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1 Introduction

Chlamydia trachomatis (C. trachomatis) is a bacterium that belongs toChlamy-
dia, a genus of pathogenic gram-negative bacteria which are obligate intracel-
lular parasites. C.trachomatis typically affects humans and is reportedly the
most common STI worldwide. It causes diseases in humans by infecting the
genital tract and ocular epithelium [1]. A report on the global incidence and
prevalence of selected curable STIs in the year 2008 reported 105.7 million
cases of C. trachomatis [2]. The Centers for Disease Control and Prevention
(CDC) reports that there are 4 million new instances of C. trachomatis infec-
tions in the United States each year. Moreover, it is overtly distressing that
young people between 15-24 are primarily affected, marking up to 50% of
new STIs occurring each year [3].

1.1 Life Cycle of Chlamydia
Chlamydia’s unique biphasic intracellular developmental cycle differs from other
bacterial parasites. They manifest in two morphologically distinct forms within
the host: the elementary bodies (EBs) and the reticulate bodies (RBs). The
EBs are the extracellularly viable, but metabolically inert forms, responsible
for spreading the infection by attaching and invading susceptible epithelial hu-
man cells. RBs are metabolically active non-infectious forms that can repli-
cate inside human cells. The life cycle of Chlamydia is initiated when the
EBs attach themselves to the surface of the host epithelial cell; followed by
the internalization into an intracytoplasmatic parasitophorous vacuole called
inclusion, whereby they undergo morphological changes and differentiate into
the replicative form RBs. The RBs then multiply by undergoing repeated cy-
cles of binary fission (200-500 fold; [4]). Matured RBs then differentiate back
to EBs and are eventually released at the end of the cycle with the lysis of the
infected host cell [5].

As it stands, the fact that Chlamydia’s developmental forms exclusively alter-
nates between EB and RB has been oversimplified. Interestingly, Chlamydia
can enter a non-infectious yet viable stage known as persistence when un-
der stress despite being efficiently treatable. Persistence in Chlamydia is a
reversible phase that is characterized by an anomalous development cycle
where the bacteria is capable of establishing latent infections and can persist
asymptomatically in many individuals [6]. Unresolved Chlamydia infections
leading to the persistence of the bacteria are believed to be a principal reason
behind recurrent Chlamydia diseases.
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Figure 1.1: Graphical representation of the Chlamydia development cycle in the presence of persis-
tence. Arrows indicate transition from one stage to another.

Figure 1.2: The persistence phenomenon.
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2 Delay linear chains in mathematical biology: An insight into
the intracellular Chlamydia infection

We develop a linear system of delay differential equations that is applicable
to the mathematical representation of some compartmental models in biology
and ecology. Consider a delayed linear chain as shown in Figure 2.1, illustrat-
ing particles moving through a number of successive compartments before
reaching a final stage. The multiplicative rates represent growth between the
compartments. All the compartments have inflow and outflow terms except
the first and the last: the first compartment has only outflow and the last com-
partment has only inflow. Time delay signifies the time needed to complete
the transition of particles between successive compartments.
Let the number of particles in the ith compartment at time t be yi(t) (i =

Figure 2.1: Schematic diagram of a linear chain.

0, 1, . . . , n). The rate at which the particles are moving out of the ith compart-
ment is denoted by ai for i = 0, 1, . . . , n − 1 and bi−1 is the rate at which
the particles are entering the ith compartment for i = 1, 2, . . . , n. Also, we
assume that the particles are arriving with a time delay τi−1 into the ith com-
partment for i = 1, 2, . . . , n. We describe such a process by a system of delay
differential equations as follows:

y′
0(t) = −a0y0(t),

y′
i(t) = bi−1yi−1(t− τi−1)− aiyi(t), i = 1, 2, . . . , n− 1,

y′
n(t) = bn−1yn−1(t− τn−1),

(2.1)

where ai > 0, bi > 0 and τi ≥ 0 for all i. The natural phase space for our
system is C([−τ, 0],Rn+1), where τ = max{τ0, . . . , τn−1}. Initial conditions
for this system are given by

yi(θ) = φi(θ) for θ ∈ [−τ, 0], i = 0, . . . , n (2.2)

where φ := (φ0, . . . , φn) ∈ C([−τ, 0],Rn+1
+ ).

