutatnak a görbék. A piros pontozott vonallal megjelölt területen (a hordozó hihahelyeit kihagyva) felületi érdességet számítottam a (11) egyenlet segítségével, melyek eredménye 4,89 nm.

38. ábra. Az 50 nm vastag folytonos Au réteg AFM topográfiai képe és keresztmetszeti analízise.

Az 50 nm vastag folytonos arany filmmel bevont hordozó felületéről egy reprezentatív képet mutat a 38. ábra. Látható, hogy a film folytonos, egyenletesen beborítja a hordozót, valamint megállapítható az is, hogy a felszíne szemcsés jellegű. A keresztmetszeti kiértékelés is ezeket a megállapításokat támasztja alá. Ennél a mintánál is meghatároztam a felület érdességet, amely 1,78 nm-nek adódott, amely egy viszonylag sík felszínre jellemző érték.

V.4.2 Au-ZnO hibrid filmek tulajdonságai

A vizes közegben mért 518 nm-es absorpció sáv (31. ábra) a filmek esetében 548 nm-re tolódott el. Ennek oka, hogy megváltozott a részecskék körüli lokális környezet. Egyrészt bizonyos helyeken a részecskék közötti távolság jóval kisebb lehet, mint a vizes közegű szolban, így a részecskék közötti kölcsönhatások szerepet játszhatnak a plazmonikus elnyelés energiájának módosításában. Másrészt a kvarkhordozó releváns paramétereit (törésmutató és egyéb optikai jellemzők) is jelentősen eltérnek a vízétől, amely a részecskék körüli lokális elektromos teret befolyásolja.

![Diagram](image)

39. ábra. A 10 nm-es Au részecskék kvarkhordozós filmjeinek UV-Vis abszorbanciá spektrumai.

Az Au-ZnO hibrid film spektrumán a ZnO részecskék elnyelési sávja 345 nm-nél látható, amely jó egyezésben van a csak ZnO részecskékéből álló film esetében kapott eredményekkel (33. ábra). Az 50 nm-es arannyal bevont filmek esetében a spektrumok nem mérhetőek, ugyanis a film transzmittanciája nagyon kicsi.

A sztearinsavból készített Langmuir-Blodgett rétegeket távtartó funkció miatt vittem fel a ZnO és az Au közé. Ezeknek a rétegeknek a minősítésére kötöttszögtávolság méréseket végeztem. A sztearinsav rendezett, réteges szerkezetére jellemző reflexiók alacsony szögtartományban jelentek meg, ahogyan az az AuF/SA(6)/ZnO jelű minta diffraktogramján jól látszik (40. ábra). Az elsőrendű reflexió (d_{001}) mellett határozott, éles csúcsokként jelennek meg a másod- és magasabb rendű reflexiók (d_{002}-d_{005}). Az egyes reflexiók a 2,02, 4,08, 6,18, 8,24 és 10,3 20 szögeknél jelentkeznek, amelyek rendben 43,7, 21,64, 14,3, 10,72 és 8,58 Å rácstávolságoknak felelnek meg. Ezekből visszaszámolva, az öt reflexió esetén kapott eredményeket átlagolva egy sztearinsav réteg vastagságára 4,4 nm-t kaptam.
A sztearinsav molekula hossza jó közelítéssel meghatározható az alábbi egyszerű képlettel:

\[L = 0,127 \cdot (n_c - 1) + 0,1 + 0,24, \]

ahol \(n_c \) a molekulát alkotó C atomok száma (sztearinsav esetén \(n_c=18 \)), 1,27 megfelel egy zig-zag konformációban lévő C-C kötés hosszának a molekula hossztengelyére vetítve nm-ben kifejezve, 0,1 a C-H kötés, 0,24 pedig a C-O-H csoport hossza szintén nm-ben kifejezve [141]. Ez alapján a sztearinsav molekula hosszára \(L=2,5 \) nm adódik, ami jó egyezést mutat korábbi irodalmi adatokkal [141].

Ha összevetjük a röntgendiffrakciós mérésekből meghatározott rácsválságot egyetlen sztearinsav molekula hosszával, akkor látható, hogy ez az eredmény csak úgy képzelhető el rálátján, ha ez egy kettősréteget jellemz. A kísérletek részletezése során kitértem rá, hogy a többrétegű sztearinsav filmeket a Z típusú depozíciós módon készíthettem. Ezeknél a filmknél a szomszédsos rétegek molekulái fej-lánccsal érintkeznek, ami termodinamikailag kevésbé stabil filmet jelent.

\[24,01,0) 1(127,0 ++−⋅= c nL, \]

ahol \(n_c \) a molekulát alkotó C atomok száma (sztearinsav esetén \(n_c=18 \)), 1,27 megfelel egy zig-zag konformációban lévő C-C kötés hosszának a molekula hossztengelyére vetítve nm-ben kifejezve, 0,1 a C-H kötés, 0,24 pedig a C-O-H csoport hossza szintén nm-ben kifejezve [141]. Ez alapján a sztearinsav molekula hosszára \(L=2,5 \) nm adódik, ami jó egyezést mutat korábbi irodalmi adatokkal [141].

Az irodalomban található több példa olyan munkára, ahol a szerzők kimutatták, hogy a Z típusú depozícióval készített, már szilárd hozzádó lévő rétegek molekulái megváltoztathatók orientációjukat és a termodinamikailag stabilabb, fej-fej érintkezésben rendeződnek el. Ez az átrendeződés végbemenhet egyrészt egy újabb réteg leválasztása során a vizes szubfázisba merített filmben vagy akár levegőn is. Ezek alapján egyetlen

![40. ábra. A AuF/SA(6)/ZnO jelű film XRD diffraktogramja az (a) 1-20 illetve a (b) 20-60 2Θ szögtartományban; (c) a sztearinsav molekulák feltételezett elrendeződése a többrétegű filmben.](image-url)
sztearinsav réteg vastagságát az XRD mérésekből kapott érték felé jellemez, azaz $\delta=2,2$ nm.

A sztearinsav réteg vastagsága tehát 2,2 nm, ami rövidebb, mint egyetlen molekula hossza. Ez úgy képzelhető el, hogy a molekula hossztengelye nem merőleges a film síkjára, hanem valamennkora szöget zár be azzal, ahogyan azt a 40. ábra c) része szemlélte. A szinusz függvény definíciója alapján egyszerűen kiszámítható ez a szög, amely jelen esetben $\gamma=62^\circ$-nak adódott. Ezek alapján a többrétegű film szerkezete a 40. ábra d) része szerint képzelhető el.

Ezek alapján a többrétegű sztearinsav LB-filmei vastagsága jó közelítéssel $\delta=2,2$ nm egész számú többszöröseivel jellemezhetők, tehát az Au és a ZnO közötti távolság is ezen diszkrét értékek között változtathatók ezzel a módszerrel.

Az AuF/SA(6)/ZnO jelű mintáról a 20 - 60 2Θ szög tartományban készült diffraktogramot a 40. ábra b) része mutatja. Ebben a tartományban egy nagy intenzitású, éles csúcs jelenik meg 38,17°-nál, valamint egy gyenge reflexió 44,35°-nál, amelyek az Au filmtől származnak. A ZnO részecskékre jellemző 3 intenzív csúcs a 30 - 40° tartományban található, de ezek nem láthatók a görbén, feltehetően a kis anyagmennyiség miatt.

A ZnO és Au tartalmú hibrid filmei készítésével célom volt, az Au és a ZnO közötti plazmonikus kölcsönhatás jellemzése fluoreszcencia emissziós mérésekkel. Tanulmányozni kívántam a kölcsönhatás távolságfüggőségét (az Au és a ZnO közé beékelő sztearinsavból álló távtartó rétegek) valamint az Au strukturájának hatását (nanorészecskék vagy folytonos film). Ezekhez a mérésekhez készült, kétféle sorozatra tartozó mintákat a IV.3.2. alfejezetben mutattam be.

A 10 nm-es Au részecskék sorozata esetében az UV és a látható tartományban mért fluoreszcencia emissziós spektrumokat mutatja a 41. ábra. A spektrumkon látható, hogy mind a látható, mind az UV tartományban lévő emisszió esetében erősítés mérsékelő az Au részecskék jelenlétének köszönhetően. Megállapítható, hogy az erősítés távolságfüggő: a legerősebb emisszió ezen sorozat elemei közül a csak Au-t és ZnO-t tartalmazó filmeknél mérsékelő, vagyis amikor nincsen távtartó közöttük. Az emisszió paramétereinek ZnO-Au távolságfüggő értékelését a 43. ábra diagramjai szemlélhetők (az UV emisszió meglehetősen gyenge, az emissziós csúcseredmények értékelése meglehetősen nagy hibával terhelt lenne, ezért az ezenkettőn való kvalitatív számolásokat elvetettem). Látható, hogy ennél a sorozatnál
kismértékű eltolódás (3 nm) és valamivel több, mint kétszeres erősítés érhető el. Érdekes megjegyezni, hogy ez a két effektus különböző minták esetén figyelhető meg.

Az 50 nm vastagságú, folytonos Au film sorozata esetén mért látható és UV tartománybeli emissziós spektrumokat a 42. ábra mutatja be. Ennél a sorozatnál is megállapítható, hogy az Au jelenlétenek köszönhetően jelentős intenzitásnövekedés mérhető az UV és a látható emisszió esetében is. Az emissziós jellemzők Au-ZnO távolságfüggését a 43. ábra grafikonjai szemléltetik. Az emissziós maximum eltolódása maximum típusú függést mutat: a legnagyobb, 7 nm-es eltolódás 4,4 nm-nél, azaz 2 réteg sztearinsav távtartó esetén mérhető. Érdekes megjegyezni, hogy abban az esetben, amikor a ZnO és az Au közvetlen kapcsolatban vannak, az emisszió a kisebb hullámhosszak felé toltódik el 2 nm-el.

42. ábra. Az 50 nm vastagságú folytonos Au film sorozat tagjainak fluoreszcencia emissziós spektruma a) a látható és b) az UV tartományban.
Az emissziós intenzitást elemzve megállapítható, hogy távtartó nélkül gyakorlatilag megegyezik az emisszió intenzitása a csak ZnO-ot tartalmazó mintánál mért intenzitással. Azonban igen jelentős, 12-szeres intenzitáserősödés érhető el 2,2 nm Au-ZnO távolság esetén, azaz 1 sztearinsav távtartó réteggel. A távtartó rétegek számának további növelésével az erősítés közel exponenciálisan csökken, 6 réteg esetén pedig az emisszió erőssége gyakorlatilag megegyezik a ZnO film esetén mért értékkel.

