
Evaluating the e�ect of code

duplications on software

maintainability

Tibor Bakota

Department of Software Engineering
University of Szeged

Supervisor: Dr. Tibor Gyimóthy

October 2012
Szeged, Hungary

A dissertation submitted for the degree of doctor of philosophy

of the University of Szeged

University of Szeged
Ph.D. School in Computer Science

�The greatest education in the world
is watching the masters at work.'

Michael Jackson

Acknowledgements

I have been very lucky in my journey where I could watch the experts at work and learn
from them not just what to think, but also how to think. I am really grateful to all those
who helped me either with their comments, ideas or suggestions. They improved not
just my work, but also opened my mind and broadened my knowledge.

First, I would like to thank my supervisor Dr. Tibor Gyimóthy who helped me by
providing useful ideas, comments and interesting research directions. I would like to
thank my article co-author and mentor, Dr. Rudolf Ferenc, for guiding my studies and
teaching me a lot of indispensable things about research. He inspired me in times when
I needed motivation and kept me on the right path. My thanks also go to my colleagues
and article co-authors, namely Dr. Árpád Beszédes, Dr. István Siket, Dr. Lajos Fülöp,
Dr. Judit Jász, Péter Siket, Péter Heged¶s, Dr. Lajos Schrettner, Dr. Tamás Gergely,
Claudio Riva, Jianli Xu, Maarit Harsu, Kai Koskimies, Tarja Systa, Péter Körtvélyesi,
László Illés, Gergely Ladányi, Milán Imre Gyalai and Dániel Füleki. I would also like to
thank the anonymous reviewers of my papers for their useful comments and suggestions.
And I would like to express my thanks to David P. Curley for reviewing and correcting
my work from a linguistic point of view.

I wish to express my gratitude to my parents as well for providing a pleasant back-
ground conducive to my studies, and also for encouraging me to go on with my research.
Last, but not least, my heartfelt thanks goes to my wife Mónika for providing a vital,
a�ectionate and supportative background during the time spent writing this dissertation.

Tibor Bakota, 2012

iii

Contents

Acknowledgements iii

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Summary by results . 4
1.1.1 Development of a probabilistic source code maintainability model 5
1.1.2 Establishing a cost model based on source code maintainability . 6
1.1.3 Assessment of code duplications from a code evolution perspective 7

2 Background 11

2.1 Maintainability, entropy and erosion . 11
2.2 The Columbus framework . 12
2.3 Source code metrics . 13

2.3.1 Size metrics . 13
2.3.2 Inheritance metrics . 14
2.3.3 Complexity metrics . 14
2.3.4 Coupling metrics . 14
2.3.5 Cohesion metrics . 15

2.4 Code duplications . 15
2.4.1 Clone detection . 15
2.4.2 Code duplication metrics . 16

3 Modelling source code maintainability 19

3.1 Source code metrics and maintainability 20
3.1.1 Experiment setup . 21
3.1.2 Experiment results . 22
3.1.3 Conclusions . 23

3.2 Model portability issues . 24
3.2.1 Experiment setup . 24

v

vi Contents

3.2.2 Experiment results . 26
3.2.3 Conclusions . 28

3.3 A probabilistic source code quality model 28
3.3.1 An approach for constructing maintainability models 29
3.3.2 An instance of a maintainability model for Java 34
3.3.3 Validation of the model . 37
3.3.4 Limitations . 41
3.3.5 Conclusions . 42

3.4 Summary . 43

4 Cost and maintainability 45

4.1 A cost model based on software
maintainability . 46
4.1.1 A formal model for relating costs and maintainability 46
4.1.2 Validation of the model . 50
4.1.3 Limitations . 55

4.2 Summary . 57

5 Code duplications from the perspective of code evolution 59

5.1 Tracking the evolution of code clones 60
5.1.1 The Evolution Mapping . 60
5.1.2 Similarity distance functions . 64
5.1.3 Weights and threshold . 66
5.1.4 Evolution of clone classes . 69

5.2 A classi�cation of clone evolution patterns 70
5.2.1 Empirical validation . 71
5.2.2 Conclusions . 76

5.3 The connection between clones and coupling 77
5.3.1 Coupling . 78
5.3.2 The Bonus-Malus model . 78
5.3.3 Hidden vs. visible dependencies 79
5.3.4 An empirical study . 80
5.3.5 Conclusions . 81

5.4 Summary . 81

6 Conclusions 83

Appendices 85

Appendix A Related Work 85

A.1 Software maintainability models . 85
A.2 Modelling the cost of software development 87

Contents vii

A.3 Evolution of code duplications . 89

Appendix B Summary 93

B.1 Summary in English . 93
B.2. Summary in Hungarian . 96

Bibliography 99

List of Figures

2.1 An example of a source code fragment and its AST representation 16

3.1 Characteristics and attributes de�ned by the ISO/IEC 9126 standard . . 20

3.2 An example of LDA transformation . 26

3.3 Comparison of probability density functions 30

3.4 The ADG describing the relations among low-level properties (white),
ISO/IEC 9126 attributes and maintainability characteristic (black) and
high-level virtual properties (grey) . 36

3.5 The distribution of the project sizes (left) and domains (right) in the
benchmark . 37

3.6 Goodness functions for low-level quality attributes (sensors) in the case
of the REM v1.2 system . 39

3.7 Goodness values for the low-level (left) and ISO/IEC 9126 Maintainability
characteristic and its subcharacteristics (right) in the case of System-1 . 40

3.8 Goodness values for the low-level (left) and ISO/IEC 9126 Maintainability
characteristic and its subcharacteristics (right) in the case of REM 40

4.1 Changes of Change rate (λ (t)), Maintainability (M (t)) and Cost (C (t))
when the cost of development is constant (left) and when the change rate
is constant (right) over time. 49

4.2 Estimated and real costs and maintainability as functions of time 53

4.3 The calculated constant values for the di�erent systems 54

4.4 The mean squared errors and correlations between the linear and model
predictions . 56

5.1 Diagram showing how F5 is computed. 65

5.2 Example of candidate mappings . 67

5.3 Example of clone class evolution . 70

5.4 Example of a DCI smell in the jEdit system 71

5.5 Two pieces of code which were found to be clones on the 3rd March in
2006. 76

ix

x List of Figures

5.6 Inconsistent changes uncover the possibility of a remaining NullPoint-
erException . 77

List of Tables

1.1 The relation between the thesis topics and the corresponding publications 9

3.1 Pearson's correlation between the code metrics and maintainability char-
acteristics . 22

3.2 Rate of the correctly classi�ed instances 23
3.3 Statistics for classes in the case of Changeability 23
3.4 System level metrics for the systems analysed 24
3.5 Coe�cients of metrics computed by the LDA algorithm 27
3.6 Precision of the LDA approach . 28
3.7 Persons who were involved in the weighted voting survey 36
3.8 Statistics for the benchmark . 37
3.9 Basic properties of the evaluated systems 38
3.10 Averaged grades for maintainability and its ISO/IEC 9126 attributes

based on the developers' opinions . 41

4.1 Properties of the systems analyzed . 50

5.1 Initial and optimised weights of the model 69
5.2 Basic metric values of Mozilla Firefox and jEdit 72
5.3 Number of clone smells . 73
5.4 Root causes of clone smells found in Mozilla 74
5.5 Root causes of clone smells found in jEdit 74
5.6 Baseline values . 79
5.7 Clone and coupling metrics for the systems analyzed 81

xi

To my wife, Mónika

and my daughter, Szandra.

Chapter 1

Introduction

�Sometimes it's easier to pretend
that something is not happening
rather than deal with it.�

Cherie Currie

These days, software is a part of our everyday lives. Whether we know it or not, we rely
on software systems to an ever increasing extent. From the watch on our wrists, through
the smart phones and cars we use to the airplanes and nuclear plants; all these are being
controlled and run by some software system. About 65 % of the U.S. population use
embedded software in the form of smart phones, digital cameras and watches, car safety
systems, entertainment devices, and so on [50]. Software does not just exist to make
our lives easier; our lives may depend on them. We truly believe, for example, that the
airbag will open in case of an accident, that the airplane will land safely and a nuclear
reactor operate in complete safety.

An increase in the demand for new and more reliable functionalities has led to an enor-
mous expansion in the software industry. In 2011, the 1,000 largest companies in the
U.S. employed over one million software engineers, who are, as part of their daily jobs,
continuously building new systems or improving existing ones [50]. Meanwhile, business
demands keep a constant pressure on IT leaders to deliver the products as early and
as cheaply as possible. This race generated by market sometimes forces IT leaders and
software engineers to make compromises or take short cuts, i.e. to trade long term
quality and safety for short term bene�ts.

One of the most controversial methods for increasing developer's productivity is the so-
called copy&paste technique. When a software developer needs to implement something
for which he knows that a similar code fragment already exists in the codebase, he might
be tempted to simply make a copy of the existing part. Although this approach can reduce
software development time, the price in the long term will usually be paid in terms of
increased maintainability costs. One of the primary concerns is that if the original code
segment needs to be corrected, all the copied parts need to be checked and modi�ed
accordingly as well. By inadvertently neglecting to change the related duplications, the
programmers may leave bugs in the code and introduce logical inconsistencies. However,
code duplication is not always a problem. Some researchers point out that there exist

1

2 Introduction

situations when duplicating code could even be bene�cial, and clones should not always
be considered harmful [55].

Quantifying source code maintainability is essential for measuring the e�ect of code
duplications. Aggregating a measure for maintainability has always been a challenge
in software engineering. The non-existence of formal de�nitions and the subjectiveness
of the notion are the major reasons for it being di�cult to express maintainability in
numerical terms. Although the ISO/IEC 9126 standard [44] provides a de�nition for
maintainability, it does not provide a standard way of quantifying it. Many researcher
exploited this vague de�nition and it has led to a number of practical quality models
proposed [43, 83, 13, 7].

For example, Heitlager et al. [43], who are members of the Software Improvement Group
(SIG), proposed an extension of the ISO/IEC 9126 model that uses source code metrics at
a low-level. Their metric values are split into �ve categories, from poor (� �) to excellent
(++). Correia and Visser [28] presented a benchmark that collects measurement data
from a wide variety of systems. This benchmark provides a systematic comparison
of the technical quality of software products. Alves et al. [3] presented a technique for
deriving metric thresholds from benchmark data, which is used to derive more reasonable
thresholds for the SIG model as well. Correia and Visser [29] introduced a certi�cation
method that is also based on the SIG quality model. Their method allows one to certify
the technical quality of software systems. Each system can get a rating from one to �ve
stars (where �� �� corresponds to one star and �++� to �ve stars). Baggen et al. [8]
re�ned this certi�cation process by repeatedly performing a calibration of the thresholds
based on this benchmark. The original SIG model uses binary relation among the system
properties and high level quality characteristics. Correia et al. [27] carried out a survey
to elicit weights for their model. Although the survey was completed by IT professionals,
the authors eventually concluded that using weights did not improve their quality model
because of the lack of consensus among developers.

In this study we propose a novel method for deriving maintainability models that in
many senses di�ers from the state-of-the-art research achievements described above and
overcomes some of the existing problems. Our method handles the ambiguity issue
that arises from the di�erent interpretations of key notions and it produces models
that express maintainability objectively. While the ambiguity issue is dealt with by
applying probabilistic techniques, the objectivity aspects of the method follow from using
statistical benchmarks.

The importance of maintainability lies in its close connection with the cost of changing
the behavior of the software. Modelling software development cost has been an intensive
research area for a long time [1, 80, 56, 30, 19]. E�ort estimation is important not just
for software developers [85], but for system operators as well [20]. While summaries of
research results achieved in the last thirty years are available [31, 52], the area still shows

3

many promising future topics for research [94]. Relevant comparison studies of di�erent
techniques [51] in various domains [21, 22, 68, 86, 14] also exist. Currently, the ways
of conducting development e�ort estimation [18] range from hands-on approaches [51]
through benchmark approaches [95] to model-based approaches. Several methods using
a combination of the above techniques also exist [90, 59]. Many studies also seek to
compare the di�erent approaches. For example, Radlinski and Ho�man [91] compared
several machine learning algorithms using a benchmark for e�ort prediction. Mair et
al. [76] examined a lot of papers concerning analogy and regression-based techniques for
cost estimation.

In this dissertation, we present a formal mathematical model based on ordinary dif-
ferential equations for modelling the relation between source code maintainability and
development cost. In contrast to other studies, we begin by stating simple and rea-
sonable assumptions, and after establishing their formal mathematical representations,
solutions are derived and validated on real world systems. We employ the maintainability
model described earlier to compute source code maintainability. It turns out that under
some reasonable assumptions, the relation between cost and maintainability may even be
exponential; i.e. source code maintainability has a great in�uence on the development
cost.

As code duplications are generally considered to be one of the chief enemies of main-
tainability, clone metrics play an important role in our maintainability model as well. A
plethora of clone detection algorithms exist nowadays that can help reduce the risks of
making inconsistent changes. By the conservative approach, after the clones are detected
they should be evaluated manually. Unfortunately, this approach cannot be applied in
practice, since large software systems may have several thousands of duplications present
in the software code. It has been discovered by researchers that the real threat does
not lie in the existence of duplications but rather the worries are related to their evolu-
tion. Therefore, tracking the duplications across di�erent versions is essential in order
to evaluate their in�uence on maintainability and to have an e�cient clone management
technique. Constructing algorithms for tracking clone instances across di�erent versions
of a software system has only recently become an active research area.

Antoniol et al. [4], for instance, applied time-series techniques to model the changes in
the average number of clones per function in a system. Later they studied the evolu-
tion of code clones in the Linux Kernel using their metric-based approach [5]. Merlo
et al. [79] extended the concept of similarity of code fragments in order to quantify
similarities at the release/system level. Kim et al. [57] de�ned the cloning relationship

between two clone classes based on the lexical similarity of their representatives. Aver-
sano et al. [6] analyzed the so-called co-changes, which are changes carried out by the
same author, with the same notes, and within 200 seconds. Duala-Ekoko et al. [32]
proposed the notion of an abstract Clone Region Descriptor (CRD), which describes the
clone instances within methods in such a way that it is independent of the exact text or

4 Introduction

their location in the code. Geiger et al. [36] studied the relation between code clones
and change couplings (�les which are amended at the same time, by the same author,
and with the same modi�cation description). Krinke [62] used a version control system
of open source systems to identify changes applied to code duplications. Their study
revealed that clone classes were consistently changed in roughly half of the cases. Krinke
also showed that classes that had been changed inconsistently earlier and were consis-
tently changed later, were comparatively rare. Göde et al. [37] presented an incremental
clone detection algorithm that detects clones based on the results of a previous revision
analysis. Their algorithm creates a mapping between clones of one revision to the next,
providing information about the addition and deletion of clones. They focus more on
the gain in performance (they achieved a signi�cant improvement) than on tracking the
evolution of individual clone fragments.

To evaluate the e�ect of duplications on maintainability, we propose another method
for tracking clones through the consecutive versions of an evolving piece of software.
Our method di�ers in some ways from the above-mentioned approaches. The most
signi�cant di�erence is probably that we reduced back the issue of clone tracking to an
optimization problem. Therefore, the mapping between the duplications is optimal in
some sense. We also propose a highly e�cient and practical code duplication manage-
ment method that can help reduce maintenance e�orts and risks of inconsistent changes
being made. The key concept lies in the notion of clone smells, which represent di�erent
categories of suspicious clone evolution patterns. Clone smells can be used to identify
those occurrences of duplications that could really cause problems in the future versions,
i.e. the hazardous ones. The list of risky places is several orders of magnitudes smaller
than the list of all duplications in a system, so a manual evaluation and elimination is
more straightforward to perform.

1.1 Summary by results

The main contributions of this study are summarised as follows. First, we propose a
metric-based probabilistic approach for modelling source code maintainability. After-
wards, we introduce a formal mathematical theory for modelling the relation between
source code maintainability and development cost. Next, we present a novel method for
tracking the lifetime of code duplications, and then we propose a classi�cation of clone
evolution patterns.

We state three thesis points in this dissertation, where the contributions of the author
are clearly shown.

1.1 Summary by results 5

1.1.1 Development of a probabilistic source code maintain-

ability model

Here, we present an experimental result concerning the expressiveness of low-level source
code metrics in terms of high-level quality characteristics. We will show that, with the
help of an appropriate modelling technique, the subjective notions of high level maintain-
ability characteristics (and therefore maintainability too) can be modelled e�ciently by
using low-level source code metrics. We will also show that, unfortunately, these kinds
of metric-based models may not be portable; i.e. the models trained on one system
may not be used directly on other systems. To resolve this and several other di�culties,
we present a novel approach for building metric-based models that handles some basic
requirements one would expect from such a model. The thesis consists of the following
research contributions.

An approach for constructing probabilistic maintainability models

We developed a novel approach for building metric-based maintainability models that
ful�l most of the basic desired requirements. The model should be

• Interpretable � applying the model should provide information for high-level quality
characteristics that is meaningful; i.e. conclusions can be drawn with the help of
it.

• Explicable � there should be a way to e�ciently evaluate the root causes; i.e. a
simple way to break down information obtained for high-level characteristics to
attributes or properties.

• Consistent � the information obtained for higher level characteristics should not
contradict lower level information.

• Scalable � the model should provide valuable information even for large systems
in a reasonable time.

• Extendible � it should be possible to extend the model with new characteristics
and its attributes.

• Reproducible � applying the model on the same system twice should yield the
same/similar information about the quality characteristics.

• Comparable � information obtained for quality characteristics of two di�erent sys-
tems should be comparable and should correlate with the intuitive meaning of the
characteristics.

The approach we adopt is based on a database of metrics obtained from a large set of
software systems (i.e. benchmark) and it uses complex statistical techniques to aggregate
the high-level quality attributes for a particular system. The resulting models integrate
expert knowledge, handle ambiguity aspects, and manage goodness functions, which are
continuous generalisations of threshold-based approaches.

6 Introduction

A metric-based maintainability model for Java systems

Making use of the method described above, we constructed an instance of a metric-based
probabilistic maintainability model for Java systems. The model consists of nine low-
level source code metrics, �ve medium-level aggregate nodes and �ve high-level quality
characteristics and sub-characteristics. A benchmark containing source code metrics of
100 Java systems was created and used for computing the goodness functions at a low
level. The aggregation makes use of opinions of 28 experts who work in di�erent areas
of IT.

Validation of the model on real world systems

We validated the model on real world software systems, and found that changes in the
results of the model re�ect the development activities; i.e. during development the
maintainability decreased, while during maintenance it increased. We also found that
although the model rankings were di�erent from the grades given by the developers,
they still show relatively high correlations with each other.

The author's contribution to the thesis point was the development of the formal math-
ematical background of the approach and the implementation of the core statistical
modules that were required to perform the aggregation. He also participated in the con-
struction of the particular model used for the evaluation of the approach and in devising
the methodology of the empirical validation.

1.1.2 Establishing a cost model based on source code main-

tainability

We developed a pioneer approach for modelling software development cost in terms of
source code maintainability. The thesis consists of the following research contributions.

A formal mathematical model for relating cost and maintainability

We de�ned a system of ordinary di�erential equations for modelling the relationship
between source code maintainability and development cost. The formal mathematical
equations arise from two simple assumptions:

1. When making changes to a software system without explicitly seeking to improve
it (e.g. adding new functionalities), its maintainability will decrease, or at least it
will remain unchanged.

1.1 Summary by results 7

2. Performing changes in a software system with lower maintainability is more expen-
sive.

We introduced the notion of an erosion factor � a vital parameter of the model � which
measures the amount of �damage� caused by changing source code lines of a software.
After the estimates for the parameters are available, predictions for the future can be
obtained from the model.

Validation of the model on real world systems

We evaluated the model on �ve software systems implemented in the Java programming
language. An analysis of the empirical data shed light on the following important points:

• The maintainability of an evolving software package decreases over time.

• Maintainability and development cost are related to each other in an exponential
way, with a high correlation.

• The model is able to predict future development costs based on estimated rate of
change of the code, to a good accuracy.

The author's contribution to the thesis point was the development of the formal mathe-
matical background of the approach and laying down the methodology of the empirical
validation.

1.1.3 Assessment of code duplications from a code evolution

perspective

In this thesis we focus on the issue of code duplications and their e�ect on source code
maintainability, followed by the introduction of an e�cient clone management method.
This point of the thesis consists of the following research contributions.

A novel approach for tracking the evolution of code clones

We developed an e�cient algorithm for tracking duplications across subsequent versions
of a software system. Tracking the evolution of individual clones is essential from the
viewpoint of source code maintenance. We de�ned a heuristic function called the evolu-
tion mapping between two particular code fragments taken from di�erent versions of the
same system. The mapping between the clones is trivial in some special cases, but in
general, a sophisticated approach is required. We propose a similarity distance function
to measure the likelihood of two code fragments having an evolutionary relationship with
each other. The optimal mapping is then obtained by solving the corresponding optimi-
sation problem. We extended the mapping to the level of clone classes and showed that
the extension resulted a well-de�ned mapping.

8 Introduction

A classi�cation of clone evolution patterns

We de�ne the notion of clone smells which, similar to bad code smells, refers to particular
code parts that should be further inspected manually. The smells are de�ned based on
the possible categories of clone evolution patterns. We showed that clone smells may
serve as a basis for an e�cient clone management technique that reduces risks and
maintenance e�orts arising from the duplications. We validated the usefulness of clone
smells on di�erent open source software systems. We concluded that

• The approach allows the developers to �nd and manually evaluate the risky dupli-
cations.

• More than the half of the reported smells are caused by inconsistent code changes.

• Inconsistency is more likely to be introduced; consistency is less likely to be re-
stored.

• Inconsistent changes may uncover coding problems unintentionally remaining in
the code.

The relation between clones and coupling

We analysed the relationship between cloning and coupling in software systems. We
found that they generally have an inverse relationship with each other; in other words
improving one can worsen the other. It follows that, contrary to some ideas about using
only coupling metrics for measuring maintainability, any model applied should take both
aspects into consideration.

The author's contributions to the thesis point are the following:

• The development of the methodology of relating code duplications.

• An implementation of the required libraries and performing an optimisation of the
weights.

• The formal de�nition of clone smells.

• The implementation of software tools required to perform the extraction of clone
smells.

• The extraction of clone smells from a large number of consecutive revisions of two
open source systems.

• The manual evaluation of a large number of reported clone smells.

1.1 Summary by results 9

Below, Table 1.1 summarises which publications cover which thesis points.

N o. [42] [12] [10] [102] [103] [11] [105] [106]
1. • • • • •
2. •
3. • •

Table 1.1: The relation between the thesis topics and the corresponding publications

Chapter 2

Background

�Knowledge is never useless.�

Anne McCa�rey

2.1 Maintainability, entropy and erosion

In order to make the right decisions about estimating the costs and risks of a soft-
ware change, it is crucial for the developers and managers to be aware of the quality
attributes of their software. The ISO/IEC 9126 standard [44] de�nes six high-level
product quality characteristics that are widely accepted both by industrial experts and
academic researchers. These characteristics are: functionality, reliability, usability, e�-
ciency, maintainability and portability. Maintainability is probably the most attractive,
noticeable and evaluated quality characteristic of all (for this reason, we will use the
term source code quality as synonym of source code maintainability throughout the dis-
sertation). It is generally de�ned as the e�ort (i.e. cost) required to perform speci�c
modi�cations in a software package. The importance of maintainability lies in its very
obvious and direct connection with the costs of altering the behaviour of the software
package.

Aggregating a measure for maintainability has been a challenge in software engineering
for a long time. Although the above standard o�ers a de�nition for maintainability, it
does not provide a universal way of quantifying it. The di�culties arise from the absence
of formal de�nitions and the subjectiveness of the term itself. If a number of di�erent
people familiar with the same software package were asked to rank the maintainability
of their system on a ten-point scale, there would probably be no consensus among the
votes. This suggests that there is probably no commonly acceptable way for expressing
source code maintainability in terms of a single value. In this thesis we will present a
method for deriving a measure for source code maintainability that in some ways di�ers
from earlier approaches and overcomes many of the above di�culties.

Entropy is a notion that is becoming more commonly used outside physics. In thermo-
dynamics, entropy is used to measure the disorder of a system. In the case of software
systems, source code entropy can be de�ned as the measure of disorder of the source

11

12 Background

code; i.e. the level of organisation of information in it. Although maintainability and en-
tropy are, by de�nition, quite di�erent, there is nevertheless a strong connection between
them. Assuming that the higher the disorder, the more e�ort is needed to perform the
necessary modi�cations, entropy can be interpreted as an approximation of maintain-
ability of the source code. According to the second law of thermodynamics, the entropy
of a closed system cannot be reduced; it can only remain unchanged or increase. The
only way to decrease entropy (disorder) of a system is to apply an external force; i.e.
put energy in by making order.

Applying this law of thermodynamics analogy to software systems, we are led to make
some interesting observations:

• The maintainability of the source code of an evolving software system does not
improve; it can only remain unchanged or decrease.

• The only way to increase the maintainability of the source code is to apply external
e�ort aiming code improvement (e.g. performing code refactorings).

Meir M. Lehman and László Bélády formulated a series of laws of software evolution
based on observations concerning the evolution of IBM's systems [70]. The laws were
not presented as laws of nature, but rather as general observations that are expected
to hold for real-world software systems. The observations made by Lehman and Bélády
seem to accord with the above general �ndings for thermodynamics. Among others, the
laws state that

• Increasing complexity - as a real-world system evolves its complexity increases
unless work is done to maintain or reduce it.

• Declining quality - the quality of real-world systems will appear to be declining
unless they are rigorously maintained and adapted to operational environment
changes.

The continuously decreasing maintainability in the case of software systems has been
noticed by many academic and industrial experts. This phenomenon is known as software
erosion.

