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Abstract

Information searches in unstructered data formats like text documents are often per-
formed by humans in many fields. Since such tasks are usually beyond the capability of
keyword-lookup based processing, they are laborious and time consuming to do man-
ually and thus computer-assisted or automatic solutions are desperately needed. Text
Mining attempts to provide solutions for these tasks.
Typical Text Mining tasks are:

• Finding the names of relevant objects / entities in the text (Named Entity Recog-
nition)

• Evaluating the document and carrying out a certain action based on its content
(Text Categorisation / Document Classification)

These tasks can be formulated as classification tasks in Machine Learning terminology
and this means that – when we have a set of pre-processed (labeled) examples on hand
– they can be solved by statistical or rule-based systems that discover patterns and
regularities in the labeled set of examples and exploit this knowledge to process new
documents. This way human labour can be replaced or at least made more efficient.
In this thesis

• we address specific problems that fall into the above-mentioned categories.

• we design an appropriate feature space representation (via feature generation,
selection, etc.) that permits the development of efficient statistical or rule-based
solutions for these tasks.

• we evaluate our models (and thus the feature representations we developed) on
standard evaluation datasets to demonstrate the usefulness of our systems.

We present from a feature representation point of view, several practical text mining
applications developed together with colleagues. The applications themselves cover a
wide range of tasks from entity recognition (word sequence labelling) to multi-label
document classification and also cover different domains (from business news texts
to medical records / biological scientific articles). Our aim was to demonstrate that
task-specific feature engineering is beneficial to the overall performance and that for
specific text mining tasks one can construct systems that are useful in practice and
even compete with humans in processing textual data.

György Szarvas, June 2008.
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Motivation - feature engineering in machine learn-

ing systems

The goal of pattern recognition for data mining (DM) is to induce such models based
on previously known examples which capture / express non-trivial knowledge about the
objects observed that can be utilised in processing and analysing previously unknown
examples.

The field of Machine Learning (ML) seeks to develop computational methods that
simulate human learning in the sense of extracting information from data automatically,
by computational and statistical methods. Data Mining makes extensive use of machine
learning techniques to solve particular tasks. Specific data mining tasks are the so-called
classification problems where the knowledge to be extracted can be formulated as a
class label of the objects observed; i.e. the goal is to build models for the classification
of unseen objects into a limited number of pre-defined categories based on a set of pre-
classified examples. These classification models exploit characteristic attributes of the
examples that are given or are measurable for new instances as well. In ML terminology
these attributes are called features. Thus, solving a practical machine learning task
can be divided into two major steps, namely feature engineering (when we define the
features used for classification) and model construction (when we select a concrete
learning algorithm, its parameters and then train a classifier to solve a given task).

Obviously, if we have very good features that are strongly related to the class
labels that need to be induced, the classification task itself will be straightforward. The
general goals of these steps are complementary in the sense that having an ideal feature
representation of the problem results in a trivial classification task as the information
relevant for classifying the observations is explicitly given in the feature representation
and any (even a very simple) classifier algorithm is capable of utilising this knowledge.

On the other hand, the feature representation may be ill-suited to the problem in
practice, i.e. the learning problem remains complex. The attributes we can define and
measure for the observed objects may lack a piece of the knowledge that is important
for solving the problem, and the feature values might contain noise (as measurements
usually do). In such cases the selection of a proper classifier algorithm or combination
of algorithms and system parameters becomes important if we wish to achieve a good
overall performance.

Motivation - text mining applications

The amount of information stored in electronic document form is growing at an expo-
nentially increasing rate. Searching for and processing information from textual sources
is increasingly time-consuming in many areas (like medicine, research or business) and
is becoming infeasible to perform without computer assistance. Thus today the need
for intelligent text processing applications that can supersede or assist human informa-
tion search in text documents is strong. Even though the performance of computers
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is not as good as the performance of humans in most complex information processing
tasks, computers also have some obvious advantages to humans in their capacity of
processing and the precision in performing well-defined tasks (e.g. indexing the whole
World Wide Web).

An emerging field of Natural Language Processing is Text Mining, which seeks to
automatically process large amounts of unstructured text; that is, to locate and classify
relevant items of information and populate some sort of structured data collection for
human processing. This task obviously requires at least a limited understanding of the
text itself and the induction of new complex patterns that simulate human information
search, which makes text mining tasks more complex and challenging than traditional
keyword-lookup based information retrieval tasks.

Aim of this thesis

In this thesis we present several practical text mining applications developed together
with colleagues, from a feature representation point of view. The applications them-
selves cover a wide range of different tasks from entity recognition (word sequence
labelling) to multi-label document classification and different domains (from business
news texts to medical records / biological scientific papers). Our aim is to demonstrate
that task-specific feature engineering is beneficial to the overall performance and for
specific text mining tasks, it is feasible to construct systems that are useful in practice
and even compete human performance in processing the majority of textual data.

Structure of the thesis

This thesis is organized into seven main chapters. The first, introductory chapter briefly
introduces the topics we discuss later on and summarises the main characteristics of
the solution we gave for each problem addressed. At the end of the Introduction we
discuss the most important contributions of the author to the research and development
described in the subsequent chapters, and we also list the author’s contributions for
each cited paper (the papers that discuss the same topics and results as discussed in
the thesis).

The remaining six chapters are grouped to two major thesis parts, one about our
Named Entity Recognition (chapters 2-4) work and the other about our research in
Text Classification (chapters 5-7).

The second chapter introduces the Hungarian Named Entity Corpus we developed
and our Hungarian Named Entity Recognition approach along with the results we got in
Hungarian NER. The feature set we implemented for NER is discussed in details here.

The third chapter describes our English Named Entity Recognitition model, the
extensions of the feature set designed for Hungarian that proved to be neccessary to
achieve a good performance. Our research in Named Entity lemmatisation (removal
of inflections from proper names) for English (and also applied for Hungarian) is also
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discussed in this chapter.
The fourth chapter describes the domain adaptation and extension of our system

for anonymisation of medical discharge summaries. The novel features developed for
the medical domain and a dynamic learning/feature generation approach is introduced
in this chapter.

The fifth chapter focuses on the classification of medical discharge summaries ac-
cording to the patient’s smoking status. Our novel features and feature selection ex-
periments are discussed in detial in this chapter.

The sixth chapter focuses on the classification of sentences according to their modal-
ity (they contain a speculative part or not). Our novel feature selection method and
weakly supervised / unsupervised training data generation method are discussed in de-
tial in this chapter. We also introduce here the corpus we built for the detection of the
linguistic scope pf speculative and negative cues.

The seventh chapter’s topic is clinical coding of medical documents using hybrid
(rule-based and statistical) models. The development of rule-based systems from online
sources, our comination approach and our experiments in automatic discovery of label-
dependencies are discussed in detail here.

The end of the thesis includes an Appendix chapter (where all the specific terms we
used throughout the thesis are introduced) and a Summary of the whole study (both
in English and Hungarian).
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Chapter 1

Introduction

1.1 Entity Recognition tasks

The identification and classification of rigid designators [1] like proper nouns, acronyms
of names, time expressions, measures, IDs, e-mail addresses and phone numbers in plain
text is of key importance in numerous natural language processing applications. The
special characteristic of these rigid designators (as opposed to common words) is that
they have no meaning in the traditional sense but they refer to one or more entities of
the world uniquely (references). These text elements are called Named Entities (NEs)
in the literature.

Named Entities generally carry important information about the text itself, and
thus are targets for Text Mining [2]. Another task where NEs have to be identified is
Machine Translation which has to handle proper nouns and common words in a different
way due to the specific translation rules that apply to names [3]. Entity co-reference
[4] and disambiguation [5] (two related tasks) is also an important task in Information
Retrieval since a major part of queries are entity names that are highly ambiguous.

Because of the above, the very first step in almost every Text Mining task is to
detect names in the text that belong to task-specific entity types. These tasks are
the so-called Named Entity Recognition (NER) problems, where one tries to recognise
(single or subsequent) tokens in text that together constitute a rigid designator phrase,
and to determine the category type to which these phrases belong. Categorisation is
always task specific, as different kinds of entities are important in different domains.
Sometimes entity recognition itself can be a standalone application, as in the case of
anonymisation issues, where no further processing is required when all the name phrases
have been located in the text.

NER tasks can be solved using labelled corpora and statistical methods that induce
NE tagging rules by discovering patterns in the manually annotated source text. Being
a simple but crucial task, NER has been evaluated for various domains and languages.
The variety of languages for which a major evaluation campaign include English [6],
German [7], Dutch, Spanish [8], Chinese [9], Japanese [10] just to name a few, while
domains where NER has been (and is) studied extensively includes the task of processing

5
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economic, sports and political news [7], medical texts [11], chemical [12], biological
texts [13] or military documents [14]. In this study we deal with Hungarian NER and
English newswire and medical NER.

Though the nature of the information that is important and is thus the target for
recognition differs from application to application, these tasks can be handled with such
models that are, in a limited sense, language [7] [15] (and domain [16] [17]) indepen-
dent. The language and domain independence of NER systems means that a similar
algorithm is capable of solving various tasks, independently of the target language and
domain, as long as a labelled corpus for a particular language/domain pair is available
and the entity types to be recognised are more or less similar. Cross language and/or
cross domain recognition where systems are trained and used in different languages or
domains has also been widely studied, but such scenarios are beyond the scope of this
work, hence they will not be discussed here. We will focus on the recognition of proper
names in multiple languages (Hungarian and English) and multiple domains (newswire
and medical texts) and the recognition of a few other entity types like dates, IDs, etc.
in English medical documents.

1.1.1 Example name tagging tasks

Now we will give a very brief introduction to some specific name tagging tasks in order
to give the reader a better insight into the nature of NER tasks. The examples listed
here include those problems that we will address later on in this thesis.

English newswire NER

We dealt with the NER evaluation task of the Computational Natural Language Learn-
ing (CoNLL) 2003 [7] conference for English language. Here the goal was the correct
identification of personal, organization and location names, along with other proper
nouns treated as miscellaneous entities in texts of news press releases of Reuters Inc.
from 1996.
An example of English NER is

• [U.N.]ORGANISATION official [Rolf Ekeus]PERSON heads for [Baghdad]LOCATION .

Hungarian newswire NER

We addressed a NER task similar to the CoNLL 2003 guidelines for Hungarian language[18].
Thus we had to distinguish between person, organization and location names, and mis-
cellaneous entities, and used texts from the Szeged TreeBank[19] of short press releases
of the Magyar Távirati Iroda.
An example of Hungarian NER is

• A pénzügyi kockázatok kezeléséről kétnapos nemzetközi konferenciát tartanak
csütörtökön és pénteken [Budapesten]LOCATION - mondta [Kondor Imre]PERSON ,
a [Magyarországi Kockázatkezelők Egyesületének]ORGANISATION elnöke szerdán
[Budapesten]LOCATION a sajtótájékoztatón.
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English medical NER

For medical texts, an important use of NER is the automatic anonymisation of medical
reports, to facilitate information exchange/access and respect individual patient rights
(the protection of personal data). According to the guidelines of Health Information
Portability and Accountability Act (HIPAA) of the US, the medical records released
must be free of seventeen categories of textual Personal Health Information (PHI), out
of which 8 actually appeared in the discharge summaries we used: first and last names
of patients, their health proxies, and family members; the patient’s age (if above 89
years old); doctors’ first and last names; identification numbers; telephone, fax, and
pager numbers; hospital names; geographic locations; and dates. To develop and test
our model we used the de-identification dataset of the I2B2 Workshop on Challenges
in Natural Language Processing for Clinical Data [11].
An example of the de-identification task is

• Mr. [Cornea]PATIENT underwent an ECHO and endoscopy at [Ingree and Ot of
Weamanshy Medical Center]HOSPITAL on [April 28]DATE.

1.1.2 The statistical NER system we developed

To solve the above problems we developed a statistical NER system that performed
well across languages (English and Hungarian) and domains (newswire press releases
and medical reports) with only slight modifications needed to port the system from the
newswire domain to medical texts - we added a few features that exploit the specific
characteristics of medical texts and a loop to the training process to achieve an even
better performance. Our results showed that the model was successful even without
these (fine tuning) domain extensions.

The NER system we developed treats the NER problem as the classification of
separate tokens. Using labeled corpora of about 200000 tokens in size, we applied
a decision tree classifier (C4.5 [20]) and boosting (AdaBoostM1 [21]) to NER, two
algorithms that are well-known from the machine learning literature.
To solve a similar NER problem in different settings, we use the same learning model,
and the same or very slightly modified feature set. Of course, most features that have
an external source (lists, frequency information, etc.) are customized to the actual
task by using a different source for calculating feature values, i.e. Hungarian NER uses
Hungarian lists, English NER uses English lists, medical NER uses medical term lists,
etc. Our general classifier model exploits features of several different types (a more
detailed description is given in the corresponding thesis chapter), including:

• gazetteers of unambiguous NEs from the train data: we used the NE phrases
which occur more than five times in the train texts and had the same label in
over 90% of the cases,

• dictionaries of first names, company types, sport teams, denominators of lo-
cations (mountains, city) and so on: we collected special English lists from the
Internet,
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• orthographical features: capitalization, word length, common bit information
about the word form (contains a digit or not, has an uppercase character inside
the word, regular expressions and so on). We collected the most representative
character level bi/trigrams from the train texts assigned to each NE class,

• frequency information: frequency of the token, the ratio of the token’s cap-
italized and lowercase occurrences, the ratio of capitalized and sentence start
frequencies of the token,

• phrasal information: chunk codes and forecasted class of a few preceding words
(we carried out an online evaluation),

• contextual information: POS codes, sentence position, document zone (title
or body), topic code, trigger words (the most frequent and unambiguous tokens
in a window around the NEs) from the train text and whether the word is inside
quote marks or not.

Owing to the beneficial characteristics of decision tree learning and the compact
feature representation we developed (using fewer than 200 features for the general NER
task, and omitting the word form itself from the classification process), our model is
fast to train and evaluate, and performed well on standard evaluation datasets.
Our domain and language independent model achieved:

• an 89.02% F measure on the CoNLL 2003 evaluation set

• a 94.76% F measure on the Hungarian Named Entity Corpus

• a 94.34% F measure on the de-identification challenge of the I2B2 workshop.

Domain extensions improved the performance of our system on medical texts and
our model gave an F measure of 97.64%. All these evaluations correspond to phrase-
level equal-weighted F measures on each entity class.

1.2 Assertion/Document classification tasks in

biomedical texts

The human processing of textual data (system logs, medical reports, newswire articles,
customer feedback records, etc.) is a laborious and costly process, and is becoming
unfeasible with the increasing amount of information stored in documents. There is a
growing need for solutions that automate or facilitate the information processing work-
flow that is currently performed by humans. Thus today the automatic classification of
free texts (either assertions or longer documents) based on their content and converting
textual data to practical knowledge is an important subtask of Information Extraction.

Many text processing tasks can be formulated as a classification problem and solved
effectively with Machine Learning methods [22] that are capable of uncovering the
hidden structure in free text, assuming that labelled examples are on hand to train the
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automatic systems on. These solutions go one step beyond simple information retrieval
(that is, providing the user with the appropriate documents using keyword lookup and
relevance ranking), as they require the (deep or shallow) understanding of the text
itself. The systems have to handle synonymy, transliterations and language phenomena
like negation, sentiment, subjectivity and temporality [23].

A major application domain of practical language technology solutions is the field of
Biology and Medicine [24]. Experts in these fields usually have to work with large col-
lections of documents in everyday work in order to carry out efficient research (reading
scientific papers, patents, or reports on earlier experiments in the subject) or decision
making (reports on examination of former patients with similar symptoms or diseases).

Even though language or domain independent models would be desirable as well,
solutions of such generality are in many cases beyond the scope of current state-of-
the-art NLP technology. Economic aspects thus motivate the development of more
specific solutions for unique concrete problems. In this thesis we will focus on the
issues associated with biological and medical text processing.

1.2.1 Example text classification tasks

Here we will give a brief introduction to some specific tasks in order to give the reader
a better insight into the nature of assertion or document level text classification. The
examples listed here include those problems that will be addressed later on in this thesis.

Smoker status extraction from medical discharge summaries

The main purpose of processing medical discharge records is to facilitate medical re-
search carried out by physicians by providing them with statistically relevant data for
analysis. An example of such an analysis might be a comparison of the runoff and
effects of certain diseases among patients with different social habits [25]. The evi-
dence drawn from the direct connection between social characteristics and diseases (like
the link between smoking status and lung cancer or asthma) is of key importance in
treatment and prevention issues.

Such points can be deduced automatically by applying statistical methods on large
corpora of medical records. Here we used the ’smoker status’ dataset of the I2B2
Workshop on Challenges in Natural Language Processing for Clinical Data [26]. The
task in this case is to classify the medical records into the following five semantic classes
based on the smoking status of the patient being examined:

• non-smoker: the patient has no smoking history,

• current smoker: he/she is an active smoker,

• past smoker: the patient had not smoked for at least one year,

• smoker: when the document contains no information about his current or past
smoker status, but he/she has smoking history,
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• unknown: the report contains no information about the patient smoking status.

A sample assertion on patient smoking status in a discharge summary is:

• The patient is a 60 yo right handed gentleman with a 20-years history of heavy
smoking. Agreed to participate in a smoking cessation program. (current smoker)

Detection of speculations in assertions

The highly accurate identification of several regularly occurring language phenomena
like the speculative use of language [27] [28], negation and past tense (temporal reso-
lution) is a prerequisite for the efficient processing of biomedical texts. In various Text
Mining tasks, relevant statements appearing in a speculative context are treated as
false positives. Hence hedge detection seeks to perform a kind of semantic filtering of
texts; that is it tries to separate factual statements from speculative/uncertain ones.
For biological scientific texts, we used a corpus consisting of articles on the fruit fly,
provided by [29], and also used a small annotated corpus of 4 BMC Bioinformatics
articles for external-source-evaluation. To evaluate our models in the medical domain,
we used the standard dataset provided for the International Challenge on Classifying
Clinical Free Text Using Natural Language Processing and a rule-based ICD-9 coder
system constructed by us to provide false positive ICD-9 labels for automatic hedge
dataset generation.
Two examples of speculative assertions in biological scientific texts are:

• Thus, the D-mib wing phenotype may result from defective N inductive signaling
at the D-V boundary.

• A similar role of Croquemort has not yet been tested, but seems likely since the
crq mutant used in this study (crqKG01679) is lethal in pupae.

Two examples of speculative assertions radiology reports are:

• Findings suggesting viral or reactive airway disease with right lower lobe atelec-
tasis or pneumonia.

• Right middle lobe infiltrate and/or atelectasis.

Automatic ICD-9-CM coding of radiology reports

The assignment of International Classification of Diseases, 9th Revision, Clinical Modi-
fication (ICD-9-CM) codes serves as a justification for carrying out a certain procedure.
This means that the reimbursement process by insurance companies is based on the
labels that are assigned to each report after the patient’s clinical treatment. The ap-
proximate cost of ICD-9-CM coding clinical records and correcting related errors is
estimated to be about $25 billion per year in the US [30].

Since the ICD-9-CM codes are mainly used for billing purposes, the task itself is
commercially relevant: false negatives (i.e. overlooked codes that should have been
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coded) will cause a loss of revenue to the health institute, while false positives (the
over coding of documents) is penalised by a sum three times higher than that earned
with the superfluous code, and also entails the risk of prosecution to the health institute
for fraud. Thus there is a desperate need for high-performance automatic ICD-9 coding
systems. Here we used the standard dataset provided for the shared task International
Challenge on Classifying Clinical Free Text Using Natural Language Processing on ICD-
9-CM coding of radiology reports [31].
Two examples of ICD-9-CM coding of radiology reports are:

• CODES: 486; 511.9
HISTORY: Right lower lobe pneumonia, cough, followup.
IMPRESSION: Persistent right lower lobe opacity with pleural effusion present,
slightly improved since prior radiograph of two days previous.

• CODES: 593.89; V13.02
HISTORY: 14-year - old male with history of a single afebrile urinary tract infec-
tion in January with gross hematuria for a week. The patient was treated with
antibiotics.
IMPRESSION: Mild left pyelectasis and ureterectasis. Otherwise normal renal
ultrasound. The bladder appears normal although there is a small to moderate
post void residual.

1.2.2 The statistical assertion/document classifier systems

we developed

To solve the above tasks and get a satisfactory performance we developed machine
learning models for each that differ slightly from each other. The cost of building
corpora of reasonable size for these tasks is very high; and thus to have labeled corpus
of a similar size to that for entity tagging problems was not deemed feasible. Instead,
we had to develop solutions that can infer the structure and knowledge hidden in the
text from a few hundred (or few thousand) examples. Another option is to gather
labeled examples fully or semi-automatically (within the scope of weakly supervised
learning), but in such cases significant noise in the semi-automatic labeling has to be
dealt with. Despite the nice results we obtained on these tasks the portability of the
learned hypotheses suffered from this lack of training data, as our experiments revealed.

Smoker status extraction from medical discharge summaries

To classify smoker status in discharge summaries, we applied a sentence-level classifier
based on the VSM representation of discharge summaries. We extended a unigram
representation with complex features of pre-classified bigrams and trigrams (based on
their meaning) and simple syntactic features plus negation detection as well. Our
experiments showed that the features we introduced for smoker status classification
were more helpful for learning than a simple VSM used by earlier approaches (feature
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selection methods chose our complex features more often than unigrams). The final
classification of our system was based on the majority voting of several classifiers (C4.5
decision tree, Multi-Layer Perceptron and Support Vector Classifier). The solution we
proposed for smoker status detection proved to be particularly efficient in discarding
irrelevant documents (unknown class) and non-smokers, thus it could be used as a pre-
processor for human processing/annotation. Our model achieved an overall accuracy
of 86.54% on the I2B2 challenge evaluation set, close to the best solution that was
entered in the challenge.

Detection of speculations in assertions

Here we used weakly supervised settings for biological texts and no supervision for
medical data to acquire training sets for detecting hedges in biological or medical texts
(at the sentence level). To classify sentences into speculative and non-speculative as-
sertions we applied a Maximum Entropy classifier [32] and vector space model (VSM)
to represent the examples. Uni-, bi- and trigrams of words were all included in the
VSM representation. After a careful selection of relevant hedge keywords that involved
a ranking and filtering of keywords via a modified class-conditional probability score
(only the best 2 keywords received credit for appearing in speculative sentences) and
then sorting the best candidates according to the P (spec) scores given by the Maxi-
mum Entropy classifier, we managed to filter out the best speculative keywords from a
training set constructed by using minimal supervision (biological scientific texts) or no
supervision at all (radiology reports). This procedure resulted in an Fβ=1(spec) score of
85.08% for biological scientific papers, and an Fβ=1(spec) score of 82.07% for clinical
free-texts.

Having selected the most relevant keywords, our hedge classifier simplified to a
simple keyword matching routine that predicted speculative label every time a strong
keyword was present. We suggest the use of 2 or 3 word long phrases to capture the
rare non-speculative uses of otherwise strong keywords as a possible solution for further
improving the model. This idea would require a labeled corpora of reasonable size to
implement and evaluate, though.

The automatic ICD-9-CM coding of radiology reports

For the automated clinical coding of medical free texts we applied a hybrid rule-based
and statistical model. A unique feature of the task was that expert coding guides
that describe the principles of ICD-9-CM coding for humans were on hand and these
guides were good sources for the swift implementation of an ICD-9-CM coding expert
system. Thus in our study we focused on the possible ways of exploiting labeled data
to fine-tune such an expert rule-based system.

First we developed a simple rule-based system for ICD-9 coding using one of the
several online coding guides available. Then we trained statistical models using the
codes assigned by the rule-based system to model the inter-label dependencies between
disease and associated symptom codes. To address the second major deficiency of
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rule-based systems based on coding guides – i.e. terminology missing from the lists
in the coding guide (rare transliterations and abbreviations, etc.) – we also applied a
statistical approach. In this case we trained classifiers for the false negative codes of
the initial rule-based system.

With this hybrid rule-based and statistical model we got a very good performance,
one very close to an entirely manually constructed system with a moderate development
cost that would make the implementation of our system feasible for a large set of codes
as well (while developing a hand-crafted system for several hundreds or thousands of
codes would be problemmatic indeed).