![43. ábra. Az Au-ZnO hibrid filmek esetén mért floureszcencia emissziós a) eltolódás és b) erősítés a ZnO-Au távolság függvényében.](image-url)

A kísérleti eredmények a ZnO részecskék emissziójának szignifikáns erősítését mutatják arany közelében. Jelentős különbség mutatkozik azonban a 10 nm-es Au részecskék filmjének és az 50 nm-es folytonos Au film hatásában: a vastag arany film közében sokkal intenzívebb az erősítés és nagyobb a maximális eltolódás is. Ennek azonban több oka lehet: különböző Au mennyiség a filmben (a nanorészecskék filmje sokkal kisebb mennyiségű aranyat tartalmaz egységnyi területen) vagy a film és részecskék eltérő plazmon rezonancia tulajdonságai. Nem egyértelmű viszont az, hogy az Au mennyiségének növelésével erősödik az emisszió. Im és munkatársai [89] ZnO rudak felületére kapcsoltak Au részecskéket és arra az eredményre jutottak, hogy növekvő borítottság mellett csökken az emissziós intenzitás. Tehát önmagában az, hogy a részecskés filmekben kisebb az Au mennyisége biztosan nem lehet magyarázat az eltérő viselkedésre, a kölcsönhatás ennél bonyolultabb.

Az Au részecskékre jellemző lokális plazmon rezonancia a közeli térben lejátszódó kölcsönhatásokkal gerjeszthető. A gerjesztett állapotú ZnO részecskék oszilláló dipólként viselkednek, amelyek képesek az Au részecskék plazmon rezonanciát létrehozni. A részecskék plazmon rezonanciája következtében megerősödött lokális elektromos erőtér képes befolyásolni a ZnO részecskék emissziós tulajdonságait [96, 142]. Ez a dipól
kölcsönhatásokon alapuló folyamat a fém által erősített emisszió (metal enhanced fluorescence), amely magyarázza az Au részecskés sorozat tagjai esetén kapott eredményeket. A részecskék lokalizált felületi plazmon rezonanciája sokkal rövidebb hatótávolságú, mint a folytonos filmeké, így ezeknél a mintáknál akkor tapasztalható a legnagyobb erősítés, ha közvetlen kapcsolatban van az Au a ZnO-dal, azaz nincsen közöttük távtartó.

Amikor egy nemesfém folytonos filmjét gerjesztjük, felületi plazmon polaritonok keletkeznek, amelyek képesek a fém/dielektrikum határfelületén terjedni. Ezek a terjedő plazmon polaritonok létrehoznak egy elektromos erőteret, az evanescens teret, amely hatással van a ZnO emissziójára Purcell-erősítés vagy dipól kölcsönhatás által. Ez a mechanizmus érvényes az 50 nm vastag Au filmet tartalmazó minták esetében, amikor távtartó van az Au és a ZnO között. Erre utal az is, hogy az erősítés exponenciális csökkenése a távolsággal összhangban van az evanescens tér exponenciális lecsengésével. Korábbi kísérletek során kimutatták, hogy a ZnO és Au közvetlen érintkezése esetén töltsásviteli történik, amely az UV emisszió erősítéséhez és a látható emisszió csökkenéséhez vezet [87, 88, 143]. Az AuF/ZnO jelű minta esetén (nincs távtartó) valószínűsíthető a töltsásviteli lejátszódása a ZnO-ról a fémre, amely magyarázza a látható emisszió enyhe csökkenését és az UV emisszió erősödését. Ezt a mechanizmust erősíti továbbá az az érv is, hogy a töltsásviteli folyamat Fermi-szint kiegyenlítődéssel jár, amely viszont a gerjesztési küszöbenergia növekedéséhez, ezáltal az emisszió kék eltolódásához vezet [24, 39]. Ez a jelenség meg is figyelhető az AuF/ZnO minta esetén (43. ábra). Valószínűsíthető továbbá, hogy a töltsásviteli folyamat nélkül az emisszió intenzitását az Au körüli elektromos erőtér határozna meg, így viszont jóval erősebb emisszió lenne várható.

Az Au és ZnO-t tartalmazó hibrid filmek fluoreszcencia emissziós méréseivel rámutattam, hogy a fém és a ZnO között létrejön egy plazmonikus kölcsönhatás, amely jelentős hatással lehet a ZnO emissziójára. A ZnO és az Au távolságának, valamint az Au morfológiájának, szerkezetének is meghatározó szerepe van a kölcsönhatás alakulásában, ezáltal az emisszióra való hatásában is. Az 50 nm vastagságú, folytonos Au filmek esetén egy sztearinsav távtartó réteg esetében jelentős, közel 12-szeres intenzitás növekedést tapasztaltam.
VI. EREDMÉNYEK II. RÉSZ
200-500 NM-ES CINK-OXID RÉSZECSKÉK ÉS FILMJEIK

VI.1 Monodiszperz, gömb alakú részecskék szintézise 200-500 nm mérettartományban

Monodiszperz ZnO részecskék dietilén-glikol közegű szintéziséről elsőként Jezequel és munkatársai [39] számoltak be. Az egylépéses szintézist kívántak reprodukálni Seelig és munkatársai, sikertelenségük azonban egy kétlépéses eljárás kidolgozását eredményezte [40]. Az új módszerrel az első lépésben az eredeti recept alapján nyert szolt lecentrifugálták, majd egy második szintézis közben a felülúszó bizonyos részletét hozzáadták a reakciólegehez mintegy beoltó oldatként. Munkám során elsőként Seelig és munkatársainak eljárását alkalmaztam, azonban ezzel a módszerrel bidiszperz rendszereket sikerült előállítanom. Egy ilyen bidiszperz szol részecskéiről készült TEM képet mutat a 44. ábra a) része. Ezt követően az egylépéses szintézist autoklávban valósítottam meg, ahol a szintézis paraméterei pontosan szabályozhatók. A zárt autoklávban reakciólege felfütése miatt enyhe túlnyomás jön létre, amelynek hatására polidiszperz, valamint az általam megcélzott mérettartománynál jóval nagyobb (0,5 – 2 µm) részecskék képződtek, melyről egy jellemző képet mutat a 44. ábra b) része. Túlnyomás esetén képződő mikrométeres mérettartományba eső részecskékra példa Ashapture és munkatársainak [17]
dolgozatában található, amelyben 1-5 µm átmérőjű, fánk alakú ZnO részecskék előállításáról számolnak be autoklávban, magas nyomáson, valamint víz hozzáadásával. A további kísérletek során az autokláv egy szelepét levegőre nyitottam, ezáltal a reakcióélegy fölött atmoszférikus nyomás uralkodott, amelynek eredményeképpen sikerült előállítanom különböző méretű, monodiszperZnO részecskéket tartalmazó szolokat a 200-500 nm mérettartományban. Az eljárás kulcsfontosságú paraméterei a felfűtési sebesség, a reakció hőmérséklete, illetve a keverés megfelelő intenzitása, valamint az, hogy az autoklávban atmoszférikus nyomás uralkodjon.

44. ábra. A dietilén-glikolban különböző módszerekkel szintetizált ZnO részecskék képei. a) Egy Seelig módszerével nyert bidiszperz szol részecskéinek TEM képe, b) Jezequel módszerével zárt autoklávban képződött részecskék SEM képe, c) Jezequel módszerével nyitott autoklávban, atmoszférikus nyomáson kapott részecsék SEM képei. (A skála mindhárom képen 1 µm-t jelöl.)

VI.2 200-500 nm-es ZnO részecskék jellemzése

Az előállított monodiszperZnO részecskék méretét és méreteloszlását TEM felvételek alapján jellemeztem. A 45. ábra a)-e) részábráin bemutatok egy-egy jellemző képet a részecskékkről. Látható, hogy a részecskék szabályos gömb alakúak és egyforma méretűek. A szintézis során a részecskék aggregációs típusú növekedési mechanizmus szerint képződnek, amely azt jelenti, hogy a túltelített oldatból először kisméretű, primer krisztallitok válnak ki, amelyek aztán termodinamikai instabilitásuk miatt aggregálódnak, egy szekunder, nagyméretű, gömb alakú részecskét hozva létre. Ezen jelenség szemléltetésére egy SEM és egy TEM felvételt mutatok be (46. ábra), amelyeken jól látszik a részecskék felületi strukturáltsága, és az apró krisztallitok, amelyek a részecskék alakját.
45. ábra. a)-e) A részecskék méretének jellemzésére készített TEM felvételek.

46. ábra a) A 234 nm-es ZnO részecskék kről készített SEM felvétel, amely a részecskék felületének strukturáltságát mutatja, b) a részecskék aggregációs típusú növekedését demonstráló TEM felvétel.

Az egyes szolokban meghatározott átlagos részecskeméreteket és az átlagosan 200 db részecské átmérőjének számolásával meghatározott méreteloszlási görbéket a 47. ábra mutatja. A görbék mindegyikéről elmondható, hogy szűk méreteloszlásúak, az átlagos részecskeméret körüli szórás minden szol esetében kisebb, mint 5%.
Eredmények II. rész

200-500 nm-es cink-oxid részecskék és filmjeik

47. ábra. A különböző szolok esetén a TEM felvételek alapján meghatározott átlagos részecskeméretek és méreteloszlási görbék.

A részecskék kristályosságának jellemzésére röntgendiffrakciós (XRD) mérések készültek (48. ábra). Látható, hogy a diffraktogramokon minden részecske esetében megjelennek a hexagonális wurtzit kristály szerkezetű ZnO-ra jellemző reflexiók. A primer krisztallitok méretét a Scherrer-egyenletből (\(d = \frac{K \lambda}{B \cos \theta}\)) a 36,25° 2\(\theta\) fokhoz tartozó vonalszélesedések ből számoltam ki, amelyek alapján megállapítható, hogy a részecskéket 9-15 nm-es kristályos egységek alkotják. Az egyes szolok esetében meghatározott pontos értékeket a 4. táblázatban tüntetem fel.

4. táblázat. A ZnO részecskék jellemzői TEM, XRD és N\(_2\) adszorpciós-deszorpciós mérések alapján.

