Long-term immunomodulatory treatment and quality of life of patients with multiple sclerosis

Summary of PhD Thesis

JUDIT FÜVESI, MD

Department of Neurology
Faculty of Medicine
University of Szeged

Szeged
2011
List of abbreviations

GA – glatiramer acetate
HRQoL - Health related quality of life
IFNβ-1b - interferon beta-1b
IM – intramuscular
IMD – immunomodulatory drug
MS - multiple sclerosis
MSQoL-54 – Multiple sclerosis quality of life instrument
NAB - neutralising antibody
QoL – quality of life
RP - relapsing-progressive
RR - relapsing-remitting
SC – subcutaneous
SF-36 - short-form health survey
Original publications related to the PhD thesis

IF: 2.472

IF: 3.312

IF: 2.324 (2009)

Original publications connected to the PhD thesis

IF: 1.179

IF: 2.527

IF: 2.773

IF: 3.26

IF: 2.841

IF: 1.681

Cumulative impact factor: 22.349
Abstracts related to the PhD thesis

I. Introduction

Multiple sclerosis (MS), a demyelinative disorder of the central nervous system, affects mainly young adults in their most productive part of their life. Therefore it has a major impact on career planning, family life and social interactions. There are twice as many female as male patients. The first description of a case history that resembles the disease course of multiple sclerosis is written in the diary of an English aristocrat, Sir Augustus d’Esté, who lived in the first part of the nineteenth century (Landtblom et al., 2010). His disease started at the age of 28 with optic neuritis that soon recovered completely. Then he had diplopia, followed by paraparesis that lasted for three weeks, but gradually improved. Later he also suffered from imbalance, ataxia and incontinence. He could no longer go hunting or dance at balls and had to give up his career in the army, where he had been lieutenant colonel. Finally he was confined to wheelchair and died at the age of 54, decades before the disease was described by Charcot (Charcot, 1868).

The prevalence of multiple sclerosis in Hungary is 62/100,000, i.e. about 6000 Hungarians are affected by the disease (Bencsik et al., 2001). It is a chronic condition that has a great impact on quality of life.

I.1. Immunomodulatory treatment

There is still no curative therapy in MS. Until the middle of the 1990s, treatment of patients with the relapsing-remitting clinical form of the disease was restricted to treating the relapses with megadose parenteral corticosteroids. The first pharmacon with proved efficacy for the treatment of patients with the relapsing-remitting (RR) or relapsing-progressive (RP) forms of MS was interferon beta-1b (IFNβ-1b) (Betaferon) (Lublin and Reingold, 1996, Lublin et al., 1996). Early results (published in 1993) of a multi-centre, double-blind, placebo-controlled clinical trial proved that treatment with Betaferon was well tolerated and significantly reduced the activity of the disease and the number of active and new lesions detected by MRI in the relapsing-remitting form of MS (The IFNB Multiple Sclerosis Study Group, 1993, Paty and Li, 1993).

Currently available first-line immunomodulatory drugs (IMDs) are interferon beta-1a 30 ug weekly intramuscular injection, interferon beta-1a 44 ug subcutaneous (SC) injections 3 times weekly, interferon beta-1b 250 ug SC every other day and glatiramer acetate 20 mg daily SC injection. In pivotal randomized placebo-controlled trials of IMDs reductions in relapse rates ranged from 18% to 34% and the treatment has been shown to slow the accumulation of lesion burden as determined by MRI (Jacobs et al., 1996, PRISMS Study Group, 1998, The IFNB Multiple Sclerosis Study Group, 1993, Simon et al., 1998, Rudick et al., 1999, Johnson et al., 1995).
The effects of interferon-beta-1b on immunity in MS

The exact mechanism of IFN-beta in MS treatment is still unclear. IFN-beta-1b treatment induces the up-regulation of soluble vascular cell adhesion molecule (VCAM)-1, which correlates with the decrease in the number of Gd-enhancing MRI lesions (Calabresi et al., 1997). According to another study, IFN-beta-1b inhibits the adhesion of peripheral mononuclear cells to human cerebral endothelial cells (Corsini et al., 1997). Another proven mode of action is decreasing the activity of metalloproteinase (MMP-9) (Uhm et al., 1999, Corsini et al., 1999). MMP-9 takes part in the degradation of fibronectin, a major component of the basal membrane of cerebral endothelium. With the activities listed above, IFN-beta-1b decreases the migration and trafficking of lymphocytes into the central nervous system (CNS).

IFN-beta-1b induces IL-10 mRNA synthesis (Porri et al., 1998). IL-10 inhibits the antigen-specific proliferation of Th1 clones and inhibits the synthesis of cytokines produced by Th1 cells (IFNγ, TNFα and β, IL-1, IL-2 and IL-6). It has an immunostimulant effect on cytotoxic CD8+ cells.