1.3 Summary by chapters

Here we summarise our findings for each chapter of the thesis and provide the relation
of each paper referred to in the thesis and the results described in different chapters in
a table.

The thesis is divided into two major parts, one dealing with Named Entity Recog-
nition problems and another that focuses on Text Classification tasks. Here we list our
most important findings for each chapter.

• NER Chapters

1. Hungarian NER Chapter

For NER in Hungarian the author participated in the creation of the first
Hungarian NER reference corpus which allowed researchers to investigate
statistical approaches to Entity Recognition in Hungarian texts. This is a
joint, inseparable contribution between the authors of [18] and the linguist
colleagues who carried out the annotation work of the corpus.

Together with his colleagues, the author designed a suitable feature represen-
tation for training machine learning models and set up an efficient learning
model on the corpus that achieved a phrase level F measure performance of
94.76%. In the construction of the Named Entity Recognition system, the
author made major contributions in designing the feature representation for
learning algorithms.

These results are described in [18], [33] and [34].

2. English NER Chapter

The author participated in adapting a NER system designed for the Hun-
garian language to a similar task in English. Together with his colleagues,
the author extended the feature representation for training machine learning
models and used the same, efficient learning model that was introduced for
Hungarian NER. This system attained a phrase level F measure score of
89.02%.

The author also participated in the development of a MaxEnt-based system
for the metonymy resolution shared task of SemEval-2007 [35]. In the NE-
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metonymy classifier that was submitted to the challenge by the author and
his colleagues, the author is responsible for the web-based approach that
was designed to remove inflectional affixes from Named Entities and was
used successfully as a feature to classify org-for-product metonymies.

When constructing the English Named Entity Recognition system, the au-
thor made major contributions in designing the feature extensions for learn-
ing algorithms.

The author investigated corpus frequency based heuristics that were capable
of fine tuning NER systems by eliminating certain typical errors of NER
systems. These heuristics were then altered to provide a heuristic solution
to Named Entity lemmatisation, a problem that arises both in English (plural
and possessive markers) and in Hungarian (agglutinative characteristic of the
language). The author and his collegues showed that corpus statistics can
be utilised to solve NE lemmatisation with good accuracy. The author’s
contribution is the idea and general concept of using web frequency counts
for Named Entity lemmatisation (NE normalisation or affixes as features for
other tasks).

These results are described in [34], [36], [37] and partly in [38].

3. Anonymisation of Medical Records

Together with his collegues, the author participated in the 2006 I2B2 shared
task challenge on medical record de-identification. The major parts of the
adaptation of the pre-existing NER system, and the results achieved as a
whole are the joint contribution of the co-authors. As our results show,
the system we built via the domain adaptation of our newswire NER model
is competitive with other approaches, which means that our architecture
is capable of solving NER tasks language and domain independently, with
minimal adaptation effort.

In particular, the author made major contributions to the customisation of
the feature representation, i.e. the development of novel features specifically
for the medical domain. These novel features were helpful in achieving a
state-of-the-art performance (our model had the best phrase-level 8-way F
measure and second best token-level 9-way accuracy).

These results are described in [39].

• Text Classification Chapters

1. Smoker status classification in discharge summaries

Together with his collegues, the author participated in the 2006 I2B2 shared
task challenge on patient smoking status classification from medical records.
The system and the overall results we submitted are a shared and indivisible
contribution of the co-authors.

In particular, the author made major contributions to the design of the
feature representation, i.e. the development of features used by previous
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studies and novel ones specifically for the medical domain which tried to
group more or less similar examples together by exploiting the syntactic
or semantic classification of phrases. The main reasoning for having these
novel features was to reduce the effects of a small sample size. These novel
features were helpful in achieving a good performance (they appeared among
the top ranked attributes using 2 different feature selection methods).

These results are described in [40].

2. Hedge Classification in biomedical texts

All the contributions in the corresponding chapter are independent results of
the author. The major findings of this thesis are the construction of a com-
plex feature ranking and selection procedure that successfully reduces the
number of keyword candidates (those having the highest class-conditional
probability for hedge class) without excluding helpful hedge keywords.

We also demonstrated that with a very limited amount of expert supervision
in finalising the feature representation, it is possible to build accurate hedge
classifiers from semi-automatically or automatically collected training data.

We extended the scope of evaluations to two applications with different
kinds of texts involved (scientific articles used in previous works, and also
medical free texts).

We extended the feature representation used by previous approaches to 2-3
word-long phrases and an evaluation of the importance of longer keywords
in hedge classification.

We demonstrated (using a small test corpora of biomedical scientific papers
from a different source) that hedge keywords are highly task-specific and
thus constructing models that generalise well from one task to another is
not feasible without a noticeable loss in accuracy.

These results are described in [41] and partly in [42].

3. ICD-9-CM coding in radiology reports

Together with his collegues, the author participated in the 2007 CMC shared
task challenge on automated ICD-9-CM coding of medical free texts using
Natural Language Processing. The major steps of the development of the
system as a whole that was submitted to the challenge, and the results
achieved are a shared and indivisible contribution of the co-authors.

In particular, the author made a major contribution to the development of
a basic and an entirely hand-crafted rule-based classifier; the design, im-
plementation and interpretation of the complex inter-annotator agreement
analysis and the design of the machine learning model for discovering inter-
label dependencies from the labeled corpus.

These results are described in [43].
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HunNER EngNER DE-ID SMOKER HEDGE ICD-9
LREC[18] •
ACTA[33] •
DS2006[34] • •
SEMEVAL[38] •
ICDM2007[36] •
TSD2008[37] •
JAMIA[39] •
WSEAS[40] •
ACL[41] •
BIONLP[42] •
LBM2007[43] •

Table 1.1: The relation between the thesis topics and the corresponding publications.

1.4 Summary by papers

Here we list the most important results in each paper that are regarded as the author’s
own contributions. We mention here that system performance scores (i.e. the overall
results) are always counted as a shared contribution and not listed here, as several
authors participated in the development of the systems described in the cited papers.
The only exception is [41], which describes only the author’s own results. [18] has been
omitted from the list as all the results described in this paper are counted as shared
contributions of the authors. For [38] the author made only marginal contributions.

• ACTA[33]

– The construction of a feature representation for Hungarian NER.

– Compact representation.

– Frequency features.

• DS2006[34]

– Description of feature space extensions for English NER.

• SEMEVAL[38]

– The plural feature for NE-metonymy resolution.

• ICDM2007[36]

– Using web frequency data for identifying consecutive NEs.

• TSD2008[37]

– The idea and general concept of using web frequency counts for Named Entity
lemmatisation (NE normalisation or affixes as features for other tasks)
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• JAMIA[39]

– The extension of the feature space with respect to the chief characteristics of
medical texts.

– The iterative learning/feature generation approach.

• WSEAS[40]

– The use of token bi- and trigram features.

– The use of deep knowledge features (pre-classified bigrams, syntactic informa-
tion, negation).

– The execution of feature selection methods for getting a suitable set of features
for smoker classification.

• ACL[41]

– All of the results in the paper.

• BIONLP[42]

– Some of the general principles of negation, hedging and their scope annotation.

• LBM2007[43]

– Detailed performance and annotator agreement analysis.

– Complex features for discovering label-dependecies with machine leraning mod-
els.

– The construction of a basic rule-based system that served as the basis for
further developments, and an entirely hand-crafted system for comparison.





Part I

Named Entity Recognition
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Chapter 2

Hungarian Named Entity
Recognition

In this section we will introduce the Hungarian NER corpus, describe in detail the
designed feature set for Hungarian NER. The feature set designed is regarded as one
of the contributions of this thesis. We will analyze thoroughly the performance we got
using the above feature set. At the end of this section we discuss the background of
our results and draw conclusions on the potentials of machine learning approaches to
NER problems in Hungarian.

2.1 The corpus

The Named Entity Corpus for Hungarian is a sub corpus of the Szeged Treebank [19]1,
which contains 1.2 million words with tokenisation and full morphological and syntactic
annotation done manually by linguist experts. A significant part of these texts was
annotated with Named Entity class labels based on the annotation standards used on
CoNLL conferences2. The corpus is available free of charge for research purposes.

2.1.1 General properties

Short business news articles collected from MTI (Hungarian News Agency, www.mti.hu)
constitute a part of the Szeged Treebank, 225.963 words in size, covering 38 topics
concerning the NewsML topic coding standard, ranging from acquisition to stock market
changes or to new plant openings.

In the text we included annotations of person, location, organization names and
miscellaneous entities that are proper names but do not belong to the three other
classes. Part of speech codes generated automatically by a POS tagger [44] developed

1The project was carried out together with MorphoLogic Ltd. and the Hungarian Academy’s
Research Institute for Linguistics

2A brief description of the English data can be found in the next chapter of the thesis. A more
detailed description of it and the data can also be accessed at http://www.cnts.ua.ac.be/conll2003/
ner/

21
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at the University of Szeged were also added to the database. In addition we provide
some gazetteer resources in Hungarian (Hungarian first names, company types, list of
names of countries, cities, geographical name types and a stopword list) that we used
for experiments to build a model based on the corpus.

The dataset has some interesting aspects relating to the distribution of class labels
which is induced by the domain specificity of the texts - organization class, which turned
to be harder to recognize than person names for example, has higher frequency in this
corpus than in other standard corpora for other languages.

2.1.2 Corpus example

An example sentence from the corpus (subsequent tokens with the same entity class
label denote a single, longer entity phrase):
A 0

pénzügyi 0
kockázatok 0
kezeléséről 0
kétnapos 0
nemzetközi 0
konferenciát 0
tartanak 0
csütörtökön 0
és 0
pénteken 0
Budapesten I-LOC
- 0
mondta 0
Kondor I-PER
Imre I-PER
, 0
a 0
Magyarországi I-ORG
Kockázatkezelők I-ORG
Egyesületének I-ORG
elnöke 0
szerdán 0
Budapesten I-LOC
a 0
sajtótájékoztatón 0
. 0

We divided the corpus into 3 parts, namely a training, a development phase test
and an evaluation subcorpus, following the protocol of the CoNLL-2003 NER shared
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Tokens Phrases
non-tagged tokens 200067 –
person names 1921 982
organizations 20433 10513
locations 1501 1294
miscellaneous proper names 2041 1662

Table 2.1: Corpus details.

task.
Some simple statistics of the whole corpus and the three sub-corpora are:

Sentences Tokens
Training set 8172 192439
Development set 502 11382
Test set 900 22142

Table 2.2: The number of tokens and sentences in the corpus.

LOC MISC ORG PER
Training set 1148 1402 9212 886
Development set 33 138 373 19
Test set 113 122 928 77

Table 2.3: Number of named entities per data file.

2.1.3 The annotation process

As annotation errors can readily mislead learning methods, accuracy is a critical measure
of the usefulness of language resources containing labelled data that can be used to
train and test supervised Machine Learning models for Natural Language Processing
tasks. With this we sought to create a corpus with as low an annotation error rate
as possible, which could be efficiently used for training NE recognizer and classifier
systems for Hungarian. To guarantee the precision of tagging we set up an annotation
procedure with three stages.

In the first stage two linguists, who received the same instructions, labeled the
corpus with NE tags. Both of them were told to use the Internet or other sources
of knowledge whenever they were confused about their decision. Thanks to this and
the special characteristics of the texts (domain specificity helps experts to become
more familiar with the style and characteristics of business news articles); the resulting
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annotation was near perfect, in terms of inter-annotator agreement rate. We used
the evaluation script made for the CoNLL conference shared tasks, which measures a
phrase-level accuracy of a Named Entity-tagged corpus. The corpus showed an inter-
annotator agreement of 99.6% after the first phase.

In the second phase all words that received different class labels were collected for
discussion and revision by the two annotators and the chief annotator with several years
of experience in corpus annotation. The chief annotator prepared the annotation guide
and gave instructions to the other two to perform the first phase of labelling. Those
entities that the linguists could not agree on initially received their class labels according
to the joint decision of the group.

In the third phase all NEs that showed some kind of similarity to those that had
been tagged ambiguously earlier were collected from the corpus for revision even though
they received the same labels in the first phase. For example, if the tagging of shopping
malls was inconsistent in a few cases (one annotator tagged ÁrkádORG bevásárlóközpont
while the other tagged ÁrkádORG bevásárlóközpontORG), we checked the annotation of
every appearance of every shopping mall name, regardless that the actual appearance
caused disagreement or not. We did this to ensure the consistency of the annotation
procedure. The resulting corpus after the final, third stage of consistency checking is
considered error-free.

Creating error free resources of a reasonable size has a very high cost and, in
addition, publicly available NE tagged corpuses contain some annotation errors, so we
can say the corpus we developed has a great value for the research community of
Natural Language Processing. As far as we know this is the only Hungarian NE corpus
currently available, and its size is comparable to those that have been made for other
languages.

2.1.4 Availability

The corpus is available for download and use for research or education purposes free of
charge from the website of the Human Language Technology Group at the University
of Szeged, Department of Informatics3.

2.2 Description of our model and results

We regarded the NER problem essentially as the classification of separate tokens. We
believe that this approach is competitive with the - theoretically more suitable - sequence
labeling algorithms (like Hidden Markov Models, Conditional Random Fields); and we
applied a decision tree learning algorithm. Of course our model is capable of taking
into account the relationship between consecutive words using a window of appropriate
size. We used 4 as a default window size for each feature.

Figure 2.1 shows the structure of our complex model; the details of Feature gener-
ation building block are described in this section, which is regarded as a contribution

3http://www.inf.u-szeged.hu/projectdirs/hlt/en/nercorpus.html
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of the thesis, while the design of the learning model and classifier combination scheme
is the contribution of the co-authors.

Figure 2.1: Outline of the structure of our NER model.

2.2.1 Boosting and decision trees for NER

Boosting (Shapire, 1990) and C4.5 (Quinlan, 1993) are well known algorithms for those
who are acquainted with pattern recognition. Boosting has been applied successfully to
improve the performance of decision trees in several NLP tasks. A system that made
use of AdaBoost and fixed depth decision trees came first in the Computational Natural
Language Learning Conference shared task on NER in 2002 (Carreras et al., 2002), but
gave somewhat worse results in 2003 (it was ranked fifth with an F measure of 85.0%
(Carreras et al., 2003)). We have not found any other competitive results for NER
using decision tree classifiers and AdaBoost.

In our experiments 30 iterations of Boosting were performed on C4.5 decision trees
(5 or more instances per leaf, pruning with confidence factor of 0.35 and subtree raising)
as further iterations gave only a slight improvement.

2.2.2 Description of the feature space for NER

Here we will describe the feature set we designed for Hungarian NER and discuss its
unique characteristics compared to representations introduced earlier. We will also
analyse the typical performance that can be obtained using our representation, with a
detailed comparison of features by relevance, novelty and performance gain.
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Features used are:

• gazetteers and dictionaries: Gazeteers (lists of unambiguous entity names) and
Dictionaries (lists of words that might benefit the recognition of NEs) are im-
portant and widely used NER features. We used the following gazetteers and
lists:

– gazetteers of unambiguous NEs from the train data: we used the NE phrases
which occur more than five times in the train texts and got the same label
in over 90% of the cases,

– gazetteers of locations (Hungarian cities, world’s largest cities, countries),

– a dictionary of first names for Hungarian, English, French, German and
Spanish

– a dictionary of company types for several languages (e.g. Kft or Zrt for
Hungarian and Ltd, Corp, ... for English)

– a dictionary of geographical place name denominators (like mountain, city,
street, etc.)

– a dictionary of stopwords that can appear inside named (like és, and, von,
etc.)

• orthographical features: Surface information like capitalisation carry much infor-
mation about named entities. For example, capitalised words in the middle a
sentence are usually entities. 3-4 letter-long, all-uppercase abbraviations usually
denote organization or miscellaneous entities (brands), while 2 letter-long upper-
case words are frequent abbreviations of locations (US states for example) or
person names (the starting letters of first and family names). These observa-
tions encouraged us to describe the surface characteristics of words as detailed
as possible. The ortographical features we used were the following:

– capitalisation (is the first letter of the word capitalised or not)

– word length (length of word in letters)

– common bit information about the word form:

∗ contains a digit or not

∗ has an uppercase character inside the word

– typical character bi/trigrams from the train texts assigned to each NE class

∗ typical 2-4 letter-long suffixes (e.g. vic for Slavic or son/sen for northern
person names)

∗ character bi- and trigrams and 4-grams inside NE tokens (e.g. ötv for
kötvény/bond appearing in miscellaneous and organization names)
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• frequency information: frequency of the token, the ratio of the token’s capitalised
and lowercase occurrences, the ratio of capitalised and sentence beginning fre-
quencies of the token, collected from the frequency data of the Szószablya korpusz
4

• phrasal information: forecasted class labels of 4 preceding words (we performed
an online evaluation),

• contextual information: POS codes (we used codes generated by our POS tagger
for Hungarian instead of the existing tags from the Szeged Treebank), sentence
position, trigger words (the most frequent and unambiguous tokens in a window
around the NEs) from the train text, whether the word is between quotes or not.

Novelties in our feature representation

Probably the success of our feature representation lies in the fact that we utilised many
different types of features in a compact representation. On the other hand, we also
used the majority of the various features described earlier for NER, and also introduced
some new ones (the frequency features) that actually turned out to be useful.

Compact representation

The compact representation means that we attempted to avoid using single tokens as
standalone features. This means that we did not add the actual and surrounding word
forms as binary features to describe the local context of the instance to be classified.
Doing so would have introduced thousands of features even if we had constrained
ourselves to using just the top ranked context-tokens (top ranked from the viewpoint
of some measure of importance, e.g. the well-known TF-IDF measure). We also
excluded single triggers or character level features from the model to avoid the blow-
up in feature set dimensionality. Instead, we grouped together similar features (e.g.
all character trigrams) that were semantically similar (they predicted the same class
label/s/).
This way, instead of having several standalone features like:

• "The next token is Ltd" (indicative of ORG class)

• "The next token is Kft" (indicative of ORG class)

• "The next token is Corp" (indicative of ORG class)

• "The next token is City" (indicative of LOC class)
and

• "The next token is Prix" (indicative of MISC class),

4http://mokk.bme.hu/projektek/szoszablya
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we had a single feature (with the same number of possible values as the classes we
differentiated):

• "The next token suggests that the actual token is a Named Entity of Class X"

This contraction of similar features which imply the same class label has two, con-
tradictory effects. First, these features then become more informative as their coverage
will be the sum of instances covered by any of the atomic features that were fused
into one single attribute value. This definitely helps learning algorithms to incorporate
knowledge from these attributes to the learned model. On the other hand, the contrac-
tion can have detrimental effects if a few of the atomic features that were integrated
into the complex attribute become unstable. The noise in this case burdens the complex
feature as a whole since atomic features become indistinguishable in the representation.

A third and probably most important consequence of this approach is that the
dimensionality of the feature space representation is reduced considerably, which makes
the training and testing of machine learning models faster (possibly at the cost of some
loss in accuracy). The speed-up that can be achieved this way makes this approach
favourable in many real-life scenarios where processing time is an important factor.

Frequency features

The frequency information of tokens collected from a very large corpus (large enough
in size to represent the use of language in general) can hold much useful information
for NER. This is especially true if the frequency of the same token is counted with both
lowercase initial, uppercase initial occurences (the latter can be further identified as
uppercase in the beginning or inside a sentence). For Hungarian NER, such information
is available from the frequency dictionaries created in the Szószablya project.
We used frequency information in three different ways. These were:

• a frequency count: the number of occurences of the token (converted to low-
ercase). Very high values almost always indicate a non-entity token as these are
typically the most extensively used common words of the language. On the other
hand, low values often mean that the token is a (rare, perhaps foreign) named
entity.

• ratios of capitalised/lowercase and insentence-capitalised/all-capitalised
occurences: these two features together separate entity names very well from
non-entities (without any specific use in further classification of entities) as NEs
in Hungarian are the words that tend to occur in capitalised form (also in a
non-sentence-starting position).

Silva et al. [45] used a feature similar to our capitalised/lowercase feature: they
calculated the ratio of the frequency of the current token (e.g. John) and the case-
insensitive frequency of the token (e.g. john, JOHN, . . . ). However, we used a huge
text collection for calculating frequencies not the corpus used for NER, and we also
distinguished sentence-beginning and inside-sentence appearances.
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These features actually proved quite useful to our representation as the latter two
ratio-features came among the top ranked features of all (in a χ2 ranking).

2.3 Results

The results that are counted as the author’s own contribution are presented above.
Here we summarise the results of our system as a whole, which is a shared contribution
of the co-authors of [33], [34]. Using the exact-match evaluation criterion of the CoNLL
conference NER shared tasks, our model achieved an Fβ=1 = 94.76%. These results
are remarkably high, considering that the best results for NER in other languages using
this evaluation measure are usually in the high 80s or low 90s. We should note here
that our corpus is easier than many others for different languages due to the domain
specificity of the corpus. The 11.38% higher performance of the same baseline system
for Hungarian than for English supports this belief as well.

The per-class breakdown of Fβ=1 scores are shown in the following table:

Hungarian
LOC 95.07
MISC 85.96
ORG 95.84
PER 94.67
overall 94.76

Table 2.4: Per-class F scores.

2.4 Comparison and conclusions

Previous research on Hungarian name tagging includes expert rule-based approaches
mainly because no labelled corpora of suitable size was available for training statistical
models. To the best of the author’s knowledge, the first name tagger was developed by
researchers of the Hungarian Academy of Sciences at the Institute for Linguistics [46].
The system exploits regular patterns that capture named entity phrases in Hungarian
texts.

Later on the Named Entity recogniser module of the HumorEsk [47] expert-rule
based Hungarian syntactic parser was built based on Gábor et al.’s system.

A direct comparison between these systems and the statistical NER tagger described
here is not easy to do as these systems were developed for general use and did not use
the Hungarian NE corpus for the development of rule patterns. Undoubtedly, the system
introduced here would perform better than the above-mentioned rule-based approaches
on similar, short business news texts, while it would face major difficulties in labelling
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texts with really diverse characteristics – at least without any fine tuning (or retraining
on another corpus).

The only other statistical NER system that was trained and tested on the same
corpus using similar evaluation metrics is the system of Varga and Simon [48]. They
trained their model using the same train/development/test splits of the same corpus,
and trained a Maximum Entropy classifier based on their own feature representation.
A fair comparison of the two systems is possible, their classifier yielding a 95.06% F
measure on the same test set, which is slightly higher than the performance of our
model. The difference in performance scores can be attributed to the different features
and learning method they used.

Our findings above support the general view that – since named entities usually fol-
low special orthographic and surface patterns – statistical approaches can handle name
tagging tasks well and achieve a very good performance, even without the extensive
use of Named Entity dictionaries (gazetteers). This observation has been reported for
several languages and also holds for Hungarian NER. While providing a remarkably high
performance, these systems have an advantage when they face rare entity names, where
dictionary-based models can easily fail; and, using extensive local contextual patterns
(previous labels, trigger words, etc.) makes statistical models more reliable on ambigu-
ous entity names. On the other hand, traditional, dictionary-based NER taggers cannot
handle ambiguous names that may fall into any of several different classes, depending
on the context5.

The results presented here are comparable with other state-of-the-art NER taggers
and our system has some different characteristics from other statistical approaches for
NER. As our experimental results show, our main idea of using a compact feature
representation to avoid very high dimensional representations and thus an increased
processing time seems feasible. The novel frequency-based features we introduced also
contributed to a good overall classification performance.

2.5 Summary of Thesis results

The main results of this chapter can be summarised as follows. For NER in Hungarian
the author participated in the creation of the first Hungarian NER reference corpus
which allowed researchers to investigate statistical approaches to Entity Recognition
in Hungarian texts. This is a joint, inseparable contribution between the authors of
[18] and the linguist colleagues who carried out the annotation work of the corpus.
Together with his colleagues, the author designed a suitable feature representation for
training machine learning models and set up an efficient learning model on the corpus
that achieved a phrase level F measure performance of 94.76%. In the construction
of the Named Entity Recognition system, the author made major contributions in de-
signing the feature representation for learning algorithms. The most important useful

5Consider, for example, the token Ford. This can be either a location (an airport), a person’s name
(Henry Ford), an organization (the Ford company) or a miscellaneous entity (the automobile brand
Ford)
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characteristics of the feature representation are the following:

• diversity: The author incorporated an extensive feature representation that bene-
fits from all the most successful features arising from the surface, orthographical
and morpho-sytactic levels described in the literature.