It is well known that the initial value problem Eq. (2.1)-Eq. (2.2) is well-posed.
Non-negativity of the initial data is a natural requirement for the biological sys-
tems we consider, and from the non-negativity of the rates, it follows that so-
lutions remain non-negative for all future time. In the following proposition, an
explicit expression for the limit of each compartment is given.
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Proposition 2.0.1. Solutions of problem (Equation (2.1)) has the following
limits:

lim
t→∞

yi(t) = 0 for i = 0, 1, 2, . . . , n− 1

and

lim
t→∞

yn(t) =
b0 . . . bn−1

a0 . . . an−1
φ0(0) +

b1 . . . bn−1

a1 . . . an−1
φ1(0) + · · ·+ bn−1

an−1
φn−1(0)

+ φn(0) +
b0 . . . bn−1

a1 . . . an−1

∫ 0

−τ0

φ0(s)ds+
b1 . . . bn−1

a2 . . . an−1

∫ 0

−τ1

φ1(s)ds

+ · · ·+ bn−2bn−1

an−1

∫ 0

−τn−2

φn−2(s)ds+ bn−1

∫ 0

−τn−1

φn−1(s)ds.

2.1 Mathematical Formulation of the Intracelluler Chlamydia
Development Cycle

In this section, we construct a mathematical model for a laboratory experiment
of Chlamydia infecting human cells [7]. In the absence of persistence, the life
cycle alternates between the EBs and the RBs.

Variables Descriptions
y0(t) Number of EBs outside human cells at time t
y1(t) Number of EBs attached to human cells at time t.
y2(t) Number of EBs that have transformed to RBs,
yi(t) Number of RBs after the ith cycle of replication for

i = 3, 4, . . . , n− 1.
yn(t) Number of RBs converting back to EBs.

Table 2.1: Variables and their Descriptions

According to certain assumptions, and description of variables given in Ta-
ble 2.1, the population dynamics of EBs and RBs can be described in mathe-
matical terms as follows:

y′
0(t) = −a0y0(t),

y′
1(t) = a0y0(t− τ0)− a1y1(t),

y′
2(t) = a1y1(t− τ1)− a2y2(t),

y′
i(t) = 2ai−1yi−1(t− τi−1)− aiyi(t), i = 3, 4, .., n− 1

y′
n(t) = an−1yn−1(t− τn−1).

(2.3)

In consistency with the laboratory experiment [7], we have the initial conditions
y0(0) = 100,

y0(t) = 0, for t < 0,

yi(t) = 0, for t ⩽ 0, where i = 1, 2, . . . , n.

(2.4)
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Figure 2.2: Model-based curves after parameter fitting. The colored dots are taken from laboratory
measurements. It shows the growth cycle of two different strains of Chlamydia bacteria, the fast-
replicating C. trachomatis and slow-replicating C. pneumoniae as reflected in the figure.

Here, a0 is the rate at which the EBs enter the human cell and they are as-
sumed to differentiate to RBs at a rate a1 inside the human cells. Param-
eter ai−1 is the rate at which the RBs enter the ith cycle of replication for
i = 3, 4, . . . , n−1, and the RBs will convert back to the EBs with the rate an−1.
As in the previous two cases, we can have equations for the number of cells
undergoing transformation or differentiation, but since the equations decouple
from the rest, we ignore them in this case too.

Proposition 2.1.1. The compartments of the system (Equation (2.3)), with
initial conditions (Equation (2.4)) have the following limits:

lim
t→∞

yi(t) = 0 for i = 0, 1, . . . , n− 1,

lim
t→∞

yn(t) = 100× 2n−3.

