Logic and tree automata

Ph.D. Thesis

by

Szabolcs Iván

Supervisor

Zoltán Ésik

Doctoral School in Mathematics and Computer Science

Department of Foundations of Computer Science

University of Szeged, Szeged, Hungary

2008.
Contents

Introduction 1

1 Preliminaries 4
 1.1 Brief summary of earlier results 4
 1.2 Sets, words, trees and languages 7
 1.3 Σ-tree automata 10
 1.4 Logics on trees 15

2 Future temporal logics and the definability problem 19
 2.1 The logics FTL(\mathcal{L}) 20
 2.2 Products of tree automata 22
 2.2.1 The Moore product and Moore pseudovarieties 23
 2.2.2 Definite tree automata 28
 2.2.3 Relating the three products 31
 2.3 Definability and membership 36
 2.4 Application 39
 2.4.1 Fragments of CTL 39
 2.4.2 Some Moore properties of tree automata 41
 2.4.3 Characterizing $\langle E^+_\text{EF} \rangle_M$ 47
 2.4.4 Characterizing $\langle E^*_\text{EF} \rangle_M$ 53
 2.4.5 Adding \mathbb{D}_0 57
2.5 Ehrenfeucht-Fraïssé type games .. 61

3 Aperiodicity ... 64

3.1 The notion of \(n\)-aperiodicity .. 64
3.2 The generalized cascade product 68
3.3 Strict containments ... 70
3.4 Decidability and complexity .. 73
3.5 Aperiodicity and logic ... 76
3.6 A generalization .. 78
3.7 Aperiodicity for polynomials .. 79

Summary ... 83

Összefoglalás .. 87

References ... 91

Index ... 95
Acknowledgments

I thank Zoltán Ésik for the guidance and for his valuable time over the years; I can only hope that our joint work will be continued.

I am also thankful to Magnus Steinby for his hospitality during my ten-day visit to the University of Turku.
Introduction

This thesis is concerned with the definability problem of several classes of logics on finite trees, viewed mostly from the algebraic point of view.

The first chapter contains all the notations and preliminary facts we will use throughout the thesis, as well as a brief summary of the previous results from the involved field.

In the second chapter we recall the operator FTL introduced in [15], see also [14], Part I, which associates to each class \mathcal{L} of tree languages a logic $\text{FTL}(\mathcal{L})$; this logic is a branching time future temporal logic. This is done in Section 2.1. The definability problem of such a logic $\text{FTL}(\mathcal{L})$ is the following: given a (regular) tree language, is it definable in $\text{FTL}(\mathcal{L})$? This problem is attacked by two different methods, neither of them yielding an immediate decidability result, but some kind of alternative characterization from a different point of view.

In Sections 2.2 and 2.3 an algebraic treatment is introduced. Here we define the Moore product of tree automata, which is a restricted form of the cascade product [43] and which turns out to be very suitable for our needs. In Section 2.2 the key concepts (such as the aforementioned Moore product, Moore pseudovarieties as well as the connected variants of these notions) and also definite tree automata are formalized. Afterwards, in Section 2.3 a characterization theorem (Theorem 2.3.3) is proved: we show that when \mathcal{L} is a class of regular tree languages having the additional technical property that “all quotients of any $L \in \mathcal{L}$ are definable in $\text{FTL}(\mathcal{L})$”, then a tree language L is definable in $\text{FTL}(\mathcal{L})$ if and only if it is regular and its minimal automaton A_L is contained in the least class of finite tree automata that contains all the minimal automata of the members of \mathcal{L} and a specific definite tree automaton D_0, and is closed under renamings, and taking homomorphic images, subautomata and Moore products. Such classes are called Moore pseudovarieties of finite tree automata. These two sections contain results that are published in [18].

The characterization theorem does not immediately provide decidability results. Section 2.4 gives an application of the above characterization: we show that two fragments $\text{CTL}(\text{EF}^+)$ and $\text{CTL}(\text{EF}^*)$ of the well-known and heavily researched temporal logic CTL [2, 45] both have a polynomial-time decidable definability problem, at least for finite trees.
This is achieved by identifying all the algebraic properties (that we call Moore properties) that a finite connected tree automaton A_L exactly has to possess in order to be contained in the Moore pseudovariety generated by the two automata E_{EF}^+ and D_0 (in the case of $CTL(EF^+)\}$ or by the two automata E_{EF}^* and D_0 (in the case of $CTL(EF^*)\}$. Here E_{EF}^+ and E_{EF}^* respectively denote the minimal automata of the regular tree languages L_{EF^+} and L_{EF^*}, that correspond to the strict, resp. non-strict variants of the temporal modality EF (“existence in the future”). By showing that these Moore pseudovarieties have a decidable membership problem we get as a byproduct that the above logics have a decidable definability problem. This section contains results that are published in [19].

The last section of Chapter 2, Section 2.5 provides another characterization of the logics $FTL(L)$. This characterization is based on a game-theoretic approach: for any class L of tree languages and integer $n \geq 0$ we introduce an Ehrenfeucht-Fraissé type game, called the n-round L-game which is played on two trees, s and t, between two players, Spoiler and Duplicator. We say that Spoiler wins the n-round L-game on a language L, if he wins the n-round L-game on any pair (s, t) of trees with $s \in L$ and $t \notin L$. The main result of this section is that when L is a finite class of tree languages, then Spoiler wins the n-round L-game on a language L for some $n \geq 0$ if and only if L is definable in the logic $FTL(L)$. This section contains results that are not yet published.

Section 3 is devoted to different notions of aperiodicity in finite tree automata. For finite semigroups, aperiodicity is a well understood concept: a finite semigroup S is aperiodic if there exists an $n \geq 1$ such that $s^n = s^{n+1}$ holds for each element $s \in S$. This form of aperiodicity can be straightforwardly extended to languages of nonempty words: a regular word language L is aperiodic if and only if its syntactic semigroup is aperiodic, i.e. when there exists an $n \geq 1$ such that $uv^n w \in L \iff uv^{n+1} w \in L$ for any triple (u, v, w) of words. Aperiodicity nicely correlates with both first-order definability and LTL-definability in this classical case, see [30, 32, 46]. However, when one tries to extend this notion to trees, by defining a tree language to be aperiodic if and only if its syntactic semigroup [54] is aperiodic (this is further referred as “context aperiodicity”), the correlation fades: the class of all aperiodic regular tree languages properly contains the class of first-order definable tree languages.

Thus, in this chapter we define more restrictive variants of aperiodicity: the notion of n-aperiodicity, for each $n \geq 1$, and that of strong aperiodicity, which is the limit of the n-aperiodicity notions: a tree automaton is defined to be strongly aperiodic if it is n-aperiodic for every $n \geq 1$. These notions form a hierarchy: the outermost class defined by this hierarchy is the class of context aperiodic finite tree automata, which contains the class of 1-aperiodic finite tree automata; for each $n \geq 1$, the class of n-aperiodic finite tree automata contains the class of $(n+1)$-aperiodic finite tree automata, and the smallest aperiodicity class is that of strongly aperiodic finite tree automata which contains all the finite definite tree automata.
It turns out that in the classical word case (which corresponds to the rank type \{0, 1\} or \{1\}, i.e. when the signature consists of unary symbols and optionally constants), this hierarchy collapses to two levels: in that setting, the two outermost classes (that of context aperiodic and 1-aperiodic finite automata) coincide, and this class strictly contains the class of 2-aperiodic finite automata, which coincides with all the inner classes down to the class of finite definite automata. Interestingly, for any non-classical rank type (that contains at least one integer greater than one) we prove that the hierarchy does not collapse: the class of context aperiodic finite tree automata is strictly greater than the class of 1-aperiodic finite tree automata; for any \(n\), the class of \(n\)-aperiodic finite tree automata strictly contains the class of all \((n+1)\)-aperiodic finite tree automata, and there also exist strongly aperiodic finite tree automata that are not definite. These claims are proved in Section 3.3.

We also examine the complexity of the membership problem of these classes, which are in fact generalized cascade pseudovarieties of finite tree automata (as shown in Section 3.2), i.e. they are closed under renamings, taking subautomata, homomorphic images and a generalized version of the cascade product, with the exception of the class of context aperiodic finite tree automata, that forms a cascade pseudovariety. From the fact that deciding aperiodicity is a PSPACE-complete problem already in the word case [4, 7], we conclude that deciding \(n\)-aperiodicity is PSPACE-hard for any \(n\). We also show that the problem is solvable in exponential time for each \(n\). On the other hand, we give a polynomial time algorithm for deciding strong aperiodicity. This is done in Section 3.4.

In Section 3.5 we relate the above notions of aperiodicity to logic. It turns out that the class of 1-aperiodic tree languages (a regular tree language is called \(n\)-aperiodic if its minimal tree automaton is \(1\)-aperiodic) lies strictly between the class of CTL-definable tree languages and the class of context aperiodic tree languages, whereas the class of first-order definable tree languages is incomparable with the class of 1-aperiodic tree languages. Section 3.6 is devoted to a generalization of the aperiodicity notions, motivated by the celebrated Krohn-Rhodes decomposition theory. Finally, in Section 3.7 we slightly modify the definition of our aperiodicity notions, by involving polynomial functions instead of term functions in the conditions. It turns out that, based on polynomial functions, the aperiodicity hierarchy collapses at level 2. As a last conclusion we show that the polynomial variant of 1-aperiodicity is incomparable with the original version of \(n\)-aperiodicity for any \(n > 1\). The results of Chapter 3 were published in [17].
Chapter 1

Preliminaries

1.1 Brief summary of earlier results

This section briefly summarizes the known results about connections between logical definability and algebra related to the thesis.

The characterization of the expressive power of various logics on words, trees and other structures (the classical logics, e.g. first- or second-order logic as well as several kinds of temporal logics) has received a lot of attention. The classical case, when one deals with (finite or infinite) words, is mostly well understood.

For instance, considering monadic second-order logic (MSO) on words, equipped either with the successor relation or a total ordering on the positions of the word, exactly the regular languages are definable, see [6, 10], or [49].

Regarding the less expressive logic FO(<), i.e., first-order logic equipped with the total ordering of the positions, a classical result of McNaughton and Papert [32] in conjunction with a result of Schützenberger [46] states that a language of finite words is first-order definable if and only if its syntactic monoid is a finite aperiodic monoid, or equivalently, its minimal automaton is a finite counter-free automaton. Furthermore, this class of languages also coincides with the class of languages that are definable in the linear temporal logic LTL [30].

A similar aperiodicity condition characterizes the expressive power of first-order logic and LTL on infinite words, cf. [35, 36]. It follows from these results that it is decidable whether a regular language of finite or infinite words is first-order definable. From the Krohn-Rhodes theorem [9], it is known that a finite monoid is aperiodic if and only if it belongs to the least pseudovariety of finite monoids containing a certain 3-element monoid.
1.1. BRIEF SUMMARY OF EARLIER RESULTS

U_2 which is closed under the wreath product, or equivalently, to the least pseudovariety containing a certain 2-element monoid U_1 which is closed under the block product [49].

The logic FO(+1), first-order logic equipped with the successor relation (but without the ordering) on the positions corresponds exactly to the class LTT of locally threshold testable languages [30]; this is again a decidable property, see [38, 51, 53].

When formulated on the domain of (say, finite, ranked and ordered) trees, most of the above questions are still open. It still holds that in MSO, exactly the regular tree languages are definable [42, 50] (when the logic is equipped with the successor relations). Also, the logic FO(+1) still corresponds to the class of locally threshold testable languages, see [31]; but just as in the word case, this characterization is by no means effective. The question has been further studied in [3] where a decidable characterization has been found.

The decidability status of the definability problem of first-order logic on finite trees, equipped with the descendant relation, or with the descendant relation and all the successor relations, denoted FO(<) and FO(<, S), respectively, has been a long standing open problem, cf. [29, 40, 41, 54].