Recently, it was demonstrated that the level of the proinflammatory cytokines osteopontin (OPN) and interleukin-17 (IL-17) are down-regulated by IFN-beta (Hong and Hutton, 2010). OPN is produces by Th1 cells and dendritic cells and its level was found to be elevated in the serum of MS patients. IL-17 is expressed by Th17 cells that seem to be important in the onset of MS.

Betaferon was approved for use in Hungary in 1996. Its long-term effects on the natural course of the disease can be evaluated on the basis of open studies.

I.2. Quality of life in MS

Health related quality of life (HRQoL) is a multi-dimensional construct that includes physical, mental and social health (Vickrey et al., 1995). There are three basic types of quality of life questionnaires: general, specific and combined, comprising of general health-related and disease-specific questions as well. General questionnaires are useful in primary care and in population-based studies with large number of cases. Specific questionnaires focus on the problems of a homogenous group of patients and are suitable for analysing HRQoL of patients with certain diseases. Combined instruments contain a general part and additional questions developed specifically for the study patients, therefore comparison of QoL of patients with different diseases and healthy subjects is possible.

The Multiple Sclerosis Quality of Life (MSQOL-54) Instrument is a combined questionnaire originally developed for English-speaking patients (Vickrey et al., 1995). It has two parts: general health-related questions of the SF-36 and 18 additional questions developed specifically to address problems of MS patients. The resulting 54 questions make up 14 scales, relating to Physical health, Role limitations due to physical problems, Role limitations due to emotional problems, Pain, Emotional well-being, Energy, Health perceptions, Social function, Cognitive function, Health distress, Overall quality of life, Sexual function, Satisfaction with sexual function, and Change in health. It is suitable for the
measurement of QoL of MS patients, and using the general part it is possible to compare data with that of the general population (where it is available) or other patient groups. The instrument has been validated (in chronological order) in Italian (Solari et al., 1999), French (Vernay et al., 2000), French Canadian (Acquadro et al., 2003), Japanese (Yamamoto et al., 2004), Spanish (Aymerich et al., 2006), Turkish (Idiman et al., 2006), Persian (Ghaem et al., 2007) and Serbian (Pekmezovic et al., 2007), reflecting that it is accepted and appreciated world-wide.

While a number of papers deal with clinical and demographic factors as predictors of the QoL in MS patients (Benito-Leon et al., 2002, Ayatollahi et al., 2007, Janardhan and Bakshi, 2002, Benedict et al., 2005, Patti et al., 2007, Lobentanz et al., 2004, Somerset et al., 2003, Miller and Dishon, 2006, Janssens et al., 2003), no data are available on the effects of different domains of QoL instruments and the predictive value of comorbid conditions on the QoL. Disease severity (EDSS), disease duration, cognitive function, depression and anxiety have been found to be related to the health-related quality of life (HRQOL) (Benito-Leon et al., 2002). When physical and mental (psychological) domains of the QoL were examined separately, the physical HRQoL was predicted by fatigue, depression and physical disability (EDSS), while the mental HRQoL was associated with depression and fatigue (Ayatollahi et al., 2007, Benedict et al., 2005). Lobentanz et al. found that a depressive mood is the main factor influencing the QoL (Lobentanz et al., 2004). The disability status, fatigue and reduced sleep quality impact mainly on the physical domains of the QoL. Depression and EDSS scores have been identified as the strongest predictors of the total ‘Functional Assessment of Multiple Sclerosis’ (FAMS), and almost all subscale scores (Patti et al., 2007).

II. Aims

The aims of our studies were to
1. examine the effects of long-term (6 years) interferon-beta 1b treatment on the relapse rate, progression index and EDSS score of relapsing remitting multiple sclerosis patients;
2. validate the MSQoL-54 instrument in Hungarian;
3. determine which factors influence the QoL of Hungarian MS patients (comorbid conditions, variables of the questionnaire having the biggest impact).

III. Patients and methods

III.1. Interferon-beta 1b

In 1996, we started to treat 34 relapsing-remitting and 2 relapsing-progressive MS patients with IFNβ-1b according to the guidelines of the American Academy of Neurology and the Hungarian Neurology Committee (Lublin et al., 1996, Report of the Quality Standards Subcommittee of the American Academy of Neurology, 1994). From the 36 patients 28 received a continuous medication for six years. Each patient underwent a neurological examination and the EDSS score was determined
every 3rd month or in the event of a relapse. The laboratory parameters were checked every 3rd month in the first year, and twice a year later. We defined a sustained progression in disability as an EDSS change confirmed in two clinical examinations 3 months apart.

The primary end-point of this longitudinal follow-up study was the effect of 6 years of continuous IFNβ-1b treatment on the annual relapse rate. We compared the mean number of relapses in the 6th year of treatment with the mean number of relapses in the 2 years preceding treatment. The secondary end-point was the alteration in the progression index during the 6 years of treatment. To calculate this index, we divided the EDSS score of the patient by the duration of the disease. The tertiary end-point of the study was the change in the EDSS score of the patients as a result of the IFNβ-1b therapy. Finally we give the reasons of the drop-outs.