• compactness: Using the above-mentioned compact representation the dimension-
ality of the feature space remained moderate and permitted the fast training and
testing (processing) of boosted C4.5 decision tree learning algorithms.

• novelty: The author introduced some novel frequency-based features that con-
tributed to the performance of the NER system.





Chapter 3

English Named Entity Recognition

In this section we describe the experiments we carried out in English newswire NER.
Using the same model as that outlined for the Hungarian problem, we will show that
our representation is suitable for NER in various languages, i.e. language independent
NER models can be built on the basis of our representation. Different domains of
application suggest some extensions to the feature set described for Hungarian, and
these extensions can definitely improve the overall recognition accuracy, as we will
show.

3.1 The corpus

For the experiments in English NER we used a publicly available dataset, which is a
segment of the Reuters corpus [49] that contains news stories from the Reuters News
Agency from 1996-1997. A small part of this corpus was annotated with NE labels
for the NER shared task of the Computational Natural Laguage Learning (CoNLL)
conference in 2003. Since we used the same design as this corpus when building a
reference corpus for Hungarian, it was quite rapid and easy to adapt our system to the
English NER task.

The dataset consists of a training part, a development part to tune system param-
eters on, and a test part for evaluations. Here the test dataset has several different
characteristics from the training and development sets, which makes the dataset more
challenging.
The format of the corpus is similar to that outlined for the Hungarian dataset. It is:
U.N. NNP I-NP I-ORG

official NN I-NP O
Ekeus NNP I-NP I-PER
heads VBZ I-VP O
for IN I-PP O
Baghdad NNP I-NP I-LOC
. . O O

33



34 English Named Entity Recognition

The main characteristics of the dataset are summarised in the following two tables1:

Sentences Tokens
Training set 14987 203621
Development set 3466 51362
Test set 3684 46435

Table 3.1: Number of articles, sentences and tokens in the corpus.

LOC MISC ORG PER
Training set 7140 3438 6321 6600
Development set 1837 922 1341 1842
Test set 1668 702 1661 1617

Table 3.2: Number of named entities per data file.

3.2 Description of our model extensions and re-

sults

The slight differences between the Hungarian and the English texts we used motivated us
to develop some additional features that allowed classifiers to overcome such challenges
that were specific to the English problem, and were impossible to capture through the
original feature representation. Here we will present the additional features one by one
along with the motivation for adding them to the model.

• Topic code: The English dataset consists of stories with various topic/domain,
e.g. sports, economics, political news, while the Hungarian corpus was homoge-
nous in this sense, that it contained just short business news texts. The domain
of a text has a major impact on the distribution of Named Entities in the text.
Different NE classes appear more frequently in one domain than another (e.g.
location names appear frequently in tour-guide texts, while being rare in sports
news). The domain also has an impact on the behaviour of certain NE phrases.
For example, city names are typically tagged as locations, but they also appear
as organisation names in sports news, where city names are frequently used to
refer to the city’s sport clubs. These facts mean that it makes sense to add a
feature that permits the topic differentiation of articles. Here we classed articles
as political, financial or sports news texts.

1This example and the tables both come from Tjong Kim Sang and De Muelder’s shared task
paper [7].
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• Document zone: Certain document zones can easily be identified in Reuters
articles, and the surface form of texts (and thus NEs) in different zones can
vary. For example, headlines are written in capitalised form, which causes most
of the surface features to behave in a different way. This can result in erroneous
classifications in headlines and also in lower performance in flaw text, as some
important features behaved unreliably throughout the whole corpus. Adding fur-
ther attributes that distinguish zones by taking different values in different parts
of a typical article offers the chance of learning complex decision rules (e.g. that
it worths using capitalisation info in flaw text, while it is better to rely on other
feature types like sentence position info instead of capitalisation in headlines). An
alternative solution is to try restoring the original capitalisation of the text [50].
We decided to distinguish zones with additional features (we differentiated be-
tween headline, dateline and article body zones) and left the problem of inducing
patterns for recognition in headlines to the learning models.

• syntactic / morpho-syntactic description: The organisers of the CoNLL-
2003 NER challenge provided automatically generated part-of-speech and syntax
chunk codes with the texts. POS codes can help in identifying NEs, while chunk
codes might be useful in determining boundaries for longer name phrases. Even
though these features would clearly benefit NER, we should note here that these
have to be generated automatically by POS taggers and syntax chunkers. This
also means that these attributes are ’burdened’ with a certain amount of noise
(i.e. the error rate of the system that generates feature values). Since NER-
relevant information in POS codes (or similar info) can also be deduced from other
simpler surface features, while the current state-of-the-art accuracy of chunking
is hardly better than a NER tagger’s performance hence the use of generated tags
is questionable in this case. Taking into account the fact that the use of such
deep knowledge features would detriment the adaptability and flexibility of NE
recognisers, as the development of POS taggers or chunkers is resource-intensive
and costy, it really makes sense to exclude such attributes from NER systems 2.
Using syntactic and grammatic roles as features would be particularly useful when
the classification scheme follows the semantics of NEs, i.e. when metonimies are
to be resolved [35] [38].

• corpus/web statistics for lemmatisation: Sometimes Named Entities appear
with affixes in the text and such examples are harder to classify properly than the
official forms (lemmas) of proper names. Affixes can also help disambiguation if
we seek to distinguish metonymic and literal uses, as for example, company names
appearing in plural usually refer to a brand or product of the company in ques-
tion. Take, for example, Little old ladies in small RenaultsORG−FOR−PRODUCT .
Frequency statistics gathered from large corpora or the Internet can be utilised

2Only features that were found useful in one task should be carried over to later tasks/experiments.
This conclusion led us to discard deep knowledge features from our models and we did not try using
such features in later tasks in different scenarios.
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to lemmatise proper names, to extract very limited morpho-syntactic information
(like plural form) and to separate individual NEs that follow each other in the text
without any separating punctuation. Heuristics based on these statistics exploit
the hypothesis that any Named Entity appears in a corpus of proper size (here
the WWW can be regarded as a corpus that is practically infinite in size) and
all entity names appear in normalized form a magnitude more frequently than in
affixed form. These heuristics will be elaborated in the next section.

3.3 Frequency heuristics for NE-normalisation

3.3.1 Separating consecutive NEs

In the majority of cases, consecutive Named Entities either follow each other with a
separating punctuation mark (enumerations), or belong to different classes. In the
first case, a non-labeled token separates the two phrases, while in the second case the
different class labels identify the boundaries. Rarely do two or more NEs of the same
type appear consecutively in a sentence. In such cases the phrasal boundaries must be
marked (we used a "B-" prefix for phrase starting tokens).
An example of consecutive NEs of the same type is:

• The Russians, working for the Aerostan firm in the Russian republic of Tatarstan,
were taken hostage after a TalebanMISC | MiG-19MISC fighter forced their
cargo plane to land in August 1995.

Sometimes separating punctuation is absent from the text and this results in consecutive
NEs, as in the following example:

• BuenosLOC AiresLOC | QuequenLOC | RosarioLOC | BahiaLOC BlancaLOC

We used Wikipedia to identify phrase boundaries. As we had too few consecutive
NEs in the CoNLL corpus to perform a reliable evaluation of a corpus-based splitting
heuristic, we removed all punctuation marks from the corpus. This made consecutive
NEs much more frequent in the text. We then queried Wikipedia for all entities that
had two or more tokens. If we found an article sharing the same title as the whole
query, or the majority of the occurrences of the phrase in the Google snippets occurred
without punctuation marks inside, we treated the query phrase as a single entity. If a
punctuation mark was inside the phrase in the majority of the cases, we separated the
phrase at the position of the punctuation mark. This method allowed us to separate
phrases like Golan Heights | Israel. If there was no hit for the query in Wikipedia, but
we were able to find a wiki entry for two or more parts of the query, we put phrase
boundaries following the Wiki entries. This way we successfully identified phrases like
Taleban | MiG-19 and many enumerations that lacked the separating commas due to
the removal of punctuation marks from the data. We also made use of a first names list
here containing 3217 first names, which allowed us to avoid the erroneous separation of
full names (first name, last name pairs). Of course, a more comprehensive first names
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list would have been useful to us. Our system suffered from the absence of Romanian
and Arabic first names here. This heuristic improved the overall performance of the
NER tagger on data that lacked punctuations by a significant 1.42% (or 8.1% error
reduction). The heuristic itself managed to recognize the ’B-’ (NE-starting token that
is preceded by another NE of the same type) tags with an Fβ=1-measure of 75.19%
(precision 71.7%; recall 79.03%).

We should also mention here that some of the ’B-’-tagged phrases in the CoNLL
database are arguably consecutive NEs, but are actually single entities (e.g. phrases
like English Moslems or ’City State’ phrases like Rochester NY ). Our heuristic does not
separate such cases as they usually seem to be single NEs for the online encyclopedia -
and they can be treated as single entities as well in an Information Extraction system.
Without such cases the recall score of our system would have been even higher.

3.3.2 NE lemmatisation and morpho-syntactic analysis with

web-search based heuristics

Sometimes Entity names appear with affixes in plain text, like s for plural form or ’s
for possession. Splitting off these affixes can be useful for many reasons. E.g.

• when acquiring the lemmatised form of the NE (morpho-syntactic analysers are
not well-suited for proper names and often fail to provide lemmas of NEs)

• when analysing affixes for use as features for particular applications.

The lemmatisation of named entities can be really helpful for dictionary lookup, while
affixes can be beneficial to classification performance as features when semantic cat-
egorisation is required (e.g. the plural form of organisation names strongly indicate
org-for-product type metonimies). However, it is often not straightforward to decide
whether an NE is in a lemmatised or affixed form. Take, for instance, the following
samples:

• Epson’s /affixed/, Ford’s /ambiguous/, McDonald’s /lemma/,
Sotheby’s /lemma/

• Renaults /affixed/, Philips /ambiguous/, Advanced Micro Devices /lemma/

Above we have outlined a general issue of removing affixes from Named Entities, a
problem that appears in English, but is far more important in agglutinative languages like
Hungarian. We proposed a solution identifying the pluralty/singularity of organization
names in [38], where the task was the classification of organisation names to literal and
different types of metonimic usages. Using the name of an organisation to denote its
product is a common phenomenon in language and in such uses organisation names
can appear in plural form as well. Hence identifying the pluralty of an ORG name
is a helpful feature for identifying org-for-product metonimies. In [38] we made the
assumption that only ORG names ending with the letter s are potential plural forms
and used such names in the training data to determine a threshold of the frequency
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ratio of the word form and the possible lematised form which could separate plural
proper names from lemmas ending with letter s. We applied the calculated threshold
to determine the singular/plural status of NEs in the test corpus in order to assign
values to our plural feature. This heuristic performed with 100% accuracy on the
Semeval-2007 metonymy resolution shared task corpus and benefited the recognition
of org-for-product metonymies.

Assigning values to our plural feature motivated our idea to use web frequency
counts for NE lemmatisation. We judged the accuracy we obtained for the values of
the plural feature to be quite promising and later on we addressed NE lemmatisation as
a standalone task. The evaluation we carried out for both English and Hungarian (again,
to demonstrate the language independent nature of the approach) demonstrate that
accurate heuristics can be developed for removing inflectional suffixes using corpus or
web frquency information. We consider this finding a valuable result since morphological
analysers (that are the general tools used for obtaining the lemmas of common words)
are not well suited for lemmatising Named Entities. Morphological Analysers usually
rely on an exhaustive list of possible lemmas – a resource that is impossible to gather
in the case of Named Entities – and thus they do not perform well when used for
providing lemmas and inflectional affixes of names. A thorough analysis of these issues
is discussed in detail in [37].

The corpora

The lists of negative and positive examples for lemmatisation were collected manually.
We adopted the principal rule that we had to work on real-world examples (we did not
generate fictitious examples), so the annotator team was asked to browse the Internet
and collect "interesting" cases. These corpora are the unions of the lists collected by 3
linguists and were checked by the chief annotator. The samples mainly consist of person
names, company names and geographical locations occurrences on web pages. Table
3.3 lists the size of each corpora (constructed for the three problems). The corpora are
accessible and are free of charge.

A problematic case of finding the lemma of a NE is when the NE ends in an apparent
suffix (which we will call the suffix problem in the following). In agglutinative languages
such as Hungarian, NEs can have hundreds of different inflections. In English, nouns
can only bear the plural or the possessive marker -s or ’s. There are NEs that end in
an apparent suffix (such as Adidas in English), but this pseudo-suffix belongs to the
lemma of the NE and should not to be cut off.

We decided to build two corpora for the suffix problem; one for Hungarian and one
for English and we devised the possible suffix lists for the two languages. In Hungarian
more than one suffix can be matched to several phrases. In these cases we examined
every possible cut and the correct lemma (chosen by a linguist expert) became a positive
example, while every other cut was treated as a negative one.
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Eng suffix Hun suffix
positive examples 74 207
negative examples 84 543

Table 3.3: The sizes of the corpora.

The feature set

To create training datasets for machine learning methods - which try to learn how to
separate correct and incorrect cuts based on labeled examples - we sent queries to the
Google and Yahoo search engines using their APIs . The queries started and finished in
quotation marks and the site:.hu constraint was used in the Hungarian experiments. In
the suffix tasks, we sent queries with and without suffixes to both engines and collected
the number of hits. The original database contained four dimensional feature vectors.
Two dimensions list the number of Google hits and two components list similar values
from the Yahoo search engine.

Our preliminary experiments showed (see Table 3.4 for English and Table 3.5 for
Hungarian below) that using just the original form of the datasets for the suffix tasks
is not optimal in terms of classification accuracy. Hence we performed some basic
transformations on the original data. First we experimented with feature sets where
only one of the two search engines’ hits was present (first column). Second, the first
component of the feature vector was divided by the second component. If the given
second component was zero, then the new feature value was also zero (second column).
This yielded a one dimensional dataset for the two individual search engines and a two
dimensional one when we utilized both Yahoo and Google hits for the classification
task.

NE lemmatisation results

In this task the training algorithms achieve their best performance on the transformed
datasets using rates of query hits (this holds when Yahoo or Google searches were
performed). One could say that the rate of the hits (one feature) is the best charac-
terisation in this task. However, we can see that with the Hungarian suffix problem the
original dataset characterises the problem better, and thus the transformation is really
unnecessary. The best results for the Hungarian suffix problem are achieved on the
full dataset, but they are almost the same as those for untransformed Yahoo dataset.
Without doubt, this is due to the special property of the Yahoo search engine which
searches accent sensitively, in contrast to Google. For example, for the query "Ottó"
Google finds every webpage which contains Ottó and Otto as well, while Yahoo just
returns the Ottó-s.
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Search Engine Feature set kNN (k = 3) C4.5 MaxEnt Baseline

Both freq counts 89.24 86.71 84.81 53.16
freq rate 93.04 91.77 73.42 53.16

Google freq counts 87.34 87.34 82.28 53.16
freq rate 93.67 87.97 90.51 53.16

Yahoo freq counts 89.87 86.08 84.18 53.16
freq rate 91.77 87.34 88.61 53.16

Table 3.4: Suffix task results for English obtained by applying different learning meth-
ods.

Search Engine Feature set kNN (k = 3) C4.5 MaxEnt Baseline

Both freq counts 94.27 82.67 88.27 72.40
freq rate 84.67 81.73 72.40 72.40

Google freq counts 85.33 82.40 83.33 72.40
freq rate 83.60 83.60 77.60 72.40

Yahoo freq counts 93.73 83.87 86.13 72.40
freq rate 87.20 87.20 74.00 72.40

Table 3.5: Suffix task results for English obtained by applying different learning meth-
ods.

3.4 Results

The results that are counted as the author’s own contribution are presented above.
Here we summarise the overall results of our systems as a whole, which is a joint
contribution of the co-authors of [33] [34]. Using the exact-match evaluation criterion
of the CoNLL conference NER shared tasks, our model achieved an Fβ=1 = 89.02% and
Fβ=1 = 91.41% in combination with other top performing systems of the CoNLL-2003
conference. These results are competitive with those of the current state-of-the-art
systems.

In metonymy resolution, a system developed in collaboration with researchers of
the Technical University of Budapest [38] achieved an overall accuracy of 72.80% for
organisation name metonymies and 84.36% for location names. These results are also
competitive those of other current systems. The fact that these performance scores
are only marginally better than simple baseline performances shows that the task of
resolving figurative language (metonymies) is rather complex.

3.5 Comparison and conclusions

3.5.1 Named Entity Recognition

Previous research on English NER dates back to the early 90s. The article by Lisa F. Rau
[51] from 1991 is often cited as the first paper on this topic. The intensity of research
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on NER was boosted by the Message Understanding Conferences, the first major series
of events in part dedicated to the task in the 90s [14],[6]. In the past two decades,
machine learning solutions to the NER problem have become dominant, at least when
the number of category types to recognise are restricted. Open domain NER systems
[52], [53], [54] and NER systems for much more but restricted number of types [55],
[56] are not directly comparable to our results. A shared task challenge of the CoNLL
conference in 2003 was dedicated to multilingual named entity recognition, with English
being one of the evaluation languages. Since our results follow the CoNLL conference
standards, systems of the 2003 shared task are the best candidates for comparison3.

System phrase-level Fβ=1

Florian et al. [57] 88.76%
Chieu and Ng [58] 88.31%
Klein et al. [59] 86.07%
Zhang and Johnson [60] 85.50%
Carreras et al. [61] 85.00%

Table 3.6: Performance of the five best systems at CoNLL-2003.

The authors of the shared task description paper report an Fβ=1 = 90.30% for the
majority-voting based combination of the 5 best performing systems. Using our model
as one in the voting scheme yields an Fβ=1 = 91.41%, which shows that our model
exhibits some different characteristics from the participating ones that had a positive
impact on the overall performance of a voting model.

Summarising our findings, we think that the feature representation presented in the
previous chapter that was designed for Hungarian is capable of solving NER language
independently as long as the resources (dictionaries, lists, frquency data, etc.) for a new
languages are on hand. With some extensions that were discussed in this chapter and
addressed the most obvious differences between the English and the Hungarian dataset
(like multiple domains, document zones, etc.) the performance of models trained on the
feature representation introduced here are comparable with those of the best current
systems. They therefore hold great promise for the future in tackling various NER
tasks.

3.5.2 NE lemmatisation

NE lemmatisation has not attracted much attention so far because it is not such a
serious problem in major languages like English and Spanish as it is in agglutinative
languages. An expert rule-based and several string distance-based methods for Polish
person name inflection removal were introduced in [62]. A corpus-based rule induction

3To the best of the author’s knowledge, no significantly better results using the same standards
have been published since, so we restrict ourselves to a comparison with shared task systems.
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method was studied for every kind of unknown words in Slovene in [63]. The scope of
our study lies between these two as we deal with different kinds of NEs.

Due to the above reasons it is not straightforward to compare our results for NE
lemmatisation with accuracy scores reported for different approaches. On the other
hand, regarding the high performance scores we obtained and the fact that our method
uses no specific resources (like lists of lemmas) we consider our results very promising.

3.6 Summary of Thesis results

The main results of this chapter can be summarised as follows. The author participated
in adapting a NER system designed for the Hungarian language to a similar task in
English. Together with his colleagues, the author extended the feature representation
for training machine learning models and used the same, efficient learning model that
was introduced for Hungarian NER. This system attained a phrase level F measure
score of 89.02%.

The author also participated in the development of a MaxEnt-based system for the
metonymy resolution shared task of SemEval-2007 [35]. In the NE-metonymy classifier
that was entered the challenge by the author and his colleagues, the web-based approach
described in this chapter designed to remove inflectional affixes from Named Entities
was used successfully as a feature to classify org-for-product metonymies.

When constructing the English Named Entity Recognition system, the author made
major contributions in designing the feature extensions for learning algorithms. When
developing the metonymy resolution system, the author made major contributions in
designing the frequency-based heuristics for NE lemmatisation and feature generation
from NE affixes (plural feature in [38]). In [37] the author’s contribution is the idea
and general concept of using web frequency counts for Named Entity lemmatisation
(NE normalisation or affixes as features for other tasks), while the experiments were
actually carried out by the co-authors.



Chapter 4

The anonymisation of Medical
Records

In the human life sciences, the NER task is crucial because a de-identified text can
be made publicly available for non-hospital researchers to facilitate research on human
diseases. However, the records of patients include explicit personal health information
(PHI), and this fact hinders the release of many useful data sets because laws relating
to data protection and personal patient rights forbid this. According to the guidelines of
Health Information Portability and Accountability Act (HIPAA) of the US, the medical
discharge summaries released must be free of seventeen categories of textual PHI,
among which the following actually appear in discharge summaries:

• first and last names of patients, their health proxies and family members
e.g.: Mrs. [Mary Joe] was admitted. . . ;

• doctors’ first and last names
e.g.: He met with Dr. [John Bland], MD.;

• identification numbers
e.g.: Provider Number: [12344].;

• age (above 89 years)
e.g.: She is a [91yo] lady with congestive heart failure.;

• telephone, fax, and pager numbers
e.g.: Please call Dr. Cornea at [555-23456] ;

• hospital names
e.g.: The patient was transferred to [Gates 4].;

• geographic locations
e.g.: He lives in [Newton].;

• dates (excluding years)
e.g.: ADMISSION DATE: [10/29]/1997..
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Removing such items of PHI is the main goal of the de-identification process.
Anonymization goes one step beyond the removal of personal information and attempts
to identify and classify personal information in the text to one of the HIPAA-defined
categories. This categorisation permits the replacement of personal data instead of
simple deletion, and it has one major advantage: the replacement of PHIs with artifi-
cially generated realistic substitutes not only preserves the readability of text, but also
the artificial substitutes actually disguise those very few items of personal information
that remain in the document (the reader will never know whether a single label was the
original or a substitute).

In this section we will describe our experiments on the adaptation of our NER
model to a new domain, that of medical discharge summaries. The anonymisation of
medical texts was the focus of a shared task challenge organised by I2B2 (Informat-
ics for Integrating Biology and the Bedside) in 2006. The anonymisation task is very
similar in nature to the NER task for newspaper texts. Here the aim is to find any
items of information that could enable one to identify a patient – contrary to data
protection laws and personal rights – and thus hinder sharing medical documents for
research purposes. Ignoring such complex cases when the meaning of the text itself can
identify the patient (e.g. His brother is a quarterback of the Saints), personal informa-
tion is mainly expressed by named entities. Making this straightforward simplification
(assuming that medical documentation is free of literal texts like the example above),
the de-identification shared task challenge focused on the detection of explicit personal
health information items (PHIs) in discharge summaries.

Since explicit PHI is mostly expressed in terms of NEs, the adaptation of existing
NER systems to the medical domain seemed a promising way to achieve good perfor-
mance scores with a moderate development cost.

The rest of this section is organised as follows. We briefly describe the datasets we
used, explain the adaptation process of our system and summarise the main findings
of the shared task challenge. The author designed and implemented several extensions
of the previously described NER models, relating to the feature space representation
used. These extensions exploit the specific characteristics of medical texts and have
a beneficial impact on the accuracy of de-identification. All modifications relating to
the feature space representation are counted as the author’s own contributions to this
project.

4.1 The corpus

In the experiments described here we used the de-identification corpus prepared by
researchers of the I2B2 consortium www.i2b2.org for the de-identification challenge
of the 1st I2B2 Workshop on Natural Language Processing Challenges for Clinical
Records. The dataset consisted of 889 annotated discharge summaries, out of which
200 randomly selected documents were chosen for the official system evaluation. An
important characteristic of the data was that it contained re-identified PHIs. Since the
real personal information had to be concealed from the challenge participants as well,
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the organisers replaced all tagged PHI in the corpus with artificially generated realistic
surrogates. Here realistic means that they sought to preserve the surface characteristics
of the PHI tokens, and also to maintain coreference relations between phrases. This
means that if a patient name (John F. Smith) was found in the text, it was replaced by
a generated name with similar orthography (e.g. Samuel L. Taylor). Then subsequent
references of the same entity (e.g. J. F. Smith) were replaced by the same surrogate
(in this case, S. L. Taylor). Since the challenge organisers wanted to concentrate on
the separation of PHI and non-PHI tokens, they made the dataset more challenging
with 2 modifications during the re-identification process:

• They added out-of-vocabulary surrogates to force systems to use contextual pat-
terns, rather than dictionaries.