2.2 The Columbus framework

Columbus [35] technology was developed in cooperation between the University of
Szeged, FrontEndART Software Ltd. and the Software Technology Laboratory of Nokia
Research Center. Columbus is able to statically analyse large C/C++, C# and Java
projects and to extract facts from them. The main motivation for developing the
Columbus system was to create a general framework for combining a number of re-
verse engineering tasks and to provide a common interface for them. Thus, Columbus is

2.3 Source code metrics 13

a framework tool which supports project handling, data extraction, data representation,
data storage, �ltering and visualisation. All these basic tasks of the reverse engineering
process for the speci�c needs are accomplished by using the appropriate modules (plug-
ins) of the system. Some of these plug-ins are provided as basic parts of Columbus, but
the system can be extended to meet other reverse engineering requirements as well.

The incorporated plug-ins allow the extraction of over 50 source code metrics, bad
smells, design patterns, coding rule violations and code duplications. We utilised this
framework throughout this study to get facts from source code that we needed to realise
our research objectives.

2.3 Source code metrics

Object-oriented metrics measure di�erent properties of a program and express the result
in numerical form, so that the values for di�erent programs or parts of programs (e.g.
classes) can be compared and conclusions can be drawn from them. Based on the aspects
they express, these metrics can be classi�ed into �ve groups; namely, size, inheritance,
complexity, coupling and cohesion. Some of metrics are de�ned for di�erent types of
source code elements, while others are speci�c to classes, methods or scopes. In this
study we will concentrate on the following source code metrics:

2.3.1 Size metrics

• LOC (Lines Of Code) - the gross amount of lines of code in a particular source
code element (empty lines, comments included)

• LLOC (Logical Lines Of Code) - the net amount of lines of code in a particular
source code element (empty lines, comments excluded)

• TLOC (Total number of Lines Of Code) - the overall number of lines of code in a
package, namespace or system counted recursively

• TLLOC (Total Logical number of Lines Of Code) - the overall number of logical
lines of code in a package, namespace or system counted recursively

• TNCL (Total Number of CLasses) - the overall number of classes in a package,
namespace or system counted recursively

• TNM (Total Number of Methods) - the overall number of methods in a package,
namespace or system counted recursively

• TNA (Total Number of Attributes) - the overall number of attributes in a package,
namespace or system counted recursively

14 Background

• NOS (Number Of Statements) - the number of statements in a method or function
body

• NLMA (Number of Local Methods Accessed) - the cardinality of the set of method
invocations of the method, where the invoked methods belong to the same class
as the method itself

• NFMA (Number of Foreign Methods Accessed) - the cardinality of the set of
method invocations of the method, where the invoked methods belong to other
classes than the method itself

• NPAR (Number of PARameters) - the number of parameters of a method or
function

2.3.2 Inheritance metrics

• DIT (Depth of Inheritance Tree) - the length of the longest path from the class
to one of its root in the inheritance hierarchy

• NOC (Number Of Children) - the number of classes that are directly inherited
from a given class

2.3.3 Complexity metrics

• McCC (McCabe Cyclomatic Complexity) - the number of decisions within the
speci�ed method or function plus 1

• WMC (Weighted Methods per Class) - the sum of McCabe cyclomatic complexities
in a class

• RFC (Response For a Class) - the cardinality of the set of methods of a class and
the set of methods directly invoked by these methods

• NL (Nesting Level) - the maximum depth of the control structure

2.3.4 Coupling metrics

• NOI (Number of Outgoing Invocations) - the cardinality of the set of all function
and method invocations in the particular source code element

• NII (Number of Incoming Invocations) - the cardinality of the set of all functions
and methods which invoke the particular method or function

• CBO (Coupling Between Object classes) - A class is coupled to another if the
class uses any method or attribute of the other class or is directly inherited from
it; CBO is the number of coupled classes

2.4 Code duplications 15

2.3.5 Cohesion metrics

• LCOM (Lack of Cohesion On Methods) - LCOM is the number of pairs of methods
in the class that use no common attribute

2.4 Code duplications

Code cloning (or copy-paste programming) means the copying of an existing piece of
code, and after performing smaller modi�cations on it, pasting it somewhere else. Based
on the level of similarity between the copied code fragments we can de�ne the following
duplication types:

• Type-1 - the copied code parts are identical code fragments except for variations
in whitespace, layout and comments

• Type-2 - syntactically identical fragments except for variations in identi�ers, liter-
als, types, whitespace, layout and comments

• Type-3 - copied fragments with further modi�cations such as altered, added or
removed statements, in addition to variations in identi�ers, literals, types, whites-
pace, layout and comments

• Type-4 - the copied code fragments performe the same function

While Type-1 and Type-2 clones are relatively easy to determine, there still do not exist
e�cient and well-grounded approaches for determining Type-3 and Type-4 clones. In
the case of Type-1 and Type-2 clones, cloning de�nes an equivalence relation on the
set of copied code segments (in the case of Type-3 and Type-4 clones, transitivity does
not necessarily hold). Two code segments correspond to each other if they are copies
of each other (according to the underlying clone detection approach). We will apply the
notion of clone classes to the classes of the relation, and the members of the classes will
be referred to as clone instances. Owing to the nature of the relation, each clone class
must contain at least two clone instances.

2.4.1 Clone detection

There exist an abundance of clone detection algorithms ranging from lexical (token-
based) [34, 48, 54], through AST-based [15, 61, 97] to metric-based [60, 65, 66, 72]
approaches. These methods act on one particular version of the software and then a
detailed list of copied code segments is provided that may eventually contain several
thousand items in the case of a real-size software package. The Columbus framework

16 Background

uses a variant of one of the existing AST-based approaches presented by Koschke et
al [61]. This method �nds clone candidates that form syntactic units (e.g. classes,
functions, blocks, iterations) with linear time and space complexity. The similarity of
the clone instances for this approach is de�ned by the serialisation method of the AST.
Two code parts are considered similar (and therefore fall into the same clone class) if
they consist of the same AST node types (represented by the schema) in the same
order. Figure 2.1 shows an example of a source code fragment and its AST counterpart.
The AST contains every important detail about the source code so that a semantically
equivalent source code can be generated from it. For simplicity reasons, just the AST
node types are shown in the �gure.

int foo (int i) {

int j=i+1;

return j;

}

Figure 2.1: An example of a source code fragment and its AST representation

The clone detection algorithm used by Columbus basically extracts all the identical AST
structures from the source code, and returns a list of clone classes and clone instances
with their precise location in the source code. It follows that every clone class can be
uniquely represented by an AST fragment like the one in Figure 2.1. The root node of
an AST fragment corresponding to a clone class is called the head of the clone class. In
the example, the head of the code fragment is a function node (shown in grey).

2.4.2 Code duplication metrics

Clone metrics quantify some of the characteristics of the underlying system from the
viewpoint of code duplication. The most widely used clone metrics, are the following:

2.4 Code duplications 17

• CC (Clone Coverage) - the real value between 0 and 1 expresses the degree to
which the item is covered by code duplication

• CCL (Clone CLass) - number of clone classes having at least one element within
the particular source code element

• CI (Clone Instances) - number of clone instances within the particular source code
element

All three metrics can be de�ned at the system level and for namespaces, packages,
classes, methods and functions.

Chapter 3

Modelling source code

maintainability

�Measuring programming progress by lines of code
is like measuring aircraft building progress by weight.�

Bill Gates

According to the ISO/IEC 9126 standard, the high-level characteristics may be a�ected
by low-level quality features that are

• internal - measured by looking inside the product, e.g. by analyzing the source
code

or

• external - measured by execution of the product, e.g. by testing the product.

Figure 3.1 shows the di�erent levels of characteristics, attributes and their relationships
as de�ned by the above-mentioned standard.

Although the quality of source code without doubt a�ects maintainability, the standard
does not provide a consensual set of source code measures as internal quality features.
The standard also does not specify the way the aggregation of quality attributes should
be performed. These are really not de�ciencies of the standard; rather, it o�ers a certain
degree of �exibility for adapting the model to speci�c needs.

Most of the existing studies share some common basic principles:

• With each given source code metric, its distribution over the source code elements
is taken and a value (e.g. average) or a category (based on threshold values) is
used as a representative element.

• The value or category is aggregated �upwards� in the model by using a simple
weighting or linear combination of weights.

• Higher quality characteristics are also represented by one number or a category.

19

20 Modelling source code maintainability

Figure 3.1: Characteristics and attributes de�ned by the ISO/IEC 9126 standard

We would also like to exploit the freedom of the standard and to propose a novel approach
which is quite di�erent from the existing ones. Next, we will show that, with the help of
an appropriate modelling technique, the subjective notions of high-level maintainability
characteristics (and hence maintainability as well) can be modelled e�ciently by using
low-level source code metrics. Later we will see that these kinds of metric-based models
may not be portable; i.e. models trained on one system may not be readily used on
other systems. We will overcome this di�culty by proposing a probabilistic approach for
modelling source code maintainability at the end of this chapter.

3.1 Source code metrics and maintainability

The vast majority of existing source code quality models use source code metrics to
measure low-level quality attributes. Most of the related studies tackle the correlation
between source code metrics with objective measures like failure rates during operation

3.1 Source code metrics and maintainability 21

or bug numbers reported in an issue tracking system. For example, Olague et al. [87]
studied the ability to predict fault-proneness by using the CK [26], QMOOD [13] and
MOOD [41] metric suites. Basili et al.[14] and Gyimóthy et al. [38] calculated code
metrics and used regression and machine learning techniques to predict fault-proneness.
Provided that it does not involve a great amount of manual e�ort, the reliability of the
results strongly depends on the reliability of the data collected during the operation or
recorded in the issue tracking system.

In our study we focused on the relationship between the low-level source code metrics
and the high-level maintainability characteristics de�ned by the ISO/IEC 9126 standard.
Unlike the above-mentioned approaches, we invested a large amount of manual e�ort
in gathering reliable information on high-level quality attributes of the systems' source
code. The study involved 35 IT professionals and the manual evaluation results of 570
class methods of an industrial and an open source Java system. Our aim was to show
that, with an appropriate model, source code maintainability characteristics could be
e�ectively expressed by using low-level source code metrics.

Several statistical models have been constructed to evaluate the relation between low-
level source code metrics and high-level subjective opinions of IT experts.

3.1.1 Experiment setup

In order to analyse the relationship between the source code metrics and the high-level
maintainability attributes, we performed a time-consuming manual evaluation task. The
purpose of the evaluation was to collect subjective ranks for di�erent quality attributes
for a large set of methods.

One of the evaluated systems was JEdit, a well-known text editor designed for program-
mers. The system contains over 700 methods (over 20,000 lines of code), from which we
selected 320 to evaluate. The chief criteria for the selection was the length of methods,
e.g. we skipped the getter/setter methods and the generated ones. The other system we
evaluated was an industrial software product that contained over 20,000 methods and
over 200,000 lines of code. From this big set of methods, we selected 250 to evaluate.

The method level source code metrics that we considered were the following:

• Number of Outgoing Invocations (NOI)

• Lines Of Code (LOC)

• Logical Lines Of Code (LLOC)

• Number Of Statements (NOS)

• Number of Local Methods Accessed (NLMA)

22 Modelling source code maintainability

• Nesting Level (NL)

• Number of Foreign Methods Accessed (NFMA)

• Number of Incoming Invocations (NII)

• Number of Parameters (NPAR)

• McCabe Cyclomatic Complexity (McCC)

• Clone Coverage (CC)

• Number of PMD warnings1 in a method (PMD)

The survey was performed by 35 experts, who varied in age and programming experience.
The experts were asked to assign a rank (bad, average, good) to each class method
for each maintainability characteristic. To ease the evaluation process, a Web-based
framework was developed to collect, store, and organise the evaluation results.

3.1.2 Experiment results

During the survey all of above-mentioned 570 methods were evaluated one by one and
the results were stored in a database. Weka Experimenter [39] was used to analyse the
relationship between source code metrics and high-level maintainability attributes. It is
a set of machine learning algorithms for data mining tasks. It contains tools for data
pre-processing, classi�cation, regression, clustering, association rules, and visualisation.

Table 3.1 tells us that each source code metric separately has no statistically signi�cant
correlation with any of the maintainability features. We note, however, that almost all
of the Pearson's correlation values are negative, so that higher metric values generally
mean worse maintainability characteristics. This accords with our intuitive expectations.

NOI LOC LLOC NOS NLMA NL NFMA NII NPAR McCC CC PMD
Analysab. -0.38 -0.41 -0.38 -0.34 -0.23 -0.16 -0.35 -0.03 -0.05 -0.27 0.12 -0.22
Changeab. -0.35 -0.41 -0.38 -0.35 -0.20 -0.17 -0.33 -0.02 -0.10 -0.29 0.09 -0.21
Stability -0.28 -0.35 -0.34 -0.31 -0.19 -0.13 -0.24 0.00 -0.06 -0.26 0.07 -0.22
Testab. -0.25 -0.38 -0.37 -0.34 -0.16 -0.34 -0.22 0.01 -0.07 -0.29 -0.02 -0.24

Comprehen. -0.34 -0.38 -0.36 -0.33 -0.22 -0.15 -0.30 0.02 -0.10 -0.26 0.09 -0.21

Table 3.1: Pearson's correlation between the code metrics and maintainability charac-
teristics

To reduce the number of dimensions of the problem, we performed a Principal Compo-
nent Analysis (PCA) [49] �rst, with parameters intented to cover 97% of the variance.
Next, we tested the well-known base classi�ers; namely, logistic regression, J48 decision
tree and neural network. We used the ZeroR (default classi�er) algorithm as a baseline
to measure the e�ectiveness of our experimental results. This is the simplest classi�er

3.1 Source code metrics and maintainability 23

ZeroR J48 decision tree Log. regression Neural network
Analysability 67.93% 73.68% 70.97% 70.25%
Changeability 66.79% 76.65% 73.00% 74.26%

Stability 70.20% 73.12% 70.55% 70.92%
Testability 66.55% 64.72% 69.45% 70.54%

Comprehension 70.92% 76.68% 70.93% 73.99%

Table 3.2: Rate of the correctly classi�ed instances

that chooses the class which has the most elements in the training data set. Table 3.2
lists the rate of correctly classi�ed methods for each maintainability feature.

We found that in four out of �ve cases the best classi�er was the J48 (Weka imple-
mentation of C4.5) decision tree algorithm. However, it performed very poorly in the
classi�cation of Testability, which was attributed to the vague de�nition of the subchar-
acteristic. The IT experts involved in the survey varied in their range of testing skills
and they sometimes interpreted the concept di�erently. In the case of Changeability, the
precision value of the J48 classi�er was by 10% higher than that of ZeroR. In this case
the logistic regression and the neural network algorithms also performed well. Precision
is a good way of measuring e�ciency, but if we examine the precision and recall values
separately for classes it appears that the J48 algorithm is much more useful than ZeroR.

Table 3.3 provides detailed statistics about the precision and recall values of the ZeroR
and J48 algorithms in the case of Changeability. The precision value of the J48 algorithm
is 17 % higher for the Good class than that for ZeroR. Moreover, it classi�ed 64% of the
Average and 23.8 % of the Poor instances correctly, while ZeroR missed them completely.

J48 decision tree ZeroR
Class TP Rate FP Rate Precision Recall TP Rate FP Rate Precision Recall
Bad 0.238 0.011 0.455 0.238 0 0 0 0

Average 0.640 0.160 0.624 0.640 0 0 0 0
Good 0.852 0.330 0.839 0.852 1 1 0.668 1

Table 3.3: Statistics for classes in the case of Changeability

3.1.3 Conclusions

The empirical results presented in this section show that, with the help of a suitable
modelling technique, the subjective aspects of high-level maintainability characteristics
(and hence maintainability as well) can be modelled e�ciently by using low-level source
code metrics. Knowing this, we will present a negative result in the next section concern-
ing the portability of maintainability models like these. Afterwards, in the last section
of the chapter, we propose a novel approach for building metric-based maintainability
models which, among other things, overcomes the portability issue as well.

1http://pmd.sourceforge.net

http://pmd.sourceforge.net

24 Modelling source code maintainability

3.2 Model portability issues

Now we will address the question of which metrics are suitable for constructing portable
models (which can be e�ciently applied to unknown software systems). It seems quite
obvious that a model can only be portable if the participating metrics behave in a similar
way on the underlying software systems. From this starting point we analysed the metric
values of four real-world software packages in order to see how the metrics behave on
systems developed under di�erent circumstances (e.g. open- and closed source) and for
di�erent domains (e.g. o�ce and telecommunication applications). Here, we made use
of the following well-known metrics (�rst presented by Chidamber and Kemerer [26]):

• WMC - Weighted Methods per Class

• DIT - Depth of Inheritance Tree

• RFC - Response For a Class

• NOC - Number Of Children

• CBO - Coupling Between Object classes

• LCOM - Lack of Cohesion On Methods

• LCOMN - Lack of Cohesion of Methods allowing Negative value

• LOC - Lines Of Code

In our statistical analysis, we employed the method of linear discriminant analysis (LDA) [93].

3.2.1 Experiment setup

Table 3.4 lists some of the size metrics for the underlying systems. Two of them are
open source (Mozilla and OpenO�ce), while the other two are closed source real-world
software systems.

Software Systems TNCL TLOC TNM TNA
Mozilla 1.6 4,895 1,513,768 56,382 27,267
Nokia System 18,476 11,629,348 215,306 43,653
OpenO�ce 2.0.1 27,900 5,913,418 282,167 131,457
Columbus 3.6 671 244,509 13,346 12,641

Table 3.4: System level metrics for the systems analysed

Our basic premise is that metric-based models should behave in a similar way on sta-
tistically similar systems. Nagappan et al. [84] arrived at much the same conclusion
after they attempted to apply a bug-model trained on one system to another system. In

3.2 Model portability issues 25

order to compare systems in the statistical sense, we need to collect a large amount of
samples. As we are examining object-oriented metrics, the samples in our case are the
classes of the systems. The bigger the systems are, the more classes are available, so
the statistical methods should give more accurate results.

We consider systems to be similar if their classes cannot be distinguished easily from
each other using their metric values. The similarity of di�erent systems can be mea-
sured with the precision values of classi�ers (from a given set of statistical or machine
learning algorithms) which predict which system a class belongs to based on its metrical
values. If the accuracy value of any particular classi�er is high, then the two systems
are easily distinguishable. But, if there is no classi�er from the given set of algorithms
that e�ciently distinguishes the classes of the systems, these systems will be considered
similar.

Put simply, our hypothesis is that if a model performs well on a system, it can be readily
applied to another similar system in the above-mentioned sense. Furthermore, if the
systems are easily distinguishable (the metrics behave di�erently), then the di�erences
prevent a model from being transferred between the systems. Here, our idea for preparing
portable models is simple; namely, it should consist of only those metrics for which the
systems appear similar to each other.

Next, we applied the linear discriminant analysis (LDA) method [93], which transforms
the samples in such a way that the most signi�cant di�erences between them could be
seen. After the transformation was applied, the most and the least signi�cant metrics
in which the two systems di�er from each other can be selected.

Having eight metric values, each class of a system can be regarded as a point in an
ℜ8 vector space. When comparing two systems, all their classes are represented in the
same space. By applying the LDA algorithm, the distance between the classes of the two
systems increases and the deviation among the classes of each system decreases at the
same time. This way, the classes of the systems are separated from each other. Being a
linear transformation, the LDA algorithm returns a vector which represents a line in ℜ8

space along which the above-mentioned properties hold for the projections of the original
source data; i.e. the distance between the mean values of the projected classes of the
systems is maximised and the deviation among the projected classes of each system is
minimised. If the two systems di�er much there will be two separated sets of points in
the image space of the transformation. But if the two systems are similar to each other,
the transformation will not be able to separate them too well.

The vector returned by the LDA algorithm, which represents the line along which the
separation is the best, contains the coe�cients for each metric. A higher absolute value
of a coe�cient denotes a better separation property for the corresponding metric, while
a low absolute value means that the metric it belongs to cannot readily distinguish the
classes of the systems.

26 Modelling source code maintainability

3.2.2 Experiment results

Figure 3.2 shows an example of the LDA algorithm applied to the classes of OpenO�ce
(black) and the Nokia System (grey). In the �rst case only a principal component

analysis (PCA) [49] was applied to the sample in order to visualise it in 2 dimensions
with a minimal loss of information. In the second case a random noise of N (0, 1) was
added to the sample in the direction of the x axis, for visualisation purposes as well (the
transformed points would have ended up along the vertical axis otherwise). It can be
seen in the �gure that the classes of the two systems could be separated quite well.

Figure 3.2: An example of LDA transformation

We used the LDA algorithm to measure the similarities between the systems in the way
described in Section 3.2.1. We analysed two systems at a time and randomly divided
the union of the classes of the two systems into two parts. We used the �rst part, which
contained 90% of the classes, to calculate the LDA coe�cients of the transformation.
Next, we applied this transformation to these classes, and for the remaining 10% of
the classes as well. With the transformed classes from the smaller part, we counted
how many of them were close to its own transformed system. By doing this we got
a precision value for this particular machine learning algorithm that was supposed to
be a lower estimate for the similarity of the two examined systems. We repeated this
procedure ten times by taking a di�erent test suite each time. The average accuracy
value (i.e. mean precision value) of this validation can be viewed as a measure for
similarity between the systems.

By changing the underlying notion of the distance (between a system and a class of a
system), we can get di�erent variants of the above-mentioned classi�er algorithm. The
most common distance measure is the Euclidean distance measure, which in our case
is the classical sum of squares of the coordinate-wise di�erences between the mean of
classes of the system and the class to be classi�ed. Another commonly used distance
in machine learning is the Mahalanobis-distance [75], which takes into account the
correlations between the metrical values of the classes of the systems as well. The greater
the deviation in one direction, the smaller the distances will be in the same direction.
Taking an example from Figure 3.2, if the point which denotes the transformed class

3.2 Model portability issues 27

falls into the upper part of the second diagram, the classi�er should classify it as an
OpenO�ce class; otherwise if it falls into the lower region, it should be classi�ed as a
Nokia System class. The position and shape of the boundary between the two systems
depends on the distance used for classi�cation.

We applied the LDA algorithm for each pair of the systems examined. But before doing
so, we standardised the input sample, which means that the average of each metric
became zero and the deviations became one. We could have applied this transformation
to all the systems at once in the same vector space, but in that case we would have
had to expect the presence of the unnecessary in�uence of one system on every other.
Besides this, when a model is intended to be transferred, only two systems are considered
at once: the source (the system on which the model was trained on), and the destination
(the system on which the model is to be applied).

Table 3.5 gives the coe�cients which were calculated via the LDA algorithm. According
to the results here and our basic hypothesis, a model on Mozilla which is based on the
RFC and WMC metrics should not perform well on the other three systems because the
coe�cients of these two metrics are the highest. Furthermore, it seems to be a general
tendency that these two metrics have the most signi�cant di�erences between large-
scale systems. In one case, for the Columbus-Nokia System pair, the biggest di�erence
appears for the LCOM metric (-0.74). This is because there are several parser classes
generated from grammar description �les that increase the LCOM values of Columbus.
Actually, the highest LDA coe�cients for the LCOM metric appear in the pairs where
one of the systems is Columbus. With all the other pairs this coe�cient is negligible.
Hence we concluded that Columbus is in some sense an exception among these large
systems and that the LCOM values of the other systems do not distinguish them. The
cohesion metric LCOMN is redundant in the model because of the high correlation with
LCOM, which is obvious.

System 1 System 2 WMC DIT RFC NOC CBO LCOM LCOMN LOC
Mozilla Columbus 0.10 0.10 -0.92 0.01 0.01 -0.29 -0.15 -0.14
OpenO�ce Columbus -0.06 -0.01 -0.92 0.00 0.17 -0.23 -0.21 -0.18
OpenO�ce Mozilla -0.69 -0.05 0.26 -0.01 -0.33 0.05 -0.43 -0.40
OpenO�ce Nokia System 0.39 0.12 -0.71 0.01 0.49 0.15 -0.01 0.23
Nokia System Columbus -0.17 0.00 -0.50 -0.02 -0.15 -0.74 0.16 -0.35
Nokia System Mozilla -0.55 -0.35 0.51 -0.02 -0.44 -0.11 -0.18 -0.28

Table 3.5: Coe�cients of metrics computed by the LDA algorithm

We also measured the similarities between any two systems using both Euclidean and
Mahalanobis distance measures introduced earlier, the results being summarised in Ta-
ble 3.6. From these results, the most similar systems are the Nokia System and Mozilla,
and the most dissimilar are OpenO�ce and Columbus. In actual fact, Columbus di�ers
the most from every other system. This might have been expected.

28 Modelling source code maintainability

Systems 1 System 2 Euclidean Mahalanobis Max.
precision precision precision

Mozilla Columbus 80.98% 51.46% 80.98%
OpenO�ce Columbus 86.77% 73.04% 86.77%
OpenO�ce Mozilla 68.87% 74.65% 74.65%
OpenO�ce Nokia Sys. 60.50% 78.41% 78.41%
Nokia Sys. Columbus 84.03% 42.95% 84.03%
Nokia Sys. Mozilla 72.90% 58.26% 72.90%

Table 3.6: Precision of the LDA approach

3.2.3 Conclusions

In this section we showed that the di�erent software systems can be distinguished from
each other fairly well based on their metric values. It means that classical metric-based
models trained on one system may not be readily usable on other systems. To resolve this
and other issues, below we present a novel approach for building metric-based models.

3.3 A probabilistic source code quality model

Existing quality models cannot handle ambiguity issues arising from the subjective in-
terpretations of characteristics, which may depend on experience, knowledge, and even
expert intuition. We seek to provide a probabilistic approach for computing high-level
quality characteristics, which integrates expert knowledge, and handle ambiguity issues
at the same time. We expect a source code quality model to be:

1. Interpretable � applying the model should provide information about high-level
quality characteristics that is meaningful; i.e. conclusions can be drawn with the
help of it.

2. Explicable � there should be a way to readily evaluate the root causes; i.e. a simple
way to break down information get for high-level characteristics to attributes or
even to properties.