Statistical analysis of the data was performed with the non-parametric two-sample Wilcoxon test, with SPSS 11.0 statistical software.

III.2. Hungarian validation of the MSQoL-54 instrument

Translation Process

In the translation of the MSQOL-54 questionnaire we followed a similar method to that of the IQOLA project, which translated the SF-36 questionnaire into many languages (Bullinger et al., 1998, Ware and Gandek, 1998, Gandek and Ware, 1998). All members of the multiple sclerosis working group of the Department of Neurology took part in the cross-cultural adaptation process.

Data collection

The study was carried out at the Department of Neurology, University of Szeged in September and October 2003. Between January and April, 2004 two other centers joined our study: the Departments of Neurology at Markusovszky Hospital, Szombathely and Air Force Hospital, Kecskemét. We gave the questionnaires to consecutive multiple sclerosis patients attending the outpatient departments. Exacerbating patients were excluded. After the neurological examination the EDSS points were determined in case of each patient (Kurtzke, 1983). Data concerning the onset, the clinical form of the disease and the treatment medication was collected.

Ethics

Personal data of patients are kept confidential. All participating subjects were given information about the study both in a written form and personally. We obtained a written consent that their answers can be statistically evaluated. The study was approved by the Human Investigation Review Board of the University of Szeged, Albert Szent-Györgyi Clinical Centre and it agrees with the Declaration of Helsinki.

Psychometric analyses

We created scale scores by transforming average scores to 0-100 possible scores, with higher values indicating better quality of life. Mean scale scores, standard deviations, percentages of
respondents scoring minimum (floor) and maximum (ceiling) possible scores were calculated (Ware JE, 1993, Ware JE, 2000). Patient acceptability was assessed from mean time required to complete the questionnaire and percentage of missing answers on each scale. Internal consistency reliabilities were estimated for multiple item scales by calculating Cronbach’s alpha coefficient. Factor analysis was performed to examine the inter-relationship among the 12 MSQOL-54 scales. We evaluated construct validity by comparing patient groups known to differ on important clinical and demographic variables. We compared scale scores of patient groups defined by EDSS, duration of the disease, clinical forms of the disease, age and education.

Our hypotheses for construct validity were the following:

(Hypothesis 1) Patients with lower EDSS have higher HRQOL scale scores on all scales.
(Hypothesis 2) Patients with longer duration of the disease have worse quality of life.
(Hypothesis 3) Younger patients have better quality of life.
(Hypothesis 4) Clinical forms of the disease have an impact on HRQOL, 1st attack patients and those with benign clinical form of the disease having lower scale scores than patients with progressive forms of the disease.
(Hypothesis 5) We expected that the level of education does not affect scale scores of patients.

We compared our data to the original American study.

III.3. Determinants of health-related quality of life in multiple sclerosis

The instrument

The Hungarian version of the MSQOL-54 instrument (Vickrey et al., 1995) was used. Analysis was carried out through the use of the data on the patients participating in the validation study.

Methods

We created scale scores by transforming average scores to possible scores in the range 0-100, with higher values indicating a better QoL.

We used question #53\(^1\) and question #54\(^2\) of the MSQOL-54 instrument to evaluate the overall QoL. We utilized regression analysis to determine which scale scores had the greatest impact on perceived QoL, as reflected by the answers to these two questions.

1 Question #53 (“Overall, how would you rate your own quality of life”, answers: 0-10, where 0=Worst possible quality-of-life; 10=Best possible quality of life)

2 Question #54 (“Which best describes how you feel about your life as a whole?”, answers: 1-7, where 1=Terrible, 2=Unhappy, 3=Mostly dissatisfied, 4=Mixed – about equally satisfied and dissatisfied, 5=Mostly satisfied, 6=Pleased, and 7=Delighted)
On the basis of the scores achieved, we divided patients into groups claiming to have a “very good”, an “average” or a “very bad” QoL. We determined by logistic regression which variables contributed to predicting the probability of a patient belonging in a particular group.

The questionnaire was supplemented with a question asking the patients whether a physician had diagnosed them as currently having other medical conditions, in addition to MS, and to indicate such comorbid conditions among 21 listed (e.g. high blood pressure, diabetes, asthma, etc.). The answers of the patients concerning the number of comorbid conditions indicated, the most frequent comorbid conditions and whether they had an independent effect on the overall QoL were evaluated. The relationships between the comorbid conditions and the age, the disease duration, the clinical form of the disease and the level of education were also assessed.

Among the comorbid conditions, depression was dealt with independently. We hypothesized that MS patients with depression had a worse overall QoL, i.e. lower scores for questions #53 and #54, and that, besides the scales, depression was an independent factor determining the probability of belonging in the good or bad QoL group.