• They replaced some of the randomly generated PHI surrogates (patient and doc-
tor names) with medical terminology like disease, treatment, drug names and
so on. This way systems were forced to work reliably on challenging ambiguous
PHIs.

A small sample of the corpus and a table with its main characteristics can be seen
below. For more details about the corpus, the annotation process, levels of ambiguity,
etc., see [11].

Figure 4.1: Sample discharge summary.
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4.2 Evaluation Methods and Preliminary Experi-

ments

In our experiments we performed two different evaluation methods, namely a token
level 8-way and a 9-way F measure. The 8-way evaluation excludes non-PHI true
positives and thus measures the performance of identifying the 8 PHI classes, while the
9-way evaluation takes into account non-PHI class as well. The latter metric examines
the correct recognition of non-PHI, because this class is important for preserving the
document’s information content. The 9-way F measure was the official evaluation
metric used for the I2B2 challenge. In the Results section we apply an 8-way evaluation
to see how well different models recognise PHI tokens, while the 9-way F measure is
more suitable and used for a general comparison of system performance. Other shared
tasks on NER-like problems used phrase-level evaluation metrics that are better suited
for other Information Extraction tasks. For de-identification token-level evaluation is
more appropriate, as the partial removal of a PHI should receive a partial credit, instead
of a full penalty.

We should also mention here that the evaluation script we used implemented an
equal-weighted F measure (Fβ=1). This is probably not the most suitable evaluation
method for the de-identification of medical records, as the removal of all PHIs is ex-
tremely important, so perhaps recall should be given a higher priority. Moreover, the
failure of the removal of one PHI or another PHI is often not of the same degree of
seriousness (consider the failure of the removal of a patient’s family name or a small
part of a hospital name like "of" in the document-the former seriously conflicts with
the HIPAA guidelines, while the latter does not). Thus while it is not straightforward to
give an ideal evaluation metric for the de-identification task, we think the evaluations
used here are still good indicators of the quality of our results.

We evaluated two baseline methods for comparison, in order to get a better insight
to the value of our results. These baseline systems are a majority baseline and a simple
decision tree classifier.

Majority class: This simple baseline predicts non-PHI for each token (most frequent
class).

C4.5: We used a single C4.5 learner instead of AdaBoostM1 and C4.5, with token
triggers.

Excluding all domain specific extensions that we implemented, our model yields an
F measure score of 99.48% in 9-way evaluation, and thus outperforms the mean F
measure of the systems (99.19%) submitted to the competition. We consider this a
valuable result as this system exploited none of the special characteristics of medical
texts described earlier. In 8-way evaluation this system got a 94.34% F score, while
our second baseline method (a C4.5 with the domain extensions but without boosting)
achieved a 94.93% F measure score. This shows how important it is to exploit the
special characteristics of the medical domain texts.
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4.3 Novel features for the de-id task

We extended the representation designed for newswire NER systems with two additional
features that utilised the special characteristics of medical discharge summaries and the
de-identification task. These additional features enabled us to fine-tune our model for
the new application domain and achieve peak performance.

4.3.1 Different use of trigger words to describe local context

The use of trigger words is not straightforward, so we used them in three different ways
in our experiments: we collected the three preceding and three subsequent tokens of all
tagged tokens in the train set (we refer to this feature set as the token trigger later on);
similarly, we collected subsequent tokens of tagged phrases and used a wider window
for this feature (phrase trigger); and then we collected the bi- and trigrams around the
phrases of the train texts (trigram trigger).

In the case of token triggering, we collect this kind of information for all tagged
tokens, not phrases. This way "M.D." should be a similarly strong trigger for the
DOCTOR class with offset 2. Furthermore, it becomes a somewhat weaker token-
trigger for the DOCTOR class with an offset of 3 /it typically appears with 3 offset to
DOCTOR tokens (like "John Smith, M.D.") and to non-PHI tokens (as in "visited Dr.
Smith, M.D.")/.

Phrase trigger means the kind of tokens that appear before or after a complete PHI
phrase (perhaps several tokens long). For example, "M.D." is a trigger for DOCTOR
class phrases with an offset of 2, as the usual pattern in text is "DOCTOR_NAME,
M.D.". Of course, as the classification itself is performed by a token-level model, this
feature helps us to identify just the first or last token of a doctor name (depending on
the sign of the offset). In "John Smith, M.D." only the instance for token "Smith" has
this feature set to true.

Bigram/trigram triggers do not collect single trigger tokens (which are good
predictors of a certain class label), but 2 or 3 token-long sequences. In this model,
", M.D." should be a strong indicator of the DOCTOR class, not "," with offset 1 or
"M.D." with an offset of 2 on their own.

The collected trigger lists for each of the three cases were filtered according to their
frequency and information gain on the class labels (that is, according to their predictive
power). A significant difference in the predictions was noticed in the experiments
where only the use of triggers was altered; hence we decided to combine their forecasts
to exploit their advantages better. Even if only marginal improvements could been
achieved this way, this kind of voting strategy improved overall performance compared
to that when using the best one of the three different trigger features alone.

4.3.2 Regular expressions for well formed classes

Among the eight classes of entity types present in the de-identification challenge cor-
pus there were several classes with instances that followed very strict, steady surface
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patterns. These classes included
PHONE numbers We added simple regular expressions that identify phone number
with/without area codes and extensions, pager numbers, etc. ide jönnek pédák
AGE phrases We added regular patterns of how patient age might be expressed in
natural language. ide jönnek pédák
DATES We added patterns that trigger the most common date and time formats
found in the text. ide jönnek pédák
LOCATIONS (full addresses) We added patterns that matched common longer
geographical place names. The most typical examples here were "city, state" phrases
and "street, city, state, area code" phrases. These patterns used dictionaries to match
only valid state names as real US state names were found in the re-identified text in
location phrases. ide jönnek pédák
IDs The IDs in the text followed very strict positional and surface rules that have
been captured by other features developed earlier for newswire NER (sentence position,
number, contains digit, etc). Because of this, we added no further regular expression
patterns to cover ID instances as the out-domain model also learned the surface patterns
perfectly.

Selection of regexp features

The above-mentioned regular expression patterns were constructed manually, using the
lists of entites found in the training dataset for each class. We defined patterns that
matched a reasonable amount of target phrases. As we ignored the manual validation
of the patterns defined, this procedure took just 2 hours. Later on all the proposed
regexp/class pairs were automatically validated against the whole training corpus and
we calculated the precision and coverage for each pattern. Only the most reliable (very
high precision) patterns were added to the learning system as regexp features. This way
we managed to add very strong features to the learning model which obviously learned
to recognise these well-formed entity phrases based on the binary features corresponding
to one of the matching regular expressions. On the other hand, adding these expressions
to the learning model as features (instead of applying the most reliable ones as post
processing rules) made it possible for the machine learning model to induce contextual
rules where the regexp features fail. As the regexp features were developed using just the
target phrases, sometimes these regular patterns overfitted in some typical situations.
This way we managed to reduce the risks of overfitting. Trying to cover entity classes
using the regularities of their surface characteristics still holds the risk of ovefitting
the model on the training dataset. If a pattern worked with 100% precision and a
relatively high coverage (like the regexp XXX-XXX-XXXX for phone numbers, where
Xs stands for numeric characters), the system would obviously learn to rely entirely on
the single feature and discard all contextual information. If entities in previously unseen
data shared different surface characteristics, then they would not be recognized this
way. This happened with phone numbers in the challenge test dataset (some phone
number contained spaces, while in the training dataset only dashed phone numbers
were present).
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4.3.3 Document section headline information

Medical discharge summaries are semi-structured documents, consisting of many typical
sections, identified by titles. However, these headings probably vary from hospital to
hospital and - as the challenge data suggested - none of them are required to be present
in a discharge summary. On the other hand, these headings are very useful sources of
information for entity tagging as the relative entropy of tokens decreases significantly
in free-text parts belonging to certain headers.

We identified those lines as common headings of the challenge dataset which ap-
peared in at least 15 records (reasonable frequency) and ended either by ":" or "*****".

This regularity of line ending allowed us to avoid the identification of the most
frequent common lines as headings. This way, heading information was collected in
a fully automatic way (no manual evaluation/supervision). Hence we think similar
headings could be captured in texts originating from different health institutes with
similar simple methods.

Header features

We added the actual text heading to the learning model as a feature for each instance.
This way the model could differentiate between similar instances depending on the
section in which they appeared. The novel characteristic that differentiated this feature
from other similar ones (like document/sentence position, preceding words) was that
the same code was assigned to a varying number of tokens (up to the appearance of
the next common header).

Header-based post processing

We added post processing rules to overwrite PHI tokens in sections where the entropy
of PHI tokens was 0 (only PHIs of one class appeared in that header). This post-
processing allowed us to avoid obvious mistakes when the classification failed due to
the incidental effect of some other feature. Some of the section headings were so
reliable that they led us to discover annotation errors:

The sections below the ****** discharge orders ****** heading contained 102
patient names, 8 doctor names and 110 IDs. The eight doctor names here were probably
due to annotation errors.

4.3.4 Dynamic feature generation using headings (iterative

learning)

We exploited the trusted information on PHI categories in certain document sections
(following reliable headings) in a third way. The motivation here was that - apart from
rare cases - a single token usually belongs to the same class if it appears several times
in a document. This phenomenon is referred to as label consistency, which means that
at the document level, the labeling of terms is usually consistent. To a limited extent,
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label consistency might hold at the corpus level as well. Hospital names for example
should be tagged consistently throughout the whole corpus, if the text originates from
a single source. Our method exploited document level label consistency in the following
way:

1. First, we trained a model and tagged all documents for PHIs

2. Second, we performed the following steps iteratively:

• Based on observations of the training corpus we collected each tagged PHI
item from sections following reliable headings

• We formed lists of the tagged trusted PHIs and added them as dictionaries
to the model and retrained the system

• We tagged all documents for PHI items using the retrained model. If this
new model tagged sufficiently more trusted PHIs than the previous one, we
repeated the procedure of step 2.

This iterative approach took advantage of possible knowledge about the token’s
tagging in simple contexts in order to tag the token in more ambiguous text parts.
This dynamic feature generation approach gave an overall improvement of 0.33% (from
96.38% to 96.71% in an 8-way F measure). The post-processing methods we applied
slightly reduced this gain, but we think this might be a helpful approach where the label
consistency hypothesis can significantly contribute to the performance of statistical
models.

4.4 Analysis of the Feature Set

The general purpose feature set we used is briefly described in Section 2.2.2. Here our
138 attributes had different benefit on the overall performance. The lists collected (from
the Internet, the training set and from the CoNLL-2003 dataset), for example, had no
positive impact on the model as later experiments showed. In particular, the two lists
containing typical non-entity elements (one containing non-PHIs and one containing
non-NEs from the out domain NER corpus) only confused the model and lowered the
classification accuracy a little bit. It is also a somewhat surprising result that a list of
first names brought no benefit to the model, although this gazetteer proved extremely
helpful in our previous studies. Of course, the re-identifiedd characteristic of the I2B2
dataset captures this fact: name phrases in the I2B2 dataset were often replaced by
out-of-vocabulary words or typical non-name words (diseases, for example).

For an analysis of the effectiveness of our features, we divided them into ten subsets,
grouping those of a similar type. These subsets of features were added to the feature
pool in a greedy way (most useful first, i.e. the one that gave the highest improvement
in terms of classification performance) in order to evaluate their contribution to the
system’s performance.
The groups of features included in order of significance were the following (see Figure
2):
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1. Basic features: initial letter type, trigger, predictions for previous tokens

2. Orthographical features

3. Frequency information

4. Document heading information

5. Regular expressions for well-formed classes

6. Location dictionaries (countries, cities)

7. Sentence position information

8. The word is inside quotation marks/brackets

9. First names list

10. Gazetteers of non-PHIs

Figure 4.2: System performance with features of different types added to the system.
The evaluation is an instance-level Fβ=1 (that is, CoNLL-style evaluation).
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4.5 Results

The results that are counted as the author’s own contribution are given above. Here
we summarise the results of our system as a whole, which is a joint contribution of the
developers of the system (the authors of of [39]). Using the standard evaluation criteria
of the I2B2 workshop, our model achieved a 99.7534% token level accuracy (9-way)
and 98.0% token level Fβ=1 (8-way). This equaled an instance level Fβ=1 of 96.7% (8-
way). These were the second best scores in token-level evaluation and the best scores
in instance-level evaluation among the systems submitted to the challenge, without any
significant difference in performance from the other top-performing systems.

4.6 Comparison and conclusions

In the literature many de-identification approaches have been introduced. Some ap-
proaches target the recognition (and removal) of particular types of PHI like Taira et
al.’s [64] system which focuses on patient names, or Thomas et al.’s method [65],
which seeks to identify person names (both patients and doctors). There are several
approaches that carry out the full de-identification of medical texts. These are based
either on a pattern-matching algorithm that uses a thesaurus (Sweeny, [66], Ruch et
al. [67]); a combination of rule-based systems and pattern matching using dictionaries
(Douglass et al., [68]) and the Unified Medical Language System (Gupta et al., [69]),
or on a statistical model (Sibanda and Uzuner, [70]).

The participants of the first Workshop on Challenges in Natural Language Process-
ing for Clinical Data submitted both rule-based (Guillen [71]) and statistical approaches
for the de-identification task. The best performing systems used Conditional Random
Fields (Aramaki et al., [72]; Wellner at al. [73]); boosting and C4.5 decision tree
learning (presented here) and Support Vector Machines (Hara [74]; Guo et al. [75]) to
handle the anonymisation problem.

Our model achieved state-of-the-art accuracy and this shows the feasibility of adap-
tating our NER system, designed for newswire texts, to a biomedical free text processing
task. We would like to emphasise here again that we achieved this competitive result
without any deep knowledge information (not even POS codes) and without any do-
main specific resources. Our success is probably due to the very rich surface level and
contextual feature representation.

The fact that our model – without any kind of fine tuning for the actual task –
gives better results (99.48% 9-way token level accuracy) than the average performance
score of the other submitted systems (99.19%) shows that the feature representation
introduced in the previous sections is useful for NER in general. These kinds of features
are simple and quick to implement, hence we think that our system can be used (or
easily adapted) to other problems as well.

Similarly, the iterative learning approach seems to be a promising approach for
documents that consists of parts with different characteristics (like discharge records
having structured and unstructured parts).
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As the systems participating in the challenge were trained and tested on a data set
that contained re-identified PHI items, this forced them to rely entirely on contextual
patterns, while some features that would undoubtedly help the recognition of real PHI
(e.g. a list of possible first names) failed here. The artificially increased PHI/non-
PHI ambiguity of the re-identified data made this task particularly challenging and the
results on real-life data should be somewhat better in terms of recognising PHI items.
On the other hand, inter-PHI ambiguity was moderate compared to real data thus
cross-class labeling errors would probably occur more frequently than in a re-identified
corpus. These types of errors are less serious though, as these do not lead to patient
details being revealed.

4.7 Summary of Thesis results

The main results of this chapter can be summarised as follows.
Together with his collegues, the author participated in the 2006 I2B2 shared task

challenge on medical record de-identification. The major steps of the adaptation of the
pre-existing NER system, and results achieved (as a whole) are the joint contribution of
the co-authors. As our results show, the system we obtained via the domain adaptation
of our newswire NER model is competitive with other approaches, which means that
our architecture is capable of solving NER tasks language and domain independently,
with minimal adaptation effort.

In particular, the author made major contributions to the customisation of the
feature representation, i.e. the development of novel features specifically for the medical
domain. These novel features were helpful in achieving a state-of-the-art performance
(our model had the best phrase-level 8-way F measure and second best token-level
9-way accuracy). The main beneficial characteristics of the novel features developed
by us were the followings:

• Regular expressions enabled us to use complex, very powerful features to learn
the recognition of well-formed PHI types.

• Structure information and iteratively generated features enabled us to thoroughly
exploit the information hidden in the structure of records and the potentials in
label-consistency.
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Chapter 5

Smoker status classification in
medical records

The principal reason for processing medical discharge records is to facilitate medical
research carried out by physicians by providing them with statistically relevant data for
analysis. An example of such an analysis might be a comparison of the runoff and
effects of certain illnesses/diseases among patients with different social habits. The
evidence drawn from the direct connection between social characteristics and diseases
(like the link between smoking status and lung cancer or asthma) is of key importance in
treatment and prevention issues. Such points can be deduced automatically by applying
statistical methods on large corpora of medical records.

5.1 The smoking status identification task

Here we follow the task definition of the smoker challenge of the first I2B2 workshop.
The task here was to classify medical records into the following five semantic classes
based on the smoking status of the patient being examined:

• non-smoker: the patient has no smoking history,
No tobacco.

• current smoker: he/she is an active smoker,
She quit smoking four months ago.

• past smoker: the patient had not smoked for at least one year
She is a past smoker, but quit two years ago when she was found to have right
upper lobe nodule, which was resected and found to be positive for TB granuloma,
for which she was treated with antibiotics for nine months.

• smoker: when the document contains no information about his current or past
smoker status, but he/she has a smoking history,
Depression, anxiety, chronic obstructive pulmonary disease/asthma, history of
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tobacco abuse, chronic headaches, atypical chest pain with 6/97 Dobutamine
MIBI revealing no ischemia and a history of tuberculosis exposure.

• unknown: the report contains no information about the patient’s smoking sta-
tus.
Most recently, she developed dyspnea two days prior to admission, trigger was
felt to be marijuana smoke in the building where she lives where there are many
drug dealers.

5.1.1 Keyword-level classification

After some preliminary examination of the structure of medical discharge records, we
came to the conclusion that it was not an entire discharge record that was required to
extract the semantic information we desired, but just short excerpts from it contained
sufficient information for us to identify patients belonging to different smoker classes.
The absence of such excerpts on the other hand meant that the document contains no
information on patient smoking status and thus it is labeled as unknown.

As the classification of smaller pieces of texts with the same information content is
always easier to handle than bigger ones, we searched each document for relevant parts
or sentences which frequently appeared in documents that belonged to one of the four
smoker classes (referred to as known texts later on), but which were almost never seen
in records that contained no information on the patient’s smoking status.

The typical word stems that allowed us to identify unknown texts from others are
listed in Table 5.1. To evaluate each keyword (or prefix), we used a feature rank-
ing method that took into account the class-conditional probability of the keyword
for known documents (predictive power) and the document frequency of the keyword
(coverage). To avoid prioritising frequent words like stopwords we assigned very high
weight to predictive power (P (+|keyword) was powered by 10).

These word prefixes that were top ranked by our feature ranking method really
tell us that a document contains relevant information on the smoking status of the
patients. The most informative word chunks came to be {ciga (for cigar & cigarette),
smok (for smoke, smoking, ...), toba (for tobacco), habi (for habit), alco (for alcohol),
fath (for father) and soci (for social)}, which is an interesting but not surprising result.
Since Habit :, Social habit : and Social are names of a header in discharge records
and a heading usually contains sentences with one or more of the 3 other key words,
we discarded these from our experiments. The word alcohol was indicative of known
documents for the very same reason, while the high ranking of ’father’ was a somewhat
interesting result. It seems that physicians tend to include a description of the family
history of the patient if he/she has social habits like smoking. As these above-mentioned
keywords were all dependent on the remaining three, i.e. each time they appeared in
the text, one of {cigar, smoke or tobacco} was also present, hence we restricted our
classification schema to sentences containing any of these and discarded the rest of
the top-ranked keywords. Actually there was one further keyword, nicotine, which is
semantically similar to those we selected, but this one was underranked due to its
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prefix df(+) df(-) P (+|prefix) P (+|prefix)10 ∗ df(+)/num(+)
feature weight

smok 93 2 97.89% 51.85%
toba 53 2 96.36% 25.24%
alco 79 8 90.80% 20.77%
soci 102 20 83.61% 11.74%
ciga 17 0 100.00% 11.72%
habi 18 1 94.74% 7.23%
fath 23 2 92.00% 6.89%
drin 43 7 86.00% 6.56%
etha 9 0 100.00% 6.21%
cold 7 0 100.00% 4.83%
obje 6 0 100.00% 4.14%
ca-1 6 0 100.00% 4.14%
bear 6 0 100.00% 4.14%
apar 6 0 100.00% 4.14%
aske 6 0 100.00% 4.14%
1250 6 0 100.00% 4.14%
lary 6 0 100.00% 4.14%
hers 5 0 100.00% 3.45%
97.6 5 0 100.00% 3.45%
thos 5 0 100.00% 3.45%
52-y 5 0 100.00% 3.45%
napr 5 0 100.00% 3.45%
illi 5 0 100.00% 3.45%
nico 5 0 100.00% 3.45%
opin 5 0 100.00% 3.45%
1984 5 0 100.00% 3.45%

Table 5.1: Document frequencies, class-conditional probabilities for the top ranked
word-prefixes

relative rarity in the training corpus.

This way we built a keyword-level classifier, and because a document could contain
more than one keyword, a joint decision had to be made to get a document-level
classification. We used a simple majority voting rule to aggregate the predictions for
each keyword to a single decision. We note here that the above-mentioned voting
scheme was chosen arbitrarily and it is possible that other voting rules would have been
more useful.

5.1.2 Description of our classification model

The basic steps of processing a discharge record are the following:

1. Preprocessing. This automatically filters out documents belonging to the un-
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known class, and then collects relevant sentences from known-class documents.

2. The feature extractor builds a feature vector for each keyword found in the text for
an inductive learning task (this step is described in detail in the next subsection).

3. A classifier model assigns one of the known-class labels (current smoker, non-
smoker, past smoker, smoker) to each instance generated from the same docu-
ment.

4. A majority voting scheme makes a final decision on which class the document
belongs to.

5.1.3 Features used

Our smoker status classifier system uses similar features to those employed by Zeng et.
al. [25], it considers phrases of length 1-3 words that we found characteristic to one or
more of the smoker classes. In addition, we also tried to incorporate deeper knowledge
about the meaning of the sentence with several helpful features by describing part of
speech information or some very basic properties of the syntactic structure. To get
POS and syntactic information we used the publicly available Link Parser [76]. We
should mention here that the sentences we extracted from the discharge records were
out-domain texts for the parser and were often poorly formed sentences. These facts
made the results of the parser somewhat poorer in quality than expected, but we think
that these sentences have very similar characteristics. Even the parse errors are similar
in many cases and these features prove useful for the task.

The features we eventually opted for were the following:

1. We assigned 11 different values to the important 2-3 word long phrases for the
class (or subset of classes) they indicated.

2. Which of the three keywords the sentence corresponded to.

3. Part of speech code of the keyword.

4. Whether the keyword was inside a Noun Phrase or Verb Phrase structure or not
in the syntax tree of the sentence.

5. The lemma of the verb nearest to the keyword (in the syntax tree).

6. The part of speech code of the verb nearest to the keyword (in the syntax tree).

7. Whether the sentence contained a negative word (no, none, never, negative,
neither) or not.

8. Words seen in the training data quite often (unigrams).

As regards the features described above, we collected 62 different attributes for each
keyword in each sentence acquired from a document. The final decision on the patient’s
smoking status was made based on all the instances that originated from the same
discharge summary, using a majority voting rule.
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5.2 Feature selection

A high-dimensional feature space and limited amount of training data often leads to
overfitting. In our case we had to handle the problem of having extremely low amounts
of training data (about 200 instances) and numerous features collected for each in-
stance. A common solution to avoid overfitting on the training data is to reduce
the dimensionality of the feature space by means of feature selection, i.e. to discard
irrelevant attributes and keep those few that have the highest predictive power.
χ2 statistic (CSS): We used the well known χ2 statistic to estimate the conditional
dependence between individual features and the target attribute (that is, the class
label). This statistical method computes the strength of dependency by comparing the
joint distribution and the marginal distributions of the feature in question and the target
variable. This way, the attributes could be ranked based on their individual relevance
and this enabled us to discard insignificant features automatically.

CSS has some limitations though: e.g. it compares attributes to the target attribute
just one at a time. Thus it is conceivable that when a feature is not really informative
on its own, but is useful when combined with other attributes, it might get a low rank
via the chi-squared statistic.
Best subset selection (BSS): Another possibility is to rank subsets of features
together, rather than measuring their individual association with the class values. This
method has a very high computational time complexity as the number of possible
subsets of features grows exponentially with the dimensionality of the initial feature
space. Since we had a rather low amount of training data available, this kind of subset
evaluation became computationally feasible with classifiers that were fast to train, hence
we decided to perform a best subset evaluation for the various attributes we used.