<table>
<thead>
<tr>
<th>d, nm</th>
<th>(a_{\text{primer}, \text{nm}})</th>
<th>(a_{\text{BET}, \text{m}^2/\text{g}})</th>
<th>(\rho_{\text{részecskék}, \text{g/cm}^3})</th>
<th>porozitás, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>234±11</td>
<td>9,7</td>
<td>57</td>
<td>3,83</td>
<td>32</td>
</tr>
<tr>
<td>301±12</td>
<td>14,5</td>
<td>66</td>
<td>3,54</td>
<td>37</td>
</tr>
<tr>
<td>341±15</td>
<td>11,0</td>
<td>69</td>
<td>3,34</td>
<td>40</td>
</tr>
<tr>
<td>349±14</td>
<td>12,3</td>
<td>79</td>
<td>3,41</td>
<td>39</td>
</tr>
<tr>
<td>457±16</td>
<td>9,6</td>
<td>71</td>
<td>3,63</td>
<td>35</td>
</tr>
</tbody>
</table>

Nitrogén adszorpciós-deszorpciós izotermák mérésével a részecskék fajlagos felületét és porozitását kívántam jellemezni. A különböző méretű ZnO részecskék esetén mért izotermákat és a BJH módszerrel meghatározott pórusméret eloszlást a 49. ábra mutatja, a számszerű eredményeket (fajlagos felület (\(a^5_{\text{BET}}\)), porozitás (p) és sűrűség (\(\rho_p\))) a 4. táblázat tartalmazza. A részecskék nagy fajlagos felülettel és jelentős porozitással bírnak, amelyre a képződési mechanizmusuk ad magyarázatot: a koloid alegységek aggregációjával létrejövő részecskékben a primer elemek közötti hézagok
mezopórusokként jelennek meg és mint olyanok, növelik a fajlagos felületet. A pórusok átlagos mérete minden minta esetén 3 és 4 nm közé esik.

48. ábra. A különböző méretű ZnO részecskék pormíntáiról felvett röntgen diffraktogramok.

49. ábra. a) A különböző méretű ZnO részecskék N₂ adszorpciós – deszorpciós izotermái és b) az izotermák alapján meghatározott pórusméret-eloszlások.

A részecskék szerkezetének további jellemzésére készített kisszőgű röntgenszórás (SAXS) mérésekből kapott szórásgörbéket az 50. ábra mutatja, a belőlük számított jellemzők értékeit pedig az 5. táblázat tartalmazza. A mérési eredmények feldolgozásának
menetét az 1. Függelékben részletezem. A tömegfraktál dimenzió (D_m, 1 ≤ D_m ≤ 3) a minta pórusosságára jellemző adat. Ha D_m = 1, a minta magas porozitású, főleg pórusok alkotják, ha D_m = 3 esetén pedig a minta tömör, kompakt, nem tartalmaz pórusokat. A különböző méretű részecskék esetén meghatározott értékek 2,5-2,7 között vannak, a 457 nm-es részecskék esetén kisebb, 1,85-os értéket kaptuk. Ezek a mérések is azt igazolják, hogy a részecskék pórusosak, azonban a tendencia nem egyezik meg a nitrogén adszorpciós-deszorpciós méréseknél tapasztalttal (lásd 4. táblázat), ennek oka lehet a minták eltérő mértékű zárt porozitása.

50. ábra. A SAXS mérések során kapott szórásgörbe a különböző méretű ZnO részecskék esetén.

<table>
<thead>
<tr>
<th>d, nm</th>
<th>234</th>
<th>301</th>
<th>349</th>
<th>457</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_m</td>
<td>2.5</td>
<td>2.7</td>
<td>2.7</td>
<td>1.85</td>
</tr>
<tr>
<td>D_s</td>
<td>2.3</td>
<td>2.5</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>K_P (Cps/nm^2)</td>
<td>43.2</td>
<td>42.1</td>
<td>38.7</td>
<td>41.58</td>
</tr>
<tr>
<td>M_I (Cps/nm^3)</td>
<td>177</td>
<td>1145,00</td>
<td>191</td>
<td>642,00</td>
</tr>
<tr>
<td>K_P/M_I</td>
<td>0.244</td>
<td>0.193</td>
<td>0.202</td>
<td>141,00</td>
</tr>
<tr>
<td>S/V (nm^2/nm^3)</td>
<td>0.244</td>
<td>0.192</td>
<td>0.201</td>
<td>0.29</td>
</tr>
<tr>
<td>S_p (m^2/g)</td>
<td>115</td>
<td>92</td>
<td>105</td>
<td>142,46</td>
</tr>
<tr>
<td>l_c (nm)</td>
<td>11,3</td>
<td>10,5</td>
<td>10,8</td>
<td>9,05</td>
</tr>
<tr>
<td>L_1 (nm)</td>
<td>11,9</td>
<td>14,7</td>
<td>10,4</td>
<td>8,96</td>
</tr>
<tr>
<td>L_2 (nm)</td>
<td>23,0</td>
<td>29,0</td>
<td>27,6</td>
<td>19,12</td>
</tr>
</tbody>
</table>
A felületi fraktál dimenzió (D_s, $2 \leq D_s \leq 3$) a minta felületét jellemzi: $D_s=2$ esetén a mintafelszín teljesen sima, míg $D_s = 3$ esetén a felület érdes, fragmentált. A mintáim esetén meghatározott értékek 2,3 és 2,5 közé esnek, tehát ezek a mérések is mutatják a részecskék tagolt felszínét, amely az aggregációs típusú növekedésnek köszönhető. A SAXS mérésekből szávolt fajlagos felület (S_p) értékek jelentősen nagyobbak, mint a N$_2$ adszorpciós-deszorpciós izotermák alapján meghatározott értékek. Ennek oka lehet a minták zárt porozitása: a nitrogén molekulák számára nem hozzáférhető helyeken, a részecskék belsejében található pórusok SAXS módszerrel kimutathatók. A minták pórusosságát jellemző tömegfraktál dimenzió (D_m) és a fajlagos felület (S_p) értékek tendenciái jó egyezést mutatnak. A ZnO fázisra jellemző inhomogenitási hossz (L_1) értékek 10 nm körüliak adódhatnak. Ezek az értékek jó egyezést mutatnak a röntgen diffraktogramokból meghatározott primer krisztallit méretekkel. A levegő fázisra jellemző inhomogenitási hossz (L_2) értékek jóval nagyobbak, mint az adszorpciós mérésekből számvolt pórusméretek. Ennek a két adatnak azonban nem is kell megegyeznie, hiszen a SAXS mérésekből meghatározott hosszúság értékek tartalmazzák a részecskék közötti levegőt is, nem csak a pórusokban lévőt.

VI.3 200-500 nm-es ZnO részecskék Langmuir-filmjeinek jellemzése

Langmuir mérlegen végzett kísérletek során jellemeztem a ZnO részecskék 2D filmjeinek kialakulását víz/levegő határfelületen. Az oldalnyomás (π) vs. terület (A) izotermák mérésével jellemeztem a vízfelszíni filmet, a részecskék tulajdonságait a vízfelszínen. Az 51. ábra a) részén láthatók a különböző méretű ZnO részecskék esetén mért izotermák, valamint feltüntettem az izotermából meghatározható paramétereket is. Az izotermák nagyon hasonló lefutást mutatnak: amikor a részecskék egymáshoz közel kerülnek a rendelkezésükre álló vízfelszíni terület csökkentésekor, az oldalnyomás nagyon meredeken kezd nőni és ez a kollapszus bekövetkezéséig tart. A kollapszus pontban egy törés pont látható az izotermán, amely után tovább nő az oldalnyomás, azonban kisebb meredekséggel. A görbékről meghatározott kollapszus nyomás (π_c), kollapszus terület (A_c) és kontakt keresztmetszeti terület (A_k) értékeket a különböző méretű ZnO részecskék esetén a 6. táblázatban foglaltam össze. Látható, hogy a meghatározott terület értékei egységnyi tömegű szétterített részecske esetén a méret növekedésével csökkennek:
triviális, hogy egységnyi tömeg vastagabb filmje kisebb területet foglal el (a filmvastagság megegyezik a részecskeátmérővel).

51. ábra. a) A különböző méretű ZnO részecskék esetén mért oldalnyomás vs. terület izotermák.
b) A 301 nm-es részecskék esetében különböző terített ZnO mennyiségek esetén mért izotermák, beillesztett ábra: a kontakt keresztszöveti terület értékek a ZnO tömegének függvényében.

A kontakt keresztszöveti területből a vízfelszínre terített részecskék mennyiségeik ismeretében meghatároztam az egy részecskére jutó átlagos terület értékét (A_1) az (5) egyenlet segítségével. A (6) egyenlet alapján kiszámoltam az átlagos méretű részecske köré írható hatszög területét, amely egy részscske helyigényét jellemzi a filmben. Ezeket az értékeket az 6. táblázat tartalmazza. Látható, hogy a kísérletileg meghatározott értékek valamivel nagyobbak, mint az elméleti számok, azonban az adatok jó egyezést mutattak. Ebből azt a következtetést lehet levetni, hogy a részecskék a terítés során gyakorlatilag veszteség nélkül a vízfelszínre jutnak, a kompresszió során nem süllyednek a szubfázisba, valamint a tömör vízfelszíni filmben a részecskék szorosan illeszkednek, jól rendezett film alakítható ki.

6. táblázat. Az oldalnyomás-terület izotermákból meghatározott paraméterek (π_c, A_c, A_k), valamint az 1 részecskére jutó terület nagysága az izotermák alapján (A_1) és elméleti számolással (A_H).

<table>
<thead>
<tr>
<th>d, nm</th>
<th>π_c (mN/m)</th>
<th>A_c (mm2/mg)</th>
<th>A_k (mm2/mg)</th>
<th>A_1 (nm2/db)</th>
<th>A_H (nm2/db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>234</td>
<td>30,3</td>
<td>1646</td>
<td>1964</td>
<td>5,05·104</td>
<td>4,74·104</td>
</tr>
<tr>
<td>301</td>
<td>26,5</td>
<td>1493</td>
<td>1664</td>
<td>8,41·104</td>
<td>7,85·104</td>
</tr>
<tr>
<td>349</td>
<td>29,1</td>
<td>1238</td>
<td>1377</td>
<td>1,06·105</td>
<td>1,05·105</td>
</tr>
<tr>
<td>457</td>
<td>30,5</td>
<td>910</td>
<td>1047</td>
<td>1,9·105</td>
<td>1,81·105</td>
</tr>
</tbody>
</table>

Vizsgáltam a terített mennyiség hatását: az 51. ábra b) részábráján egy izoterma sorozatot mutatok be a 301 nm-es részecskék esetén különböző felvitt ZnO mennyiség esetén, a beillesztett ábrán az izotermákból meghatározott kontakt keresztszöveti terület értékeket a ZnO tömegének függvényében ábrázoltam. Megállapítható, hogy az izotermák
azons lefutásúak és a kontakt keresztmetszeti terület értékek lineárisan változnak a terített mennyiség függvényében, tehát a filmképzés és az izotermák jól szabályozhatóak, jól kézben tartható a mérési eljárás.