3. Consistent � the information got for higher level characteristics should not con-
tradict lower level information.

4. Scalable � the model should provide valuable information even for large systems
in a reasonable time.

5. Extendible � there should be an easy way to extend the model with new charac-
teristics and its attributes.

6. Reproducible � applying the model on the same system twice should yield similar
results.

3.3 A probabilistic source code quality model 29

7. Comparable � information got for the quality characteristics of two di�erent sys-
tems should be comparable and should correlate with an intuitive meaning of the
characteristics.

By applying probabilistic methods, the approach we propose should meet all our re-
quirements and eliminate many of the drawbacks of the current approaches that follow
basic principles. First, we de�ned a probabilistic model for evaluating high-level quality
characteristics for software systems by aggregating low-level properties to higher levels.
We applied this model to two software systems and showed that the model correlates
with expert quality opinions quite well.

3.3.1 An approach for constructing maintainability models

Our approach for computing high-level quality characteristics is based on a directed
acyclic graph whose nodes correspond to quality properties that may be internal or
external. Internal quality properties characterise the software product from an internal
(developer) view and are usually estimated via source code metrics. External quality
properties characterise the software product from an external (end user) view and are
usually aggregated somehow using internal and other external quality properties. The
nodes representing internal quality properties will be called sensor nodes as they measure
internal quality directly. The other nodes will be called aggregate nodes as they get their
measures through aggregation.

The edges of the graph represent simple dependencies between an internal and an external
or two external properties. Internal properties do not dependent on any other attribute;
they measure internal quality directly. Our aim is to evaluate all the chief external quality
properties by performing an aggregation along the edges of the graph. Below we will
refer to this graph as an Attribute Dependency Graph (ADG).

Let G = (S ∪ A,E) stand for the ADG, where S, A and E denote the sensor nodes,
aggregate nodes and edges, respectively. Next, we wish to measure how good or bad an
attribute is. Goodness is the term that we use to express this measure of an attribute.
For the sake of simplicity, we will write �goodness of a node� instead of �goodness of an
attribute represented by a node�. Goodness is measured on the [0, 1] interval for each
node, where 0 and 1 mean the worst and best, respectively. A straightforward solution
would be to have a goodness value for each sensor node and then an approach for how
to aggregate it �upwards� in the graph, as many other researchers do. We decided not to
follow this path, however. Instead, we assume that the goodness of each sensor node u

is not known precisely, hence it is represented by a random variable Xu with a probability
density function gu : [0, 1] → ℜ. We call gu the goodness function of node u.

30 Modelling source code maintainability

Constructing a goodness function

The currently presented way of constructing goodness functions is speci�c to source
code metrics. For di�erent sensor types, di�erent approaches may be needed. Here, we
make use of the metric histogram over the source code elements as it characterises the
whole system from the aspect of a single metric. The aim is to provide a measure for
the goodness of a histogram. As the notion of goodness is relative, we expect it to be
measured by means of a comparison with other histograms. Let us suppose that H1 and
H2 are the histograms of two systems for the same metric, and h1 (t) and h2 (t) are the
corresponding normalised histograms (i.e. density functions). By using the formula

D (h1, h2) =

∫ ∞

−∞
(h1 (t)− h2 (t))ω (t) dt,

we get a distance function (not in the mathematical sense) de�ned on the set of prob-
ability functions. Figure 3.3 helps clarify the meaning of the formula: it computes the
signed area between the two functions weighted by the function ω (t).

Figure 3.3: Comparison of probability density functions

The weight-function plays a crucial role. It determines the notion of goodness; i.e. where
on the horizontal axis the di�erences matter more. If one wishes to express the fact that
all the metric values matter to the same degree, we should set ω (t) = c, where c is
a constant; and in that case D (h1, h2) would be zero (as h1 and h2 integrate to 1).
However, if one would like to say that higher metrical values are worse, one could set
ω (t) = t. Non-linear functions for ω (t) are also possible. As in the case of most source
code metrics, higher values are considered to be worse (e.g. McCabe's complexity), we
will use the ω (t) = t weight function for these metrics (linearity is implicity assumed
here). This choice leads us to the very simple formula

D (h1, h2) =
∫∞
−∞ (h1 (t)− h2 (t)) tdt =

∫∞
−∞ h1 (t) t−∫∞

−∞ h2 (t) t = E
(
H

′
1

)
− E

(
H

′
2

)
≈ H̃1 − H̃2,

where H
′
1 and H

′
2 are the random variables corresponding to the h1 and h2 density

3.3 A probabilistic source code quality model 31

functions, E
(
H

′
1

)
and E

(
H

′
2

)
are the expected values of these random variables (the

equality is based on the de�nition of the expected value of a random variable). Then,
H̃1 and H̃2 are the averages of the histograms H1 and H2, respectively. The last
approximation is based on the Law of Large Numbers (the averages of a sample of a
random variable tend to the expected value of the same variable). With this comparison
we get one goodness value for the subject histogram, this value being relative to the
other histogram.

In order to get a proper goodness function, we repeat this comparison with histograms
of many di�erent systems independently. In each case we get a goodness value which
can basically be regarded as a sample of a random variable lying in the range [−∞,∞].
The linear transformation x → x/2 ·max (| max |, | min |) + 0.5 changes the range to
the [0, 1] interval. The transformed sample is treated as a sample of the random variable
Xu, which is what we wanted at the beginning. An interpolation of the empirical density
function yields the goodness function of the sensor node.

We accomplish the section with a theoretical beauty of the approach. First, let us assume
that one has histograms of N di�erent systems for each particular metric. Each his-
togram can be considered to be sampled by di�erent random variables Yi, (i = 1, . . . , N).
Furthermore, one would like to assess the goodness of another histogram corresponding
to the random variable X. The goodness is by de�nition described by the following
series of random variables:

Z1 := E (Y1)− E (X) , . . . , ZN := E (YN)− E (X) .

The random variable for goodness (before the transformation) is then described by the
random variable Z:

Z :=
1

N

N∑
i=1

Zi → Φν,σ, if N → ∞.

According to the Central Limit Theorem for independent (not necessarily identically
distributed) random variables, Z tends to a normal distribution that is independent of
the benchmark histograms. This is of course a theoretical result, and it means that
having a large number of systems in our benchmark, the constructed goodness functions
are (almost) independent of the particular systems in the benchmark. Actually, Φν,σ

is a benchmark-independent goodness function (on [−∞,∞]) for X, which can be
approximated by having a benchmark with su�cient number of systems.

To be able to construct goodness functions in practice, we decided to build a source
code metric repository database, where we uploaded the source code metrics of over 100
open source and industrial software systems.

32 Modelling source code maintainability

Aggregation

Now that we are able to construct goodness functions for sensor nodes, we need to
�nd a way to aggregate them along the edges of the ADG. Recall that the edges only
represent dependencies as we have not yet assigned any weights to them. Once again,
assigning a simple weight would lead to the classic approach, which we chose not to
follow. In models that use a single weight or threshold in aggregation, the particular
values are usually supported with rational arguments that sometimes lead to debates
among experts. We decided to equip our model with the ability to handle this ambiguity
issue. We created an online survey where we asked many experts (both industrial and
academic) for their opinions about the weights. For each aggregate node, they were
asked to assign scalars to incoming edges such that the sum of these would be 1. The
value assigned to an edge is viewed as the amount of contribution of source goodness
to target goodness. This way, for each aggregate node v a multi-dimensional random
variable Y⃗v = (Y 1

v , Y
2
v , . . . , Y

n
v) exists, where n is the number of incoming edges. The

components are dependent random variables, since

n∑
i=1

Y i
v = 1,

holds; that is, the range of Y⃗v is the standard (n− 1)-simplex in ℜn. It should be
mentioned that one cannot simply decompose Y⃗v into its components because of the
existing dependencies among them.

Having an aggregate node with a composed random variable Y⃗v for aggregation (f⃗Y⃗v

will denote its composed density function), and also having n source nodes along the
edges, with goodness functions g1, g2, . . . gn, we de�ne the aggregated goodness for the
aggregated node in the following way:

gv (t)=

∫
t= q⃗r⃗

q⃗=(q1, . . . , qn) ∈ ∆n−1

r⃗=(r1, . . . , rn) ∈ Cn

f⃗Y⃗v
(q⃗) g1(r1). . .gn(rn) dr⃗dq⃗,

where ∆n−1 is the (n− 1)-standard simplex in ℜn and Cn is the standard unit n-
cube in ℜn. Although the formula may look horrendous at the �rst glance, it is just
a generalisation of how aggregation is performed in classic approaches. Classically,
a linear combination of goodness values and weights is taken, and it is assigned to
the target node. When dealing with probabilities, one needs to take every possible
combination of goodness values and weights � and also the probabilities of their outcome
� into account. In the formula, the components of the vector r⃗ traverse the domains of
source goodness functions independently, while vector q⃗ traverses the simplex, where each
point represents a probable vote for the weights. For �xed r⃗ and q⃗ vectors their scalar
product (t = q⃗r⃗ =

∑n
i=1 riqi ∈ [0, 1]) is the goodness of the target node. To compute

3.3 A probabilistic source code quality model 33

the probability for this particular goodness value, one has to multiply the probabilities
of goodness values of source nodes (these are independent) and also the composed
probability of the vote (f⃗Y⃗v

(q⃗)). This product is integrated over all the possible r⃗ and
q⃗ vectors (please note that t is not uniquely decomposed to vectors r⃗ and q⃗). gv (t) is
indeed a probability distribution function on the [0, 1] interval; i.e. its integral is equal
to 1, because both f⃗Y⃗v

(q⃗) and the goodness functions integrate to 1 on ∆n−1 and Cn,
respectively.

With this method we are now able to compute goodness functions for each aggregate
node. The way the aggregation is performed is mathematically correct, meaning that
the goodness functions of aggregate nodes actually express the probability values of their
goodness (by combining other goodness functions with weight probability values).

We should now make two important remarks concerning the aggregation process:

1. It may not be obvious, but the dependencies between the dependent (connected)
nodes are implicitly assumed to be linear.

2. It might be imagined that there is a serious drawback in the method. Namely, the
curse of dimensionality. According to the aggregation formula, the integration is
performed on a closed, convex subset of the ℜ2n−1 vector space (n is the number
of incoming edges). Even for small n values this computation can be expensive
and imprecise. To avoid an exponential increase in the computational costs, we
apply the Monte Carlo method with random sample points generated that are
equally distributed both on ∆n−1 and Cn. This obviously does not help improve
precision: the votes will simply be too scarce in higher dimensions. Empirically we,
found that the approach works su�ciently well if the number of incoming edges is
not higher than three for each aggregate node.

Although this approach provides goodness functions for each aggregate node, managers
are usually only interested in having a single numeric value that represents an external
quality attribute of the software system. Goodness functions carry much more informa-
tion than this, but an average value for the function may satisfy even the managers.

The resulting goodness function at each node has a simple meaning: it is the probability
distribution that describes how good a system is from the aspect represented by the
node. Therefore, the approach leads to interpretable results. Provided that the goodness
functions are computed for each node, and that the dependencies in the ADG are known,
it is not hard to locate the root causes. Even formally, it would not be di�cult to rank
the low-level properties according to their impact on the high-level ones. It means that
the results are explicable. Consistency trivially follows from the way of the aggregation
(from the monotonity of integration). The approach scales well for large systems, as the
memory and time consumption requirements do not depend on the size of the system
to be evaluated (just the distributions are used). An ADG can be readily extended with

34 Modelling source code maintainability

new nodes at any level. In fact, adding a new sensor node with all its dependencies is
a straightforward generalisation because setting the goodness function of the node to
g (u) = 1 (on the [0, 1] interval) will yield the original model irrespective of the votes
on the edges. Comparability follows from the de�nition of goodness (i.e. the weight
function ω (t)) and from the consistency of aggregation. It also seems to follow from our
earlier remark concerning the theoretical existence of benchmark independent goodness
functions. Based on these observations, the approach bears with all the properties
necessitated earlier.

3.3.2 An instance of a maintainability model for Java

The ISO/IEC 9126 standard de�nes six high-level product quality characteristics, which
are functionality, reliability, usability, e�ciency, maintainability and portability. Now
we will just focus on maintainability; i.e. the capability of the software product to be
modi�ed, where modi�cations may include corrections, improvements, or adaptation of
the software to changes in environment, and in requirements and functional speci�ca-
tions [44]. The standard de�nes the following attributes which a�ect maintainability:

• Analysability: the capability of the software product to be diagnosed for de�-
ciencies or causes of failures in the software, or for the parts to be modi�ed.

• Changeability: the capability of the software product to enable a speci�ed mod-
i�cation to be implemented, where implementation includes coding, designing and
documenting changes.

• Stability: the capability of the software product to avoid unexpected e�ects from
modi�cations of the software.

• Testability: the capability of the software product to enable modi�ed software
to be validated.

Our intention is to utilise low-level source code properties in order to compute the above
attributes and thus the maintainability characteristic itself. For the low-level properties
we used the most commonly applied types of code properties: source code metrics [26],
coding rule violations and code duplications (clones) [15]. Our aim was to �nd a relatively
small set of low-level properties that has representatives from every type and has as much
an overall expressiveness as possible. With these points in mind, the following low-level
properties were selected:

• TLLOC � total logical lines of code for the whole system (lines of code not
counting comments and empty lines).

• McCabe � McCabe cyclomatic complexity [78] de�ned for the methods of the
system.

3.3 A probabilistic source code quality model 35

• CBO � coupling between object classes, which is de�ned for the classes of the
system.

• NII � number of incoming invocations (method calls), de�ned for the methods of
the system.

• Impact � size of the change impact set (computed by the SEA/SEB algorithm [46]),
de�ned for the methods of the system.

• Error � number of serious coding rule violations, computed for the methods of
the system.

• Warning � number of suspicious coding rule violations, computed for the methods
of the system.

• Style � number of coding style issues, computed for the methods of the system.

• CC � clone coverage, the percentage of copied and pasted source code parts,
computed for the methods of the system.

The reason why the number of incoming invocations metric was included, but not the
number of outgoing invocations, is that the Impact set size metric is really a gener-
alisation of the NOI. The �nal set of low-level properties was selected through several
iterations with the helpful advice of academic and industrial experts in the �eld. After
this set of properties was formally �xed, in several other iterations the low-level proper-
ties were linked to higher level properties and to attributes. As the algorithm did not
perform well when the number of incoming edges was high, we introduced new arti�cial
(virtual) properties whose role was just to gather some nodes of the dependency graph.
It was also presumed that these arti�cial nodes may also in�uence each other in some
way.

The following arti�cial high-level properties were added:

• Code complexity � this represents the overall complexity (internal and external)
of a source code element. This high-level property groups the McCabe, CBO and
NII metrics.

• Fault proneness � this represents the possibility of having a faulty code segment.
It is aggregated using the Error and Warning properties.

• Low-level quality � this represents the very low-level source code quality ex-
pressed in terms of coding errors, warnings and style.

• Comprehension � this tells us how easy it is to understand the source code. It
is aggregated from the TLLOC and Impact low level metrics, and from the Code

complexity high level properties.

36 Modelling source code maintainability

• E�ectiveness � this measures how readily the source code can be changed. The
source can be readily changed if it is easy to change it and changes will most likely
not have any unexpected side-e�ects. The high-level property is aggregated to
Changeability and Stability attributes.

After, the edges of the model graph were weighted by developers, project managers,
consultants, and testers independently (Table 3.7 shows the distribution of participants
who voted).

Experience Sw.eng. Manager Consultant Tester
<1 year 2 0 0 1
1-3 years 10 2 1 1
3-7 years 3 1 1 2
>7 years 3 0 1 0

Table 3.7: Persons who were involved in the weighted voting survey

The contributors were asked to rank the importance of each edge with a value between
0 (unimportant) and 1 (most important). Provided that the random variables repre-
senting the weights on the incoming edges of a node are not independent (and the
algorithm employs composed distributions), those surveyed were asked to assign weights
that summed to one for the incoming edges of a node. In this way, relative importance
is assigned for the incoming edges of a node (relative to the other incoming edges of the
same node), and a composed distribution function was obtained that belonged to the
node itself. Figure 3.4 shows the eventual model graph got at the end of the iterations.

Figure 3.4: The ADG describing the relations among low-level properties (white),
ISO/IEC 9126 attributes and maintainability characteristic (black) and high-level vir-
tual properties (grey)

3.3 A probabilistic source code quality model 37

A benchmark consisting of 100 open source and industrial software systems implemented
in the Java programming language was created. For each system and each sensor node,
the distribution of the low-level quality properties over the source code elements of the
system (classes and methods) is stored in the database. The size of the projects analysed
varied from a couple of hundred to over a million lines of code. The largest system was
the glass�sh v2.1 application server with 1,031,741 lines of code, while the smallest one
was called pdfsam with only 346 lines of code. The average lines of code of the systems
in the benchmark was about 122,500. The systems in the benchmark were chosen from
13 di�erent domains, including games, database management systems, o�ce tools, GUI
and other frameworks and libraries. The distribution of the projects by their sizes and
domains is depicted in Figure 3.5. Table 3.8 summarises some additional properties of
the benchmark.

Figure 3.5: The distribution of the project sizes (left) and domains (right) in the bench-
mark

Metric Max. Min. Avg.
Avg. McCabe 4.33 1.12 2.01
Avg. CBO 11.6 1.14 4.74
Avg. CC 0.8 0.014 0.157
TLLOC 1,031,741 346 122,503

Table 3.8: Statistics for the benchmark

The source code metrics, rule violations and code duplications for the benchmark were
computed via the Columbus [35] static source code analyzer tools. An implementation
of the algorithm was created which accepts the histograms of the system to be evalu-
ated, uses the benchmark database, and returns goodness functions for each sensor and
aggregate node.

3.3.3 Validation of the model

The quality model was evaluated on two software systems implemented in the Java
programming language. The �rst one is an industrial system developed over several

38 Modelling source code maintainability

years by a Hungarian company. Due to a non-disclosure agreement, we have to refer to
this system as System-1. In order for the results to be reproducible, we also evaluated
the model on an open source software package developed at the University of Szeged.
The REM framework is a persistence engine whose development began from scratch in
2010, and being a green�eld and well-documented project, the di�erent development
phases are easy to isolate from the beginning. Our intention was to compare the results
of the quality model with the subjective opinions of those involved in its development.
For this, we had to choose the kind of systems where the developers were accessible for
interviews. In the case of System-1, three versions were studied; namely, version 1.3, 1.4
and 1.5 released in 2009, 2010 and 2011, respectively. In the case of REM, four versions
were studied; namely, version 0.1, 1.0, 1.1 and 1.2. Table 3.9 summarizes some basic
statistics of the evaluated systems.

System Size (TLLOC) Nr. of pkg. Nr. of cl.
System-1 v1.3 35,723 24 336
System-1 v1.4 53,406 27 477
System-1 v1.5 48,128 27 454
REM v0.1 6,262 14 82
REM v1.0 7,188 22 83
REM v1.1 5,737 21 66
REM v1.2 8,335 21 94

Table 3.9: Basic properties of the evaluated systems

With the algorithm, �rst the goodness functions for the sensor nodes are computed.
Figure 3.6 shows the computed goodness functions for REM v1.2 for the sensor nodes.
Provided that the goodness functions are probability density functions on the [0, 1] inter-
val, the area of the bars is always equal to one. A system is considered better when the
higher bars lie closer to the right hand side. For example, in the case of McCabe, REM
performs better than the other systems in the benchmark, while in the case of CBO
it is vice versa. In the case of TLLOC, REM is �better� than the benchmark systems,
meaning that its size is smaller than the average value. Although goodness functions
express a lot, it is always useful to have a single value as a measure for goodness. The
mean value of a goodness function is a good candidate for representing goodness by a
single value. From now on, we will refer to the mean of a goodness function as the
goodness value.

After the goodness functions for the low-level nodes are computed, the aggregation step
follows. For each aggregate node a goodness function is computed based on the com-
posed distribution function of votes and the goodness functions of the incoming nodes.
Figure 3.7 shows how the goodness values of low-level properties changed with the
versions of System-1. System-1 v1.3 had been developed without using any particular
quality assurance for the source code itself, and new features had been added without any

3.3 A probabilistic source code quality model 39

Figure 3.6: Goodness functions for low-level quality attributes (sensors) in the case of
the REM v1.2 system

quality control. As can be seen, the Error, Warning, and Style attributes are the worst
for this version. After this version, static source code analysis was introduced into the
development processes of the system, and source code metrics and coding rule violations
came into focus. Although a lot of new code was added to the next version (as can be
seen from the TLLOC attribute), from the aspect of Error, Warning, and Style attributes
there was a signi�cant improvement. The same holds for the CBO, NII, and CC metrics
as well. Only the average function complexities became worse (McCabe), for which not
much attention was paid. The last version (v1.5) was a result of a pure improvement
project: no features were added, just refactorings and bug�xes were carried out. As a
result, all the low-level properties improved or at least remained at the same level (even
the size of the system became smaller). Figure 3.7 shows the aggregated attributes and
maintainability characteristic of System-1, which conforms our expectations: version 1.4
is �better� than version 1.3 in the case of changeability, analysability and stability owing
to the improvements in the low-level properties. However, in the case of testability,
version 1.4 is �worse� because of the increasing McCabe complexity. Testability lumps
maintainability with itself, which is therefore better for version 1.3. The last version
outperforms version 1.4 in every attribute and maintainability characteristic as almost
every one of its low-level properties had improved. Version 1.3 is still the best from the
aspect of testability, because the complexities of its functions are the lowest on average.
It should be added that for all three versions, every maintainability ISO/IEC 9126 at-
tribute is less than 0.5, meaning that System-1 is �worse� than an average system (based
on our earlier remark about the theoretical beauty of the approach).

In the case of REM, the development was started as a green-�eld project, building
everything from scratch. Figure 3.8 shows the low-level properties and the ISO/IEC
9126 attributes for REM. Being an entirely new development, it is not surprising that
the maintainability characteristic and its ISO/IEC 9126 attributes were relatively high.
The �rst version (v0.1) was developed by graduate students at the University of Szeged
during their summer practice. Afterwards, the codebase was taken over by the depart-

40 Modelling source code maintainability

Figure 3.7: Goodness values for the low-level (left) and ISO/IEC 9126 Maintainability
characteristic and its subcharacteristics (right) in the case of System-1

ment sta� that had several years of development experience, and they performed major
improvements and refactorings to the code. In Figure 3.8 it can be seen that every
attribute except for Testability improved. Testability did not improve as the McCabe,

NII, and Warning attributes became slightly worse. After this improvement phase, many
new features were added, resulting in a signi�cant decrease of most of the low- and
high-level attributes, hence the maintainability characteristic fell slightly from 0.7539 to
0.7402. Finally, another improvement phase came that focused on coding rule violation
(Error, Warning) properties, which resulted in an improvement of the maintainability
characteristic (it increased to 0.7482) and its attributes.

Figure 3.8: Goodness values for the low-level (left) and ISO/IEC 9126 Maintainability
characteristic and its subcharacteristics (right) in the case of REM

To validate the results, the developers were asked to rank maintainability and its ISO/IEC
9126 attributes of their systems on a 0 to 10 scale, based on the de�nitions provided
by the standard. For System-1, six developers answered the questions, four of them had
experience of between one and three years, and two of them had experience of over seven

3.3 A probabilistic source code quality model 41

years. With REM, �ve developers completed the survey, three of them had experience of
less than one year and two of them had experience of over seven years. Table 3.10 lists
the averages of the ranks (divided by ten) for every version of both software systems.
The values in the brackets are the goodness values computed by the model.

Version Changeab. Stability Analysab. Testab. Maintainab.

REM v0.1
0.625 0.4 0.675 0.825 0.625

(0.7494) (0.7249) (0.7323) (0.7409) (0.7520)

REM v1.0
0.6 0.65 0.75 0.8 0.75

(0.7542) (0.7427) (0.7517) (0.7063) (0.7539)

REM v1.1
0.6 0.66 0.7 0.66 0.633

(0.7533) (0.7445) (0.7419) (0.6954) (0.7402)

REM v1.2
0.65 0.65 0.8 0.775 0.7

(0.7677) (0.7543) (0.7480) (0.7059) (0.7482)

Correlation 0.71 0.9 0.81 0.74 0.53

System-1 v1.3
0.48 0.33 0.35 0.43 0.55

(0.4458) (0.4535) (0.4382) (0.4627) (0.4526)

System-1 v1.4
0.6 0.55 0.52 0.4 0.533

(0.4556) (0.4602) (0.4482) (0.4235) (0.4484)

System-1 v1.5
0.64 0.64 0.56 0.46 0.716

(0.4792) (0.4966) (0.4578) (0.4511) (0.4542)

Correlation 0.87 0.81 0.94 0.61 0.77

Table 3.10: Averaged grades for maintainability and its ISO/IEC 9126 attributes based
on the developers' opinions

The results show that the experts' rankings di�er signi�cantly from the goodness values
provided by the model in many cases. Actually, there are large di�erences between the
opinions of experts, depending on their experience, knowledge and degree of involvement.
There were cases when one of the developers who had little experience ranked testability
at 9, while another who had over seven years of experience ranked it at 4. Despite the
di�erences between the expert rankings and the goodness values, they surely indicate
relatively high correlation with each other, meaning that they change in a similar way.
The bold lines in Table 3.10 show the Pearson's correlation of the rankings and the
goodness values. The positive (and relatively high) correlations indicate that the quality
model partially expresses the same changes as the developers would expect.

3.3.4 Limitations

Both the proposed algorithm and the application have some properties which may a�ect
the practical aspects and the usability of the approach.

• Although the method is su�ciently general, for simplicity reasons we applied it
assuming linear ω (t) = t weight functions. With this choice, we implicitly assume,

42 Modelling source code maintainability

that there is a linear dependency between the source code metrics and goodness,
which may not always be the case.

• As already mentioned, the algorithm su�ers from curse of dimensionality problems,
which necessitated restrictions on the structure of the ADG graph. This is a theo-
retical obstacle of the algorithm that cannot be overcome just by using heuristics,
which inevitably leads to loosing some information during aggregation.