Both the CSS and BSS evaluations benefited from our deep knowledge features
describing the syntactic and morphological properties of text, and important phrases
of length 2-3 that indicated a single class value were also chosen by both evaluations.
Best subset evaluation retained several features that described phrases indicating more
than one class and several characteristic unigrams, while CSS underranked phrases that
indicated 2 or more classes (indeed, these features proved to be useful in combination
with others and CSS was barely able to capture this fact) and thus kept more unigram
features, a few of which were hard to interpret.

The results of our feature evaluation clearly show that deep knowledge features
which describe the syntactic properties of the text contribute greatly to the identifica-
tion of a patient’s smoking status. The features selected by one or both of the methods
were the following:
Both: lemma and POS of the verb nearest to keyword; negative word in the sentence;
2-3 word long phrases indicating ’current smoker’, ’past smoker’, ’non-smoker’, ’cur-
rent/past smoker’ or ’smoker/non-smoker’; unigram in the sentence: ’ago’
CSS: POS of keyword; unigram in the sentence: ’years’, ’does’, ’smoke’, ’per’, ’smoker’,
’approximately’
BSS: lemma of keyword; 2-3 word long phrases indicating ’smoker/current smoker’ or
’smoker/past smoker’; keyword inside Noun Phrase; unigram in the sentence: ’use’,
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’drinks’, ’quitting’
As the features chosen by BSS were much easier to interpret, in our experiments we
decided to use the 16 features that performed the best in the best subset selection
process.

5.3 Results

Using the feature space representation described above, we trained several classifiers
to predict the smoking status of the patients. All classifiers tested (Artificial Neural
Network, Support Vector Machine, C4.5 decision tree, AdaBoostM1+C4.5) performed
similarly, which shows that our features resulted in simple learnt patterns that any
classifier could capture. Our models showed no statistically significant difference from
each other, or any of the best submitted systems, which proves the feasibility of our
excerpt-based (keyword level) classification model. We should say here though that
the system of Clark et al. [77] was actually significantly better than any other partic-
ipating systems, but their submissions suffered from some system errors. Their out-
of-competition results, however were indeed significantly better than any of the other
submitted systems, which shows that their model captured the information hidden in
discharge summaries more accurately. They also prepared some additional training data
and reported a boost in system performance, which demonstrates that systems trained
on the challenge dataset suffered from a lack of training data, and could perform better
if more examples were available to describe possible ways of expressing smoking status
in narrative free texts.

5.3.1 Performance on the training set, applying 5-fold cross-

validation

In Table 5.2 the document-level accuracies on the four known classes (discarding un-
known documents) and for all five classes (including unknown documents) are given
for all classifiers.

4-class 5-class
k-NN 76.92 90.95
SVM 77.62 91.21
AB-C4.5 81.11 92.46
ANN 81.11 92.46
VOTE 83.22 93.22

Table 5.2: The document accuracy scores of our models
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5.3.2 Performance on the i2b2 evaluation set

The behaviour of our best model was similar to the 5-fold result on the official i2b2
evaluation set (See Table 5.3). Our best model (the one using boosting and C4.5
decision trees) achieved a classification accuracy of 86.54% in 5-class evaluation, while
the best performing system using the same data set had an accuracy of 88.79% [78].
One participant incorporated a significantly larger database for training purposes (over
1000 examples) and significantly outperformed all the other systems [77]. This clearly
shows that the lack of training data is detrimental to the performance score.

5-class 4-class 2-class
accuracy 86.54% 65.85% 90.24%

Table 5.3: The Fβ=1 results based on the evaluation set. Here 5-class evaluation shows
system performance when we distinguish between all five classes. 4-class evaluation
excludes unknown documents and measures performance on the four known document
classes, while 2-class evaluation differentiates between non-smoker and smoker classes
(i.e. past- current- and smoker together).

Un Non Pa Sm Cu
Unknown 63 0 0 0 0
Non-smoker 0 16 0 0 0
Past-smoker 0 1 5 1 4
Smoker 0 1 0 0 2
Current-smoker 0 2 3 0 6

Table 5.4: The confusion matrix of the AB+C4.5 model on the evaluation set

The confusion matrix for the i2b2 evaluation set is given in Table 5.4. We got sig-
nificantly better results in 2-class evaluations (where we distinguish between patients
with a smoking history and non-smokers, without dividing smoking patients into fur-
ther subcategories), which surely demonstrates that the most challenging task for our
classification model is separating current smokers, past smokers and smokers.

The two main reasons why the distinction between these three smoking classes
proved to be the most difficult are probably the following. First, we had significantly
fewer training examples for these three categories, and those patients that had quit
smoking in the past year were treated as current smokers as their physiological charac-
teristics were similar to current smokers. This way we also had to find out when they
gave up smoking. Finally, reference to the time period when the patient’s social habits
changed were many times mentioned in separate sentences. If those sentences did not
contain any keyword (only the preceding sentence, for example), we failed to extract
this knowledge from the text. This is one of the most obvious limits of our model, and
the problem needs to be handled somehow.

The i2b2 evaluation set used to rank the participating systems contained several
cases where, considering the excerpts we collected on their own, the response of our
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model seemed more appropriate than the gold standard labeling. These cases are prob-
ably good examples for highlighting the limitations of our approach as the physicians
must have found evidence elsewhere in the document to support their judgement. It
seems our system was unable to locate this additional place of information. An example
of such an excerpt is:
No alcohol use and quit tobacco greater than 25 years ago with a 10-pack year (our
system: PAST/ gold standard label: CURRENT)

All the other system errors we encountered were the kind of cases where a human
expert was able to make the proper decision based on the limited data we extracted
from the whole discharge record. In the future it would be good to eliminate these
errors as best one can.

We should also mention here that those cases where the annotators apparently
found additional information in the documents were typically elements of one of three
smoker classes. This shows that making a distinction between smokers is more difficult
for experts as well. Also, their rate of agreement is lower on the smoker classes than
on non-smoker and unknown documents.

5.4 Comparison and conclusions

The identification of smoking habits based on discharge records was studied earlier in the
literature. [25; 79] reported an accuracy of 90% on the identification of smoker status.
They constructed a classification model using about 8500 smoking-related sentences
obtained from discharge records and the Support Vector Machine (SVM) as a classifier
with word phrases of length 1-3 as features. Our approach differs from the one reported
by them in the amount of data used (about 200 smoking-related sentences) and the
variety of features employed (our system exploits syntactic information as well).

A detailed comparison of the systems that were entered the challenge can be found
in [26]. Among these were both manually constructed systems and machine learning
approaches. Pedersen [80] applied supervised (decision tree) and unsupervised models
(clustering) to the task using simple vector space representation of the documents.
Aramaki et al.[78] applied a two-step classifier (like the one described above) and first
extracted relevant sentences for the smoking status of patients. If multiple sentences
contained smoker cues, they used the last sentence in the document though. Using the
sentences they extracted they applied Okapi-BM25 and k-nearest-neighbors to deter-
mine the proper label of the document (one of the four known classes). Carrero et al.
[81] tested several machine learning methods (those used here and Naïve Bayes classi-
fier) using, uni-, bi- and trigram features. Similarly to our results, they found bigrams
and trigrams to be more useful for smoker classification than unigrams. Clark et al. [77]
used SVMs and MaxEnt classifiers for the task that benefited from document structure
information, medical entity tagging (including the recognition of smoking-related med-
ication, like Nicoderm), and also tested the results of incorporating additional training
data to the system. Their results indicated that both the use of a Medical Extraction
system and larger annotated dataset benefits performance. Regarding their classifiers
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Macroaveraged Microaveraged
Precision Recall F-Measure Precision Recall F-Measure

Clark3 0.81 0.73 0.76 0.90 0.90 0.90
Cohen2 0.64 0.67 0.65 0.88 0.89 0.89
Aramaki1 0.64 0.67 0.65 0.88 0.89 0.88
Cohen1 0.64 0.65 0.64 0.88 0.88 0.88
Clark2 0.76 0.69 0.72 0.87 0.88 0.88
Cohen3 0.62 0.62 0.62 0.87 0.88 0.87
Wicentowski1 0.58 0.61 0.59 0.85 0.87 0.86
Szarvas2 0.59 0.60 0.59 0.85 0.87 0.85
Clark1 0.69 0.65 0.66 0.86 0.87 0.85
Szarvas3 0.56 0.58 0.57 0.84 0.86 0.84
Savova1 0.62 0.60 0.60 0.84 0.86 0.84
Szarvas1 0.56 0.58 0.57 0.83 0.86 0.84
Sheffer1 0.59 0.59 0.58 0.83 0.86 0.84
Savova2 0.56 0.57 0.56 0.81 0.84 0.82
Savova3 0.55 0.55 0.55 0.80 0.83 0.81
Pedersen1 0.55 0.56 0.54 0.82 0.82 0.81
Guillen1 0.45 0.51 0.44 0.77 0.79 0.76
Carrero1 0.52 0.47 0.48 0.74 0.77 0.75
Carrero2 0.44 0.43 0.41 0.71 0.71 0.70
Rekdal1 0.68 0.45 0.47 0.77 0.74 0.67
Pedersen3 0.23 0.35 0.27 0.53 0.68 0.60
Pedersen2 0.23 0.36 0.28 0.53 0.69 0.59
Carrero3 0.26 0.31 0.27 0.54 0.63 0.57

Table 5.5: Microaverages and Macroaverages for Precision, Recall, and F-measure,
sorted by microaveraged F-measure

they experimented with sentence and phrase-level approaches and incorporated multi-
ple decisions using a majority voting rule similar to ours. Cohen [82] defined the scope
for processing as the ±100 characters context of a smoker cue and applied a linear
SVM to solve the classification task. Savova et al. [83] applied a three-stage approach
that implemented a hierarchical classification using SVM models. They also filtered
out documents with no smoker cues. In a three-stage approach they first attempted
to classify a non-smoker label (this model benefited negation detection) and then tried
to differentiate between past smoker and current smoker classes (this model used non-
lemmatised texts). The final document-level decision was the label of highest priority
that has been assigned to the document (their priority order was current smoker, past
smoker, smoker, non- smoker, and unknown). Sheffer et al.[84] adapted for the smoker
task and applied an expert system designed to process medical texts.

A detailed comparison of the above-mentioned systems is given in Table 5.51.
Observing that most systems attained a remarkable accuracy using the very limited

1We note here that the submissions of Clark et al.[77] suffered from some implementation errors
and their real F scores are slightly higher than those listed here. This table is taken from [26]
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amount of training data provided, we conclude that this task can be accomplished with
good accuracy and these systems can be useful in practice.

5.5 Summary of thesis results

The main results of this chapter can be summarised as follows.
Together with his collegues, the author participated in the 2006 I2B2 shared task

challenge on patient smoking status classification from medical records. The system
and the overall results we submitted are a shared and indivisible contribution of the
co-authors.

In particular, the author made major contributions to the design of the feature
representation, i.e. the development of features used by previous studies and novel ones
specifically for the medical domain which tried to group more or less similar examples
together by exploiting the syntactic or semantic classification of phrases. The main
reasoning for having these novel features was to reduce the effects of a small sample
size. These novel features were helpful in achieving a good performance (they appeared
among the top ranked attributes using 2 different feature selection methods). The main
beneficial characteristics of our approach were the following:

• Using class conditional probability measures, we succesfully extracted those few
keywords that covered all textual appearance of smoking status information and
allowed us to separate unknown documents with 100% accuracy.

• Our novel features and keyword level model proved to be useful for the smoker
status classification task even with very limited training data available. With a
bigger dataset we expect the overall performance score to be even higher.



Chapter 6

Identifying speculations in
biomedical texts

The highly accurate identification of several regularly occurring language phenomena
like the speculative use of language, negation and past tense (temporal resolution) is a
prerequisite for the efficient processing of biomedical texts. In various natural language
processing tasks, relevant statements appearing in a speculative context are treated as
false positives. Hedge detection seeks to perform a kind of semantic filtering of texts,
that is it tries to separate factual statements from speculative/uncertain ones.

6.1 Hedging in biomedical NLP

To demonstrate the detrimental effects of speculative language on biomedical NLP
tasks, we will consider two inherently different sample tasks, namely the ICD-9-CM
coding of radiology records and gene information extraction from biomedical scientific
texts. The general features of texts used in these tasks differ significantly from each
other, but both tasks require the exclusion of uncertain (or speculative) items from
processing.

6.1.1 Gene Name and interaction extraction from scientific

texts

In our experiments we used the dataset made available by Medlock and Briscoe [29].
The dataset consists of a training set generated semi-automatically (this process will be
described later on) and a manually annotated test set of five full papers from FlyBase.
The main characteristics of the manually annotated test set are shown in Table 6.1.

The test set of the hedge classification dataset 1 [29] has also been annotated for
gene names2.

1http://www.cl.cam.ac.uk/~bwm23/
2http://www.cl.cam.ac.uk/~nk304/
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Articles 5
Sentences 1537
Spec sentences 380
Nspec sentences 1157

Table 6.1: Characteristics of the FlyBase hedge dataset.

Examples of speculative assertions:
Thus, the D-mib wing phenotype may result from defective N inductive signaling at
the D-V boundary.
A similar role of Croquemort has not yet been tested, but seems likely since the crq
mutant used in this study (crqKG01679) is lethal in pupae.

After an automatic parallelisation of the 2 annotations (sentence matching) we
found that a significant part of the gene names mentioned (638 occurences out of a
total of 1968) appears in a speculative sentence. This means that approximately 1 in
every 3 genes should be excluded from the interaction detection process. These results
suggest that a major portion of system false positives could be due to hedging if hedge
detection had been neglected by a gene interaction extraction system.

spec nspec
spec 489 118
nspec 25 1171

Table 6.2: The confusion matrix for gene names mentioned in a speculative context
(rows – spec, nspec instances; cols – classified as spec, nspec).

The first row lists the number of speculative instances, while the second row shows
the number of non-speculative gene name mentions. The first column shows instances
classified as speculative, while the second column shows instances classified as non-
speculative.

Table 6.2 shows the confusion matrix of our system for classifying gene name men-
tions based on their appearance in the text (in a speculative or non-speculative context).
We consider this a useful result as such an accurate preprocessing step would surely
boost the performance of end-user applications like gene interaction extraction systems.

Following the annotation standards of Medlock and Briscoe [29], we manually an-
notated 4 full articles downloaded from the BMC Bioinformatics website to evaluate
our final model on documents from an external source. The chief characteristics of this
dataset (which is available at3) is shown in Table 6.3.

3http://www.inf.u-szeged.hu/~szarvas/homepage/hedge.html
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Articles 4
Sentences 1087
Spec sentences 190
Nspec sentences 897

Table 6.3: Characteristics of the BMC hedge dataset.

6.1.2 ICD-9-CM coding of radiology records

Automating the assignment of ICD-9-CM codes for radiology records was the subject
of a shared task challenge organised in the spring of 2007. The detailed description of
the task, and the challenge itself can be found in [31] and online4. ICD-9-CM codes
that are assigned to each report after the patient’s clinical treatment are used for the
reimbursement process by insurance companies. There are official guidelines for coding
radiology reports [85]. These guidelines strictly state that an uncertain diagnosis should
never be coded, hence identifying reports with a diagnosis in a speculative context is
an inevitable step in the development of automated ICD-9-CM coding systems. The
following examples illustrate a typical non-speculative context where a given code should
be added, and a speculative context where the same code should never be assigned to
the report:
non-speculative: Subsegmental atelectasis in the left lower lobe, otherwise normal
exam.
speculative: Findings suggesting viral or reactive airway disease with right lower lobe
atelectasis or pneumonia.

In an ICD-9 coding system developed for the challenge, the inclusion of a hedge
classifier module (a simple keyword-based lookup method with 38 keywords) improved
the overall system performance from 79.7% to 89.3%.

To evaluate our system we annotated the ICD-9-CM coding dataset for hedging.
We considered each sentence that contained a disease or symptom name recognised
by our ICD-9-CM coding application for hedge annotation – if a sentence contained
some speculative element is was classified as speculative and non-speculative other-
wise. Sentences that did not contain any medical terminology were discarded from the
dataset.

Sentences 3951
Spec sentences 633
Nspec sentences 3318

Table 6.4: Characteristics of the BMC hedge dataset.

4http://www.computationalmedicine.org/challenge/index.php
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6.2 Description of our system and the training

data generation methods

6.2.1 Feature space representation

Hedge classification can essentially be handled by acquiring task specific keywords that
trigger speculative assertions more or less independently of each other. As regards
the nature of this task, a vector space model (VSM) is a straightforward and suitable
representation for statistical learning. As VSM is inadequate for capturing the (possibly
relevant) relations between subsequent tokens, we decided to extend the representation
with bi- and trigrams of words. We chose not to add any weighting of features (by
frequency or importance) and for the Maximum Entropy Model classifier we included
binary data about whether single features occurred in the given context or not.

6.2.2 Training data acquisition

Probabilistic approach

To build our classifier models, we used the dataset gathered and made available by
[29]. They commenced with the seed set Sspec gathered automatically (all sentences
containing suggest or likely – two very good speculative keywords), and Snspec that
consisted of randomly selected sentences from which the most probable speculative
instances were filtered out by a pattern matching and manual supervision procedure.
With these seed sets they then performed the following iterative method to enlarge
the initial training sets, adding examples to both classes from an unlabeled pool of
sentences called U :

1. Generate seed training data: Sspec and Snspec

2. Initialise: Tspec ← Sspec and Tnspec ← Snspec

3. Iterate:

• Train classifier using Tspec and Tnspec

• Order U by P (spec) values assigned by the classifier

• Tspec ← most probable batch

• Tnspec ← least probable batch

What makes this iterative method efficient is that, as we said earlier, hedging is
expressed via keywords in natural language texts; and often several keywords are present
in a single sentence. The seed set Sspec contained either suggest or likely, and due to
the fact that other keywords cooccur with these two in many sentences, they appeared
in Sspec with reasonable frequency. As sentences with cooccuring words were found
more likely to be speculative than those containing no cooccuring words at all, these
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instances were selected for manual filtering. Thus Snspec was filtered from the most
common hedge cues just by examining a small portion of the set manually. This way
the initial seed sets contained some good indicators of speculative use besides suggest
and likely. For example, P (spec|may) = 0.9985 on the seed sets created by [29]. The
iterative extension of the training sets for each class further boosted this effect, and
skewed the distribution of speculative indicators as sentences containing them were
likely to be added to the extended training set for the speculative class, and unlikely to
fall into the non-speculative set.

We should add here that the very same feature has an inevitable, but very important
side effect that is detrimental to the classification accuracy of models trained on a
dataset which has been obtained this way. This side effect is that other words (often
common words or stopwords) that tend to cooccur with hedge cues will also be subject
to the same iterative distortion of their distribution in speculative and non-speculative
uses. Perhaps the best example of this is the word it. Being a stopword in our case,
and having no relevance at all to speculative assertions, it has a class conditional
probability of P (spec|it) = 74.67% on the seed sets. This is due to the use of phrases
like it suggests that, it is likely, and so on. After the iterative extension of training sets,
the class-conditional probability of it dramatically increased, to P (spec|it) = 94.32%.
This is a consequence of the frequent co-occurence of it with meaningful hedge cues
and the probabilistic model used and happens with many other irrelevant terms (not
just stopwords). The automatic elimination of these irrelevant candidates is one of our
main goals (to limit the number of candidates for manual consideration and thus to
reduce the human effort required to select meaningful hedge cues).

This shows that, in addition to the desired effect of introducing further speculative
keywords and biasing their distribution towards the speculative class, this iterative pro-
cess also introduces significant noise into the dataset. This observation led us to the
conclusion that in order to build efficient classifiers based on this kind of dataset, we
should filter out noise. In the next part we will present our feature selection procedure
(evaluated in the Results section) which is capable of underranking irrelevant keywords
in the majority of cases.

Automatic training data generation

We present results for the automatic detection of speculative assertions in radiology
reports. Here we generated training data by an automated procedure. Since hedge
cues cause systems to predict false positive labels, our idea here was to train Maximum
Entropy Models for the false positive classifications of our ICD-9-CM coding system
using the vector space representation of radiology reports. That is, we classified every
sentence that contained a medical term (disease or symptom name) and caused the
automated ICD-9 coder5 to predict a false positive code was treated as a speculative
sentence and all the rest were treated as non-speculative sentences.

Here a significant part of the false positive predictions of the ICD-9-CM coding

5Here the ICD-9 coding system did not handle the hedging task.
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system that did not handle hedging originated from speculative assertions, which led
us to expect that we would have the most hedge cues among the top ranked keywords
which implied false positive labels.

6.2.3 Feature (or keyword) selection

To handle the inherent noise in the training dataset that originates from its weakly
supervised construction, we applied the following feature selection procedure. The
main idea behind it is that it is unlikely that more than two keywords are present in
the text, which are useful for deciding whether an instance is speculative. Here we
performed the following steps:

1. We ranked the features x by frequency and their class conditional probability
P (spec|x). We then selected those features that had P (spec|x) > 0.94 (this
threshold was chosen arbitrarily) and appeared in the training dataset with reason-
able frequency (frequency above 10−5). This set constituted the 2407 candidates
which we used in the second analysis phase.

2. For trigrams, bigrams and unigrams – processed separately – we calculated a new
class-conditional probability for each feature x, discarding those observations of x

in speculative instances where x was not among the two highest ranked candidate.
Negative credit was given for all occurrences in non-speculative contexts. We
discarded any feature that became unreliable (i.e. any whose frequency dropped
below the threshold or the strict class-conditional probability dropped below 0.94).
We did this separately for the uni-, bi- and trigrams to avoid filtering out longer
phrases because more frequent, shorter candidates took the credit for all their
occurrences. In this step we filtered out 85% of all the keyword candidates and
kept 362 uni-, bi-, and trigrams altogether.

3. In the next step we re-evaluated all 362 candidates together and filtered out all
phrases that had a shorter and thus more frequent substring of themselves among
the features, with a similar class-conditional probability on the speculative class
(worse by 2% at most). Here we discarded a further 30% of the candidates and
kept 253 uni-, bi-, and trigrams altogether.

This efficient way of reranking and selecting potentially relevant features (we managed
to discard 89.5% of all the initial candidates automatically) made it easier for us to man-
ually validate the remaining keywords. This allowed us to incorporate supervision into
the learning model in the feature representation stage, but keep the weakly supervised
modelling (with only 5 minutes of expert supervision required).

6.2.4 Maximum Entropy Classifier

Maximum Entropy Models [32] seek to maximise the conditional probability of classes,
given certain observations (features). This is performed by weighting features to max-
imise the likelihood of data and, for each instance, decisions are made based on features
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present at that point, thus maxent classification is quite suitable for our purposes. As
feature weights are mutually estimated, the maxent classifier is capable of taking fea-
ture dependence into account. This is useful in cases like the feature it being dependent
on others when observed in a speculative context. By downweighting such features,
maxent is capable of modelling to a certain extent the special characteristics which
arise from the automatic or weakly supervised training data acquisition procedure. We
used the OpenNLP maxent package, which is freely available6.

6.3 Results

In this section we will present our results for hedge classification as a standalone task. In
experiments we made use of the hedge classification dataset of scientific texts provided
by [29] and used a labeled dataset generated automatically based on false positive
predictions of an ICD-9-CM coding system.

6.3.1 Results for hedge classification in biomedical texts

As regards the degree of human intervention needed, our classification and feature
selection model falls within the category of weakly supervised machine learning. In
the following sections we will evaluate our above-mentioned contributions one by one,
describing their effects on feature space size (efficiency in feature and noise filtering)
and classification accuracy. In order to compare our results with Medlock and Briscoe’s
results [29], we will always give the BEP (spec) that they used – the break-even-point
of precision and recall7. We will also present Fβ=1(spec) values which show how good
the models are at recognising speculative assertions.

