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ABBREVIATIONS 
 

Act   actin 
arm  armadillo 
BEAF  Boundary Element Associated Factor 
CF2-II  chorion factor 2 
CFDD  Common Regulatory Factor for DNA Replication 
CNS   central nervous system 
croc   crocodile 
dl  dorsal 
DRE    DNA Replication-related Element 
DREF  DNA replication-related element binding factor 
ds  double stranded 
Elf1   grainy head 
en  engrailed 
esg  escargot 
ey  eyeless 
fb  fat body 
Fs   dominant female-sterile mutation 
ftz  fushi-tarazu 
GAL4  positive regulator of gene expression for the galactose-induced genes in   
    Saccharomyces cerevisie and in Drosophila transgenes  
GFP  green fluorescent protein 
NPC  nuclear pore complex 
PCR  polymerase chain reaction 
ptc  patched 
SDS  sodium-dodecyl-sulphate 
sna  snail 
Su(H)  suppressor of hairless 
TG   transgene 
Tub  tubulin 
twi  twist 
UAS  upstream activator sequence in Saccharomyces cerevisie and in Drosophila 
                        transgenes  
Ubx  Ultrabithorax 
vg  vestigial 
X-gal  A clorless compound (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) that is 

broken to a blue compound (5-bromo-4-chloro-3-hydroxyindole) and galactose by 
β-galactosidase 
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INTRODUCTION 
 
It has long been known that most of the factors that are required during early embryogenesis are 

deposited into the egg cytoplasm during oogenesis and are maternally provided (DeRenzo and 

Seydoux 2004; Tadros and Lipshitz 2005). The importance of maternal contribution is 

emphasized by the fact that there is very little, if any, zygotic gene expression during the initial 

cleavage divisions in Drosophila. At the end of the 1980’s, along a genetic dissection of maternal 

effects in Drosophila, people in the so-called Szabad laboratory isolated 75 dominant female 

sterile (Fs) mutations (Erdélyi and Szabad 1989; Szabad et al. 1989). In 32 of the Fs mutations 

the Fs/+ females deposit normal-looking eggs, and although the eggs are fertilized, 

embryogenesis does not commence or ceases after a few abnormal cleavage divisions inside the 

eggs. The 32 Fs mutations identify 21 genes, suggesting that products of several genes 

   One of the 21 genes is Ketel, which was identified by four Ketel

are 

required for the commencement and/or the initial steps of embryogenesis.  
D Fs mutations (Szabad et al. 

1989; Erdélyi et al. 1997). The Ketel gene was cloned in the Szabad laboratory (Lippai et al. 

2000; Tirián et al. 2000) and turned out to encode the 

 

Drosophila homologue of importin-β. 

Importin-β is a protein that is an essential component of nuclear protein import (Fig. 1).   

Figure 1. Mechanism of the nuclear 
protein import cycle. (Based on the 
http://www.steve.gb.com/science/protein
targeting.html home page.) Cargo 
molecules bound to importin-β enter the 
nucleus through the nuclear pore 
complexes where they meet RanGTP 
and dissociate. While the cargo remains 
inside the nucleus to fulfill its function, 
the importin-β/RanGTP complex leaves 
the nucleus. Upon entering the 
cytoplasm, RanGTP becomes 
hydrolyzed to RanGDP following the 
action of Ran-GAP (Ran-GTP-ase 
Activator Protein) and also RanBP (The 
Ran-Binding Protein, not shown on the 
figure). While importin-β becomes free 
along with the GTP→GDP hydrolysis 
and is ready to pick up the next cargo, 
RanGDP is imported into the nucleus 
where it is converted to RanGTP through 
the only known and chromatin bound 
Ran-GEF nucleotide exchange factor, 
RCC1  (Regulator of Chromatin 
Condensation 1;  see Görlich and Kutay 
1999; Fried and Kutay 2003).  
 

importin-β 

http://www.steve.gb.com/science/proteintargeting.html�
http://www.steve.gb.com/science/proteintargeting.html�
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   Analyses of the KetelD dominant negative female-sterile mutations lead to two important new 

findings. (1) Importin-β is engaged not only in nuclear protein import but is also an essential 

component during the reassembly of the nuclear envelope towards the end of mitosis (Tirián et 

al. 2000; Timinszky et al. 2002). (2) Analysis of the KetelD

   Second mutagenesis of the Ketel

 mutant phenotype suggested the 

involvement of importin-β in the formation of the spindle apparatus (Lippai et al. 2000; Tirián et 

al. 2003).  
D alleles lead to the induction of the so-called ketelrevertant 

alleles, some of which are complete loss-of-function (ketelnull) mutations, others are short 

deficiencies that remove the Ketel and a few of the adjacent loci (Szabad et al. 1989; Erdélyi et 

al. 1997). The ketelrevertant alleles are recessive zygotic lethal mutations: the ketelnull homo- or the 

ketelnull/– hemizygotes perish towards the end of the 2nd

   A number of enigmas emerged during the course of the former studies regarding Ketel gene 

expression regulation and importin-β function. The “difficult-to-understand” phenomena 

stimulated further research which kept me busy during the past four years and yielded the present 

dissertation. The obscure phenomena and the related questions are as follows:  

 larval instar.  

 

(1) Analysis of a reporter gene, in which the Ketel gene regulatory sequences ensured the 

expression of the LacZ gene and the production of β-galactosidase, revealed the expression of the 

Ketel gene only in the diploid imaginal and not in the polytenic larval cells (Tirián et al. 2000). 

Results of Western blot analysis, that made use of an importin-β specific antibody, were in 

harmony with that of the reporter gene expression analysis (Lippai et al. 2000). Expression of the 

Ketel gene only in the diploid cells is puzzling since there is only a single importin-β coding 

gene in the Drosophila genome (Tirián et al. 2000) and nuclear protein import must also be going 

on in the metabolically vastly active polytenic larval cells. How do the polytenic cells import 

protein into their nuclei if all the known nuclear protein import mechanisms include importin-β 

or a closely related protein? Perhaps, through a not yet known nuclear protein import pathway? 

This would not be unusual since the human ribosomal protein L23a, for example, can be 

imported into the nuclei through at least four routes (Jäkel and Görlich 1998). However, function 

of the Ketel gene must be essential in at least some larval cell type(s) since zygotes without the 

Ketel gene die during the 2nd larval instar. Which are those cell types, i.e. the "focus of gene 

activity" in which 

 

function of the Ketel gene is essential?  

(2) Zygotes without the importin-β encoding Ketel gene (the ketelnull homo- and the ketelnull/– 

hemizygotes) live for three days, up to the end of 2nd larval instar. It has been shown that the 

maternal dowry, provided by the ketelnull/+ heterozygous females, supports their relatively short 

life (Tirián et al. 2000). Assuming that function of the Ketel gene is required only in the diploid 
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cells, the death of the ketelnull/–  larvae in 2nd larval instar is astonishing since larvae without 

diploid cells have been known to develop to the end of larval life (Szabad and Bryant 1982). 

Why do the ketelnull

 

/– larvae not accomplish larval life? 

(3) Clones of cells - that originated through mitotic recombination and become homozygous for 

a ketelnull

 

 allele - are fully viable and capable to differentiate normally in four different diploid 

cell types (Tirián et al. 2000). How can cells without importin-β live and differentiate normally?  

(4) How is expression of the Ketel gene regulated? What sequences and mechanisms ensure 

expression of the Ketel gene in the diploid, dividing, and non-expression in the polytenic, non 

dividing larval cells? 
      
   To resolve the above rather perplexing observations we set out to localize the cell types in 

which function of the Ketel gene is essential and carried out the classical gynander-based 

focusing analysis (Bryant and Zornetzer 1973; Janning 1978). The experiment clearly showed 

that focus of Ketel gene action is either huge and/or is extended over large areas of the embryos. 

We then made use of the Gal4; UAS system (Brand and Perrimon 1993; Duffy 2002) and drove a 

UAS-Ketel transgene with different tissue-specific Gal4 drivers on a ketelnull/– background and 

tested viability to adulthood of the ketelnull

   Using GFP-tagged importin-β (encoded by a ketel

/– zygotes. The Gal4; UAS system revealed 

requirement of the Ketel gene in the embryonic ectoderm that is a rather large and wide 

spreading primordium in the blastoderm (Campos-Ortega and Hartenstein 1997). We also 

eliminated function of the Ketel gene by driving a UAS-Ketel-RNAi transgene - with different 

Gal4 drivers - and inspected fate of the zygotes. Results of the RNAi experiments confirm 

largely the above conclusions. 
GFP

   To elucidate the mode of Ketel gene expression regulation, we made use of the so-called 

promoter analysis approach using LacZ reporter trangenes and determined which transcription 

factors and which transcription factor binding sites are engaged in the expression regulation of 

the Ketel gene, both in time and space (Villányi et al. 2008b).    

 allele; Karpova et al. 2006), we revealed 

that the maternally provided GFP-importin-β molecules persist up to the end of larval life and 

that the zygotic Ketel gene is expressed in every cell during early gastrulation. Although the 

Ketel gene is then turned off in the non-dividing larval cells, the already produced importin-β 

molecules persist long and carry out nuclear protein import throughout the subsequent stages of 

development. In fact, importin-β appears to be the longest lived type of proteins in the 

Drosophila cells (Villányi et al. 2008a).   

   As a result of a joint effort of a team, in which I had the pleasure to work, we answered the 

above questions and got to know the unusual mode of Ketel gene expression regulation.   
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MATERIALS AND METHODS 

 

The Ketel mutant alleles 

The ketelnull/– hemizygous larvae descended from a cross in which y/y; –/y+CyO females were 

mated with y/Y; ketelnull/y+CyO males, or vice versa. The y/y (and y/Y); ketelnull/– larvae appear 

yellow and can be selected conveniently as they do not carry the y+CyO chromosome with the y+ 

gene. [The – symbol stands for a small deficiency (ketelrX32) that removes Ketel and a few of the 

adjacent loci, ketelnull (= ketelrX13) is a complete loss-of-function mutant allele (Erdélyi et al. 

