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Summary 

In the last two decades new techniques of non-invasive brain stimulation have been introduced 

that enable relatively long-lasting and reversible facilitation or inhibition of distinct cortical 

areas by modulating the excitability of underlying neurons. Among these methods, repetitive 

transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are 

the most widespread ones. To date, both have been successfully used to modulate various 

perceptual, cognitive and motor functions in healthy subjects and several diseases, including 

chronic pain. Their efficacy regarding acute pain perception in healthy subjects however is still 

not well established.  

The aims of our studies were to investigate the effects of a novel rTMS paradigm, continuous 

theta-burst stimulation (cTBS) and tDCS on laser-induced acute pain perception and laser-

evoked potentials (LEPs) when applied to the motor cortex of healthy adult volunteers. In two 

psychophysical and two electrophysiological experiments, we have compared the effects of 

real cTBS and two tDCS protocols (anodal and cathodal) to those of sham stimulations. 

We have shown for the first time that cTBS over the motor cortex significantly alleviated laser-

induced pain on both hands, accentuating on the contralateral limb. The effect of cTBS was 

accompanied by reduced N2-P2 LEP amplitudes in the case of medium intensity pain. In the 

tDCS experiments, cathodal stimulation of the motor cortex reduced mild pain contralateral to 

the side of stimulation. Moreover, cathodal tDCS attenuated N2-P2 LEP components, without 

modulating thresholds of medium intensity pain. On the contrary, anodal tDCS facilitated 

laser-induced warm sensation contralateral to the side of tDCS, without affecting either pain 

sensation or LEPs. 

Our results indicate that non-invasive stimulation of the motor cortex causes antinociceptive 

effects that depend on the parameters of stimulation and are probably due to excitability 

changes in remote pain-related areas such as the operculoinsular region and the anterior 

cingulate cortex. These findings further strengthen the application of cTBS and tDCS in pain 

research, which might contribute to a more efficient manipulation of brain plasticity for 

therapeutic purposes. 
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Introduction 

Controlling pain has always been one of the biggest challenges of medical science. Despite 

pharmacological developments, still many patients suffer from long-lasting pain. During the 

last 40 years several surgical interventions have been used to modulate the activity of the 

central nervous system in order to control chronic, pharmacoresistant pain. Because such 

interventions may involve very serious adverse events, safer and at least equally efficient 

methods are still necessary. In the 90’s new techniques of non-invasive brain stimulation have 

been introduced that enable the facilitation or inhibition of distinct cortical areas. Among these, 

transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are 

the two most widespread ones. 

Transcranial magnetic stimulation 

TMS is based on electromagnetic induction, according to which a rapid, high-voltage 

alternating current is generated in a coil, producing a strong magnetic field that lasts for a few 

milliseconds. The magnetic field in turn induces electric currents in the cortex and stimulates 

the axons of neurons. When the stimulation is repeated with a certain frequency (repetitive 

TMS; rTMS), relatively long-lasting and reversible facilitatory or inhibitory effects can be 

induced in the stimulated area. rTMS has been successfully used to alleviate symptoms of 

various neurological and psychiatric diseases, including chronic pain. In pain syndromes the 

motor cortex is considered as one of the most effective target sites for stimulation. 

A new stimulation protocol has been described recently, where the stimulation consists of three 

consecutive pulses of sub-threshold intensity that are presented rapidly (at 50Hz) and these 

bursts are repeated at the theta frequency (5Hz). During continuous theta-burst stimulation 

(cTBS), this pattern lasts for 40 seconds, which causes robust inhibition for up to 60 minutes 

post-stimulation when applied over the motor cortex. 

Transcranial direct current stimulation 

tDCS is a neuromodulatory technique during which two electrodes connected to a stimulator 

are placed on the scalp. The intensity of the current is usually 1-2 mA, which is flowing from 

the anode towards the cathode for maximally 20 minutes and causes shifts in the membrane 
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potentials of neurons underneath the electrodes. Anodal stimulation depolarizes, while cathodal 

hyperpolarizes the stimulated area, hence exhibiting facilitatory and inhibitory effects 

respectively. Various tDCS protocols have been shown to efficiently modulate the excitability 

of motor, visual and somatosensory cortical areas. It has also been shown that anodal tDCS 

alleviates chronic pain when applied for 5 consecutive days over the motor cortex. 