Aperiodicity can be generalized to trees in several different ways. One of them was studied in [29, 54] and shown to be a necessary but not a sufficient condition of first-order definability. In [17] we have defined an infinite hierarchy of aperiodicity notions and studied their relations to logical definability.

In [20], it was shown that a language of (ranked and ordered) finite trees is first-order definable if and only if its “syntactic preclone” belongs to the least pseudovariety of finitary preclones closed under the “block product” of preclones which is generated by the preclone canonically associated to a simple two-element algebra. Thus decidability of first-order definability reduces to the decidability of membership in that specific pseudovariety of finitary preclones. However the question whether membership in that pseudovariety of finitary preclones is decidable is left open in [20].

A problem related to first-order definability is the characterization of the expressive power of CTL and CTL* [2, 11, 45]: What tree languages can be defined in CTL, or in CTL*? These logics are both generalizations of LTL over words (although a third generalization, also called LTL is incomparable with CTL). It is shown in [27] that for certain types of trees first-order definability is equivalent to definability in CTL*. In [14, 15], a CTL-like logic FTL(L) was associated to each class L of (regular) languages of finite (ranked and ordered) trees. As a main result, it was shown that when any quotient of each language in L is definable in FTL(L), and when the “next modalities are expressible”, then a tree language is definable in FTL(L) if and only if its minimal tree automaton belongs to the least pseudovariety of finite tree automata containing the minimal automata of the languages in L and the finite definite tree automata [12, 28], which is closed under the cascade product. (Any such tree language is clearly regular, or recognizable, cf. [25].)
Cascade products of finite tree automata were studied e.g. in [12, 16, 21, 24, 43]. This notion is closely related to the wreath product of clones defined in [55].

In [18] we removed from the above mentioned result the assumption that the next modalities are expressible. This was achieved by the introduction of a special case of the cascade product of tree automata that we called the Moore product. We have shown that under the assumption that any quotient of each language in L (where L is a class of regular tree languages) is definable in $\text{FTL}(L)$, a tree language is definable in $\text{FTL}(L)$ if and only if its minimal tree automaton belongs to the least pseudovariety of finite tree automata containing the finite 1-definite tree automata and the minimal tree automata of the languages in L which is closed under the Moore product. An alternative formulation of this result is as follows. Let K denote a class of finite tree automata, and let $\text{FTL}(K)$ denote the logic $\text{FTL}(L)$, where L is the class of (regular) tree languages recognizable by the tree automata in K. Then a tree language is definable in $\text{FTL}(K)$ if and only if its minimal tree automaton belongs to the least pseudovariety of finite tree automata containing K and the finite 1-definite tree automata, which is closed under the Moore product.

In [19], an application of the above theorem has been elaborated; we provided polynomial time decidable characterizations of several small Moore pseudovarieties of finite connected tree automata. As a byproduct of these results, we derived decidability of the CTL fragments $\text{CTL}(\text{EF}^+)$ and $\text{CTL}(\text{EF}^*)$ equipped respectively only with the strict and non-strict version of the EF-modality of CTL. The decidability of the expressive power of $\text{CTL}(\text{EF}^*)$ was already established by Bojańczyk and Walukiewicz in [5] using different methods; the decidability of the expressive power of the latter fragment was left open there.

Using a different approach, Z. Wu [58] also proved that $\text{CTL}(\text{EF}^*)$ has a decidable definability problem. His approach is based on an Ehrenfeucht-Fraïssé type game. A celebrated result (see e.g. [31]) states that first-order logic over relational structures over an arbitrary finite relational signature can be reformulated in terms of a game between two players, Spoiler and Duplicator. It has been shown that a property \mathcal{P} of structures is definable in first-order logic if and only if there exists a number n of rounds such that when A is a structure having property \mathcal{P} and B is a structure not having \mathcal{P}, then Spoiler has a winning strategy in the so-called n-round Ehrenfeucht-Fraïssé game on the pair (A, B) of structures. One (yet unpublished) contribution of this thesis is that we define for each class L of tree languages and number n of rounds a two-player game, called the n-round L-game with the following property: two trees, s and t satisfy the same set of $\text{FTL}(L)$-formulas of depth at most n (denoted $s \equiv^n_L t$) if and only if Duplicator has a winning strategy in the n-round L-game, played on the pair (s, t) of trees. Standard arguments in finite model theory (see e.g. [31]) show that when L is a finite class of tree languages, then \equiv^n_L is an equivalence relation of finite index for each n. Thus, for any finite class L of tree languages it holds that a tree language L is definable in $\text{FTL}(L)$ if and only if
there exists some number n of rounds such that whenever s is a tree contained in L and t is a tree not in L, then Spoiler has a winning strategy in the n-round L-game, played on the pair (s, t).

1.2 Sets, words, trees and languages

When $n \geq 0$ is an integer, $[n]$ denotes the set $\{1, \ldots, n\}$. Thus, $[0]$ is another notation for the empty set \emptyset. \mathbb{N} denotes the set of all nonnegative integers.

When S is a set, S^* denotes the set $\{s_1 \ldots s_n : n \in \mathbb{N}, s_1, \ldots, s_n \in S\}$ of (finite) words over S. This set contains the empty word that consists of zero symbols and is denoted ϵ.

The concatenation (or simply product) $u \cdot v$ of the words $u = s_1 \ldots s_k$ and $v = s'_1 \ldots s'_n$ is the word $s_1 \ldots s_k s'_1 \ldots s'_n$. The symbol · is often omitted. It is clear that (S^*, \cdot) is the free monoid generated by S, with the unit element ϵ. The prefix relation \preceq_{S^*} over words is defined as $u \preceq_{S^*} v$ if $v = uu'$ for some word $u' \in S^*$. $u \prec_{S^*} v$ holds if $u \preceq_{S^*} v$ and $u \neq v$, i.e. u is a proper prefix of v. We will usually omit the subscript S^*.

A rank type R is a finite nonempty subset of \mathbb{N}. Elements of R are called arities. A signature Σ of rank type R is a union $\bigcup_{n \in R} \Sigma_n$ of finite, pairwise disjoint, nonempty sets of symbols. We fix once and for all a countably infinite set $X = \{x_1, x_2, \ldots\}$ of variables, that is assumed to be disjoint from any signature. The subset $\{x_1, \ldots, x_n\}$ of X is denoted X_n.

Given a signature Σ of rank type R, and an integer $n \geq 0$, the set $T_\Sigma(X_n)$ of ΣX_n-trees (or ΣX_n-terms) is the least set satisfying the following conditions:

1. any variable $x \in X_n$ is a ΣX_n-tree;

2. any symbol $\sigma \in \Sigma_0$ is a ΣX_n-tree;

3. if $0 < k \in R$ is an arity, $\sigma \in \Sigma_k$ is a symbol and t_1, \ldots, t_k are ΣX_n-trees, then $\sigma(t_1, \ldots, t_k)$ is a ΣX_n-tree.

It is clear that $T_\Sigma(X_n)$ is nonempty if and only if $n > 0$ or $0 \in R$ holds, and it is infinite if and only if it is nonempty and R contains at least one positive integer. A tree $t \in T_\Sigma(X_n) - X_n$ which is not a variable is called proper.

Symbols $\sigma \in \Sigma_0$ are called constant symbols. When σ is a constant symbol, we can view the ΣX_n-tree σ also as the tree $\sigma()$ (i.e. of the form $t = \sigma(t_1, \ldots, t_k)$ with $k = 0$ and $\sigma \in \Sigma_0$).
T_Σ is written for $T_\Sigma(X_0)$, the set of variable-free trees over Σ. These trees are also called Σ-trees. The set of Σ-contexts is the subset CT_Σ of $T_\Sigma(X_1)$ which contains the trees in which x_1 occurs exactly once. Contexts will usually be denoted by ζ, ξ etc, whereas trees in general by s, t etc. We write $T_\Sigma(X)$ for $\bigcup_{n \geq 0} T_\Sigma(X_n)$, the set of all ΣX-trees.

The height $hg(t)$ of a tree $t \in T_\Sigma(X)$ is defined as usual:

1. when $t \in X \cup \Sigma_0$, then $hg(t) = 0$;
2. when $t = \sigma(t_1, \ldots, t_n)$ with $\sigma \in \Sigma_n$ for some $n > 0$, then $hg(t)$ is defined as $1 + \max\{hg(t_i) : i \in [n]\}$.

When $t \in T_\Sigma(X_n)$ is a Σ-tree and $\mathfrak{t} = (t_1, \ldots, t_n)$ is an n-tuple of ΣX_m-trees, then the tree $t(\mathfrak{t}) \in T_\Sigma(X_m)$ is defined inductively as follows:

1. if $t = x_i$ for some $i \in [n]$, then $t(\mathfrak{t}) = t_i$;
2. if $t = \sigma(t'_1, \ldots, t'_k)$ for some $\sigma \in \Sigma_k$, $k \geq 0$, and trees $t'_1, \ldots, t'_k \in T_\Sigma(X_n)$, then $t(\mathfrak{t}) = \sigma(t'_1(\mathfrak{t}), \ldots, t'_k(\mathfrak{t}))$.

If $t \in T_\Sigma(X_1)$, thus $\mathfrak{t} = (t_1)$ is a one-tuple, we may omit the parentheses and write tt_1 for $t(t_1)$. This will be done mostly when $t = \zeta \in CT_\Sigma$ is a Σ-context and t_1 is either a variable-free tree or a context, i.e. $t_1 \in T_\Sigma \cup CT_\Sigma$.

Sometimes it will be convenient to think about a Σ-tree as a mapping from a tree domain to $\Sigma \cup X$. In this setting, the domain $\text{dom}(t)$ of a tree t is a finite subset of $[\max R]^*$ and is defined as follows:

1. when $t \in X \cup \Sigma_0$, $\text{dom}(t) = \{\epsilon\}$;
2. when $t = \sigma(t_1, \ldots, t_n)$ for some arity $n > 0$, symbol $\sigma \in \Sigma_n$ and trees t_i, $i \in [n]$, then $\text{dom}(t) = \{\epsilon\} \cup \{i \cdot v : i \in [n], v \in \text{dom}(t_i)\}$.

When $t \in T_\Sigma(X)$ is a tree and $v \in \text{dom}(t)$ is a node (or vertex) of t, $t(v)$ denotes the label of v in t, that is,

1. $t(\epsilon) = t$ for any $t \in X \cup \Sigma_0$;
2. $t(\epsilon) = \sigma$, when $t = \sigma(t_1, \ldots, t_n)$ for some $\sigma \in \Sigma_n$, $t_1 \ldots, t_n \in T_\Sigma(X)$;
3. $t(i \cdot v) = t_i(v)$, when $t = \sigma(t_1, \ldots, t_n)$ for some $\sigma \in \Sigma_n$, $t_1, \ldots, t_n \in T_\Sigma(X)$.

Root(t) is a shorthand for t(ε).

Another notion regarding trees is that of the subtree \(t|_v \) of a tree \(t \) rooted at \(v \in \text{dom}(t) \). The domain of this tree is \(\text{dom}(t|_v) = \{ w : v \cdot w \in \text{dom}(t) \} \), and the labeling is given by \(t|_v(w) = t(v \cdot w) \) for each \(w \in \text{dom}(t|_v) \). It is clear that these notions are well-defined. A subtree \(t|_v \) of \(t \) is called a proper subtree of \(t \) if \(v \neq ε \) and is called an immediate subtree of \(t \) if \(v \in [\max R] \). (Note that a proper subtree of a tree is not always a proper tree.)

The above notions are extended to tuples of trees as follows. When \(t = (t_1, \ldots, t_n) \) is an \(n \)-tuple of trees, let \(\text{dom}(t) \) denote the set \(\{ i \cdot v : i \in [n], v \in \text{dom}(t_i) \} \). Furthermore, for any node \(i \cdot v \in \text{dom}(t) \) of \(t \) above, let \(t(i \cdot v) = t_i(v) \) and \(t|_{i\cdot v} = t_i|_v \). These notions are also well-defined.

