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Introduction 

Due to its geographic position and climate, the Great Hungarian Plain is 

under continuous threat of droughts and floods. The year 2010 was one of 

the wettest years ever in Hungary. In the period October 2009 – December 

2010, on the Great Hungarian Plain, 1149 mm precipitation fell, which 

corresponds to a yearly precipitation of 919 mm, while the long term 

average yearly precipitation is 489 mm (in Szeged). The extreme 

precipitation caused exceptionally large areas to be flooded by inland excess 

water. The maximum total flooded area during this 15 months long period 

was 355 000 ha on December 9, 2010 and the estimated financial damage to 

the agricultural sector alone exceeded 500 million Euros. Together with the 

consequential damage like soil degradation, inland excess water is one of 

the most severe natural hazards in the Carpathian basin. To be able to 

prevent or reduce damage due to inland excess water it is necessary to 

understand why and where it occurs. 

There is no formal or official English word to describe the hydrological 

process that is the main topic of the dissertation. Inland excess water is a 

translation of the Hungarian word belvíz and will be used throughout this 

work. Although inland excess water got most scientific attention in 

Hungary, the phenomenon is not limited to this geographic region. For 

example, in China, India, Italy, Germany, the Netherlands, Serbia, 

Romania, and Russia it is occurs as well. The large number of definitions of 

inland excess water used in literature reflects the many scientific fields that 

deal with inland excess water research. Every field e.g. water management, 

agriculture, ecology, landscape planning or economics defines the 
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phenomenon from its own perspective. My general working definition that 

is used throughout this work is the following: 

Inland excess water is water that temporarily remains in local 

depressions because of a combination of a surplus of water 

due to lack of runoff, insufficient evaporation and low 

infiltration capacity of the soil or because of upwelling of 

groundwater. 

Different genetic types of inland excess water can be distinguished: (1) The 

vertical type, which is caused by the upwards push of groundwater, (2) the 

horizontal type, that occurs due to precipitation and/or melting water that 

accumulates in local depressions because there is insufficient runoff, 

evaporation and/or infiltration, and (3) the type that occurs due to inland 

excess water that is transported from other areas towards a main river, but 

queues up in front of a pumping station because the station does not have 

enough pumping capacity. 

Inland excess water is caused by a multitude of interrelated factors. They 

can be split into two groups; static factors that are stable over a period of 

decades or longer, such as relief and soil, and dynamic factors, which 

change within hours or days, like meteorology and groundwater level. 

Relief influences the runoff: water may collect in local depressions. Soil 

characteristics determine the infiltration and storage capacity. The amount 

of precipitation, as source of inland excess water is part of the 

meteorological factor. Other meteorological components like temperature 

and water vapour influence the evaporation rate. High groundwater levels 

may cause floodings, but can also prevent water from infiltration in the soil. 

Often anthropogenic factors strongly affect the formation of inland excess 

water. This can be due to the obstruction of runoff (e.g. by buildings, roads 
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or levees) and by reducing infiltration (e.g. due to paved surfaces), or by 

decreasing the chance of inundations due to for example the construction of 

channels and reservoirs. 

Damages caused by inland excess water vary in time and space. In some 

years, over 10% of the agricultural land is flooded, while in other years 

there is hardly any damage. Some areas suffer from inland excess water in 

one year, while in other years, at the same place severe drought occurs. This 

complicates the possibilities to find solutions for the problem. The spatial 

pattern of inland excess water is also heterogeneous. Due to the spatial 

variation of the interrelated factors, areas that are never inundated can be 

found close to areas that are often under water. 

To analyse the complex problem of inland excess water, it is important to 

understand its spatial and temporal distribution. This is done in two ways: 

(1) By mapping the spatial and temporal distribution based on in situ or 

remotely sensed observations, and (2) by estimating the impact of a 

selection of principle factors and weighing those using experimentally 

derived coefficients. Most studies have tried to identify the above factors 

and combined them using regression functions or other linear statistical 

methods. These methods have the disadvantage that they cannot deal with 

the nonlinear and complex functional relationships between those factors. 

Here, we present a different approach to identify and forecast inland excess 

water inundations using artificial neural networks (ANN) combined with 

geographic information systems (GIS). This approach has many advantages. 

First, it is independent of the statistical distribution of the data and there is 

no need to define the weight of the individual factors. Neural networks 

allow the target classes to be defined in relation to their distribution in the 

corresponding domain of each data source, and therefore the integration of 
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remote sensing and GIS data is very convenient. Furthermore, ANNs are 

capable of incorporating uncertainty, incomplete data, incorrect sampling, 

multicollinearity between variables, spatial or temporal autocorrelation, and 

insignificance of single variables. These are common in geographic 

analysis, but especially in inland excess water research due to the fuzzy 

nature of the boundaries of the inundations and the complex interrelations 

between the factors. 