The result of the proposition simply states that there are n−3 replication cycles.
However, the model can accurately reproduce the empirical findings of the
laboratory experiments, in particular, it can predict the number of EBs at any
given time. Figure 2.2 shows that, after fitting our model parameters, we could
generate time curves that match the laboratory measurements [7]. The fitting
was done in Mathematica using the least square method, the codes for which
can be found in the supplementary file available in our public GitHub repository
[8]. As the plotting is done on a logarithmic scale, for the purpose of fitting we
take the logarithm of the solution and fit the solution to the logarithm of the
data values with respect to the parameters.
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3 A Mathematical Model of Herpes and Chlamydia
Co-Infection In Humans

A six-dimensional deterministic non-linear mathematical model is proposed
in this section to analyze the transmission dynamics of C. trachomatis and
herpes simplex virus (HSV) co-infection in human beings. The total population
is denoted by N(t) where,

N(t) = S(t) + C(t) +H(t) + ILC(t) + IHP (t) + L(t). (3.1)

S

H

IHP

C

ILC

L

μ

μS

μC

μIHP

μILC

μL

μH

βSC, βSILCβSH, βS
IHP

βHC, βHILC βC
H, βC

IHP

βLC, βLILC ILC

 Cr

r

σILC

σL

ρIHP

ρH

Figure 3.1: Schematic diagram for the C. trachomatis-HSV co-infection model.

With some assumptions about the interrelationship between the two pathogens,
a description of variables given in Table 3.1, and parameters given in Table 3.2,
the mathematical model can be formulated with the help of the schematic dia-
gram given in Figure 3.1. In summary, the co-infection model consists of the
following system of nonlinear ordinary differential equations:

S′ = µ− βSC − β̂SH − βSILC − β̂SIHP − µS + rC,

C′ = βSC + βSILC − β̂CH − β̂CIHP − rC − µC,

H′ = β̂SH + β̂SIHP − βHC − βHILC − ρH + σL− µH,

I′LC = ρIHP + βLC + βLILC − rcILC − µILC − σILC ,

I′HP = β̂CH + βHC + β̂CIHP + βHILC − ρIHP − µIHP + σILC ,

L′ = ρH + rcILC − σL− βLC − βLILC − µL,

(3.2)

where ′ denotes time-derivative, with non-negative initial conditions

P0 = (S(0), C(0), H(0), ILC(0), IHP (0), L(0)) ∈ D, (3.3)
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where

D = {(S,C,H, ILC , IHP , L) ∈ R6
+ | S + C +H + ILC + IHP + L = 1}

(3.4)

is the natural state space, and is clearly positive invariant to the systemEq. (3.2).

Variables Descriptions
S(t) Number of population susceptible to both dis-

eases
C(t) Number of population infected with C. trachoma-

tis
H(t) Number of population infected with HSV
ILC(t) Number of population with latent HSV but active

C. trachomatis
IHP (t) Number of population with active C. trachomatis

but latent HSV
L(t) Number of population with latent HSV

Table 3.1: Variables and their Descriptions

Parameters Descriptions
β transmission rate for C. trachomatis
β̂ transmission rate for HSV
ρ rate at which active HSV goes into latency
σ rate at which latent HSV is activated
µ natural death rate
r recovery rate for C. trachomatis

Table 3.2: Parameters and their Descriptions

3.1 Analysis of the Co-infection Model
The analysis shows that the co-infection system (Equation (3.2)) has four equi-
librium points: the disease free equilibrium point (ES), the Chlamydia present
equilibrium point (EC ), the HSV present equilibrium point (EH ), the co-infection
equilibrium point (ECH ). Three important threshold values, the reproduction
number for HSV (RH ), the reproduction number for Chlamydia (RC ), the re-
production number for Chlamydia at EH (RCH ), are obtained which determine
the existence and the global stability of the equilibrium points. The threshold
values are giveb by:

RC =
β

r + µ
and RH =

β̂(µ+ σ)

µ(µ+ ρ+ σ)
and RCH =

∆11

∆12
,
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EH exists, GAS, persistent
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Figure 3.2: Existence and stability diagram of equilibrium points depending on RC , RH and RCH .
The global dynamics is fully described whenever RCH < 1. Cross-marks denote combinations of
reproduction numbers that are not possible.

where

∆11 = [β(µ5 + 3µ4(ρ+ σ) + β̂2ρσ(ρ+ σ) + β̂2ρµ(ρ+ 3σ) + r(ρ+ σ + µ)

× (µ4 + 2β̂ρµ+ µ2(ρ+ σ) + β̂ρ(ρ+ σ)) + µ3(−β̂ρ+ 3(ρ+ σ)2) + µ2

× (2β̂2ρ− β̂ρ(ρ+ σ) + (ρ+ σ)2))],

and

∆12 =
[
β̂(ρ+ σ + µ)((r + µ)(ρ+ µ) + σµ)(β̂(σ + µ) + r(ρ+ σ + µ))

]
.

Applying LaSalle’s invariance principle, and the theory of asymptotically au-
tonomous systems, the global asymptotic stability of two equilibria ES , EC

are proven. With a limiting system approach and theory of asymptotically au-
tonomous systems, the global asymptotic stability of EH is proven and the ex-
istence of a co-infection steady state is shown when all reproduction numbers
are greater than one. The theorems are stated below.

Theorem 3.1.1. Assume that RH ≤ 1. If RC ≤ 1, then the equilibrium point
ES is globally asymptotically stable, and if RC > 1, then EC is globally asymp-
totically stable .

Theorem 3.1.2. The equilibrium point EH is globally asymptotically stable if
RCH < 1 and unstable ifRCH > 1. In the latter case, a co-existing equilibrium
ECH exists.

The results are summarized in the stability diagram Figure 3.2.
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4 Optimal control for Chlamydia treatment with
maturity-structured systems

We consider a compartmental maturity structured in-host model for intracel-
lular development of Chlamydia taking into account its interactions with the
immune system. Pontryagin’s maximum principle is applied to determine the
conditions for the most effective control to minimize systemic costs of the
treatments/drugs, simultaneously minimizing the concentrations of extracel-
lular Chlamydia, infected host cells, and persistently infected cells.

Variables Descriptions
C(t) Concentration of extracellular Chlamydia EBs
I1(t) Concentration of host cells infected with Chlamydia parti-

cles
I2(t) Concentration of infected cells with Chlamydia EBs trans-

forming to RBs
P (t) Concentration of cells infected with persistent Chlamydia
A(t) Concentration of IFN-γ cells
ρ(r, t) Concentration of host cells at time t that entirely contain

replicating RBs, at the stage of maturity r ∈ [0, R] over
the replicating phase

i(r, t) Concentration of host cells that contain RBs converting
to EBs at the stage of maturity r

u1(t) Measure of the antibiotic concentration
u2(t) Measure of the tryptophan-L-1MT concentration

Table 4.1: Variables and their Descriptions

With some assumptions, description of variables given in Table 4.1 and param-
eters given in Table 4.2, the mathematical model can be formulated with the
help of the schematic diagram given in Figure 4.1. In summary, the optimal
control problem can be defined as:

Ċ(t) = (1− u1(t))Nki(1)i(R, t)− βC(t)− µCC(t),

Ȧ(t) = ωI1(t)− µAA(t),

İ1(t) = (1− θ)βC(t)− α1I1(t),

İ2(t) = α1I1(t)− α2I2(t)− ζA(t)I2(t),

ρ(0, t) = α2I2(t),
∂ρ(r,t)

∂t
= − ∂(kρ(r)ρ(r,t))