1997).] The ketelnull/– zygotes perish towards the end of the 2nd larval instar (Tirián et al. 2000). 

(For explanation of the genetic symbols see the FlyBase at http://flybase.bio.indiana.edu.) 

   The ketelGFP allele, which encodes GFP-importin-β, was generated via the protein trap 

technique, which makes use of the random insertion of a P-element carrying the GFP-coding 

sequence without the start and the stop codes and a donor and an acceptor splice site at the two 

ends of the GFP exon (Morin et al. 2001; Karpova et al. 2006). Insertion of a “GFP exon” into 

the second intron of the Ketel gene leads to the production of full length, GFP-tagged importin-β 

under the control of the Ketel gene regulatory sequences (see Fig. 4). The GFP exon does not 

disturb the upstream and the downstream splicing events. Sequences for at least about 2 kb 

upstream from the +1 site in the ketelGFP

 

 allele are as in wild type. Fluorescence emitted by GFP-

importin-β molecules was detected in optical sections generated with an Olympus FV1000 

confocal microscope or with an Olympus IX71 fluorescent microscope equipped with a cooled 

CCD camera. 

The focus of Ketel gene function  

To determine the cell type in which function of the Ketel gene is indispensable, i.e. the focus of 

the Ketel gene activity, we set out to generate XXTG//X0, female//male mosaics (gynanders) in 

which the only functional Ketel gene was present in the transgene inserted into the XTG 

chromosome in the otherwise ketelnull/– zygotes. The ketelnull/– zygotes are viable and fertile in 

the presence of the XTG chromosome (Lippai et al. 2000). The X chromosome carried the y 

(yellow body), w (white eyes) and f (forked bristles) recessive marker mutations. The XTG 

chromosome carried, in addition to the transgene, wild type alleles of y and f and, thus, while the 

female (XXTG) cells appear wild type and carry a functional Ketel gene, the male (X0) cells lack 

Ketel gene and display the mutant phenotypes. (A wild type allele of the white gene, the mini-

white marker gene, was part of the transgene which ensured normal Ketel gene function; Lippai 

et al. 2000.) We isolated late 3rd instar gynander larvae, based on their y+ female and y male 

chitinous structures, small female and large male larval gonads and the slightly distorted shape 

http://flybase.bio.indiana.edu/�
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due to an overall reduced size of the male parts and determined whether they developed to 

adulthood or not.  

   The XXTG//X0 mosaics were generated by crossing y w f/y w f; ketelnull/Bc Gla; +/+ females 

with XTG/Y; –/SM5; HorkaD/TM3 males. Number and second chromosome composition of the 

offspring females and of the XXTG//X0 mosaics were recorded. The ketelnull

–/Bc Gla and the Bc Gla/SM5 sibling females and gynanders served as “internal control” classes. 

Bc Gla, SM5 and TM3 stand for the so-called balancer chromosomes which are marked with 

dominant marker mutations (see the FlyBase). Horka

/SM5, the  

D rendered the XTG

 

 chromosome unstable 

such that it might have been lost in the descendants during early embryogenesis (Szabad et al. 

1995).  

Tissue specific expression of a UAS-Ketel transgene 

To determine the types of tissues in which expression of the Ketel gene rescues lethality of the 

ketelnull/– zygotes, i.e. in which the expression of the Ketel gene is necessary and sufficient, we 

crossed ketelnull/Bc Gla; UAS-Ketel/UAS-Ketel females with –/SM5 males that carried a Gal4 

driver (Brand and Perrimon 1993; Duffy 2002; see also the FlyBase). The Gal4 drivers we made 

use of are listed in the first column of Table 2. The UAS-Ketel transgene was constructed by 

Gyula Timinszky according to Brand and Perrimon (1993) and contained the structural part of 

the Ketel genomic sequence (Villányi et al. 2008a). The UAS-Ketel transgenes became inserted 

into the X, the 2nd or the 3rd chromosomes. When driven by a ubiquitously expressed Gal4 driver 

(such as α1Tub-Gal4), the UAS-Ketel transgenes efficiently rescue the ketelnull/– associated 

lethality. Since the UAS-Ketel transgenes carry the mini-white+ marker gene, all the crosses were 

conducted on a white genetic background. Drivers located on the 2nd chromosome were 

recombined into the chromosome that carried a ketelnull allele. Viability to adulthood of the 

ketelnull

 

/– offspring flies carrying both a Gal4 driver and a UAS-Ketel transgene was monitored.  

Tissue specific abolition of the Ketel gene function by the RNAi technique  

To eliminate the function of the Ketel gene in specific cell types, we crossed females carrying a 

Gal4 driver with males that carried a UAS-Ketel-RNAi transgene (Dietzl et al. 2007) and 

monitored the fate of those zygotes that carried a driver as well as the UAS-Ketel-RNAi 

transgene.  

 

The life span of GFP-importin-β   

To determine the life span of the maternally provided GFP-importin-β molecules, we crossed 

y/y; ketelGFP/y+CyO females with y/Y; +/+ males and screened the non-yellow (y/y or y/Y; 
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+/y+

 

CyO) larvae and pupae for the presence of GFP-importin-β. In such larvae and pupae the 

GFP-importin-β molecules must have been maternally provided through the egg cytoplasm. 

The expression of the paternally derived Ketel gene  

To determine when the paternally derived ketelGFP allele (representing the Ketel gene) is first 

expressed during embryogenesis, we crossed wild type (+/+) females with ketelGFP

 

/CyO males, 

collected embryos for 30 minutes, aged them for different amounts of time and analyzed for the 

presence of GFP-importin-β through time lapse optical sections. The nuclei were highlighted by 

histone-RFP (Schuh et al. 2007).  

In silico promoter analysis 

To reveal the sequences that may regulate expression of the Ketel gene, we analyzed an 1877 bp 

long region between the EcoRV (at -1471) and the PstI (at +406) restriction sites, slightly 

upstream of the only ATG translation start code in the Ketel gene (Fig. 2). The promoter analysis 

was carried out with the TRES software (http://bioportal.bic.nus.edu.sg/tres/). To identify the 

sequences that may be engaged in the regulation of Ketel gene expression, we compared the 

corresponding promoter sequences in the following Drosophila species: melanogaster, simulans, 

sechellia, yakuba and erecta and focused attention on the evolutionarily conserved transcription 

factor binding sites. (See the FlyBase for the genome data.)  

 

 
 
 
Figure 2. Landmarks around the 5’ end of the Ketel gene in Drosophila melanogaster. (A) Bird-eye-
view showing the restriction sites that were of importance in the present analysis, the binding sites of 
the transcription factors BEAF, CFDD, CF2-II and DREF, the transcription (   and ) as well as the 
translation start sites (ATG). Black, white and grey bars represent exons, introns and the sequence 
between the two genes, respectively. 
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Gel-shift experiments  

To detect protein-DNA interactions, gel-shift assays were performed as described in Pápai et al. 

(2005). Briefly, 30-137 bp long fragments were generated by PCR. The fragments included 

binding sites for different transcription factors (see Fig. 8). The DNA fragments were gel 

purified and end-labelled by 32P-γ-ATP using the T4 polynucleotide kinase. The 63 bp long 

PCR4 fragment was created as follows: a 93 bp long fragment was PCR amplified first, digested 

with VspI, gel purified and labelled with Klenow fill in using 32P-α-ATP. The labelled fragments 

were separated from the unincorporated nucleotides by gel electrophoresis. Nuclear extracts 

were prepared from the S2 Drosophila cells as described by Dignam et al. (1983). The 32P-

labeled probe was incubated in 20 µl of reaction mixture containing 15 mM HEPES (pH 7.8), 60 

mM KCl, 0.1 mM EDTA 1 mM dithiothreitol and 10% glycerol at room temperature for 30 min. 

Each reaction mixture contained 5,000-10,000 cpm 32

 

P-DNA, 3-5 µl nuclear extract (3-10 µg 

protein), 0.008 – 0.04 µg of poly(dIdC) competitor DNA to avoid unspecific DNA-protein 

interactions. Specific competitor DNA and anti-DREF antibody (a kind gift of Rafael Garesse) 

were added as indicated in the legend of Figure 10. The specific competitor DNA was dsDRE, a 

30 bp long double-stranded oligonucleotide with the DRE motif (TATCGATA): 

5’GTTATTAGATTTAAAAATTATCGATAGTTC3’. The DNA-protein complexes were 

electrophoretically resolved on a 5% non-denaturing polyacrylamide gel in 50 mM Tris-borate 

(pH 8.3) 1 mM EDTA at 4ºC. The gels were dried and autoradiographed on X-ray films. 

Generation of LacZ reporter transgenes and analysis of their expression pattern 

Transgenic lines, in which different segments of the Ketel gene promoter were combined with 

LacZ, were generated by standard P-element germ-line transformation using the mini-white 

marker gene (Spradling 1986). All the fly stocks carried the white marker mutation and were 

kept at 25oC. The different Ketel promoter DNA fragments were first ligated to pKS 

BluescriptTM plasmids and then transferred to a CaSpeR-AUG-β-gal vector (Thummel et al. 