VI.4 200-500 nm-es ZnO részecskék Langmuir-Blodgett-filmjeinek jellemezése

A Langmuir-Blodgett technikával Si lapra felépített egyrétegű filmek szerkezetét, a részecskék rendezettségét pásztázó elektronmikroszkóppal készített felvételekkel jellemezt. A különböző méretű részecskék esetén készített képeket az 52. ábra foglalja össze. Az egyrétegű filmkről megállapítható, hogy bennük a részecskék valóban egy rétegben helyezkednek el, nincsenek aggregált vagy egymásra torlódott részek. A részecskék rendezettsége meglehetősen jó, de azért nem tökéletes, a filmeket hatszögű rendeződést mutató domének alkotják. Látható továbbá, hogy a nagyobb részecskékből épített filmek rendezettsége sokkal jobb, a 349 nm-es és 457 nm-es ZnO részecskék filmjei már alig tartalmaznak hibákat.

52. ábra. A különböző méretű ZnO részecskék ből Si lapra épített egyrétegű filmek SEM képe (skála: 5 µm).
A 234 nm-es ZnO részecskék üveglapra épített filmjeit transzmittancia és reflektancia spektrumokkal jellemztem. Ezekből a részecskék ből 1-5 rétegű filmeket építettem és minden rétegszámnál mértem a film transzmittancia és a 45°-os reflektancia spektrumát. A transzmittancia spektrumokból (53. ábra) látható a film rétegenkénti épülése: a film áteresztése csökken és megjelennek a film reflexiója miatti hullámok.

53. ábra. A 234 nm-es ZnO részecskék ből felépített töbrétegű filmek transzmittancia spektruma.

A vékony filmek reflexió spektrumainak kiértékelésére a tanszékünkön Sebők Dániel egy szimulációs programot készített, amelynek segítségével meghatározható a filmek törésmutatója és vastagsága. Ezt a szimulációt továbbfejlesztettem, a modellbe beépítettem a saját filmjeim speciális tulajdonságait: gömb alakú, hexagonálisan rendezett és meghatározott rétegszámú filmek.

Az optikai modell alapja a hullámok interferenciája plán paralell lemezen. A modellszámtáshoz használt egyenlet levezetése a tanszékünkön készült korábbi közleményben [144] megtalálható, itt nem térek ki a részletekre. A levezetés eredményeképpen a visszaverődő interferált hullám intenzitása (\(I_R\)) különböző hullámhosszakon az alábbi kifejezéssel becsülhető:

\[
I_R \sim a^2 \left[r^2 + 2rr(1-r^2)\cos\frac{2\pi m_{eff}H\cos\beta}{\lambda} + r^2(1-r^2)^2 \right].
\]

A képletben használt jelöléseket az 54. ábra magyarázza. A modell továbbfejlesztése során a korábban a Bruggemann módszerrel számolt effektív törésmutatót lecserelem és a saját rendszeremre jobban illeszkedő számításokkal helyettesítettem. A film effektív törésmutatójának számolásakor figyelembe vettem a részecskék porozitását, filmbeli tömorségüket és a rétegszámot is. További újítás, hogy a filmek vastagságát a rétegszám, a
A részecskeátmérő és a részecskek filmbeli távolságának függvényében számolom, nem pedig kiindulási paraméterként szerepeltetem.

A filmek effektív törésmutatóját a részecskek törésmutatója és a részecskek filmbeli tömörsége alapján számoltam. A részecskek törésmutatóját a porozitásuk alapján határoztam meg, a számolásához a Lorentz-Lorenz formulát használtam. Ezek alapján egy részecske törésmutatója [145]:

\[
\frac{n_p^2 - 1}{n_p^2 + 2} = \sum f_i \frac{n_i^2 - 1}{n_i^2 + 2} = f_{ZnO} \frac{n_{ZnO}^2 - 1}{n_{ZnO}^2 + 2},
\]

ahol \(n_p\) a részecske törésmutatója, \(f_{ZnO}\) a ZnO fázis törésmutatója, \(n_{ZnO}\) pedig a tömbfázisú ZnO törésmutatója. A ZnO hullámhosszfüggő tömbfázisú törésmutatóját az alábbi analitikai formulával számítottam:

\[
n_{ZnO} = a + b/\lambda^2,
\]

ahol \(a\) és \(b\) konstansok (\(a = 1.84, b = 26.667\)), \(\lambda\) pedig a hullámhossz nm-ben. A ZnO fázis törésmutatóját a porozitás \((p, \%)\) ismeretében a következő egyenlettel lehet meghatározni:

\[
f_{ZnO} = (100 - p)/100,
\]

A filmek vastagságát \((H, \text{nm})\) a következő összefüggéssel számoltam [145]:

\[
H = d + (k - 1)\sqrt{d^2 - \frac{D^2}{3}},
\]
ahol d az átlagos részecskeátmérő nm-ben, k a rétegszám és D a nm-ben megadott távolság két szomszédos részecske középpontja között (lásd 54. ábra). A részecskek térfogattörtje a filmben (f_p) a filmvastagság és a részecskek középpontja közötti távolság ismeretében a következőképpen adható meg:

$$f_p = \frac{kd^3\pi}{3\sqrt{3}D^2H},$$ (18)

A film effektív törésmutatója a részecskek törésmutatójának és filmbeli térfogattörtjének ismeretében a Lorentz-Lorenz formulával a következőképpen számolható:

$$\frac{n_{eff}^2 - 1}{n_{eff}^2 + 2} = f_p \frac{n_p^2 - 1}{n_p^2 + 2},$$ (19)

ahol n_{eff} az effektív törésmutató.

A fent leírt módon meghatározott törésmutató és filmvastagság értékeket helyettesíttettem be az (13) egyenletbe, amellyel közelítettem a mért reflektancia spektrumokat. A kiindulási paraméterek változtatásával megkeresem a számolt görbe legjobb illeszkedését a mért spektrumokhoz. Az illesztés jósságának megállapítása során a görbék szélsőértékei közötti eltérést vettem figyelembe. A legjobb illeszkedéshez tartozó értékek adják meg a film jellemző tulajdonságait: a filmvastagságot, effektív törésmutatót és a részecskek térfogattörtjét a filmben. A mért és az illesztett spektrumokat 1-5 rétegszámok esetén az 55. ábra a) részén mutatom be, a film hullámhosszfüggő effektív törésmutatója az 55. ábra b) részén látható. Az eredményül kapott filmvastagság és részecske térfogattört értékeket a 7. táblázat tartalmazza.

55. ábra. a) A 234 nm-es ZnO részecskékből felépített 1-5 rétegű filmek mért (folytonos vonal) és számított (szimbólumok) reflexió spektruma. b) Az optikai modell alapján meghatározott effektív törésmutató értékek a 234 nm-es részecskek 1-5 rétegű filmjeire.
A mért és illesztett spektrumok viszonyáról elmondható, hogy az egyrétegű film esetében széles hullámhossz tartományban (~400-850 nm) jó illeszkedés mutatkozik. A 400 nm-es alsó határt a ZnO filmek elnyelése okozza, ugyanis a modell nem számol a film abszorbanciájával, ezért csak abban a tartományban alkalmazható, ahol elhanyagolható az elnyelés. A kétrétegű film esetén még mindig meglehetősen széles hullámhossz tartományban megfelelő az illesztés (~400-800 nm). A három- és többrétegű filmeknél viszont már sokkal keskenyebb tartományban elfogadható az illesztés (~430-570), ennek megfelelően csak ebben a hullámhossztartományban fogadhatók el az eredmények.

7. táblázat. A 234 nm-es ZnO részecskék különböző rétegszámú (k) filmjei esetén kapott filmvastagság (H) és részecske térfogattört értékek (fp).

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>H, nm</td>
<td>234</td>
<td>409</td>
<td>586</td>
<td>764</td>
<td>940</td>
</tr>
<tr>
<td>fp</td>
<td>0,4475</td>
<td>0,5202</td>
<td>0,5562</td>
<td>0,5735</td>
<td>0,5822</td>
</tr>
</tbody>
</table>

A film effektív törésmutatója a rétegszám növekedésével nő (55. ábra b) része). Ennek a magyarázata, hogy magasabb rétegszámoknál nagyobb a részecskék térfogattörtje a filmben: a részecskék az előző rétegben lévő részecskék közeibe ülnek be. Ez a tendencia a rétegvastagság nagyságában is megmutatkozik.

Összességében megállapítható, hogy a modell nagyon jó egyezést mutat a mérésekkel egy és kétrétegű filmek esetén, három- és nagyobb rétegszámok esetében azonban már kevésbé jól írja le a film tulajdonságait, aminek több oka lehet. A film elnyelése a rétegszámmal nő (53. ábra) a növekvő ZnO mennyiség miatt, ugyanakkor a modell nem számol a film abszorbanciájával. (Többek között a film abszorpciójának figyelen kívül hagyása az oka annak, hogy a 200-500 nm mérettartományban előállított részecskék közül csak a legkisebbekből épített filmek modellezhetők reflektancia mérésekhez. A nagyobb részecskék filmjeinek egyre szélesebb hullámhossz tartományban csökken az áteresztése. Továbbá a méret növekedésével egyre jelentősebbé válik a részecskéken történő fényszóródás, azaz egyre nagyobb a veszteség, amelyet a modell szintén nem tud számitásba venni.) A modell pontatlanságának másik oka lehet, hogy a részecskék rendezettségében lévő kis hibák a rétegszám növekedésével összeadódnak, a sokrétegű film kevésbé jól definiált, így annak a szerkezetét már nem írja le megfelelően a modell. Meg kell említenem, hogy hexagonálisan rendezett filmek más technikákkal is
előállíthatók, így a modell ezen rendszerekre is jól alkalmazható lehet. Érdekes lenne kipróbálni más filmépítési technikát is a ZnO részecskéim felhasználásával, így a strukturalis hibák kiküszöbölésével széles hullámhossz tartományban jó illeszkedést lehetne tapasztalni.

A 301 nm, 349 nm és 457 nm átmérőjű ZnO részecskékből üveglapra felépített egyrétegű Langmuir-Blodgett-filmeke UV-Vis transzmittancia spektrumokkal jellemezem (56. ábra).

![56. ábra. A 301nm-es, 349 nm-es és 457 nm-es ZnO részecskék egyrétegű üveghordozós filmjeinek transzmittancia spektrumai.](image)

A filmek a fotonikus kristályok tulajdonságát mutatják, a spektrumban látható a filmekre jellemző fotonikus tiltott sáv (fotonikus band gap). A különböző méretű ZnO részecskék filmjei esetén tapasztalt első- és másodrendű fotonikus tiltott sáv értékeket feltüntettem a transzmittancia spektrumokon, valamint a 8. táblázatban foglaltam össze.