• In Section 3.3.2 the presented ADG was created as a result of brainstorming ses-
sions over several iterations. We do not pretend that this graph is either complete
or unique. For example, DIT (Depth of Inheritance Tree) is an important measure
of maintainability, but it was not considered in the model, as the weight function
ω (t) = t would have been unsuitable. Indeed, for small numbers, it should �rst
decrease and then it should only start increasing for larger values. This constraint
would have made the model more complex, harder to understand and to evaluate.
Di�erent contexts may require di�erent ADGs, which always need to be created
from scratch.

• The benchmark utilised here contains systems taken from di�erent domains, which
may be su�cient for evaluating the general quality of a system, but domain speci�c
benchmarks would be required to get more comparable results.

• The systems used for the evaluation are small and the approach should be validated
for larger systems as well.

• The ability of the developers to recall the earlier quality of systems may distort
evaluations of older versions of a system.

• For the maintainability quality characteristic and its attributes, only the mean
values of goodness functions were compared to averages of the experts' votes. It
might have been better to compare the distribution of votes with the goodness
functions, but in that particular case it seem unreasonable owing to the relatively
small number of votes.

Because of the Central Limit Theorem, the benchmark is not viewed as a threat to
validity provided there are enough systems in it. Then, the quality of the systems in the
benchmark is not important.

3.3.5 Conclusions

In this section we de�ned a probabilistic model for evaluating high-level quality character-
istics for software systems. Although our algorithm provides a mathematically consistent
and clear way for assessing source code quality, it is not speci�c to source code metrics,
and not even to software systems.

3.4 Summary 43

The presented model integrates expert knowledge, handles ambiguity issues and manages
goodness functions that are continuous generalisations of threshold-based approaches.
We found that the changes in the results of the model re�ect the development activi-
ties, i.e. during development the quality decreases, but during maintenance the quality
increases. We also found that although the goodness values computed by the model
are di�erent from the rankings provided by the developers, they still show relatively high
correlations concerning the tendencies.

3.4 Summary

In this chapter we showed that, with the help of an appropriate modelling technique, the
subjective notions of high-level maintainability characteristics (and hence maintainability
as well) can be readily modelled by using low-level source code metrics. Unfortunately,
the di�erent software systems can be distinguished from each other quite well based
on their metric values, which means that classical metric based models trained on one
system may not be directly usable on other systems. To overcome these di�culties, we
de�ned a probabilistic model for evaluating high-level quality characteristics for software
systems. The model presented integrates expert knowledge, handles ambiguity issues
and manages goodness functions that are continuous generalisations of threshold-based
approaches. We found that the model rankings show relatively high correlations with
the tendencies in expert opinions.

Chapter 4

Cost and maintainability

�The bitterness of poor quality
remains long after the sweetness
of low price is forgotten.�

Benjamin Franklin

Because of the lack of formal de�nitions and the subjectiveness of the notion of main-
tainability, there is currently no clear consensus among researchers about its relation to
development cost.

Radlinski and Ho�man [91], for example, compared 23 machine learning algorithms using
local data as a benchmark for development e�ort prediction. The four datasets used
in the experiments contained both process and product information, but lacked source
code metrics (apart from KLOC, which measured the lines of code). The accuracy of
these algorithms strongly depended on the set of predictors, hence no universal machine
learning algorithm was found by the authors. Instead, they found that running several
algorithms using arbitrary predictors could serve as a good starting point for project
managers on estimating development costs.

Several comprehensive studies summarise the e�ectiveness of various cost prediction
methodologies.

Riaz et al. [92] examined 710 studies and selected 15 for an in-depth analysis. Their aim
was to evaluate the ability of existing methods to measure maintainability. They give
a thorough overview of the interpretations of maintainability and summarise the most
commonly used techniques for de�ning it. The authors analysed the measures used by
these approaches and also the accuracy of the prediction results. A systematic review of
research questions found in the papers was carried out. The answers to these questions
were used to grade the e�ectiveness of the studies based on a �xed set of criteria.

Mair et al. [76] examined 171 papers regarding analogy- and regression-based techniques
for cost estimation. They proposed a broad selection of criteria for de�ning the e�ective-
ness of the di�erent approaches. They found that regression models performed poorly,
while analogy-based methods were far better. In many cases, the two di�erent methods
provided con�icting results on the same dataset. Case-based reasoning using a bench-
mark database gave good results in general, but exceptions were also found. Due to the

45

46 Cost and maintainability

lack of standardization in software quality assurance, no universally applicable method
was found by the authors for conducting software cost estimation.

In the next section, we propose a unique formal mathematical model for relating de-
velopment cost to the maintainability of the source code, which can also be used for
predicting future costs of changes. The proposed model turns out to be more e�cient
than the classical regression-based approaches.

4.1 A cost model based on software

maintainability

In our approach, we borrow the concept of entropy used in thermodynamics, which is
utilised to measure the disorder of a system. In the case of software systems, maintain-
ability seems to be an appropriate candidate for approximating the level of disorder; i.e.
the entropy of the source code.

The proposed model is based on two simple assumptions:

1. When making changes to a software system without explicitly seeking to improve it
(like adding new functionalities), its maintainability will decrease (i.e. its disorder
will increase), or at the very least it will remain unchanged.

2. Performing changes in a software system with lower maintainability (i.e. higher
disorder) is more expensive.

Only these two assumptions were used to derive a system of equations which serve
as a model for relating maintainability to development cost. We introduce the notion
of erosion factor, which is a vital parameter of the model that measures the amount
of �harm� caused by changing source code lines of a software. As we will show in
Section 4.1.1, the erosion factor may also serve as a measure for process quality. Model
parameters can be computed from historical data, such as development costs in the past.
After the estimates for the parameters are available, predictions for the future can be
obtained from our model.

We evaluated the model on �ve software systems implemented in the Java programming
language. Three of these are commercial closed-source systems. In order to facilitate
the reproducibility of the experimental results, we performed an analysis on two open
source systems as well.

4.1.1 A formal model for relating costs and maintainability

According to the second law of thermodynamics, the entropy of a closed system cannot
be reduced; it can only remain unchanged or increase. The only way to decrease entropy
(disorder) of a system is to apply external forces, i.e. to input energy to make order.

4.1 A cost model based on software
maintainability 47

We will apply the notion of entropy in a very similar way for software systems. Maintain-
ability of a source code is usually de�ned as a measure of the e�ort required to perform
speci�c modi�cations in it. Assuming that the higher the disorder, the more e�ort is
needed to perform the modi�cations, maintainability can be interpreted as a measure of
the disorder; i.e. entropy of the source code.

Our approach rests on two basic assumptions:

1. Making changes in the source code does not decrease the disorder provided that
one does not actively work against it. In other words, when making changes to
a software system without explicitly seeking to improve it, its maintainability will
decrease, or at the very least it will remain unchanged. In addition, we assume
that the decrease rate of maintainability is linearly proportional to the amount of
lines modi�ed at time t.

2. The amount of changes applied to the source code is linearly proportional to the
e�ort invested, and to the maintainability of the code. In other words, if one applies
more e�ort, the code will change faster. In addition, a more maintainable code
will change faster, even if the applied e�ort is the same. Another interpretation is
that the e�ort on code change is inversely proportional to the maintainability at a
particular time t.

Before formalising these assumptions, we will introduce the following mathematical no-
tions:

• S (t) - the size of the source code at time t, measured in lines of code.

• λ (t) - the change rate of the source code at time t; i.e. the probability of changing
any line independently. S (t)λ (t) is the expected number of lines changed at time
t.

• k - a constant for the conversion between di�erent units of measure. Our approach
handles two scalar measures; namely, maintainability and cost. We will not �x
particular units of measure for each, but instead we will introduce the conversion
constant k. In the following, we will assume without any loss of generality that
cost can be expressed by any measure of e�ort like salary, person month or time,
while maintainability may have some other scalar measure. In practice, after �xing
the unit measures for each, k can be estimated from historical project data.

• C (t) - the cost invested into changing the system up to time t, measured from an
initial time t = 0. Obviously, C (0) = 0.

• M (t) - maintainability (i.e. disorder) of the system at time t.

In the following, we assume that modi�cations do not explicitly mean code improvement,
only new functionality is being added to the system and no refactoring or other explicit

48 Cost and maintainability

improvements are performed. In this case, the �rst assumption can be formalised as
follows:

dM (t)

dt
= −qS (t)λ (t) (q ≥ 0) , (4.1)

meaning that the rate of decrease in maintainability is linearly proportional to the number
of lines changed at time t. The constant factor q is called the erosion factor which
represents the amount of �harm� (decrease in maintainability) caused by changing one
line of code. The erosion factor depends on many internal and external factors like
the experience and knowledge of the developers, maturity of development processes,
quality insurance processes used, tools and development environments, the programming
language and the application domain. The q ≥ 0 assumption makes it impossible for
the code to improve by itself just by adding new functionality. This assumption is in
accordance with Lehman's laws of software evolution, which state that the complexity
of evolving software increases, while its quality decreases at the same time.

Formalising the second assumption leads to the following equation:

dC (t)

dt
= k

S (t)λ (t)

M (t)
. (4.2)

The nominator represents the amount of change introduced at time t. The formula
says that the utilisation of the cost invested at time t for changing the code is inversely
proportional to maintainability.

Solving the above system of ordinary di�erential equations yields the following result:

C (t1)− C (t0) =

∫ t1

t0

k
S (t)λ (t)

M (t)
dt = −k

q

∫ t1

t0

Ṁ (t)

M (t)
dt =

= −k

q
[lnM (t1)− lnM (t0)] = −k

q
ln

M (t1)

M (t0)
. (4.3)

Expressing from the above equation in terms of M (t), we get one of our main results:

M (t1) = M (t0) e
− q

k
(C(t1)−C(t0)), (4.4)

which suggests that the maintainability of a system decreases exponentially with the
invested cost to change the system. The erosion factor q a�ects the decrease rate of
maintainability. It is obvious that for a higher erosion factor the decrease rate will be
higher as well. It is crucial for software development companies to keep the erosion
factor as low as possible � for instance by training the employees, improving processes
and utilising sophisticated quality assurance technologies.

4.1 A cost model based on software
maintainability 49

Although the formula does not provide a way of getting an absolute measure for maintain-
ability, a relative maintainability for the system can easily be de�ned. Indeed, by letting
t0 = 0, and de�ning M (0) = 1, we get the following function for maintainability:

M (t) = e−
q
k
C(t) (4.5)

To understand how it works, let us consider two arti�cial scenarios. The left hand diagram
in Figure 4.1 shows the case where the invested e�ort is constant over time. In this case,
both the maintainability M (t) and the change rate λ (t) decrease exponentially. The
right hand diagram shows the case when one intentionally wants to keep the change rate
of the system constant. Now, the maintainability decreases linearly until it reaches zero,
while the cost increases faster than an exponential rate. The cost will reach in�nity
in �nite time precisely when maintainability reaches zero, meaning that any further
change would require an in�nite amount of e�ort. This is, of course, just a theoretical
possibility, as no one disposes with in�nite resources, which would be required to degrade
the maintainability of a system to absolute zero.

Figure 4.1: Changes of Change rate (λ (t)), Maintainability (M (t)) and Cost (C (t))
when the cost of development is constant (left) and when the change rate is constant
(right) over time.

The challenge in applying the model to real-world software systems lies in the proper
handling of the erosion factor q. While the other model parameters (k and C (t)) can
be readily computed, quantifying the erosion factor, which measures the �harm� caused
by changing one line, is non-trivial. In contrast, if there was an absolute measure of
maintainability, the constant, project speci�c erosion factor q could easily be computed
using Equation 4.5. Furthermore, by having an absolute measure for q as well, the
erosion factors of di�erent projects, organisations could then be compared. The analysis
of the causes of the di�erences would make it possible to lower the erosion factor, e.g.
by improving the processes and training people better. In addition, the overall cost of
development could also be expressed explicitly via the model:

C (t) = −k

q
ln

∣∣∣∣1− q

M (0)

∫ t

0

S (s)λ (s) ds

∣∣∣∣. (4.6)

50 Cost and maintainability

To compute the future development cost, all that would be required would be to have
an estimate for the change rate λ (t) over a speci�ed time period.

In the previous chapter we presented an approach for getting an absolute measure of
maintainability for software systems. We used source code metrics and benchmarks to
probabilistically approximate a benchmark-independent measure of maintainability. Now,
we will use this approach to compute absolute maintainability, to obtain an absolute
erosion factor q, which can then be used to estimate further development costs and to
compare the erosion factors of di�erent projects and organisations.

4.1.2 Validation of the model

In order to evaluate the presented cost model, we analysed a large number of consecutive
versions of �ve di�erent Java projects. Three of these are commercial, closed source
systems, which will be referred to as System-1, System-2 and System-3. To facilitate the
repeatability of the experiments, we performed an analysis of two open source systems
as well. Some of the relevant details on the systems analysed are listed in Table 4.1.

System Nr. of First date Last date System size3 Nr. of
revisions interval authors

System-1 149 06/03/2011 01/31/2012 14175-24861 7
System-2 357 05/09/2008 03/09/2010 53262-143017 21
System-3 641 11/05/2010 10/12/2010 128653-148903 12
jEdit4 1370 09/02/2001 07/25/2006 30986-96203 18
log4j5 1889 12/14/2000 08/15/2007 1464-25642 17

Table 4.1: Properties of the systems analyzed

The reader may have noticed that the model presented here contains parameters which
must be approximated in order to be feasible. To compute the k and q parameters of
the model, we need to know C (T0) for some T0 > 0; i.e. the cost of development up
to time T0. This can usually be estimated by using historical project records, but it
can also be approximated in other ways. After k and q are computed for some time T0

(i.e. the model is trained), the model can be used to make predictions for C (t) , t > T0.
Unfortunately, historical records regarding the development costs were not available in
any of the cases. Therefore, in order to perform the evaluation, we were forced to make
assumptions regarding the costs: we assumed that the costs of the development were
proportional to the elapsed time. Provided that, in case of industrial systems, the teams
work on a project with relatively little variation in their number, this assumption does

3Measured by the total of non-empty non-comment lines of code (TLLOC)
4https://jedit.svn.sourceforge.net/svnroot/jedit/jEdit/branches/4.5.x
5http://svn.apache.org/repos/asf/logging/log4j/branches/BRANCH_1_3

4.1 A cost model based on software
maintainability 51

not seem too restrictive. Unfortunately, this might not be the case with open source
systems as there is usually no stakeholder enforcing steady expectations regarding the
invested e�ort. We will treat the case of open source systems as a threat to validity
because of this reason.

We performed the evaluation based on the following steps:

1. First, we checked out every revision of the source code of each system from their
con�guration management systems.

2. We calculated the maintainability of each source code revision by using our prob-
abilistic source code quality model [10]. We used this value as an approximation
for M (t).

3. For each source code revision, we computed the number of altered source code
lines (added, deleted and modi�ed) compared to the previous revision. The value
got in this way is precisely equal to S (t)λ (t), so computing S (t) explicitly is
unnecessary here.

4. We computed estimates for k and q from Equation 4.2 and Equation 4.5, respec-
tively, at some time T0 > 0. The estimates for k and q are the following:

k = C (T0)

(
1/

∫ T0

0

S (t)λ (t)

M (t)
dt

)
, (4.7)

and

q = − k

C (T0)
ln

M (T0)

M (0)
. (4.8)

5. These estimates, being constants according to our model, are valid for time t > T0,
and can be used to make predictions using Equation 4.6. The predicted costs will
be denoted by C̃ (t).

To compute the number of modi�ed lines of code, in step three we applied a heuristic
algorithm that combines di�s returned by the SVN client. We consider this as a threat
to validity as well.

Di�erent aspects of our results will be summarised in the later sections of this chapter.

The maintainability of evolving software decreases over time

The dark lines on the right hand diagrams in Figure 4.2 show how the maintainability
M (t) changes as a function of time t, measured in number of revisions. All of the �gures

52 Cost and maintainability

show a decreasing tendency in maintainability as more e�ort is put into the development
of these systems. To test our intuition of decreasing functions, the linear regression
lines and their equations are also shown on the diagrams. All the coe�cients of x being
negative, an average decrease in maintainability results in each case. This trend is in
general agreement with Lehman's laws [70].

Maintainability and development cost are in exponential relationship with

each other

Let M̃ (t) denote the predicted maintainability computed using Equation 4.5 and C̃ (t)

(the cost function predicted by the model). Clearly, M̃ (t) decreases exponentially as a
function of C̃ (t). It is su�cient to show that the real cost C (t) correlates well with the
predicted cost C̃ (t) and real maintainability M (t) with the predicted maintainability
M̃ (t) for some �xed k and q. It would mean that for some parameters the model
describes the real world fairly well. Consequently, the measured maintainability should
decrease exponentially as a function of real costs or something similar.

We can compute estimates for any time T0 > 0, as suggested in step 4 above. Obviously,
for larger T0 values, the estimates are better, provided that more historical data is
available for training the model. By taking the last revisions; i.e. the biggest possible
T0, we get the best estimates for k and q. These constants are then used to compute
C̃ (t) and M̃ (t) for any t ≥ 0.

The left-hand diagrams in Figure 4.2 show both C (t) (dark) and C̃ (t) (light) functions.
On the right-hand side, the dark lines show the changes of M (t), while the light ones
show M̃ (t). The diagrams also show the Pearson's correlations between the real and the
predicted curves. The high correlations indicate that both cost and maintainability are
quite well described by the model too. It means that maintainability and cost probably
have an exponential relationship with each other like that described by the model. In the
case of System-3 and log4j the correlations are slightly worse than in the other cases.
The reason of this might be that the time period of the analysis was relatively short,
and according to the SVN logs, lots of refactoring work was done as well.

The presented model is able to predict future development costs based on

change rate of the code, to good accuracy

Previously we showed that the model parameters k and q can be chosen such that the
model describes real-world costs and maintainability quite realistically. Figure 4.3 shows
the estimated k, q and q/k values for each system.

Based on the diagram, the biggest harm was caused in System-1 when one line was
changed, as the erosion factor q is the largest in this case. This might be due to the

4.1 A cost model based on software
maintainability 53

Figure 4.2: Estimated and real costs and maintainability as functions of time

rapid and intensive development of System-1 during the period studied. This is also the
system whose maintainability decreases the most, provided that the applied e�ort is the

54 Cost and maintainability

Figure 4.3: The calculated constant values for the di�erent systems

same, because the ratio q/k is also the largest in this case. The conversion constant
k is the largest for log4j, meaning that same amount of e�ort induces fewer changes
compared to the other systems.

To estimate the cost of a new development, Equation 4.2 of the model requires that one
has an estimate of the total amount of lines that will change, and the function describing
maintainability change in the future. Although the total number of changes can be
estimated in advance, based on requirements and impact analysis [67], maintainability
is obviously unavailable before the changes have been committed, and maintainability
has been measured. Luckily, the erosion factor introduced by Equation 4.1 makes it
possible to approximate the future maintainability based on estimated change rates.
Future development costs can be computed using Equation 4.6 without needing to know
the change of maintainability in advance.

In order to validate the predictive power of our model, we performed future estimations
with di�erent window sizes measured in time. For a particular window size n > 0, we
used the model to compute the estimated cost at time t, based on the already known
cost at t − n (≥ 0) and the planned amount of changes between t − n and t. In other
words, at time t − n we attempt to estimate the overall cost at time t by knowing
the overall cost up to time t − n and the planned amount of future changes. In this
way, for a particular window of size n, we get a sequence of predicted costs, for time
n + 1, n + 2, etc. The window sizes vary from 1 to the largest possible ones, i.e. the
number of revisions available. When the window size is 1, it means that the development
cost of a revision is being approximated based on the previous revision, and the changes
between them. In the case of the largest possible window, the overall development cost
of the whole period is estimated based on the initial cost (which is zero), and the future
changes. For each window size, we computed both the mean squared error [2] and
Pearson's correlation between the real costs and the ones predicted by the model.

For comparability reasons, we also performed another, classical type of cost estimation.
Namely, to estimate future costs, we computed the average cost of a change up to time
t−n, then interpolated the future cost by multiplying the average change cost with the
amount of overall change up to time t. In other words, we computed the average change
cost based on historical data, and expected it to remain the same in the future. This

4.1 A cost model based on software
maintainability 55

classical model di�ers from ours as it does not take the change of maintainability over
time into account, which makes the changes evermore expensive to do. We will refer to
this classical type of cost estimation as a linear prediction.

The left-hand diagrams in Figure 4.4 tell us how the mean squared errors (MSEs) vary
for various window sizes, while on the right-hand side the correlations of the predicted
and real costs are shown. In both cases, the x-axis represents the size of the window,
measured in number of revisions (i.e. time) and the y-axis prepresents the MSE and
Pearson's correlation values, respectively.

Even though it appears that both models become more and more precise for larger
window sizes, this occurs only because the prediction sequences are getting shorter. For
example, with the largest possible window size, only one cost value is predicted; namely,
the last one.

It can be seen that the predictions made by our model outperform the classical linear
model, which does not take the changes of maintainability into account. The di�erences
are especially noticeable for larger window sizes; i.e. long-term predictions. Actually, it
is a natural phenomenon because changes of maintainability are more signi�cant over
longer periods of time.

4.1.3 Limitations

First of all, our cost model is based on two assumptions stated in Section 4.1.1. If these
two assumptions do not hold, our cost model may be invalid. However, our practical
experience and research feedback tell us that these assumptions are quite reasonable.

Another threat to the validity of the results is that we assume that the k conversion
and q erosion factors in the model are constants. It may be that these factors actually
change slightly over time. But even if this is the case, it only means that further
improvements in the prediction model are achievable. Our model is a simplistic cost
model that appears to be most promising in its current form based on the empirical
results given in Section 4.1.2.

Due to the lack of real available data, we had to apply heuristics several times in the
study. To calculate the total amount of altered lines between two revisions of the system,
we used the SVN di� command that returns only added and removed lines. Modi�ed
lines are shown by consecutive inserted and deleted lines. Although our algorithm for
calculating modi�ed lines might not be totally precise, it does not a�ect the results
obtained too much. Our experiments showed that we get similar results using just the
number of inserted lines as a measure of the total changes.

Being unable to collect real development e�orts from tracking systems, we just assumed
that the amount of cost invested in the development was proportional to the elapsed time.

56 Cost and maintainability

Figure 4.4: The mean squared errors and correlations between the linear and model
predictions

The reason for this is that usually there is a �xes-person team that develops the software,
each member putting a roughly constant amount of e�ort into the development. This
was the case for the three proprietary systems that we analysed, but a possible threat to

4.2 Summary 57

validity might be that this assumption is not valid for open source systems.

One might think that the model cannot deal with refactoring and other improvements,
as it assumes that only pure feature developments are allowed. Fortunately, considering
these activities as part of the development- or quality assurance process, which are meant
to moderate quality degradation, they are implicitly encoded in the erosion factor q. In
particular, q is smaller in cases where refactoring and other improvements are performed
regularly or even occasionally. Therefore, we do not regard this as a threat to validity.

A major limitation of the approach, however, is that the predictions are made based
on the amount of changes of lines in the system, which makes the model less useful in
practice. This restriction arises from the simplicity of the model. Still the model can
be readily amended to use function points instead of line changes, producing a more
practical prediction model. We decided to use line changes because they can easily be
extracted from a con�guration management system, which is not the case with function
points.

4.2 Summary

In this chapter we presented a cost model based on source code maintainability. The
model describes the relationship between the change rate of the source code, the main-
tainability of the system and the cost of development. Measuring source code maintain-
ability is one of the essential parts of our cost model. To measure the maintainability,
we applied the probabilistic quality model presented in Chapter 3.

In order to validate our approach, we analysed �ve Java systems (three proprietary
and two open source) and collected a vast amount of data. Altogether 4,396 di�erent
revisions of the systems and over 1 million lines of code changes were examined. We also
checked all the change set logs of those commits that led to a greater improvement in the
maintainability of the system manually. In most of the cases, some kind of refactoring
(e.g. replacing components) was the reason for the improvement, which corroborates
our hypothesis that pure development does necessarily not improve the maintainability
of the software system. An analysis of the empirical data shed light on the following
things:

• The maintainability of an evolving software system decreases over time.

• Maintainability and development cost are related to each other in an exponential
way.

• The presented model is able to predict future development costs based on an
estimated change rate of the code to reasonable accuracy.

Although our model and analysis procedure contains some threats to validity, we think
that the results are valuable, and re�ect the underlying theoretical connection between
development cost and source code maintainability for a complex software system.

Chapter 5

Code duplications from the

perspective of code evolution

�The key to heaven's gate
cannot be duplicated.�

Doug Horton

It is believed by many academic and industrial experts that source code duplications rep-
resent a signi�cant threat to the maintainability of an evolving software system. During
software development, when developers are under the constant pressure of deadlines, it
is common practice to reuse source code by simply copying parts of it, and eventually
performing smaller modi�cations on it (it has been estimated that both industrial and
open source systems contain, on average, about 20% of duplicated code [77]). While
this approach can reduce software development time, the price in the long-term will usu-
ally be paid in the form of increased maintainability costs. One of the primary concerns
is that if the original code segment needs to be corrected, all the copied parts need
to be checked and modi�ed accordingly as well. By inadvertently neglecting to change
the related duplications, the programmers may leave bugs in the code and introduce
inconsistencies. Cory et al. [55] pointed out that there exist situations when duplicating
code might even be bene�cial (e.g. one way to evaluate possible new features for a
system is to clone the a�ected subsystems and introduce the new features there, in a
kind of sandbox testbed). Fowler [74], however, argues that code duplications are the
most important among bad code smells (a particular part of the source code that re-
�ects some kind of design or implementation-related �aw) and they should be eliminated
aggressively by programmers. Kim et al. [57] found that the immediate elimination of
volatile clones might not be cost-e�ective, as the rarely changing duplications may not
be worth eliminating because there are usually lots of them and they might start causing
problems only when they evolve (which happens rarely). As the question of harmfulness
or usefulness of code duplications is still an open question, our intention is not to answer
this question, but to provide new insights, theoretical and empirical results to the ongo-
ing debate. The real threat regarding code duplications does not lie in their existence,
but the fears arise in connection with their evolution. Therefore, tracking the evolution
of individual clones is essential from a maintenance point of view.