1988). During the construction of the so-called -74→+406 transgene, the insertion of the ClaI 

and PstI restriction enzyme-digested region into the pKS BluescriptTM

5’GGTTGCACATTTCCTACGCATTTA 3’, 

 plasmid created an 

inactive DRE motif (see Fig. 8). The -979→+406 transgene with a mutated DRE site was created 

through PCR mutagenesis using the following primer pairs such that the TATCGATA DRE 

motif was replaced by GCCAAGCGGC:  

5’GCCGCTTGGCATTTTTAAATCTAATAACGTAT 3’ 

and 

5’GCCAAGCGGCGTTCGAATAAAGCAATCG 3’, 

5’GCGACACCTATTCGATTGCTTTAT 3’ 
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   Altogether six different types of transgenes were generated, with 2-4 lines each. Chromosomal 

locations of the different lines of the different types of the transgenes were as follows: for -

974→+406: X, 2nd and 2x3rd; for -327→+406: 2xX and 2x2nd; for -327→+68: X, 2x2nd and 3rd; 

for -204→+68: X, 2nd and 2x3rd; for -74→+406: X, 2nd and 2x3rd

   To monitor β-galactosidase activity, X-gal staining was carried out on embryos and on late 3

; for -974→+406 with a 

mutated DRE motif: 2xX (see Fig. 11).  
rd 

instar larvae as described in Ashburner (1989). For staining tissues, late 3rd instar larvae were 

“blown up” with the fixative and cut open along the dorsal midline with a fine scissors in PBS 

(Szabad et al. 1979). The organs were dissected and post-fixed for 10 min. in PBS containing 2% 

formaldehyde and 0.2% glutaraldehyde. The tissues were rinsed in PBS and stained in 1% X-gal 

containing buffer (5 mM K3Fe(CN)6, 5 mM K4 Fe(CN)6 2 mM MgCl2

 

 in PBS) in dark at 37 °C. 

The organs were prepared and analyzed using a light microscope. 

 

RESULTS 
 

The focus of the Ketel gene function is large and/or widespread  

To locate the tissue in which the function of the Ketel gene is indispensable (the focus), we 

attempted to generate XXTG//X0 female//male mosaics in which the XXTG cells carried a Ketel 

gene (in the XTG-linked transgene; Lippai et al. 2000), while the X0 cells did not. Principles of 

focusing are as follows: since the borderline separating the XXTG and the X0 tissues runs 

randomly in the different XXTG//X0 mosaics, those gynanders are expected to develop to 

adulthood in which the focus is composed from XXTG cells. The X0 cells may include tissues 

where the function of the Ketel gene is not essential. Distribution of the XXTG

   While 313 “internal control” sibling XX

 (female) and the 

X0 (male) tissues in the surviving mosaics should thus, pinpoint the focus of Ketel gene action 

(see Bryant and Zornetzer 1973). 
TG//X0 gynanders (that carried a functional Ketel gene 

in a balancer chromosome) were recovered in the experiment, not a single mosaic of the 

expected type survived to adulthood (Table 1). Based on the frequencies of the sibling females 

and the “internal control” gynanders, formation of 23 XXTG//X0; ketelnull/– mosaics was expected 

(Table 1). We also identified 41 gynanders as late 3rd instar larvae. Every one of them developed 

to adulthood and turned out to be of “internal control” type. Absence of the expected type of 

gynanders indicates a large focus and/or a small focus that spreads over large areas in the 

developing embryos (Bryant and Zornetzer 1973). 
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Table 1.  Features of XXTG

Genotype 

//X0 female//male mosaic production 

Role in experiment Female XXTG

mosaic 
//X0  

XXTG; ketelnull

XX
/SM5  

TG

XX
; –/Bc Gla 

TG
“Internal control” 

; SM5/Bc Gla  
   15,903 313 (1.9%) 

XXTG; ketelnull Experimental /–      1,193     0 
 
Notes 
- XTG

- The SM5 and the Bc Gla balancer chromosomes carry a functional Ketel gene. 
 stands for an X chromosome that carries a functional Ketel transgene. 

 

 

Focusing with the Gal4/UAS system 

To determine the types of tissues in which the expression of the Ketel gene is indispensable, we 

generated ketelnull/– zygotes in which a set of Gal4 drivers (of course, one in each experiment) 

ensured the expression of a UAS-Ketel transgene and tested whether the Gal4; UAS-Ketel; 

ketelnull

   Ubiquitous expression of the UAS-Ketel transgene (using the α1Tub-Gal4 driver) overcame 

lethality of the ketel

/– zygotes survive to adulthood (Table 2).  

null/– zygotes: the α1Tub-Gal4; UAS-Ketel; ketelnull/– zygotes developed to 

adulthood (Table 2). (Note that the UAS-Ketel; ketelnull/– and the α1Tub-Gal4; ketelnull/– control 

types of zygotes, just like the ketelnull/– ones, perish towards the end of the 2nd larval instar.) 

When expression of the UAS-Ketel transgene was driven by the elav-Gal4, the esg-Gal4 or the 

vg-Gal4 drivers, the UAS-Ketel; ketelnull/– zygotes developed to adulthood, with essentially the 

expected frequencies (Table 2). A common feature of these drivers is that they induce the 

expression of the GAL4 protein in the embryonic ectoderm, the progenitor cells for the 

epidermis and the nervous system (Table 2). Since expressing Gal4 in the neuroectoderm (by ey-

Gal4), in the embryonic central and peripheral nervous systems (by arm-Gal4), in the embryonic 

central nervous system (by en-Gal4, in a segmentally repeated pattern) or in the embryonic brain 

(by ptc-Gal4) only did not result in the survival of the ketelnull/– zygotes (Table 2), it may be 

concluded that zygotic expression of the Ketel gene in the epidermis primordial cells is necessary 

to accomplish development. [Production of GAL4 in the imaginal disc primordia (by dll-Gal4) 

or only in the presumptive mesoderm cells (by twi-Gal4) did not overcome lethality of the UAS-

Ketel; ketelnull/– zygotes; Table 2]. Since none of the elav-Gal4, the esg-Gal4 and the vg-Gal4 

drivers is expressed in e.g. the mesoderm-derived cells, it is hard to understand how, for 

instance, the vg-Gal4; UAS-Ketel; ketelnull

 

/– zygotes survive to adulthood.  
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Table 2.  Focusing with the Gal4; UAS system making use of a UAS-Ketel or a UAS-Ketel-RNAi transgene  
 

Gal4 driver* Gene 
represented by 
the Gal4 driver 

Expression pattern of the gene and/or the Gal4 driver Survival of the 
Gal4; UAS-Ketel; 
ketelnull

Fate of the Gal4;  

/– zygotes 
to adulthood 

Ketel-RNAi 
zygotes 

α1Tub-Gal4*  
(P{tubP-GAL4}LL7)  αTub84B Ubiquitous expression of GAL4 (Lee and Luo 1999).    YES – 

Act5c-Gal4* 
(P{Act5C-GAL4}25F01)  Actin5C Ubiquitous expression of GAL4 (Ito et al. 1997).  – Die in 2nd

elav-Gal4* 

 larval 
instar 

(P{GAL4-elav.L}3) elav 

In young embryos the elav transcripts are present in the dorsal ectoderm and the embryonic nervous system 
(Campos et al. 1987, Robinow and White 1988). The elav-Gal4 driver ensures GAL4 expression in the embryonic 
and the larval nervous system and in all the postmitotic neurons (Luo et al. 1994; Schuster et al. 1996; Sink et al. 
2001

YES 

). 

Die as pupae 

esg-Gal4* 
(GAL4esg-NP5130 escargot ) 

The esg gene is expressed in the ectoderm, the neurectoderm, the embryonic nervous system, the presumptive 
imaginal discs, and the  histoblasts (Whiteley et al. 1992; Hayashi et al. 1993). The YES esg-NP5130 Gal4 enhancer 
trap line ensures GAL4 expression in the esg gene expression pattern (Goto and Hayashi 1999). 

Die as pupae 

vg-Gal4 
(P{vg-GAL4.B})  vestigial The vg gene is expressed in the embryonic ectoderm, in the presumptive central nervous system and in the 

imaginal discs (Williams et al. 1991; Williams et al. 1994; Huang and Rubin 2000).  YES Die as pupae 

ey-Gal4  
(GAL4ey.PH eyeless ) 

The ey gene is expressed in the embryonic central nervous system, the procephalic neurectoderm, a subset of the 
protocerebral neuroblasts, the embryonic acron and the eye-antennal disc primordia (Quiring et al.1994; Hazelett 
et al. 1998; Urbach and Technau 2003; Hirota et al. 2005). Expression of the ey-Gal4 drivers reflects expression 
of the ey gene. 

No Die as pupae 

ptc-Gal4* 
(P{GawB}ptc559.1) patched 

The ptc gene is expressed in the embryonic/larval hindgut,  the neuroblasts in the head, the labrum, the 
Malpighian tubules and the analia (Hooper and Scott 1989). The pct-Gal4 driver ensures GAL4 expression in the 
embryonic brain (in a segmentally repeated pattern), and in the foregut visceral mesoderm (Speicher et al. 1994; 
Page 2002). 

No Die as pupae 

en-Gal4* 
(P{en2.4-GAL4}e16E)  engrailed 

The en gene is expressed in parasegments 2-15, in certain groups of the neuroblasts, in a segmentally repeated 
pattern in the embryonic central nervous system (Mlodzik et al. 1990; Doe 1992; Namba et al. 1997). The EN 
protein is expressed in stripes in the posterior region of each segment in the developing embryo (Patel et al. 
1989). The en-Gal4 driver ensures GAL4 expression in the en gene expression pattern (Weiss et al. 2001).   

No – 

arm-Gal4* 
(P{GAL4-arm.S}11)   armadillo 

In contrast to the uniform distribution of arm mRNA, the ARM protein is present in segmental stripes at the 
posterior half of the anterior compartments. In stage 13 embryos, the ARM protein is present in the central and in 
the peripheral nervous systems (Riggleman et al. 1990). The arm – -Gal4 driver ensures GAL4 expression in the 
arm gene expression pattern. 