A 457 nm-es részecskék esetében az elsőrendű fotonikus tiltott sáv 900 nm-nél nagyobb hullámszánnal található, így az a mért spektrumon nem jelenik meg. A fotonikus kristályokra jellemző tiltott sáv helye a film töreşmutatójának és a rácsállandó értékének ismeretében egyszerű képlettel számítható [108]:

\[
\lambda_{\text{max},1} = 2L \sqrt{n_{\text{eff}}^2 \sin^2 \gamma},
\]

(20)

\[
\lambda_{\text{max},2} = L \sqrt{n_{\text{eff}}^2 \sin^2 \gamma},
\]

(21)

ahol \(\lambda_{\text{max},1} \) és \(\lambda_{\text{max},2} \) az első- és másodrendű fotonikus tiltott sáv helye (nm), \(L \) a rácsparaméter (nm), \(n_{\text{eff}} \) a film effektív töreşmutatója, \(\gamma \) pedig a beessési szög (a beessési szög alatt a felületi normális és a beessési egyenes közötti szögét értjük). A rácsparaméter egyrétegű filmek esetében megegyezik a filmvastagsággal, azaz a részecskék átmérőjével.
A beesési szög ebben az esetben $\gamma=0^\circ$. A képletekből látszik, hogy az elsőrendű tiltott sáv hullámhossza kétszerese a másodrendű hullámhosszának. A mintáim ettől eltérő viselkedést mutatnak (lásd 8. táblázat), az elsőrendű fotonikus tiltott sáv alacsonyabb hullámhossznál jelenik meg, mint azt a másodrendű alapján várnánk. Ennek a magyarázata még nem ismert.

8. táblázat. A 301 nm, 349 nm és 457 nm átlagos átmérőjű részecskék egyrétegű filmjeinek transzmittancia spektrumán megjelenő elsőrendű ($\lambda_{\text{max},1}$) és másodrendű ($\lambda_{\text{max},2}$) tiltott sávok helyei, valamint az ezek alapján meghatározott paraméterek (n_{eff}: a film effektív törésmutatója, $n_{\text{ZnO,bulk}}$: a ZnO tömbfázisú törésmutatója, p: porozitás, n_p: részecskék törésmutatója, f_p: részecskék térfogattörtje a filmben, D: két szomszédos részecské középpontának átlagos távolsága a filmben).

<table>
<thead>
<tr>
<th>d, nm</th>
<th>$\lambda_{\text{max},1}$, nm</th>
<th>$\lambda_{\text{max},2}$, nm</th>
<th>n_{eff}</th>
<th>$n_{\text{ZnO,bulk}}$ (at $\lambda_{\text{max},2}$)</th>
<th>p, %</th>
<th>n_p</th>
<th>f_p</th>
<th>D, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>719</td>
<td>408</td>
<td>1,355</td>
<td>2,000</td>
<td>36,72</td>
<td>1,633</td>
<td>0,563</td>
<td>312</td>
</tr>
<tr>
<td>349</td>
<td>820</td>
<td>460</td>
<td>1,318</td>
<td>1,966</td>
<td>39,18</td>
<td>1,688</td>
<td>0,541</td>
<td>369</td>
</tr>
<tr>
<td>457</td>
<td>-</td>
<td>598</td>
<td>1,309</td>
<td>1,915</td>
<td>35,13</td>
<td>1,594</td>
<td>0,522</td>
<td>492</td>
</tr>
</tbody>
</table>

A másodrendű fotonikus tiltott sáv helyének és a film rácsállandójának ismeretében meghatároztam a filmjeim effektív törésmutatóját a (21) egyenlet alapján, az eredményt a 8. táblázatban tüntettem fel.

A reflexió spektrumok illesztése kapcsán bemutatottakhoz hasonlóan itt is ki lehet számolni a filmek effektív törésmutatóját az alkotó fázisok törésmutatóit alapján. Fotonikus kristályok esetében leggyakrabban a filmet alkotó komponensek tömbfázisú törésmutatójának a térfogattörttel szűgyozott átlagát szótak használni [108]:

$$n_{\text{eff}} = f_p n_p + f_{\text{air}} n_{\text{air}},$$

ahol f_p és n_p a részecskék térfogattörtje és törésmutatója, f_{air} és n_{air} a levegőre vonatkozó ugyanazon paraméterek. Ugyanezt a módszert követve kiszámítható a részecskék törésmutatója a primer kristályok és a pórusok törésmutatóit alapján:

$$n_p = f_{\text{ZnO}} n_{\text{ZnO}} + f_{\text{air}} n_{\text{air}},$$

ahol f_{ZnO} és n_{ZnO} a kristályos ZnO térfogattörtje és törésmutatója. A részecskék porozitásának ismeretében kiszámolható a törésmutatójuk. A részecskék filmbeli térfogattörtje (f_p) ugyanazzal a képlettel ((18) egyenlet) számolható, amelyet korábban a filmek reflexió spektrumainak illesztésekor is felhasználtam. Tehát a (23) egyenletből meghatározott részecské törésmutatót behelyettesítve a (24) egyenletbe megkapjuk a részecskék filmbeli törésmutatóját, amely alapján a (18) egyenlet segítségével
megbecsülhető két szomszédos részecske középpontjának átlagos távolsága a filmben (D). A részecske térfogatért és az átlagos részecske távolság értékek is lényegében azt mutatják, hogy a kisebb részecskékből tömörrebb filmek kaphatók. A pásztázó elektronmikroszkópos képekkel (52. ábra) összevetve elmondható, hogy valóban a legnagyobb részecskék esetén figyelhetők meg a legnagyobb rések a filmben, azonban a másik két esetben nem látható jelentős eltérés. A számolási eredmények és a SEM felvételek közötti különbség adódhat egyrészt abból, hogy a törésmutató kiszámítására használt modell tartalmaz elhanyagolásokat és ez valamelyest módosítja az eredményeket, másrész abból, hogy különböző mintadarabokon készültek a mérések. Az optikai mérésekhez ugyanis üveghordozós mintát használtam, míg a SEM mérésekhez Si lapra készítettem el párhuzamosan ugyanazokat a mintákat.

Jellemeztem a ZnO részecskékből kvargchordozóra felépített egyrétegű filmek fluoreszcencia sajátágait is. Az 57. ábra a 350 nm-es gerjesztő fény alkalmazásával felvett emissziós spektrumokat mutatja.

![57. ábra.](image)

A 57. ábra a 234, 301, 349 és 457 nm-es részecskék egyrétegű, kvargchordozós filmjeinek fluoreszcencia emissziós spektrumai (gerjesztés: λ=350 nm).

A spektrumokon megjelenik egy intenzív, széles emissziós csúcs a látható tartományban (570 nm körül), valamint egy gyengébb, élesebb csúcs az UV tartományban 390 nm-nél. A korábban (II.2. fejezet) részletezett mechanizmus szerint az UV emisszió a gerjesztett excitonok direkt rekombinációjával magyarázható, a látható emissziót pedig a felületi hibahelyekhez lehet kapcsolni. Az emissziós spektrumokon látszik, hogy az UV tartományban jelentkező csúcs minden minta esetében 390 nm-nél jelentkezik, közel azonos intenzitással, míg a látható tartományban lévő csúcs esetében eltérés van a különböző részecskék esetén mind intenzitásban, mind a maximum helyében.
Megállapítottam, hogy az összefüggést nem a részecskeméret, hanem a primer kristályok méretének figyelembe vételével kell keresni. Ábrázoltam a különböző méretű részecskék esetében tapasztalt emissziós maximum helyét illetve az emissziós intenzitást az őket alkotó primer kristályok méretének függvényében (58. ábra, d_{\text{primer}} értékek lásd 4. táblázat).

Látható, hogy a primer krisztallitok méretének növekedésével az emissziós maximum a nagyobb hullámhosszak felé tolódik, az intenzitás pedig csökken.

Az eredmények értékelésekor figyelembe kell venni a filmek fotonikus kristály szerkezetét. A fotonikus kristályokban csökken az emissziós intenzitás, ha a tiltott sáv és az emissziós sáv átfednek, ugyanis a tiltott sáv megfelelő energiájú fényhullámok terjedése a filmben nem megengedett [146]. Ismert, hogy a fotonikus kristályokban a tiltott sáv helye függ a megfigyelési szögtől a korábban bemutatott (20) és (21) egyenletek alapján.

9. táblázat. A fluoreszcencia emisszió detektálási szögének (γ=60°) megfelelő fotonikus tiltott sávok helyzete a (20) és (21) egyenletek alapján.

<table>
<thead>
<tr>
<th></th>
<th>301 nm</th>
<th>349 nm</th>
<th>457 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\lambda_{\text{max,1}} (\gamma=60°), \text{nm})</td>
<td>594</td>
<td>651</td>
<td>842</td>
</tr>
<tr>
<td>(\lambda_{\text{max,2}} (\gamma=60°), \text{nm})</td>
<td>297</td>
<td>326</td>
<td>421</td>
</tr>
</tbody>
</table>

A fluoreszcencia mérések esetében a detektálás szöge a felületi normálhoz képest 60°, ezért ki kell számolni, hogy ezen szög alatt hová tolódik a tiltott sáv. Az első és másodrendű tiltott sávok helyeit a \(\gamma=60° \) esetén a 9. táblázat tartalmazza. Látható, hogy
Eredmények II. rész
200-500 nm-es cink-oxid részecskék és filmjeik

egyik tiltott sáv sem fed át jelentős mértékben az emissziós sávval, kivéve a 301 nm-es részecskék filmjének elsőrendű esetét. A 57. ábra tanúsága szerint a 301 nm-es részecskék filmje mutatja a leggyengébb emissziót. Az elsőrendű tiltott sáv azonban meglehetősen kismértékű tiltást jelent, ezért valószínűleg inkább a részecskeméret hatásának tulajdonítható a gyenge emisszió.
VI.5 Mintázott felületek előállítása 341 nm-es ZnO részecskékkel

VI.5.1 Mintázatképzési paraméterek optimalizálása

A ZnO részecskék önszervező módon mintázatokba történő rendeződését számos paraméter befolyásolja. A részecskék, a hordozó és a bélyegző felületi tulajdonsága mellett fontos a részecskék koncentrációja, stabilitása a vizes közegű szoljaikban, valamint a bélyegző felszínét jellemző hullámhossz is, tehát a megfelelő rendezettségi szint elérése nem könnyű feladat.