The use of laser-evoked potentials for studying pain perception 

Electroencephalography (EEG) is a non-invasive method suitable for recording neural activity 

with excellent temporal resolution. When recorded during laser stimulation of the skin, laser 

evoked potentials (LEPs) can be analyzed at central and temporal scalp locations that are 

informative of the peripheral conduction of pain-evoked nerve impulses and their processing in 

distributed pain-related cortical areas. Based on their latencies, LEP waveforms can be divided 

into early (N1), late (N2 and P2) and ultra-late LEPs. The N1 typically appears around 160 

milliseconds post-stimulation at bitemporal scalp sites. The late N2 and P2 potentials are 

maximal at the vertex, with latencies of 210 and 250 milliseconds in the case of hand 

stimulation. Generators of the N2 potential lie in operculoinsular cortices bilaterally and in the 

primary somatosensory cortex contralateral to the side of stimulation. Regarding the P2 

potential, most source localizing studies reported it to be generated in the anterior cingulate 

cortex. The N2-P2 peak-to-peak amplitude correlates with the reported intensity of perceived 

pain, which is more likely due to modifications of the N2 amplitude. While early and late LEP 

components reflect Aδ-fiber-mediated neural responses, ultra-late LEPs appear 700-1300 

milliseconds post-stimulation and are associated with C-fiber stimulation. 

Aims of the studies 

The aim of our first study was to investigate the effect of cTBS applied above the motor cortex 

on laser-induced acute pain perception and LEP parameters in healthy adult volunteers. Given 

the controversial antinociceptive effect of low and high frequency rTMS in Aδ-fiber mediated 

pain in healthy subjects, we chose the most effective TBS protocol (cTBS), which exhibits 

robust and relatively long-lasting inhibition of the motor cortex. We hypothesized that when 

compared to sham stimulation, cTBS would alter pain thresholds and LEP amplitudes on the 

hand contralateral to the side of motor cortex stimulation. For this purpose, we first carried out 
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a psychophysical experiment (Experiment 1), where laser intensity was systematically 

increased and decreased. This enabled us to examine the efficacy of cTBS for three different 

laser intensities, evoking warm sensation, mild and moderate pain respectively. In the second 

experiment (Experiment 2), we aimed at inducing moderate pain in order to record LEPs 

before and after real and sham stimulation. 

The second study was designed to assess the efficacy of anodal and cathodal tDCS of the motor 

cortex on laser-induced pain thresholds and LEP amplitudes. As for cTBS, we hypothesised 

that tDCS (primarily anodal stimulation) would significantly modulate pain thresholds, which 

would also be reflected in reductions of LEP amplitudes. We carried out a psychophysical 

experiment (Experiment 3) for assessing the effects of anodal and cathodal tDCS on warm 

sensation, mild, moderate and intensive pain and an EEG experiment (Experiment 4) during 

the course of which always moderate pain was induced to evoke reliable LEPs for analysis. 

Methods 

Subjects 

Thirteen healthy right-handed volunteers (8 male and 5 female) between 18 and 30 years took 

part in Experiment 1, while 10 right-handed subjects (5 male and 5 female) aged between 20-

30 years participated in Experiment 2. Regarding the tDCS experiments, 16 (5 male and 11 

female) subjects took part in Experiment 3, while 10 volunteers (5 male and 5 female) 

participated in Experiment 4. There was no overlap between the participants of the four 

experiments. All participants were informed about all aspects of the experiments and only 

those who signed an informed consent were included in the study. We conformed to the 

Declaration of Helsinki and the experimental protocol was approved by the Ethics Committee 

of the University of Göttingen. None of the participants suffered from chronic pain syndromes 

nor took any medication regularly. All participants participated in the two cTBS (real and sham 

stimulation) or in the three tDCS (sham, anodal and cathodal stimulation) sessions within the 

experiments that were separated by at least 5 days in order to avoid the effect of interference. 

The order of the real and sham sessions was counterbalanced across subjects. 
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Laser stimulation and pain evaluation 

Pain was elicited using a Tm:YAG laser system (WaveLight Laser Technologie AG, Erlangen, 

Germany). The thulium laser emits near-infrared radiation and allows the emitted heat energy 

to be precisely restricted to the termination area of primary nociceptive afferents without 

affecting the subcutaneous tissue. The distal handpiece of the laser was positioned 30 cm from 

the radial part of the dorsal surface of the hand. In both experiments the right hand was 

stimulated first in half of the cases; in the other half we started with the left hand. 