Viable 

dll-Gal4 
(GAL4Dll-md23

 
)  distalless 

The dll gene is expressed during the extended germ band stage in the maxillary segment, the leg primordia, the 
labral segment and proboscis (Cohen et al. 1989; Simcox et al. 1991; Vachon et al. 1992). The dll-Gal4 driver 
ensures GAL4 expression in the dll gene expression pattern (Lecuit and Cohen 1997; Gorfinkiel et al. 1997). 

No Viable 

twi-Gal4 
(P{GAL4-twi.G}) 
 

twist 
The twi gene is expressed in the presumptive mesoderm (Thisse et al. 1987; Leptin 1991). The twi-Gal4 driver 
ensures GAL4 expression in the twi gene expression pattern (Baylies and Bate 1996; Riechmann et al. 1997; 
Hacker and Perrimon 1998).   

No Viable 

 
* Source: Bloomington Stock Center 
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Focusing with the RNAi system 

To further elaborate on the requirement of the Ketel gene, we eliminated its function in specific 

tissue types using the RNAi technique. A set of Gal4 drivers ensured tissue specific expression 

of a UAS-Ketel-RNAi transgene and the formation of an interfering RNA to silence Ketel mRNA 

and thus, gene function (Dietzl et al. 2007). 

   All over-expression of the UAS-Ketel-RNAi transgene by the Actin5C-Gal4 driver lead to the 

elimination of zygotic Ketel gene function and death of the zygotes in late 2nd larval instar (Table 

2). Features of the dying Actin5C-Gal4; UAS-Ketel-RNAi and the ketelnull/– larvae, which lack 

the zygotic Ketel gene, were essentially identical. This observation indicates complete abolition 

of the Ketel gene function via the RNAi technique and implies that the viability of zygotes 

lacking Ketel gene function is supported by the maternally provided importin-β protein pool and 

not by Ketel mRNA, at least not beyond the blastoderm stage when expression of many of the 

zygotic genes commence (Tadros and Lipshitz 2005). If the maternally provided Ketel mRNA 

molecules played some role beyond the blastoderm stage in the survival of the ketelnull/– zygotes 

up to the end of the 2nd larval instar, the Actin5C-Gal4; UAS-Ketel-RNAi larvae should die well 

before the end of the 2nd

   Elimination of the Ketel gene function in the embryonic ectoderm and in the presumptive 

nervous system (by driving the UAS-Ketel-RNAi transgene with the elav-Gal4, the esg-Gal4 or 

the vg-Gal4 drivers) resulted in lethality during pupal life and not towards the end of 2

 larval instar. The above consideration implies long persistence of the 

importin-β protein.  

nd larval 

instar as it might have been expected. Analysis of late 3rd instar larvae did not reveal any 

apparent morphological abnormality: the imaginal discs, the central and the peripheral nervous 

systems appeared normal. The reason for the discrepancy between the observed and the expected 

phases of death well may be the difference in time between the expression of the zygotic Ketel 

genes, the ensuing de novo formation of importin-β and the destruction of the encoding Ketel 

mRNAs. The formed importin-β molecules can support life of e.g. the elav-Gal4; UAS-Ketel-

RNAi larvae well beyond the end of 2nd

   Zygotes in which the ey-Gal4 driver ensured expression of the UAS-Ketel-RNAi die as pupae 

due to the lack of most of the head capsule (Table 2, Fig. 3). The ptc-Gal4; UAS-Ketel-RNAi 

zygotes also die as pupae due to multiple head defects. Elimination of zygotic Ketel gene 

function by driving the UAS-Ketel-RNAi transgene with the arm-Gal4, the dll-Gal4 or the twi-

Gal4 drivers had no effect on the viability of the zygotes. (Normal development of the arm-

Gal4; UAS-Ketel-RNAi, dll-Gal4; UAS-Ketel-RNAi and the twi-Gal4; UAS-Ketel-RNAi zygotes 

can not be related to the lack of Gal4 driver function since all three drivers ensured expression of 

 larval instar, into pupal life. Assuming efficient RNAi 

action (as shown above), long persistence of the formed importin-β molecules well may account 

for the above difference.      
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a UAS-GFP transgene and the formation of characteristic green fluorescence pattern.) Survival 

of the above zygotes must be attributed to the presence of functional importin-β molecules in 

those cells from which the Ketel mRNA molecules were removed by RNAi. The most likely 

explanation for the phenomenon is that the Ketel gene is expressed and importin-β is synthesized 

before the encoding Ketel mRNAs are eliminated and the importin-β molecules thus formed 

persist all through the rest of the development. [However, complete knock down of gene 

function through RNAi may not be equally efficient for the different drivers (Dietzl et al. 2007).] 

   Results of the RNAi experiments suggested long persistence of importin-β. To characterize the 

longevity of importin-β, we made use of a ketelGFP

 

 allele which encodes the formation of GFP-

importin-β and assumed that the two types of molecules possess comparable life spans.   

Figure 3. Ventral view of a wild type pupa (A) and a pupa in which 
the ey-Gal4 driver ensured expression of the UAS-Ketel-RNAi 
transgene (B). While most head structures are missing in (B) the 
thorax and the abdomen are normal. 
 

 

 

 

 

 

 

The maternally provided GFP-importin-β persists unusually long    

It has been well established that importin-β is maternally provided and supports life of the 

ketelnull/– hemizygous larvae throughout the 1st and the 2nd larval instars (Tirián et al. 2000). To 

visualize the maternally provided importin-β, we made use of a ketelGFP allele in which a GFP-

coding exon became inserted into the second intron of the Ketel gene (Fig. 4). GFP disrupts 

importin-β near its N-terminus, in the RanGTP binding domain (reviewed in Görlich and Kutay 

1999; Fried and Kutay 2003). Although the GFP tag reduces the function of GFP-importin-β, as 

shown by the lethality of the ketelGFP/– hemizygous larvae, the GFP-importin-β molecules are 

not completely inactive since several of the ketelGFP/– hemizygous larvae live up to pupariation, 

well beyond the ketelnull/– larvae, which all die by the end of the 2nd

   To analyze the life span of the maternally provided GFP-importin-β, we crossed ketel

 larval instar. The nuclear 

pore complex (NPC) binding ability of GFP-importin-β appears normal as shown by the 

characteristic bright spotted green fluorescent ring along the cytoplasmic surface of the nuclear 

envelope (see Figures 5 and 6). 
GFP/+ 

females with wild type males and sorted out +/+ larvae and pupae that completed embryogenesis 

A B 
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inside the egg cytoplasm produced by the ketelGFP/+ females. (Egg cytoplasm of the ketelGFP

 

/+ 

females glows bright green.) The maternally provided GFP-importin-β molecules are present and 

delicately highlight the cytoplasmic surface of the nuclear envelope in all the larval cells (Fig. 5). 

Although the GFP-importin-β ring becomes fainter and fainter during larval development, it is 

clearly visible up to the end of larval life in all the larval and imaginal cells. Finally, the GFP-

importin-β related signal becomes invisible within one hour following pupariation in midst of the 

strongly autofluorescent structures. Apparently at least some of the maternally-provided GFP-

importin-β molecules live remarkably long, for at least five days after they were produced. 

Indirect evidences, presented in the above chapter on RNAi and cited in the discussion, indicate 

that wild type importin-β molecules also persist long.  

 
 

Figure 4. Organization of the Ketel gene (A) and the encoded importin-β (B). In (A) the eight-
digit-numbers mark nucleotide positions in the Drosophila genome. Black and white boxes 
represent exons and introns, respectively. Insertion of a GFP-coding exon (between nucleotides 
20735883 and 20735884) into the second intron led to the formation of a ketelGFP

C-terminal cargo binding domain (reviewed in Görlich and Kutay 1999, Fried and Kutay 2003). 
In GFP-importin-β, a 238 amino acid long GFP tag is inserted between the 18

 mutant allele, 
which encodes GFP-importin-β. (B) The 884 amino acid long importin-β, as other members of 
the importin-β superfamily, contains three well-defined domains: an N-terminal RanGTP binding 
domain, a NPC binding domain which associates with specific components of the NPCs and a  

th and the 19th

 

 
amino acids. 

 

   Obviously, the maternally provided molecules ensure survival of the ketelnull/– larvae up to the 

end of the 2nd larval instar. However, as development proceeds and the larval cells increase in 

size, the importin-β molecules become diluted or some may decompose and can not sustain the 

life of ketelnull

B 

/– larvae anymore. To elucidate the fate of the maternally provided GFP-importin-

β during development, we measured - in optical sections - the intensities of the bright halos 

around the nuclear perimeter of the Malpighian tubule cells. The signal intensities correlate with 

the GFP-importin-β concentrations (Fig. 5). Results of the analysis are summarized in Table 3 

and indicate that although the fluorescence intensities (and thus local concentration of GFP-

importin-β) decrease during enlargement of the nuclei, the total amount of the fluorescent 

H2N- -COOH 

RanGTP binding   
NPC binding 

Cargo binding                       
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500 bp 
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molecules remains constant over the nuclear surface indicating survival of the maternally 

provided GFP-importin-β molecules throughout larval life, at least of those associated with the 

NPCs.    

 
 

Figure 5. The maternally provided GFP-
importin-β highlights the nuclear envelope in 
Malpighian tubule cells of 2nd (A), mid (B) 
and late 3rd instar larvae (C) but not in young 
pupae (D). White arrows point to the GFP-
importin-β-highlighted nuclear envelope as it 
appears in optical sections. Inserts show four-
fold magnification of nuclear regions. (Bright 
dots represent autofluorescent components that 
are not present in the nuclei.)  
 