A kísérletekhez használt 341 nm-es ZnO részecskéket dietilénglikolos közegben szintetizáltam, a mintázatképzéshez azonban vizes közegbe kellett őket átvinnem. A részecskék vizes közegben kevésbé stabilak: a közegcsere után nagyjából 1 napig individuális részecskék vannak a szolban, azután azonban megjelennek néhány részecskéből álló aggregátumok, de nagymértékű aggregáció még hónapok eltelével sem tapasztalható. Zeta potenciál mérések során tapasztalt 21 mV-os átlagérték is a szol gyengébb stabilitását támasztja alá.

Mintázatképzési előkísérleteket végezem különböző koncentrációjú (0,5 mg/ml – 10 mg/ml) szolokkal, mely során megállapítottam, hogy az 5 mg/ml – 10 mg/ml koncentráció tartomány használható eredményesen, ezért a későbbiekben az eredeti koncentrációt használtam.

A bélyegző hullámhosszának megválasztását a részecskék méretéhez kell igazítani, a hullámhossz szabályozása pedig az oxigén plazma kezelés idejével történik. A hosszabb kezelés során a bélyegző felszínén vastagabb réteg oxidálódik, amely a relaxálás során nagyobb hullámhosszat eredményez. Különböző ideig (5, 10, 20, 40 és 60 perc) tartó oxigén plazma kezeléssel hullámosított bélyegzőkkel végzett előkísérleteim alapján a 20 perces kezelésnek alávetett PDMS felszínt találtam legalalkalmasabban a 341 nm-es ZnO részecskékhez a legmegfelelőbb.

A részecskék, a hordozó és a bélyegző felszínének módosítása során a IV.3.3 fejezetben leírt anyagokat és módszereket használtam. Kísérleteket végeztem módosítatlan, perkénsav oldatban megtisztított üvegglappal, amelynek felszíne negatív töltésű. A felület módosítására többféle anyagot használtam. A szilanizáló szer (APTES) kémiailag kötödik
a felszínhez és pozitív töltésű felületet eredményez. A poli-L-lizin-polietilénglikol (PLL-g-PEG) kopolimer a poli-L-lizin résszel elektrosztatikus vonzó kölcsönhatással kapcsolódik az üveg felszínhez, a polietilénglikol oldalláncok révén pedig semleges töltésű, hidrofil jellegű felszínt kaptam. A polietilénglimin (PEI) pozitív töltésű polielektrolit szintén elektrosztatikus kölcsönhatások révén kötődik a negatív töltésű üveg felszínéhez erőteljesen áttörtve azt.

A pozitív felületi töltésű ZnO részecskék felületére negatív töltésű polielektrolitokat (PAA és PSS) adsorbeáltattam, amelynek hatására a felületük áttöltődött. A módosítatlan és a polielektrolittal borított részecskék zeta potenciáljának mérésével megbizonyosodtam az áttöltésről valamint a mérések igazolták a szol stabilitását is (10. táblázat).

10. táblázat. A 341 nm-es ZnO részecskék felületének polielektrolitokkal való borítását jellemző ζ-potenciál mérések.

<table>
<thead>
<tr>
<th></th>
<th>ZnO</th>
<th>ZnO-PAA</th>
<th>ZnO-PSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ (mV)</td>
<td>20,8±6,1</td>
<td>-43,8±5,4</td>
<td>-40,9±4,9</td>
</tr>
</tbody>
</table>

A részecskék, a hordozó és a bélyegző felületi tulajdonságainak a részecskék önszervezódésére való hatását nagyszámú kísérlettel teszteltem. Az egyes kísérletek során használt hordozó-részecske-bélyegző kombinációkat a 11. táblázatban tüntettem fel.

<table>
<thead>
<tr>
<th>Hordozó</th>
<th>Részecskék</th>
<th>Bélyegző</th>
<th>Eredmény</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiszta üveglap</td>
<td>ZnO</td>
<td>hidrofób</td>
<td>-</td>
</tr>
<tr>
<td>PLL-g-PEG</td>
<td>ZnO</td>
<td>hidrofób</td>
<td>-</td>
</tr>
<tr>
<td>APTES</td>
<td>ZnO</td>
<td>hidrofób</td>
<td>-</td>
</tr>
<tr>
<td>PEI<sub>LMW</sub></td>
<td>ZnO</td>
<td>hidrofób</td>
<td>++</td>
</tr>
<tr>
<td>PEI<sub>HMW</sub></td>
<td>ZnO</td>
<td>hidrofób</td>
<td>+</td>
</tr>
<tr>
<td>tiszta üveglap</td>
<td>ZnO-PAA</td>
<td>hidrofób</td>
<td>-</td>
</tr>
<tr>
<td>PLL-g-PEG</td>
<td>ZnO-PAA</td>
<td>hidrofób</td>
<td>-</td>
</tr>
<tr>
<td>PEI<sub>HMW</sub></td>
<td>ZnO-PAA</td>
<td>hidrofób</td>
<td>-</td>
</tr>
<tr>
<td>tiszta üveglap</td>
<td>ZnO-PAA</td>
<td>hidrofil</td>
<td>-</td>
</tr>
<tr>
<td>tiszta üveglap</td>
<td>ZnO-PSS</td>
<td>hidrofób</td>
<td>-</td>
</tr>
<tr>
<td>PLL-g-PEG</td>
<td>ZnO-PSS</td>
<td>hidrofób</td>
<td>-</td>
</tr>
<tr>
<td>tiszta üveglap</td>
<td>ZnO-PSS</td>
<td>hidrofil</td>
<td>-</td>
</tr>
</tbody>
</table>
Az eredmények alapján a következő megállapításokra jutottam.
- A módosítatlan ZnO részecskék (pozitív felületi töltés) a tiszta üveglapra (negatív felületi töltés) ülepedés után helyváltoztatás nélkül elektrosztatikus kölcsönhatások következtében adszorbeálódnak, így a hullámos felszínű bélyegző nem tudja irányíthatni a részecskék rendeződését a folyadék elpárolgása közben. Tehát az önrendeződés szempontjából kívánatos az azonos felületi töltés.
- A PLL-g-PEG-gel borított üveglap nem volt elég hidrofil, így a részecskék száradás közben a mozgó folyadékmeniszkusza együtt hátráltak ki a bélyegző alól.
- A hidrofil felszínű bélyegző negatív felületi töltésű, amelyre a módosítatlan részecskék jelentős mértékben adszorbeálódtak, megakadályozva ezzel az irányíttott önrendeződést.
- A PSS-val és a PAA-val borított ZnO részecskék egyetlen esetben sem mutattak rendezettséget.
- Sikeres volt a mintázatképzés, amikor a hordozó felszínét PEI-vel borítottam, módosítatlan részecskék ket alkalmaztam hidrofób felszínű bélyegzővel. Jelentős különbség mutatkozott azonban a kis- és nagy molekulatömegű PEI között (59. ábra). A nagy molekulatömegű PEI-vel (PEI\textsubscript{HMW}) is elérhető bizonyos fokú rendezettség, de a hordozón láthatók nagyobb részecskéaggregátumok, amelyek a hordozó és a bélyegző között távtartóként működve megakadályozták az úgynevezett bezárt tér általi irányítást. A kis molekulatömegű PEI-vel (PEI\textsubscript{LMW}) nem tapasztalható a részecskék aggregációja a felszínen, így rendezett mintázatokat kaptam. Meg kell jegyeznem, hogy a rendezettség azonban még nem tőkéletes, de sikerült elérni a hullámos felszínű bélyegzőnek megfelelő sávos rendezettséget.

59. ábra. Az üveglap felületének borítására használt PEI molekulatömegének hatása a létrehozott mintázatok rendezettségére: a) nagy molekulatömegű PEI (PEI\textsubscript{HMW}) és b) kis molekulatömegű PEI (PEI\textsubscript{LMW}).
(Mindkét esetben módosítatlan ZnO részecskéket és hidrofób felszínű bélyegzőket alkalmaztam.)
Kísérleteim során eredeti célem az volt, hogy a hullámos felszín által kialakított részecskesor mindössze egyetlen részecské szélességű legyen, itt azonban ennek a többszöröse látható. Ezt a célt nem sikerült elérne m, mindössze egy kis területen találtam részecskesor mindössze egyetlen részecske szélességű részecskesor.

60. ábra. Egyetlen részecske szélességű részecskesor.

VI.5.2 ZnO részecskék mintázatainak jellemzése

A mintázott filmek sajátosainak vizsgálatához, a rendezettség hatásának pontos megismeréséhez olyan filmeket is készítettem, ahol a részecskék szabálytalanul, random szerkezetben helyezkednek el a hordozóban (IV.3.4. alfejezet). A mintázatok különböző tulajdonságait a random szerkezetű filmekkel összehasonlítva fogom tárgyaltani.

A mintázott és random szerkezetű filmekben a részecskék rendezettségének jellemzésére SEM felvételeket készítettem (61. ábra). Jól látszik a részecskék sávos elrendeződése, a hullámos felszínű bélyegző által irányított örörendeződés. A nagyított kép jól mutatja, hogy a részecskék csak a bélyegző által meghatározott sávban helyezkednek el, a sávon belül azonban nem alakult ki rendezettség. Ennek oka az lehet, hogy a részecskék a méretükönél jóval szélesebb (2-3-szoros) sávokba rendeződtek, a sávon belül viszont a száradás során mozgó folyadékmeniszkusz mentén a kapilláris erők irányítják a részecskék mozgását. Ismert, hogy mozgó folyadékmeniszkusznál ható kapilláris erők képesek a részecskék szabályos struktúrákba történő rendezésére, de jelen esetben ez nem valósult meg. Az eredmények ismeretében újbol kísérleteket végeztem kisebb hullámhosszú PDMS bélyegzőkkel is, azonban nem sikerült a mintázatképzés. Megfigyelhető azonban, hogy az Au felszínen kialakított sávokban valamivel tömörebben illeszkednek a részecskék.
Eredmények II. rész

200-500 nm-es cink-oxid részecskék és filmjeik

61. ábra. A ZnO részecskék mintázatainak és random szerkezetű filmjeinek rendezettségét, struktúráját bemutató felvételek. a-b) kvarchordozón, illetve c-d) Au-val borított hordozón létrehozott mintázatok, e) random szerkezetű film SEM képe, f) a ZnO mintázatról és a hozzá tartozó bélyegzőről készült fénykép.

A SEM felvételek alapján meghatároztam a mintázatot jellemző periodicitást, azaz a hullámhosszat; a 12. táblázatban foglaltam össze a kapott értékeket. A kvarchordozón 2,44 μm, az arannyal bevont hordozón pedig 2,14 μm átlagos értékeket határoztam meg. A különbség oka, hogy a két mintázathoz különböző bélyegzőket használtam. Ezek a bélyegzők - habár előállításuk azonos körülmények között történt - felszínükön mégsem teljesen azonos paraméterekkel (hullámhossz, amplitúdó) jellemezhető hullámok képződtek.