We used a numeric analogue score (NAS) to assess the subjective intensity of pain. We 

instructed the subjects to pay attention to the laser stimuli and to rate the perceived pain 

verbally with numbers (1 for warm, between 1.1 and 1.9 from mildest to most intensive pain) 

about 2–3 seconds after each stimulation. Inter-stimulus interval varied between 8 and 15 

seconds. 

In the psychophysical experiments (Experiments 1 and 3) we applied two series of stimuli for 

each hand before (cTBS and tDCS), immediately after (cTBS and tDCS) and 30 minutes after 

stimulation (cTBS). We systematically increased laser intensity from 200 mJ in 50 mJ steps 

until subjects reported moderate pain. Then the laser energy was decreased from that intensity 

again in 50 mJ steps. This stimulation protocol was repeated twice. Hence we obtained four 

pain rating scores for each laser intensity prior to and following cTBS or tDCS for each hand 

and simulation type. 

In the electrophysiological experiments (Experiments 2 and 4) in order to get reliable LEP 

waveforms, we aimed to induce medium intensity pain. We started with a laser intensity of 

1.5–1.6 times of the threshold level during EEG recording and adjusted laser energy manually 

in order to keep the magnitude of pain between NAS scores 1.4–1.6. We delivered 40 laser 

pulses to each hand before and after cTBS and tDCS. 

Theta-burst stimulation 

In Experiments 1 and 2, real and sham cTBS was applied over the hand area of the left motor 

cortex. In Experiment 1, we used a standard, figure-of-eight-coil (MC-B70 Butterfly Coil, 

Magventure A/S, Farum, Denmark) and MagPro stimulator (Medtronic, Denmark) with an 

outer half-coil radius of 75 mm, while a figure-of-eight-coil with an outer half-coil radius of 
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90 mm (Dantec S.A., Skovlunde, Denmark) and a Magstim Super Rapid stimulator (Magstim 

Company Ltd., Whitland, Wales, UK) were used in Experiment 2. Stimulus intensity was 80% 

of the active motor threshold. The pattern of cTBS consisted of bursts containing 3 pulses at 

50Hz which were repeated at 200 ms intervals (i.e. 5Hz) for 40 seconds (resulting 600 pulses in 

total) continuously. In accordance with earlier studies, we stimulated above the position of 

electrode C3, which is situated above the primary motor cortex. In a separate experimental 

session, sham stimulation was applied with the same cTBS protocol using a sham coil (MC-P-

B70, Magventure A/S, Farum, Denmark) held at the same position. The participants were 

blinded concerning the type of the magnetic stimulation (real or sham). 

Direct current stimulation 

In Experiments 3 and 4, we applied anodal, cathodal and sham tDCS by a battery driven 

constant current stimulator (NeuroConn, Ilmenau, Germany) using a pair of rubber electrodes 

placed in a 5 x 7 cm synthetic water-soaked sponge. One electrode was placed at position C3, 

while the other was situated above the right eyebrow. The type of stimulation (anodal or 

cathodal) refers to the polarity of the electrode above motor cortex. The current was applied for 

10 minutes with an intensity of 1.0 mA, while for sham stimulation it was turned on only for a 

few seconds to provide the slightly itchy sensation at the beginning of the stimulation. Subjects 

were not aware of the polarity and type of tDCS. 

Electroencephalographic recording 

In Experiment 2, EEG was recorded using a 64-channel montage (EasyCap; Falk and Minow 

Gmbh, Munich, Germany), whereas in Experiment 4, we could only use a five channel 

montage (Fz, Cz, Pz, T3 and T4) to enable the placement of the large tDCS electrodes. EEG 

electrodes were placed in accordance with the extended international 10-20 system. Data were 

always collected with the BrainAmp system (Brain Products GmbH, Munich, Germany) and 

were analysed off-line. In Experiment 2, the N2–P2 components were analyzed at three scalp 

regions: central (FCz, Cz, Pz), left (FC3, FC5, C3, C5, CP3, CP5) and right (FC4, FC6, C4, 

C6, CP4, CP6). In Experiment 4, we analysed baseline N1 amplitudes on channels T3 and T4, 

while N2 and P2 amplitudes were measured on all five channels. 
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Data analysis 

In Experiment 1, NAS values were divided into three groups according to the intensity of the 

laser stimulation, resulting in low intensity 200–399 mJ, medium intensity 400–599 mJ and 

high intensity 600–800 mJ groups. A repeated measures analysis of variance (ANOVA) was 

calculated with the mean NAS values across participants and was entered as dependent 

variables, while hand (left or right), condition (sham vs. cTBS), time (before, after and 30 

minutes after) and intensity of laser stimulation (low, medium and high) served as independent 

variables. For post-hoc comparison Tukey’s HSD test was used. 