 
 
 
 
 

 
 
 
 
Table 3. The amount of GFP-importin-β around Malpighian tubule nuclei in wild type larvae 
               that descended from ketelGFP

 
/+ females 

Stage of larval 
development 

Fluorescence 
intensity around the 
nuclear perimeter

Diameter of nuclei 
(μm) 

a 

Fluorescence over 
surface of the 
nuclear envelope b

2

  

nd 272 ± 26  instar   4.0 ± 0.2 1088 

Early 3rd 149 ± 20  instar   8.1 ± 1.3 1192 

Late 3rd   93 ± 13  instar 12.0 ± 1.8 1116 
 

 

a

  around the perimeter of the nuclear envelope as compared to the background. Twenty-five 
 Signal intensity in the pixels, as determined with the ImageQuant software, in the bright halo 

  nuclei (5 in 5 larvae) were analyzed at each stage. Average ± standard deviation. 
b

   assuming spherical shape of the nuclei.  
 Calculated based on fluorescence intensity in the halo around the nuclear perimeter and 

 
 
 
 
 

A B 

C D 

20 μm 5 μm 
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Figure 6. GFP-importin-β, encoded by the paternally derived ketelGFP allele, appears as a bright 
halo around the nuclear envelope in optical sections. (A) Diploid cells in the ventral ganglion. 
(B) Polytenic cells in the Malpighian tubule. (C) Salivary gland with a giant nucleus and some of 
the diploid imaginal ring cells. (The organs were dissected from the same late 3rd

 
 instar larva.)   

 

 

Figure 7. Expression of the zygotic Ketel 
gene begins during the onset of gastrulation. 
Zygotic expression of the ketelGFP

 

 allele is 
revealed through the formation of GFP-
importin-β and the appearance of a green 
halo (↓) around the nuclear envelope in the 
optical sections. The nuclei were highlighted 
in red by histone-RFP. The live embryos 
were 3, 4 and 6 hours old and were in the 
blastoderm (A and A’), in the germ band 
extension (B and B’) and in the segmentation 
stage (C and C’). (The stages of development 
are described in the flymove.uni-muenster.de 
web site). Panels on the right side depict high 
magnification of some of the nuclei shown in 
the left panels. GFP-importin-β, just like wild 
type importin-β detected by immunostaining, 
highlights only the interphase nuclei.  
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Expression of the zygotic Ketel gene commences during early gastrulation  

To determine when during development the expression of the ketelGFP allele commences, we 

crossed wild type (+/+) females with ketelGFP/+ males and monitored the appearance of GFP-

importin-β around the nuclear envelope in the descending embryos. The nuclei were highlighted 

by histone-RFP (Schuh et al. 2007). We simultaneously monitored red and green fluorescence in 

optical sections on live embryos from late cleavage divisions throughout the subsequent stages of 

development for about six hours. There was no sign of GFP-importin-β before the cellular 

blastoderm stage (Fig. 7). The first albeit rather week GFP-importin-β related signal, the 

indicator of zygotic expression of the ketelGFP allele, appeared as green dotted halos around the 

nuclear envelope of the interphase nuclei four hours following the commencement of 

embryogenesis, during early gastrulation. Since GFP-importin-β related green halos formed 

around all of the interphase nuclei, it is safe to conclude that the paternally derived ketelGFP

 

 allele 

is expressed in every cell of the zygote.  

In silico analysis of the Ketel gene promoter sequence 

Analysis of Expressed Sequence Tag data revealed a single transcription start site in the Ketel 

gene. The nearest transcription start site resides in the neighbouring CG9318 gene, 604 bp 

upstream of the Ketel transcription start site (Fig. 2). To identify the sequences which may be 

engaged in the regulation of Ketel gene expression, we chose a 1944 bp long sequence delineated 

by two EcoRV sites: one in the first intron of the CG9318 gene and the other in the second exon 

of the Ketel gene (Fig. 2). Two observations suggest that the chosen sequence contains all the 

elements needed for the normal expression of the Ketel gene. (1) The Ketel+ transgenes in which 

importin-β production is controlled by the 1944 bp long sequence, fully rescue the lethality of 

the ketelnull/– zygotes (our unpublished result). (2) During embryogenesis the expression patterns 

are identical for the Ketel gene (as determined through in situ hybridizations to the Ketel mRNA) 

and for the reporter transgenes in which the AatII - PstI region control the expression of the LacZ 

gene (Lippai et al. 2000, Tirián et al. 2000). This observation also indicates that there are no 

regulatory sequences in the 497 bp long EcoRV - AatII region and in the 67 bp long PstI - 

EcoRV sites in the 2nd

   Computer analysis of the analyzed region revealed several known transcription factor binding 

sites in the Ketel gene promoter (Fig. 8). We focused attention on those binding sites which are 

evolutionarily conserved in the corresponding regions in at least three Drosophila species among 

the following: melanogaster, simulans, sechellia, yakuba and erecta.  

 exon of the Ketel gene (Fig. 8).   

   The Ketel promoter does not contain a TATA box. However, it contains a number of conserved 

motifs including the TATCGATA palindrome sequence known as the DRE motif (Hirose et al. 

1993.) Part of the DRE motif is CGATA, one of the CFDD binding sites. (The other is 
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CAATCA.) The BEAF (Boundary Element-Associated Factor) transcription factor also binds to 

CGATA. DREF and BEAF have been known to compete for the DRE motif (Hart et al. 1999). 

The BEAF binding sites are present in special chromatin structures and a minimum of three 

BEAF binding sites are needed for their insulator function (Hart et al. 1997; Hayashi et al. 1997). 

The special chromatin structures function as boundary elements which, when appropriately 

spaced, interfere with communication between the enhancers and the promoter (Udvardy et al. 

1985; Hart et al. 1997). There are three BEAF binding sites in the Ketel gene promoter, and they 

may well function as an insulator. There are four CFDD binding sites within the analyzed region. 

One of them is part of the DRE motif, one coincides with a BEAF binding site, one with an Elf1 

binding site and one is freely available for CFDD binding (Fig. 8). The DREF, the CFDD and 

the BEAF binding sequences are all present in the Ketel gene homologues of the D. simulans, D. 

sechellia and D. yakuba species suggesting a conserved function of these cis-regulatory elements 

in the expression regulation of the Ketel gene. Moreover, the CFDD, the DREF and the BEAF 

binding sequences are also present in a number of DNA replication- and cell proliferation-related 

genes that have been known to be regulated by the DRE/DREF system (Hirose et al. 1996; 

Hayashi et al. 1997).  

 

The gel-shift experiments 

To locate the protein binding regions in the Ketel promoter and to confirm results of the 

computer analysis, we carried out gel-shift experiments in which different regions of the 

promoter were combined with protein extract prepared from nuclei of S2 cells and monitored 

changes in the mobility of the PCR-generated DNA fragments. We focused attention on the -

327→-204 (with two CFDD binding sites), the -99→-37 (with a DRE motif) and the 

+204→+283 (with a CFDD binding site) regions (Fig. 9).   

   The -327→-264 fragment did not interact with nuclear proteins indicating that the bicoid and 

the crocodile binding sites within the region do not bind proteins isolated from S2 cells and, 

hence, the -327→-204 activator region identified in the previous experiment can be narrowed 

down to the -264→-204 region. The -284→-167 fragment bound nuclear proteins as two bands 

appeared with DNA-protein complexes inside. Since there are two CFDD binding sites within 

the -284→-167 region, the two bands most likely represent complexes in which a DNA fragment 

is associated with one or with two CFDD protein molecule(s). PCR sub-fragments were 

generated next to locate the protein binding regions within the -284→-167 fragment. Of the three 

sub-fragments, only the -254→-204 bound nuclear proteins. In fact, the banding patterns of the  

-284→-167 and the -254→-204 fragments were identical implying that the protein binding sites 

reside within the -254→-204 region which includes two CFDD binding sites (Fig. 9).  
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Figure 8.  Landmarks between around the 5’ end of the Ketel gene in Drosophila melanogaster. The 1944 bp long Ketel promoter sequence between the 
two EcoRV restriction sites. The bold letters correspond to the transcribed sequences. Upper case letters represent exons. The lower case, non-bold letters 
show the sequence between the two genes. The lower case, bold letters represent introns. The restriction sites are shaded, the translation sites are 
underlined and the transcription factor binding sites are framed with dashed lines. 

gatatcaaactaaaaattatactttgtcctgaatttatattgttattgtgttatactattattactaaaaagaaaataacccaaacataatgcaaggaagcatgacaagctaaccgcgtt 
 
ccctggttcaattattggttagccgccactatgttaagattcttaaggtcgggagcccccgaaatcgcattcgcgagccagctgaaccaacattagaactcccatctagctgtcgctagg 
 
aaagagagctggcgtaggcaacgtcagcagaagttgagatagagggccacatatggaccccacatataactagttactgcgcttatcagtgcttccgcctgtgaccaccattagaggaat 
 
atagaaccaatgtacataactagttccagtgcctttgctaattgtggcgggcgtggggcaaacacacccactatctacgtacatatgtacatctgcacttctgcacatacgtatacacct 
 
acCTTGCATGTGGATGAGACGTCGGTTTTCTTGCAGAAATTGACCGGTGCCAGTCCGGGCAGATAGAAGGCCTGTGTCGGGGTCGCAAGGTGCAAGAGAACGACGCCCAGGAGCGGCAGA 
 
AGTCCGGATAGCAGGATCATCTCGAATTGGGGTAACCAACGAACGGCAGGAGTAGCAGACCTTCTTCCTTTACTTGTACGGGTTGTAATCACAACGTGGCCGTGTCCGCGATTCTCTGCC 
 
ACACTTTCCGGATCGGCGGGCCACGCACAAACCGTACTATCTGGATATTTATCGGAATATACGGAGTTTTTCGAGTGTTTTTACTACGTTTCCTCTTTTTTGCCGAACGTCAGCACTGTA 
 
GCAGCGTTGCCACCTAGTACAGCTGAGagggctgccaactggctgacaaaaaaactaccagcatttgcaaagctaaatattaccgcgaaaacctttagctcttattattattacgtgcaa 
 
aacgaaatttggtagacttaataaacttttatatttaaattaattaattcccctgttcagtaagcgaatgcaaccaatatacacacgtatacgtgtgatacttctaagatattactattt 
 
ttatccactgtttcttaatatagtaatcaaattttgttcatttgttagttttttacctacgactcttaagtcaaagtattcgattatttagttcgttcgaggttttgcttccgtgcttat 
 
ctttgaatatgaaaattttcgataagcacaatcattcaaatttaacgattgatttttggggaggcaaacgcgttttaatacaagtagtaagtattttggtcttatcgttcctgactaata 
 
atatattttgtcaaatggttgcacatttcctacgcatttaagaatatttaattaatacgttattagatttaaaaattatcgatagttcgaataaagcaatcgaataggtgtcgccttttt 
 
catcgaaactcagtgctatcaaataaaaatcGACATTCGTTTCAGCTCTATTTCAAATCGGAGACACAAGAAATATATTGCCTGCACTTCCCGAAGAGCAGATAAAGGTTCTGCCACCAT 
 