The cognitive function scale was examined in more detail. We assessed the mean cognitive function scores of the patients belonging in the different groups defined by the EDSS score, the disease duration, the age, the clinical form of the disease and the level of education.

Statistical analyses

Prior to processing of the data, the level of significance was defined at p<0.05. Statistical analysis was carried out with the SPSS 15.0 statistical software.

IV. Results

IV.1. Interferon-beta 1b

Twenty-eight patients were treated continuously for 6 years, the clinical form of the disease in these patients remaining relapsing-remitting. As concerns the 8 drop-outs 2 patients interrupted the treatment only for the duration of their pregnancy and resumed it after giving birth. Although 1 patient died, the cause of death was unrelated to MS (perforated cholecystitis). One patient could not receive further IFNβ-1b therapy because of side-effects (permanent fever, flu-like symptoms and muscle pain) in the first 6 months of treatment. In 2 patients, the clinical form of the disease changed to secondary chronic progressive. Two patients were eliminated from the investigation because of the lack of compliance. In the group of continuously treated patients the mean age was 43.5±7.9 years, the mean duration of the disease was 6.3±4.3 years and the mean EDSS score (in 1996) was 1.8±1.2. The patients who continued and those who discontinued therapy did not differ significantly in terms of the demographic data. As regards the clinical data, the mean EDSS score of the drop-outs was higher at the beginning of therapy than that of the patients who continued therapy.
The mean annual relapse rate was 1.29±0.32 in the 2 years before the initiation of IFNβ-1b therapy. After 6 years of treatment, this rate decreased to 0.25±0.44, i.e. a decrease by 80.62% (p<0.001) as a clear indicator that the clinical activity of the disease decreased significantly as a result of IFNβ-1b treatment.

The mean EDSS scores of the patients increased significantly during the period of treatment (p=0.016). At the commencement of therapy, the mean EDSS score of the patients was 1.77±1.19, while after 6 years of IFNβ-1b treatment it increased to 2.21 ± 1.48.

The mean progression index (EDSS/duration of the disease) was 0.64±0.57 at the initiation of therapy, which by the end of the 6-year follow-up fell to 0.21±0.12, a significant decrease by 67.19% (p<0.001). Thus, IFNβ-1b treatment slowed the progression of the disease.

IV.2. Hungarian validation of the MSQoL-54 instrument

Cross-cultural adaptation findings

In general, finding appropriate phrases in translating the questionnaire was not difficult. However, we encountered some problematic questions due to cultural differences. We discussed changing the example “playing golf” in question 4, since it is not wide-spread at all in the general population. Finally we left it unchanged, since it is a well-known sport, even though not often played here. In case of question 9 (“Walking more than a mile”) the distance measurement “mile” had to be converted to kilometres, which is the used measurement in Hungary. We also altered the expression “walking one block/ several blocks” (question 10 and 11) to the more commonly used expression in this context: walking a distance of “one corner”. We also discussed in detail the translation of the possible response choices before choosing the best alternative. The validated Hungarian version of the Multiple Sclerosis Quality of Life Instrument (MSQOL-54) is included in the Appendix of the thesis.

Demographic and clinical data

Altogether 438 patients filled out the questionnaire in the 3 MS centers. The demographic and clinical data of the patients in the three participating centers and altogether are summarised in Table 1 and 2.

Scale scores

Mean scale scores counted on all patients range from 42.47±23.08 (mean±SD) on the scale “Health perceptions” to 75.88±24.75 (mean±SD) on the scale “Cognitive function”, only the scale score of “Sexual function” in the female group being higher than this, with an average score of 76.19±29.72.

Floor and ceiling effects

The highest percentage of respondents scoring minimum could be observed in case of the scales “Role-limitations- physical”, “Role-limitations- emotional” and “Satisfaction with sexual function”. The highest percentages scoring maximum were found on scales “Sexual function” (all patients, males and females as well), “Role-limitations –physical” and “Role-limitations- emotional”.
Table 1 Demographic and clinical data of the patients

