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Introduction 

With the recent availability of large-scale genomic and phenotypic datasets it has 

become possible, for the first time, to study the mapping from genotype to visible 

phenotypic traits in a systematic way and on an unprecedented  scale. Bioinformatics 

analysis and integration of genome-scale datasets into large-scale mathematical models 

emerged as important methods to accomplish this goal. Metabolism is arguably the best 

characterized cellular subsystem which renders it as an excellent candidate to examine 

the link between genotype and phenotype. My thesis consists of two separate studies, 

both of which examine how the structure of the metabolic network influences the 

relations of the involved gene pairs. In the first part, the metabolic network is used as a 

tool to better understand interactions between mutations. In the second part, we 

investigated how natural selection acting on the performance of metabolic pathways 

might shape genome structure. My thesis is connected to the field of genomics by 

examining genome anatomy, and to systems biology by the system-level investigation 

of metabolic networks.  

 

Modularity and predictability of genetic interactions in the 

Saccharomyces cerevisiae metabolic network  

Our work is the first systematic, large-scale analysis of genetic interactions in a 

metabolic network (Szappanos et al., 2011). Genetic interactions, the non-independence 

of mutation effects, underlie various biological phenomena and illuminate gene 

functions. Despite efforts to globally map epistasis in model organisms, it remains 

poorly understood how genetic interactions arise from the operation of biomolecular 

networks.  

Our work is based on the first large scale empirical dataset of genetic interactions 

among genes encoding metabolic enzymes, including ~185 000 double gene deletions in 

Saccharomyces cerevisiae with quantitative genetic interaction data (data produced in 

collaborator Charles Boone’s lab). Among these gene pairs we defined double deletions 

that result in higher or lower fitness than expected (based on a multiplicative model) 

meaning positive or negative genetic interactions. Fitness was estimated based on 

colony size of haploid yeast strains.  
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Aims 

The two main aims of our work were to: i) better understand how genetic interactions 

are related to the functional modularity of the metabolic network ii) estimate genetic 

interaction predictability based on genomic and metabolic network data.  

More specifically, we set out to test two earlier predictions about the distribution of 

interactions within and between metabolic functional modules. A prior computational 

study based on FBA suggested that i) genetic interactions are enriched within metabolic 

annotation groups, and ii) interactions between different functional groups tend to be 

either exclusively negative or exclusively positive, a property termed 

'monochromaticity' (Segre et al. 2005). 

We also asked how well we can predict genetic interactions based on our knowledge of 

metabolic genes using a genome-scale biochemical model of the metabolic network 

(FBA) and a statistical/data mining method. 

 

Methods 

 Randomisation tests using Perl programming language 

 Building and evaluating logistic regression and random forest models using R 

statistical environment (R Development Core Team, 2009), and random forest R 

package (Liaw and Wiener, 2002)  

 

Results 

1. Most of the genetic interactions are between functional modules. Using our large-

scale genetic interaction map we found partial support for the above theoretical 

expectations. We report a modest but significant enrichment of both negative (1.6-fold) 

and positive (2.5-fold) genetic interactions within traditionally defined functional 

modules. However, the majority of genetic interactions occur between genes assigned to 

different metabolic functions (93% of negative and 90% of positive).  
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As an alternative to functional groups defined based on classical biochemical pathways, 

flux coupling  provides a biochemically sound, unbiased definition of functional 

relatedness and has strong physiological and evolutionary relevance
  
(Papin et al., 2004; 

Price et al., 2004). We used computationally identified flux-coupled gene pairs, that is, 

pairs of reactions where the activity of one reaction implies the activity of the other, 

either reciprocally or in one direction. In agreement with results obtained using 

annotation groups, although we find that both negative (1.4-fold) and positive (2.3-fold) 

interactions are significantly enriched in flux-coupled pairs, the overwhelming majority 

(> 97%) of both forms of interactions occur between uncoupled genes. In conclusion, 

both definitions of functional relatedness reveal that most genetic interactions connect 

across distinct functional modules. 

2. Genetic interactions between modules are monochromatic, but only to a limited 

degree. We asked whether interactions between different functional groups tend to be 

either exclusively negative or positive. In agreement with earlier theoretical predictions, 

we found a statistically significant excess of monochromaticity among pairs of 

functional groups in the real data compared to randomized interaction maps. 

Nevertheless, monochromaticity in our genetic interaction map is modest: only 

~24−34% more monochromatic pairs were found than expected by chance. 

3. Most genetic interactions cannot be predicted either based on gene pair 

characteristics or biochemical modelling. We estimatedhow well we can predict 

genetic interactions based on our knowledge of metabolic genes. We assessed the 

predictive power of two computational approaches: a genome-scale biochemical model 

of the metabolic network (FBA) which computes the growth of single and double 

deletant strains and a statistical/data mining method. In the second approach we 

compiled a dataset of gene-pair characteristics (e.g. coexpression), following earlier 

studies (Wong et al., 2004; Ulitsky et al., 2009) and metabolic network features (e.g. 

shortest path of reactions) but omitting any information on genetic interactions. We 

used a classical statistical method (logistic regression) and a new data-mining method 

(random forest (Breiman, 2001)) to classify genetic interactions based on these features.  

