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A. Introduction and aims 

The goal of pharmaceutical research is the specific and effective manipulation of 

disease-modifying targets, which is ideally achieved by small molecules binding to the 

macromolecule with high affinity. However, it is still a challenging task to inhibit 

molecular interactions where large surface areas or solvent-exposed binding sites are 

involved. Macromolecules which could not be efficiently modulated by drug-like 

small molecules are designated as undruggable proteins. For the inhibition of these 

targets, a potential solution might be to exploit designed non-natural folded polymers 

(foldamers), which have emerged as promising materials for biomolecule recognition. 

We have investigated two medicinally relevant targets: the immunosuppressant, 

angiogenic and tumour-nursing Galectin-1 (Gal-1) homodimer, whose inhibition might 

result in antimetastatic and antiangiogenic drugs; and the synaptotoxic Amyloid β1-42 

(Aβ1-42) fibrils and oligomers, which are among the major causative agents of 

Alzheimer’s disease. The inhibition of Gal-1 and Aβ1-42 aggregates is difficult due to 

their solvent-exposed binding site and the absence of distinct binding pockets. 

For studies of the protein–ligand systems, we have used primarily nuclear 

magnetic resonance (NMR) spectroscopy, which has become a powerful and versatile 

technique for the characterization of biomolecules and for the detection of molecular 

interactions. NMR can be exploited in the process of preclinical drug discovery by 

finding initial hits through screening, supporting lead optimization, fragment-based 

drug design and obtaining structure-activity relationships (SAR). As opposed to its 

complementary method X-ray crystallography, NMR can be used to investigate 

protein–ligand systems in a biologically more relevant medium, solution. Thus, 

molecular motions, which are confined to the solution phase, can also be captured. The 

atomic-level structural and dynamic information gained on biomolecules and their 

complexes from NMR studies can facilitate an understanding of their functions and 

mechanisms of action and can be utilized in structure-based drug design for the 

rational improvement of ligands. 

Our primary aim was to gain information about our targets by means of NMR 

spectroscopic techniques, which can promote the structure-based design of new Gal-1-

binding compounds and Aβ1-42 inhibitors. We aimed to optimize, validate and 

improve binding tests which can be efficiently used in an NMR screening process for 

new inhibitors. In the case of Gal-1, the NMR signal assignment of the labelled protein 

was a prerequisite for the experiments, so we set out to assign the backbone 

resonances of 15N/13C-labelled Gal-1. As a first step, the investigation of the proteins 
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alone and/or in the presence of their natural or literature peptide ligands was targeted. 

The goal was to characterize their interactions and to obtain relevant information about 

the mode of action of the ligands. Finally, we planned to utilize the techniques and 

structural/dynamic information in drug discovery, most favourably, for the design of 

foldamer type ligands of the proteins. In order to support and explain the NMR results 

and test new compounds, the measurements were supplemented with other biophysical 

techniques and with biological experiments, such as isothermal titration calorimetry 

(ITC), particle size measurements and enzyme-linked immunosorbent assay (ELISA). 

B. Methods 

Ligand-detected NMR experiments 

The interactions of Gal-1, asialofetuin (ASF) and Aβ1-42 and their ligands were 

characterized via ligand-observed NMR methods, which included saturation transfer 

difference (STD), transferred nuclear Overhauser effect (trNOE) and signal quenching 

experiments. For conventional 1H STD experiments, the selective saturation of the 

protein was achieved via Gaussian-shaped pulses. For the trNOE experiments, 2D 

NOESY measurements were performed with and without the protein. The techniques 

were used for the following samples: 

(i) Gal-1 or ASF and literature with Tyr-Xxx-Tyr type peptide ligands (TYDYF-NH2, 

WYKYW-NH2, TYDYFR-NH2 and TYPYFR-NH2) or lactose, 

(ii) fibrillar Aβ1-42 with neuroprotective pentapeptides (LPFFD, LPYFD-NH2, 

FRHDS-NH2 and RIIGL-NH2) and/or Thioflavin T (ThT), 

(iii) Aβ1-42 oligomers with foldamer peptides.  

With the aim of improving the methodology, different excitation schemes were 

probed for STD experiments. In the group-selective STD (GS-STD), the samples 

contained lactose complexed with 15N/13C-labelled Gal-1. For the selective saturation 

of the protein, a train of BIRDd pulses was applied. For the aliphatic/aromatic 13C 

GS-STD spectra, the band-selective inversion of carbon was obtained with a Q3 

Gaussian cascade of 256 ms within the BIRDd cycle. 

Protein-detected NMR experiments 

Protein-detected experiments were used for 15N/13C-Gal-1. For the resonance 

assignment of the protein, 3D HNCO, HNCA, HN(CO)CA, HN(CA)CO, 

CBCA(CO)NH, HBHA(CO)NH and 15N-NOESY-HSQC experiments were recorded 

and analyzed. In the 15N Heteronuclear Single Quantum Coherence (HSQC) titration 

experiments, 15N HSQC spectra of 15N-labelled Gal-1 were recorded for the protein 

alone and with increasing ligand (lactose or Tyr-Xxx-Tyr peptides) concentrations. In 
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order to explore the dynamic behaviour of Gal-1 in solution, T1, T2 relaxation and 

heteronuclear NOE experiments were recorded for samples of Gal-1 with and without 

lactose, and model-free analysis was carried out. 

