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1. Introduction

The connection between lattice theory and several parts of mathematics is based 
on the fact that mathematical structures are accompanied by related structures, 
which are lattices in several cases. The elements of related lattices are certain objects 
connected with the escorted structures, mostly subsets or relations. In our case the 
related lattices will consist of sublattices, congruences, submodules, quasiorders and 
subspaces.

2. Sublattice lattices

For a lattice L, let Sub(T) denote the sublattice lattice of L. The first results 
concerning the isomorphism of sublattice lattices are due to Filippov [Fil66]. He 
provided necessary and sufficient conditions for Sub(X) =  Sub (if), however, these 
conditions are rather complicated. Gratzer [Gra78] posed several problems concern­
ing sublattice lattices. In this chapter we consider the following three problems:

I. Find conditions under which Sub(X) determines i ,  that is, Sub(T) == Sub (if) 
implies L =  i f  or L = i f rf? ([Gra78], Problem 1.4.)

II. Which lattice properties $ are preserved under the isomorphism of sublattice 
lattices, that is, $(X) and Sub(T) =  Sub(if) imply $(if)? ([Gra78], Problem 
1.8.)
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III. Which lattice varieties V are closed under the isomorphism of sublattice lattices, 
that is, L £ V and Sub(L) =  Sub(ii) imply K  £ V? ([Gra78], Problem 1.5.)

The third problem is clearly a special case of the second one, namely when $(L) 
means L £ V.

Let H  be a sublattice of L. H is said to be nontrivial if H ^  L and \H\ > 1. H 
is called prime if L \  H is also a sublattice and homogeneous if any element of H 
is either comparable or incomparable with every element of L \  H. The following 
theorem is a partial answer to, the first problem in the language of homogeneous 
prime sublattices.

THEOREM 2.1. ([Fil66]) I f  the lattice L does not contain any nontrivial homoge­
neous prime sublattices then Sub(L) determines L.

Making use of this theorem we proved the following partial answers to the first 
problem.

THEOREM 2.2. ([Tak97], [Tak98], [Taka], [Fil66]) I f  the lattice L fulfills one of the 
following properties then L is determined by its sublattice lattice:

(1) L is ah ordinal sum indecomposable modular lattice;

(2) L is an ordinal sum indecomposable, weakly complemented lattice;

(3) L is relatively complemented;

(4) L is an ordinal sum indecomposable, semimodular, strongly atomic lattice;

(5) L is simple;

(6) L is directly reducible;

(7) L is a selfdual subdirectly irreducible lattice of locally finite length.

Note that (1) and (3) are due to Filippov. On the other hand, in the proof of (7) 
we used the characterization of the isomorphism of sublattice lattices rather than 
Theorem 2.1.

Concerning the second problem we proved the following ’’dependence” result.

THEOREM 2.3. ([Takb]) I f  L is a lattice of finite length then Sub(L) determines 
Con(L), that is, Sub(L) =  Sub(W) implies Con(L) = Con(iiT).

It contrasts with the fact that by Baranskii [Bar79] and Urquhart [Ur'q78], the con­
gruence lattice and the automorphism group of a finite lattice are independent. A 
simple example shows that the sublattice lattice does not determines the automor­
phism group in general.
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The third problem was studied more generally: we considered quasi varieties, i.e. 
lattice classes defined by Horn sentences. By a Horn sentence we mean a universally 
quantified lattice sentence

n

/\P i =  % = >  p  =  q,
i = 1

where pi, qi,p, q are lattice terms. It is clear that no non-selfdual lattice quasivariety 
is closed under the isomorphism of sublattice lattices. Using Theorem 2.2. (1) we 
proved the following.

THEOREM 2.4. ([Tak98]) A modular lattice quasivariety is closed under the iso­
morphism of sublattice lattices iff it is selfdual.

For non-modular quasivarieties this is no longer true: we constructed a non-closed 
selfdual variety. On the other hand, as a consequence of Theorem 2.2. (7) we have

COROLLARY 2.5. Selfdual splitting varieties are closed under the isomorphism of 
sublattice lattices.

3. D uality o f subm odule lattices

In this chapter an elementary proof is given for Hutchinson’s duality theorem. 
Given a ring R  with unit element 1 =  1r . the class of left modules over R  is 
denoted by A-M od. Let T(R') denote the set of all lattice identities that hold in the 
submodule lattices of all A-modules, i.e., in the class of {Sub(M) : M  6 A-M od}. 
Using the heavy machinery of abelian category theory and Theorem 4 from [HC78], 
Hutchinson [Hut73,HC78] has proved the following duality result.

THEOREM 3.1. (Hutchinson [Hut73,HC78]) For every ring R, T(R) is a selfdual 
set of lattice identities. In other words, a lattice identity A holds in {Sub(M) : M  6 
A-M od} iff so does the dual of X.

The goal of the present chapter is to give an easy new proof of this theorem, 
based on [CT]. Our elementary approach does not resort to category theory and 
uses much less from [HC78] than the original one.

4. G eneration o f quasiorder lattices

Given a set A, let Quord(A) denote the (complete) lattice of all quasiorders 
(i.e., reflexive and transitive relations) on A. Similarly, the lattice of equivalences 
on A  will be denoted by Equ(A). By a (complete) involution lattice we mean 
a (complete) lattice equipped with an extra unary operation * such that * is an
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involutory automorphism of the lattice reduct. Typical example is Quord(A) where 
a* =  {(x,y) 6 A 2 : (y,x) € a} for a  € Quord(A). In this chapter Quord(A) is 
always considered a complete involution lattice.