In Experiment 2, we normalized the data by dividing pain rating scores (1–9) by the actual 

laser energy (J). These values were compared for both hands separately with repeated-

measures ANOVA, where condition (real and sham cTBS) and time (before and after cTBS) 

served as within-subject factors. N2 and P2 baseline amplitudes and the N2–P2 peak-to-peak 

amplitude were entered into repeated-measures ANOVA for both hands separately. 

In Experiment 3, we grouped the obtained pain rating scores into four perceptual categories: 

warm sensation (NAS = 1), mild (NAS between 1.1–1.3), medium (NAS between 1.4-1.6) and 

intensive pain (NAS between 1.7-1.9). NAS values for each hand and pain category were 

compared between the three tDCS conditions with a 2-way ANOVA. 

In Experiment 4, laser energies necessary to induce moderate pain were compared with 

repeated-measures ANOVA for both hands, where condition (anodal, cathodal and sham 

tDCS) and time (before and after tDCS) were entered as within-subject factors. Regarding 

LEPs, N1, N2, and P2 baseline amplitudes were entered into repeated-measures ANOVA for 

both hands separately. Student’s t-test was used to compare the baseline amplitudes between 

different conditions. 
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Results 

cTBS experiments 

In Experiment 1, low intensity laser stimulation (200–399 mJ) was either unperceivable or 

caused only a warm sensation in most of the participants. In the case of medium intensity laser 

stimulation (400–599 mJ) mean NAS values indicated pain sensation around threshold. High-

intensity laser stimulation (600–800 mJ) resulted in a moderate-to-intensive pain sensation in 

all participants. Regarding right hand laser stimulation, there was a significant effect of time in 

the medium intensity group if real cTBS was applied (a reduction in NAS values before vs. 

immediately after and before vs. 30 minutes after cTBS). In the high intensity group there was 

a significant decrease in NAS only immediately after cTBS. We found a significance 

difference between conditions (cTBS vs. sham) only in the medium-intensity group. All of the 

other comparisons were not significant. In case of left hand stimulation there was a significant 

effect of time only in the high intensity group 30 minutes after cTBS. Comparing the two 

conditions (cTBS vs. sham) there were significant differences 30 minutes post-stimulation in 

the low-intensity group and in the medium-intensity group. 

In Experiment 2, the N2 amplitude decreased in both cTBS conditions for both hands, but we 

found a significant time x condition interaction only in the case of right hand laser stimulation, 

indicating that after real cTBS the N2 amplitude reduction was larger than after sham 

stimulation. With regard to the P2 amplitude, we found a significant time x condition 

interaction only for left-hand laser stimulation, where the magnitude of amplitude change was 

significantly less when real cTBS was used. 

tDCS experiments 

In Experiment 3, we found a significantly reduced warm threshold for the right hand after 

anodal tDCS, when compared to the effects of sham stimulation. On the contrary, cathodal 

stimulation significantly increased laser intensities that were needed to induce mild pain when 

compared with sham or anodal stimulation. Neither medium nor high intensity pain thresholds 

were modulated by real tDCS. 
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In Experiment 4, we did not find significant difference among the three tDCS conditions with 

regard to the laser intensities necessary to induce moderate pain. In case of the N1 component 

there was no significant time x condition interaction for either hands. In the case of the N2 

component however, we found a significant time x condition interaction only when the right 

hand was stimulated. When compared with sham and anodal tDCS, cathodal stimulation 

significantly diminished the N2 amplitude. In contrast to cathodal stimulation, anodal 

stimulation did not affect the N2 amplitude when compared with sham tDCS. With regard to 

the P2 amplitude, the repeated-measures ANOVA revealed a significant modulatory effect of 

tDCS in the case of the right hand. The interaction of time and condition was significant for the 

cathodal-sham, marked but not significant for the anodal-sham and not significant for the 

anodal-cathodal comparison. 