<table>
<thead>
<tr>
<th></th>
<th>SEM</th>
<th>Lézerdiffrakció (532 nm)</th>
<th>Lézerdiffrakció (670 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I. rend</td>
<td>II. rend</td>
<td>I. rend</td>
</tr>
<tr>
<td>kvarc/ZnO</td>
<td>2,44±0,15 2,50±0,2 2,27±0,2</td>
<td>2,46±0,2 2,29±0,2</td>
<td></td>
</tr>
<tr>
<td>üveg/Au/ZnO</td>
<td>2,14±0,16 2,18±0,2 2,10±0,2</td>
<td>2,19±0,2 2,00±0,2</td>
<td></td>
</tr>
</tbody>
</table>

A rendezettség következtében a mintázatok a diffrakció jelenségét mutatják olyan fényvel, amelynek a hullámhossza egy nagyságrendben van a periodicitásukkal. Különböző hullámhosszúságú lézerforrásokkal (532 ± 10 nm és 670 ± 10 nm) végeztem kísérleteket, az első- és másodrendű reflexiók jól láthatók, a harmadrendű reflexiók azonban már meglehetősen homályosak (62. ábra).

62. ábra. A zöld (532±10 nm) és piros (670±10 nm) lézerforrásokkal látható diffrakciós foltok: az első- és másodrendű reflexiók jól láthatók. (A valóságban élesebben elkülönül a diffrakciós folt a szórt fénytől, mint ahogyan azt a fénykép visszaadja.)

A diffrakciós foltok helye alapján a (9) egyenlet segítségével meghatároztam a mintázatok hullámhosszát (12. táblázat). Az adatokból kitűnik, hogy az elsőrendű elhajlások alapján kapott értékek jó egyezést mutatnak a SEM képekben meghatározottakkal. A másodrendű foltok alapján számolt értékek az előzőeknél szignifikánsan kisebb periodicitást mutatnak.

A lézerdiffrakciós kísérletek során a mérési körülmények lehetővé tették, hogy egyszerűen ellenőrizzem a mintázat periodicitásának homogenitását. A vizsgálat során a hordozó mozgatásával és a diffrakciós mintázat egyidejű megfigyelésével megállapítottam, hogy a hullámhossz eloszlása nem homogén, a mintázat alsó részén (61. ábra f) része a
Eredmények II. rész

200-500 nm-es cink-oxid részecskék és filmjeik

legkisebb a hullámhossz, az ábra szerinti elrendezésben felfelé haladva pedig növekszik. Ez természetesen a bélyegző inhomogenitásának tükre, feltehetően a hullámosság során a megnyújtott állapotú PDMS csíkban kialakuló inhomogén feszültségeslozlás következménye.

A mintázat és a random szerkezetű film hasonló lefutású spektrumot ad, a transzmittancia a hullámhossz csökkenésével a ZnO elnyelése, valamint fényszóródás következtében csökken, a részecskék elnyelési maximuma 370 nm körül van. A Langmuir-Blodgett-film az előbbiekkel eltérő viselkedést mutat: a szoros, hexagonális illeszkedésben elrendezett részecskék filmjének transzmittancia spektrumán 455 nm-nél megjelenik a fotonikus kristályokra jellemző tiltott sáv (“fotonikus band gap”).

A mintázatokba rendezett ZnO részecskék fluoreszcencia emissziós sajátságait tanulmányoztam kvarc- és 50 nm-es aranyréteggel bevont üveghordozókon (64. ábra). Megállapítottam, hogy mind a random, mind a rendezett filmek esetén erősödik az emisszió az aranybevonat jelenlétében, de jelentős különbség az erősítésben nincsen. Mindkét esetben tapasztalható a hullámhossz eltolódása a plazmonikus kölcsönhatás következtében; a mintázatok esetében valamivel nagyobb, 11 nm eltolódást mért. További eltérés az UV emisszió hullámhosszában mutatkozik: a random szerkezetű filmeknél az UV emisszió maximuma 393 nm-nél található, míg a mintázatok esetében ez
a csúcs 383-384 nm-nél jelentkezik. Ennek egy lehetséges magarázata lehet a részecskék átlagos távolságának különbsége a hordozón.

64. ábra. A kvarc- és aranybevonatú üveghordozókon a random szerkezetű filmek és a mintázatok esetén mért fluoreszcencia emissziós spektrumok.
Munkám során ZnO nanorészecskék szintézisével (kétféle eljárással), jellemzésével foglalkoztam, majd belőlük víz/levegő határfelületen Langmuir-filmeket és ezek szilárd hordozóra történő átvitelével Langmuir-Blodgett-filmeket állítottam elő, valamint templát által irányított önszerveződéses elven sávos mintázatokat hoztam létre.

Az etanolos közegben szintetizált 3-7 nm-es ZnO részecskék Ostwald-féle öregedését jellemztem UV-Vis abszorbancia, röntgendiffrakciós és dinamikus fényeszőrás mérésekkel. Megállapítottam, hogy szobahőmérsékleten a részecskék mérete a szintézist követően tovább nő, nagyjából 7 nm-es maximális méret eléréséig. A szolok stabilitásának növelésére alacsony hőmérsékletű tárolást és polietilénimin felületmódosító ágenst alkalmaztam. A részecskék méretének növekedését kihasználva jellemeztem azok méretfüggő fluorescencia emissziós sajátságait. A részecskék méretének növekedésével a látható emissziós maximum a nagyobb hullámhosszak felé tolódik el, az emisszió intenzitása pedig ezzel párhuzamosan csökken. A 3-7 nm-es ZnO részecskék vízfelszíni Langmuir-filmeinek tanulmányozása során oldalnyomás vs. terület izotermák mérésén keresztül megmutattam, hogy a mind a ZnO, mind a polietiléniminnel borított ZnO részecskék ből stabil, szilárd hordozóra átvihető filmek alakíthatók ki. A polietiléniminnel borított részecskék egy része a filmképzési eljárást során a szubfázis felé elhagyja a határfelületet, azonban az átíveli folyamatot ez nem hátráltatja. Megmutattam a hordozós Langmuir-Blodgett-filmek lineáris felépülését UV-Vis abszorbancia spektrumokkal, a filmek szerkezetét atomerő mikroszkópos képekkel jellemeztem, valamint a filmek fluorescencia emissziós vizsgálat során rámutattam, hogy a részecskék a filmben megőrzik emissziós sajátságukat.

kölcsönhatás jelentőségét az emissziós sajátságokra a kettő közti távolság és az arany morfológiajának függvényében.

A 341 nm átmérőjű monodiszperz, gömb alakú ZnO részecskék felhasználásával nanoszerkezetű mintázatok előállítását tűztem ki célul. A sávos mintázatok kialakítására templált ként oxigén plazmában előállított hullámos felszínű PDMS (polidimetilsziloxán) bélyegzőket alkalmaztam, amelyeknél a csatornák szélessége és mélysége a plazmakezelés paramétereinek változtatásával széles tartományban hangolható. A mintázatképzés paramétereinek optimalizálása során különböző felületmódosító agenseket alkalmaztam mind a részecskék, mind a filmek felületi tulajdonságainak változtatására. A megfelelő rendezettség elérése után a filmeket UV-Vis transzmittancia és fluoreszcencia emissziós mérésekkel jellemeztem. Kimutattam, hogy a mintázatokba rendezett ZnO részecskék fluoreszcencia emissziós tulajdonságai is befolyásolhatók fém jelenlétében létrejövő plazmonikus kölcsönhatások következtében.
VIII. SUMMARY

During my work I have synthesized ZnO particles with two different methods. I have prepared their Langmuir-films at the air/water interface, Langmuir-Blodgett-films on different solid substrates and patterned assemblies on quartz in order to study the optical and photoluminescence properties of these ordered structures.

The ZnO particles in the size range of 3-7 nm were synthesized in ethanolic media, UV-Vis absorbance, dynamic light scattering and x-ray diffraction methods were used to describe the Ostwald ripening process undergoing after synthesis. I have found that the average particle size increases from 3 nm to about 7 nm and the band gap energy decreases to the bulk band gap of ZnO in a 10 day period. I have applied low temperature storage and steric stabilizer polyelectrolite (polyethyleneimine) for inhibition of particle growth. I have studied the photoluminescence emission property of the particles as a function of their size. Size-dependent emission was observed for both the UV and the visible emission of the particles: the emission maxima is shifted to the higher wavelengths and the intensity is decreasing when particle size increases. The difference between the lowest and the highest maxima is about 30 nm.

Study of the Langmuir-films of the ZnO and polyethyleneimine coated ZnO particles with average size in the 3-7 nm region was performed with the measurement of surface pressure vs. surface area isotherms. I have shown that the small fraction of the polyelectrolite coated particles are lost during spreading and compression due to the good hydration properties of polyethyleneimine in water, although it is possible to obtain stable films which can be transferred onto solid substrates. The linear built up of the films was proven by UV-Vis absorbance measurements, the strucure of multilayered films was characterized by atomic force microscopic images. Fluorescence emission study of the Langmuir-Blodgett-films of these particles revealed that particles preserve their emission properties in the solid supported films.

Gold coated substrates were also used for supported films of ZnO in order to modify the emission properties due to plasmonic interaction with gold. I have used two different types of Au coatings to study the effect of the structure of Au. I have inserted stearic acid Langmuir-Blodgett layers between the metal and the semiconductor for fine tuning their distance. Fluorescence emission measurements revealed the distance-
dependent plasmonic interaction of ZnO and Au, additionally large 12-fold enhancement was observed at 2.2 nm distance.

Monodispersed, spherical ZnO particles in the size range of 200-500 nm were synthesized in diethylene glycol media. I have determined the size and size-distribution of the particles based on transmission images and demonstrated the aggregation type growth mechanism with scanning electronmicroscopic images. Nitrogen adsorption and desorption measurements were performed to calculate the surface area, density and porosity of the particles. X-ray diffraction measurements revealed the crystallinity of the particles, additionally Scherrer equation was used to determine the primary cristallite size.

Langmuir-films at the air/water interface were formed with the monodispersed ZnO particles in the size range of 200-500 nm. Evaluation of the measured surface pressure vs. surface area isotherms showed that the particles form stable, hexagonally close packed order on the water surface. I have prepared single and multilayered Langmuir-Blodgett-films of ZnO particles and I was focusing on the optical and photoluminescence properties. Scanning electronmicroscopic images showed well ordered, hexagonal arrays of particles. Transmittance spectra of the films showed the photonic crystal structure, first and second order photonic band positions were identified. Reflectance spectra were measured and fitted with an appropriate optical model which considered the special particle arrangement. The parameters of the optical model assigned effective refractive index, film thickness and average particle-particle distance in the film. Photoluminescence emission measurements showed intense a visible and a weaker UV emission of the films. I have found that the position of the visible emission maxima is determined by the primary crystallite size of the particles.