We consider a \((\Sigma-)\)tree language any set of variable-free \(\Sigma \)-trees, i.e. any \(L \subseteq T_\Sigma \). When \(\zeta \in CT_\Sigma \) is a \(\Sigma \)-context and \(L \subseteq T_\Sigma \) is a tree language, the quotient of \(L \) with respect to \(\zeta \) is the language \(\zeta^{-1}(L) = \{ t : \zeta t \in L \} \).

Suppose \(\Sigma \) and \(\Delta \) are signatures having the same rank type \(R \). A tree \(t \in T_\Delta \) is a relabeling of a tree \(s \in T_\Sigma \) if \(\text{dom}(t) = \text{dom}(s) \), and for any vertex \(v \in \text{dom}(t) \) and variable \(x \in X \), \(t(v) = x \) if and only if \(s(v) = x \), i.e. we get the tree \(s \) from \(t \) by relabeling each node which are labeled by some symbol from \(\Sigma \), but preserving the variables.

When \(\Sigma \) and \(\Delta \) are signatures having the same rank type \(R \) and \(h : \Sigma \rightarrow \Delta \) is a rank-preserving map (i.e. for any \(n \in R \) and \(\sigma \in \Sigma_n \), the symbol \(h(\sigma) \) is contained in \(\Delta_n \)), then \(h \) induces a literal tree homomorphism from \(T_\Sigma(X) \) to \(T_\Delta(X) \), also denoted \(h \) as follows: for any tree \(s \in T_\Sigma(X) \) let \(\text{dom}(h(s)) = \text{dom}(s) \) and for any vertex \(v \in \text{dom}(s) \) define

\[
(h(s))(v) = \begin{cases}
 s(v) & \text{if } s(v) \in X; \\
 h(s(v)) & \text{if } s(v) \in \Sigma.
\end{cases}
\]

Given a signature \(\Sigma \) of rank type \(R \) and an arbitrary set \(A \), which is disjoint from both \(\Sigma \) and \(X \), we also define the set \(T_{\Sigma,A}(X_n) \) of \(\Sigma X_n \)-polynomial symbols for each \(n \) as the least set satisfying the following conditions:

1. any \(x \in X_n \) is a \(\Sigma X_n \)-polynomial symbol;
2. any \(a \in A \) is a \(\Sigma X_n \)-polynomial symbol;
3. when \(\sigma \in \Sigma_k \) is a symbol and \(p_1, \ldots, p_k \) are \(\Sigma X_n \)-polynomial symbols, then \(\sigma(p_1, \ldots, p_k) \) is also a \(\Sigma X_n \)-polynomial symbol.

The \(\Sigma X_n \)-polynomial symbols are also called \(n \)-ary \(\Sigma A \)-polynomial symbols. The set \(CT_{\Sigma,A} \) of \(\Sigma A \)-polynomial contexts is the subset of \(T_{\Sigma,A}(X_1) \) consisting of the polynomial symbols in which \(x_1 \) occurs exactly once. The set \(T_{\Sigma,A}(X) \) of \(\Sigma AX \)-polynomial symbols
1.3. Σ-TREE AUTOMATA

is the union \(\bigcup_{n \geq 0} T_{\Sigma,A}(X_n) \). A polynomial symbol which is not a variable is called proper.

Elements of the set \(T_{\Sigma,A} = T_{\Sigma,A}(X_0) \) (that is, the variable-free polynomial symbols) are called \(\Sigma A \)-polynomial symbols.

We will also use occasionally the notation \(\text{Root}(p) \) to denote the root symbol of the polynomial symbol \(p \in T_{\Sigma,A}(X) \), that is,

\[
\text{Root}(p) = \begin{cases}
 p & \text{if } p \in X \cup A; \\
 \sigma & \text{if } p = \sigma(p_1, \ldots, p_k) \text{ for some } \sigma \in \Sigma_k, p_i \in T_{\Sigma,A}(X).
\end{cases}
\]

The domain \(\text{dom}(p) \) of a polynomial symbol \(p \) and relabelings of polynomial symbols are defined analogously to the respective notions for trees. When \(\Sigma \) and \(\Delta \) are signatures, \(h_1 : \Sigma \rightarrow \Delta \) is a rank-preserving map, \(A \) and \(B \) are sets disjoint from \(\Sigma \) and \(\Delta \), respectively, and \(h_2 : A \rightarrow B \) is a function, then the pair \((h_1, h_2) \) induces a relabeling \(T_{\Sigma,A}(X) \rightarrow T_{\Delta,B}(X) \) that replaces the label of each node \(v \) of a polynomial symbol \(p \in T_{\Sigma,A}(X) \) by \(h_1(v) \) if \(p(v) \in \Sigma \) and by \(h_2(v) \) if \(p(v) \in A \). When \(p(v) \in X \), then the label remains unchanged. When either \(h_1 \) or \(h_2 \) is the identity function (so that \(\Sigma \subseteq \Delta \) or \(A \subseteq B \)), we say that the relabeling is induced by \(h_2 \) or \(h_1 \), respectively.

1.3 Σ-tree automata

Given a signature \(\Sigma \) of some rank type \(R \), a \((\Sigma-) \)tree automaton \(A = (A, \Sigma) \) consists of a nonempty state (or carrier) set \(A \) and for each symbol \(\sigma \in \Sigma_n \), there is an associated elementary operation \(\sigma^A : A^n \rightarrow A \). Elements of the state set \(A \) are usually called states.

When \(\sigma \in \Sigma_n \) is a symbol, \(\text{Img}_A(\sigma) \) denotes the image set \(\{ \sigma^A(a_1, \ldots, a_n) : a_1, \ldots, a_n \in A \} \) of \(\sigma \) in \(A \). When the set \(A \) of states is finite, we call \(A \) a finite tree automaton; when even \(|A| = 1 \), \(A \) is called a trivial tree automaton.

When \(A = (A, \Sigma) \) and \(B = (B, \Sigma) \) are \(\Sigma \)-tree automata with \(B \subseteq A \) such that all elementary operations \(\sigma^B \) of \(B \) are the restrictions of the corresponding elementary operations \(\sigma^A \), then we say that \(B \) is a subautomaton of \(A \). When also \(B \subseteq A \) holds, \(B \) is called a proper subautomaton of \(A \).

When \(A = (A, \Sigma) \) and \(B = (B, \Sigma) \) are tree automata over the same signature \(\Sigma \), then their direct product is the \(\Sigma \)-tree automaton \(A \times B = (A \times B, \Sigma) \) having the state set \(A \times B \) and the elementary operations \(\sigma^A \times \sigma^B \) for all \(\sigma \in \Sigma_n \) and states \(a_1, \ldots, a_n \in A \), \(b_1, \ldots, b_n \in B \).

The \(\Delta \)-tree automaton \(B = (B, \Delta) \) is a renaming of the \(\Sigma \)-tree automaton \(A = (A, \Sigma) \) (here \(\Sigma \) and \(\Delta \) both have the same rank type) if \(B = A \) and each elementary operation of \(B \) is also an elementary operation of \(A \), i.e. for each \(\delta \in \Delta_n \) there exists a symbol...
1.3. Σ-TREE AUTOMATA

σ ∈ Σ_n having δ^B = σ^A. Observe that this relation is not symmetric. When Σ and Δ are signatures over the same rank type R, A = (A, Σ) is a tree automaton and h : Δ → Σ is a rank-preserving map, then h determines the renaming B = (A, Δ) of A where δ^B = (h(δ))^A for each δ ∈ Δ.

Given a Σ-tree automaton A = (A, Σ), we associate a term function t^A : A^m → A to any tree t ∈ T_Σ(X_m) defined as:

1. any x_i, i ∈ [m] induces the projection to the i-th coordinate, i.e. x_i^A(a_1, . . . , a_m) = a_i;
2. any constant symbol σ ∈ Σ_0 induces the constant function A^m → A having the value σ^A;
3. any tree t = σ(t_1, . . . , t_n) with σ ∈ Σ_n for some n > 0 induces the composition of the elementary operation σ^A with the tupling of the term functions t_i^A, i ∈ [n], i.e. for any a = (a_1, . . . , a_m), t^A(a) = σ^A(t_1^A(a), . . . , t_n^A(a)).

Term functions that are induced by proper trees are called proper term functions.

Thus, any tree t ∈ T_Σ has a constant function as associated term function. When t^A is the constant function having the value a ∈ A, we say that t evaluates to a in A and denote this by t^A = a, identifying the constant-valued function with its value. Then, if a Σ-tree automaton A = (A, Σ) is given along with a set A' ⊆ A of final states, we define the tree language L_{A,A'} recognized by A (with the set A' of final states) as the set {t ∈ T_Σ : t^A ∈ A'}. A tree language L is recognizable by the tree automaton A if L = L_{A,A'} for some set A' ⊆ A of final states.

When the rank type R of a signature Σ contains 0, the connected part of a tree automaton A = (A, Σ) is the subautomaton (A', Σ) of A where A' = {t^A : t ∈ T_Σ} consists of the accessible states of A. Note that since 0 is contained in R, T_Σ is not empty, thus A' cannot be empty either. It is easy to see that (A', Σ) is the least subautomaton of A. Also when Σ is a signature of rank type R which contains 0, we call a Σ-tree automaton A = (A, Σ) connected if it is generated by the constants (or equivalently, if it has no proper subautomata).

When A = (A, Σ) is a tree automaton and p ∈ T_{Σ,A}(X_n), then p induces an (n-ary) polynomial function p^A : A^n → A as follows:

1. x_i^A is the projection π_i to the i-th coordinate for any x_i ∈ X_n;
2. each symbol σ ∈ Σ_0 induces the constant function A^n → A with value σ^A;
3. each a ∈ A induces the constant function A^n → A with value a;
4. when $p = \sigma(p_1, \ldots, p_k)$, then p^A is defined as the composition of σ^A with the target tupling of the functions p_i^A, $i \in [k]$, i.e. for any $a = (a_1, \ldots, a_n)$ let $p^A(a) = \sigma^A(p_1^A(a), \ldots, p_k^A(a))$.

Polynomial functions of $A = (A, \Sigma)$ induced by (proper) Σ-polynomial contexts are called (proper) translations of A.

We note that ΣX_n-trees are $\emptyset \Sigma X_n$-polynomial symbols and any ΣX_n-tree t induces the same term function (when t is viewed as a tree) and polynomial function (when t is viewed as a $\Sigma A X_n$-polynomial symbol) in any tree automaton (A, Σ). Thus, we could define trees as special polynomial symbols and term functions as polynomial functions induced by trees. The reason why we define these notions this way is to emphasize that trees play a central role in this thesis.

We call a tree language $L \subseteq T_\Sigma$ regular if it is recognizable by some finite tree automaton. It is well-known (see e.g. [25]) that if L is a regular tree language, then it has only finitely many quotients and each of these quotients is regular.

When $A = (A, \Sigma)$ and $B = (B, \Sigma)$ are Σ-tree automata, we call a mapping $h : A \rightarrow B$ a homomorphism if it is compatible with all elementary operations, i.e. $h(\sigma^A(a_1, \ldots, a_n)) = \sigma^B(h(a_1), \ldots, h(a_n))$ holds for all arities $n \in R$, symbol $\sigma \in \Sigma_n$ and states $a_1, \ldots, a_n \in A$. We call B a homomorphic image or a quotient of A if there exists a surjective homomorphism from A to B; if this homomorphism is even injective (in which case it is called an isomorphism), then A and B are said to be isomorphic (it is easy to see that in this case the inverse of the given homomorphism is also a bijective homomorphism, thus the definition is symmetric). We call a quotient of a subautomaton of a tree automaton A a divisor of A.