The effects of automatic feature selection

The method we proposed seems especially effective in the sense that we success-
fully reduced the number of keyword candidates from an initial 2407 words having
P (spec|x) > 0.94 to 253, which is a reduction of almost 90%. During the process,
very few useful keywords were eliminated and this indicated that our feature selec-
tion procedure was capable of distinguishing useful keywords from noise (i.e. keywords
having a very high speculative class-conditional probability due to the skewed char-
acteristics of the automatically gathered training dataset). The 2407-keyword model
achieved a BEP (spec) os 76.05% and Fβ=1(spec) of 73.61%, while the model af-
ter feature selection performed better, achieving a BEP (spec) score of 78.68% and
Fβ=1(spec) score of 78.09%. Simplifying the model to predict a spec label each time
a keyword was present (by discarding those 29 features that were too weak to predict

6http://maxent.sourceforge.net/
7It is the point on the precision-recall curve of spec class where P = R. If an exact P = R cannot

be realised due to the equal ranking of many instances, we use the point closest to P = R and set
BEP (spec) = (P + R)/2. BEP is an interesting metric as it demonstrates how well we can trade-off
precision for recall.



74 Identifying speculations in biomedical texts

spec alone) slightly increased both the BEP (spec) and Fβ=1(spec) values to 78.95%

and 78.25%. This shows that the Maximum Entropy Model in this situation could not
learn any meaningful hypothesis from the cooccurence of individually weak keywords.

Improvements by manual feature selection

After a dimension reduction via a strict reranking of features, the resulting number of
keyword candidates allowed us to sort the retained phrases manually and discard clearly
irrelevant ones. We judged a phrase irrelevant if we could consider no situation in which
the phrase could be used to express hedging. Here 63 out of the 253 keywords retained
by the automatic selection were found to be potentially relevant in hedge classification.
All these features were sufficient for predicting the spec class alone, thus we again found
that the learnt model reduced to a single keyword-based decision.8 These 63 keywords
yielded a classifier with a BEP (spec) score of 82.02% and Fβ=1(spec) of 80.88%.

Results obtained adding external dictionaries

In our final model we added the keywords used in [27] and those gathered for our ICD-
9-CM hedge detection module. Here we decided not to check whether these keywords
made sense in scientific texts or not, but instead left this task to the maximum entropy
classifier, and added only those keywords that were found reliable enough to predict spec

label alone by the maxent model trained on the training dataset. These experiments
confirmed that hedge cues are indeed task specific – several cues that were reliable in
radiology reports proved to be of no use for scientific texts. We managed to increase
the number of our features from 63 to 71 using these two external dictionaries.

These additional keywords helped us to increase the overall coverage of the model.
Our final hedge classifier yielded a BEP (spec) score of 85.29% and Fβ=1(spec) score
of 85.08% (89.53% Precision, 81.05% Recall) for the speculative class. This meant an
overall classification accuracy of 92.97%.

Using this system as a pre-processing module for a hypothetical gene interaction
extraction system, we found that our classifier successfully excluded gene names men-
tioned in a speculative sentence (it removed 81.66% of all speculative mentions) and this
filtering was performed with a respectable precision of 93.71% (Fβ=1(spec) = 87.27%).

Evaluation on scientific texts from a different source

Surprisingly, the model learnt on FlyBase articles seemed to generalise to these texts
only to a limited extent. Our hedge classifier model yielded a BEP (spec) = 75.88%

and Fβ=1(spec) = 74.93% (mainly due to a drop in precision), which is unexpectedly
low compared to the previous results.

8We kept the test set blind during the selection of relevant keywords. This meant that some of
them eventually proved to be irrelevant, or even lowered the classification accuracy. Examples of such
keywords were will, these data and hypothesis. We (falsely) assumed that these might suggest a
speculative assertion.
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Analysis of errors revealed that some keywords which proved to be very reliable
hedge cues in FlyBase articles were also used in non-speculative contexts in the BMC
articles. Over 50% (24 out of 47) of our false positive predictions were due to the
different use of 2 keywords, possible and likely. These keywords were many times used
in a mathematical context (referring to probabilities) and thus expressed no speculative
meaning, while such uses were not represented in the FlyBase articles (otherwise bigram
or trigram features could have captured these non-speculative uses).

The effect of using 2-3 word-long phrases as hedge cues

Our experiments demonstrated that it is indeed a good idea to include longer phrases in
the vector space model representation of sentences. One third of the features used by
our advanced model were either bigrams or trigrams. About half of these were the kind
of phrases that had no unigram components of themselves in the feature set, so these
could be regarded as meaningful standalone features. Examples of such speculative
markers in the fruit fly dataset were: results support, these observations, indicate that,
not clear, does not appear, . . . The majority of these phrases were found to be reliable
enough for our maximum entropy model to predict a speculative class based on that
single feature.

Our model using just unigram features achieved a BEP (spec) score of 78.68%
and Fβ=1(spec) score of 80.23%, which means that using bigram and trigram hedge
cues here significantly improved the performance (the difference in BEP (spec) and
Fβ=1(spec) scores were 5.23% and 4.97%, respectively).

6.3.2 Results for hedge classification in radiology reports

In this section we present results using the above-mentioned methods for the automatic
detection of speculative assertions in radiology reports. Here we generated training data
by an automated procedure. Since hedge cues cause systems to predict false positive
labels, our idea here was to train Maximum Entropy Models for the false positive
classifications of our ICD-9-CM coding system using the vector space representation of
radiology reports. That is, we classified every sentence that contained a medical term
(disease or symptom name) and caused the automated ICD-9 coder9 to predict a false
positive code was treated as a speculative sentence and all the rest were treated as
non-speculative sentences.

Here a significant part of the false positive predictions of an ICD-9-CM coding
system that did not handle hedging originated from speculative assertions, which led
us to expect that we would have the most hedge cues among the top ranked keywords
which implied false positive labels.

Taking the above points into account, we used the training set of the publicly
available ICD-9-CM dataset to build our model and then evaluated each single token
by this model to measure their predictivity for a false positive code. Not surprisingly,

9Here the ICD-9 coding system did not handle the hedging task.
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some of the best hedge cues appeared among the highest ranked features, while some
did not (they did not occur frequently enough in the training data to be captured by
statistical methods).

For this task, we set the initial P (spec|x) threshold for filtering to 0.7 since the
dataset was generated by a different process and we expected hedge cues to have lower
class-conditional probabilities without the effect of the probabilistic data acquisition
method that had been applied for scientific texts. Using all 167 terms as keywords that
had P (spec|x) > 0.7 resulted in a hedge classifier with an Fβ=1(spec) score of 64.04%.

After the feature selection process 54 keywords were retained. This 54-keyword
maxent classifier got an Fβ=1(spec) score of 79.73%. Plugging this model (without
manual filtering) into the ICD-9 coding system as a hedge module, the ICD-9 coder
yielded an F measure of 88.64%, which is much better than one without a hedge module
(79.7%).

Our experiments revealed that in radiology reports, which mainly concentrate on
listing the identified diseases and symptoms (facts) and the physician’s impressions
(speculative parts), detecting hedge instances can be performed accurately using un-
igram features. All bi- and trigrams retained by our feature selection process had
unigram equivalents that were eliminated due to the noise present in the automatically
generated training data.

We manually examined all keywords that had a P (spec) > 0.5 given as a standalone
instance for our maxent model, and constructed a dictionary of hedge cues from the
promising candidates. Here we judged 34 out of 54 candidates to be potentially useful
for hedging. Using these 34 keywords we got an Fβ=1(spec) performance of 81.96%
due to the improved precision score.

Extending the dictionary with the keywords we gathered from the fruit fly dataset
increased the Fβ=1(spec) score to 82.07% with only one out-domain keyword accepted
by the maxent classifier.

6.3.3 Summary of results

The overall results of our study are summarised in a concise way in Table 6.5. We
list BEP (spec) and Fβ=1(spec) values for the scientific text dataset, and Fβ=1(spec)

for the clinical free text dataset. Baseline 1 denotes the substring matching system
of Light et al. [27] and Baseline 2 denotes the system of Medlock and Briscoe [29].
For clinical free texts, Baseline 1 is an out-domain model since the keywords were
collected for scientific texts by [27]. The third row corresponds to a model using all
keywords P (spec|x) above the threshold and the fourth row a model after automatic
noise filtering, while the fifth row shows the performance after the manual filtering
of automatically selected keywords. The last row shows the benefit gained by adding
reliable keywords from an external hedge keyword dictionary.
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Biomedical papers Medical reports
BEP (spec) Fβ=1(spec) Fβ=1(spec)

Baseline 1 60.00 – 48.99
Baseline 2 76.30 – –
All features 76.05 73.61 64.04
Feature selection 78.68 78.09 79.73
Manual feat. sel. 82.02 80.88 81.96
Outer dictionary 85.29 85.08 82.07

Table 6.5: Summary of results.

6.4 Comparison and conclusions

6.4.1 Related work

Although a fair amount of literature on hedging in scientific texts has been produced
since the 1990s (e.g. [28]), speculative language from a Natural Language Processing
perspective has only been studied in the past few years. This phenomenon, together
with others used to express forms of authorial opinion, is often classified under the
notion of subjectivity [86], [23]. Previous studies [27] showed that the detection of
hedging can be solved effectively by looking for specific keywords which imply that the
content of a sentence is speculative and constructing simple expert rules that describe
the circumstances of where and how a keyword should appear. Another possibility is to
treat the problem as a classification task and train a statistical model to discriminate
speculative and non-speculative assertions. This approach requires the availability of
labeled instances to train the models on. Riloff et al. [87] applied bootstrapping to
recognise subjective noun keywords and classify sentences as subjective or objective in
newswire texts. Medlock and Briscoe [29] proposed a weakly supervised setting for
hedge classification in scientific texts where the aim is to minimise human supervision
needed to obtain an adequate amount of training data.

Here we followed [29] and treat the identification of speculative language as the
classification of sentences for either speculative or non-speculative assertions, and ex-
tend their methodology in several ways. Thus given labeled sets Sspec and Snspec we
trained a model that, for each sentence s, is capable of deciding whether a previously
unseen s contains a speculative element or not.

6.4.2 Conclusions

Our results presented above confirm our hypothesis that speculative language plays
an important role in the biomedical domain, and it should be handled in various NLP
applications. We experimentally compared the general features of this task in texts
from two different domains, namely medical free texts (radiology reports), and scientific
articles on the fruit fly from FlyBase.

The radiology reports had mainly unambiguous single-term hedge cues. On the
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other hand, it proved to be useful to consider bi- and trigrams as hedge cues in scientific
texts. This, and the fact that many hedge cues were found to be ambiguous (they
appeared in both speculative and non-speculative assertions) can be attributed to the
literary style of the articles. Next, as the learnt maximum entropy models show, the
hedge classification task reduces to a lookup for single keywords or phrases and to the
evaluation of the text based on the most relevant cue alone. Removing those features
that were insufficient to classify an instance as a hedge individually did not produce
any significant difference in the Fβ=1(spec) scores. This latter fact justified a view of
ours, namely that during the construction of a statistical hedge detection module for a
given application the main issue is to find the task-specific keywords.

Our findings based on the two datasets employed show that automatic or weakly
supervised data acquisition, combined with automatic and manual feature selection to
eliminate the skewed nature of the data obtained, is a good way of building hedge
classifier modules with an acceptable performance.

The analysis of errors indicate that more complex features like dependency structure
and clausal phrase information could only help in allocating the scope of hedge cues
detected in a sentence, not the detection of any itself. Our finding that token unigram
features are capable of solving the task accurately agrees with the the results of previous
works on hedge classification ([27], [29]), and we argue that 2-3 word-long phrases also
play an important role as hedge cues and as non-speculative uses of an otherwise
speculative keyword as well (i.e. to resolve an ambiguity). In contrast to the findings of
Wiebe et al. ([86]), who addressed the broader task of subjectivity learning and found
that the density of other potentially subjective cues in the context benefits classification
accuracy, we observed that the co-occurence of speculative cues in a sentence does not
help in classifying a term as speculative or not. Realising that our learnt models never
predicted speculative labels based on the presence of two or more individually weak
cues and discarding such terms that were not reliable enough to predict a speculative
label (using that term alone as a single feature) slightly improved performance, we
came to the conclusion that even though speculative keywords tend to cooccur, and
two keywords are present in many sentences; hedge cues have a speculative meaning
(or not) on their own without the other term having much impact on this.

The main issue thus lies in the selection of keywords, for which we proposed a
procedure that is capable of reducing the number of candidates to an acceptable level
for human evaluation – even in data collected automatically and thus having some
undesirable properties.

The worse results on biomedical scientific papers from a different source also cor-
roborates our finding that hedge cues can be highly ambiguous. In our experiments
two keywords that are practically never used in a non-speculative context in the Fly-
Base articles we used for training were responsible for 50% of false positives in BMC
texts since they were used in a different meaning. In our case, the keywords possible
and likely are apparently always used as speculative terms in the FlyBase articles used,
while the articles from BMC Bioinformatics frequently used such cliche phrases as all
possible combinations or less likely / more likely . . . (referring to probabilities shown in
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the figures). This shows that the portability of hedge classifiers is limited, and cannot
really be done without the examination of the specific features of target texts or a
more heterogenous corpus is required for training. The construction of hedge classifiers
for each separate target application in a weakly supervised way seems feasible though.
Collecting bi- and trigrams which cover non-speculative usages of otherwise common
hedge cues is a promising solution for addressing the false positives in hedge classifiers
and for improving the portability of hedge modules.

6.4.3 Resolving the scope of hedge keywords

In this paper we focused on the recognition of hedge cues in texts. Another important
issue would be to determine the scope of hedge cues in order to locate uncertain
sentence parts. This can be solved effectively using a parser adapted for biomedical
papers. We manually evaluated the parse trees generated by [88] and came to the
conclusion that for each keyword it is possible to define the scope of the keyword using
subtrees linked to the keyword in the predicate-argument syntactic structure or by the
immediate subsequent phrase (e.g. prepositional phrase). Naturally, parse errors result
in (slightly) mislocated scopes but we had the general impression that state-of-the-art
parsers could be used efficiently for this issue. On the other hand, this approach requires
a human expert to define the scope for each keyword separately using the predicate-
argument relations, or to determine keywords that act similarly and their scope can be
located with the same rules. Another possibility is simply to define the scope to be each
token up to the end of the sentence (and optionally to the previous punctuation mark).
The latter solution has been implemented by us and works accurately for clinical free
texts. This simple algorithm is similar to NegEx [89] as we use a list of phrases and
their context, but we look for punctuation marks to determine the scopes of keywords
instead of applying a fixed window size.

6.5 Summary of Thesis results

The major results of this thesis can be summarised as follows.
Here we revisited Medlock and Briscoe’s [29] weakly supervised model for hedge

classification. As the results show, accurate feature selection based on ranking (and
iterative reranking) of token n-gram features can successfully extract typical hedge cues
from datasets labeled by weakly or unsupervised methods. By means of automatic (and
finally manual) feature selection, reasonable improvements in hedge classification accu-
racy can be achieved. We demonstrated our findings using the dataset introduced by
Medlock and Briscoe’s [29], and also using a different application domain, i.e. medical
free texts. We experimentally compared the different use of hedging in these applica-
tion scenarios, and using biological articles from a different source than those used by
Medlock and Briscoe we also showed that the construction of hedge classifiers could
not be carried out domain independently.
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All the contributions in this chapter are independent results of the author. The
major findings of this chapter are the following:

• The construction of a complex feature ranking and selection procedure that suc-
cessfully reduces the number of keyword candidates (those having the highest
class-conditional probability for hedge class) without excluding helpful hedge key-
words.

• We demonstrated that with a very limited amount of expert supervision in final-
ising the feature representation, it is possible to build accurate hedge classifiers
from semi-automatically or automatically collected training data.

• We extended the scope of evaluations to two applications with different kinds
of texts involved (scientific articles used in previous works, and also medical free
texts).

• The extension of the feature representation to 2-3 word-long phrases and an
evaluation of the importance of longer keywords in hedge classification.

• We demonstrated (using a small test corpora of biomedical scientific papers from
a different source) that hedge keywords are highly task-specific and thus con-
structing models that generalise well from one task to another is not feasible
without a noticeable loss in accuracy.

Our findings also demonstrate that statistical models trained to classify hedge and
non-hedge sentences are unable to learn complex inter-dependencies between hedge
cues and simplify to classification based on a single feature (either a unigram or longer
phrase) rather than on the combination of several hedge cues. This means that the
main problem in hedge detection is to find the highly task-specific keywords.



Chapter 7

The automatic construction of
rule-based ICD-9-CM coding
systems

Clinical coding, i.e. the assignment of International Classification of Diseases, 9th
Revision, Clinical Modification (ICD-9-CM) codes to medical documents serves as a
justification for carrying out a certain procedure. This means that the reimbursement
process by insurance companies is based on the labels that are assigned to each report
after the patient’s clinical treatment. The approximate cost of ICD-9-CM coding clinical
records and correcting related errors is estimated to be about $25 billion per year in the
US [30]. There are official guidelines for coding radiology reports [85]. These guidelines
define the codes for each disease and symptom and also place restrictions on how and
when certain codes can be applied. Such constraints include the following:

• an uncertain diagnosis should never be coded,

• symptoms should be omitted when a certain diagnosis that is connected with the
symptom in question is present and

• past illnesses or treatments that have no direct relevance to the current exami-
nation should not be coded, or should be indicated by a different code.

Since the ICD-9-CM codes are mainly used for billing purposes, the task itself is
commercially relevant: false negatives (i.e. missed codes that should have been coded)
will cause a loss of revenue to the health institute, while false positives (overcoding) is
penalised by a sum three times higher than that earned with the superfluous code, and
also entails the risk of prosecution to the health institute for fraud.

7.1 The corpus

For the experiments in automated ICD-9 coding of clinical free texts we used a publicly
available dataset that contains radiology reports annotated with ICD-9-CM clinial codes.

81
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This corpus was used for a shared task challenge on classifying clinical free text using
NLP methods. The dataset consists of a training and a test part, a detailed description
of the corpus texts and the annotation process can be found online at http://www.
computationalmedicine.org/challenge/index.php and in [31]. The main characteristics
of the dataset are summarised in the following table:

Train Test
Documents 978 976
Sentences 3225 3158
No. of codes 1218 1205

Table 7.1: Characteristics of the ICD-9-coding dataset.

7.2 Rule-based ICD-9-CM coders

Forty four teams submitted well-formatted results to the CMC’2007 challenge and,
among the top performing systems, several exploited the benefits of expert rules that
were constructed either by experts in medicine, or by computer scientists. This was
probably due to the fact that reasonable well-formatted annotation guides are available
online for ICD-9-CM coding and that expert systems can take advantage of such terms
and synonyms that are present in an external resource (e.g. annotation guide or dic-
tionary). Statistical systems on the other hand require labeled samples to incorporate
medical terms into their learnt hypothesis and are thus prone to corpus eccentricities
and usually discard infrequent transliterations or rarely used medical terms.

While the CMC challenge involved a considerable but limited number of codes (there
were 45 distinct labels used in the challenge dataset), the feasibility of constructing
expert systems for hundreds or thousands of codes is questionable and undoubtedly
time consuming, especially if one wants to model all the possible inter-dependencies
between labels.

7.2.1 Building an expert system from online resources

There are several sources from where the codes of the International Classification of
Diseases can be downloaded in a structured form, including [90], [91] and [92]. Using
one of these a rule-based system which performs ICD-9-CM coding by matching strings
found in the dictionary to identify instances belonging to a certain code can be generated
with minimal supervision. Table 7.2 shows how expert rules are generated from an ICD-
9-CM coding guide. The system of Goldstein et al. [93] applies a similar approach and
incorporates knowledge from [92].

These rule-based systems contain simple if-then rules to add codes when any one
of the synonyms listed in the ICD-9-CM dictionary for the given code is found in the
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text, and removes a code when any one of the excluded cases listed in the guide is
found. For example, code 591 is added if either hydronephrosis, hydrocalycosis or
hydroureteronephrosis is found in the text and removed if congenital hydronephrosis or
hydroureter is found. These expert systems – despite having some obvious deficiencies
– can achieve a reasonable accuracy in labeling free text with the corresponding ICD-
9-CM codes. These rule-based classifiers are data-independent in the sense that their
construction does not require any labeled examples.

CODING GUIDE GENERATED EXPERT RULES
label 518.0 if document contains

Pulmonary collapse pulmonary collapse OR
Atelectasis atelectasis OR
Collapse of lung collapse of lung OR
Middle lobe syndrome middle lobe syndrome
Excludes: AND document NOT contains

atelectasis:
congenital (partial) (770.5) congenital atelectasis AND
primary (770.4) primary atelectasis AND
tuberculous, current disease (011.8) tuberculous atelectasis

add label 518.0

Table 7.2: Generating expert rules from an ICD-9-CM coding guide.

7.3 Discovering inter-label dependencies

An important point which had to be dealt with, to get high performance coding systems
from the rule-based systems described above, proved to be their lack of knowledge
about inter-label dependencies needed to remove related symptoms when the code of
a disease was added. Thus our goal here was to substitute the laborious process of
manually discovering inter-label dependencies from labeled data with training machine
learning models.

In order to discover relationships between a disease/illness and symptoms that arise
from it, we applied statistical learning methods. For example, the presence of code
486 corresponding to pneumonia implied that the patient has certain symptoms like
786.2 and 780.6 (referring to coughing and fever). Coding systems that lack such
knowledge regularly overcode documents with symptom labels. This kind of overcoding
appears in the form of false positive symptom labels in the output of the coding system.
This overcoding can be avoided by adding decision rules to the system to delete some
symptom labels when evidence on certain diseases are found. These extra decision
rules can be created manually. We found four rules good enough to worth adding to a
manually constructed rule-based system (after manual inspection of the data). These
were:
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• delete code 786.2 (coughing) when code 486 (pneumonia) is present,

• delete code 780.6 (fever) when code 486 (pneumonia) is present,

• delete code 786.2 (coughing) when code 493.90 (asthma) is present and

• delete code 780.6 (fever) when code 599.0 (urinary tract infection) is present.

Deriving such rules based on observations of the data itself is actually quite time-
consuming, so we decided to test whether or not such rules could be induced automat-
ically. To perform the extraction of the above described disease-symptom relations, we
first had to formulate the task as a classification problem for which we could utilise
the labeled dataset, containing manual ICD-9 classifications. Since the annotation has
been performed by physicians according to the official coding guidelines, the codes have
been added to the documents with respect to the possible disease-symptom relations.
A straightforward approach for discovering these relations is to train classifiers using the
Vector Space representation of documents as features. This way, if a relation is statisti-
cally relevant (several examples are on hand that prove this relationship) the statistical
model learns to avoid adding symptom labels when terms referring to a related disease
are present (i. e. the model learns to add label for coughing if the term ’cough’ is found
in the text, unless ’pneumonia’ is present). A major drawback of this approach is that
it is prone to data sparseness as the classifier has to learn similar relations between each
possible synonym pairs (including less frequent terms) referring to the same disease and
symptom.

Our idea here was to try learning these relationships between classes rather than
between medical terms. To do this, we first performed a pre-labeling by a simple ICD-9
coder derived from online coding guide sources. This approach, assuming that the
coding system which performs pre-labeling has a full list of medical terms needed to
identify each disease and symtom, would transform the problem of discovering inter-
category dependencies with perfect precision. Of course the vocabularies of the coding
system we applied were incomplete for many labels, as online guides list just the most
common and normalised spellings. This fact meant that the task had a certain amount
of noise associated with it.

This two-phase learning model for discovering inter-label dependencies actually per-
forms a feature space transformation, which collapses all atomic features (single token
n-grams) that refer to the same ICD category (different namings, spellings, abbrevi-
ations, etc. of the same concept) to a single, complex feature that symbolises the
corresponding ICD category. This tranformation has a motivation similar to Latent Se-
mantic Analysis, and is carried out by labeling the data with a statistical or rule-based
ICD-9 coding system. The most important advantage of this approach compared to
using atomic features is that it gave us the chance to detect dependencies at the label
level instead of at the terminology level (as in the case when we used a uni-, bi- or
trigram VSM representation).

In order to detect dependencies at the label level, we used the labels assigned by
the initial rule-based system as features and trained a C4.5 decision tree classifier for
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each symptom label, treating the symptom false positive labels as the positive class and
all other cases as negative examples. This way the decision tree learned to distinguish
between false positive symptom labels and true positive ones. This statistical approach
found five meaningful decision rules in the dataset, among which were all four rules
that we enumerated above. The new rule was:

• delete code 788.30 (incontinence) when code 593.70 (vesicoureteral reflux) is
present.