ZnO particles with 341 nm average diameter were also used for template assisted surface patterning. PDMS (polydimethylsiloxane) stripes with wrinkled surface were used as templates to obtain grating-like structures. Optimal parameters for particle assembly were found in case of hyrdophobic PDMS stamps, low molecular weight polyethyleneimine coating on the substrate and uncoated ZnO particles. I have characterized the patterned ZnO assemblies by optical and photoluminescence measurements. UV-Vis transmittance showed no specific feature, it was found to be similar to random structued films. Fluorescence emission measurements showed that the photoemission properties of patterned ZnO can be modified with gold coating on the substrate due to plasmonic interactions.
IX. KÖSZÖNETNYILVÁNÍTÁS

Köszönetet mondok témavezetőmnek, Dr. Dékány Imrének, amiért lehetővé tette számomra, hogy a csoportjában dolgozhassak. Köszönöm, hogy munkám során mindvégig támogatta szakmai fejlődésemet minden téren: a számos inspiroló konzultációt, amely során sokat tanultam és rengeteg ötletet kaptam, a konferencia részvételeket, ahol az érdekes és hasznos előadások meghallgatása mellett saját eredményeimet is bemutathattam, valamint a külföldi tanulámnutat, ahol rengeteg új tapasztalatot szereztem.

Köszönetet mondok Dr. Erdőhelyi András tanszékvezető egyetemi tanárnak, amiért lehetővé tette munkám a Fizikai Kémiai és Anyagtudományi Tanszéken.

Köszönettel tartozom Dr. Sebők Dánielnén, Juhászné Dr. Csapó Editnén, Králikné Benkö Máriának, Tóth Ildikónak, Varga Viktóriaának, Lagdánne Szélpál Évának, Ráczné Kuhn Klárának, Veres Ágnesnek, Dr. Szabó Tamásnak, Dr. Körösi Lászlónak, Körösiné Dr. Papp Szilviának és a Fizikai Kémiai és Anyagtudományi Tanszék Kolloidok és Nanoszerkezetű Anyagok Csoport jelenlegi és korábbi munkatársainak a barátságukért és a munkám során nyújtott számos elméleti és gyakorlati segítségükért.

Köszönetemet fejezem ki bayreuthi munkatársaimnkn, Andreas Fery Professzornak, Christoph Hanskenené és Mareen Müllernek.

Végül, de nem utolsó sorban szeretném megköszönni férjemnek és a családomnak, hogy mindvégig támogattak és minden feltételt biztosítottak a doktori munkám elkészítéséhez.
X. TUDOMÁNYOS KÖZLEMÉNYEK

Az értekezés témájában született dolgozatok:

1. N. Ábrahám, I. Dékány
Size-dependent photoluminescence properties of bare ZnO and polyethylene imine stabilized ZnO nanoparticles and their Langmuir–Blodgett films

2. N. Ábrahám, D. Sebők, Sz. Papp, L. Kőrösi, I. Dékány
Two dimensional arrangement of monodisperse ZnO particles with Langmuir-Blodgett technique

3. N. Ábrahám, I. Dékány:
Enhanced photoluminescence of ZnO Langmuir-Blodgett films on gold coated substrates by plasmonic coupling

4. N. Ábrahám, C. Hanske, M. Müller, A. Fery, I. Dékány
Patterned assemblies of ZnO particles on gold

Σ IF: 9,171

Az értekezés témájához részben kapcsolódó dolgozatok:

Use of the optical admittance function to stimulate and evaluate transmittance spectra of graded-index colloidal films

Complex Langmuir-Blodgett films of SiO2 and ZnO nanoparticles with advantageous optical and photocatalytical properties

Zinc oxide LB films with improved antireflective, photocatalytic and mechanical properties

Összesített hatástényező: 16,756
Konferenciaszereplések / előadások:

Konferenciaszereplések / poszterek:

8. N. Ábrahám, D. Sebők, Sz. Papp, I. Dékány: Optical and photoluminescence properties of different sized ZnO particles, 24th ECIS Conference, Prague, Czech Republic, 5th-10th September 2010, Abstr. P4.53

XI. FÜGGELÉK

XI.1 Diszperz rendszerek kisszögű röntgenszórására vonatkozó általános összefüggések

Ha a röntgensugarak kolloid mérettományban lévő részecskéken szóródnak, az inhomogenitások miatt jelentkező elektronsűrűség-különbség következtében a szőrt sugárzás I intenzitása a szórásszög (2Θ), illetve a szórásvektor $(h=(4\pi/\lambda)\sin\Theta)$ függvénye [147, 148, 149, 150]:

$$I(h) = \eta^2(0)V \int_0^\infty \frac{\sin hr}{hr} dr,$$

ahol V a rendszer térfogata, amelyben az elektronokon a röntgensugarak szóródása történik. A fenti egyenletben $\eta^2(0)$ függvény értéke a következők szerint definiálható [147-149]:

$$\eta^2(0) = \frac{1}{V} \int_0^\infty (\rho_e(r) - \rho_e)^2 d^3r,$$

ahol $\rho_e(r)$ az elektronsűrűség-eloszlási függvény adott r távolságban, illetve ρ_e az átlagos érték. Ha bevezetjük az elektronsűrűség-fluktuáció fogalmát: $\eta(r) = \rho_e(r) - \rho_e$, akkor megadható a (24) egyenletben szereplő korrelációs függvény:

$$\gamma_0(r) = \frac{\eta^2(r)}{\eta^2(0)},$$

amely jelentős információt tartalmaz a szóró részecskék nagyságáról és alakjáról.

A szórásgörbe úgynevezett Porod-tartományára (amelyénél $hR>1$), a következő összefüggés érvényes [150, 151, 152, 153, 154, 155]:

$$I(h) = \eta^2(0)2\pi \frac{S}{h^2},$$

ahol S a részecskék felületének nagysága. A részecskék fajlagos felülete (V térfogategységre vonatkoztatva) [149-151]:

$$\eta^2(0) = \frac{1}{V} \int_0^\infty (\rho_e(x) - \rho_e)^2 dx.$$
\[
\frac{S}{V} = \lim_{h \to \infty} \frac{I(h)h^4}{Q} = \pi \frac{K_p}{Q},
\]
(28)
ahol \(K_p\) a Porod-konstans. A tömegegyenségre vonatkoztatott fajlagos felület \(S/V\) relatív értékéből az alábbi egyenlet szerint számítható:

\[
S_p = \frac{S/V \times 10^3}{d},
\]
(29)
ahol \(d\) a diszperz rendszer sűrűsége g/cm\(^3\)-ben megadva.

A korrelációs hossz \((l_c)\) a szórásgörbéből közvetlenül számítható, ha ismerjük az alábbi integrált [152-155]:

\[
l_c = \pi \frac{\int_0^\infty I(h)hdh}{Q}.
\]
(30)

A szórásgörbe Porod-tartományából meghatározható a részecskék tömeg- \((D_m)\) és felületi fraktáldimenziója \((D_s)\). Ha a szórásgörbe legalább egy nagyságrenden keresztül lineáris szakasszal rendelkezik \((\log I(h) = p \log h)\), akkor a \(p\) meredekség értékéből adódik:

\[
D_m = |p| + 1 \text{ és } D_s = p + 5.
\]
(31)

XI.2 Nanorészecskés filmek fajlagos tömegének meghatározása abszorbancia kalibráció és elméleti számítás alapján

A 3-7 nm-es ZnO részecskékből épített többretegű Langmuir-Blodgett filmek területegységre eső tömegét kétféle módon határoztam meg.

Az első esetben hígítási sorozatot készítettem a ZnO szolból, majd a spektrumok mérése után absorbancia vs. koncentráció kalibrációt készítettem (65. ábra). A 3D-s koncentrációt \((\text{mg/cm}^3)\) ezután megfeleltettem 2D-s koncentrációtól, azaz fajlagos film tömegnek \((\text{mg/cm}^2)\). Ez a megfeleltetés úgy képzelhető el, hogy adott ZnO mennyiség ugyanannyi fényt nyel el, ha az 1 cm\(^3\) szolban van diszpergálva vagy ha egy 1 cm\(^2\) területre van leválasztva. Úgy is értelmezhető, hogy a kalibrációt tulajdonképpen nem ZnO koncentrációra, hanem ZnO tömegre készítjük el, amely lehet egységnyi térfgató szolban vagy egységnyi területű filmben. A kalibrációs egyenes meghatározása után lemértem a
ZnO részecskékből felépített film abszorbanciáját, majd a kalibráció alapján visszaszámolva megkaptam a ZnO részecskék tömegét.

Elméleti úton is kiszámítható az egységnyi területű film tömege, ha feltételezzük, hogy a részecskék gömb alakúak, egyforma méretűek és szoros, hexagonális illeszkedésben rendezkednek el a filmben. Ez persze egy idealizált kép, amely ezeknél a részecskéknél nem fedi a valóságot, azonban becsléshez mindenképpen alkalmazható. Elsőként egy részecske köré írható hatszög területét számítottam ki a (6) egyenlettel, ennek reciproka megadja az 1 cm2-re eső részecskék számát (N_{ZnO}). A részecskék mérete (r) alapján kiszámítható egy részecske térfogata (V_{ZnO}), ezt megszorzozva a ZnO sűrűségével (ρ_{ZnO}) és a részecskék darabszámával, eredményül kapjuk az egységnyi területű film tömegét (mg/cm2):

$$m_{ZnO} = N_{ZnO} \rho_{ZnO} V_{ZnO} = N_{ZnO} \rho_{ZnO} \frac{4r^3\pi}{3}.$$ \hspace{1cm} (32)

Ezzel egy egyrétegű film tömegét kaptuk meg, további rétegek esetén a megfelelő többszöröst kell venni.

65. ábra. A ZnO szol esetén mért abszorbancia vs. koncentráció kalibrációs diagram ($\lambda=335$ nm).
II. IRODALOMJEGYZÉK

Langmuir-Blodgett-filmek, Kiss Éva, A kémia újabb eredményei 95., Akadémiai Kiadó, 2006

Nagyné Naszályi Lívia: Preparation and characterization of functional nanostructured thin layers composed of silica, ZnO and core/shell silica/ZnO particles, PhD disszertáció, BME, 2008.