Data and Methods 

To facilitate the efficient application of classification of inland excess water 

occurrences by artificial neural networks, an integrated GIS – ANN 

framework was created using a combination of ArcGIS, a geographic 

information system, Matlab, a mathematical modelling software and 

Python, an open source programming language (Fig 1).  

 

Figure 1. ANN – GIS framework showing the workflow in ArcGIS and 
Matlab 
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The framework was created to handle input data, intermediate results and 

output data in a flexible way in both ArcGIS and Matlab. In this way, it is 

possible to create the data files, test different network settings, perform 

training and simulation, and evaluate and visualize the training and 

simulation results efficiently. All steps are executed from within the GIS 

and no direct user interaction with the ANN software is needed. 

The framework was developed and evaluated with data from a 20 km2 area 

near Szeged, Hungary. The area is suitable for inland excess water research 

for two main reasons: (1) the soils in the area show extreme mechanical 

properties. The bad permeability characteristics combined with the very flat 

terrain with large local depressions without runoff, result in high 

vulnerability to inland excess water accumulation and (2) the Department of 

Physical Geography and Geoinformatics has a long standing inland excess 

water research program in the area. This means that lots of data and 

knowledge about the area are available. Furthermore, the area is close to the 

airport of Szeged from where the data acquisition campaigns are executed. 

Since inland excess water is a phenomenon with strong temporal 

characteristics, it is important to acquire data for research in time.  

Five input data sets were created to be used in the framework: (1) Colour 

infrared (CIR) images collected with an in-house developed acquisition 

system based on a MS3100 digital camera, (2) a 1 m resolution LIDAR 

based digital elevation model, (3) a 1:25 000 scale soil database, (4) a 

database of anthropogenic objects in the area (channels, roads, buildings 

and oil wells), and (5) inland excess water ground truth data collected with 

hand-held GPS systems. Other input data that may influence the formation 

of inland excess water were not incorporated for several reasons. First, soil 
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measurement showed everywhere in the area poor permeability 

characteristics, and differences in other soil characteristics were also 

minimal. Therefore, the soil is considered homogeneous in the study areas. 

The lithology is also considered to be homogeneous throughout the area. A 

groundwater-precipitation-evaporation measuring station in the study area 

provides hourly data of many parameters. These parameters show that the 

precipitation, evaporation and infiltration result in a surplus of water during 

the inland excess water periods. Vegetation is not homogeneously 

distributed over the area, but was not introduced as a separate input layer to 

the network, because its distribution is represented by the colour infrared 

images. 

Results and conclusions 

1. The dissertation presents the first extended theoretical description of 

inland excess water in English. This is an important step in the creation 

of awareness of the problem beyond the Hungarian language region. In 

many bordering countries the same phenomenon occurs, but there, e.g. 

in Serbia and Romania, the problem is treated similarly to river 

floodings and no special attention is given to its underlying physical 

processes. 

2. To evaluate the usefulness of in situ observations by the regional water 

directorates as accurate ground truth for the neural network 

classification, they were statistically compared with local depressions 

calculated from a LIDAR derived digital elevation model. The base 

hypothesis was that there exists a positive relation between the number 

of occurrences of inland excess water and the depths of the local 

depressions. This relationship between the two data sets was not found. 
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Therefore, it was concluded that the in situ observation map could not 

be used as base data for the framework. 

3. An image processing workflow has been developed to convert raw 

LIDAR data and digital aerial photographs into useful standardized 

input data for the artificial neural network classification. 

4. Individual inland excess water patches were measured in the field with 

different types of GPS systems. Only a small difference (1,8 %) in the 

area of the individual inundations was found between the 

measurements from the used instruments. The area differences caused 

by the differences in accuracy of the GPS systems are smaller than the 

inaccuracy caused by the data collection method. Therefore, it can be 

concluded that for the measurements of individual patches, the less 

accurate (and cheaper) GPS systems are sufficient. 

5. For the first time, an approach is presented and successfully carried out, 

that identifies and (depending on the opportunities) predicts inland 

excess water inundations using artificial neural networks combined 

with geographic information systems. 

6. It is the first time that a GIS – ANN framework is created using a 

combination of ArcGIS (GIS), Matlab (modelling software), and 

Python (programming language) that is fully integrated, which means 

that all interactions with the ANN software are executed from within 

the GIS. 

7. Due to the nature of artificial neural networks and their training 

algorithms, the method can be calculation intensive. Furthermore, in 

inland excess water analysis, the spatial data that is used consists of 

many high resolution layers. The combination of large data sets and 

heavy calculation demand results in long training times and memory 
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problems. To overcome these problems, a data reduction algorithm has 

been developed that reduces the amount of input data by taking only 

every nth pixel of the input data layers during the conversion of the 

layers into the matrix that is fed to the neural network. The use of the 

data reduction factor has also a positive side effect on the training 

quality. Due to the reduced amount of input samples, over

network is avoided. 