59

60 Code duplications from the perspective of code evolution

In this chapter, we present an e�cient algorithm for tracking duplications across subse-
quent versions of a software system. Using this concept, we will introduce the notion
of clone smells which, similar to bad code smells, refer to particular code portions that
should be further inspected manually. The smells are de�ned based on the possible cat-
egories of clone evolution patterns. We use clone smells to assess the impact of code
duplications on maintainability. We will show that clone smells may serve as a basis of an
e�cient clone management technique that reduces risks and maintenance e�orts arising
from the duplications. Lastly, we will examine the relationship between code duplications
to source code coupling.

5.1 Tracking the evolution of code clones

Now, we present an approach for mapping the clone instances of one particular version
of the software to another, based on a similarity distance function. There are basically
three kinds of approaches that map clones between di�erent versions of a software.
Two of the techniques utilise single-version clone detection. The �rst set of approaches
detects clones in a reference version and calculates those of the following versions using
change information from a version repository [6, 62]. The second set of approaches
detects clones for all versions of the program. Clones are then retroactively mapped
using heuristics [24, 32, 11]. The third category of approaches uses incremental clone
detection for �nding clones in subsequent versions of a software system. During the
incremental phase, it also maps the clone instances between the versions by using change
information got from a version control repository [37].

Here, we follow the second approach, by de�ning a heuristic we call evolution mapping

between two particular code fragments taken from di�erent versions. To be precise, a
clone from a particular version is mapped to a clone in another version if the second
code fragment has evolved from the �rst one. The mapping between the clones is trivial
in some special cases, but in general, a sophisticated approach is required.

Our approach of tracking code duplications consists of the following steps:

1. Clone detection phase: identify code clones in each available version of the software
independently.

2. Evolution mapping phase: map the identi�ed clones onto each other across the
versions of the system.

5.1.1 The Evolution Mapping

In this section, we shall describe the evolution mappings between clone instances across
the versions of the software system.

5.1 Tracking the evolution of code clones 61

In the following, Ci, Cj will denote arbitrary clone instances, not necessarily taken from
the same class. We shall use the notion of Cv

i , C
v
j , etc. to emphasise version v of the

system from which the instances originate. In a similar way, CCv
i , CCv

j refer to clone
classes of version v, while CIv stands for the set of instances extracted from version
v of the underlying system. We will use CCv to denote the set of all clone classes in
version v of the system.

The evolution mapping is, in our context, a partial injective mapping of the clone in-
stances of version v1 to a version v2 of the subject system:

e : G ⊂ CIv1 → CIv2

The intuitive meaning is that the images of a mapping have evolved from the instances
of the domain. The mapping is considered to be partial, as there might be some clone
instances that have vanished in the subsequent version. Partiality is expressed by the
set G, which stands for the domain of mapping e, and it is a subset of all the instances
from version v1. Injectivity means that every clone instance from the newer version has
evolved from at most one earlier instance. We would like to exclude the possibility of
one clone instance having more than one predecessor. Keeping in mind that in larger
systems there might be several thousand clone instances and that the asymptotic number
of possible mappings grows exponentially with the number of elements of the sets (due
to partiality), it turns out that �nding the optimal evolution mapping is not easy. Not
just the location of a clone instance may change, but also its syntactic structure, unique
name, etc., which makes really hard to �nd the corresponding code fragments. Initially,
every pair of instances from two subsequent versions should be considered as a potential
pair of the mapping.

By trying to analyse how people would associate code parts that have evolved from each
other (without any information coming from a con�guration management system), we
concluded that there are several features and constraints which should be taken into
account. Starting with the constraints, we de�ne one obvious rule in order to reduce the
number of possible mappings:

R1 : The head of the clone classes (represented by the two instances) must be the

same.

The head of a clone class is the type of the root node of the syntax tree representing
any/every clone instance of the class. This constraint prevents the mapping of di�erent
types of clone instances to each other. For example, it is intuitively clear that a function

node should not be considered as the predecessor of a class node. By applying this
�cutting� rule, a reasonable amount of computation can be saved, as its veri�cation is
simple and fast. For those clone instance pairs that satisfy the above rule, an evaluation
of a similarity distance function is required, which is computationally more expensive and
which is aggregated from the following features:

62 Code duplications from the perspective of code evolution

F1 : Name of the �le containing the clone instance

F2 : Ordinal number of the clone instance in its class

F3 : The unique name of the head node � if the unique name exists (just for named
entities)

F4 : Otherwise, if a unique name cannot be assigned to the head node (in general,
for code fragments inside a function body) the unique name of the �rst named

ancestor in the AST on the path going towards the root node of the AST is taken
(e.g. the unique name of the function containing it)

F5 : The relative position of the code segment inside its �rst named ancestor

F6 : The lexical structure of the clone instance

It should be mentioned that the above features subsume clone instances that are whole
syntactic units, which holds in our case. If other types of clone-detectors (lexical-based,
metric-based, etc.) are used, some of the above features might not be suitable.

The intuitive meaning of the features is the following. If two pieces of code taken from
di�erent versions of the same system are examined from a code evolution perspective,
the �rst thing one should check is how similar the two pieces of code are (F6). If their
similarity reaches a subjective level of acceptance, the second question is how close they
are with respect to the entity that contains it (e.g. function or class) (F5). Afterwards,
one should check the names of the entities that contain it (e.g. functions) (F4). If there
are more clone instances in the same piece of code (function, class, etc.) close to each
other, the mapping should preserve the order in which they appear (F2). The name
of the �le should also be considered, as it could happen that there are two potential
candidates for which all the attribute values are the same, but just the names of the �les
that contain it di�er. (F1). In the case of named entities the situation is much simpler:
one should just compare the unique names of the two instances (F3).

For example, if two clone instances from di�erent versions have the same values for the
above attributes, it may be that they have an evolutionary relationship with each other
(they are lexically identical, they are in the same �le, in the same function, at the same
position, etc.). However, if the attribute values of the instances di�er, that still does
not mean that they are not related (the name of the �le might have been changed, the
position of code fragment might have been altered or the code fragment itself might
have lexically been changed), but the likelihood that they are related is smaller.

It should be added that F1-F6 are only attributes of the clone instances which should
be taken into account when trying to map them across the versions. These attributes
can be used to compute a distance function between the clone instances arising from
di�erent versions of the software. The goal is to construct a mapping (by using a distance
function), between clone instances arising from consecutive versions of a system, which

5.1 Tracking the evolution of code clones 63

is in some sense optimal; i.e. it relates as many pairs as possible, but makes mistakes as
rarely as possible. We will give a more formal description of optimality later on.

Even though the notion of evolution mapping is not speci�c to duplicated code (it can
be applied to any two fragments of code), it cannot be used on its own to track code
evolution because the technique requires a list of candidates which is in our case provided
by a clone detector.

In the following we will formalise the above-mentioned concepts. For each clone instance
pair that satisfy the cutting rule R1, the values of the listed features are computed and
the results are represented by a similarity distance function that in some sense re�ects
all the features at once. Each feature Fi contributes to the distance function by a
given prede�ned weight αi. Let Ci and Cj be two particular clone instances, and let
Dk (Ci, Cj) be the distance value of the Fk features of these instances. Furthermore, let

D∗ (Ci, Cj) =
6∑

k=1

αkDk (Ci, Cj) (5.1)

denote the overall composed similarity distance value of the features for the two given
instances.

In our case the Dk (Ci, Cj) = 0 condition means an exact match of the Fk features. If
the matching gets worse, the value of the function will increase. The functions Dk have
di�erent ranges for di�erent values of k, based on their de�nitions (see Section 5.1.2).
If the distance between two instances is zero then they are de�nitely maps of each other
(based on our earlier discussion) and will not be considered when creating an optimal
mapping. In this way, the number of possible mappings will be considerably reduced and
a signi�cant amount of CPU time will be saved.

After the similarity distances for each instance-pair have been computed, an optimal
evolution mapping can be found. Considering just the pairs with non-zero distances (the
rest can be excluded owing to our earlier remark), we arrive at a so-called assignment

problem [98], which is a fundamental combinatorial optimisation problem. In its general
form, the assignment problem is the following:

There are a number of agents and a number of tasks. Any agent can be assigned to

perform any task, incurring some cost that may vary depending on the agent-task

assignment. It is required that all the tasks be performed by assigning exactly one

agent to each task in such a way that the total cost of the assignment is minimised.

The number of agents and the number of tasks are equal.

The optimal solution of the above problem is an algorithm with polynomial time and
space complexity. It is known as the Hungarian method [63], or Munkres assignment

algorithm [82].

64 Code duplications from the perspective of code evolution

By considering the clone instances of the version vs as agents, the instances of version vt
as tasks, and the similarity distances as costs, the original problem can be reduced to an
assignment problem. If the number of instances is not the same (as is expected), virtual
nodes should be added to the version which has fewer instances. These virtual nodes are
unlike every instance in the other version (the distances are in�nite). The solution of the
assignment problem is a bijection between the agents and tasks (i.e. clone instances), but
a partial injective mapping would be needed. Partiality needs to be enforced, otherwise
it could happen that an instance would be mapped onto a very dissimilar (i.e. distant)
one, just because �something needs to be assigned to everything�. To resolve this issue,
a threshold value β is introduced which serves to prevent mappings between instances
being too dissimilar. In essence, the β value makes the mapping rather partial than bad.
Thus, Equation 5.1 now has the following form:

D (Ci, Cj) =
{ D∗ (Ci, Cj) , if D∗ (Ci, Cj) ≤ β

∞, otherwise

After the optimal mapping has been found, the edges having an in�nite weight are deleted
(it a�ects the pairs for which the similarity distance exceeds β and those in which one
of the nodes is virtual). The remaining edges make up the optimal evolution mapping
between the two versions.

When applying this procedure, two essential questions arise. They are:

• How should the similarity distance functions for the separate features be de�ned?

• How should the weights and the cutting threshold value be determined?

5.1.2 Similarity distance functions

As the features F1, F3, F4 and F6 operate on lexical (string) values, we employed a
modi�ed Levenshtein distance [71] (also known as the edit distance) to measure their
distances. In our case the distance between two strings is their edit distance divided
by the length of the longer one. In this way, we obtain a distance function for each
of the above features lying between 0 and 1. After experimenting we found that for
the F6 feature it is not enough to compare the AST node types; it is more e�ective
to use the original source code. The reason for this is that the node types of the AST
tree represent just a high-level abstraction of the source code: variable names, function
names and certain lexical types of information are missing. Hence if there are two or more
instances of the same clone class, they cannot be distinguished, even though they might
use entirely di�erent variable names, or they might call di�erent functions. To resolve
the issue, we generated the source code fragments from the AST for the instances, and
the resulting strings were compared by using textual similarity. In this way, the generated

5.1 Tracking the evolution of code clones 65

code parts were formatted in the same manner, which would generally not be the case
if the original code fragments were taken.

With F2 and F5, a di�erent approach is required, as they have numerical values. The
F2 feature here is responsible for the correct order of the clone instances. Now suppose
that there are two textually similar instances of the same clone class inside the same
function body near each other. They can only be distinguished from each other by the
order of their appearance in the code.

Formally, if Ci and Cj are two instances, and O(Ck) is the order of appearance of the
Ck instance in its clone class, then let D2 (Ci, Cj) = |O(Ci)−O(Cj)| be the distance
function for feature F2. If the order of Ci and Cj are the same, the feature F2 does not
contribute to the overall similarity distance.

The situation is slightly more complicated for F5. This feature is responsible for mea-
suring the displacement of the instances with respect to their �rst named ancestor.
Figure 5.1 illustrates the notions we use for computing an estimate for the D5 distance
function. Let LBI(Ci) be the number of AST nodes from the beginning of the �rst

Figure 5.1: Diagram showing how F5 is computed.

named ancestor node to the beginning of the instance, let LI(Ci) be the length of the
instance (measured by the number of AST nodes), and let LIE(Ci) be the number of
nodes from the end of the instance to the end of the �rst named ancestor node. Using

66 Code duplications from the perspective of code evolution

these notions, let us de�ne

D5 (Ci, Cj) =

√(
LBI (Ci)

LBI (Cj)
− Lij

)2

+

(
LIE (Ci)

LIE (Cj)
− Lij

)2

,

where

Lij =
LBI(Ci) + LI(Ci) + LIE(Ci)

LBI(Cj) + LI(Cj) + LIE(Cj)
.

With this formula, two code segments are said to be close to each other if the di�erences
in the amount of AST nodes before and after the segments do not di�er much relative to
the overall size of the AST starting from the �rst named ancestor nodes. For example, if
the code segments are located inside a function node, the value of D5 will remain small
even if the body of the function is stretched linearly (approximately the same percentage
of new AST nodes is added before and after the given segment). By doing this, we get
a �stretch-invariant� displacement-measuring distance function.

5.1.3 Weights and threshold

Now we need to address the question of weights and cutting values. Fortunately, the
weights are meaningful, so many of them can be set by relying on human experience.
Even if the optimal values are not easy to determine, the relative priorities are easy
to estimate. For example, the similarity between two code fragments (F6) is obviously
more important than their relative location inside their �rst named ancestor node (F5).
Provided the two segments di�er a lot at the lexical level, we can choose the one which
is more similar, instead of the one whose position is more convenient.

As we would like to have an optimal mapping, we have to de�ne and measure somehow
the goodness of a particular mapping. A candidate mapping is good if it relates as many
pairs as possible, while the probability of making mistakes (i.e. amount of false positives)
is as low as possible at the same time.

The number of pairs is measured by the number of edges of the mapping, while the
overall similarity distance (each edge has a similarity distance value which contributes to
the overall similarity distance of the mapping) must strictly correlate with the amount
of false positives (if the overall weight is high � there are more pairs which are far away
from each other, but they are still related � the probability of having false positives is
higher).

Figure 5.2 shows an example of two possible candidate mappings. The values on the
edges represent weights, i.e. the similarity distance between two clone instances. In the
left diagram, the overall similarity distance of the mapping is 5, while there are just 3
edges. In the right diagram, the overall similarity is 9, while there are 4 edges. Which

5.1 Tracking the evolution of code clones 67

Figure 5.2: Example of candidate mappings

out of these two mappings is better? It depends on someone's subjective notion of
goodness. We decided to take a weighted ratio of these two numbers. Formally,

C (α⃗, β) =

 ∑
Ci∈CIv1 ,Cj=e(Ci)

D (Ci, Cj)

n

∥e (CIv1) ∥

where n > 0, Cj is the map of Ci, ∥e (CIv1) ∥ is the number of edges of the mapping
and the sum in the numerator expresses the overall weight of the edges involved in the
evolution mapping. The smaller the C (α⃗, β) function value is, the better the mapping
is � at least with our interpretation of goodness. Simply taking the sum of the distances
would not be enough, as the trivial mapping with no edges would outperform any other
(this is possible as the mapping might be partial). The parameter n is used to express
the importance of a similarity distance compared to the number of edges. The higher
values of n make small changes of the similarity distance less signi�cant compared to the
number of edges. This is important for smaller values of n as the optimisation algorithm
may drop edges even for a small gain in distance. By increasing n, this should happen less
frequently. Thus the proper value of this parameter needs to be determined empirically.
However, for smaller values of n the number of false positives edges should be smaller
and the amount of true negatives higher. When its value increases, the opposite should
hold.

It is vital that the goodness of mapping de�ned above should depend only on the weights
αi and β. After the weights are �xed, the similarity distance between each pair of clone
instances is computed, and after the Hungarian method described above selects the
edges that will make up the optimal mapping in terms of the weights. We should note
here that the number of degrees of freedom of the model is one, which means that
multiplying all the αi and β values by the same positive constant will not change the

68 Code duplications from the perspective of code evolution

model itself (the resulting mapping would be the same). However, if the αi values were
to tend to zero then every instance would become increasingly similar to each other and
the number of edges would also be high. As a consequence, C (α⃗, β) would tend to
zero, but not because the mapping estimate would be getting better, but because the
features which should have been used to distinguish between the candidates would lose
their importance. Luckily, we may assume that the α⃗ vector lies on the surface of the
six-dimensional sphere (i.e.

∑
α2
i = 1), otherwise when dividing the weights by this sum

the assumption would hold (and would not change the mapping itself). With this idea,
the α⃗ vector cannot approach zero (actually its distance from the origin will always be
equal to one).

Now, as the goodness of a mapping in terms of the weights can be measured, the need
to apply an optimisation algorithm naturally arises. The cost function C (α⃗, β) is a step-
function (not di�erentiable, not even continuous at every point of its domain), hence to
�nd its minimum value, probably the simplest solution is to apply a simulated annealing
algorithm [58].

At each step of the iteration, the αi and β values are independently varied by choosing
random values of a normal distribution. The variance of the underlying distribution
continuously decreases in such a way that it is proportional to the current temperature
T . The probability of making a transition to a lower energy state is, in our case, always
equal to one. Due to its high computational cost, we performed the above optimisation
of the weights on only 36 equally distributed versions of the Mozilla system taken from
the year 2006 (three di�erent versions were taken from each month).

Initially, we assumed that each feature was equally important; i.e. the weights were the
same. Because of the assumption that α⃗ lies on the surface of the unit sphere, the values
of αi should be equal to 1√

6
= 0.4082. At the start, β was also set to this value. For

the initial state, the overall distance was equal to 141.31 and there were 34, 747 edges
between the consecutive versions. After the optimisation, 34, 635 edges remained, while
the overall distance dropped to 4.87 (the sum of squares of the weights was necessarily
equal to one throughout the whole process). As the overall dissimilarity was minimised
in this way, the probability of having false edges (edges between instances which are not
evolutionary related) was also smaller.

Table 5.1 shows the initial values of the weights and the values we got by applying
this optimisation procedure. It turns out that the most important feature is F2 (the
ordinal number of appearance of the clone instances). This feature a�ects the decision
by 28.9%. The textual similarity is also important � 23%. The least important feature
is F5 (the position of the code segment), which was what we expected. The small value
of β allows the mapping to have edges only with very low D (Ci, Cj) values.

The above choice of optimal weights results in an evolution mapping e which will be
referred to as the optimal evolution mapping in the following sections. It should be

5.1 Tracking the evolution of code clones 69

Weights Initial Optimised Contribution
α1 0.4082 0.3122 14.2 %
α2 0.4082 0.6365 28.9 %
α3 0.4082 0.2066 9.4 %
α4 0.4082 0.4293 19.5 %
α5 0.4082 0.1101 5.0 %
α6 0.4082 0.5080 23.0 %
β 0.4082 0.0284

Table 5.1: Initial and optimised weights of the model

mentioned that the portability of a such an optimised mapping should be further in-
vestigated. We shall treat this as an eventual threat to validity as we will also use the
mapping for a di�erent system (jEdit) other than it was trained on.

5.1.4 Evolution of clone classes

So far we have only focused on the evolution mapping of individual clone instances,
which was de�ned as a partial injective mapping of the clone instances of one particular
version onto the instances of another one. This concept can naturally be extended to
clone classes in the following way. Let us suppose that CCv1

i and CCv2
j are two di�erent

clone classes taken from version v1 and v2 respectively. We say that CCv2
j has evolved

from CCv1
i (i.e. e (CCv1

i) = CCv2
j) if and only if one of the following two conditions

hold:

• There exists an instance Cv1
u ∈ CCv1

i for which e (Cv1
u) = Cv2

v ∈ CCv2
j and

D (Cv1
u , Cv2

v) = 0

• ∥{e (Cv1
k) : Cv1

k ∈ CCv1
i }∥ >

∥CC
v2
j ∥
2

and ∥{e−1 (Cv2
k) : Cv2

k ∈ CCv2
j }∥ >

∥CC
v1
i ∥
2

In this case, the evolution mapping between any two clone classes will be well de�ned.

Indeed, in the �rst case if the similarity distance between the instances is zero, it means
that they are identical at the AST level, and the instances falling into the same clone
class must also be identical at the AST level as well (due to the clone-detection approach
used). Therefore there should not exist any instance from CCv1

i that would be identical
to an instance outside CCv2

j , as otherwise it would be identical to all the instances
falling in CCv2

j and therefore it would also need to be in the same class (which is a
contradiction). In the other case, there is a one-to-one correspondence between over
half of the instances of both classes. Of course, there must exist at most one such class
in version v2.

Figure 5.3 shows an example where two clone classes taken from one version cannot
be mapped onto clone classes of the next version. Although the instances are mapped

70 Code duplications from the perspective of code evolution

Figure 5.3: Example of clone class evolution

appropriately, it is not well-de�ned, which clone class should be mapped onto which
(both clone class 77893 and 194 could be mapped onto 79832).

Lastly, the extended evolution mapping will also be an injective partial mapping de�ned
on the clone classes of the system:

e : G ⊂ CCv1 → CCv2

5.2 A classi�cation of clone evolution patterns

In the following, we will systematically summarise all of the possible evolution patterns
and give a brief description of their meaning and consequences. First, let us suppose
that v1, v2, . . . , vn are consecutive versions of the same software system.

Disappearing clone class (DCC)

De�nition: if e
(
CC

vi−1

j

)
= ∅ for some CC

vi−1

j ∈ CCvi−1 clone class (i.e. the evolution
mapping was unable to �nd a correspondence with any clone class from version vi), then
CC

vi−1

j is said to be a disappearing clone class. The most likely reason is that the clone
instances of the class had changed inconsistently, making the clone class disappear.

Appearing clone class (ACC)

De�nition: if e−1
(
CCvi

j

)
= ∅ for some CCvi

j ∈ CCvi clone class (i.e. the clone class
is not a map of any other clone class from version vi−1), then CCvi

j is said to be an
appearing clone class. It is very probable that the developers created a new type of
duplication.

The following smells apply to just those clone instances which are not members of clone
classes that had already been reported as DCC or ACC smells. This means that from
now on it may be assumed that both the e−1

(
CCvi

j

)
̸= ∅ and e

(
CCvi

j

)
̸= ∅ relations

hold for the classes of the particular instances.

Disappearing clone instance (DCI)

De�nition: Ck ∈ CIvi−1 is a disappearing clone instance if e (Ck) = ∅, that is, Ck has not

5.2 A classi�cation of clone evolution patterns 71

been mapped to any instance of the subsequent version. It means that a clone instance
had been modi�ed, but at least two other copies still remained the same, perhaps because
the developer forgot to change the other instances.

Figure 5.4: Example of a DCI smell in the jEdit system

Figure 5.4 gives an example of a DCI smell that was found in the version of 4th May,
2008 in the jEdit system. Please note that the clone classes in the diagram are mapped
onto each other. In this case, the clone instance shown in grey has disappeared as an
execution branch, possibly due to a NullPointerException having been �xed. The same
bug�x was applied for the other two instances just two weeks later.

Appearing clone instance (ACI)

De�nition: Ck ∈ CIvi is an appearing clone instance if e−1 (Ck) = ∅, that is, Ck is not
a map of any instance from the previous version. It means that a new duplicate of an
already copied code was created.

From this point on we will just consider those clone instances for which none of the above
smells have yet been reported. Hence, we shall assume that the relations e−1 (Cvi

k) ̸= ∅
and e (Cvi

k) ̸= ∅ both hold.

Moving clone instance (MCI)

De�nition: Let Ck ∈ CIvi ∩ CCvi
j be a clone instance in version vi. Ck is said to be a

moving clone instance if e−1 (Ck) ̸∈ e−1
(
CCvi

j

)
, i.e. Ck comes from a di�erent clone

class as the other instances. It usually means that the developers had modi�ed the clone
instance in such a way that it became a clone instance of another class, while the other
instances remained in the same clone class.

These �ve smells cover all the basic cases when just two consecutive versions of the
system are considered.

5.2.1 Empirical validation

We evaluated the usefulness of clone smells on two di�erent open source systems; namely,
the Mozilla Firefox Internet browser [81] written in C/C++ and jEdit text editor [47]

72 Code duplications from the perspective of code evolution

written in the Java programming language. In the �rst case, the analysis and clone
detection was performed on a daily basis with the help of the Columbus framework by
taking 365 consecutive versions of the head revision from the year 2006. In the case
of jEdit the clone detection was performed starting with the year 2008, but in this
case weekly steps were taken between the versions. For both systems, the evolution
mapping between the consecutive versions was computed using the weights obtained in
the optimisation step (see Section 5.1.3).

The clone detection toolset used needs the code to be compilable, at least in the case
of C/C++ (it is needed so as to resolve macro and include de�nitions provided in the
command line during compilation). As in the case of the C/C++ system, it was quite
common that the head revision would not compile properly (because of dependency or
con�guration-related issues), these versions were skipped as otherwise a large amount of
false positive clone smells would have been reported. This �ltering was performed just by
neglecting the revisions ofMozilla which could not fully be compiled (some modules failed
to compile). The only consequence is that the construction of the evolution mapping
needs to be done over a longer period of time (not just one day), which may result in
lower precision values. We treated this as an external threat to validity. In the case of
jEdit this did not cause a problem, as the AST is built without compiling the code.

After applying this �ltering process, 295 versions of the system remained (there was a
case when the code could not be built properly for a whole month). Table 5.2 lists the
ranges in which the basic metric values of the underlying software systems varied.

Metrics Mozilla jEdit
TLLOC(Total Logical Lines Of Code) 1,245,450 - 1,356,623 99,994 - 106,196
TNCL (Total Number Of Classes) 3,770 - 4,079 905 - 979
CI (Clone Instances) 4,407 - 6,840 349 - 376
CCL (Clone Classes) 1,784 - 2,641 125 - 135
CC (Clone Coverage) 6% - 6% 4.9% - 10%
Number of versions 295 84
Bijective mappings 97 51

Table 5.2: Basic metric values of Mozilla Firefox and jEdit

With Mozilla, in 97 out of the 295 revisions the evaluation mapping got between consec-
utive versions was identical; i.e. a bijective mapping between the clone instances could
be created. In the case of jEdit, this number was 51 out of 84 versions.