∂r
− ζA(t)ρ(r, t),

Ṗ (t) = (1− u2(t))ηkρ(1)ρ(1, t)− ξu2(t)P (t)− δP (t),

i(0, t) = (1− η)kρ(1)ρ(1, t) + ξu2(t)P (t),
∂i(r,t)

∂t
= − ∂(ki(r)i(r,t))

∂r
− ζA(t)i(r, t),

(4.1)

where r ∈ [0, 1], t ∈ [0, T ]. The initial conditions are
C(0) = C0,

A(0) = I1(0) = I2(0) = I3(0) = P (0) = I4(0) = 0, ρ(r, 0) = i(r, 0) = 0.
(4.2)

Biomathematics of Chlamydia 9



Figure 4.1: Schematic diagram for the C. trachomatis intracellular growth model with control.

Parameters Descriptions Values
β Rate of attachment of Chlamydia particles into

healthy epithelial cells
2h−1[4]

µH Humoral immunity induced death rate of extra-
cellular EBs

0.08h−1[4]

µT Tryptophan-induced reduction in EB produc-
tion

0.04h−1[9]

ω Production rate of IFN-γ cells 0.001h−1

[10]
µA Natural death rate of IFN-γ cells 0.1h−1[10]
δ Natural death rate of P 0.1h−1

α1 Rate of progression from I1 to I2 0.125h−1[4]
α2 Rate of progression from I2 to the beginning

of ρ
0.1h−1[4]

η Fraction of IFN-γ induced persistence 0 ⩽ η ⩽ 1
θ Effect of attachment blocking due to humoral

immune response
0 ⩽ θ ⩽ 1

ζ Rate of disintegration of Chlamydia infected
cells by IFN-γ cell

[0.05, 5]h−1

[10]
k Rate of lysis of infected cells at the end of the

cell cycle
1.25h−1 [4]

m1 Maximum dosage of control u1(t) 0.9 [9]
m2 Maximum dosage of control u2(t) 0.9 [9]
ξ Rate at which Tryp. reverses persistence 0.6h−1[9]
N Number of Chlamydia particles released upon

cell lysis
200−500 [4]

Table 4.2: Parameters and their Descriptions

As the system (Equation (4.1)) is a maturity structured model, the results of the
standard form of the Pontryagin’s maximum principle that have been derived
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for ordinary differential equations are not applicable. Hence, we construct an
optimal control problem for a general compartmental model, where some of
the compartments have maturity structure. Hence, it is a mixed system of ordi-
nary and partial differential equations, moreover, the boundary conditions are
also nonlinear. Subject to certain assumptions, for a fixed control, we verify the
existence, uniqueness, and boundedness of the solutions. A suitable objec-
tive functional is formulated, and results for the presence of ideal control vari-
ables that minimize the objective function is determined. For the given system,
we make use of Pontryagin’s principle, which is a necessary condition for the
optimality of the control. The Hamiltonian function, the adjoint variables and
the corresponding differential equations along with transversality conditions
are derived. In the proof, we considered the task as a constraint optimization
problem, defined the Lagrangian functional, and derived the condition for its
Fréchet derivative to be zero. As our results were proven for a general model
with maturity structure, we believe that they can be applied to any particular
compartmental model that is compatible with the system we have defined.

We consider an optimal control problem with the objective function given by

J(u) = W1C
2(T ) +W2I

2
1 (T ) +W3I

2
2 (T ) +W4P

2
2 (T )

+

(∫ 1

0
(W5(r)ρ(r, T ) +W6(r)i(r, T ))dr

)2

+

∫ T

0

(
W7C

2(t) +W8I
2
1 (t) +W9I

2
2 (t) +W10P

2
2 (t)

+

(∫ 1

0
(W11(r)ρ(r, t) +W12(r)i(r, t))dr

)2

+W13u
2
1(t) +W14u

2
2(t)

)
dt.