Homomorphic images are strongly related to congruences. Suppose $A = (A, \Sigma)$ is a Σ-tree automaton and $\Theta \subseteq A \times A$ is an equivalence relation on A which is compatible with all the elementary operations of A, i.e. whenever $\sigma \in \Sigma_n$ is an n-ary symbol and $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$ are states with $a_i \Theta b_i$ for each $i \in [n]$, then also $\sigma^A(a_1, \ldots, a_n) \Theta \sigma^A(b_1, \ldots, b_n)$ holds. Then Θ is called a congruence of A. Clearly, the identity relation $\Delta_A = \{(a, a) : a \in A\}$ and the complete relation $\nabla_A = A \times A$ over A are congruences of A; these are called the trivial congruences, whereas a congruence Θ which is different from both Δ_A and ∇_A is a nontrivial congruence of A.

It is clear that the intersection $\bigcap_{i \in I} \Theta_i$ of any family $(\Theta_i)_{i \in I}$ of congruences of A is also a congruence. Thus, when A is a given tree automaton, the set $\text{Con}(A)$ of congruences of A forms a complete lattice. In this lattice, the meet and join operators are defined as $\bigwedge_{i \in I} \Theta_i = \bigcap_{i \in I} \Theta_i$ and $\bigvee_{i \in I} \Theta_i = \bigcap_{\Theta \in \text{Con}(A)} : \bigcup_{i \in I} \Theta_i \subseteq \Theta$; the least (resp. greatest) element of $\text{Con}(A)$ is Δ_A (resp. ∇_A). When Θ is in $\text{Con}(A)$ and $a \in A$, then the congruence class
of A/Θ containing a will be denoted a/Θ, or sometimes just a when Θ is understood.

When Θ is a congruence of $A = (A, \Sigma)$, then the factor automaton $A/\Theta = (B, \Sigma)$ is defined as follows:

1. the state set of A/Θ is $B = \{a/\Theta : a \in A\}$;
2. for any symbol $\sigma \in \Sigma_n$, the elementary operation $\sigma^{A/\Theta}$ maps the n-tuple $(a_1/\Theta, \ldots, a_n/\Theta)$ to the congruence class $\sigma^A(a_1, \ldots, a_n)/\Theta$.

From the congruence properties it is clear that the above interpretation of the symbols is well-defined. Obviously, A/Θ is a quotient of A.

The Homomorphism Theorem states that for any Σ-tree automaton $A = (A, \Sigma)$ and homomorphic image $B = (B, \Sigma)$ of A there exists a congruence Θ of A such that the factor automaton A/Θ is isomorphic to B. When h is a homomorphism from A onto B, we may define Θ by $a_1\Theta a_2 \iff h(a_1) = h(a_2)$, which is called the kernel of h.

A nontrivial Σ-tree automaton $A = (A, \Sigma)$ is said to be subdirectly irreducible if whenever A is isomorphic to a subautomaton of some direct product $\prod_{i \in I} A_i/\Theta_i$ for some family $(\Theta_i)_{i \in I}$ of congruences of A, then $\Theta_j = \Delta_A$ holds for some $j \in I$. Any nontrivial Σ-tree automaton A is either subdirectly irreducible or is isomorphic to a subautomaton of the direct product of a family $(A_i/\Theta_i)_{i \in I}$, where each Θ_i is a nontrivial congruence of A. In this case A is subdirectly reducible. Clearly when A is finite, the above I can be also assumed finite.

It is well-known that for any tree language $L \subseteq T_\Sigma$ there exists a minimal automaton A_L, unique up to isomorphism, having the following properties:

1. A_L is connected.
2. L is recognized by A_L.
3. A_L is a divisor of any Σ-tree automaton B by which L is recognizable.

Thus, a tree language L is regular if and only if its minimal automaton A_L is finite. Given a finite tree automaton $A = (A, \Sigma)$ with a set $A' \subseteq A$ of final states, the minimal automaton A_L of the recognized language $L = L_{A, A'}$ can be effectively constructed.

We call a nonempty class \mathbf{V} of finite tree automata a pseudovariety of finite tree automata if it is closed under taking direct products, homomorphic images, subautomata and renamings. It is clear that the intersection of any family of pseudovarieties is also a pseudovariety (observe that the intersection cannot be empty since every pseudovariety contains all the trivial tree automata), thus for any class \mathbf{K} of finite tree automata there
1.3. Σ-TREE AUTOMATA

exists a least pseudovariety \(\langle K \rangle \) containing \(K \). We also say that \(\langle K \rangle \) is the pseudovariety \textit{generated by} \(K \). When \(K = \{ A_1, \ldots, A_n \} \) is a finite class, we write \(\langle A_1, \ldots, A_n \rangle \) for \(\langle K \rangle \).

When \(K \) is a class of finite tree automata, we let \(K^c \) denote the class consisting of the connected parts of the members of \(K \).

When \(\mathbb{A} \) and \(\mathbb{B} \) are connected Σ-tree automata, their \textit{connected direct product}, also denoted \(\mathbb{A} \times \mathbb{B} \), is the connected part of their direct product. Similarly, we say that the tree automaton \(\mathbb{A} = (A, \Sigma) \) is a \textit{connected renaming} of the tree automaton \(\mathbb{B} = (B, \Delta) \) if \(\mathbb{A} \) is the connected part of a renaming of \(\mathbb{B} \). (Note that any homomorphic image of a connected tree automaton is connected, thus there is no need to define a notion such as “connected homomorphism”.) When we write \(\mathbb{A} \times \mathbb{B} \), it will be always clear whether this notation stands for a direct product or a connected direct product. Observe that no connected tree automaton \(\mathbb{A} \) has a proper subautomaton. Moreover, when \(\mathbb{A} \) and \(\mathbb{B} \) are connected Σ-tree automata, then there is at most one homomorphism from \(\mathbb{A} \) to \(\mathbb{B} \).

A nonempty class \(V^c \) of finite connected tree automata is called a \textit{pseudovariety of finite connected tree automata} if it is closed under connected renamings, connected direct products, and homomorphic images. When \(K^c \) is a class of finite connected tree automata, there exists a least pseudovariety of finite connected tree automata, also denoted \(\langle K^c \rangle \), containing \(K^c \). We also say that \(\langle K^c \rangle \) is \textit{generated by} \(K^c \).

Since our logics will be defined over variable-free trees, in connection with logical definability it will suffice to deal with pseudovarieties of finite connected tree automata. Also the following hold:

1. When \(V \) is a pseudovariety of finite tree automata, \(V^c \) is a pseudovariety of finite connected tree automata.
2. Let \(K \) be an arbitrary class of finite tree automata. Then \(\langle K \rangle^c \), the class of all connected tree automata contained in the pseudovariety of finite connected tree automata generated by \(K \), coincides with \(\langle K^c \rangle \), the pseudovariety of finite connected tree automata generated by the connected parts of the members of \(K \).

The class of pseudovarieties of finite (connected) tree automata is a complete lattice. In this lattice, when \((V_i)_{i \in I} \) is a family of pseudovarieties of finite (connected) tree automata, \(\bigwedge_{i \in I} V_i = \bigcap_{i \in I} V_i \) is their meet and \(\bigvee_{i \in I} V_i = \langle \bigcup_{i \in I} V_i \rangle \) is their join; the least element contains only the trivial tree automata and the greatest element contains every finite (connected) tree automaton.

A closely related notion is that of literal varieties of tree languages. A nonempty class \(L \) of regular tree languages is a \textit{literal variety of tree languages} if it is closed under taking quotients, boolean operations and inverse literal tree homomorphisms, i.e. when \(\Sigma \) and
\[\Delta \text{ are signatures having the same rank type, } \zeta \in T_\Delta \text{ is a } \Delta\text{-context, } K, L \in T_\Delta \text{ are tree languages contained in } \mathcal{L} \text{ and } h : T_\Sigma \to T_\Delta \text{ is a literal tree homomorphism, then each of the languages } \zeta^{-1}L, K \cap L, \overline{L} = T_\Delta - L \text{ over } \Delta \text{ and the language } h^{-1}(L) \text{ over } \Sigma \text{ is a member of } \mathcal{L}. \]

The class of literal varieties of tree languages also forms a complete lattice: when \((\mathcal{L}_i)_{i \in I}\) is a family of literal varieties of tree languages, \(\bigwedge_{i \in I} \mathcal{L}_i = \bigcap_{i \in I} \mathcal{L}_i \) is their meet and their join \(\bigvee_{i \in I} \mathcal{L}_i \) is the smallest literal variety of tree languages containing \(\bigcup_{i \in I} \mathcal{L}_i \). (From the definition of literal varieties it is clear that when \((\mathcal{L}_i)_{i \in I}\) is a family of literal varieties of tree languages, then their intersection \(\bigcap_{i \in I} \mathcal{L}_i \) is also a literal variety of tree languages, thus the concept of “smallest literal variety containing \(\bigcup_{i \in I} \mathcal{L}_i \)” is well-defined.)

There exists an Eilenberg correspondence \cite{9} between two of the lattices defined above:

1. The lattice of all pseudovarieties of finite connected tree automata is isomorphic to the lattice of all literal varieties of tree languages.

2. The following mapping establishes an order isomorphism from the lattice of all pseudovarieties of finite connected tree automata to the lattice of all literal varieties of tree languages:

\[
\mathcal{V}^c \mapsto \mathcal{L}_{\mathcal{V}^c} = \{ L : L \text{ is recognizable in some } A \in \mathcal{V}^c \}.
\]

3. The following mapping establishes the order isomorphism that is the inverse of the above isomorphism:

\[
\mathcal{L} \mapsto \mathcal{V}^c_L = \langle \{ A_L : L \in \mathcal{L} \} \rangle.
\]

Recall that \(A_L \) stands for the minimal automaton of the tree language \(L \).

For more information on tree automata we refer the reader to \cite{26}; several different notions of (pseudo)varieties and Eilenberg correspondence between classes of automata and languages were investigated in \cite{1, 13, 37, 44, 47, 48}.

1.4 Logics on trees

In this section we briefly recall the syntax and semantics of two classical logics on trees, first-order logic and the temporal logic CTL.
Let Σ be a signature over the rank type R where $0 \in R$.

The set of first-order formulas over Σ (equipped with the descendant relation and the successor relations), denoted $\text{FO}(\preceq, S_i)$, is the least set satisfying the following conditions:

1. for any symbol $\sigma \in \Sigma$ and variable $x \in X$, $P_\sigma(x)$ is a formula;
2. for any variables $x, y \in X$, $(x = y)$ and $(x < y)$ are formulas;
3. for any variables $x, y \in X$ and integer $i \in [\max R]$, $S_i(x, y)$ is a formula;
4. if φ is a formula, then $(\neg \varphi)$ is also a formula;
5. if φ_1 and φ_2 are formulas, then $(\varphi_1 \lor \varphi_2)$ is a formula;
6. if $x \in X$ is a variable and φ is a formula, then $(\exists x \varphi)$ is a formula.

Note that we use the same set X of variables as in the case of ΣX-trees. This will not cause any confusion.

Let $t \in T_\Sigma$ be a tree, φ an $\text{FO}(\preceq, S_i)$-formula and $v : X \to \text{dom}(t)$ a mapping from the set of variables to the domain of t. We say that the pair (t, v) satisfies φ, denoted $(t, v) \models \varphi$, if one of the following holds:

1. $\varphi = P_\sigma(x)$ for some σ and x with $t(v(x)) = \sigma$;
2. $\varphi = (x = y)$ for some $x, y \in X$ and $v(x) = v(y)$;
3. $\varphi = (x < y)$ for some $x, y \in X$ and $v(x) \prec v(y)$ (i.e. $v(x)$ is a proper prefix of $v(y)$, or y is a proper descendant of x);
4. $\varphi = S_i(x, y)$ for some $x, y \in X$ and $i \in [\max R]$, and $v(y) = v(x) \cdot i$;
5. $\varphi = (\neg \varphi_1)$ and it is not the case that $(t, v) \models \varphi_1$;
6. $\varphi = (\varphi_1 \lor \varphi_2)$ and $(t, v) \models \varphi_1$ or $(t, v) \models \varphi_2$;
7. $\varphi = (\exists x \varphi_1)$ and there exists a node $u \in \text{dom}(t)$ such that $(t, v[x \mapsto u]) \models \varphi_1$. Here $v[x \mapsto u]$ is the assignment from X to $\text{dom}(t)$ where $v[x \mapsto u](x) = u$ and for any $y \neq x$, $v[x \mapsto u](y) = v(y)$.