The detected clone smells were manually evaluated in order to see if they were useful
for �nding suspicious evolution patterns. We also attempted to investigate the root
causes of the reported smells. Analysing clone smells is much harder than checking the
results of a simple clone detector tool as it requires considering the code, the change
sets, the version control history, the versions in question, and some other aspects. To

5.2 A classi�cation of clone evolution patterns 73

complicate matters, there are often hidden dependencies that may a�ect the code for
which a particular smell is reported. For example, a change in the list of compiler macro
de�nitions may cause new instances to appear or old ones to disappear. In other cases,
modifying include de�nitions may also produce the same e�ect. Even after the cause
is identi�ed, one needs to be familiar with the system itself, its architecture and the
semantics of changes, in order to reliably o�er an opinion about the changes. Not being
Mozilla or jEdit experts we performed the evaluation based on our experience in using
C++ and Java, without knowing the exact purpose of the applied changes. We tried to
answer the following questions:

• Are the pieces of code really duplications? If they are not (they are false positives
of the clone detector), then it is not necessary to evaluate the particular smell.

• Are the reported code segments really smells of a particular type? If they are not,
then there is probably an error somewhere in the evaluation mapping.

• What are the root causes of the particular smell? Here, we seek to learn what
kind of change in the code led to the reporting of the smell. We do not wish to
speculate whether the changes were really necessary, or whether they could have
been performed di�erently.

Table 5.3 summarises the main results of our evaluation. As can be seen, 366 smells
were found in 295 versions of Mozilla and 50 other smells in 84 versions of jEdit. The
most frequent smells are the DCC and the ACC smells. The table also shows that around
80%-90% of the hits were real smells (relative to the precision of the clone detector).
The 10%-20% of false positives is caused by the evolution mapping which either could
not �nd corresponding instances (because there were too many changes in the code)
or the instances were incorrectly mapped. The very low value of 38% for the clone
detection precision, in the case of the ACI smell, was due to large array initialisations in
the code that were erroneously identi�ed as code duplications.

Hit Clones? Smells?
Mozilla jEdit Mozilla jEdit Mozilla jEdit

DCC 151 21 130 (86%) 19 (90%) 104 (80%) 17 (89%)
ACC 126 29 103 (82%) 24 (83%) 83 (81%) 22 (92%)
DCI 32 1 25 (78%) 1 (100%) 20 (80%) 1 (100%)
ACI 39 1 15 (38%) 0 12 (80%) 0
MCI 18 0 17 (94%) 0 13 (76%) 0
Overall 366 50 290 (79%) 44 (88%) 232 (80%) 40 (91%)

Table 5.3: Number of clone smells

Table 5.4 lists the clone smells found in Mozilla. The categories are de�ned based on the
types of the causes that resulted in the reporting of the particular smell. The columns

74 Code duplications from the perspective of code evolution

Cause DCC ACC DCI ACI MCI Σ

Consistent changes

C1: All instances deleted 26 26
C2: All instances became too short 19 19
C3: File deleted 5 5
C4: Intentional refactoring 3 3
C5: All instances have been newly created 51 51
C6: Instances became su�ciently long 3 3

Σ 53 54 107

Inconsistent changes
C7: Some instances of a class deleted 11 6 17
C8: Inconsistent changes applied 38 21 14 7 13 93
C9: Some instances added to a class 2 8 5 15

Σ 51 29 20 12 13 125

Σ 104 83 20 12 13 232

Table 5.4: Root causes of clone smells found in Mozilla

Cause DCC ACC DCI ACI MCI Σ

Consistent changes

C1: All instances deleted 0
C2: All instances became too short 0
C3: File deleted 1 1
C4: Intentional refactoring 3 3
C5: All instances have been newly created 9 9
C6: Instances became su�ciently long 1 1

Σ 4 10 14

Inconsistent changes
C7: Some instances of a class deleted 1 1
C8: Inconsistent changes applied 12 8 1 21
C9: Some instances added to a class 4 4

Σ 13 12 1 26

Σ 17 22 1 40

Table 5.5: Root causes of clone smells found in jEdit

of the table refer to the clone smells, while the rows cite the reasons for their being
reported.

The �rst main category is the category of Consistent changes, which includes 6 subcat-
egories (C1-C6). For Mozilla, 107 out of 232 evaluated smells fell into the Consistent

changes group. Even though the changes were consistent in this case (the changes af-
fected all the instances of a class in the same way), it does not mean that the code had
improved. In fact, only C1, C3 and C4 refer to changes which improved the maintain-
ability of the system because they mean that all the duplications were eliminated. In the
case of C2 the instances still exist, but they became too short, i.e. invisible to the clone
detector (the minimal clone length was considered to be 10 lines of code). This might
also be a problem, as future inconsistent changes can no longer be detected for these
code segments. In the period surveyed, 46 new clone classes were created (C5) which
might have a negative impact on maintainability. In three other cases the duplications
already existed (C6), but they were too short and had just become visible to the clone
detector. There were �ve cases reported where all the instances of a newly created clone
class were located in the same newly created �le (C6). Only 34 out of these 107 smells
might imply an improvement in maintainability (C1, C3, C4); the other 73 cases suggest
the possibility of a decreased code quality.

The other main category is the category of Inconsistent changes, where not all the in-
stances of a clone class are a�ected in the same way by the changes. In this category

5.2 A classi�cation of clone evolution patterns 75

all the enumerated cases are suspicious, as they might have occurred because the devel-
opers were unaware of the existence of duplications. Most of the smells are caused by
inconsistent changes (C8), which suggests that the developers were unaware of them.

In the case of jEdit, (Table 5.5) the situation is similar in the sense that the majority
of the smells are caused by inconsistent changes. It is very hard to compare the result
obtained for the two systems because of the di�erences in programming languages, code
size, domain, maturity, di�erence in period surveyed, and some other aspects. In spite
of this, a few conspicuous things should be noted:

• In both cases over half (54% and 65%, respectively) of the reported smells refer
to inconsistent code changes, which are at least suspicious.

• the root cause labelled C8 (Inconsistent changes applied) as the major cause of
the smells in both cases.

• Among the inconsistent changes, DCC smell is more frequent than ACC. In this
case ACC is reported when the consistency between the earlier existing duplications
is restored. This suggests that there is a gap between the degree of restored
consistency and the degree of newly introduced inconsistency in the code.

Although the main goal of smells is not that of detecting coding issues, inconsistently
changing duplications may uncover unintentionally remaining serious coding problems
as well. Two such examples are given below that were discovered during the manual
evaluation of smells.

In the case of the Mozilla system, an ACI smell was reported on 3rd March in 2006; a
new clone instance appeared in the class which already had two instances:

• mozilla/content/svg/content/src/nsSVGLengthList.cpp (166:1-192:1) - rev: 1.10

• mozilla/content/svg/content/src/nsSVGNumberList.cpp (164:1-190:1) - rev: 1.7

• mozilla/content/svg/content/src/nsSVGPathSegList.cpp (164:1-190:1) - rev: 1.12

In this case, the second instance printed in italics was reported as a new one. The source
codes of the �rst and second instances are shown in Figure 5.5. As can be seen, the two
pieces of code are indeed duplications.

As the change log suggests, the changes made correspond to a bug�x: �Fixing bug
328439. Use EqualsLiteral and AppendLiteral where appropriate in svg/content...�. This
change was applied to revision 1.6. By using the version control system of Mozilla,
it transpired that exactly the same modi�cations had been applied to the other two
instances on 16th June in 2004, where the commit log was the following: "Bug 226439.
Convert code base to use AppendLiteral/AssignLiteral/LowerCaseEqualsLiteral...". If
code smells had been computed at that time, this change would have resulted in a DCI

76 Code duplications from the perspective of code evolution

166 NS_IMETHODIMP
167 nsSVGLengthList::GetValueString(nsAString& aValue)
168 {
169 aValue.Truncate();
170
171 PRInt32 count = mLengths.Count();
172
173 if (count<=0) return NS_OK;
174
175 PRInt32 i = 0;
176
177 while (1) {
178 nsISVGLength* length = ElementAt(i);
179 nsCOMPtr<nsISVGValue> val = do_QueryInterface(length);
180 NS_ASSERTION(val, "length doesn't

implement required interface");
181 if (!val) continue;
182 nsAutoString str;
183 val->GetValueString(str);
184 aValue.Append(str);
185
186 if (++i >= count) break;
187
188 aValue.AppendLiteral(" ");
189 }
190
191 return NS_OK;
192 }

mozilla/content/svg/content/src/nsSVGLengthList.cpp
(rev.: 1.10)

164 NS_IMETHODIMP
165 nsSVGNumberList::GetValueString(nsAString& aValue)
166 {
167 aValue.Truncate();
168
169 PRInt32 count = mNumbers.Count();
170
171 if (count<=0) return NS_OK;
172
173 PRInt32 i = 0;
174
175 while (1) {
176 nsIDOMSVGNumber* number = ElementAt(i);
177 nsCOMPtr<nsISVGValue> val = do_QueryInterface(number);
178 NS_ASSERTION(val, "number doesn't

implement required interface");
179 if (!val) continue;
180 nsAutoString str;
181 val->GetValueString(str);
182 aValue.Append(str);
183
184 if (++i >= count) break;
185
186 aValue.AppendLiteral(" ");
187 }
188
189 return NS_OK;
190 }

mozilla/content/svg/content/src/nsSVGNumberList.cpp
(rev.: 1.7)

Figure 5.5: Two pieces of code which were found to be clones on the 3rd March in 2006.

smell (one of the three existing instances was neglected) and the bug would not have
remained undetected for almost two years.

Another example was discovered in the jEdit system. Figure 5.6 illustrates the evolution
of code duplications in this particular case. First, a bug�x eliminating the possibility of a
NullPointerException was applied to the instance in the upper right corner. As there had
been two other copies of it, which remained untouched, a DCI smell was reported. Two
weeks later the same bug�x was applied to the other two instances, but in a syntactically
di�erent way which caused the class to disappear (DCC) and a new class appeared at
the same time (ACC). Clone smells would have revealed the inconsistency immediately.

5.2.2 Conclusions

We introduced the notion of clone smells to describe the possible inconsistent clone
instance evolution situations, which should be addressed by the developers to maintain
or even improve the technical quality of the software system.

Our evaluation suggests that clone smells can be useful during software development
because of the following observations:

• The approach presented here results in a comparatively short list of critical code
segments which may comprise issues arising from inconsistent code changes. The
list is signi�cantly shorter than the list of existing duplications in the code, which
allows the developers to manually evaluate them and investigate the causes.

5.3 The connection between clones and coupling 77

Figure 5.6: Inconsistent changes uncover the possibility of a remaining NullPointerEx-
ception

• Over half of the reported smells were caused by inconsistent code changes; i.e.
they were probably worth an additional manual inspection.

• Inconsistency is frequently introduced; consistency is rarely restored.

• Inconsistent changes can uncover unintentionally remaining coding problems in the
code.

In the approach presented here, we did not use any information concerning the underlying
version control system (code repository).

5.3 The connection between clones and coupling

Now we shall examine the e�ect of cloning on the coupling between software units; that
is, on the degree of mutual dependencies of the units. Since we assume here object-
oriented systems, the units are classes. We will analyse the di�erent cloning situations in
terms of changes in class dependencies and discuss the empirical data got from the source
code analysis of several industrial systems, especially that concerning class coupling and
clones. Somewhat surprisingly, this data suggests that there exists an inverse relationship
between the amount of clones and class coupling. Since low coupling is conventionally
regarded as favorable for maintenance, this �nding appears slightly surprising at �rst
sight.

78 Code duplications from the perspective of code evolution

5.3.1 Coupling

Coupling is a concept for measuring the level of interconnectedness and interrelatedness
of software or source code components. High coupling between source code components
is generally considered unfavorable from a maintenance aspect. The primary concerns
for this view are the following:

• Tightly coupled components are harder to analyse and understand as their envi-
ronment has to be considered as well.

• These components are harder to modify as their context should also be taken into
account.

• Testing the changes in tightly coupled parts is harder as their entire environment
needs to be simulated arti�cially during the testing stage.

• Changing tightly coupled components is more risky as the possibility of an inap-
propriate adjustment of their environment is higher.

There are lots of coupling metrics which are de�ned at di�erent levels of abstraction,
measure di�erent types of dependencies, and so on. Probably the most widely used and
accepted coupling metric for source code elements is the so-called Coupling Between

Object classes (CBO). Here, a class is said to be coupled to another one if it uses its
member functions and/or instance variables. This measure tells us the number of classes
to which a given class is coupled.

The CBO metric was found to be the best predictor of software bugs among the Chi-
damber&Kemerer metric suite [38].

5.3.2 The Bonus-Malus model

In Section 3.3, we proposed a model for quantifying high-level quality characteristics
based on a benchmark and using probabilistic aggregation. The development of the
approach was motivated by an earlier (in many ways primitive) model for obtaining
comparative system level measures. The Bonus-Malus model operates with baselines
got from the analysis of various independent software systems of di�erent types and
sizes. The baseline values for some of the most important metrics are based on past
experience and on the analysis of the actual values in existing systems. A few of these
baseline values are listed in Table 5.6.

Then, for the subject system, each metric value is compared to the corresponding baseline
value and placed into one of the 8 prede�ned categories, which are computed as equal
intervals with a step of 25% of the baseline. As with most metrics a bigger value means
worse, we will use the following, so-called Bonus-Malus classi�cation of a metric value
M relative to the baseline value B :

5.3 The connection between clones and coupling 79

Metric Baseline
WMC 22.38
McCC 2.74
CBO 5.63
NOI 9.36

Table 5.6: Baseline values

B3: −∞ / 0 ≤ M ≤ 0.25B

B2: 0.25B < M ≤ 0.5B

B1: 0.5B < M ≤ 0.75B

B0: 0.75B < M ≤ B

M0: B < M ≤ 1.25B

M1: 1.25B < M ≤ 1.5B

M2: 1.5B < M ≤ 1.75B

M3: 1.75B < M ≤ +∞

After, the number of metric values that fall in each of the categories is counted, which
will be used to assess whether the value of the speci�c metric type is typical, below or
above the average. Furthermore, this rating is expressed as a single normalised value as
well, which will be called the baseline index. It will provide an overall rating of the system
in terms of the particular metric. This value falls in the interval [−10 . . . 10], and, in order
to emphasise the more extreme values, it is a weighted sum of the number of elements
of each category with the following weight values: B3(−10), B2(−7), B1(−3), B0(−1),
M0(1), M1(3), M2(7), M3(10). Thus, a negative rating indicates a better-than-average
system, while a positive value shows that a system is worse than the baseline.

By using a �xed set of baseline values, the approach described above allows us to assign
a comparative baseline index for di�erent systems, with any source code metric.

5.3.3 Hidden vs. visible dependencies

Visible dependencies are a straightforward way to recognise interconnections among
software components. The previously described Coupling Between Object Classes is one
of these visible dependencies because the related elements can be readily obtained, just
by looking at a particular class. In software systems, there also exist dependencies which
are not obvious and they are hard or impossible to compute. For example, if there are
two di�erent methods in the same system, which are supposed to compute the same
function without invoking each other, then they are considered to be dependent on each
other. Because of this requirement, neither of these functions should be modi�ed without
adjusting the other one. Yet it is computationally impossible to decide in general whether
two methods always give the same result or not. These kinds of interrelations among

80 Code duplications from the perspective of code evolution

di�erent parts are called hidden dependencies. Another example of hidden dependencies
are code duplications. Indeed, if any of the duplications needs to be changed, every
other instance must be adjusted accordingly. Despite the fact that Type-1 and Type-2
duplications are relatively easy to compute, there is no e�cient solution available for
identifying Type-3 and Type-4 duplications.

While the visible dependencies are relatively easy to handle, the hidden ones can cause
serious headaches and they represent serious stability risks. The hidden dependencies
should be considered during the design phase; prudent design can signi�cantly reduce
the risk of these dependencies arising.

Not surprisingly, the visible and hidden dependencies are not independent of each other.
In particular, the hidden dependencies can be eliminated by introducing visible ones. In
the case of code duplications, for instance, duplications of one type can be extracted
to one class only, and all the occurrences replaced by a reference, which is a visible
dependency.

5.3.4 An empirical study

Within the context of software architecture evaluations in three Finnish machine industry
companies, �ve subsystems were subjected to source code analysis, with the aim of
pointing out potentially problematic parts of the system. The target systems were
selected by the company representatives and we will refer to these systems as A, B, C,
D and E. The sizes of these systems range from 22,000 to 341,000 LLOC (Logical Lines
Of Code) written in C++ and C#. The tool applied to extract the source code metrics
was the Columbus framework.

After computing source code metrics, the baseline indices were calculated in the way
outlined in Section 5.3.2. Besides the CBO metric, we computed the baseline index of
another coupling metric; namely, the Number of Outgoing Invocations (NOI). Baselines
for CBO and NOI were established and set to 4.79 and 7.94, respectively.

Table 5.7 lists the baseline indices for CBO and NOI metrics, and the system level Clone
Coverage (CC) metric as well. The NOI-index for system A is missing as its value is not
comparable with other NOI, owing to the di�erent baseline index used in evaluating this
system. We should add that in the case of baseline indices, lower values mean better
values. But CC is a measure for the amount of cloning observed across the system. As
can be seen from the table, the coupling metrics have an inverse relationship with the
cloning metrics, meaning that improving the system from one aspect can result in decay
in terms of the other. The correlation between CBO and CC is -0.76, while in the case
of NOI and CC it is -0.97.

5.4 Summary 81

System A B C D E
CBO-index -8.85 -7.60 -6.15 -3.74 1.17
NOI-index -7.97 -4.67 -2.56 1.39
CC 32.7 16.9 11.44 9.94 7.47

Table 5.7: Clone and coupling metrics for the systems analyzed

5.3.5 Conclusions

Here, we examined the relationship between cloning and coupling in software systems.
We found that they are, in general, inversely proportional to each other, meaning that
improving one can worsen the other. It follows that, contrary to some ideas about
using just coupling metrics for measuring maintainability, every model used should take
into consideration both aspects. At this point we refer to the quality model shown in
Figure 3.4, which uses CBO and Number of Incoming Invocations (NII) as coupling
metrics, and CC as well.

5.4 Summary

In this chapter we examined the connection between code duplications and maintainabil-
ity from di�erent perspectives. At present, the question of whether code duplications
are actually harmful is still not completely clear. Our intention was not answer this
question, but rather to provide new ideas, and theoretical and empirical inputs to the
ongoing debate.

We looked at the connection between cloning and coupling in software systems and found
that maintainability models should take both aspects into consideration. We said that
the real threat regarding code duplications does not lie in their existence, but rather in
connection with their evolution. Hence, we proposed an e�cient algorithm for tracking
duplications across subsequent versions of a software system. Based on the proposed
algorithm for relating clone occurrences, we de�ned the concept of clone smells, which
describe the di�erent evolution patterns of duplications. We empirically evaluated the
usefulness of clone smells, and we showed that they may serve as a basis for an e�cient
clone management technique that reduces risks and maintenance e�orts arising from the
duplications.

Chapter 6

Conclusions

�Men will die upon dogma,
but will not fall victim to a conclusion.�

John Henry Newman

In this dissertation we proposed a method for deriving a measure for maintainability
that in many ways di�ers from earlier approaches. Although our algorithm provides
a mathematically consistent and clear way for assessing source code quality, it is not
speci�c to source code metrics or any software system. The presented model integrates
expert knowledge, handles ambiguity issues, manages �goodness� functions, which are
continuous generalisations of threshold-based approaches. We found that the changes in
the results of the model re�ect the development activities; i.e. during development the
quality decreases, while during maintenance the quality increases. We also found that
although the goodness values computed by the model are di�erent from the rankings
provided by the developers, they still show relatively good correlations in the trends.

We also presented a formal mathematical model based on ordinary di�erential equations,
which showed that with some reasonable assumptions, this relation may even be expo-
nential. In other words, software maintainability has a great in�uence on development
cost. The analysis of the empirical data shed light to the following points:

• The maintainability of an evolving software system decreases over time.

• Maintainability and development cost have an exponential relationship with each
other.

• The new model is able to predict future development cost based on the estimated
change rate of the code to good accuracy.

To evaluate their e�ect on maintainability, we proposed a method for tracking clones
through the consecutive versions of an evolving software system. We de�ned a heuristic
function called the evolution mapping between two particular code fragments taken
from di�erent versions of the same system. We proposed a similarity distance function
to measure the likelihood of two code fragments having an evolutionary relationship
with each other. The optimal mapping is then obtained as a solution to an optimisation
problem. We extended the mapping to the level of clone classes and showed that the
extension resulted in a well-de�ned mapping.

83

84 Conclusions

Based on the proposed algorithm for relating clone occurrences, we proposed a highly
e�cient and practical code duplication management method which can help reduce
maintenance e�orts and risk of inconsistent changes being made. The key concept lies
in the notion of �clone smells�, which represent di�erent categories of suspicious clone
evolution patterns. Clone smells can be used to identify those occurrences of duplications
that could really cause problems in the future versions; i.e. the hazardous ones. The
evaluation of clone smells suggests that they can be useful during software development
cycles because of the following:

• The approach presented here results in a comparatively short list of critical code
segments that may comprise issues arising from inconsistent code changes. The
list is signi�cantly shorter than the list of existing duplications in the code, which
allows the developers to manually evaluate them and investigate the causes.

• More than half of the reported smells are caused by inconsistent code changes; i.e.
they are probably worth further manual inspection.

• Inconsistency is frequently introduced, consistency is rarely restored; i.e. clones
really represent a risk from a maintainability perspective.

• Inconsistent changes can reveal overlooked coding problems remaining in the code.

In the future, we would like to extend the maintainability model with process metrics
(e.g. cost, time, e�ort) at low level, and with other ISO/IEC 9126 characteristics (e.g.
reliability, usability) at a high level. We also plan to compare goodness functions at the
highest level with the distribution of developers' rankings. The overall goal would be to
build the kind of models where these two functions have a good �t meaning that the
model expresses everything that is possible; i.e. the opinions of the experts with their
usual ambiguity.

To facilitate clone tracking, we also intend to make use of the con�guration management
system. In this way, the other available pieces of process-related information about the
source code should help improve the evolution mapping procedure. Furthermore, by
utilising the bug tracking system, and by mapping the already �xed bugs to the precise
locations in the source code, we should be able better to identify critical duplications
where a bug-�x was applied just to some of the instances of a clone class. These would
be precisely the code segments that have probably been overlooked and which might
never have been noticed without monitoring clone instances throughout the versions of
the system.

Appendix A

Related Work

A.1 Software maintainability models

The appearance of the widely accepted ISO/IEC 9126 and related standards [44] has
stimulated the research in the area of quality models. Numerous papers, ranging from
highly theoretical to more practical ones, examine this important area.

Some of the studies have focused on developing a methodology for adapting the ISO/IEC
9126 model in practice[17, 96, 25]. They provide guidelines or a framework for construct-
ing e�ective quality models. In contrast, we focus more on presenting an algorithmic
approach and a particular application of it for evaluating source code quality based on
source code metrics.

Other papers tackle software quality from the end user's point of view. For example,
Ozkaya et al.[89] stress the importance of using quality models like ISO/IEC 9126 in
practice right from the outset of the design phase. Although their approach is su�ciently
general for evaluating design or end user quality, here we just focus on source code (i.e.,
product) quality evaluation.

Jung et al.[53] conducted a survey and found the correlation among characteristics of
the ISO/IEC 9126 standard. They showed that the strongly correlated characteristics
relative to the users' opinions are di�erent from the ones de�ned by the standard. We
also conducted a survey to validate our approach, the di�erence being that here we used
this information to show the usefulness of the model and not to evaluate any correlations
among the characteristics of the standard.

Studies by Bansiya and Davis[13] and Muthanna et al.[83] focused on the software
design phase. They adapted the ISO/IEC 9126 model to support the quality assessment
of system design. In contrast, our model approach is based on low-level source code

85

86 Related Work

metrics not on design-level metrics and seeks to assess the product quality of an already
existing system. Moreover, they use a simple linear combination to evaluate high-level
characteristics, while we apply a probabilistic approach and use a large benchmark of
systems as a reference instead of calculating absolute values directly. The direct use
of metrics in their approach violates our Interpretable requirement, while using negative
weights breaks the Explicable requirement of our model.

Kuipers and Visser introduced a maintainability model [64] as a replacement for the
Maintainability Index by Oman and Hagemeister [88]. Based on this study, Heitlager
et al.[43], who are members of the Software Improvement Group (SIG), proposed an
extension of the ISO/IEC 9126 model that uses source code metrics at a low level.
Similar to our study, their paper focuses on the Maintainability characteristic of the
standard. Metric values are split into �ve categories, from poor (--) to excellent (++).
The evaluation in their model involves summing the values for each attribute (having
the values between -2 and +2) and then aggregating the values to get an index.

Correia and Visser[28] presented a benchmark that collects measurements for a wide
variety of systems. This benchmark allows one to make a systematic comparison of the
technical quality of (groups of) software products.

Alves et al.[3] presented a technique for deriving metric thresholds from benchmark
data. This method is used to derive more reasonable thresholds for the SIG model as
well. Since the threshold values need to be derived via a complex method for each new
metric, this approach fails to satisfy the Extendible requirement of our model.

Correia and Visser[29] introduced a certi�cation method that is based on the SIG quality
model. The method allows one to certify the technical quality of software systems.
Each system can get a rating from one to �ve stars (-- corresponds to one star, ++
to �ve stars). Baggen et al.[9] re�ned this certi�cation process by performing a regular
re-calibration of the thresholds based on the benchmark.

The original SIG model uses a binary relation between system properties and characteris-
tics. Correia et al.[27] created a survey to elicit weights for their model. The survey was
�lled out by IT professionals, but the authors eventually concluded that using weights
would not improve the quality model because of the lack of consensus among developers.