TAAATAGGCTTATAATAATAACTAAGAAAATCGCCGTTAGGAATCCCGCGCTTTTTTACCGTTCCCGAAAAATAACCAAACAACAATgtgagtagaatgaagagttctactgaacgcgct 
 
tgttgtgtgcgtgtgtgcgaaaaaatcaattcttttgacaatcaaggtgttgcaacctgtcgaaataaaatcgccagcttcagcggagcagcccaataactttaactcttttgtctccac 
 
catttgcagCCGACAGACTAGTGTTGTCTAGTAATTACGCAAAAATTCCATCACCCACACAGACGCACGAGCTGCAGAAAGAAACGGAAAGTGAAGTAGAAATCATATAGAGAGGAAAAG 
 
AGCGAAGACATGACTTCCGATATC 
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   To further locate the nuclear protein binding sites, we constructed the ∆ -243→-204 fragment 

which includes the CFDD binding site around -252 but does not include the CFDD binding 

site around -243. Since only a single band appeared in the gel-shift, we concluded that the 

CFDD binding site around -252 does indeed bind a nuclear protein. It can also be concluded 

that the CFDD site at -243 also binds a nuclear protein, at least in the S2 cells.   

   Both the -190→-65 and the -99→-37 fragments interact with S2 cell nuclear proteins and 

bring about the formation of two bands each. Considering that the -99→-37 fragment is only 

63 bp shorter than -190→-65 fragment, it may well be that the same types of proteins bind the 

two fragments. One of the DNA binding proteins is DREF, the other is CFDD as it was 

shown in the following competition experiment (Fig. 10).   

   Upon the addition of increasing amounts of cold dsDRE (a 30 bp long double-stranded 

olygonucleotide with the DRE motif inside) to the studied mixture, the DNA/protein band 

become rather faint indicating that the -99→-37 fragment does indeed bind DREF (lanes 3, 5 

and 6 in Fig. 10). Moreover, a DREF-specific antibody brought about a supershift of the 

DNA/DREF complex (lane 7 in Fig. 10). Following the addition of dsDRE not only the 

DREF-related but also the other band faded away (lanes 3 and 6 in Fig. 10). Since CFDD also 

binds dsDRE, it is conceivable that the other band fades away since several of the CFDD 

molecules bind to the cold DRE motif in dsDRE. It is thus safe to conclude that the other 

band corresponds to CFDD (lanes 3 and 6 in Fig. 10). In fact, the sizes of the bands confirm 

the former assumption: DREF is an 80, whereas CFDD is 76 kDa protein (Hirose et al. 1996; 

Hayashi et al. 1997). Based on the above results, the presence of the Ap1 binding site around -

156 can be excluded since no additional band appeared with the -190→-65 fragment. Thus the 

-190→-65 and the -99→-37 fragments clearly revealed the involvement of the CFDD and the 

DREF binding sites in the regulation of Ketel gene expression.   

   The +204→+283 fragment (not shown in Fig. 9A) is part of the first intron in the Ketel 

gene. As Figure 9B shows, the +204→+283 fragment binds some type of nuclear protein. 

There are five transcription factor binding sites in the +204→+283 region: Su(H) (suppressor 

of hairless), dl (dorsal), CFDD, Elf1 (= grainy head) and sna (snail; see Fig. 8). It appears that 

of the listed transcription factors CFDD binds the +204→+283 fragment for the following 

reasons: (1) Although well studied, Su(H), dl, Elf1 and sna have not been reported to be 

present in S2 cells. (2) Based on the approximate sizes of the DNA/protein complexes shown 

in Fig. 9, association of the snail, the Su(H), several forms of the dl and the Elf1 proteins (43, 

66.9 111.6 and 143 kDa, respectively) with the +204→+283 fragment can be excluded. The 

most likely type of protein to bind the +204→+283 fragment is, thus, CFDD. 

http://www.flybase.org/reports/FBrf0086456.html�
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Figure 9. Detection of nuclear 
protein binding regions within the 
Ketel promoter by the 
electrophoretic mobility/gel-shift 
assay. In (A) the -327→-37 region 
of the Ketel gene promoter is shown 
with some of the predicted 
transcription factor binding sites. 
The PCR fragments were 32

 

P-
labeled and used as probes in the 
assay. (B) Results of the assay. The 
+204→+283 fragment is part of the 
first intron in the Ketel gene and 
contains a putative CFDD binding 
site. The arrows point to bands with 
DNA-protein complexes.  The  
symbol represents increasing 
concentrations of the poly(dIdC) 
competitor DNA. The – and the + 
symbols indicate the absence and the 
presence of nuclear protein extract 
prepared from S2 cells.  
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Figure 10. Identification of the 
transcription factors that bind the -99→-37 
fragment with the DRE motif inside. The 
32

 

P-labeled DNA probe was the 62 bp long 
-99→-37 fragment. In addition to the probe 
and the components listed in the heading of 
the figure, a 30 nucleotide long dsDRE 
competitor was added to some of the 
samples. A DREF-specific antibody was 
added into the sample represented in Lane 
7. The antibody resulted in a supershift 
indicating the presence of DREF in the 
forming complexes. Several of the reaction 
mixtures contained poly(dIdC) competitor 
DNA to avoid unspecific DNA-protein 
interactions.   

 

 

   In summary, results of the gel-shift experiments are in harmony with predictions of the 

computer-based analyses and highlight those sequences in the Ketel gene promoter which are 

engaged in the regulation of gene expression and exclude those predicted binding sites which, 

although present in the Ketel promoter, do not have roles in the regulation of gene expression 

in the absence of corresponding transcription factors.   

 

Deletion mapping with the LacZ reporter genes 

To identify the promoter regions that ensure tissue specific expression of the Ketel gene, we 

constructed six different types of transgenes with a number of sub-lines each. Every transgene 

type carried a different segment of the promoter combined with the LacZ reporter gene. In 

practice, transgene homozygous males were crossed with wild type females and the LacZ 

expression pattern, as revealed through β-galactosidase activity, was analyzed in the 

descending gastrulating embryos, in dissected tissues of late 3rd

 

 instar larvae and in ovaries of 

the adult females. The staining pattern was determined in every line of the six different types 

of transgenes. It needs to be mentioned that the staining pattern was identical in all the sub-

lines for every of the six different types of transgenes. Results of the experiments are 

summarized in Figure 11. 

Supershift 

Free  
probe 

Nuclear protein 
extract (μg) 

– 3 3 5 5 5 5 5 5 

DREF 
CFDD 

1 2 3 4 5 6 7 8 9  Lane 
dsDRE (pmol) – – – – – 100 1 10 100 

Poly(dIdC) (ng) – 8 8 8 8 8 8 – 
 

8 
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Figure 11. Detection of tissue-specific promoter activity with LacZ reporter transgenes. In the 
transgenes different parts of the Ketel promoter ensured the production of β-galactosidase. The 
promoter segments that were combined with the LacZ sequences appear as thick lines in the left 
panel of the figure. The restriction sites and the transcription factor binding sites appear as in 
Fig. 2. To prepare the stained specimen, wild type females were crossed with transgene carrying 
males and the descending young gastrulating embryos, different tissue types of late 3rd

 

 instar 
larvae and ovaries of the adult females were stained for β-galactosidase activity, i.e. the 
formation of blue pigment. The fb symbol stands for fat body, a typical larval tissue type. The  
arrow in the larval testis panel points to the non-staining somatic cell groups in the larval testes. 
If otherwise not stated, the scale bars represent 100 µm. 

 

   When the -974→+406 fragment controlled the expression of the LacZ gene, β-galactosidase 

activity was apparent in every cell of the young gastrulating embryos, in the larval gonads, in the 

diploid cells of the central nervous system, in the imaginal discs as well as in the nurse and in the 

follicle cells of the developing egg primordia (see also Tirián et al. 2000). However, and in 

agreement with the previously published results, there was no indication of β-galactosidase 

activity in any type of the polytenic larval cells (see also Lippai et al 2000, Tirián et al. 2000; 

Villányi et al. 2008b). This result implies that the -974→+406 part of the Ketel gene promoter 

contains all the sequences that are necessary and sufficient for the characteristic expression 

pattern of the Ketel gene.  