Isothermal titration calorimetry for Aβ1-42 oligomers and foldamers 

Isothermal titrations were performed for Aβ1-42 oligomers and foldamers with a 

Microcal VP-ITC microcalorimeter. The experimental data were fitted to the two-

independent-site binding model.  

Other methods 

The binding of Tyr-Xxx-Tyr peptides to Gal-1 was investigated by ELISA test for 

the binding of Gal-1 to ASF in the presence of competitors and by flow cytometric 

analysis of Gal-1 binding to cells. Time-dependent signal intensity loss and 

quantitative NMR spectroscopic binding tests for the Aβ1-42 fibril samples were 

complemented with Dynamic Light Scattering (DLS), Transmission Electron 

Microscopy (TEM) and ζ-potential measurements. The interaction of the multivalent 

foldamer and Aβ1-42 oligomers was characterized by several biophysical methods. 

C. Results and discussion 

1. The solution-phase behaviour of the tumour-nursing protein Gal-1 was characterized 

by means of NMR spectroscopy in the absence and in the presence of its natural 

ligand lactose. 

1.1. The backbone chemical shifts of 15N/13C-labelled Gal-1 could be successfully 

assigned at physiological pH 7.4 and the great majority of the CB and HB 

resonances were also identified. 

1.2.  15N HSQC titrations showed that lactose binding affects the structure of Gal-1 

even remote from the CRD, on the opposite side of the protein (Figure 1). 

 

Figure 1. Results of the 15N HSQC titration of Gal-1 with lactose at pH 7.4. Top 15 
shifted residues are mapped (red) on the surface of the Gal-1 homodimer. 
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2. The Tyr-Xxx-Tyr peptide motif has been reported to be a glycomimetic sequence, 

mainly on the basis of its inhibitory effect on the Gal-1–ASF interaction. Our STD 

and trNOE NMR experiments revealed the following findings: 

2.1.  The Tyr-Xxx-Tyr peptides studied did not bind to Gal-1. 15N HSQC titrations 

with 15N-labelled Gal-1 confirmed the absence of any peptide–Gal-1 

interaction. 

2.2. The binding of Tyr-Xxx-Tyr peptides to ASF was clearly detected. 

2.3. The Tyr-Xxx-Tyr peptides proved effective in the competitive tests not 

because they were able to bind to Gal-1 and to replace ASF, but rather because 

of their interactions with the glycoprotein ASF (Figure 3). These data indicated 

that the Tyr-Xxx-Tyr peptides tested in this work are not glycomimetics as 

they interact with ASF via an unrevealed molecular linkage.  

 
Figure 3. Proposed mechanism for inhibition of the Gal-1–ASF interaction by Tyr-Xxx-Tyr 

type peptides. 

3. The NMR signal quenching of the neuroprotective pentapeptide LPFFD and the 

fluorescent dye ThT was studied in the presence of Aβ1-42 fibrils. The experiments 

yielded highly intriguing results:  

3.1.  ThT could not fully and immediately replace LPFFD from Aβ and could not 

prevent the weak binding of the pentapeptide, and LPFFD did not decrease the 

extent of the NMR spectroscopy-detected ThT binding, but rather increased it.  

3.2. No solution NMR spectroscopically visible monomeric or oligomeric Aβ1-42 

signal accompanied the resonances of the studied ligands in the spectra. 

3.3. The disaggregation mechanism of neuroprotective peptides is unlikely and 

ligand-induced flocculation and sedimentation processes could be proposed 

(Figure 4), which were confirmed by DLS and TEM experiments. 
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Figure 4. Schematic representation of the ligand-induced flocculation of fibrillar Aβ1-42 
by non-covalent cross-linking. 

4. A foldamer library was screened with STD and trNOE techniques testing their 

binding to soluble Aβ1-42 oligomers. 

4.1. A hexapeptide foldamer was found which exhibited weak binding to Aβ. The 

weak interaction could be enhanced by following the principles of multivalent 

ligands (Figure 5): the tetravalent generation-zero poly(amidoamine) conjugate 

of the peptide exhibited nanomolar binding to oligomers. The binding of the 

tetravalent compound showed a two-step-binding with a low nanomolar and a 

submicromolar apparent dissociation constants. 

4.2. Initial structure-activity relationship studies revealed that compounds with 

different recognition elements or with divalent construction exhibited only 

weak interaction, which suggests that the pharmacophore is specific. 

 

Figure 5. Applying the principle of multivalency to foldamers: a compound with 
nanomolar affinity for Aβ1-42 oligomers was achieved.  
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