In order to define the semantics of $\text{FO}(\preceq, S_i)$ over trees without a given mapping v of the variables, we first have to define the set $\text{FreeVar}(\varphi)$ of free variables in the formula φ as follows:
1. for any $\sigma \in \Sigma$ and $x \in X$, $\text{FreeVar}(P_\sigma(x)) = \{x\}$;
2. for any $x, y \in X$, $\text{FreeVar}((x = y)) = \{x, y\}$;
3. for any $x, y \in X$, $\text{FreeVar}((x < y)) = \{x, y\}$;
4. for any $x, y \in X$ and $i \in \lceil \max R \rceil$, $\text{FreeVar}(S_i(x, y)) = \{x, y\}$;
5. for any formula φ, $\text{FreeVar}((\neg \varphi)) = \text{FreeVar}(\varphi)$;
6. for any formulas φ_1, φ_2, $\text{FreeVar}((\varphi_1 \lor \varphi_2)) = \text{FreeVar}(\varphi_1) \cup \text{FreeVar}(\varphi_2)$;
7. for any formula φ and variable $x \in X$, $\text{FreeVar}((\exists x \varphi)) = \text{FreeVar}(\varphi) \setminus \{x\}$.

A formula φ is called a \textit{sentence} if $\text{FreeVar}(\varphi) = \emptyset$. It is easy to see that if φ is a formula, t is a Σ-tree and $v_1, v_2 : X \rightarrow \text{dom}(t)$ are two assignments of the variables that agree on $\text{FreeVar}(\varphi)$, then $(t, v_1) \models \varphi$ if and only if $(t, v_2) \models \varphi$. Thus, for any sentence φ and Σ-tree t, the following are equivalent:
1. There exists an assignment $v : X \rightarrow \text{dom}(t)$ with $(t, v) \models \varphi$.
2. For any assignment $v : X \rightarrow \text{dom}(t)$, $(t, v) \models \varphi$.

Thus, one can define $t \models \varphi$ for the tree t and the sentence φ if (t, v) satisfies φ for some assignment, or for all assignments $v : X \rightarrow \text{dom}(t)$.

A sentence φ over Σ \textit{defines} the language $L_\varphi = \{ t \in T_\Sigma : t \models \varphi \}$. The class $\text{FO}(<, S_i)$ of $\text{FO}(<, S_i)$-definable tree languages is $\{ L_\varphi : \varphi$ is a $\text{FO}(<, S_i)$-formula $\}$.

The fragment $\text{FO}(<)$ of $\text{FO}(<, S_i)$ is obtained by excluding the successor relations S_i from the syntax. It is clear that $\text{FO}(<)$ is weaker than $\text{FO}(<, S_i)$, since e.g. it cannot distinguish the trees $\sigma_2(\sigma_0, \nu_0)$ and $\sigma_2(\nu_0, \sigma_0)$.

Now we turn to the temporal logic CTL.

The set of CTL-\textit{formulas} over Σ is the least set satisfying the following conditions:
1. for any $\sigma \in \Sigma$, p_σ is a formula;
2. if φ is a formula, then $(\neg \varphi)$ and $(\text{EX}\varphi)$ are also formulas;
3. if φ_1 and φ_2 are formulas, then $(\varphi_1 \lor \varphi_2)$ and $(\text{EU}(\varphi_1, \varphi_2))$ are also formulas.

The semantics of CTL is defined as follows: for a tree $t \in T_\Sigma$ and a CTL-formula φ over Σ we say that t satisfies φ, in notation $t \models \varphi$ if and only if one of the following holds:
1. \(\varphi = p_\sigma \) and \(\text{Root}(t) = \sigma \);

2. \(\varphi = (\neg \varphi_1) \) and it is not the case that \(t \models \varphi_1 \);

3. \(\varphi = (\varphi_1 \lor \varphi_2) \) and \(t \models \varphi_1 \) or \(t \models \varphi_2 \);

4. \(\varphi = (\text{EX}\varphi_1) \) and \(t = \sigma(t_1, \ldots, t_n) \) for some \(\sigma \in \Sigma_n \) and trees \(t_1, \ldots, t_n \in T_\Sigma \), and there exists an index \(i \in [n] \) with \(t_i \models \varphi_1 \);

5. \(\varphi = (\text{EU}(\varphi_1, \varphi_2)) \) and there exists a node \(v \in \text{dom}(t) \) such that both of the following two conditions hold:

 (a) \(t|_v \models \varphi_2 \);

 (b) for any \(u \prec v \), \(t|_u \models \varphi_1 \).

A CTL-formula \(\varphi \) defines the tree language \(L_\varphi = \{ t \in T_\Sigma : t \models \varphi \} \). CTL denotes the class of all CTL-definable tree languages\(^1\).

Two formulas, \(\varphi \) and \(\psi \), of any logic are said to be equivalent, denoted \(\varphi \equiv \psi \) if they define the same language, i.e. \(L_\varphi = L_\psi \).

\(^1\)The reader familiar with the logic CTL may observe the fact the unary modality EG is left out from the definition of the logic. This is due to the fact that for finite trees, EG(\(\varphi \)) is equivalent to EU(\(\varphi, \varphi \land \neg \text{EX}\top \)), where \(\top \) is a formula satisfied by any tree.
Chapter 2

Future temporal logics and the definability problem

In this chapter we recall from [15] the operator FTL, which associates to each class \mathcal{L} of tree languages a temporal logic $\text{FTL}(\mathcal{L})$. This class of logics covers a wide range of branching time future temporal logics; for instance, the logic CTL is equivalent to a logic $\text{FTL}(\mathcal{L})$ for a specific class \mathcal{L} of simple tree languages.

After introducing the logic $\text{FTL}(\mathcal{L})$, we state its definability problem, and present an algebraic characterization of its expressive power, at least when the parameter class \mathcal{L} consists of regular tree languages and possesses a natural property. This characterization is not effective, but as an application we show decidability of the definability problem of $\text{FTL}(\mathcal{L})$ for some special classes \mathcal{L} related to fragments of CTL.

In the last section of this chapter we present a game-based, Ehrenfeucht-Fraïssé type approach and provide another characterization of the logic $\text{FTL}(\mathcal{L})$, this time for an arbitrary finite class \mathcal{L} of tree languages. This last section contains results that are still unpublished.

This chapter deals with variable-free trees only. For the whole section we now fix a rank type R; to avoid trivial situations we assume that $0 \in R$ to ensure that T_Σ is nonempty for any signature Σ (of rank type R), moreover, we also assume that R contains at least one positive integer.

In the definition of the semantics of $\text{FTL}(\mathcal{L})$ we use a lexicographic ordering of signatures; we assume that each signature Σ (all of them are of rank type R) comes with a fixed lexicographic ordering, denoted $<_\Sigma$ or just $<$ when Σ is understood.
2.1 The logics FTL(\mathcal{L})

This section is devoted to the definition of the logics FTL(\mathcal{L}). For further use, we also state some properties of these logics.

Syntax. Let \Sigma be a signature. The set of FTL-formulas over \Sigma is defined as the least set satisfying the following conditions:

1. For each \sigma \in \Sigma, \sigma is an (atomic) formula (of depth 0).
2. If \varphi is a formula (of depth d), then (\neg \varphi) is also a formula (of depth d).
3. If \varphi_1 and \varphi_2 are formulas (having maximal depth d), then (\varphi_1 \lor \varphi_2) is also a formula (of depth d).
4. If \Delta is a signature, \mathcal{L} \subseteq T_{\Delta} is a tree language and for each \delta \in \Delta, \varphi_\delta is a formula (still over \Sigma and having maximal depth d), then

\[
\mathcal{L}(\delta \mapsto \varphi_\delta)_{\delta \in \Delta} \tag{2.1}
\]

is also a formula (of depth d + 1).

The notion of subformulas of a formula \varphi is defined as usual.

Semantics. Suppose that \varphi is a formula over \Sigma and t \in T_\Sigma is a tree. We say that t satisifies \varphi, in notation t \models \varphi, if one of the following holds:

1. \varphi = \sigma for some \sigma \in \Sigma and Root(t) = \sigma;
2. \varphi = (\neg \varphi_1) and it is not the case that t \models \varphi_1;
3. \varphi = (\varphi_1 \lor \varphi_2) and t \models \varphi_1 or t \models \varphi_2;
4. \varphi = \mathcal{L}(\delta \mapsto \varphi_\delta)_{\delta \in \Delta} and the characteristic tree \hat{t} \in T_{\Delta} of t determined by the family (\varphi_\delta)_{\delta \in \Delta} belongs to \mathcal{L}. Here \hat{t} is a \Delta-relabeling of t (such a relabeling always exists since the signatures \Sigma and \Delta have the common rank type \mathcal{R}); a vertex v with t(v) \in \Sigma_n is relabeled to \delta \in \Delta_n if one of the following holds:

- either t|_v \models \varphi_\delta and \delta is the first (least wrt. <\Delta) such element of \Delta_n;
- or t|_v \not\models \varphi_\delta for any \delta' \in \Delta_n, and \delta is the last (greatest wrt. <\Delta) element of \Delta_n.
For any formula \(\varphi \) over \(\Sigma \), we let \(L_\varphi \) denote the language defined by \(\varphi \): \(L_\varphi = \{ t \in T_\Sigma : t \models \varphi \} \).

We will consider subsets of formulas associated with classes of tree languages. When \(\mathcal{L} \) is a class of tree languages, we let \(\text{FTL}(\mathcal{L}) \) denote the collection of formulas all of whose subformulas of the form (2.1) above are such that \(L \) belongs to \(\mathcal{L} \). We define \(\text{FTL}(\mathcal{L}) \) to be the class of all languages definable by formulas in \(\text{FTL}(\mathcal{L}) \).

We say the formulas \(\varphi \) and \(\psi \) are equivalent, denoted \(\varphi \equiv \psi \) if \(L_\varphi = L_\psi \). We also define the equivalence relation \(\equiv^L \) on \(T_\Sigma \) for any signature \(\Sigma \) and integer \(n \geq 0 \): let \(s \equiv^L t \) hold for the trees \(s, t \in T_\Sigma \) if \(s \) and \(t \) satisfy the same set of \(\text{FTL}(\mathcal{L}) \)-formulas (over \(\Sigma \)) having depth at most \(n \). The relation \(s \equiv^L t \) denotes that \(s \) and \(t \) satisfy the same set of \(\text{FTL}(\mathcal{L}) \)-formulas, regardless of depth.

We will use the Boolean connectives \(\land \) (conjunction) and \(\rightarrow \) (implication) as abbreviations. Moreover, for any signature \(\Sigma \) and \(n \in \mathbb{R} \), we define \(t^n \equiv \bigvee_{\sigma \in \Sigma} p_\sigma \) and \(\overline{t^n} = \neg t^n \). Thus, \(t \models t^n \) if and only if \(\text{Root}(t) \in \Sigma_n \).

It was shown in [15] that the operator \(\text{FTL} \) preserves regularity and is a closure operator on classes of regular languages, i.e. the following holds:

Theorem 2.1.1 For any class \(\mathcal{L} \) of regular tree languages the following all hold:

1. \(\text{FTL}(\mathcal{L}) \) is a class of regular tree languages;
2. \(\mathcal{L} \subseteq \text{FTL}(\mathcal{L}) \);
3. \(\text{FTL}(\text{FTL}(\mathcal{L})) \subseteq \text{FTL}(\mathcal{L}) \).

Moreover, if \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) are classes of regular tree languages, then \(\mathcal{L}_1 \subseteq \mathcal{L}_2 \) implies \(\text{FTL}(\mathcal{L}_1) \subseteq \text{FTL}(\mathcal{L}_2) \).