(4.3)

4.1 Numerical results
Using the forward-backward sweep method (FBSM), the optimal control strat-
egy is numerically approximated [11, 12]. We look for the outcome that opti-
mizes the usage of both the treatment types u1, which acts as a bacteriostatic
agent on chlamydia, and u2 which stands for tryptophan-L-1MT supplement,
with respect to two distinctive scenarios. We consider two different combina-
tions of the weights as indicated in Table 4.3. According to our simulations, as
detailed in Table 4.3 (a), the optimal control strategy advises maintaining the
maximum concentration of the bacteriostatic agent, denoted as u1(t), through-
out the entire treatment period. Likewise, for the tryptophan and L-1MT cock-
tail, referred to as u2(t), the optimal approach entails continuous administra-
tion, with the only exception being the discontinuation of u2(t) a few days prior
to the conclusion of the treatment. This strategy is deemed effective in achiev-
ing the desired outcome. Next, we investigate for the weights in Table 4.3 (b).
In this case, with the values of the weights as indicated in Table 4.3 (b), the
optimal control predicts, as shown in Fig. 4.3b, Fig. 4.3c, and Fig. 4.5, by pri-
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Figure 4.2: Numerical simulation for the control problem with the bacteriostatic agent and tryptophan-
L-1MT supplementation for weights corresponding to Table 4.3 (a): (a) solution sketch for controls
u1(t) and u2(t); (b) time course plot of state variables C(t), and A(t); and (c) time course plot of
state variables I1(t), I2(t), and P (t).

marily administering the bacteriostatic agent u1(t), and maintaining minimum
concentration of tryptophan and L-1MT cocktail, Chlamydial elimination can
be achieved. As depicted in Figure Fig. 4.3a, the optimal control strategy indi-
cates that treatment should be administered using the highest concentration
of u1 for the entire duration of the treatment period, with some concentration
of tryptophan and L-1MT cocktail administered before the end of therapy. In
both cases, persistent Chlamydia have been successfully cleared from the
system. In both cases, the commencement of the treatment period is t = 0,
and it is seen that, before the initiation of the therapy, the disease remains at
the chronic condition, which is the equilibrium point of the system.

W1 W2 W3 W4 W5 W6

(a) 10 10 10 10 10 10
(b) 10 10 10 10 10 10

W7 W8 W9 W10 W11 W12

(a) 1 1 1 1 1 1
(b) 0 0 0 0 0 0

W13 W14

(a) 10 5
(b) 10 5

Table 4.3: Table of weights

The primary distinction between the two control types lies in their effect on the
persistent Chlamydial load within the system throughout the course of therapy.
In the initial scenario, as illustrated in (Fig. 4.2c), it is evident that the control
measures effectively and promptly eliminate the persistentChlamydia from the
system. In the second scenario, when the weights Wi for i = 7, 2, . . . , 12 are
not factored into consideration, the model forecasts a prolonged duration for
the treatment to effectively eradicate the persistent Chlamydial particles from
the system. This is visually represented in Figure (Fig. 4.3c).
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Figure 4.3: Numerical simulation for the control problem with the bacteriostatic agent and tryptophan-
L-1MT supplementation for weights corresponding to Table 4.3 (b): (b) solution sketch for controls
u1(t) and u2(t); (b) time course plot of state variables C(t), and A(t); and (c) time course plot of
state variables I1(t), I2(t), and P (t).

(a) (b)

Figure 4.4: Numerical simulation for the control problem with a bacteriostatic agent and tryptophan-
L-1MT supplementation for weights corresponding to Table 4.3 (a): (a) time course plot of state
variable ρ(r, t); and (b) time course plot of state variable i(r, t).

(a) (b)

Figure 4.5: Numerical simulation for the control problem with bacteriostatic agent and tryptophan-
L-1MT supplementation for weights corresponding to Table 4.3 (b): (a) time course plot of state
variable ρ(r, t); and (b) time course plot of state variable i(r, t).
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