Using the biochemical model we can predict negative and positive interactions up to 

50% and 11%  rates of true predicted interactions (precision), respectively. Although 

this confirms that the highest predicted interaction scores have high physiological 
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relevance, we find that only a minority of empirical interactions are captured by the 

model (2.8% and 12.9% for negative and positive interactions, respectively). 

The statistical approach using genomic and metabolic network data gives better 

predictions. Although an increased fraction of in vivo interactions could be retrieved, 

~70% of negative and ~75% of positive interactions were still predicted with very low 

(<10%) precision. Notably, incorporating fitness and genetic interaction scores derived 

from the biochemical model into statistical models boosts the precision of negative 

interaction predictions, indicating that biochemical modeling provides unique 

information that is not captured by purely statistical data integration.  We conclude that 

the majority of genetic interactions are not well understood either in terms of 

biochemical processes or statistical associations. 

 

Colinearity of gene order in Escherichia coli metabolic operons 

It is well established that gene order in prokaryotic genomes is not random. This is most 

evident when looking at operons, these often encode enzymes involved in the same 

metabolic pathway or proteins from the same complex. However, it is almost 

completely unexplored whether gene order within operons is governed by chance or 

could have any functional significance.  

 

Aims 

1. To empirically test whether gene order within operons reflects the functional order of 

the encoded enzymes in a metabolic pathway (colinearity) in E. coli.  

2. To build general mathematical models of operon expression coupled to a linear 

metabolic pathway with four enzymes, in order to gain insight into the potential 

interplays between gene oder and the flux of a metabolic pathway. 

3. To test and make predictions for three different adaptive scenarios of colinearity by 

model simulations. 

4. To empirically test the predictions of three competing hypotheses for the origin of 

colinearity. 
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Methods 

 Dataset compilation using EcoCyc database (Keseler et al., 2009) and published 

microarray screens 

 Randomisation tests using Perl programming language 

 

Results 

1. There is a significant trend for colinearity in E.coli metabolic operons. 

Approximately 60% of the intra-operonic gene pairs show this pattern, compared to 

50% expected if gene order was random. 

There is no known mutational bias which can result in colinearity thus we looked for 

adaptive scenarios. We argued that colinearity might have a fitness advantage (i.e. 

increased growth rate) by increasing pathway productivity. At first sight, colinearity is 

unexpected as gene order should not affect the steady-state pathway productivity. 

Indeed, this is confirmed by our mathematical model. We considered three extensions of 

the steady-state model that could potentially account for colinearity.  

 

2. Polarity cannot explain colinearity. 

Colinearity in polar operons can increase steady-state pathway flux, where polarity 

refers to a decreasing mRNA abundance profile along the operon. The hypothesis is 

based on the theoretical finding that decreasing enzyme concentrations along the path 

can increase the flux along the pathway when the total enzyme concentration is fixed 

(Heinrich & Klipp, 1996). Thus, in a polar operon colinear arrangement can increase 

steady-state flux. This theoretical prediction is corroborated by our simulations and it 

predicts that we should observe colinearity in polar operons only. However, in contrast 

to this prediction, we failed to find an enrichment of colinearity in polar operons in 

E.coli.  
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3. There is no link between colinearity and expression variability. 

The second hypothesis explains colinearity by faster metabolic processing immediately 

after up-regulation upon environmental change. According to experimental 

measurements there is a time delay between the expression of two consecutive genes in 

an operon (Alpers & Tomkins, 1965, 1966). Thus right after activating the operon, the 

end-product can appear faster if the gene order is colinear. This verbal argument is 

confirmed by our model. This hypothesis predicts that operons showing high expression 

variation across conditions should more often display colinearity compared to 

constitutively expressed operons. However, using publicly available gene expression 

data we failed to find support for this hypothesis. 

 

3. Empirical data supports „stochastic stalling” hypothesis.  

Small numbers of molecules are frequently involved in the process of gene expression 

and could lead to significant stochasticity in protein abundance (Elowitz et al., 2002). 

Whereas enzymes encoded in a highly expressed operon are likely to be always present 

in the cell whenever the operon is induced, stochasticity might play an important role in 

weakly expressed operons as enzymes could either decay or be diluted by cell division 

between two expression episodes (Cai et al. 2006), hence recurrently stalling 

metabolism. Colinearity could minimize the effect of such stochastic enzyme losses by 

speeding up the reinitiation of stalled metabolic transformations, in a similar manner as 

it provides a transient advantage after up-regulation of an inactive pathway. This 

argument is also supported by our model. This hypothesis specifically predicts that 

colinearity should be restricted to lowly expressed operons. Indeed, we found that only 

genes with low mRNA abundance show colinearity, hence supporting the „stochastic 

stalling”  hypothesis. 

To sum up, our work is the first reporting a non-random pattern of operonic gene order: 

in lowly expressed metabolic operons gene order reflects the functional order of the 

encoded enzymes (Kovács et al., 2009). Empirical tests of different adaptive scenarios 

for colinearity in E. coli supports the hypothesis that the advantage of colinearity is to 

minimize metabolic stalling owing to stochastic protein loss.    
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