   When the -327→+406 fragment controlled the expression of the LacZ gene, β-galactosidase 

activity was present in all the cells of the gastrulating embryos, in the larval gonads and in the 

nurse cells. However, cells in the imaginal discs, the larval CNS and the follicle epithelium did 

not stain. Apparently, the -974→-327 region contains cis-regulatory element(s) which ensure(s) 

Ketel gene expression in the imaginal discs, in the larval CNS and in the follicle cells. The lack 

of reporter gene expression in the former cell types is a common property of all the other 

transgene types which do not contain the -974→-327 region. Of the six transcription factors 

which have binding sites in the -974→-327 region (dorsal, tramtrack, fushi-tarazu, CF2-II, 

crocodile and bicoid; see Fig. 8), only CF2-II is present in the follicle cells (Shea et al. 1990). 

The other transcription factors are present and function during embryogenesis and thus their 

involvement in Ketel gene expression regulation is rather unlikely. (See the gene expression data 

base in the FlyBase). It appears thus that the CF2-II binding site around -483 is necessary for 

Ketel gene expression in all the diploid cells other than those in the gastrulating embryos.  

   When the -327→+68 fragment controlled the expression of the LacZ reporter gene, β-

galactosidase activity was present in the early gastrulating embryos and in the germ line 

components of the larval gonads. Remarkably, the reporter gene was not expressed in the nurse 

cells, showing the presence of a cis-acting element in the +68→+406 region which is responsible 

for Ketel gene expression in the nurse cells. Of the eight transcription factors (Ultrabithorax, 
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hunchback, STAT, SUH, dorsal, CFDD, Elf1 and snail) which have binding sites in the 

+68→+406  region seven are not expressed in the nurse cells and, thus, only CFDD appears to 

be involved in the regulation of  Ketel gene expression in the nurse cells and in the production of 

the maternal Ketel dowry.   

   When the -204→+68 fragment controlled the expression of the LacZ gene, β-galactosidase 

activity appeared only in the germ line components of the larval gonads and in none of the other 

studied tissues. Apparently, there are sequences within the -327→-204 region that are required 

for the commencement of zygotic Ketel gene expression during early gastrulation. The -327→-

204 region contains a bicoid, a crocodile, a BEAF and two CFDD binding sites. Considering the 

expression pattern of the encoding genes and knowing that BEAF is an insulator element, the 

function of the CFDD binding sites is most probably essential in the regulation of Ketel gene 

expression. This conclusion is strongly supported by the results of the gel shift experiments.  

   When the -74→+406 fragment controlled the expression of the LacZ gene, β-galactosidase 

activity appeared in both the gonial and in the somatic cells of the larval gonads and, as 

expected, in the nurse cells of the egg primordia. The -74→+406 transgenes include the DRE 

motif (TATCGATA) to which DREF, CFDD and BEAF can bind. The expression patterns of the 

-74→+406 transgenes confirm the former conclusion: the sequences required for the maternal 

effect of the Ketel gene reside in the +68→+406 region.    

   To clarify the importance of the DRE motif around -74, we constructed a mutant transgene 

which covered the -974→+406 region and a mutation around -74: the TATCGATA DRE motif 

was replaced by GCCAAGCGGC. The mutation eliminated the expression of the reporter gene 

in the mid gastrulating embryos and also in the nurse cells. Apparently, the simultaneous 

presence of the DRE motif and the -204→-327 sequence is necessary for the commencement of 

zygotic Ketel gene activity during early gastrulation. Similarly, the concurrent presence of the 

DRE motif and the +68 →+406 sequence is a prerequisite for the Ketel gene related maternal 

effect. However, the DRE motif around -74 is not required for Ketel gene expression in the 

diploid cells in late third instar larvae and in the follicle epithelium.  

   In summary, analysis of the different transgenic lines established a correlation between 

different regions of the Ketel gene promoter and tissue specific expression of the gene. (1) The -

979→-327 region is indispensable for Ketel gene expression in the imaginal discs, in the diploid 

cells of the CNS and in the follicle epithelium. (2) The -327→-204 region is necessary for the 

commencement of zygotic Ketel gene expression during embryogenesis. (3) The +68→+406 

region is needed for the Ketel gene related maternal effect. (4) The DRE motif around -74 is 

required for the zygotic expression of the Ketel gene during early gastrulation as well as in the 

nurse cells and, thus, for the Ketel gene related maternal effect.   
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DISCUSSION 
It appeared formerly that the Ketel gene, which encodes importin-β in Drosophila, was expressed 

only in the dividing diploid imaginal and not in the non-dividing polytenic cells in late 3rd

   To identify the cell types in which the function of the Ketel gene is essential, we attempted to 

generate gynanders that carried a functional Ketel gene in their female but not in their male cells. 

Such gynanders do not survive to the end of larval life implying that the function of the Ketel 

gene is most likely required in a large group of cells (Bryant and Zornetzer 1973). This 

conclusion is supported by the observation that when the elav-Gal4, the esg-Gal4 or the vg-Gal4 

drivers ensured expression of a UAS-Ketel transgene, zygotes that otherwise lack a functional 

Ketel gene survive to adulthood. The former drivers induce gene expression in the ectoderm, the 

largest germ layer which comprises about 72% of the blastoderm cells (3,600/5,000 cells; 

Campos-Ortega and Hartenstein 1997). In accordance with the former findings, elimination of 

Ketel gene activity in the primordial cells of the epidermis (by expressing a UAS-Ketel-RNAi 

transgene with the elav-Gal4, the esg-Gal4 or the vg-Gal4 drivers) led to death of the zygotes. 

How do e.g. the esg-Gal4; UAS-Ketel; ketel

 instar 

larvae (Tirián et al. 2000, Lippai et al. 2000). The observation raised the possibility that the 

function of the Ketel gene was not required in every cell and suggested the existence of a thus far 

unknown nuclear protein import mechanism that operates without importin-β. It was also 

difficult to understand how the diploid cells, in which the Ketel gene is expressed, can proliferate 

and function normally without the Ketel gene (Tirián et al. 2000). In any case, the function of the 

Ketel gene must be indispensable in at least some cell type(s) since larvae without the Ketel gene 

perish during mid larval life.  

null/– zygotes, in which the Ketel gene is expressed 

only in the ectoderm and the neuroectoderm but not in the other germ layers (Whiteley et al. 

1992; Hayashi et al. 1993; 

   (1) We report in the present thesis that the GFP-importin-β molecules can persist up to five 

days (Villányi et al. 2008a). The life span of the wild type importin-β molecules may be even 

longer than five days since the GFP-importin-β molecules are barely functional and are probably 

prone to faster degradation than wild type importin-β, due to the misfolding induced by the GFP 

tag. Yet, the GFP-importin-β molecules survive longer than expected, stabilized by their intimate 

association with the NPCs (Figures 5 and 6). It was suggested recently that being parts of large 

protein complexes, components of the anaphase promoting complex are stabilized; they persist 

unusually long and function in low concentrations (Pál et al. 2007a and b; Wehman et al. 2007). 

Goto and Hayashi 1999), survive to adulthood? How do the 

entoderm- and the mesoderm-derived cells acquire importin-β? The most likely source of 

importin-β in those cells is the maternal importin-β dowry, which persists and functions in the 

entoderm- and in the mesoderm-derived cells throughout development. This proposition 

presumes a very long persistence of importin-β, a feature that is supported by the following:  

http://www.flybase.org/reports/FBrf0057128.html�
http://www.flybase.org/reports/FBrf0057128.html�
http://www.flybase.org/reports/FBrf0058108.html�
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The maternally provided importin-β molecules may be able to support the few cell divisions the 

entoderm- and the mesoderm-derived cells accomplish between the blastoderm stage and their 

final differentiation (Leptin 1995). Thereafter, they need to assist only in nuclear protein import 

in the protective milieu of the NPCs.  

   (2) When transplanted into host embryos, pole cells without the Ketel gene but with the 

maternally provided importin-β inside perform the usual 4-5 mitosis during larval life 

(Wieschaus and Szabad 1979), become functional oogonial cells, go through the cystocyte 

divisions and become sources of normal looking eggs. [However, when the eggs are fertilized 

embryogenesis does not commence inside (Tirián et al. 2000)]. The maternally derived importin-

β molecules can thus support female germ line development for at least ten days.  

   (3) Elimination of the zygotic Ketel gene function in e.g. the esg-Gal4; UAS-Ketel-RNAi 

zygotes did not lead to death in mid larval life as in the ketelnull

    The finding that importin-β molecules persist long and carry out their functions in low 

concentrations provides an explanation for the normal behavior of clones of wing disc cells 

without the Ketel gene. Such cells can accomplish as many as seven rounds of cell divisions 

following the induction of mitotic recombination and becoming homozygous for a ketel

/– larvae but only during late 

pupal life. The prolonged life of the zygotes can be accounted for by the persistence of those 

importin-β molecules that form during the short period of time between synthesis and demolition 

of the Ketel mRNA molecules.  

null allele 

(Tirián et al. 2000). Perdurance of importin-β, inherited from the ketelnull/+ mother cell, sustains 

the life of the descending ketelnull

   The ketel

 homozygous cells.  
GFP allele encoded GFP-importin-β clearly showed that importin-β is present in every 

cell type, though in very different concentrations (Villányi et al. 2008a). Apparently, the non-

dividing larval cells also make use of importin-β in nuclear protein import and, thus, there is no 

unknown mechanism of nuclear protein import to be discovered. However, the diploid cells 

contain a lot more importin-β as compared to the non-dividing larval cells. The low importin-β 

concentration in the non-dividing cells is reasonable since here the protein is engaged in the 

nuclear protein import only. (Precursor cells of the larval epidermis and the Malpighian tubules, 

for example, divide only two-to-three times following the blastoderm stage and become 

polytenic; Szabad et al. 1979; Janning et al. 1986). The imaginal disc cells remain diploid and 

keep on proliferating throughout larval and early pupal life (Brook 1998). Diploid cells need a 

higher importin-β concentration to accomplish three functions: nuclear protein import, formation 

of the spindle microtubule bundles and assembly of the nuclear envelope at the end of mitosis 