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Szeged</th>
<th>Kecskemét</th>
<th>Szombathely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>438</td>
<td>246</td>
<td>60</td>
<td>132</td>
</tr>
<tr>
<td>Age (year), mean ± SD (range)</td>
<td>43.3±11.1 (19-72)</td>
<td>41.7±10.8 (19-69)</td>
<td>43.8±10.9 (22-65)</td>
<td>46.1±11.3 (21-72)</td>
</tr>
<tr>
<td>ND (%)</td>
<td>15 (3.4)</td>
<td>7 (2.8)</td>
<td>2 (3.3)</td>
<td>6 (4.5)</td>
</tr>
<tr>
<td>Gender, women -n (%)</td>
<td>324 (74)</td>
<td>185 (75.2)</td>
<td>45 (75)</td>
<td>94 (71.2)</td>
</tr>
<tr>
<td>Education -n(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary</td>
<td>67 (15.6)</td>
<td>36 (14.6)</td>
<td>8 (13.3)</td>
<td>23 (17.4)</td>
</tr>
<tr>
<td>secondary</td>
<td>276 (64.2)</td>
<td>153 (62.2)</td>
<td>40 (66.7)</td>
<td>83 (62.9)</td>
</tr>
<tr>
<td>College, University</td>
<td>87 (20.2)</td>
<td>55 (22.4)</td>
<td>11 (18.3)</td>
<td>21 (15.9)</td>
</tr>
<tr>
<td>ND (%)</td>
<td>8 (1.8)</td>
<td>2 (0.8)</td>
<td>1 (1.7)</td>
<td>5 (3.8)</td>
</tr>
<tr>
<td>Clinical form of the disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st attack</td>
<td>29 (6.6)</td>
<td>29 (11.8)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>benign</td>
<td>23 (5.3)</td>
<td>16 (6.5)</td>
<td>2 (3.3)</td>
<td>5 (3.8)</td>
</tr>
<tr>
<td>Relapsing-remitting</td>
<td>332 (75.8)</td>
<td>186 (75.6)</td>
<td>44 (73.3)</td>
<td>102 (77.3)</td>
</tr>
<tr>
<td>Sec. Chr. Progressive</td>
<td>35 (8.0)</td>
<td>5 (2.0)</td>
<td>9 (15.0)</td>
<td>21 (15.9)</td>
</tr>
<tr>
<td>Primary Progressive</td>
<td>9 (2.1)</td>
<td>4 (1.6)</td>
<td>1 (1.7)</td>
<td>4 (3.0)</td>
</tr>
<tr>
<td>ND (%)</td>
<td>10 (2.3)</td>
<td>6 (2.4)</td>
<td>4 (6.7)</td>
<td>-</td>
</tr>
<tr>
<td>Duration of the disease, year -mean±(range)</td>
<td>10.1±7.8 (0-43)</td>
<td>8.1±5.8 (0-29)</td>
<td>13.6±9.3 (1-42)</td>
<td>12.3±9.1 (1-43)</td>
</tr>
<tr>
<td>ND (%)</td>
<td>5 (1.1)</td>
<td>-</td>
<td>5 (8.3)</td>
<td>-</td>
</tr>
<tr>
<td>EDSS score -mean ± (range)</td>
<td>2.6±1.8 (0-9)</td>
<td>2.0±1.5 (0-9)</td>
<td>3.1±1.7 (0-8)</td>
<td>3.4±2.0 (0.5-8.5)</td>
</tr>
<tr>
<td>ND(%)</td>
<td>5 (1.1)</td>
<td>2 (0.8)</td>
<td>3 (5.0)</td>
<td>-</td>
</tr>
</tbody>
</table>

Internal consistency reliability

Cronbach’s alpha coefficients were over 0.8 in case of all scales except “Role-limitations-emotional” (0.794), indicating a good internal consistency reliability for group comparisons.

Non-response, respondent burden

The highest rate of missing answers has been observed on scales “Satisfaction with sexual function”, “Sexual function” (all patients) and “Sexual function” (females) (Table 2). The mean time required to complete the questionnaire was 24.36 ± 25.32 minutes (SD) and the median was 20.0 minutes.

Table 2 Description of groups for construct validity analysis

<table>
<thead>
<tr>
<th>Groups</th>
<th>EDSS</th>
<th>%</th>
<th>Duration of the disease (year)</th>
<th>%</th>
<th>Age (year)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-1.5</td>
<td>34.6</td>
<td>0-5</td>
<td>33.3</td>
<td>19-35</td>
<td>27.2</td>
</tr>
<tr>
<td>2</td>
<td>2-3</td>
<td>36.3</td>
<td>6-10</td>
<td>30.5</td>
<td>36-44</td>
<td>25.1</td>
</tr>
<tr>
<td>3</td>
<td>3.5-5</td>
<td>19.4</td>
<td>11-20</td>
<td>26.1</td>
<td>45-52</td>
<td>25.5</td>
</tr>
<tr>
<td>4</td>
<td>5.5<</td>
<td>9.7</td>
<td>21<</td>
<td>10.2</td>
<td>53<</td>
<td>22.2</td>
</tr>
</tbody>
</table>
Construct validity