Our model di�ers from the SIG model in many ways. Firstly, our model is probabilistic,
which naturally combines all the ambiguity issues arising from the lack of consensus,
and the eventual result obtained is not a single value, but a probability distribution.
Secondly, we use di�erent source code-level metrics chosen by a set of experts working
in the area of software quality assurance (see Section 3.3.2). Although we also created a
benchmark of systems for assessing the quality, it is used di�erently. Instead of using the
benchmark for obtaining thresholds, we implicitly compare the metric distributions of the
subject system with the distributions of each system in the benchmark. The comparison

A.2 Modelling the cost of software development 87

results in a goodness function (see Section 3.3.1), which is used as a low-level input
for the model. Thirdly, while the SIG model employs system properties expressed on a
�ve-level scale, our model does not have any classi�cation scale, so there is no loss of
information. Another signi�cant di�erence is that our model uses weights during the
aggregation process. We also conducted a survey for eliciting the weights but we do
not use the average (which may not improve the model[27]). Instead, we work with the
whole distribution of the votes. Since source code quality is a subjective concept (and
our model takes this subjectiveness into account), we believe that our approach is more
expressive than methods which attempt to characterise the system quality in terms of a
single value.

Luijten and Visser [73] showed that the metrics of the SIG quality model strongly correlate
with the time needed to resolve an error in a software system. We also examined the
relation between the metrics of our quality model and the di�erent software development
phases. Moreover, we applied a more direct approach for validation by comparing the
developers' opinions with the results got from of the quality model applied on their
software code.

A.2 Modelling the cost of software development

Modelling software development cost has been an intensive research area for quite a
long time [1, 80, 56, 30, 19]. E�ort estimation is important not just for software devel-
opers [85], but for system operators as well [20]. While summaries of research results
achieved in the last thirty years are available [31, 52], many things remain to be dis-
covered and clari�ed. [94]. Relevant comparison studies of di�erent techniques [51] in
various domains [21, 22, 68, 86, 14] also exist.

In analogy to the notion of entropy in thermodynamics, software entropy was �rst in-
troduced by I. Jacobson et al. [45] to measure the disorder of a software system. The
second law of thermodynamics in principle states that disorder in a closed system cannot
be reduced; it can only remain unchanged or increase. This law also seems reasonable
for software systems, since when as a system is modi�ed, its disorder or entropy always
increases. Based on this, Lehman said that software which is being used needs to be
modi�ed, and the changes result in an increase in complexity and decrease in quality [69].

Canfora et al. [23] applied the software entropy concept when examining changes in
ArgoUML1 and Eclipse.2 First, the authors computed source code metrics, various design
patterns and di�erent process metrics. They approximated the cost by counting the
number of contributors to �le changes. They found that di�erent types of changes may

1http://argouml.tigris.org/
2http://www.eclipse.org/

88 Related Work

contribute either negatively or positively to the entropy. Namely, refactoring decreases
entropy, while feature development usually increases it. They also showed that entropy
tends to increase with the number of contributors to the �le changes.

Bianchi et al. [16] investigated software entropy using bug information. They showed
that constantly changing software systems are a�ected by degradation. The authors
collected a dataset from individual groups of university students responsible for develop-
ing systems with a prede�ned functionality. The dataset consisted of bug reports from
various development stages, which contained the number of found and slipped bugs as
well as the amount of time spent on �xing them. They found that the more time was
spent on bug correction, the harder it was to correct newly appeared defects. This
study correlates with ours; although we used product metrics instead of process metrics.
Moreover, they found that there was close correlation between the decrease in source
code maintainability and the number of faults created in the analysis and design phases.

Hanssen et al. [40] examined software entropy in agile product development. An indus-
trial study was conducted at a company with 60 developers. The code being developed
was continuously monitored by a third party consultant using an automated toolchain.
They found that code entropy strongly a�ected agile processes, and development tasks
took longer when code complexity increased because of a higher entropy value. Moreover,
in the short term iterations of the agile model, the resources needed to detect and resolve
coding issues were insu�cient. Instead of lengthening the iterations, the authors gave a
viable solution to overcome code entropy. The authors stated that refactoring helps to
overcome entropy problems in an agile environment. Our �ndings are similar, though we
stated them generally for all kinds of development methodologies as the processes were
not taken into account during our experiments. They suggested using continuous and
automated code smell detection and refactoring to preserve maintainability through the
iterations.

The ways of performing development e�ort estimation [18] range from experience [51]
through benchmark approaches [95] to model-based approaches. Several methods that
use a mixture of the above-mentioned techniques also exist [90, 59]. Many studies
sought to compare the various approaches and draw pertinent conclusions.

In a recent study, Dubey at al. [33] de�ned a model based on object-oriented metrics
for maintainability analysis. The authors emplyed the maintainability de�nition derived
from the ISO/IEC 9126 standard [44]. They proposed high-level properties (e.g. fault
proneness, defect density, etc.) of a software system that can a�ect maintainability.
An extensive review of existing methodologies concerning high-level characteristics was
carried out by the authors. They found that source code metrics are very useful for
quantifying software maintainability based on the ISO/IEC 9126 standard. They created
a non-benchmark based approach by using the Chidamber & Kemerer object-oriented
metrics suite [26]. However, experimental validation of the model was performed. In

A.3 Evolution of code duplications 89

our case, we used our previously published model [10] based on source code metrics
to quantify maintainability. Our model utilises a benchmark database of source code
measurement data of many systems taken from various domains.

Radlinski and Ho�man [91] compared 23 machine learning algorithms using local data
as a benchmark for development e�ort prediction. The four datasets used for the exper-
iments contained both process and product information, but lacked source code metrics
(except for KLOC, which measured the lines of code). As the accuracy of the algorithms
strongly depended on the set of predictors, therefore no universal machine learning al-
gorithm was found by the authors. Instead, they found that running several algorithms
using arbitrary predictors could serve as a good starting point for project managers on
estimating development costs.

Several comprehensive studies summarise the e�ectiveness of various cost prediction
methodologies.

Riaz et al. [92] examined 710 studies and selected 15 for an in-depth analysis. Their
aim was to evaluate the ability of existing methods to measure maintainability. They
provide a thorough overview of the interpretations of maintainability and summarise the
most commonly used techniques for de�ning it. The authors analysed the measures
used by these approaches and also the accuracy of the prediction results. A systematic
review of research questions found in the papers was then carried out. The answers to
these questions were used to grade the e�ectiveness of the studies based on a system of
criteria. They found that there was little evidence on the e�ectiveness of maintainability
prediction models.

Mair et al. [76] examined 171 papers concerning analogy-based and regression-based
techniques for cost estimation. They proposed a broad selection of criteria for de�ning
the e�ectiveness of the di�erent approaches. They found that regression models per-
formed poorly, while analogy-based methods were far better. In many cases, the two
di�erent methods provided con�icting results on the same dataset. Case-based reason-
ing using a benchmark database gave nice results in general, but exceptions were also
found. Due to the lack of standardisation in software quality assurance, no universally
applicable method was found by the authors for conducting software cost estimation.

A.3 Evolution of code duplications

There are a number of papers that deal with various clone detection approaches. Starting
from the algorithms which are based on a lexical comparison of the source lines or to-
kens [34, 48, 54], through the metric-based approaches [60, 65, 66, 72] which use metric
values of the code parts in order to identify similar fragments, to the more sophisticated
AST-based approaches [15, 61, 97] that require a full syntactic analysis of the source

90 Related Work

code before clone detection can be performed. Here we used our implementation of one
of the existing AST-based approaches presented by Koschke et al. [61].

Constructing algorithms to track clone instances across di�erent versions of a software
system has only recently become a hot area of research. Antoniol et al. [4], for example,
applied time-series techniques to model the changes in the average number of clones
per function in the system. When building a model like this, it is not necessary to map
the clones from one version to the other; just the number of clones in each function
needs to be computed. Metric values of functions were used to identify code duplications
across the versions. The model was able to predict the amount of cloning in the system
with an average error rate of 3.81%. Unlike their approach, we o�er a lower level of
correspondence between the cloned segments by way of comparison. Our approach does
not use source code metrics to �nd the related code segments, but utilises the notion
of a similarity distance function. Antoniol et al. [5] also studied the evolution of code
clones in the Linux Kernel using their metric based approach. They found that the
percentage of cloned code did not change during software evolution cycles and that,
while new clones were added, some were factored out.

Merlo et al. [79] extended the concept of similarity of code fragments in order to quantify
similarities at the release/system level. Similarities were captured by four software metrics
representing the commonalities and di�erences within and among software artifacts.
Doing this, they were able to model the changes in the similarity of the code between
any two versions of the system without really performing clone detection.

Kim et al. [57] proposed a similar approach to ours. They de�ned the cloning relationship
between two clone classes based on the lexical similarity of their representatives. In
this way, a directed acyclic graph was obtained (the nodes are the clone classes and
the edges are represented by the evolution pattern relationship). Clone Genealogy is a
connected component of the above graph where every clone group is connected by at
least one evolution pattern. Clone genealogy was used to perform a study on two small
Java systems from the viewpoint of the cloning habits of the developers. According
to the empirical study they performed, refactoring does not necessarily constitute an
improvement and, in many cases, it is not worth doing as many clones tend to quickly
disappear either because they evolve independently or because they are removed. There is
a conceptual di�erence between their method and ours: their approach tackles ambiguity
issues; i.e., it allows a clone instance to have more than one succeeding or preceding
instance. The ambiguity arises from handling textual similarity and location overlapping
attributes of the duplications di�erently. In our study we combine all the attributes
into one global similarity distance function and provide an optimal mapping between
the instances. Therefore, our approach eliminates this particular ambiguity; each clone
instance is allowed to have at most one successor and one predecessor. Consequently, the
identi�ed evolution patterns (clone smells) signi�cantly di�er from the ones presented
by Kim et al. Furthermore, they used evolutionary patterns to analyse the long term

A.3 Evolution of code duplications 91

behaviour of duplications, while our intention was to detect suspicious evolution patterns
in two subsequent versions only.

Similar to Kim et al., Aversano et al. [6] undertook a similar empirical study with a
slightly re�ned framework, where they analysed the so-called co-changes, which are
changes made by the same author, with the same notes, and within 200 seconds. They
used a clone detector for the Java language that compared subtrees in the abstract
syntax tree. The systems analysed were DNSJava and ArgoUML. They reported that
the majority of clone classes had always been maintained consistently.

Duala-Ekoko et al. [32] proposed a technique for tracking clones in an evolving software
system. They advanced the notion of an abstract Clone Region Descriptor (CRD),
which describes the clone instances within methods in such a way that it is independent
of the exact text or their location in the code. A CRD is a lightweight and abstract
description of the location of a clone region (i.e. clone instance) in the source code.
Given a CRD and a code base, they identify the corresponding clone region through a
series of automatic searches. In this way, their CloneTracker system is able to keep track
of clones even if the code evolves. The attributes used for constructing the CRD are
similar to those applied by us for de�ning our similarity distance function. For example,
a particular CRD contained information such as the �le name, class name, signature
of the method, anchor identi�er of a function block, and also some additional metrical
information about the clone region that was used just for con�ict resolution purposes.
The subsequent versions of the system were searched thoroughly for code pieces having
the same CRD. If multiple candidates were found, a con�ict resolution algorithm was
applied based on the metrical values (e.g. code complexity) of the candidate regions.
Compared to ours, their approach di�ers in a number of ways:

1. Although the set of features considered by us partially overlaps with the one pro-
posed by Duala-Ekoko et al., we do not use these attributes to characterise one
particular clone region, but rather to measure a similarity distance of clone region
pairs. It follows that our approach might be able to relate code fragment pairs to
each other where the proposed CRD di�ers, and therefore, cannot be related by
CloneTracker.

2. In contrast to their technique, our approach is a probabilistic one, in the sense that
a weight is assigned to each candidate pair. When computing the �nal mapping
between the clone regions, all the pairs are considered at once, and the mapping
with the lowest overall weight is taken. As a consequence, this approach is more
�exible in the sense that it relates more clone fragment pairs, even with high
structural and lexical di�erences. Still, our mapping produces more false positives,
and the algorithm is harder to con�gure.

3. Our approach is resistant to changes in the nesting level of particular clone regions,
which does not hold in the case of theirs.

92 Related Work

4. They measured precision and accuracy of CRD by performing both the CRD ex-
traction and lookup on the same particular version of a system. Owing to the
nature of our algorithm, the same measurement technique would yield 100 % for
the precision value (based on the de�nitions of the features and similarity used).

Geiger et al. [36] studied the relation between code clones and change couplings (�les
which are committed at the same time, by the same author, and with the same modi�-
cation description). They proposed a framework for examining code clones and relating
them to change couplings taken from a release history analysis. The results showed that,
although the relationship is not statistically signi�cant, the systems analysed have a fair
amount of cases where the relationship holds.

Krinke [62] used a version control system of open source systems to identify changes
applied to code duplications. They checked to see whether changes applied to cloned
segments were generally consistent (repeated for all instances) or not. Their study re-
vealed that clone classes were consistently changed in roughly half of the cases. Krinke
also showed that classes that had been changed inconsistently earlier and were con-
sistently changed later, were comparatively rare. This conclusion reinforces our view
that identifying inconsistent changes, which may lead to unexpected behaviour in the
future, is an important maintenance-related challenge Identifying inconsistent changes
in software code was the chief goal in our study.

Göde et al. [37] presented an incremental clone detection algorithm that detects clones
based on the results of the previous revision analysis. Their algorithm creates a mapping
between clones of one revision to the next, supplying information about the addition and
deletion of clones. The incremental approach considerably speeds up clone detection
itself, and makes it possible to track the changes on-the-�y (even while the developer
is typing). They utilised general su�x trees in their approach built on token tables
representing tokens of individual �les. When a �le is added, deleted or modi�ed, the
corresponding token table is either added, subtracted or modi�ed accordingly. During the
update procedure, the clones from consecutive versions are also related. Their mapping
procedure di�ers in several aspects from ours:

• They use information that comes from the version control system. We do not
make use of this information.

• Clones moving between �les cannot be tracked as each �le handled has a di�erent
token table.

• Clones can e�ectively be tracked only if at most one of the tokens before the
copied segment is modi�ed. When the structure of a clone is altered or the clone
has moved, the approach does not provide an e�ective solution for keeping track
of them.

Göde et al. focus more on the gain in performance (they achieved a signi�cant improve-
ment) than on tracking the evolution of individual clone fragments.

Appendix B

Summary

B.1 Summary in English

Nowadays, whether we know it or not, software is part of our everyday lives. It doesn't
just exist to make life easier, but our lives may sometimes even depend on it. The software
industry has faced an enormous expansion recently, which in turn places a constant
pressure on IT leaders to deliver the products as early as and as cheaply as possible.
This �race� forces IT leaders and software engineers to sometimes make compromises
and trade long-term quality for short-term bene�ts.

Quantifying source code maintainability is essential for making strategic decisions con-
cerning the software system. Aggregating a measure for source code maintainability has
long been a challenge in software engineering. We showed that the high-level main-
tainability characteristics could be modelled fairly well by using low-level source code
metrics [42]. Unfortunately, it also turned out that the classical metric-based models
trained on one system may not be readily usable on other systems [12]. We presented
a novel method for deriving maintainability models that in many senses di�ers from the
state-of-the-art research achievements and overcomes some of the existing problems.
Our method handles the ambiguity issue that arises from the di�erent interpretations
of key notions and it produces models that express maintainability objectively. We
compared the results of the model with the subjective opinions of those involved in its
development. Although the experts' rankings di�ered from the values provided by the
model in many cases, the high correlations indicated that the quality model expressed
the same changes as the developers would expect.

The importance of maintainability is closely related to the cost of changing the behaviour
of the software system. Grounded on reasonable assumptions, we presented a formal
mathematical model based on ordinary di�erential equations for modelling the relation
between source code maintainability and development cost. These assumptions were the
following:

93

94 Summary

1. When making changes to a software system without explicitly seeking to improve
it, its maintainability will decrease, or at the very least it will remain unchanged.

2. Performing changes in a software system with poorer maintainability is more ex-
pensive.

The evaluation of the empirical results shed light on the following �ndings:

1. The maintainability of an evolving software package generally decreases over time.

2. Maintainability and development cost have an exponential relationship with each
other, with a high correlation.

3. The presented model is able to predict the future development cost based on the
rate of change of the code, to good accuracy.

Code duplications are generally considered to be one of the chief enemies of software
maintainability. Although the copy&paste approach can reduce software development
time, the price in the long term will usually be paid in terms of increased maintainability
costs. One of the primary concerns is that if the original code segment needs to be
corrected, all the copied parts need to be checked and modi�ed accordingly as well. By
inadvertently neglecting to change the related duplications, the programmers may leave
bugs in the code and introduce logical inconsistencies. The real threat does not lie in
the existence of duplications, but rather the worries are related to their evolution. To
facilitate the evaluation of code duplications in terms of maintainability, we proposed
a method for tracking clones through the consecutive versions of an evolving software
system. In our approach, the clones are extracted for all versions of the program and then
they were retroactively mapped using a heuristic called evolution mapping. A similarity
distance function is de�ned, for measuring the likelihood of two code fragments being
in an evolutionary relationship with each other. We reduced the issue of obtaining an
evolution mapping to an assignment problem, which could be e�ciently solved by the
Hungarian method.

The close connection between code duplications and development cost motivated us to
seek for an e�cient clone management method. A plethora of clone detection algorithms
exist nowadays that can help reduce the risks of making inconsistent changes. Applying a
conservative approach, after the clones are detected they can be evaluated and eliminated
if necessary. Unfortunately, this approach cannot be applied in practice, since large
software systems may have several thousands of duplications present in the software
code. Moreover, most of these duplications are harmless, as they may not ever be
modi�ed in the future. We also propose a highly e�cient and practical code duplication
management method that can help reduce maintenance e�orts and risks of inconsistent
changes being made. The key concept lies in the notion of clone smells, which represent
di�erent categories of suspicious clone evolution patterns. Clone smells can be used
to identify those occurrences of duplications that could really cause problems in the

B.1 Summary in English 95

future versions, i.e. the hazardous ones. The list of risky places is several orders of
magnitudes smaller than the list of all duplications in a system, so a manual evaluation
and elimination is more straightforward to perform. Based on the empirical results, it
became clear that clone smells can be useful because of the following:

• The approach results in a comparatively short list of critical code segments which
may comprise issues arising from inconsistent code changes.

• Over half of the reported smells were caused by inconsistent code changes; i.e.
they were probably worth an additional manual inspection.

• Inconsistency is frequently introduced; consistency is rarely restored.

• Inconsistent changes can uncover unintentionally remaining coding problems in the
code.

The main contributions of the dissertation can be summarised as follows. First, we pro-
posed a metric based probabilistic approach for modelling source code maintainability.
Afterwards, we established a formal mathematical model for relating source code main-
tainability and development cost. Next, we presented a novel method for tracking code
duplications through an evolving piece of software. Finally, we proposed a classi�cation
method of suspicious clone evolution patterns, which may serve as a basis of an e�cient
clone management technique that helps reducing risks and maintenance e�orts arising
from the duplications.

Whether clones are harmful or not is still an open question. Our intention was not to
give the �nal answer to that question, but to add new aspects, theoretical and empirical
results to the ongoing debate.

96 Summary

B.2. Summary in Hungarian

A szoftverek mára életünk szerves részévé váltak. Nem csupán kényelmesebbé teszik
mindennapjainkat, hanem sokszor még az életünket is rájuk bízzuk. Az iparág robbanás-
szer¶ növekedése komoly kihívás elé állítja a szoftverfejlesztéssel foglalkozó cégeket és
szakembereket egyaránt. A piaci nyomás arra kényszeríti az informatikai vezet®ket, hogy
egyre gyorsabban és olcsóbban állítsák el® a különböz® szoftver termékeket. A rövid
távú célok elérése érdekében kötött kompromisszumok óhatatlanul is a min®ség rovására
mennek hosszú távon.

Megalapozott stratégiai döntések meghozatala szempontjából elengedhetetlen a forrás-
kód karbantarthatóságának számszer¶sítése. A karbantarthatóság mérése a mai na-
pig komoly kihívásnak számít a szoftverfejlesztés ipari és akadémiai berkeiben egyaránt.
Megmutattuk, hogy az alacsony szint¶ jellemz®k (forráskód-metrikák, kódolási szabály-
sértések, kódmásolatok) mérhet®en befolyásolják egy szoftver forráskódjának karban-
tarthatóságát [42]. Kihívást jelent azonban a karbantarthatóság szubjektivitásának és az
egyes modellek hordozhatóságának kezelése [12]. Az általunk kidolgozott forráskód-
karbantarthatóság modell a jelenleg létez® megközelítésekkel kapcsolatos problémák
többségére megoldást nyújt. A kidolgozott eljárás megfelel®en kezeli a fogalmak szub-
jektív értelmezéséb®l adódó problémákat, ugyanakkor az el®álló modell objektív módon
fejezi ki egy rendszer karbantarthatóságának mértékét. A validáció során összevetettük a
modell által szolgáltatott mér®számokat a fejlesztésben résztvev® szakért®k véleményé-
vel. A modell által számított értékek ugyan nem esnek egybe a fejleszt®k által becsülttel,
azonban a kett® közötti korreláció mégis viszonylag magasnak mondható.

A karbantarthatóság jelent®sége, a szoftver módosításának költségeivel összefüggésben
mutatkozik meg. Munkánk során, kidolgoztunk egy közönséges di�erenciálegyenlete-
ken alapuló, formális matematikai modellt, amely a fejlesztési költségek és a forráskód-
karbantarthatóság között fennálló összefüggések leírására szolgál. Költségbecsl® model-
lünk két egyszer¶ feltételezésen alapul:

1. A forráskódon végrehajtott bármilyen módosítás, amely nem kifejezetten annak
javítását célozza (pl. funkcionalitás hozzáadása) nem növeli annak karbantartha-
tóságát.

2. Kevésbé karbantartható szoftverek esetén a módosítások végrehajtása költsége-
sebb.

Az empirikus adatok elemzése során az alábbi következtetéseket vontuk le:

1. Általánosságban véve elmondható, hogy egy fejlesztés alatt álló szoftver karban-
tarthatósága az id® során csökken.

2. Egy rendszer karbantarthatósági mértéke és a fejlesztési költségek alakulása nagy
korrelációt mutat a modell által becsült értékekkel, azaz egymással közel exponen-
ciális kapcsolatban állnak.

B.2 Summary in Hungarian 97

3. A bemutatott modell nagy pontossággal képes el®re jelezni a fejlesztések jöv®beli
költségeit a kódváltozás mértéke alapján.

A kódmásolatokat általánosságban véve a forráskód karbantarthatóság f® ellenségének
szokás tekinteni. Rövid távon a klónozás csökkenti ugyan a fejlesztés idejét, hosszú távon
azonban a karbantartási költségek drasztikus növekedéséhez vezethet. Az egyik legsú-
lyosabb érv a klónozással szemben, hogy amennyiben valamely kódrészlet módosításra
szorul, úgy valamennyi másolt szakasz ellen®rzésre és kiigazításra szorul. Amennyiben
a másolt szakaszok módosítását elmulasztják, a m¶ködés során hibák és logikai inkon-
zisztenciák léphetnek fel. A valódi aggályok nem is a másolatok jelenlétéb®l adódnak,
hanem a forráskód evolúciójával összefüggésben merülnek fel. Annak el®segítése érdeké-
ben, hogy a kódmásolatoknak a forráskód karbantarthatóságára gyakorolt hatásait ele-
mezni tudjuk, kidolgozásra került egy eljárás, amely segítségével a kódmásolatok id®ben
követhet®vé válnak az evolúció során. Megközelítésünkben a kódmásolatok, a szoftver
egymást követ® verzióiban, egymástól függetlenül kerülnek azonosításra, majd az így
talált klónok egy heurisztikus eljárás segítségével kerülnek megfeleltetésre. Meghatároz-
tunk egy hasonlósági távolság értéket, amely annak a valószín¶ségét fejezi ki, hogy két
kódrészlet közül az egyik a másik továbbfejlesztéseként jött létre. Ezen evolúciós meg-
feleltetés meghatározását visszavezettük egy hozzárendelési feladatra, amely a Magyar

módszer segítségével hatékonyan oldható meg.

A fejlesztési költségek és a kódmásolatok között fennálló kézenfekv® kapcsolat arra kész-
tetett bennünket, hogy egy hatékony kódmásolat-menedzsment eljárás után kutassunk.
Manapság már számos megoldás létezik kódmásolatok azonosítására és a bel®lük adódó
kockázatok csökkentésére. A konzervatív megközelítés szerint, a kódmásolatok azonosí-
tását kézi kiértékelés követi. Sajnálatos módon, a gyakorlatban ez a megközelítés nehezen
alkalmazható, mivel egy nagyméret¶ szoftverben akár több ezer kódmásolat is létezhet.
Továbbá a legtöbb klón ártalmatlan, mivel várhatóan a jöv®ben már nem fognak vál-
tozni többet. A kódmásolatok követésére bemutatott eljárás alapján kidolgoztunk egy
hatékony, gyakorlati kódmásolat-kezelést el®segít® módszert, amely a duplikációk inkon-
zisztens módosításaiból fakadó karbantartási költségeket és üzemeltetési kockázatokat
csökkenti. Ennek érdekében bevezettük az ún. �clone smell�-ek fogalmát, amelyek a
gyanús klón-evolúciós minták leírására szolgálnak. A �clone smell�-ek felhasználásával
lehet®ség nyílik a valóban veszélyesnek tekinthet® másolatok azonosítására, és a klónok
hatékony kezelésének megvalósítására. Az aggályos kódrészek listája nagyságrendekkel
kevesebb elemet tartalmaz, mint amekkora egy rendszerben lév® másolatok száma, ez-
által azok kézi kiértékelése is elvégezhet®. Az eredmények alapján világossá vált, hogy a
�clone smell�-ek hasznosak a karbantarthatóság javítása szempontjából, mivel:

• A módszer egy viszonylag rövid, manuálisan ellen®rizhet® listát eredményez azokról
a kritikus forráskód részekr®l, amelyek inkonzisztens módosulásokkal kapcsolatos
veszélyeket rejthetnek.