Given a tree \(t \in T_\Sigma \) and a family \((\varphi_\delta)_{\delta \in \Delta} \) of formulas over \(\Sigma \), we say that the family \((\varphi_\delta)_{\delta \in \Delta} \) is deterministic over \(t \) if for any node \(v \in \text{dom}(t) \) there exists at most one \(\delta \in \Delta \) with \(t|_v \models \varphi_\delta \), moreover, this \(\delta \), if exists, is contained in \(\Delta_n \), where \(n \) is the arity of \(t(v) \). The notion is extended to tuples of \(\Sigma \)-trees: a family of formulas is deterministic over a tuple \(t = (t_1, \ldots, t_n) \) if it is deterministic over each \(t_i, i \in [n] \). The family is called deterministic if it is deterministic over any tree \(t \in T_\Sigma \).

Given a tree \(t \in T_\Sigma \) and a family \((\varphi_\delta)_{\delta \in \Delta} \) of formulas over \(\Sigma \), we say that the family \((\varphi_\delta)_{\delta \in \Delta} \) is complete over \(t \) if for any node \(v \in \text{dom}(t) \) there exists at least one \(\delta \in \Delta_n \) with \(t|_v \models \varphi_\delta \), where \(n \) is the arity of \(t(v) \). A family is complete over a tuple \((t_1, \ldots, t_n) \) of \(\Sigma \)-trees if it is complete over each \(t_i, i \in [n] \); and it is complete if it is complete over every \(t \in T_\Sigma \).
A formula \(\varphi \) is called deterministic if for each subformula of \(\varphi \) of the form (2.1) the family \((\varphi_\delta)_{\delta \in \Delta}\) is deterministic; completeness of a formula is defined similarly.

It is clear that when \(\varphi \) is a complete and deterministic formula, then the particular ordering of the signatures does not affect the language \(L_\varphi \). Also observe that for any class \(\mathcal{L} \) of tree languages and \(\text{FTL}(\mathcal{L}) \)-formula \(\varphi \), there exists an equivalent, complete and deterministic \(\text{FTL}(\mathcal{L}) \)-formula \(\varphi' \). This can be shown by induction on the depth of the formula: when the depth is 0, \(\varphi \) has no subformulas of the form (2.1); when \(\varphi = (\neg \varphi_1) \) or \(\varphi = (\varphi_1 \lor \varphi_2) \), we can define \(\varphi' = (\neg \varphi'_1) \) or \(\varphi' = (\varphi'_1 \lor \varphi'_2) \), respectively. Finally, when \(\varphi = L(\delta \mapsto \varphi_\delta)_{\delta \in \Delta} \), we can define \(\varphi' \) as

\[
L(\delta \mapsto \varphi^*_\delta)_{\delta \in \Delta},
\]

where for each \(\delta \in \Delta_n \),

\[
\varphi^*_\delta = \begin{cases}
 \mathbf{t}_n \land \bigwedge_{\delta' < \delta} (\neg \varphi'_\delta') & \text{if } \delta \text{ is the last element of } \Delta_n; \\
 \mathbf{t}_n \land \varphi^*_\delta \land \bigwedge_{\delta' < \delta} (\neg \varphi'_\delta') & \text{otherwise}.
\end{cases}
\]

From the definition of the semantics and the formulas \(\mathbf{t}_n \), and by the induction hypothesis, it is clear that the resulting formula is indeed equivalent to \(\varphi \), and is complete and deterministic.

Thus, for any formula \(\varphi \) of \(\text{FTL}(\mathcal{L}) \) there exists an equivalent, complete and deterministic formula \(\varphi' \) of \(\text{FTL}(\mathcal{L}) \), having at most the same depth as \(\varphi \).

The following has been also shown in [15]:

Theorem 2.1.2 For any class \(\mathcal{L} \) of tree languages, \(\text{FTL}(\mathcal{L}) \) is closed under the Boolean operations and inverse literal homomorphisms.

Moreover, when \(\mathcal{L} \) is a class of regular tree languages, then \(\text{FTL}(\mathcal{L}) \) is a literal variety of tree languages if and only if for each quotient \(L \) of a language in \(\mathcal{L} \) it holds that \(L \in \text{FTL}(\mathcal{L}) \).

2.2 Products of tree automata

In this section we define the cascade [43], Moore and strict Moore [18] products of tree automata, as well as the connected variants of these notions, giving rise to (connected) cascade, Moore and strict Moore pseudovarieties of finite (connected) tree automata. These pseudovarieties (especially the connected Moore pseudovarieties) will play a fundamental role in the algebraic characterization of the logics \(\text{FTL}(\mathcal{L}) \) developed in the next section.
2.2. PRODUCTS OF TREE AUTOMATA

2.2.1 The Moore product and Moore pseudovarieties

In this subsection we define the three product operations mentioned above, and provide several examples for further use.

Suppose $A = (A, \Sigma)$ and $B = (B, \Delta)$ are tree automata and γ is a family $(\gamma_n)_{n \in \mathbb{R}}$ of functions, $\gamma_n : A^n \times \Sigma \rightarrow \Delta_n$ for each $n \in \mathbb{R}$. Then the cascade product $A \times_\gamma B$ of A and B determined by γ is the tree automaton $(A \times B, \Sigma)$ with

$$\sigma^{A \times_\gamma B}((a_1, b_1), \ldots, (a_n, b_n)) = (\sigma^A(a_1, \ldots, a_n), \delta B(b_1, \ldots, b_n)),$$

where

$$\delta = \gamma_n(a_1, \ldots, a_n, \sigma)$$

for all $\sigma \in \Sigma_n$, $n \in \mathbb{R}$ and $(a_1, b_1), \ldots, (a_n, b_n) \in A \times B$. (Note that when $n = 0$, δ is a function of σ).

We state the following lemma:

Lemma 2.2.1 Suppose $A = (A, \Sigma)$ and $B = (B, \Delta)$ are tree automata and $C = (C, \Sigma) = A \times_\gamma B$ is a cascade product. Then for any ΣCX_n-polynomial symbol p and states $a_1, \ldots, a_n \in A$ of A, there exists a relabeling $p' \in \Sigma AX_n$ and a relabeling $p'' \in \Delta BX_n$ of p such that

$$p^C((a_1, b_1), \ldots, (a_n, b_n)) = (p'^A(a_1, \ldots, a_n), p'' B(b_1, \ldots, b_n)),$$

for any $b_1, \ldots, b_n \in B$. Moreover, p' can be assumed to be the relabeling of p determined by the projection $A \times B \rightarrow A$, $(a, b) \mapsto a$.

Proof. Let A, B, C, a_1, \ldots, a_n as given above. We define the relabelings p' and p'' of a polynomial symbol $p \in T_{\Sigma, C}(X_n)$ as follows:

1. If $p = x_i \in X_n$, let $p' = p'' = x_i$.
2. If $p = (a, b) \in A \times B$, let $p' = a$ and $p'' = b$.
3. If $p = \sigma(p_1, \ldots, p_k)$, let $p' = \sigma(p'_1, \ldots, p'_k)$ and $p'' = \delta(p''_1, \ldots, p''_k)$, where $\delta = \gamma_k(p'^A_1(a_1, \ldots, a_n), \ldots, p'^A_k(a_1, \ldots, a_n), \sigma)$.

It is easy to check that p' and p'' satisfy the required properties for any states $b_1, \ldots, b_n \in B$. \qed
We call a cascade product \(A \times \gamma B \) a Moore product if there exists a rank-preserving function \(\alpha : A \times \Sigma \to \Delta \) (i.e. for any \(\sigma \in \Sigma_n, n \in R \) and \(a \in A \), \(\alpha(a, \sigma) \in \Delta_n \) holds) with
\[
\gamma_n(a_1, \ldots, a_n, \sigma) = \alpha(\sigma^h(a_1, \ldots, a_n), \sigma)
\]
for all \(\sigma \in \Sigma_n, n \in R \) and \(a_1, \ldots, a_n \). Moore products of the above form will be written as \(A \times_\alpha B \), i.e. by specifying the function \(\alpha : A \times \Sigma \to \Delta \).

We call a Moore product \(A \times \alpha B \), \(\alpha : A \times \Sigma \to \Delta \) a strict Moore product if there is a function \(\beta : A \times R \to \Delta \) with \(\alpha(a, \sigma) = \beta(a, n) \), for all \(a \in A \) and \(\sigma \in \Sigma_n \). Accordingly, we will sometimes specify a strict Moore product by the function \(\beta \).

Note that the direct product is a special case of the Moore product but it is not a special case of the strict Moore product. Any class of finite tree automata which is closed under the Moore product is also closed under the direct product, but the same fact is not true for the strict Moore product: the class of all finite tree automata \(\mathcal{A} = (A, \Sigma) \) such that for each \(n \in R \) and \(a_1, \ldots, a_n \) the cardinality of the set \(\{ \sigma^h(a_1, \ldots, a_n) : \sigma \in \Sigma_n \} \) is at most 2 is closed under the strict Moore product but not under the direct product.

Remark 2.2.2 In the classical case, i.e. when \(R = \{0,1\} \), the function \(\beta \) in a strict Moore product \(A \times_\alpha B \) assigns an output symbol in \(\Delta_1 \) to each pair \((a,1)\), so that forgetting about the symbols of rank 0, \((A, \beta)\) may be viewed as a Moore automaton with input alphabet \(\Sigma_1 \) and output alphabet \(\Delta_1 \). This explains the terminology.

When \(\mathcal{A} = (A, \Sigma) \) and \(\mathcal{B} = (B, \Delta) \) are connected tree automata and \(\gamma \) is a family \((\gamma_n)_{n \in R}\) of functions, \(\gamma_n : A^n \times \Sigma \to \Delta_n \), the connected cascade product of \(\mathcal{A} \) and \(\mathcal{B} \) determined by \(\gamma \), also written as \(\mathcal{A} \times_\gamma \mathcal{B} \), is the connected part of the cascade product of \(\mathcal{A} \) and \(\mathcal{B} \) determined by \(\gamma \). The notions of connected Moore product and connected strict Moore product are defined analogously.

Recall that when \(\mathcal{V} \) is a class of finite tree automata, then \(\mathcal{V}^c \) denotes the class of finite connected tree automata consisting of the connected parts of the members of \(\mathcal{V} \). Thus, when \(\mathcal{V} \) is a pseudovariety of finite tree automata, \(\mathcal{V}^c \) consists of the connected tree automata contained in \(\mathcal{V} \) and is a pseudovariety of finite connected tree automata. We will use the superscript \(^c\) to indicate that a class is a pseudovariety of finite connected tree automata.

When \(\mathcal{V} \) and \(\mathcal{W} \) are pseudovarieties of finite tree automata, let \(\mathcal{V} \times \mathcal{W} \) denote the pseudovariety of finite tree automata generated by all direct products \(\mathcal{A} \times \mathcal{B} \) with \(\mathcal{A} \in \mathcal{V} \) and \(\mathcal{B} \in \mathcal{W} \). Moreover, let \(\mathcal{V} \times_M \mathcal{W} \) denote the pseudovariety of finite tree automata generated by all Moore products \(\mathcal{A} \times \alpha \mathcal{B} \) with \(\mathcal{A} \in \mathcal{V} \) and \(\mathcal{B} \in \mathcal{W} \). Similarly, let \(\mathcal{V} \times_s \mathcal{W} \) and \(\mathcal{V} \times_c \mathcal{W} \) respectively denote the pseudovarieties of finite tree automata generated by all strict Moore products and cascade products \(\mathcal{A} \times_\alpha \mathcal{B} \) with \(\mathcal{A} \in \mathcal{V} \) and \(\mathcal{B} \in \mathcal{W} \). Moreover,
when K is an arbitrary class of finite tree automata, let $\langle K \rangle_s$, $\langle K \rangle_M$ and $\langle K \rangle_c$ respectively denote the least pseudovariety of finite tree automata containing K which is closed under the strict Moore, Moore and cascade product, respectively. We call pseudovarieties of the form $\langle K \rangle_s$, $\langle K \rangle_M$ and $\langle K \rangle_c$ strict Moore pseudovarieties, Moore pseudovarieties and cascade pseudovarieties, respectively.

