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I. Introduction 

Experiments with intense ultrashort pulses are one of the most intriguing and exciting 

fields of science nowadays. Countless applications can benefit from its research starting 

from biology, medical sciences to particle structure and nuclear fusion. Laser systems, 

which are capable of generating such pulses, are coming into use on a more and more 

widespread scale; moreover, their development is escalating towards the highest intensities 

and shortest pulse durations. The impact of this evolution can be felt closely even at the 

University of Szeged, where the Extreme Light Infrastructure (ELI) has been decided to 

construct recently. The aim of ELI-ALPS (Attosecond Light Pulse Source) is to produce 

few-cycle, phase-stabilized pulses having multi-terawatt (1012 W) peak power in order to 

generate attosecond (10–18 s) light signals, which are necessary to observe femtosecond 

(10–15 s) and faster phenomena. The generation and maintenance of their parameters during 

propagation of such pulses are significantly challenging and require precise diagnostic 

tools. One of the most powerful methods for this purpose is called Spectrally and Spatially 

Resolved Interferometry (SSRI), which is capable of measure the relative spectral phase of 

broadband light sources with exceptional accuracy. 

The main purpose of present thesis is to reveal the advantages and limitations of the 

SSRI technique through several model calculations and experimental studies, which were 

carried out in the laser laboratories of the Department of Optics and Quantum Electronics 

of the University of Szeged (Szeged, Hungary), the Max Born Institute for Nonlinear 

Optics and Short Pulse Spectroscopy (Berlin, Germany) and the Laboratory of Applied 

Optics of the École Polytechnique (Palaiseau, France). 

II. Preliminaries and objectives 

The temporal shape of ultrashort pulses can be strongly affected during propagation. 

Fourier theorem declares that the shorter the pulse, the broader its spectrum is. Spectral 

components possess different velocity of propagation in the vast majority of transparent 

media, thus ones with shorter wavelength get behind, while longer wavelength components 

get ahead of the core of the pulse. This separation process increases the pulse duration and 

diminishes the peak intensity. Several diagnostic methods have been developed to monitor 

spatiotemporal parameters. Some of them are self-reference techniques (e.g. 

autocorrelation, FROG, SPIDER) in order to determine absolute values and therefore based 

on nonlinear processes, like second harmonic generation, which require intense beams and 
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make the precision sensitive to alignment. On the contrary, linear techniques (e.g. 

Spectrally Resolved Interferometry – SRI, Spectrally and Spatially Resolved Interferometry 

– SSRI) are easy to assemble and use experimentally, moreover better accuracy can be 

achieved. These make SRI and SSRI powerful tools to measure relative spectral phase shift. 

After collinear SRI has been studied exhaustively already, it has become timely to 

investigate SSRI in details. 

1. The first goal of my thesis was to thoroughly examine the SSRI method, particularly the 

influence of different parameters on the accuracy of measurement. I devised model 

calculations to determine the optimal parameters of the light source and the elements of the 

experimental set-up in order to minimize the standard deviation of measured Group Delay 

Dispersion (GDD) and Third Order Dispersion (TOD) results. Furthermore, I studied the 

effect of several error sources on the best achievable precision. 

Spatiotemporal diagnostics are vital parts of Chirped Pulse Amplification (CPA) 

laser systems, since amplified pulses can be used effectively only when they are close to 

the Fourier transform limit. After leaving the compressor, pulses often travel a 

considerable amount of distance to the experimental target, and if they are propagating in 

atmospheric air, its linear and nonlinear dispersion effects should be taken into account. In 

several cases of more advanced laser systems, pulse compressors and beam lines until the 

target are built in vacuum chambers in order to avoid undesired phase defects. Still, the 

pressure dependent dispersion, more precisely the Specific Group Delay (SGD), the 

Specific GDD (SGDD) and the Specific TOD (STOD) of residual gas mixtures in vacuum 

systems should be considered during design of these beam lines. 

2.a My aim was to measure the SGDD and STOD of air as a function of pressure within the 

range from 0.1 mbar to 1 bar by the means of SSRI. I laid down calculations to estimate the 

pressure limits of vacuum systems at given propagation lengths, where the elongation of 

pulse duration stays within 2% and 20%. 

2.b I elaborated measurements to determine the specific dispersion coefficients of several 

gas mixtures at different concentrations. I plotted to analyze the correlation between my 

experimental results and the expected values from Lorentz-Lorenz theorem. 

2.c I purposed to compute new coefficients of Sellmeier-type refractive index formulas of 

inert gases and nitrogen based on their measured SGD, SGDD and STOD values. 
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The intensity of laser pulses produced by CPA systems can easily reach over the 

threshold where nonlinear processes become significant. It could result self-focusing and 

self-phase modulation, which often lead damages on the surface of crystals and mirrors. 