• A �clone smell�-ek több mint fele inkonzisztens módosulásból adódik, ezért érde-

98 Summary

mesek lehetnek további kézi elemzésre.

• Inkonzisztens módosulások gyakrabban el®fordulnak, mint konzisztens változtatá-
sok.

• A módszer segítségével inkonzisztens módosulásokból adódó kódolási problémákra
is fény derülhet.

A jelen tudományos értekezés az alábbiakkal járul hozzá a karbantarthatóság és kód-
másolatok kutatási területéhez. Kifejlesztésre és bemutatásra került egy valószín¶ség-
számítási módszereken alapuló, a forráskód karbantarthatóságának modellezését lehet®vé
tev® módszer. Felállítottunk egy formális matematikai elméletet a forráskód-karbantart-
hatóság és a fejlesztési költségek viszonyának modellezésére. Kidolgoztuk egy kódmá-
solat példányok id®beli követését megvalósító eljárást, amely a másolatok és a karban-
tarthatóság kapcsolatának vizsgálata szempontjából elengedhetetlen. Továbbá megal-
kottunk egy kódmásolat klasszi�kációs eljárást, amely a másolatok evolúciójának gyanús
mintáin alapul, és amely alapját képezheti egy hatékony kódmásolat-menedzsment mód-
szernek.

A mai napig nyitott kérdés, hogy vajon a kódmásolatok valóban kártékonyak-e a karban-
tarthatóságra nézve. Jelen disszertációval a szándékunk nem ezen kérdés megválaszolása
volt, hanem, hogy új és értékes néz®pontokkal, elméleti és gyakorlati eredményekkel já-
ruljunk hozzá a kutatók között jelenleg is zajló vitához.

Bibliography

[1] A.J. Albrecht and Jr. Ga�ney, J.E. Software function, source lines of code, and
development e�ort prediction: A software science validation. Software Engineering,
IEEE Transactions on, SE-9(6):639 � 648, Nov. 1983.

[2] David M Allen. Mean square error of prediction as a criterion for selecting variables.
Technometrics, 13(3):469�475, 1971.

[3] Tiago L. Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds
from benchmark data. In Proceedings of the 2010 IEEE International Conference

on Software Maintenance, ICSM '10, pages 1�10, Washington, DC, USA, 2010.
IEEE Computer Society.

[4] Giuliano Antoniol, Gerardo Casazza, M. Di Penta, and Ettore Merlo. Modeling
clones evolution through time series. In Proceedings of the 17th International

Conference on Software Maintenance (ICSM 2001), pages 273�280. IEEE Computer
Society, 2001.

[5] Giuliano Antoniol, Ettore Merlo, U. Villano, and M. Di Penta. Analyzing cloning
evolution in the linux kernel. In Information and Software Technology, Volume 44,
pages 755�765, 2002.

[6] Lerina Aversano, Luigi Cerulo, and Massimiliano Di Penta. How clones are main-
tained: An empirical study. In CSMR '07: Proceedings of the 11th European

Conference on Software Maintenance and Reengineering, pages 81�90, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[7] Motoei Azuma. Software products evaluation system: quality models, metrics and
processes - international standards and japanese practice. Information and Software

Technology, 38(3):145 � 154, 1996.

[8] Robert Baggen, José Correia, Katrin Schill, and Joost Visser. Standardized code
quality benchmarking for improving software maintainability. Software Quality Jour-
nal, 20:287�307, 2012. 10.1007/s11219-011-9144-9.

[9] Robert Baggen, Katrin Schill, and Joost Visser. Standardized Code Quality Bench-
marking for Improving Software Maintainability. In Proceedings of the Fourth In-

ternational Workshop on Software Quality and Maintainability (SQM2010), 2010.

99

100 Bibliography

[10] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc, and T. Gyimothy. A proba-
bilistic software quality model. In Software Maintenance (ICSM), 2011 27th IEEE

International Conference on, pages 243 �252, Sept. 2011.

[11] Tibor Bakota, Rudolf Ferenc, and Tibor Gyimothy. Clone smells in software evo-
lution. Proceedings of the 23rd International Conference on Software Maintenance

(ICSM 2007), pages 24�33, 2-5 Oct. 2007.

[12] Tibor Bakota, Rudolf Ferenc, Tibor Gyimothy, Claudio Riva, and Jianli Xu. To-
wards portable metrics-based models for software maintenance problems. Software
Maintenance, IEEE International Conference on, 0:483�486, 2006.

[13] J. Bansiya and C.G. Davis. A Hierarchical Model for Object-Oriented Design Quality
Assessment. IEEE Transactions on Software Engineering, 28:4�17, 2002.

[14] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A Validation of Object-
Oriented Design Metrics as Quality Indicators. In IEEE Transactions on Software

Engineering, Volume 22, pages 751�761, October 1996.

[15] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant'Anna, and Lorraine
Bier. Clone Detection Using Abstract Syntax Trees. In Proceedings of the Interna-

tional Conference on Software Maintenance, ICSM '98, pages 368�377, Washing-
ton, DC, USA, 1998. IEEE Computer Society.

[16] A. Bianchi, D. Caivano, F. Lanubile, and G. Visaggio. Evaluating software degra-
dation through entropy. In Software Metrics Symposium, 2001. METRICS 2001.

Proceedings. Seventh International, pages 210 �219, 2001.

[17] Jorgen Boegh, Stefano Depan�lis, Barbara Kitchenham, and Alberto Pasquini. A
Method for Software Quality Planning, Control, and Evaluation. IEEE Software,
16:69�77, 1999.

[18] Barry Boehm, Chris Abts, and Sunita Chulani. Software development cost esti-
mation approaches - a survey. Annals of Software Engineering, 10:177�205, 2000.
10.1023/A:1018991717352.

[19] Barry Boehm, Bradford Clark, Ellis Horowitz, Chris Westland, Ray Madachy, and
Richard Selby. Cost models for future software life cycle processes: Cocomo 2.0.
Annals of Software Engineering, 1:57�94, 1995. 10.1007/BF02249046.

[20] Barry W. Boehm. Software engineering economics. Software Engineering, IEEE

Transactions on, SE-10(1):4 �21, jan. 1984.

[21] Lionel C. Briand, Khaled El Emam, Dagmar Surmann, Isabella Wieczorek, and
Katrina D. Maxwell. An assessment and comparison of common software cost
estimation modeling techniques. In Proceedings of the 21st international conference
on Software engineering, ICSE '99, pages 313�322, New York, NY, USA, 1999.
ACM.

Bibliography 101

[22] Lionel C. Briand, Tristen Langley, and Isabella Wieczorek. A replicated assessment
and comparison of common software cost modeling techniques. In Proceedings of

the 22nd international conference on Software engineering, ICSE '00, pages 377�
386, New York, NY, USA, 2000. ACM.

[23] G. Canfora, L. Cerulo, M. Di Penta, and F. Pacilio. An exploratory study of factors
in�uencing change entropy. In Program Comprehension (ICPC), 2010 IEEE 18th

International Conference on, pages 134 �143, 30 2010-july 2 2010.

[24] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. Identifying changed
source code lines from version repositories. In MSR '07: Proceedings of the Fourth

International Workshop on Mining Software Repositories, page 14, Washington,
DC, USA, 2007. IEEE Computer Society.

[25] Juan Pablo Carvallo and Xavier Franch. Extending the ISO/IEC 9126-1 Quality
Model with Non-technical Factors for COTS Components Selection. In Proceedings

of the 2006 international workshop on Software quality, WoSQ '06, pages 9�14,
New York, NY, USA, 2006. ACM.

[26] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object Oriented Design.
IEEE Trans. Softw. Eng., pages 476�493, June 1994.

[27] Jose Pedro Correia, Yiannis Kanellopoulos, and Joost Visser. A survey-based study
of the mapping of system properties to iso/iec 9126 maintainability characteristics.
Software Maintenance, IEEE International Conference on, 0:61�70, 2009.

[28] José Pedro Correia and Joost Visser. Benchmarking technical quality of software
products. In Proceedings of the 2008 15th Working Conference on Reverse Engi-

neering, WCRE '08, pages 297�300, Washington, DC, USA, 2008. IEEE Computer
Society.

[29] Jose Pedro Correia and Joost Visser. Certi�cation of technical quality of software
products. In Proc. of the Int'l Workshop on Foundations and Techniques for Open

Source Software Certi�cation, pages 35�51, 2008.

[30] AME Cuelenaere, MJIM van Genuchten, and FJ Heemstra. Calibrating a soft-
ware cost estimation model: why and how. Information and Software Technology,
29(10):558 � 567, 1987.

[31] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner. Software quality
models: Purposes, usage scenarios and requirements. In Software Quality, 2009.

WOSQ '09. ICSE Workshop on, pages 9 �14, may 2009.

[32] Ekwa Duala-Ekoko and Martin P. Robillard. Tracking code clones in evolving soft-
ware. In ICSE '07: Proceedings of the 29th International Conference on Software

Engineering, pages 158�167, Washington, DC, USA, 2007. IEEE Computer Society.

102 Bibliography

[33] Sanjay Kumar Dubey and Ajay Rana. Assessment of maintainability metrics for
object-oriented software system. SIGSOFT Softw. Eng. Notes, 36(5):1�7, Septem-
ber 2011.

[34] Stephane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent
approach for detecting duplicated code. In Proceedings of the 15th International

Conference on Software Maintenance (ICSM'99), pages 109�118. IEEE Computer
Society, 1999.

[35] Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Columbus
� Reverse Engineering Tool and Schema for C++. In Proceedings of the 18th In-

ternational Conference on Software Maintenance (ICSM'02), pages 172�181. IEEE
Computer Society, October 2002.

[36] Reto Geiger, Beat Fluri, Harald C. Gall, and Martin Pinzger. Relation of code
clones and change couplings. In Proceedings of the 9th International Conference of

Funtamental Approaches to Software Engineering (FASE), Number 3922 in LNCS,
pages 411�425. Springer, 2006.

[37] Nils Göde and Rainer Koschke. Incremental clone detection. Software Maintenance

and Reengineering, European Conference on, 0:219�228, 2009.

[38] Tibor Gyimóthy, Rudolf Ferenc, and István Siket. Empirical Validation of Object-
Oriented Metrics on Open Source Software for Fault Prediction. IEEE Transactions

on Software Engineering, pages 897�910, 2005.

[39] Mark Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The WEKA Data Mining Software: An Update. SIGKDD

Explorations, 2009.

[40] G.K. Hanssen, A.F. Yamashita, R. Conradi, and L. Moonen. Software entropy in
agile product evolution. In System Sciences (HICSS), 2010 43rd Hawaii International

Conference on, pages 1 �10, Jan. 2010.

[41] R. Harrison, S.J. Counsell, and R.V. Nithi. An evaluation of the mood set of object-
oriented software metrics. IEEE Transactions on Software Engineering, 24:491�496,
1998.

[42] Péter Hegedus, Tibor Bakota, László Illés, Gergely Ladányi, Rudolf Ferenc, and Ti-
bor Gyimóthy. Source code metrics and maintainability: A case study. In Tai-hoon
Kim, Hojjat Adeli, Haeng-kon Kim, Heau-jo Kang, KyungJung Kim, Akingbehin Ki-
umi, and Byeong-Ho Kang, editors, Software Engineering, Business Continuity, and
Education, Volume 257 of Communications in Computer and Information Science,
pages 272�284. Springer Berlin Heidelberg, 2011.

[43] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring
maintainability. In Proceedings of the 6th International Conference on Quality of

Information and Communications Technology, QUATIC '07, pages 30�39, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

Bibliography 103

[44] ISO/IEC. ISO/IEC 9126. Software engineering � Product quality. ISO/IEC, 2001.

[45] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Soft-

ware Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.

[46] Judit Jász, Árpád Beszédes, Tibor Gyimóthy, and Václav Rajlich. Static Execute
After/Before as a replacement of traditional software dependencies. In ICSM, pages
137�146, 2008.

[47] jEdit Homepage. http://www.jedit.org.

[48] J. Howard Johnson. Identifying redundancy in source code using �ngerprints. In
Proceedings of the 1993 conference of the Centre for Advanced Studies on Collab-

orative research (CASCON'93), pages 171�183. IBM Press, 1993.

[49] I.T. Jolli�e. Principal Component Analysis. Springer Verlag, 1986.

[50] C. Jones, O. Bonsignour, and J. Subramanyam. The Economics of Software Quality.
Addison-Wesley, 2011.

[51] M. Jorgensen, B. Boehm, and S. Rifkin. Software development e�ort estimation:
Formal models or expert judgment? Software, IEEE, 26(2):14 �19, March-April
2009.

[52] M. Jorgensen and M. Shepperd. A systematic review of software development cost
estimation studies. Software Engineering, IEEE Transactions on, 33(1):33 �53, Jan.
2007.

[53] Ho-Won Jung, Seung-Gweon Kim, and Chang-Shin Chung. Measuring Software
Product Quality: A Survey of ISO/IEC 9126. IEEE Software, pages 88�92, 2004.

[54] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a multilin-
guistic token-based code clone detection system for large scale source code. IEEE

Transactions on Software Engineering, 28(7):654�670, 2002.

[55] Cory Kapser and Michael W. Godfrey. "cloning considered harmful" considered
harmful. In Proceedings of the 13th Working Conference on Reverse Engineering,
WCRE '06, pages 19�28, Washington, DC, USA, 2006. IEEE Computer Society.

[56] Chris F Kemerer. An empirical validation of software cost estimation models. Com-

mun. ACM, 30:416�429, May 1987.

[57] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empirical study
of code clone genealogies. SIGSOFT Software Engineering Notes, 30(5):187�196,
2005.

[58] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, Number 4598, 13 May 1983, 220, 4598:671�680, 1983.

104 Bibliography

[59] M. Klas, A. Trendowicz, Y. Ishigai, and H. Nakao. Handling estimation uncer-
tainty with bootstrapping: Empirical evaluation in the context of hybrid prediction
methods. In Empirical Software Engineering and Measurement (ESEM), 2011 In-

ternational Symposium on, pages 245 �254, sept. 2011.

[60] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bernstein. Pattern
matching for clone and concept detection. In Reverse engineering, pages 77�108.
Kluwer Academic Publishers, 1996.

[61] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using abstract
syntax su�x trees. In Proceedings of the 13th Working Conference on Reverse Engi-

neering (WCRE'06), pages 253�262, Washington, DC, USA, 2006. IEEE Computer
Society.

[62] Jens Krinke. A study of consistent and inconsistent changes to code clones. In
WCRE '07: Proceedings of the 14th Working Conference on Reverse Engineering,
pages 170�178, Washington, DC, USA, 2007. IEEE Computer Society.

[63] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistic Quarterly, 2:83�97, 1955.

[64] Tobias Kuipers and Joost Visser. Maintainability Index Revisited - position paper.
In System Quality and Maintainability, satellite of CSMR 2007. IEEE Computer
Society Press, 2007.

[65] Bruno Lague, Daniel Proulx, Jean Mayrand, Ettore M. Merlo, and John Hudepohl.
Assessing the bene�ts of incorporating function clone detection in a development
process. In Proceedings of the 13th International Conference on Software Mainte-

nance (ICSM'97), page 314, Washington, DC, USA, 1997. IEEE Computer Society.

[66] Filippo Lanubile and Teresa Mallardo. Finding function clones in web applica-
tions. In Proceedings of the 7th European Conference on Software Maintenance

and Reengineering (CSMR'03), pages 379�388. IEEE Computer Society, 2003.

[67] Michelle Lee, A. Jeerson Outt, and Roger T. Alexander. Algorithmic analysis of the
impacts of changes to object-oriented software. In Proceedings of the International

Conference on Software Maintenance, pages 171�184. IEEE, 2000.

[68] Taeho Lee, Donoh Choi, and Jongmoon Baik. Empirical study on enhancing the
accuracy of software cost estimation model for defense software development project
applications. In Advanced Communication Technology (ICACT), 2010. The 12th

International Conference on, Volume 2, pages 1117 �1122, feb. 2010.

[69] M. M. Lehman and L. A. Belady, editors. Program evolution: processes of software

change. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

Bibliography 105

[70] M M. Lehman, J F. Ramil, P D. Wernick, D E. Perry, and W M. Turski. Metrics and
laws of software evolution - the nineties view. In Proceedings of the 4th International
Symposium on Software Metrics, METRICS '97, pages 20�, Washington, DC, USA,
1997. IEEE Computer Society.

[71] Levenshtein distance.
http://en.wikipedia.org/wiki/Levenshtein_distance.

[72] Giuseppe A. Di Lucca, Massimiliano Di Penta, and Anna Rita Fasolino. An ap-
proach to identify duplicated web pages. In Proceedings of the 26th International

Computer Software and Applications Conference on Prolonging Software Life: De-

velopment and Redevelopment (COMPSAC'02), pages 481�486. IEEE Computer
Society, 2002.

[73] Bart Luijten and Joost Visser. Faster Defect Resolution with Higher Technical
Quality Software. In Proc. of the Fourth Int'l Workshop on System Quality and

Maintainability, pages 11�20. IEEE Computer Society Press, 2010.

[74] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts. Refactoring: Improving

the Design of Existing Code. Addison-Wesley Professional, 1999.

[75] P. Mahalanobis. On tests and measures of group divergence i. theoretical formulae.
J. and Proc. Asiat. Soc. of Bengal, 26:541�588, 1930.

[76] C. Mair and M. Shepperd. The consistency of empirical comparisons of regression
and analogy-based software project cost prediction. In Empirical Software Engineer-

ing, 2005. 2005 International Symposium on, page 10 pp., Nov. 2005.

[77] Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the automatic
detection of function clones in a software system using metrics. In ICSM '96:

Proceedings of the 1996 International Conference on Software Maintenance, page
244, Washington, DC, USA, 1996. IEEE Computer Society.

[78] T. J. McCabe. A Complexity Measure. IEEE Trans. Softw. Eng., 2:308�320, July
1976.

[79] Ettore Merlo, Michel Dagenais, P. Bachand, J. S. Sormani, S. Gradara, and Giuliano
Antoniol. Investigating large software system evolution: The linux kernel. In Pro-

ceedings of the 26th International Computer Software and Applications Conference

on Prolonging Software Life: Development and Redevelopment (COMPSAC'02),
pages 421�426. IEEE Computer Society, 2002.

[80] Yukio Miyazaki and Kuniaki Mori. Cocomo evaluation and tailoring. In Proceedings

of the 8th international conference on Software engineering, ICSE '85, pages 292�
299, Los Alamitos, CA, USA, 1985. IEEE Computer Society Press.

[81] The Mozilla Firefox Homepage.
http://www.firefox.com.

106 Bibliography

[82] James Munkres. Algorithms for the assignment and transportation problems. Jour-
nal of the Society for Industrial and Applied Mathematics, Vol. 5, No. 1:32�38,
1957.

[83] S. Muthanna, K. Ponnambalam, K. Kontogiannis, and B. Stacey. A maintainability
model for industrial software systems using design level metrics. In Proceedings of

the Seventh Working Conference on Reverse Engineering (WCRE'00), WCRE '00,
pages 248�, Washington, DC, USA, 2000. IEEE Computer Society.

[84] N. Nagappan, T. Ball, and A. Zeller. Mining Metrics to Predict Component Failures.
In Proceedings of the 28th International Conference on Software Engineering (ICSE

2006), page to appear. IEEE Computer Society, May 2006.

[85] Ning Nan and D.E. Harter. Impact of budget and schedule pressure on software
development cycle time and e�ort. Software Engineering, IEEE Transactions on,
35(5):624 �637, Sept.-Oct. 2009.

[86] P Nesi and T Querci. E�ort estimation and prediction of object-oriented systems.
Journal of Systems and Software, 42(1):89 � 102, 1998.

[87] Hector M. Olague, Letha H. Etzkorn, Sampson Gholston, and Stephen Quattle-
baum. Empirical Validation of Three Software Metrics Suites to Predict Fault-
Proneness of Object-Oriented Classes Developed Using Highly Iterative or Agile
Software Development Processes. IEEE Transactions on Software Engineering,
pages 402�419, 2007.

[88] P Oman and J Hagemeister. Metrics for Assessing a Software System's Maintain-

ability, Volume 19, pages 337�344. IEEE Computer Society Press, 1992.

[89] Ipek Ozkaya, Len Bass, Raghvinder S. Sangwan, and Robert L. Nord. Making
Practical Use of Quality Attribute Information. IEEE Software, 25:25�33, 2008.

[90] P.C. Pendharkar, G.H. Subramanian, and J.A. Rodger. A probabilistic model for
predicting software development e�ort. Software Engineering, IEEE Transactions

on, 31(7):615 � 624, July 2005.

[91] L. Radlinski and W. Ho�mann. On predicting software development e�ort using
machine learning techniques and local data. In International Jounral of Software

Engineering and Computing, Vol.2, No.2. International Science Press, 2010.

[92] Mehwish Riaz, Emilia Mendes, and Ewan Tempero. A systematic review of software
maintainability prediction and metrics. In Proceedings of the 2009 3rd International

Symposium on Empirical Software Engineering and Measurement, ESEM '09, pages
367�377, Washington, DC, USA, 2009. IEEE Computer Society.

[93] D.H. Stork R.O. Duda, P.E. Hart. Pattern Classi�cation, 2nd Ed. Wiley Interscience,
2000.

Corresponding publications of theses 107

[94] M. Shepperd. Software project economics: a roadmap. In Future of Software

Engineering, 2007. FOSE '07, pages 304 �315, May 2007.

[95] K. Srinivasan and D. Fisher. Machine learning approaches to estimating software
development e�ort. Software Engineering, IEEE Transactions on, 21(2):126 �137,
Feb 1995.

[96] Witold Suryn, Pierre Bourque, Alain Abran, and Claude Laporte. Software Product
Quality Practices Quality Measurement and Evaluation Using TL9000 and ISO/IEC
9126. Software Technology and Engineering Practice, International Workshop on,
pages 156�162, 2002.

[97] Wuu Yang. Identifying syntactic di�erences between two programs. Software -

Practice and Experience, 21(7):739�755, 1991.

[98] D Yudin and E G Gol'shtein. Linear Programing Problems of Transportation (in

Russian). NAUKA, 1969.

Corresponding publications of theses

[99] Péter Hegedus, Tibor Bakota, László Illés, Gergely Ladányi, Rudolf Ferenc, and
Tibor Gyimóthy. Source code metrics and maintainability: A case study. In Tai-hoon
Kim, Hojjat Adeli, Haeng-kon Kim, Heau-jo Kang, KyungJung Kim, Akingbehin
Kiumi, and Byeong-Ho Kang, editors, Software Engineering, Business Continuity, and
Education, Volume 257 of Communications in Computer and Information Science,
pages 272�284. Springer Berlin Heidelberg, 2011.

[100] Tibor Bakota, Rudolf Ferenc, Tibor Gyimothy, Claudio Riva, and Jianli Xu. To-
wards portable metrics-based models for software maintenance problems. Software

Maintenance, IEEE International Conference on, 0:483�486, 2006.

[101] T. Bakota, P. Hegedus, P. Kortvelyesi, R. Ferenc, and T. Gyimothy. A proba-
bilistic software quality model. In Software Maintenance (ICSM), 2011 27th IEEE

International Conference on, pages 243 �252, Sept. 2011.

[102] T. Bakota, P. Hegedus, G. Ladányi, P. Kortvelyesi, R. Ferenc, and T. Gyimothy. A
cost model based on software maintainability. In 28th IEEE International Conference

on Software Maintenance (ICSM), 2012, page to appear, Sept. 2012.

[103] Tibor Bakota. Tracking the evolution of code clones. In Proceedings of the

37th international conference on Current trends in theory and practice of computer

science, SOFSEM'11, pages 86�98, Berlin, Heidelberg, 2011. Springer-Verlag.

[104] Tibor Bakota, Rudolf Ferenc, and Tibor Gyimothy. Clone smells in software evo-
lution. Proceedings of the 23rd International Conference on Software Maintenance

(ICSM 2007), pages 24�33, 2-5 Oct. 2007.

108 Corresponding publications of theses

[105] Marit Harsu, Tibor Bakota, Siket István, Kai Koskimies, and Systä Tarja. Code
clones: Good, bad, or ugly? In Proceedings of 11th Symposium on Programming

Languages and Software Tools and 7th Nordic Workshop on Model Driven Software

Engineering, 2009.

[106] Marit Harsu, Tibor Bakota, Siket István, Kai Koskimies, and Systä Tarja. Code
clones: Good, bad, or ugly? In Nordic Journal of Computing special issue dedicated

to SPLST'09 and NW-MODE'09, 2010.

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Summary by results
	Development of a probabilistic source code maintainability model
	Establishing a cost model based on source code maintainability
	Assessment of code duplications from a code evolution perspective

	Background
	Maintainability, entropy and erosion
	The Columbus framework
	Source code metrics
	Size metrics
	Inheritance metrics
	Complexity metrics
	Coupling metrics
	Cohesion metrics

	Code duplications
	Clone detection
	Code duplication metrics

	Modelling source code maintainability
	Source code metrics and maintainability
	Experiment setup
	Experiment results
	Conclusions

	Model portability issues
	Experiment setup
	Experiment results
	Conclusions

	A probabilistic source code quality model
	An approach for constructing maintainability models
	An instance of a maintainability model for Java
	Validation of the model
	Limitations
	Conclusions

	Summary

	Cost and maintainability
	A cost model based on software maintainability
	A formal model for relating costs and maintainability
	Validation of the model
	Limitations

	Summary

	Code duplications from the perspective of code evolution
	Tracking the evolution of code clones
	The Evolution Mapping
	Similarity distance functions
	Weights and threshold
	Evolution of clone classes

	A classification of clone evolution patterns
	Empirical validation
	Conclusions

	The connection between clones and coupling
	Coupling
	The Bonus-Malus model
	Hidden vs. visible dependencies
	An empirical study
	Conclusions

	Summary

	Conclusions
	Appendices
	Appendix Related Work
	Software maintainability models
	Modelling the cost of software development
	Evolution of code duplications

	Appendix Summary
	Summary in English
	Summary in Hungarian

	Bibliography