(Zhang and Clarke 2000; Nachury 2001; Wiese et al. 2001; Gruss 2001; Timinszky et al. 2002; 

Zhang et al. 2002; Tirián et al. 2003).  
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   Apparently, as revealed by the analysis of the ketelGFP

   To understand the mechanisms that ensure the characteristic expression pattern of the Ketel 

gene, we identified cis-acting control elements that are engaged in (1) the proper loading of the 

egg cytoplasm with the Ketel gene products, (2) the regulation of the all-over type of importin-β 

production during gastrulation and (3) controlling tissue specific expression of the Ketel gene 

during the later stages of development.  

 encoded GFP-importin-β, the zygotic 

Ketel gene is expressed in every cell during early gastrulation (Fig. 7; Villányi et al. 2008a) in 

the same stage of development as the reporter gene in which the Ketel gene regulatory sequences 

control the expression of LacZ and the formation of β-galactosidase (Tirián et al. 2000; Lippai et 

al. 2000; Villányi et al. 2008b). However, the β-galactosidase molecules decompose in all the 

larval cells by late embryogenesis and leave the cells unstained for the rest of the larval 

development demonstrating the non-expressed status of the Ketel gene. Although the Ketel gene 

is not expressed in the larval cells, presence of GFP-importin-β clearly shows that there are 

importin-β molecules in the larval cells and they fulfill their function over a long period of time 

(Fig. 5).  

   Computer analysis revealed several evolutionarily conserved transcription factor binding sites 

in the Ketel promoter of which, as described in the Result section, only the CF2-II, the CFDD, 

the DREF and perhaps the BEAF binding sites are of relevance. The CFDD, the DREF and the 

BEAF transcription factors have been known to be involved in the expression regulation of a 

number of genes engaged in cell cycle regulation (Hirose et al. 1993; Yamaguchi et al. 1995; 

Ohno et al. 1996). In fact, the CFDD binding sites are commonly present in the promoters of a 

number of DNA replication-related genes like PCNA and DREF (Hayashi et al. 1997). Since 

importin-β is required for spindle formation and nuclear envelope assembly, which are essential 

events in cell proliferation, it may not be surprising that the expression of the Ketel gene is 

regulated by the same transcription factors which control the expression of several genes 

engaged in cell cycle regulation. 

   The “active” transcription factor binding sequences within the Ketel gene promoter region 

were identified in gel-shift experiments, and the sequences that ensure tissue-specific expression 

of the Ketel gene were determined through the analysis of the expression patterns of LacZ 

reporter transgenes. It appears that the presence of an approximately 140 bp long sequence 

around the transcription start site is sufficient for a basic expression of the Ketel gene in the 

gonial cells (Fig. 12). Interestingly, none of the six different types of LacZ reporter transgenes 

are expressed in any polytenic larval cell types. One possible explanation could be the different 

modes of action of DREF in the larval and in the diploid cells: DREF does not displace BEAF 

from the DRE motif in the larval cells (see Hart et al. 1999) and, thus, an insulator can form 

which blocks transcription of the Ketel gene. [Three BEAF binding sites are necessary for the 
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formation of an insulator (Udvardy et al. 1985; Hart et al. 1997; Cuvier et al. 1998), and the 

promoter of the Ketel gene contains three BEAF binding sites, one of which is part of the DRE 

motif.] In the diploid cells, where DREF binds to the DRE motif and competes with BEAF (Hart 

et al. 1999), the insulator cannot form and, hence, there is no block to prevent expression of the 

Ketel gene. However, the above model is rather unlikely since when the DRE motif, and along 

with it one of the BEAF binding sites, is abolished the BEAF insulator cannot form. Yet, the 

Ketel gene is not expressed in the larval cells. The lack of Ketel gene expression in the larval 

cells can also be explained by the absence of CF2-II transcription factor in that cell type. CF2-II 

has been reported to be expressed in the follicle cells (Shea et al. 1990) and the CF2-II binding 

site around -483 seems to be the only candidate to control Ketel gene expression in the imaginal 

disc cells, in the neuroblasts and in the follicle cells (Fig. 12). Further studies are needed to 

ascertain whether this assumption is correct.   

   The simultaneous presence of two sequences is required for the expression of the Ketel gene in 

the nurse cells and for the loading of the egg cell cytoplasm with the Ketel gene products: a 

CFDD binding site in the first intron (around +247) and the DRE motif around -74 (Fig. 12). 

(Note that the importin-β-related maternal effect depends on the expression of the Ketel gene in 

the germ line components of the egg primordia; Tirián et al. 2000.) Removal of either of these 

sequences leads to an absence of Ketel gene expression in the nurse cells. Similarly, the 

concurrent presence of the DRE motif at -74 and the CFDD site(s) around -250 is necessary for 

the expression of the Ketel gene in every cell of the gastrulating embryo. Removal of any of 

these sequences abolishes Ketel gene expression during embryogenesis. It appears that 

cooperative binding of transcription factors to the DRE motif and to either of the CFDD 

recognition sites establishes favourable conditions for tissue-specific expression of the Ketel 

gene.  

 
 Fig. 12. Summary 
figure illustrating the 
transcription factor 
binding sites that are 
engaged in the control of 
Ketel gene expression in 
the different cell types  
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SUMMARY OF THE MAIN RESULTS 
 

With the aid of a ketelGFP

 

 mutant allele that encodes the formation of GFP-tagged importin-β and 

with Ketel promoter-LacZ fusion reporter transgenes we show in the present thesis that:  

(1) Some of the maternally derived GFP-importin-β molecules persists up to pupariation. To our 

best knowledge, GFP-importin-β is the longest living molecule reported to function inside live 

Drosophila cells.  

 

(2) The paternally-derived ketelGFP

 

 mutant allele as well as the full length Ketel promoter driven 

LacZ reporter transgene is first expressed during early gastrulation, at a time when most of the 

maternally-provided mRNAs decay and expression of many of the zygotic genes commences. 

Apparently, the Ketel gene is expressed in every cell of the gastrulating embryos.   

(3) GFP-importin-β clearly showed that the Ketel protein is present in the larval cells. However 

experiments with Ketel promoter LacZ fusion reporter transgenes revealed that the expression of 

the Ketel gene is blocked in the polythenic cells beyond gastrulation. The importin-β molecules 

present in the polythenic cells come from two sources: the maternal dowry and zygotic 

expression of the Ketel gene during early gastrulation. The long living importin-β persists in the 

larval cells and assist, very effectively, in nuclear protein import.    

 

(4) The LacZ reporter transgenes delineated the sequences in the Ketel gene promoter, which 

ensure tissue specific Ketel gene expression. A CFDD site in the first intron, along with a DRE 

motif in the promoter, is responsible for the establishment of the importin-β maternal dowry 

during oogenesis. Another CFDD site, in collaboration with a DRE motif (both in the promoter), 

is indispensable for the commencement of gene expression in every cell during early 

gastrulation. Following the demolition of the DRE motif, the reporter gene expression was 

absent from both the germ line components of the egg primordia and from the gastrulating 

embryos. Apparently, the DRE motif interacts with both up- and downstream cis-regulatory 

elements while it controls tissue specific expression of the Ketel gene (Fig. 12).  

 

(5) Function of a far upstream CF2-II binding site appears to be required for intensive Ketel 

gene expression in the diploid cells. 
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EPILOGUE 
The present Ph.D. thesis and the Mechanisms of Development papers do not mean the end of the 

“Ketel story”. The finding that the ketelnull/− hemizygous larvae perish in 2nd larval instar, 

through they were expected to reach the end of larval development, initiated an analysis of the 

dying larvae. It has turned out that they perish due to the absence of mitochondria. Apparently, 

the ketelnull/− hemizygous larvae rely on the maternally-derived mitochondria while they develop 

to the end of the 2nd larval instar. Since these mitochondria become worn out and decay with 

time and since there are no new mitochondria synthesized, the larvae die (Fig. 13.) It well may 

be that in absence of importin-β (in the ketelnull/− hemizygous larvae) some transcription factors 

are not imported into the nuclei and hence the gene expression pattern of the cells become 

altered such that there are no new mitochondria synthesized. To test the present hypothesis, we 

collected total mRNA samples from both ketelnull

 

/− and, as control, from +/− hemizygous larvae. 

The mRNAs served as sources of cDNA synthesis and the cDNA pattern of the two types of 

larvae were compared in DNA chips. It has turned out that the two types of larvae differ in the 

expression pattern of only 30 genes. One-by-one analysis of the genes (by the RNAi technique) 

revealed that two genes have essential functions in regulation of mitochondria concentration in 

the cells: negative elongation factor and peroxiredoxin 6005. 

 Analysis of the ketelnull

Wild type 

/− larvae thus led to an understanding of the mechanism that controls 

mitochondria biogenesis, an essential feature of cellular energy supply. The manuscript, which 

will describe the “mitochindria chapter of the Ketel-story” is currently in preparation.  
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Figure 13.  In absence of 
importin-β, the larval cells 
contain very few, though 
functional mitochondria. 
Optical sections of polytenic 
larval cells in the intestine and 
in a Malpighian tubule of wild 
type, importin-β lacking 
(ketelnull/–) and in importin-β-
RNAi expressing larvae. The 
pictures represent merged 
optical sections recorded on 
405 nm for the detection of 
Hoechst 33342 stained DNA in 
the nuclei, on 535 and on 595 
nm to detect the inactive and 
the functional mitochondria by 
the stain JC1. The Arrows 
point to some of the functional 
mitochondria which appear in 
orange. 
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