For the construct validity analysis we divided patients into groups with different EDSS points, duration of the disease, age, clinical form of the disease and education level as shown in Table 1 and 2 and compared mean scale scores of these groups. There was a significant difference between the EDSS groups on all scales. On each scale the patient group having lower EDSS score has better HRQOL scores (Hypothesis 1). We found a significant difference between patient groups with different duration of the disease on all scales except “Role-Emotional”, “Mental Health” and “Cognitive Function”. Patients with longer duration of the disease have worse quality of life, although the difference is not always apparent between groups 3 and 4 (Hypothesis 2). Considering age, a significant difference was observed between patient groups on all scales, younger patients having a better quality of life (Hypothesis 3). Comparing patient groups with different clinical forms of the disease there was a significant difference on all scales. First attack patients have a better QoL than patients with benign and relapsing-remitting clinical form, and patients with the progressive forms of the disease have the worst QoL (Hypothesis 4). Patients with different education levels had significantly different scores on all scales except “Sexual function” and “Satisfaction with sexual function”. Patients who have higher education have better quality of life (Hypothesis 5). Our hypotheses were verified except hypothesis 5.

Comparing our results to the data of the original American study, we found some significant differences between the mean scale scores of the two patient groups. Mean scale scores of the American sample were higher on scales “Pain”, “Emotional well-being” and “Health-perceptions”. Mean scale scores of the Hungarian sample were higher on scales “Physical function”, “Role-limitation – physical”, “Energy” and on scales dealing with sexual function. There were no significant differences regarding the other scales, including “Overall quality of life”.

IV.3. Determinants of health-related quality of life in multiple sclerosis

Overall quality of life

Most patients reported a good QoL. In the responses to question #54 no patients indicated the answer “delighted”, which reflected the best QoL on this scale.

Factors influencing overall quality of life

As regards question #53 the social function, general health, physical function, mental health, and satisfaction with sexual function scale scores had the greatest influence on the overall QoL ratings. For question #54, the mental health, general health, satisfaction with sexual function, reported health transition, social function and pain scale scores had the most appreciable impact on the perceived QoL. Four of the variables (indicated in bold) featured as the most decisive scales in the model in both cases, confirming the result.
The scales predicting the probabilities of a patient belonging in the group with the best or the worst QoL were mental health, general health, satisfaction with sexual function and physical function scales.

Comorbid conditions

272 patients (62.1%) indicated that, besides MS, they had another medical condition diagnosed by a physician. Most patients reported only 1 or 2 such medical conditions, but the highest number was 8. The 10 medical conditions reported most frequently by the patients were constipation, depression, high blood pressure, leg cramps while walking, varicose veins, arthritis, sinus congestion, hip impairments, hearing difficulty and anaemia. Constipation, the most commonly featuring comorbid condition, may in fact be a vegetative symptom of MS, and therefore should not be considered an independent condition. Anaemia may be associated with the use of medications, and accordingly this is not a real comorbid condition either.

Depression

Depression was indicated by 89 patients, i.e. 20.3% of all the respondents. Most of the patients with depression had an EDSS of 2-3 points, a disease duration of 5 or less years and had a secondary education level, and exhibited the relapsing-remitting clinical form. The age distribution did not seem to be specific.

The responses to both questions #53 and #54 revealed that the depressed patients had a significantly worse QoL (p<0.0001 in both t-tests). On the other hand, when depression was examined together with all the scale scores, it was not among the variables that played the major role in determining the overall QoL.

Cognitive function

There were significant relationships between the cognitive function scale score and the EDSS, age, education and clinical form, but not the duration of the disease (for comparison the patient groups are described in Table 2). Young patients, patients with a low EDSS score, and patients with a high level of education had a better cognitive function. As concerns the clinical forms of the disease, CIS (Clinically isolated syndrome) patients scored much higher than the others on the cognitive function scale, indicating only a mild cognitive deficit. The relapsing-remitting and secondary progressive patients had fewer cognitive problems than the patients with the benign or primary progressive clinical form.

V. Discussion

V.1. Interferon-beta 1b

The observed 80% decrease in the relapse rate of IFNβ-1b-treated MS patients in our open study is not in line with the 18-34% change reported from multi-centre, double-blind, placebo-

In similar open studies lasting for 1-3 years, a 50-86% decrease in relapse rate was experienced (Arbizu et al., 2000, Carra et al., 2003, Onesti et al., 2003, Milanese et al., 2003, Huber et al., 1996, Khan et al., 2001, Dubois et al., 2003). During this period, a significant change in the EDSS score of the patients was not found. In 2000, Johnson et al. published the results of a 6-year course of treatment with glatiramer acetate (Copaxone) (Johnson et al., 2000). The initial mean annual relapse rate of 1.50 decreased to 0.42 by the end of the 6th year, i.e. a 72% change. An unchanged status or an improvement in the EDSS score of at least 1 point was observed in 69.3% of the patients, a finding similar to ours.