This fifth rule did not bring any improvement on the challenge test set (these two
codes were never added to the same document). Because the four useful rules and the
additional one that brought only a marginal improvement on the training dataset were
found via our statistical approach – without inducing any detrimental disease-symptom
relationships – we can say that this step of creating ICD-9-CM coding systems can
be successfully automated. The modeling of inter-label dependencies brought about
a 1.5% improvement in the performance of our rule-based system, raising the micro-
averaged Fβ=1 score from 84.07% to 85.57% on the training dataset and from 83.21%

to 84.85% on the challenge test set.

7.4 Detailed comparison of performances via

inter-annotator agreement rates

The results reported here are close to the performance that human expert annotators
would achieve for the same task. The gold standard of the CMC challenge dataset is
the majority annotation of three human annotators. The inter-annotator agreement
statistics are shown in the following table:

A1 A2 A3 GS BasicRB Hybrid
A1 – 73.97/75.79 65.61/67.28 83.67/84.62 75.11/75.56 78.02/79.19

A2 73.97/75.79 – 70.89/72.68 88.48/89.63 78.52/78.43 83.40/82.84

A3 65.61/67.28 70.89/72.68 – 82.01/82.64 75.48/74.29 80.11/78.97

GS 83.67/84.62 88.48/89.63 82.01/82.64 – 85.57/84.85 90.26/88.93

BasicRB 75.11/75.56 78.52/78.43 75.48/74.29 85.57/84.85 – –

Hybrid 78.02/79.19 83.40/82.84 80.11/78.97 90.26/88.93 – –

Table 7.3: Inter-annotator agreement rates between the annotators, the gold standard
labeling ang two of our systems (the basic rule-based system and the best hybrid model).

We should mention here that the human annotators had no access to knowledge
about the majority labeling, while models trained on the challenge dataset could model
majority labeling directly. Thus, human annotator agreement with majority codes could
have been higher if they had had the chance of examining the characteristics of majority
labeling. On the other hand, the annotators influenced the target labels as these
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were created based on their own individual annotation. This fact explains why the
annotators had a higher agreement rate with majority annotation than with the other
human annotators. It would be interesting to see the agreement rate of a fourth human
annotator and majority codes, given that the human annotator could then examine the
characteristics of the majority codes but have no direct effect on their assignment. This
statistic would provide a better insight into the theoretical upper bound for the system
performance (the human performance) on this task.

The significantly lower agreement between individual human annotators shows that
different health institutes probably have their own particular style of ICD-9-CM labeling.
We also listed the agreement rates of annotators and the gold standard labeling with
our basic rule-based system with label dependencies. This system can be regarded as a
hypothetical human annotator in the sense that it models the ICD-9-CM coding guide
an annotator should follow, not the gold standard labeling of the data itself. The fact
that human annotators agree slightly better with this system than with each other also
proves that they tend to follow specific standards that are not neccessarily confirmed
by supported annotation guidelines. It is also interesting to see that majority labeling
has a significantly higher agreement with this system than with individual annotators.
This observation seems to justify that majority coding of independent annotators indeed
estimates ICD-9-CM coding guidelines better than single expert annotators.

All the above findings apply when we restrict the agreement evaluation to the 45
labels that appear in the gold standard. Agreement between human annotators remains
comparable to their agreement with the the coding guide (basic rule-based, BRB sys-
tem). Each of the annotators has one preferred partner with whom their agreement
is slightly better than with the BRB system, and each shows a lower agreement with
the other human annotators. The gold standard labeling agrees better with BRB than
any single annotation by almost 3%, which also indicates that majority annotation is
capable of correcting mistakes and is better than any particular human annotation.

7.5 Results

Table 7.4 provides an overview of our results. All values are micro-averaged Fβ=1.
The 45-class statistical row stands for a C4.5 classifier trained for single labels. The
CMC challenge best system gave the results of the best system that was submitted to
the CMC challenge. All our models used the same algorithm to detect negation and
speculative assertions, and were trained using the whole training set (simple rule-based
model needs no training) and evaluated on the training and the challenge test sets. The
difference in performance between the 45-class statistical model and our best hybrid
system (that is, using rule-based + MaxEnt models) proved to be statistically significant
on both the training and test datasets, using McNemar’s test with a p < 0.05 confidence
level. On the other hand, the difference between our best hybrid model (constructed
automatically) and our manually constructed ICD-9-CM coder (the CMC challenge best
system) was not statistically significant on either set.
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train test
45-class statistical 88.20 86.69
Simple rule-based 84.07 83.21
Rule-based with label-dependencies 85.57 84.85
Hybrid rule-based + C4.5 90.22 88.92
Hybrid rule-based + MaxEnt 90.26 88.93
CMC challenge best system 90.02 89.08

Table 7.4: Overall results obtained from using different classifier models.

7.6 Comparison and conclusions

The possibilities of automating the ICD-9-CM coding task have been studied extensively
since the 1990s. Larkey and Croft [94] assigned labels to full discharge summaries having
long textual parts. They trained three statistical classifiers and then combined their
results to obtain a better classification. Lussier et al. [95] gave an overview of the
problem in a feasibility study. Lima et al. [96] took advantage of the hierarchical
structure of the ICD-9 code set, a property that is less useful when only a limited
number of codes is used, as in our study.

Automating the assignment of ICD-9-CM codes for radiology records was the subject
of a shared task challenge organised by the Computational Medicine Center (CMC) in
Cincinatti, Ohio in the spring of 2007. A detailed description of the task, and the
challenge itself, can be found in [31], and also online [97].

The most recent results are clearly related to the 2007 Challenge on Classifying
Clinical Free Text, and some of the systems that have been published so far can be
found in [98], [99], [100] and [93].

An analysis of classification errors revealed that our results with the hybrid approach
are quite close to the upper limit of performance that can be attained using the CMC
challenge dataset. Thus the rule-based models and its statistical extensions described
above proved to be very efficient building blocks of a high performance clinical coding
system, while they address some clear deficiencies of building expert systems manually
that can provide similar accuracy. The vast majority of classification errors are caused
by very rare cases (single specific usages not covered).

7.7 Summary of Thesis results

The main results of this chapter can be summarised as follows. Together with his
collegues, the author participated in the 2007 CMC shared task challenge on automated
ICD-9-CM coding of medical free texts using Natural Language Processing. The major
steps of the development of the system as a whole that was submitted to the challenge,
and the results achieved are a shared and indivisible contribution of the co-authors.

In particular, the author made a major contribution

• to the development of a basic and an entirely hand-crafted rule-based classifier,
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• to the design, implementation and interpretation of the complex inter-annotator
agreement analysis and

• to the design of the machine learning model for discovering inter-label dependen-
cies from the labeled corpus.

The basic rule-based system provided the basis of further development and experi-
ments on applying ML techniques to the problem.

The agreement analysis provided a baseline performance (basic rule-based system)
and a theoretical upper bound for comparisons (entirely hand-crafted rule-based system)
and background for evaluation and conclusions.

In order to discover inter-label dependencies from the labeled corpus, the author
developed a two-step learning approach which implemented a feature space tranforma-
tion by collapsing atomic keyword features to complex ones representing single ICD-9
categories. This approach resulted a model that was less prone to data sparseness and
more robust on previously unseen data, and it attained a performance equivalent to one
achieved by human processing.

These contributions were helpful in designing a complete theoretical model of con-
structing hybrid rule-based/machine learning systems for ICD-9-CM coding that exploit
both online knowledge sources and labeled data. This methodology was described in
[43], while our main conclusions of the challenge and a description of the development
of our system will be published together with the challenge organisers in a future study.



Chapter 8

Appendix

Corpus

A corpus is a dataset of documents (textual data). The dataset might contain annota-
tion with the text (annotated corpus) or only raw text (unlabeled corpus). For example,
an annotated Named Entity corpus contains documents from some source and anno-
tation for Named Entities (names of companies, geographical locations, person names,
etc.).

Classifier

A classifier is a model that enables the classification of objects to one of some pre-
defined classes. In this thesis we distinguish between rule-based classifiers (where the
classification rules are manually constructed by a human expert) and statistical clas-
sifiers (where the classification is performed by a statistical model trained on a set of
pre-classified examples).

C4.51

C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. C4.5
is an extension of Quinlan’s earlier ID3 algorithm. The decision trees generated by
C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a
statistical classifier.

C4.5 builds decision trees from a set of training data in the same way as ID3, using
the concept of Information Entropy. The training data is a set S = s1, s2, . . . of already
classified samples. Each sample si = x1, x2, . . . is a vector where x1, x2, . . . represent
attributes or features of the sample. The training data is augmented with a vector
C = c1, c2, . . . where c1, c2, . . . represent the class that each sample belongs to.

C4.5 uses the fact that each attribute of the data can be used to make a decision
that splits the data into smaller subsets. C4.5 examines the normalized Information
Gain (difference in entropy) that results from choosing an attribute for splitting the

1Source: Wikipedia http://en.wikipedia.org/wiki/C4.5_algorithm

89



90 Appendix

data. The attribute with the highest normalized information gain is the one used to
make the decision. The algorithm then recurs on the smaller sublists.

This algorithm has a few base cases, the most common base case being when all
the given samples in your list belong to the same class. Once this happens, you simply
create a leaf node for your decision tree telling you to choose that class. It might also
happen that none of the features give you any information gain, in which case C4.5
creates a decision node higher up the tree using the expected value of the class. It also
might happen that you have never seen any instances of a class; again C4.5 creates a
decision node higher up the tree using expected values.

AdaBoost2

AdaBoost, short for Adaptive Boosting, is a machine learning algorithm, formulated by
Yoav Freund and Robert Schapire. It is a meta-algorithm, and can be used in conjunc-
tion with many other learning algorithms to improve their performance. AdaBoost is
adaptive in the sense that subsequent classifiers built are tweaked in favour of those
instances misclassified by previous classifiers. AdaBoost is sensitive to noisy data and
outliers. Otherwise, it is less susceptible to the overfitting problem than most learning
algorithms.

AdaBoost calls a weak classifier repeatedly in a series of rounds t = 1, . . . , T .
For each call a distribution of weights Dt is updated that indicates the importance
of examples in the data set for the classification. On each round, the weights of
each incorrectly classified example are increased (or alternatively, the weights of each
correctly classified example are decreased), so that the new classifier focuses more on
those examples.

Maximum Entropy Classifier

Maximum Entropy Models [32] seek to maximise the conditional probability of classes,
given certain observations (features).

This is performed by weighting the features in such a way that it maximises the like-
lihood of the observed labeling (the training data) being generated by our exponential
model. In other words, the maxent model is the unique probability distribution which
has maximum entropy subject to the constraints. This model does not incorporate any
prior assumption into the model (the probability distribution).
If the constraints are given in the form of feature expectations (calculated using the
training data): ∑

x p(x)fi(x) = αi,

searching for the probability distribution with maximum entropy yields the following
optimisation problem:

maxH(p(x)) = −
∑

x p(x) ln p(x),

2Source: Wikipedia http://en.wikipedia.org/wiki/Adaboost
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subject to the constraints and to
∑

x p(x) = 1 (that is, the resulting model is a valid
probability distribution).

Multi-Layer Perceptron3

This class of networks consists of multiple layers of computational units, interconnected
in a feed-forward way. Each neuron in one layer has directed connections to the neurons
of the subsequent layer. In many applications the units of these networks apply a sigmoid
function as an activation function.

The universal approximation theorem for neural networks states that every con-
tinuous function that maps intervals of real numbers to some output interval of real
numbers can be approximated arbitrarily closely by a multi-layer perceptron with just
one hidden layer. This result holds only for restricted classes of activation functions,
e.g. for the sigmoidal functions.

Multi-layer networks use a variety of learning techniques, the most popular being
back-propagation. Here, the output values are compared with the correct answer to
compute the value of some predefined error-function. By various techniques, the error
is then fed back through the network. Using this information, the algorithm adjusts
the weights of each connection in order to reduce the value of the error function by
some small amount. After repeating this process for a sufficiently large number of
training cycles, the network will usually converge to some state where the error of the
calculations is small. In this case, one would say that the network has learned a certain
target function. To properly adjust weights, one applies a general method for non-linear
optimisation that is called gradient descent. For this, the derivative of the error function
with respect to the network weights is calculated, and the weights are then changed
such that the error decreases (thus going downhill on the surface of the error function).
For this reason, back-propagation can only be applied on networks with differentiable
activation functions.

Support Vector Machines4

Support vector machines (SVMs) are a set of related supervised learning methods used
for classification and regression. They belong to a family of generalised linear classi-
fiers. A special property of SVMs is that they simultaneously minimise the empirical
classification error and maximise the geometric margin; hence they are also known as
maximum margin classifiers.

Viewing the input data as two sets of vectors in an n-dimensional space, an SVM
will construct a separating hyperplane in that space, one which maximises the margin
between the two data sets. To calculate the margin, we construct two parallel hyper-
planes, one on each side of the separating one, which are "pushed up against" the
two data sets. Intuitively, a good separation is achieved by the hyperplane that has
the largest distance to the neighbouring datapoints of both classes. The hope is that,

3Source: Wikipedia http://en.wikipedia.org/wiki/Feedforward_neural_network
4Source: Wikipedia http://en.wikipedia.org/wiki/Support_vector_machine
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the larger the margin or distance between these parallel hyperplanes, the better the
generalization error of the classifier will be.

One can create non-linear classifiers by applying the kernel trick (originally pro-
posed by Aizerman et al.[101] ) to maximum-margin hyperplanes.[102] The resulting
algorithm is formally similar, except that every dot product is replaced by a non-linear
kernel function. This allows the algorithm to fit the maximum-margin hyperplane in
the transformed feature space. The transformation may be non-linear and the trans-
formed space high dimensional; thus though the classifier is a hyperplane in the high-
dimensional feature space, it may be non-linear in the original input space.

Sequence labeling

Classification problems usually assume that individual observations or input objects
are disconnected and independent (independently and identically distributed (i.i.d.)
examples).

NLP problems do not neccesarily satisfy this assumption and involve making many
decisions which are mutually dependent on each other. More sophisticated learning
and inference techniques are needed to handle such situations in general. Such NLP
problems can viewed as sequence labeling where the goal is to predict the proper
sequence of class labels (categories), given a sequence of input objects (a piece of
text). A typical sequence labeling problem is when each token in a sentence is assigned
a label (part of speech, named entity, syntactic label, etc.). Labels of tokens are highly
dependent on the labels of other tokens in the sequence (the context), and particularly
dependent on their neighbours (i.e. the surrounding words or local context).

Sequence labeling can be implemented using classification models and features de-
scribing the surrounding tokens using a moving window (sequence labeling as classifica-
tion). Sometimes it is useful to add surrounding category values as features, but these
values are unavailable unseen sequences and have to be substituted by the predictions
of the classifier (online evaluation).

Probabilistic sequence models allow integrating uncertainty over multiple, inter-
dependent classifications and collectively determine the most likely global assignment.
Two standard probabilistic sequence labeling models are Hidden Markov Models (HMM)
and Conditional Random Fields (CRF).

Online evaluation

In this thesis we use the term online evaluation to refer to sequence labeling with
dynamic classification models where some of the features values are the categories of
the surrounding words (preceding or subsequent words, depending on the direction of
processing). These feature values are computed on the fly during the processing of
unlabeled data, as they are dependent on the evaluation of preceding objects (by the
same model). In particular we used the Named Entity codes of preceding tokens as
such dynamic features. Clearly, these kind of features can be readily used in training
statistical models where a set of labeled sequences (sentences) is available. On the
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other hand, information on the previous lexical items is unavailable when the model is
tested on previously unseen examples, thus the values of these dynamic attributes have
to be computed during the evaluation, based on predictions for previous instances.

Vector Space Model5

Vector space model (or term vector model) is an algebraic model for representing text
documents (and any objects in general) as vectors of identifiers, like index terms. It is
used in information filtering, information retrieval, indexing and relevancy rankings.

Each document is represented as a vector and each dimension corresponds to a
separate term. If a term occurs at least once in the document, its value in the vector
will be non-zero. Several different ways of computing these values, also known as (term)
weights, have been developed. One of the best known schemes is tf-idf weighting (see
the example below).

The definition of a term depends on the application. Typically terms are single
words, keywords, or longer phrases. If the words are chosen to be the terms, the
dimensionality of the vector is the number of words in the vocabulary (the number of
distinct words occurring in the corpus).

TF-IDF6

The tf-idf weight (term frequency-inverse document frequency) is a weight often used
in information retrieval and text mining. This weight is a statistical measure employed
to evaluate how important a word is for a document in a collection or corpus. The
importance increases proportionally with the number of times a word appears in the
document, but is compensated for the frequency of the word in the corpus.

The term frequency in the given document is simply the number of times a given
term appears in that document. This count is usually normalized to prevent a bias
towards longer documents (which may have a higher term frequency regardless of the
actual importance of that term in the document) to give a measure of the importance
of the term ti within the particular document dj. The usual formula is

tfi,j =
ni,j∑
k nk,j

,

where ni,j is the number of occurrences of the given term in document dj, and the
denominator is the number of occurrences of all terms in document dj.

The inverse document frequency is a measure of the general importance of the
term (obtained by dividing the number of all documents by the number of documents
containing the term, and then taking the logarithm of that quotient).

idfi = log |D|
|{dj :ti∈dj}| ,

5Source: Wikipedia http://en.wikipedia.org/wiki/Vector_space_model
6Source: Wikipedia http://en.wikipedia.org/wiki/Tf-idf
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with
|D| : the total number of documents in the corpus
|{dj : ti ∈ dj}| : the number of documents where the term ti appears (that is

ni,j 6= 0).
Then

tfidfi,j = tfi,j · idfi.

Gazetteer

In this thesis we use the term gazetteer to denote specific lists of Named Entities (e.g.
a gazetteer of location names contains geographical entities like Country, City, State
names, names of Mountains, Rivers and Seas). This is loosely related to the common
use of the word gazetteer which originally means a list (dictionary or directory) of
geographic names, along with some additional information like GPS coordinates and
population.

Dictionary

In this thesis we use the term dictionary to denote specific lists of terms that behave in a
similar way grammatically and are useful for Named Entity detection and categorisation.
E.g. a dictionary of company types lists different organization form denominators (like
Corp., Ltd. and Association) in multiple languages. This term is used to differentiate
between these kinds of lists and lists of full named entities (these are called gazetteers
in this study).

Part of Speech

Part of Speech (POS, lexical category) is a linguistic category of lexical items, which
is generally defined by the syntactic or morphological behaviour of the lexical item in
question. A POS code thus defines the morphological and basic syntactic properties of
a lexical item in the text.

Syntax information

Syntax in general denotes the set of rules of how lexical items can be arranged to form
a valid, meaningful sentence in a language. Syntactic information thus describes the
grammatic roles and structure of natural language sentences. Chunk codes describe a
shallow syntactic structure, identifying just the major grammatical constituents of the
sentence (noun phrases, verb phrases, etc.).

Evaluation metric

An evaluation metric is a measure of goodness which is used to evaluate, compare and
analyse the performance of an algorithm.
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Accuracy

Accuracy is defined as the number of properly classified instances over the number of
instances that have been evaluated.

True positive

We consider a system output as a true positive prediction (corresponding to a target
class or target set of classes) in the case when the instance belongs to the target class
and the system correctly predicts the target label (assigns the instance to the proper
class).

False positive

We consider a system output as a false positive prediction (corresponding to a target
class or target set of classes) in the case when the instance does not belong to the
target class and the system wrongly predicts the target label to be in the target class
(assigns the instance to the target class).

False negative

We consider a system output as a false negative prediction (corresponding to a target
class or target set of classes) in the case when the instance belongs to the target class
and the system wrongly predicts the target label to be in a different class (assigns the
instance to another class).

True negative

We consider a system output as a true negative prediction (corresponding to a target
class or target set of classes) in the case when the instance does not belong to the
target class and the system correctly predicts the target label to be different from that
of the target class (assigns the instance to another class).

Precision

Precision measures how precisely a system predicts a target class (or set of classes),
that is,

Prec = True positives
True positives + False positives

.

Recall

Recall measures the ratio of instances of a class (or set of classes) that the system
actually recognises as members of the class in question. That is,

Rec = True positives
True positives + False negatives

.
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F measure

F measure is defined as the harmonic mean of precision and recall and measures the
performance of a system with respect to a target class (or set of classes). That is,

F = 2∗P∗R
P+R

.

We note here that if we consider every possible class for evaluation, then the F
measure, Precision, Recall and Accuracy are all equivalent. Using the harmonic mean
for the aggregation of precision and recall, the F measure favors balanced systems
(having acceptable precision and recall scores as well).

Weighted F measure

In some applications it is useful to differentiate between the importance of precision
and recall (the definition immediately above considers precision and recall to be equally
important). For example, if our goal is to retrieve a few relevant documents, precision
should be given a higher weight in the evaluation process (to prefer systems that do
not provide false positive answers). On the other hand, if it is important to retrieve
each relevant document from a collection recall should be given a higher weight. A
generalised, weighted formula of the F measure for any non-negative real β value is:

F = (1+β2)∗P∗R
β2∗P+R

.

For example, β = 2 weights recall twice as much as precision, while β = 0.5 gives
twice as big a weight to precision as it does to recall.

Precision-Recall Curve, PRC

The Precision-Recall Curve for a given class is the graphical plot of Precision vs. Re-
call values for various confidence thresholds. That is, a classifier assigns a posterior
probability p for each instance representing how likely it is that the instance in ques-
tion belongs to the class. A separate Precision and Recall value can be calculated for
any probability threshold used for assigning instances to the class. PRC simply plots
Precision and Recall values for 0 ≤ p ≤ 1.

Break-Even-Point, BEP

BEP is the point on the precision-recall curve of spec class where P = R. If an exact
P = R cannot be realised due to the equal ranking of many instances, we use the point
closest to P = R and set

BEP = P+R
2

.

BEP is an interesting metric because it demonstrates how well we can trade off
precision for recall.
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Inter-Annotator agreement

We calculate the agreement rate or consistency of two annotations as the F measure of
one of the labelings, using the other annotation as gold standard reference. We call this
value the agreement rate of the two annotators. We note here that the inter-annotator
agreement rate is symmetric because transposing the role of the two annotations only
permutes Precision and Recall values, but the harmonic mean (that is, the F measure)
is the same in both cases.

Dragon toolkit

The Dragon Toolkit[103] is an open source, general purpose Natural Language process-
ing toolkit written in Java. It is intended for academic use and consists of many built-in
low level (segmentation, tokenisation, lemmatisation, etc.) and high level (named en-
tity recogniser, biological term extractor, etc.) text processing services. We used the
Dragon Toolkit for pre-processing texts (i.e. token extraction and lemmatisation) here.

Link Parser

The Link Parser[76] is an open source syntactic parser for English. We used it to parse
English texts to generate features for text classification.

WEKA

The WEKA package[104] is an open source collection of various machine learning algo-
rithms and statistical data processing (filtering, transformation, etc.) methods, written
in Java. We used the implementations in WEKA for the majority of the experiments
described in the thesis.

OpenNLP MaxEnt

OpenNLP Maxent package is an open-source Maximum Entropy Modeling toolkit in
Java. We utilised the OpenNLP MaxEnt package in experiments with MaxEnt classi-
fiers, as it is computationally more efficient than the WEKA logistic regression imple-
mentation.

Mallet

MALLET[105] is an integrated collection of Java code that is useful for statistical
natural language processing, document classification, clustering, information extraction,
and other machine learning applications. We used the Mallet package in experiments
with Conditional Random Fields for a sequence labeling approach to NER using the
feature representation we developed. These experiments were not elaborated on in the
Thesis.
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NER evaluation metrics

Typical errors of a NER system can be classified to the following categories:

1. Classifying a non-entity token as a Named Entity.

2. Completely missing an entity, i.e. classifying it as non-entity.

3. Identifying the phrase boundaries of an NE, but assigning it to a wrong category.

4. Correctly classifying an entity but failing to determine its boundaries.

5. Incorrect boundaries and an incorrectly assigned class label.

6. Correctly classifying a part (or parts) of an entity and incorrectly classifying an-
other part or parts.

Examples of each error category are given in the following table:

error type example
1 – OnORG the 1st of May.