The above notions are extended also to finite connected tree automata as follows. When V^c and W^c are pseudovarieties of finite connected tree automata, let $V^c \times W^c$ denote the pseudovariety of finite connected tree automata generated by all connected direct products $A \times B$ with $A \in V^c$ and $B \in W^c$. Also, let $V^c \times_M W^c$ denote the pseudovariety of finite connected tree automata generated by all connected Moore products $A \times_a B$ with $A \in V^c$ and $B \in W^c$. Similarly, let $V^c \times_s W^c$ and $V^c \times_c W^c$ respectively denote the pseudovarieties of finite connected tree automata generated by all connected strict Moore products and connected cascade products $A \times_a B$ with $A \in V^c$ and $B \in W^c$. Finally, when K^c is an arbitrary class of finite connected tree automata, let $\langle K^c \rangle_M$, $\langle K^c \rangle_s$, $\langle K^c \rangle_c$ respectively denote the least pseudovariety of finite connected tree automata containing K^c which is closed under the connected Moore product, the connected strict Moore product, and the connected cascade product. We call pseudovarieties of the form $\langle K^c \rangle_s$ and $\langle K^c \rangle_M$ connected strict Moore pseudovarieties and connected Moore pseudovarieties, respectively, and pseudovarieties of the form $\langle K^c \rangle_c$ connected cascade pseudovarieties.

When $K = \{A_1, \ldots, A_n\}$, for some finite tree automata A_1, \ldots, A_n, we will write $\langle A_1, \ldots, A_n \rangle_M$ for $\langle K \rangle_M$. The notations $\langle A_1, \ldots, A_n \rangle_s$ and $\langle A_1, \ldots, A_n \rangle_c$ are used in the same way. Each of these notations is extended to connected tree automata as well. It will always be clear whether $\langle A_1, \ldots, A_n \rangle_M$ ($\langle A_1, \ldots, A_n \rangle_s$, $\langle A_1, \ldots, A_n \rangle_c$, resp.) stands for the generated Moore (strict Moore, cascade, resp.) pseudovariety or for the generated connected Moore (strict Moore, cascade, resp.) pseudovariety.

Proposition 2.2.3 For any pseudovarieties V and W of finite tree automata, $V \times_M W$ is the class of all divisors of Moore products $A \times_a B$ with $A \in V$ and $B \in W$. A similar fact holds for $V \times_s W$ and $V \times_c W$.

Proof. Let A, B be finite Σ-tree automata contained in V, $A' = (A', \Delta^1)$ and $B' = (B', \Delta^2)$ finite tree automata contained in W, and let $A \times_a A'$, $B \times_B B'$ be Moore products. We show that $(A \times_a A') \times (B \times_B B')$ is isomorphic to a Moore product $C \times_\gamma C'$, where $C \in V$ and $C' \in W$.

Indeed, consider the direct product $C = A \times B$ and define C' as the tree automaton $(A' \times B', \Delta)$, where for each $n \in R$, $\Delta_n = \Delta^1_n \times \Delta^2_n$ and the function symbols are interpreted componentwise, i.e.

$$
(\delta_1, \delta_2)^C((a'_1, b'_1), \ldots, (a'_n, b'_n)) = (\delta_1^{A'}(a'_1, \ldots, a'_n), \delta_2^{B'}(b'_1, \ldots, b'_n))
$$
for each $\delta_1 \in \Delta_1^n$, $\delta_2 \in \Delta_2^n$, $a_1', \ldots, a_n' \in A'$ and $b_1', \ldots, b_n' \in B'$. It is easy to see that C' is a direct product of Δ-renamings of A' and B'.

Now $(A \times_\alpha A') \times (B \times_\beta B')$ is isomorphic to the Moore product $C \times_\gamma C'$ where γ is defined by

$$\gamma((a, b), \sigma) = \left(\alpha(a, \sigma), \beta(b, \sigma)\right)$$

for each $(a, b) \in C$, $\sigma \in \Sigma$. An isomorphism $C \times_\gamma C' \to (A \times_\alpha A') \times (B \times_\beta B')$ is given by the map $((a, b), (a', b')) \mapsto ((a, a'), (b, b'))$ for all states $((a, b), (a', b'))$ of $C \times_\gamma C'$.

It is easy to see that any renaming of a Moore product $A \times_\alpha A'$ is isomorphic to a Moore product $A' \times_\alpha A$ where A' is a renaming of A. Since any divisor of a divisor of A is also a divisor of A, the claim is proved for Moore pseudovarieties.

The case of the cascade and the strict Moore product is analogous.

It is easy to check that for any pseudovarieties V and W of finite tree automata we have $(V \times_M W)^c = V^c \times_M W^c$, and similarly for the strict Moore and the cascade products. Thus Proposition 2.2.3 implies the following:

Corollary 2.2.4 For any pseudovarieties V^c and W^c of finite connected tree automata, $V^c \times_M W^c$ is the class of all quotients of connected Moore products $A \times_\alpha B$ with $A \in V^c$ and $B \in W^c$. A similar fact holds for $V^c \times_c W^c$ and $V^c \times_s W^c$.

Remark 2.2.5 The Moore product is associative on pseudovarieties: For any pseudovarieties of finite tree automata V_1, V_2, V_3,

$$(V_1 \times_M V_2) \times_M V_3 = V_1 \times_M (V_2 \times_M V_3).$$

A similar fact holds for the cascade product.

We now give some examples of Moore pseudovarieties. We say that a Σ-tree automaton A is **commutative** if it satisfies all equations

$$\sigma^A(x_1, \ldots, x_n) = \sigma^A(x_{\pi(1)}, \ldots, x_{\pi(n)})$$

for all $\sigma \in \Sigma_n$, $n \in R$, $n > 0$ and for all permutations π of the set $[n]$. Moreover, we say that a Σ-tree automaton A is **idempotent** if it satisfies the equations

$$\sigma^A(x_1, \ldots, x_n) = \sigma^A(y_1, \ldots, y_n)$$

for all $\sigma \in \Sigma_n$, $n \in R$, $n > 0$ where $\{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$. Note that A is idempotent if and only if for each $\sigma \in \Sigma_n$ and $a_1, \ldots, a_n \in A$, $\sigma^A(a_1, \ldots, a_n)$ depends only on the set $\{a_1, \ldots, a_n\}$. In particular, any idempotent tree automaton is commutative.
Proposition 2.2.6 Suppose that \(\mathcal{C} = \mathbb{A} \times_{\alpha} \mathbb{B} \) is a Moore product. If \(\mathbb{A} \) and \(\mathbb{B} \) are commutative, or idempotent, then so is \(\mathcal{C} \).

Proof. Assume that \(\mathbb{A} \) is a \(\Sigma \)-tree automaton and \(\mathbb{B} \) is a \(\Delta \)-tree automaton, so that \(\alpha : A \times \Sigma \to \Delta \). Suppose that \(\mathbb{A} \) and \(\mathbb{B} \) are commutative. Then for all \(\sigma \in \Sigma_n, n \in R, n > 0, a_1, \ldots, a_n \in A \) and permutations \(\pi \),

\[
\alpha(\sigma^A(a_1, \ldots, a_n), \sigma) = \alpha(\sigma^A(a_{\pi(1)}, \ldots, a_{\pi(n)}), \sigma).
\]

Thus, when \(b_1, \ldots, b_n \in B \) and \(\delta = \alpha(\sigma^A(a_1, \ldots, a_n), \sigma) \),

\[
\sigma^C((a_1, b_1), \ldots, (a_n, b_n)) = (\sigma^A(a_1, \ldots, a_n), \delta^B(b_1, \ldots, b_n))
\]

\[
= (\sigma^A(a_{\pi(1)}, \ldots, a_{\pi(n)}), \delta^B(b_{\pi(1)}, \ldots, b_{\pi(n)}))
\]

\[
= \sigma^C((a_{\pi(1)}, b_{\pi(1)}), \ldots, (a_{\pi(n)}, b_{\pi(n)})).
\]

The argument is similar in the idempotent case.

We say that a \(\Sigma \)-tree automaton \(\mathbb{A} \) is stutter invariant if

\[
\sigma^A(a_1, \ldots, a_{n-1}, \sigma^A(a_1, \ldots, a_n)) = \sigma^A(a_1, \ldots, a_n)
\]

for all \(\sigma \in \Sigma_n, n > 0, a_1, \ldots, a_n \in A \).

Proposition 2.2.7 Suppose that \(\mathcal{C} = \mathbb{A} \times_{\alpha} \mathbb{B} \) is a Moore product. If \(\mathbb{A} \) and \(\mathbb{B} \) are stutter invariant, then so is \(\mathcal{C} \).

Proof. Assume that \(\mathbb{A} = (A, \Sigma) \) and \(\mathbb{B} = (B, \Delta) \) are tree automata, so that \(\alpha : A \times \Sigma \to \Delta \). Suppose that \(\mathbb{A} \) and \(\mathbb{B} \) are stutter invariant. Let \(\sigma \in \Sigma_n, n > 0, n \in R, a_1, \ldots, a_n \in A, b_1, \ldots, b_n \in B \). Since \(\mathbb{A} \) is stutter invariant, we have

\[
\sigma^A(a_1, \ldots, a_{n-1}, \sigma^A(a_1, \ldots, a_n)) = \sigma^A(a_1, \ldots, a_n).
\]

Thus,

\[
\alpha(\sigma^A(a_1, \ldots, a_n), \sigma) = \alpha(\sigma^A(a_1, \ldots, a_{n-1}, \sigma^A(a_1, \ldots, a_n)), \sigma).
\]

Let \(\delta \) denote this symbol. Then, using the assumption that \(\mathbb{B} \) is also stutter invariant,

\[
\sigma^C((a_1, b_1), \ldots, (a_n, b_n))
\]

\[
= (\sigma^A(a_1, \ldots, a_n), \delta^B(b_1, \ldots, b_n))
\]

\[
= (\sigma^A(a_1, \ldots, a_{n-1}, \sigma^A(a_1, \ldots, a_n), \delta^B(b_1, \ldots, b_{n-1}, \delta^B(b_1, \ldots, b_n)))
\]

\[
= \sigma^C((a_1, b_1), \ldots, (a_{n-1}, b_{n-1}), \sigma^C((a_1, b_1), \ldots, (a_n, b_n))).
\]
It is clear that any divisor of a commutative tree automaton is commutative; similarly, idempotence and stutter invariance are also preserved under taking divisors. This implies the following:

Corollary 2.2.8 The classes of commutative, idempotent, and stutter invariant finite tree automata, denoted \(\text{Com}, \text{Idem} \) and \(\text{Stu} \), respectively, are all Moore pseudovarieties, as is any intersection of these classes.

It is easy to check that when a class \(V \) of finite tree automata forms a Moore (cascade, resp.) pseudovariety of finite tree automata, then the class \(V^c \) forms a connected Moore (connected cascade, resp.) pseudovariety of finite connected tree automata. Thus the following also holds:

Corollary 2.2.9 The classes of commutative, idempotent, and stutter invariant finite connected tree automata, denoted \(\text{Com}^c, \text{Idem}^c \) and \(\text{Stu}^c \), respectively, are all connected Moore pseudovarieties, as is any intersection of these classes.

2.2.2 Definite tree automata

Let \(\Sigma \) be a signature, \(k \geq 0 \) an integer and \(s, t \in T_\Sigma(X) \) trees. We say that \(s \) and \(t \) agree up to depth \(k \) if one of the following holds:

1. \(k = 0 \) and \(\text{Root}(s) = \text{Root}(t) \);
2. \(s = t \in X \);
3. \(k > 0, s = \sigma(s_1, \ldots, s_n), t = \sigma(t_1, \ldots, t_n) \) holds for some \(\sigma \in \Sigma_n \) and \(\Sigma X \)-trees \(s_1, \ldots, s_n, t_1, \ldots, t_n \), moreover, the trees \(s_i \) and \(t_i \) agree up to depth \(k - 1 \) for each \(i \).