On the other side, exciting phenomena can be generated, like high-harmonics, attosecond 

pulses, white light and extremely stable filaments. Most of these experiments are 

preformed in inert gas media, because of their special electron configuration. Several 

measurements on the nonlinear refractive index of atmospheric and inert gases have been 

published, yet there is no comprehensive data available on the pressure dependence of n2 

of inert gases. 

3. My next objective was to develop and carry out SSRI-based experiments to reveal the 

pressure dependence of nonlinear refractive index of gases. With my experimental 

realization, I intended to measure the nonlinear indices of air, argon, neon, nitrogen and 

xenon between 0.1 mbar and 1 bar, and compare my results obtained at 1 bar with values 

available in literature sources. 

Another substantial issue of the CPA lasers is the temporal contrast of the pulses, 

since parasitic pre- and post-pulses can entirely change the outcome of certain 

experiments. One of the most promising methods to improve the contrast is the so-called 

cross-polarized wave (XPW) generation. In this third-order nonlinear process, 

electromagnetic waves are generated with perpendicular polarization compared to the 

incident light. The conversion efficiency is proportional to the third power of temporal 

intensity; therefore the contrast of the pulses can be increased by several orders of 

magnitude. Moreover, besides the contrast enhancement, XPW generation has a number of 

useful properties, e.g. spectral broadening, temporal cleaning and easy experimental 

realizability. Unfortunately, the efficiency is fairly sensitive to the spectral phase, 

consequently, to the temporal compression of the incoming pulses; for this reason, 

practically transform limited pulses are required. Another problem might have arisen for 

experimental applications, if the CEP of the pulses has been altered by the XPW process. 

Theoretical predictions declare that the CEP should be preserved during the XPW 

generation, but experimental proof has yet to be demonstrated. 

4. Based on two independent, SSRI-related experiments, I contrived to show that the CEP 

of XPW pulses depends exclusively on the CEP of the original pulses, but independent 

from the generation process itself. 
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The severe spatiotemporal difficulties of ever widely used CPA systems have made 

it necessary to develop methods for independent control of dispersion coefficients of 

ultrashort laser pulses. Among several ideas that have been suggested, the AOPDF devices 

are found to be one of the best solutions, which are based on the nonlinear interaction 

between light and accordingly formed acoustic waves propagating in a crystal. These 

sound waves are generated by an electronic signal in the radio frequency range and in this 

manner; it allows separate control of the dispersion coefficients between rather wide 

bounds. In spite of the widespread use of AOPDF devices, there is no comprehensive study 

available – besides one single conference proceeding – on the precision of the dispersion 

coefficients and possible spatiotemporal side effects. Since the front and rear sides of the 

acousto-optical crystal are designed to be non-parallel, one can get suspicious about the 

introduction of angular dispersion into the beam. Taken into account that after the acousto-

optic diffraction, the spectral components propagate according to the extraordinary 

refractive index, and also that the length of the acoustic waves are depend on the chirp, the 

optical path length of the components can be different; and it can happen, that the angular 

dispersion of the diffracted pulses are related to the phase properties of the radio frequency 

signal. 

5. My last goal was to investigate the accuracy of the manually preset material dispersion 

coefficients and residual angular dispersion of an AOPDF. I planned to compare the 

obtained results and their expected values based on my model calculations. 

III. Methods of investigation 

During my research, different methods, materials and devices were used. These are 

detailed in the following bullet points. 

1. My evaluation algorithm for SSRI images was based on nonlinear function fitting by the 

means of the method of least squares. I compiled the code in C++ language to ensure 

platform-independent utilization. This software was used throughout my doctoral studies. 

The modeled and afterwards experimentally realized set-up of the SSRI method was 

based on the combination of a Mach-Zehnder interferometer and a two-dimensional 

imaging spectrograph. Femtosecond laser pulses at 800 nm central wavelength with at least 

70 nm bandwidth were applied as light source in the model calculations and all further 

measurements. I used Monte-Carlo simulations to optimize the parameters of the 
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experimental circumstances. I compared the effectiveness and accuracy of my code with 

the commonly used Fourier-based algorithm. 

2.a The dispersion properties of air was measured in two steps. First, I determined the 

SGDD and the STOD of air at ambient pressure by using SSRI method. I set the difference 

of the arm lengths of the Mach-Zehnder interferometer exactly to integer times of the 

distance of subsequent pulses. In the second step, I inserted a gas tube into the sample arm, 

filled the tube with air and varied the pressure from 1 bar to 0.01 mbar. Since I could 

obtain only relative values from this latter measurement, I applied the results of the first 

experiment as a reference. 