The longest follow-up study of IFNβ-1b treatment was carried out by Ebers et al (Ebers et al., 2009, Ebers et al., 2010, Reder, 2010). The results of the 16 and 21 year long-term follow-up of the original Betaferon pivotal trial showed that early and sustained therapy is associated with marked reductions in the risk of reaching substantial disability milestones (e.g. reaching EDSS 6 or developing SPMS). Moreover, an increased death rate was observed among those originally randomized to placebo compared to those originally randomized to IFN beta-1b. Patients treated earlier with Betaferon had a 39.3% relative reduced risk in mortality for the time since randomization in the study (p=0.027), compared with patients receiving placebo for the first five years of treatment. The positive effect of interferon beta-1b on survival needs to be further examined, but this information may be beneficial in the every-day patient management to improve adherence to therapy.

The less than 0.5 point increase in the EDSS score contrasts markedly with the 3-point deterioration expected after 6 years according to the natural disease course. Moreover, the mean EDSS score at the end of the therapy (2.21±1.48) is lower than the 4-5 points to be expected after a 10-12-year history of MS (Ebers, 2001).

The significant improvement in the progression index demonstrates that 6 years of continuous therapy decreased the progression of the disease, i.e. IFNβ-1b treatment stabilizes the status of the patients.

V.2. MSQOL-54 - Hungarian validation

The Hungarian version of the MSQOL-54 was accepted well by patients with multiple sclerosis. None of the patients refused to fill it in. The average time needed to complete it was 24 minutes (median 20 minutes), which means that it was not a difficult task for the patients and that the wording of the questionnaire was easy to understand. In other studies the average time to complete the MSQOL-54 ranged between 11.8-30.0 minutes (Idimani et al., 2006, Solari et al., 1999, Acquadro et al., 2003, Aymerich et al., 2006).
We found that the patient group having lower EDSS score had better HRQOL scores on each scale. In the Turkish validation study authors found a weak negative correlation between EDSS and both physical and mental health composite (Idimani et al., 2006). However, the correlation was significant in the lower EDSS group (EDSS 0-4.0). Since more than 90% of our patients had an EDSS score below 5.5, this shift to lower level of disability may influence our results as well. When comparing groups of patients with different ambulation status Vickrey et al. found that the sensitivity of scales assessing aspects of ambulation was higher to the known group differences than scales assessing well-being or cognition (Vickrey et al., 1995). There was a non-linear relationship between ambulation status and HRQOL for some scales, for example pain. In the Italian validation study neurological impairment assessed by EDSS had a limited influence on quality of life measured by MSQOL-54 (Solari et al., 1999). However, the mean EDSS in their patient sample was much higher than that of both our and the Turkish study.

Younger patients with a higher level of education, shorter duration of the disease and a 1ª attack or benign clinical form of the disease had a better quality of life. Of these parameters the effect of the level of education is not so evident to understand. Its beneficial influence on perceived quality of life might be due to the fact, that highly educated patients manage to remain employed for a longer time despite of accumulation of physical disability or have better chances to find another job more suitable to their changed capabilities.

Comparing the self-assessed quality of life of the Hungarian and the American multiple sclerosis patient samples we found significant differences between some of the mean scale scores. The two samples were similar considering mean age, sex distribution and mean duration of the disease. On the other hand, in the American sample the proportion of patients capable to walk without aid (EDSS<=5.5) was only 41%, compared to more than 90% in our sample. The other difference was that more patients had a college or university degree in the American than in the Hungarian sample (Vickrey et al., 1995). The lower mean EDSS score of the Hungarian patient group may account for the higher mean scores on scales assessing mainly physical function and energy. There were no significant differences in the mean scores of scales less sensitive to ambulation such as “Cognitive function” or “Role-limitation – emotional”.

V.3 Factors influencing health-related quality of life

Factors influencing the overall QoL: Three of the scales that determine whether a patient falls in the best or the worse QoL category are those with the highest impact on the overall QoL (mental health, general health and satisfaction with sexual function scales). Interestingly, the physical function scale does not feature among them.

62.1% of the patients indicated having at least one comorbid condition besides MS. We examined the effects of depression in more detail.
The prevalence of depression among MS patients has been reported to be 36-54% (Fruehwald et al., 2001, Joffe et al., 1987, Sadovnick et al., 1996). A highly significant correlation was found between depression, anxiety and the QoL (Fruehwald et al., 2001). Depression was the strongest predictor of a reduced QoL. The study by Sadovnick et al. (Sadovnick et al., 1996) concluded that MS patients had a 50.3% lifetime risk of depression. Among first-degree relatives of index cases, the morbidity risk for depression was lower than that among the reference population.