By Strietz [Str75] and Zadori [Zad86], the (complete) lattice Equ(A), 4 < \A\ < 
oo has a four element generating set, but cannot be generated by three elements. 
Modifying Zadori’s method, Chajda and Czedli [CC96] have shown that Quord(A) 
has a three element generating set for all finite and some infinite A. This result gave 
rise to studying infinite equivalence lattices: Czedli [Cze96] proved that Equ(A) is 
four-generated if there is no inaccessible cardinal m  such that m < |A|.

Combining the methods of the above papers, we proved the following theorem.

THEOREM 4.1. ([Tak96a]) Let A  be a set with at least three elements and assume 
that there is no inaccessible cardinal < |A|. Then the complete involution lattice 
Quord(A) has a three element generating set. In fact, it can be generated by three 
partial orders.

By Kuratowski [Kur25] (cf. also Levy [Lev79]), ZFC has a model without inaccessible 
cardinals, therefore this theorem holds for all sets in an appropriate model of set 
theory.

By Chajda and Czedli [CC96], it is sufficient to prove the result only for infinite 
sets. The proof is an induction on |A|, and a so called box structure was built on A. 
In order to make the proofs shorter, we defined the notion of semibox in [Tak96a], 
which was utilized later in [Cze].

5. L attice identities for projective geom etries

In this chapter we considered projective geometrical configurational conditions 
(Schliessungssàtze) and translated them to the language of lattice theory. That is, 
given a configurational condition T, we present a lattice identity Ay such that a 
projective geometry satisfies T  iff At holds in its subspace lattice. In some cases we 
should restrict the investigations to projective planes.

The most known lattice identity motivated by projective geometry is Jonsson’s 
[Jon53] Arguesian identity which corresponds to Desargues’ Theorem. The Argue- 
sian identity plays a prominent role in the investigation of modular lattices. It was 
used first to present a modular lattice having no representation with permuting 
equivalences. Another lattice identities motivated by projective geometry are the 
Pappian identity (Day [Day81]), the Fano identity and the Moufang identity (Wille 
[WI173]), and an identity in Palfy and Szabo [PS95] that was created to distinguish 
the congruence variety of Abelian groups and that of all groups.

We took two more configurational conditions; the first one claims that the fourth 
point of a harmonic set is determined by the other three. That is why we call the 
geometries satisfying the following ’’theorem” (i.e., condition) harmonic geometries.
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THE THEOREM OF COMPLETE QUADRANGLES. For any line l and points 
a,b,c, p, q,p',q' such that a,b,c < l, a ±  c, p,q,p',q' £  l, p ±  q, p' #  q' and 
b < p +  q,p' +  q1., we have (r + s)(r' + s') < /, where s =  (a + p)(c +  q),r = 
(a + q)(c +  p), s' =  (a +  p')(c + q'), r' = (a + q')(c +  pi).

We translated this property into a lattice identity as follows.

THEOREM 5.1. ([Tak96b]) A projective geometry is harmonic iff the identity

(a + c)(p +  q)(p’ + q') < a + (r + s)(r' + s') (1)

holds in its subspace lattice, where s = (a + p)(c + q),r — (a + q)(c +  p),s' = 
(a + p ’)(c + q'),r' = (a + q')(c + p').

The other configurational condition to be latticized is the perspective case of 
Pappus’ theorem.

PERSPECTIVE PAPPUS’ THEOREM (Kerekjarto [Ker63]). Let a and b two dis­
tinct lines, and let a0, a1? a2, resp. b0, 6i, &2 points on the line a resp. b such that 
|{aft, a0, ai, a2, b0, h , b2}\ = 7. If the lines a0 +  b0, ax + 6X and a2 +  b2 are concurrent, 
then the points (a0 +  6x)(ai +  6o), («o +  &2)(«2 + &o) and (ai + b2)(a2 + b1) are collinear.

To eliminate the stipulation ’’four points in general position” in the perspective 
Pappian identity, we need the dual of Day’s [Day81] line pair configuration.

DEFINITION 5.2. ([Tak96b]) Let L be a modular lattice. A quadruple (ao, ax, bQ, 6X) 
E L4 is called a dual line pair if

ao +  b0h  — T boh — h  + uo^i — h  +  uô x-

THEOREM 5.3. ([Tak96b]), A projective plane is perspective Pappian iff the follow­
ing ”identity” holds in its sublattice lattice: LPd(x,y,a ,c) and ac< b  imply B  < J, 
where

B  =  (ax + cy)(ay + cx)(bx +  ay + cy)(by + ax + cx),
J  = (ax + by)(ay + bx) + (cx + by)(cy + bx).

Due to the projectivity of the dual line pair configuration, the above Horn sentence 
is equivalent to a real identity.

An advantage of a lattice identity over the original geometric notion is that while 
the latter involves several stipulations (like non-collinear, £ is a line, of general
position, etc.), the former does not. When a geometric property (e.g. Pappian)
implies another (e.g. arguesian) then the proof of this fact has to handle many 
ramifying cases, generally. But passing from geometric properties tq corresponding 
lattice identities one can expect an easier lattice theoretic proof.
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As an illustration, we proved that the Fano identity implies the harmonic identity 
for modular lattices, and the Arguesian identity implies the harmonic identity for 
complemented modular lattices. Day’s [Day80] question that whether the frame- 
Pappian identity implies the Arguesian identity is answered in the negative.

6. Sum m ary of m ethods and applicability o f resu lts

We used standard algebraic methods in the investigations, generally. The iden­
tities of Chapter 5 was tested with the help of computer programs developed by 
Czedli1. The modification of the algorithm of Czedli [Cze91] facilitated the proof of 
geometrical implications.

The notion of semibox in Chapter 4 and the lemmas relating semibox extensions 
was already utilized by Czedli [Cze]. The method that was used in the proof of 
Theorem 2.2. seems general enough to prove another answers to the first problem 
in Chapter 1.
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