Discussion 

In Experiments 1 and 2, we have shown that cTBS applied above the motor cortex alleviates 

experimentally induced acute pain and corresponding LEP amplitudes. In Experiment 1, the 

reduction of the pain perception was dominantly contralateral to the side of the cTBS (for 

medium and high intensity laser stimulation) and was observed immediately post-stimulation 

for medium-level laser intensity (around pain threshold). Furthermore, it remained stable for up 

to 30 min after stimulation. In case of the left hand, the significant effect of the cTBS appeared 

to be delayed. In Experiment 2 we have also shown that parallel to the contralateral-sided 

reduction of moderate intensity pain sensation after cTBS, real stimulation reduces the N2-P2 

LEP complex, which is primarily due to smaller N2 amplitudes. 

The fact that cTBS over the motor cortex attenuated the N2-P2 complex points towards the fact 

that remote effects should also be considered, since these LEP components reflect the activities 

of the bilateral operculoinsular and anterior cingulate cortices. Given that the motor cortex is 

intensively interconnected with the anterior cingulate cortex and that invasive stimulation of 

the primary motor cortex induced regional blood flow changes in several pain-related 

structures, it seems plausible that cTBS in Experiments 1 and 2 caused similar changes in these 

regions, which manifested in reduced LEP components. 
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In Experiment 3, cathodal tDCS over the motor cortex resulted in diminished perception of 

mild pain, while anodal tDCS facilitated warm sensation. All these effects were only present 

when the hand contralateral to the side of tDCS was stimulated with the Tm:YAG laser. 

Regarding LEP components in Experiment 4, we found significantly decreased N2 and P2 

amplitudes after cathodal tDCS on the contralateral hand, while subjective pain ratings were 

not altered. One possible explanation for the observed effects is that the diminution of both 

LEP components after cathodal tDCS reflects a modulation of neural excitability in the primary 

somatosensory cortex, the operculoinsular region and/or the anterior cingulate cortex. Indeed, 

in a PET study, changes in regional cerebral blood flow in the right cingulate cortex and the 

right thalamus were reported while the investigators used exactly the same stimulation protocol 

for modifying motor cortex excitability as we did in our study. 

In the psychophysical experiment, we found a significant reduction of mild pain perception 

after cathodal tDCS when the contralateral hand was stimulated with laser, which seems to 

contradict to findings of studies where the facilitatory anodal tDCS applied over the motor 

cortex successfully alleviated pain in chronic pain symptoms. One possible explanation for this 

discrepancy is that we examined experimentally induced acute pain in healthy subjects, 

whereas in previous studies the motor cortex was stimulated in chronic pain syndromes. Such 

chronic pathological states are characterized by both functional (i.e. reorganization of synaptic 

transmission) and structural alterations in cortical and subcortical areas, probably also leading 

to excitability changes. Another important issue is that in the first clinical studies, 

antinociceptive effects were reached with 20 minute-long daily sessions of 2 mA strong anodal 

tDCS; that is with twice as long and strong stimulation parameters, as the one applied in our 

study. Interestingly enough, even by using this protocol they did not observe significant 

changes immediately after tDCS, but only the following day, indicating that the effect of tDCS 

developed much slower than one would expect it in any other modality among healthy 

subjects. 

The effect of anodal stimulation on warm thresholds was to some extent opposite to that of 

cathodal tDCS. Anodal tDCS facilitated warm sensation without influencing pain sensation or 

LEP amplitudes. Regarding the differential effect of anodal tDCS on warm and pain sensation, 

there is some evidence that certain brain regions are differentially involved into processing of 

warm and painful stimuli. In a functional magnetic resonance imaging study, different blood 
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oxygen level-dependent signal change in the contralateral operculoinsular region was reported 

for painful and warm stimulation. We might speculate that the modulation of neural excitability 

in this region contribute to the observed shift of warm threshold and manifest in thermal 

hyperesthesia. 

In conclusion, we have demonstrated that both cTBS and tDCS reduce subjective pain intensity 

and attenuate late LEP components when applied over the motor cortex. Although we found 

differences between cTBS and tDCS regarding the intensity of pain that was modulated, the 

laterality of effects and the manner to which the N2 and P2 components were changed, both 

stimulation techniques exhibited significant effects when compared to sham conditions. Our 

better understanding of the molecular effects of rTMS paradigms and tDCS is essential to 

further improve such antinociceptive effects. In fact, since the publication of our studies, it has 

been shown in the same laboratory that the D2-receptor agonist pergolide prolonged the 

antinociceptive and N2 amplitude reducing effects of cathodal tDCS when applied over the 

M1. These are very promising findings, which hopefully will facilitate the development of 

novel techniques for alleviating chronic pain. 
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