For our MS patients, the reported rate of depression was relatively low: only 20.3% of the subjects indicated a current diagnosis of depression. We considered patients as having depression whose diagnosis had been confirmed by a psychiatrist. A recent study led to the finding that the prevalence of major depression in primary care practices in Hungary was 7.3% (Peter et al., 2008). The rate of depression is higher in the MS patient population relative to patients visiting primary care practices. Patients with depression scored significantly lower on both scales for assessment of the overall QoL. In the study by Vickrey et al. (Vickrey et al., 1995), the scores of the depressed patients (15/179) were significantly lower than those of the non-depressed subjects on all scales except those relating to physical function and cognitive function. In an Italian survey too (Solari et al., 1999), depression had a major influence on the HRQOL. Patients with higher BDI (Beck Depression Inventory) scores displayed lower scores on all MSQOL-54 scales. Janardhan et al. (Janardhan and Bakshi, 2002) assessed the QoL of 60 consecutive MS patients with the MSQOL-54 instrument. After disability and fatigue had been taken into account, depression proved to be associated with a lower QoL in many domains.

The prevalence of a cognitive impairment among patients with multiple sclerosis has been variously reported in the range 30-70% (Bobholz and Rao, 2003, Pal et al., 2002, Piras et al., 2003, Sfagos et al., 2003). This high rate makes it necessary to pay attention to this aspect. The reported dysfunctions involved attention, recent memory, information processing speed, executive functions, verbal intellectual ability, visuospatial perception, abstract reasoning and verbal memory (Bobholz and Rao, 2003). Cognitive deficits seem to develop as early as one year after the onset of MS and subsequently remain comparatively stable, without rapid worsening (Piras et al., 2003). Complex MRI and neuropsychological studies (Bobholz and Rao, 2003, Pal et al., 2002, Piras et al., 2003) have indicated that cognitive deficits correlate with MRI lesions of specific brain regions rather than the overall MRI lesions. One study demonstrated that the Kurtzke scale, atrophy of the corpus callosum and widening of the third ventricle and Sylvian fissures were related to an impaired cognitive performance (Pal et al., 2002). Multiple sclerosis patients performed worse in verbal and non-verbal theory of mind (ToM) tasks, indicating that social cognition, especially emotional recognition is affected in MS (Banati et al., 2010). More disabled patients and patients with long disease duration had worse results. Moreover, ToM was found to be more impaired in case of rapid disease progression.
In our study, young patients, patients with a low EDSS scores, and patients with a high level of education had a better cognitive function. CIS patients gave higher scores on the cognitive function scale than the patients with other clinical forms of the disease. A cognitive dysfunction may influence the ability of patients to respond to questionnaires, but the study by Gold et al. suggested that cognitive impairment in MS does not affect the reliability and validity of self-report measures (Gold et al., 2003).

VI. Conclusions

This is the first study that has evaluated the change in the progression index in response to long-term IFNβ-1b therapy. Our results clearly indicate that this long-term continuous immunomodulatory therapy decreases the activity of the disease, influences the progression of MS, and thereby improves the quality of life of MS patients.

The Hungarian version of the MSQOL-54 instrument is well accepted by patients and easy to administer. Its internal consistency reliability measured by Cronbach alpha coefficient is well above the minimum requirement in case of all scales for group-based comparisons and the instrument was able to distinguish between known clinical group differences. On the other hand it is important to emphasise that the questionnaire is not suitable for monitoring individual patients, because it does not meet the much stricter psychometric requirements for this purpose (McHorney and Tarlov, 1995). The self-assessed health-related quality of life of patients provides useful additional information to clinicians.

Multiple sclerosis patient care is a complex task that should not be restricted to monitoring of the physical function and EDSS. The mental health and sexual function are consistently among factors that influence the quality of life of MS patients. The recognition and treatment of depression, a cognitive dysfunction and a sexual dysfunction may improve the overall QoL at a given physical status. Self-reporting quality of life measures, such as the MSQOL-54, may be useful tools in clinical practice to address symptoms that are not readily captured by the EDSS. This study has yielded quality of life data on more than 400 patients, i.e. a considerable proportion of the MS patient population of Hungary. It is among our aims to examine the instrument in longitudinal studies as well. Other factors influencing quality of life of patients, for example the role of a supporting living environment may also be assessed.

VII. Acknowledgement

I would like to thank to Professor László Vécsei, member of the Hungarian Academy of Sciences, Head of the Department of Neurology, University of Szeged for his continuous support throughout my work and for giving me opportunities to become a neurologist and do research as well. I would like to thank to my supervisor, Krisztina Bencsik, MD, PhD for teaching me in the field of multiple sclerosis since I was a medical student and for supporting my work. Without her encouragement this thesis would never have been completed. I wish to thank to all co-authors with
whom I carried out the studies and my former and present colleagues for being a good company. The colleagues and friends at the Department of Analytical Chemistry and the Department of Ion Physics of Uppsala University, Sweden for the inspiring scientific and cultural experience (special thanks are due to Professor Jonas Bergquist and Professor Per Håkansson). I would like to thank my friends for their patience, whom I appreciate more than I have time to spend with. I am indebted to far more people than I can name who helped to move on at times of difficulty.

Finally, I want to thank my family for their endless support throughout my studies and that they trusted in my success.

References