– The InternetORG is a useful source of information.
2 – Bush is infamous for Iraq.

– He is a quarterback of Red Sox.
3 – She is attending to the JohnsPER HopkinsPER.

– BarcelonaLOC has to play a qualifier for CL next season.
4 – NextORG WednesdayORG ManchesterORG plays the final against

Chelsea in Moscow.
– SheffieldORG Wednesday promoted to Premier League with a

3-0 win against QPR.
5 – JohnniePER Walker increased its yearly sales to over 120 million

bottles per year with the highly successful Formula 1 advertisement
campaign.

– FC BarcelonaLOC player Edmílson signed for Villareal.
6 – ManchesterLOC UnitedORG is the richest football club in the

world, according to a recent survey.
– HenryPER FordORG (July 30, 1863 - April 7, 1947) was the father

of modern assembly lines used in mass production.

Table 8.1: Examples of different NER error categories.

Different NE evaluation metrics handle/weight different error types and different NE
types differently. The three most widely used NE evaluation standards are those intro-
duced for the MUC conferences (Which are referred to as the MUC evaluation), the
CoNLL conferences (CoNLL or exact match evaluation) and the ACE evaluations.

MUC evaluation
In the MUC evaluation finding the correct type and correct phrase boundaries is scored
separately. Type is considered as a true positive classification, if the system assigns the
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same category to a phrase as the gold standard, as long as there is an overlap between
the labeled and the gold standard phrase (i.e. they share at least one tagged token
and with the similar label). The system receives credit for a correctly identified phrase
boundary if it properly locates all tagged tokens in a phrase, regardless of whether
it assigned the proper label to the phrase. True Positive, False Positive and False
Negative classifications are computed for finding both the correct type (classification)
and boundaries (recognition) separately and finally these are summed. The final system
score is the equi-weighted F measure of the summed Precision and Recall scores.

CoNLL evaluation
CoNLL evaluation credits systems just for correct recognition of full entities (i.e. correct
recognition of the whole phrase and correct classification of each tokens on the phrase).
This means that a single classification error like in NorthORG WestMISC CompanyORG

can result in several system errors (1 False Negative, the missed North West Com-
pany organization and 3 False Positives (2 organization FP phrases: NorthORG and
CompanyORG and 1 miscellaneous FP phrase: WestMISC in this case.). System per-
formance here is also the equi-weighted F measure of Precision and Recall scores.

The underlying hypothesis behind the CoNLL-style evaluation – which is quite strict
compared to the MUC evaluation for example – is that real systems can only benefit
from correctly recognised and classified full phrases. This means that there is no sense
in giving partial credit to partial matches. In experiments this strict evaluation caused a
drop in the state-of-the-art performance from 95% (MUC) to about 87-89% (CoNLL).

In this thesis we used the CoNLL-style evaluation in our experiments in Named
Entity Recognition.

Automatic Content Extraction (ACE[106]) evaluation
ACE evaluations targeted not just the detection and classification of proper name ref-
erences to entities, but also nominal and pronominal references. This means that the
scope of ACE evaluation campaigns is wider than previous NER evaluations (CoNLL
and MUC). Entity Detection and Recognition scoring also involves coreference resolu-
tion; that is, each entity mention has to be assigned to the corresponding unique entity.
By incorporating coreference resolution and detecting nominal and pronominal refer-
ences, ACE campaigns go one step beyond the scope of previous evaluation styles (and
thus the scope of thesis, since we restricted ourselves to CoNLL style task definition
and evaluation). A detailed description of the ACE evaluation can be found online at:
http://www.nist.gov/speech/tests/ace/2007/doc/.





Chapter 9

Summary

Summary in English

Introduction

In this thesis we presented from a feature representation point of view, several practical
text mining applications developed together with colleagues. The applications them-
selves cover a wide range of tasks from entity recognition (word sequence labelling)
to multi-label document classification and also cover different domains (from business
news texts to medical records / biological scientific articles). Our aim was to demon-
strate that task-specific feature engineering is beneficial to the overall performance and
for specific text mining tasks one can construct systems that are useful in practice and
even compete with humans in processing textual data.

The summary below, like the thesis itself, consists of two main parts, each addressing
an important topic in Text Mining. The first part summarises our findings in Named
Entity Recognition problems and in the second part we describe work done in Text
Classification.

Named Entity Recognition

The identification and classification of rigid designators like proper nouns, acronyms of
names, time expressions, measures, IDs, e-mail addresses and phone numbers. in plain
text is of key importance in numerous natural language processing applications. The
special characteristic of these rigid designators (as opposed to common words) is that
they have no meaning in the traditional sense but they refer to one or more entities of
the world in a unique way (references). In the literature these text elements are called
Named Entities (NEs).

In Named Entity Recognition (NER) problems, one tries to recognise (single or
subsequent) tokens in text that together constitute a rigid designator phrase, and to
determine the category type to which these phrases belong. Categorisation is always
task specific, as different kinds of entities are important in different domains. Sometimes
entity recognition itself can be a standalone application, as in the case of anonymisation
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issues, where no further processing is required when all the name phrases have been
located in the text.

Results

Together with his collegues the author designed and developed a language and domain
independent Named Entity Recognition framework that was successfully applied to
many similar tasks like the recognition of person, organization, location names and other
proper nouns in Hungarian short news articles and in English news articles. These results
are presented in [33] and [34]. The same system was successfully adapted to a quite
different domain and performed well in the recognition of patient and doctor names,
the age of the patient, phone numbers, IDs, locations, hospital names and dates in
medical discharge summaries in English. This system was entered in an open challenge
on medical record de-identification and it achieved the second best score on a standard
evaluation dataset. All the results are presented in [39]. In these studies the author
was mainly responsible for the design and implementation of a feature representation
that aided the learning models used and thus contributed to a good performance.

Later on the author investigated corpus frequency-based heuristics, which were ca-
pable of fine tuning NER systems by eliminating typical errors of NER systems. These
heuristics were then modified to provide a heuristic solution to Named Entity lemma-
tisation, a problem that arises both in English (plural and possessive markers) and in
Hungarian (agglutinative characteristic of the language). Since morphological analyser
systems usually rely on a list of valid lemmas for a given language they are usually
ill-suited for NE lemmatisation – as an exhaustive list of normalised NEs is impossible
to gather in practice. The author and his collegues showed that corpus statistics can
be utilised to handle NE lemmatisation and achieve a good accuracy. These results are
presented in [36], [37]. In these articles the author was mainly responsible for the design
of web-based heuristics for NE lemmatisation and the design and implementation of a
heuristic method based on a Wikipedia search for separating consecutive NEs.

Text Classification

The human processing of textual data (system logs, medical reports, newswire articles,
customer feedback records, etc.) is a laborious and costly process, and is becoming
unfeasible with the increasing amount of information stored in documents. There is
a growing need for solutions that automate or facilitate the information processing
workflow that is currently being performed by humans. Thus today the automatic pro-
cessing of free texts (either assertions or longer documents) based on their content and
converting textual data to practical knowledge is an important subtask of Information
Extraction.

Many text processing tasks can be formulated as a classification problem and solved
effectively with Machine Learning methods that are capable of uncovering the hidden
structure in free text, assuming that labelled examples are on hand to train the au-
tomatic systems on. These solutions go one step beyond simple information retrieval
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(that is, providing the user with the appropriate documents using keyword lookup and
relevance ranking) as they require the (deep or shallow) understanding of the text itself.
The systems have to handle synonymy, transliterations and language phenomena like
negation, sentiment, subjectivity and temporality.

A major application domain of practical language technology solutions is in the
fields of Biology and Medicine. Experts in these fields usually have to work with
large collections of documents in everyday work in order to carry out efficient research
(reading scientific papers, patents, or reports on earlier experiments in a topic) and
asses data in decision-making processes (reports on the examination of former patients
with similar symptoms or diseases, etc.).

Results

Together with his collegues the author designed and developed a system that classified
medical records according to the patient’s smoking status. This system was entered in
an open challenge on smoking status classification in medical records and achieved com-
petitive performance on a standard evaluation dataset. These results are presented in
[40]. In this study the author was mainly responsible for the design and implementation
of a feature representation that aided the learning models used and thus contributed
to a good performance.

Later on together with his collegue the author designed and developed a system for
the clinical coding of medical reports. This system was entered in an open challenge
on the ICD-9-CM coding of radiology reports and achieved the best performance on a
standard evaluation dataset, among all the systems entered in the challenge. Based on
the results and lessons learned in the challenge, the author and his collegues designed a
complex framework for combining expert knowledge with machine learning models that
exploits labeled examples. This is the so-called hybrid (expert-rule based and statistical)
approach to ICD-9-CM coding and was presented in [43]. In this study the author was
mainly responsible for the design and implementation of a feature representation for
discovering inter-label dependencies that contributed to a good performance. The
author was also reponsible for the design and implementation of the rule-based system
that served as the basis of further research and development, and for the realisation of
a complex agreement analysis procedure between human experts and computer systems
which helped provide a better insight into the value of the results and allowed us to
make a meaningful comparison between the various approaches.

Finally the above problems motivated the author to focus his research interest on
negation and speculation detection as these phenomena play a key role in the lan-
guage of biomedicine (both scientific and clinical language). The importance of the
accurate recognition of negative and uncertain findings is demonstrated by their huge
impact on the performance of text mining applications in the biomedical domain. The
author designed and implemented a complex feature (or keyword) selection method
that combines statistical methods and expert supervision in order to extract meaning-
ful hedge cues from examples having partly or entirely automatically generated labels
with minimal or no supervision. The results for this are presented in [41]. Here the
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author was responsible for all the work described in the study. Besides the detection of
meaningful negation and uncertainty cues, an important issue is to locate their scope in
the sentence (because it is not always the whole sentence that is negated or uncertain
and thus it might contain useful positive facts too). To overcome the second difficulty
the author participated in the design and supervised the construction of a large scale
annotated corpus for negations, speculations and their scope. This work resulted in
an open source corpus that will, hopefully, facilitate research on scope detection and
negation/speculation in general in the future. The details of this corpus project are
given in [42].

Conclusions of the Thesis

All specific HLT problems discussed in the thesis fall within the field of Text Mining, with
most of them sharing a common domain, i.e. that of biomedical language processing.
What our solutions have in common is that

• we paid close attention to the feature engineering issues involved

• the vast majority of our features were discrete in nature, or had continuous values
but a straightforward and meaningful discretisation was possible

• we used well-known classifiers like C4.5 decision trees and Maximum Entropy
classifiers.

Our good results demonstrate that proper feature engineering can provide a representa-
tion where even simple learning models achieve competitive results. We partly attribute
this to the characteristics of the feature space representation (i.e. we chose to design
a compact representation instead of feature spaces of very high dimensionality) and
the relative strength of C4.5 and MaxEnt in handling discrete (or binary) features. As
these learning algorithms are especially suitable for binary/discrete valued features, the
good performace scores we obtained is not really surprising. On the other hand, our
models have some desirable characteristics in training and low processing time. Quick
training and testing comes from the employment of learning methods with a moderate
training time complexity and feature spaces that have a low dimension after incorpo-
rating as much information on the target variable as possible. From this we conclude
that our solutions are potential candidates for use in the kind of situations where rapid
training and testing time is a must, even at the cost of a longer development time
spent on feature engineering. We always avoided the exhaustive use of simple token
n-gram features, i.e. the Vector Space Model representation that often leads to very
high dimensional feature spaces without the grouping and selection of n-grams.
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Summary in Hungarian

Bevezető

A disszertációban számos gyakorlati szövegbányászati problémát, illetve azokra a kol-
légákkal közösen kifejlesztett rendszereket mutatunk be, a jellemzőtér-reprezentáció,
illetve a jellemzőkinyerés oldaláról. A tárgyalt problémák a névelem-felismerés (szó-
sorozatok címkézése) és a dokumentumosztályozás feladatkörébe tartoznak, illetve az
alkalmazási területük is változatos: az üzleti hírektől a kórházi jelentésekig terjed. A
disszertáció célja, hogy megmutassuk: a feladatspecifikus jellemzőkinyerési fejlesztések
segítségével jó pontosságot érhetünk el, illetve az eredményül előálló rendszerek ezáltal
a gyakorlatban is sikeresen alkalmazhatók (egyes esetekben még az emberi feldolgozás
pontosságát is megközelítik az elemzett szövegek legnagyobb részén).

Az összefoglaló szerkezeti felépítése követi a disszertációét, azaz két főbb részre
oszlik, melyek a Szövegbányászat egy-egy intenzíven kutatott részterületét képezik. Az
első rész összefoglalja a névelem-felismeréshez kapcsolódó eredményeket, míg a második
részben a dokumentumosztályozás területén végzett kutatásunk eredményeit ismerteti.

Névelem-felismerés

A szövegben található névelem-kifejezések (tulajdonnevek, nevek akronimjai, mennyi-
séget, időt jelölő kifejezések, azonosítók, e-mail címek, közigazgatási címek, telefon-
számok, stb.) azonosítása és osztályozása a Szövegbányászat egyik legalapvetőbb fela-
data. Ez a kifejezések úgynevezett merev jelölők, melyeknek a köznyelvi szavakkal el-
lentétben nincs jelentésük, hanem a világ valamely entitására vagy egy csoportra egyedi
módon hivatkoznak (egyfajta referenciák). Ezeket a merev jelölőket a szakirodalomban
névelemeknek is nevezik.

A névelem-felismerés (Named Entity Recognition, NER) célja a szövegben olyan to-
keneknek (vagy tokenek egymást követő sorozatainak) a megtalálása, melyek egy merev
jelölő frázist alkotnak, majd a megtalált frázisok pontos kategorizálása. A kategorizá-
ció mindig az adott alkalmazásra jellemző, hiszen más típusú entitások lényegesek az
egyes feladatoknál. A gyakorlatban a szövegben megtalált névelemek további feldol-
gozás alapját képezik, azaz felismerésük egy köztes lépés a feldolgozási folyamatban,
azonban néha maga a NER is lehet önálló végalkalmazás. Ilyen példa az anonimizálás,
ahol a névelemek felismerése után csak azok eltávolítása vagy lecserélése történik, hogy
a személyes adatoktól megtisztítsuk a dokumentumot.

Eredmények

A szerző és társai megterveztek és kifejlesztettek egy olyan, nyelv- és doménfüggetlen
névelem-felismerő keretrendszert, amelyet több hasonló feladat megoldására eredménye-
sen alkalmaztak. Ilyen feladat pl. a személy, szervezet és helynevek illetve egyéb tu-
lajdonnevek felismerése és osztályozása magyar nyelvű üzleti rövidhírek szövegeiben,
illetve angol nyelvű újsághírekben. Ezeket az eredményeket a [33] és [34] publiká-
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ciók ismertetik. Ugyanezt a rendszert eredményesen alkalmazták egy lényegesen eltérő
területen is, ahol az szintén kiemelkedő pontosságot ért el. Angol nyelvű kórházi doku-
mentumokban betegek, orvosok neveit, a beteg életkorát, telefonszámokat, azonosítókat,
helyneveket, kórházneveket és dátumokat azonosítottak. Ez az orvosi dokumentumokon
működő rendszer a második legjobb eredményt érte el egy anonimizáló rendszerek
kiértékelésére szolgáló adatbázison. Ezeket az eredményeket a [39] publikáció ismerteti.
Az említett három alkalmazásban a szerző elsődlegesen a jellemzőkinyerési fejlesztések
megtervezésében és elvégzésében vállalt döntő szerepet.

Ezt követően a szerző korpuszgyakoriságon alapuló heurisztikák kifejlesztésén dol-
gozott, amelyek a névelem-felismerő rendszerek bizonyos tipikus hibáinak kijavítására
voltak alkalmasak. Később ezeket a heurisztikus eljárásokat oly módon tervezte újra,
hogy azok a névelemek normalizálására (szótövezés és inflexiók eltávolítása) általában
is alkalmasakká váltak. A névelemek normalizálása mind angol, mind magyar nyel-
ven kihívást jelentő feladat, hiszen a morfológiai elemzők a legtöbbször nem igazán
működnek megbízhatóan, ha névelemek elemzésére használjuk őket. A szerző és társai
kísérletekkel igazolta, hogy az általuk kidolgozott heurisztikus NE-normalizáló eljárás
igen jó eredményt ad. Ezeket az eredményeket a [36] és [37] publikációk ismertetik.

Dokumentumosztályozás

A szöveges adatok (rendszer logok, orvosi jelentések, újságcikkek, fogyasztói vissza-
jelzések, stb.) emberi feldolgozása munkaigényes és költséges feladat, ami a szöveges
információ növekedtével egyre nehezebben oldható meg. Egyre növekszik az igény olyan
megoldások iránt, amelyek automatizálják vagy felgyorsíthatják a most még sokszor em-
berek által végzett adatelemző, információkereső tevékenységet. Emiatt a természetes
nyelvi szövegek automatikus kategorizálása/osztályozása napjainkra a Szövegbányászat
egyik legfontosabb feladatává vált.

Sok szövegfeldolgozási feladat felírható a gépi tanulás területén közismert ún. osz-
tályozási feladatként, ami lehetővé teszi azok gépi tanulási algoritmusok segítségével
történő, eredményes megoldását. Ezek a megoldások képesek a folyó szövegben meg-
található rejtett szabályszerűségek, struktúra felfedezésére, amennyiben rendelkezésünkre
állnak címkézett dokumentumok, melyek segítségével a rendszerek taníthatók. A doku-
mentumosztályozási feladatok esetén a rendszertől elvárt kimenet minden esetben használ-
ható tárgyi tudás (tényszerű információ), nem pedig egy döntés, hogy a dokumentum
tartalmaz-e számunkra érdekes információt vagy sem. Emiatt ezek a megoldások ál-
talában túlmutatnak az egyszerű kulcsszavas információkeresési technikákon (kulcssza-
vas keresés és a találatok rangsorolása), hiszen a feladatok szükségessé teszik a szövegek
bizonyos szintű megértését. A dokumentumosztályozó rendszereknek általában kezel-
niük kell a különböző írott alakok, a szinonímia, vagy pl. a tagadás, érzelmi töltet,
bizonytalanság, illetve az időbeliség okozta nehézségeket.

A szövegbányászati megoldások legnagyobb alkalmazási területei közé tartozik a Bi-
ológia és a Gyógyászat. Az ezeken a területen dolgozó szakemberek, kutatók általában
nagy mennyiségű szöveges dokumentummal dolgoznak a mindennapi munkájuk során
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a kutatásban (tudományos publikációkat, szabadalmakat, vagy a témához kapcsolódó
korábbi kísérletek beszámolóit olvassák) vagy a döntéshozásban (pl. korábbi, hasonló
tünetekkel, vagy diagnózissal kezelt betegek kórtörténetét elemzik).

Eredmények

A szerző és társai kifejlesztettek egy olyan dokumentumosztályozó modellt, amely a
betegek kórházi zárójelentése alapján képes besorolni a beteget dohányzási szokásá-
nak megfelelő kategóriába. A kifejlesztett rendszer egy szövegbányászati kiértékelési
versenyen jó eredményt ért el. A rendszer kidolgozása során a szerző hozzájárulása a
jellemzőkinyerési munkák megtervezésében és kivitelezésében volt meghatározó. Ezeket
az eredményeket a [40] publikáció ismerteti.

Később a szerző és társa egy kórházi leletek betegségkódokkal (Betegségek Nemzetközi
Osztályozása, BNO-kódok) való automatikus címkézésére alkalmas rendszert fejlesztett
ki. Ez a rendszer egy automatikus klinikai kódoló rendszerek kiértékelésére szervezett
versenyen a legjobb pontosságot érte el. A verseny tapasztalatai alapján a szerző és
társa egy szakértői és statisztikai rendszerek kombinációján alapuló modellt fejlesztett
ki, mely képes a rendelkezésre álló szabályalapú rendszereket címkézett példák fel-
használásával tovább pontosítani, fejleszteni. Ez az ún. hibrid megközelítés a [43]
publikációban került bemutatásra. Az ide kapcsolódó fejlesztésekből a szerző hoz-
zájárulása volt meghatározó a címkeközi összefüggések felderítésére alkalmas modellhez
felhasznált jellemzőkinyerési munkák megtervezésében és megvalósításában, a kezdeti
modellként a továbbfejlesztésekhez felhasznált szabályalapú rendszer kidolgozásában és
megvalósításában. A szerző végezte el a modellek alapos összevetését lehetővé tevő
komplex annotátor-egyetértési elemzést, illetve az annotátorok illetve egyes automatikus
rendszerek összevetését (melyhez a felhasznált, tisztán szakértői szabályokon alapuló
rendszer kifejlesztését is elvégezte).

Végül az alábbi feladatok a szerző érdeklődését két, a szövegbányászatban nagyon
fontos nyelvi jelenség, a tagadás és a bizonytalanság (spekulációk) automatikus felis-
merésére terelték. E két nyelvi jelenség pontos felismerése és megfelelő kezelése döntő
hatással van a biológiai, illetve klinikai szövegbányászati megoldások eredményességére,
alkalmazhatóságára. A szerző megtervezett és tesztelt egy komplex jellemzőkiválasztási
módszert, mely a statisztikai modellek és emberi tudás kombinációjával minimális rá-
fordítás mellett lehetővé tette az értelmes spekulatív kulcsszavak felismerését félig vagy
teljesen automatikus módon gyártott tanítóadatbázisok használata mellett is (nem volt
szükség emberi címkézésre). Ezeket az eredményeket a [41] publikáció ismerteti. Ez a
publikáció teljes egészében a szerző saját eredményeit ismerteti. A megfelelő tagadó
vagy spekulatív kulcsszavak megtalálása mellett nagyon fontos a kulcsszavak nyelvi
hatókörének megállapítása is (tehát nem minden esetben a teljes mondat jelentése
spekulatív, ha abban egy kulcsszó előfordul, hanem sokszor csak egy-egy mondatrész,
tagmondat jelentése módosul). E második probléma megoldására a szerző részt vett
egy, a negált és bizonytalan elemek és azok hatókörének bejelölését célzó korpuszan-
notációs projekt megtervezésében és felügyeletében. A projekt eredményeként elkészült
az első, kutatási célokra szabadon hozzáférhető korpusz, amely remélhetőleg elősegíti
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majd a témához kapcsolódó további kutatási eredmények létrejöttét. Ezeket az ered-
ményeket a [42] publikáció ismerteti.

Konklúzió

Minden a disszertációban bemutatott feladat a Szövegbányászat témaköréhez tartozik
(legtöbbjük a biológiai vagy klinikai területről). Az általunk adott megoldások közös
jellemzője, hogy

• jelentős energiát fektettünk a feladathoz jól használható jellemzők megtervezésébe
és fejlesztésébe

• a legtöbb általunk használt jellemző vagy eleve diszkrét értékekkel leírható volt,
vagy természetesen módon adódott egy diszkretizált felírása

• jól ismert és széles körben használt osztályozókat használtunk (C4.5 döntési fa,
Maximum Entrópia osztályozó)

Az elért eredmények azt mutatják, hogy a megfelelő jellemzők használatával akár
egyszerűbb algoritmusok is jó eredményt adhatnak. Ezt részben az általunk kifejlesztett
reprezentáció kedvező tulajdonságainak tulajdonítjuk (igyekeztünk a lehető legkisebb
dimenziójú jellemzőtérbe sűríteni az összegyűjtött információt), részben pedig annak,
hogy a C4.5 illetve a MaxEnt osztályozók kimondottan alkalmasak diszkrét jellemzők
tanulására.

Az általunk kifejlesztett modelleknek egy további előnyös tulajdonsága is van, a
tanítási és tesztelési idő terén. Viszonylag alacsony időigényű tanulóalgoritmusokat
használtunk, a lehető legkisebb dimenziójú jellemzőtér használatával, így modelljeink
gyorsan taníthatók és feldolgozási sebességük is igen gyors. Ezáltal a kifejlesztett rend-
szerek jól alkalmazhatók olyan szituációkban, ahol a gyors tanítás és tesztelés elenged-
hetetlen, akár a hosszabb fejlesztési idő árán is (munkánk során kerültük az egyszerű
szóalapú vektorteres reprezentáció használatát, legalábbis a megfelelő csoportosítás,
egyszerűsítés és szelekció nélkül, hiszen ez kezelhetetlen méretű jellemzőteret és na-
gyobb időigényt eredményezett volna).
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