2.b With the same experimental set-up as in the second step of 2.a, I filled the tube with 

gas mixtures with known concentration. For the demonstration, I chose gases with low (He 

and Ne) or high dispersion (Xe) to mix with moderately dispersive molecular nitrogen. 

2.c I constructed a regression algorithm to calculate Sellmeier coefficients with the use of 

refractive index values and phase derivatives. I applied this method to the combined data 

of recently determined dispersion properties of inert gases and nitrogen and refractive 

indices from several independent publications found in the literature. 

3. In order to measure nonlinear refractive index of gases, I established experimentally a 

Mach-Zehnder interferometer with the beams of both arms propagated in the same gas 

chamber, but their intensity was split to a ratio of 10:1 by a partial reflector. I created an 

algorithm to extract the nonlinear indices at certain pressures from the difference in 

spectral phase due to the unevenly intense beams of the interferometer arms. 

4. I executed two separated experiments to prove the preservation of CEP during XPW 

generation. The arms of the Mach-Zehnder interferometer were created by a polarization 

splitter: the sample arm contained the XPW pulses, while the fundamental beam 

propagated in the reference arm. In the first experiment, I recorded interference patterns at 

different orders of magnitude of exposure times to analyze the CEP stability through the 

visibility of the fringes. In the second one, I controlled the CEP of the XPW pulses in a 

known manner with the use of glass wedges and detected the CEP detunement 

interferometrically. 

5. I performed full characterization of the material and angular dispersion properties of 

beams from different stages of a CPA laser system when propagating through an AOPDF 
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device. Material dispersion was measured with regular SSRI method. An inverted Mach-

Zehnder interferometer was used to determine the phase front angular dispersion, and 

propagation direction angular dispersion was also quantified by focusing the beam on the 

slit of a two-dimensional imaging spectrograph. I applied a mechanical beam rotator to 

explore the angular dispersion along both horizontal and vertical axes. 

IV. New scientific results 

The summary of my scientific results are listed as the followings: 

1. I have developed an evaluation method for extracting the spectral phase surface from 

two-dimensional SSRI images. I have determined the effect of the most frequent error 

sources on the accuracy of phase derivatives by the means of Monte-Carlo simulations 

[T1]. The noise of the CCD camera has been found to be the most critical. I have analyzed 

the effects of the computational roundings, visibility changes of interference fringes, 

bandwidth of the light source, inaccurate wavelength calibration, CEP-drift, Gaussian 

phase fronts and typical optical noises (e.g. diffraction). I have obtained that the achievable 

accuracy is 0.1 fs2 in GDD and 3 fs3 in TOD. 

2.a I have measured the SGD, SGDD and STOD of air as a function of pressure from 

0.1 mbar to 1 bar with the use of SSRI method. I have completed calculations to optimize 

the pressure of vacuum tubes of large laser systems in order to keep the elongation of the 

pulse duration under 2% or 20% [T2]. 

2.b I have applied the SSRI technique to determine the pressure dependence of the specific 

phase dispersion coefficients of gas mixtures between 0.1 mbar and 1 bar [T3]. Different 

concentrations of helium, neon and xenon in nitrogen have been investigated. My results 

showed exceptional correspondence with the expected values from the Lorentz-Lorenz 

theorem. 

2.c I have laid down new coefficients of Sellmeier-type equations for the refractive index 

of helium, neon, krypton, xenon and nitrogen based on recently measured phase dispersion 

properties and earlier published refractive index values by independent authors [T3]. 

3. I have measured the pressure dependence of nonlinear refractive index of air, argon, 

neon, nitrogen and xenon between 0.05 mbar and 1 bar by the means of SSRI method and 

CPA-generated high intensity pulses [T4]. My findings were in great agreement with the 

expectations based on the literature. 
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4. I have proved the preservation of CEP of the XPW pulses during their generation by two 

SSRI-related, independent experiments [T5]. In the first one, I showed the independence of 

the visibility from the exposure time. In the second experiment, I controlled the CEP of the 

XPW pulses with a glass wedge. I have found that the CEP of the XPW pulses is defined 

unambiguously by the CEP of the original pulses and the position of the wedges.  

5. I have characterized the accuracy of an AOPDF device in material dispersion and its 

residual angular dispersion using SSRI [T6]. I have obtained exceptional agreement within 

the measurement precision between the measured and preset GDD and TOD through 

several orders of magnitude. I have examined the residual angular dispersion of the 

AOPDF with two separated methods in both horizontal and vertical axes. I have found 

from both experiments that the angular dispersion depends on the operating temperature of 

the crystal; however, it is practically negligible in most experimental applications of 

AOPDF devices. 
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