8. The ANN – GIS framework is a calculation intensive approach. 

Experiments have been executed to determine possibilities for 

performance improvements. It was found that there is a

relationship between the time needed for training of the network and

the amount of data in the training data set. It was also found that there 

is an exponential relationship between the time needed for training and 

the amount of data that is written to the computer’s memory (Fig 

Based on these observations, the Data reductions factor was developed 

and the Memory reduction function (of Matlab) was used.

Figure 2. The relation between the time needed for 50 iterations 
during the training phase and the data reduction factor
training time and the memory reduction function (on the 
standard analysis computer with an Intel Core 2
processor and 2 Gb RAM) 

problems. To overcome these problems, a data reduction algorithm has 

been developed that reduces the amount of input data by taking only 

onversion of the 

layers into the matrix that is fed to the neural network. The use of the 

data reduction factor has also a positive side effect on the training 

quality. Due to the reduced amount of input samples, over-fitting by the 

GIS framework is a calculation intensive approach. 

Experiments have been executed to determine possibilities for 

. It was found that there is an exponential 

the network and 

the amount of data in the training data set. It was also found that there 

exponential relationship between the time needed for training and 

the amount of data that is written to the computer’s memory (Fig 2). 

was developed 

and the Memory reduction function (of Matlab) was used. 

 

The relation between the time needed for 50 iterations 
data reduction factor, and the 

training time and the memory reduction function (on the 
standard analysis computer with an Intel Core 2, 2.6 GHz 
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9. Four simulations were executed to evaluate the influence of the 

different input layers. Each simulation was executed with a different set 

of input layers, but with the same neural network settings. The input 

layers are given in table 1, and the output results are shown in figure 3. 
 

Table 1. Input data for training and simulations on the training area 

 Description 

1 Local depressions 6 Distance from buildings 

2 Agrotopo soil characteristics 7 Aerial photograph band 1 

3 Distance from channels 8 Aerial photograph band 2 

4 Distance from roads 9 Aerial photograph band 3 

5 Distance from oil wells   

 

Figure 3. Evaluation of the input layers. All results cover the same area 
at the same scale 
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Table 2. Spatial correlation between  input layers, training layer and 
simulations 
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The simulations have been performed on data from the training area 

only, since only there, it is possible to compare the results with ground 

truth data. The first simulation (A) is only based on the CIR images and 

the local depressions. The second (B) also incorporates the distances to 

channels, the third simulation (C) incorporates 8 input layers, only soil 

was excluded. The final simulation (D) includes all 9 input layers. The 

spatial correlations between the different input layers and output results 

show the importance of the different layers in the simulation (Table 2). 

The first simulation result clearly shows the depressions in the area 

(Fig. 3A). These depressions have a correlation of -0,59 with the 

fieldwork or training data (Table 2. a). This correlation is negative 

because the depression classes range from no depression to deep 

depression and the inland excess water ranges from no inland excess 

water to inland excess water. The relatively high value shows that the 

relief has a strong influence on the formation of inland excess water. In 

general, it can be concluded that the more layers are added to the 

simulation the better the result. The best result can be seen at 

simulations C and D. The only difference between these simulations is 

the soil layer. Adding this layer to the simulation slightly reduces the 

spatial correlation (Table 2. b and c). The limited influence of the soil 

in the simulations in this study area is also reflected in the low spatial 

correlation (0,08) between the fieldwork data and the soil map (Table 2. 

d). 

10. From the overall accuracy and Cohen’s Kappa calculations, it can be 

concluded that in general, more layers in the training and simulation 

phase result in an increase of the overall quality of the simulations 



12 

 

(Table 3), although when the soil layer is added, this has a negative 

effect on the quality (see 9th point).  

Table 3. Cohen’s Kappa and the overall accuracy of 4 simulations 

 A (4 layers) B (5 layers) C (8 layers) D (9 layers) 
Cohen’s 
Kappa (ĸ) 

0,76 0,81 0,86 0,83 

Overall 
accuracy 

0,88 0,91 0,93 0,91 

 

11. The ANN classifications were compared with traditional minimum 

distance (MD) classification and maximum likelihood (ML) 

classifications (Table 4). The ANN – GIS framework outperforms the 

traditional classifications, even in the case when only 3 layers are used. 

Table 4. Overall accuracies of different types of classifications 

 Overall accuracy 
MD based on 2 classes 67 % 
ML based on 2 classes 69 % 
ML with merged non water classes 70 % 
ANN with two classes (3 layers) 74 % 
ANN with two classes (8 layers) 93 % 
 

12. The result of the maximum likelihood classification and the ANN with 

only three remote sensing bands is quite similar (Table 4). Improving 

this result can be achieved by adding extra information, like local 

depressions, distance to anthropogenic objects and soil type to the 

classifications. Adding these extra input layers is only possible with the 

ANN approach since the additional layers are not compatible with the 

remote sensing data, and therefore it is not possible to improve the 

maximum likelihood method in this way.  
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