Agreement of polynomial symbols \(p, q \in T_\Sigma(A)(X) \) up to some depth \(k \) is defined analogously.

We say that a \(\Sigma \)-tree automaton \(A \) is \(k \)-definite, for some \(k \geq 1 \), if for all polynomial symbols \(p, q \in T_{\Sigma,A} \), if \(p \) and \(q \) agree up to depth \(k - 1 \), then \(p^A = q^A \). By extension, a tree automaton is definite if it is \(k \)-definite for some \(k \). We let \(D_k \) denote the class of all finite \(k \)-definite tree automata and \(D \) the class of all finite definite tree automata. Thus, \(D_k^c \) and \(D^c \) denote the class of all finite \(k \)-definite connected tree automata and the class of all finite definite connected tree automata, respectively.
2.2. PRODUCTS OF TREE AUTOMATA

It is clear that each D_k is a pseudovariety of finite tree automata as is the class D.

We call a tree language $L \subseteq T_{\Sigma}$ k-definite for some $k \geq 1$ if for any two trees $s, t \in T_{\Sigma}$, if s and t agree up to depth $k - 1$, then $s \in L \iff t \in L$. Also, we say that a tree language is definite if it is k-definite for some k. For each k, let D_k denote the class of all k-definite tree languages and let D be the union of the classes D_k, so that D is the class of all definite tree languages. Then each D_k is the literal variety of tree languages corresponding to D^c_k by the Eilenberg correspondence, moreover, D is the literal variety corresponding to D^c. Definite tree languages were studied e.g. in [33].

The following fact was shown in [12]:

Proposition 2.2.10 For all $n, m \geq 1$, it holds that $D_n \times_c D_m = D_{n+m}$ and thus $D^c_n \times_c D^c_m = D^c_{n+m}$. Hence, $D = \langle D_1 \rangle_c$ and $D^c = \langle D^c_1 \rangle_c$.

Observe that a Σ-tree automaton A is 1-definite if and only if $\text{Img}_A(\sigma)$ is a singleton set for each $\sigma \in \Sigma$.

Proposition 2.2.11 D_1 is a Moore pseudovariety of finite tree automata.

Proof. We only prove that if A and B are in D_1, and $C = A \times_c B$ is any Moore product of A and B, then C is also in D_1. Let us write in more detail $A = (A, \Sigma)$, $B = (B, \Delta)$, $C = (C, \Sigma)$ and $\alpha : A \times \Sigma \rightarrow \Delta$. Assume that $\sigma \in \Sigma_n$, $n \in R$ and $(a_1, b_1), \ldots, (a_n, b_n)$ and $(c_1, d_1), \ldots, (c_n, d_n)$ are all in C. Then

\[
\sigma^C((a_1, b_1), \ldots, (a_n, b_n)) = (\sigma^A(a_1, \ldots, a_n), \delta^B(b_1, \ldots, b_n))
\]

\[
\sigma^C((c_1, d_1), \ldots, (c_n, d_n)) = (\sigma^A(c_1, \ldots, c_n), \delta'^B(d_1, \ldots, d_n))
\]

where

\[
\delta = \alpha(\sigma^A(a_1, \ldots, a_n), \sigma)
\]

\[
\delta' = \alpha(\sigma^A(c_1, \ldots, c_n), \sigma).
\]

However, $\sigma^A(a_1, \ldots, a_n) = \sigma^A(c_1, \ldots, c_n)$, since $A \in D_1$, and thus $\delta = \delta'$. But then $\delta^B(b_1, \ldots, b_n) = \delta'^B(d_1, \ldots, d_n)$, since $B \in D_1$. Thus

\[
\sigma^C((a_1, b_1), \ldots, (a_n, b_n)) = \sigma^C((c_1, d_1), \ldots, (c_n, d_n)).
\]

The Boolean signature Bool has exactly two symbols of rank n, for each $n \in R$, the symbols \uparrow_n and \downarrow_n.

Proposition 2.2.12 The Moore pseudovariety D_1 of finite tree automata is generated by the two-element Bool-tree automaton $D_0 = (\{0,1\}, \text{Bool})$, where for each $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \{0,1\}$ we have

\[
\uparrow_{D_0}^n (a_1, \ldots, a_n) = 1 \quad \text{and} \quad \downarrow_{D_0}^n (a_1, \ldots, a_n) = 0;
\]

that is, $\langle D_0 \rangle_M = D_1$.

For any Σ, let A_Σ denote the Σ-tree automaton whose state set is Σ such that $\sigma^{A_\Sigma}(\sigma_1, \ldots, \sigma_n) = \sigma$ for all $\sigma_1, \ldots, \sigma_n \in \Sigma$ and $\sigma \in \Sigma_n$. It is clear that A_Σ is in D_1^c. Moreover, any finite connected Σ-tree automaton $B \in D_1^c$ is a quotient of A_Σ. As an extension, when A is some set, let A^A_Σ denote the tree automaton whose state set is $\Sigma + A$ (that is, the disjoint union of Σ and A) and where each function symbol $\sigma \in \Sigma$ is interpreted as a constant function with value σ. Clearly, A^A_Σ is contained in D_1 for any signature Σ and finite set A. Also observe that any 1-definite Σ-tree automaton $A = (A, \Sigma)$ is a quotient of A^A_Σ.

Proposition 2.2.13 For any pseudovariety V of finite tree automata we have

\[
V \times_M D_1 = D_1 \times V.
\]

Consequently, $V^c \times_M D_1^c = D_1^c \times V^c$.

Proof. Suppose that $A = (A, \Sigma)$ is a Σ-tree automaton in V and $B = (B, \Delta)$ is a Δ-tree automaton in D_1. Consider a Moore product $C = A \times_\alpha B$. Since B is in D_1, for each $\delta \in \Delta_n$ there exists some $\delta' \in B$ such that $\text{Img}_B(\delta') = \{\delta\}$. Thus, C is a quotient of the direct product $A^B_\Sigma \times A$: a homomorphism is given by $(b, a) \mapsto (a, b)$ and $(\sigma, a) \mapsto (a, \alpha(a, \sigma))$ for each $a \in A$, $b \in B$ and $\sigma \in \Sigma$.

Proposition 2.2.14 For any pseudovariety V of finite tree automata,

\[
D_1 \times_M V = D_1 \times V.
\]

Thus, $D_1^c \times_M V^c = D_1^c \times V^c$ also holds for any pseudovariety V^c of finite connected tree automata.

Proof. We only have to prove that $D_1 \times_M V \subseteq D_1 \times V$. Let $A = (A, \Sigma)$ be a finite 1-definite Σ-tree automaton, $B = (B, \Delta) \in V$ a finite Δ-tree automaton and $C = A \times_\alpha B$ a Moore product.
2.2. PRODUCTS OF TREE AUTOMATA

Let B' be the renaming of B determined by the rank preserving map $\sigma \mapsto \alpha(\sigma, \sigma)$, where σ is the unique element of $\text{Img}_A(\sigma)$. Then C is a homomorphic image of the direct product $A^A \times B'$: a homomorphism is given by $(a, b) \mapsto (a, b)$ and $(\sigma, b) \mapsto (\sigma, b)$ for each $a \in A$, $b \in B$ and $\sigma \in \Sigma$.

Corollary 2.2.15 For any Moore pseudovariety V of finite tree automata, $D_1 \times V$ is a Moore pseudovariety. Thus, $(D_1 \cup V)_M = D_1 \times V$. Analogous facts hold for connected Moore pseudovarieties.

Proof.

Let a be a Σ-tree automaton in V, b a Δ-tree automaton in W, and let $C = A \times A^\Sigma \times B'$ be a Moore product. It suffices to show that there exists a strict Moore product $C' = A' \times B'$ with $A' \in V \times D_1$ which can be mapped homomorphically onto C.

Let $A' = A \times A^\Sigma$ and let β be the function $\beta((a, \sigma), n) = \alpha(a, \sigma)$, for all $a \in A$ and $\sigma \in \Sigma_n$. When $\sigma \notin \Sigma_n$, define $\beta((a, \sigma), n)$ arbitrarily. A homomorphism $C' \rightarrow C$ is defined by $((a, \sigma), b) \mapsto (a, b)$. ■

2.2.3 Relating the three products

In this subsection we relate the Moore product to the strict Moore product and to the cascade product. As a first observation we note that the Moore product is strictly weaker than the cascade product, since $\langle D_0 \rangle_M = D_1 \subset D = \langle D_0 \rangle_c$.

Proposition 2.2.16 For any pseudovarieties V and W of finite tree automata,

$$V \times_M W \subseteq (V \times D_1) \times_s W.$$

Thus, if $D_1 \subseteq V$, then $V \times_s W = V \times_M W$.

Proof. Let A be a Σ-tree automaton in V, B a Δ-tree automaton in W, and let $C = A \times A^\Sigma \times B'$ be a Moore product. It suffices to show that there exists a strict Moore product $C' = A' \times B'$ with $A' \in V \times D_1$ which can be mapped homomorphically onto C.

Let $A' = A \times A^\Sigma$ and let β be the function $\beta((a, \sigma), n) = \alpha(a, \sigma)$, for all $a \in A$ and $\sigma \in \Sigma_n$. When $\sigma \notin \Sigma_n$, define $\beta((a, \sigma), n)$ arbitrarily. A homomorphism $C' \rightarrow C$ is defined by $((a, \sigma), b) \mapsto (a, b)$. ■
Corollary 2.2.17 For any pseudovariety V of finite tree automata, if $D_1 \subseteq V$ then \(\langle V \rangle_M = \langle V \rangle_s \).

Now we turn our attention to the cascade product.

Suppose that A and B are finite Σ-tree and Δ-tree automata, respectively, and consider a cascade product $A \times_\gamma B$. We will give two constructions of a Moore product $A_0 \times_\alpha B$ such that $A \times_\gamma B$ is a quotient of $A_0 \times_\alpha B$. In the first construction, $A_0 = A_\gamma$ will be a cascade product of A and a finite 1-definite tree automaton. In the second construction, $A_0 = \text{Del}(A)$ will be a divisor of a Moore product of A and a finite 2-definite tree automaton.

Define $A_\gamma = (A_\gamma, \Sigma)$ as the cascade product $A \times_\gamma A_\Delta$. Then, the function symbols are interpreted as

$$
\sigma^{A_\gamma}((a_1, \delta_1), \ldots, (a_n, \delta_n)) = (\sigma^A(a_1, \ldots, a_n), \gamma_\Delta(a_1, \ldots, a_n, \sigma)),
$$

for all $\sigma \in \Sigma_n, (a_i, \delta_i) \in A \times \Delta, i \in [n]$.

Lemma 2.2.18 Any cascade product $A \times_\gamma B$ of a Σ-tree automaton A and a Δ-tree automaton B is a quotient of a strict Moore product $A_\gamma \times_\beta B$.

Proof. We define β so that $\beta((a, \delta), n) = \delta$, for all $(a, \delta) \in A_\gamma$ with $\delta \in \Delta_n$. A homomorphism $A_\gamma \times_\beta B \to A \times_\gamma B$ maps a state $((a, \delta), b)$ of $A_\gamma \times_\beta B$ to (a, b). ■

Corollary 2.2.19 For any pseudovarieties V and W of finite tree automata,

$$
V \times_c W \subseteq (V \times_c D_1) \times_s W.
$$

Thus, if $V \times_c D_1 \subseteq V$, then $V \times_c W = V \times_M W = V \times_s W$.

Proof. We have to show that each cascade product $A \times_\gamma B$ with $A \in V$ and $B \in W$ is contained in $(V \times_c D_1) \times_s W$. But by Lemma 2.2.18, $A \times_\gamma B$ is a quotient of a strict Moore product $A_\gamma \times_\beta B$, and clearly, $A_\gamma \in V \times_c D_1$. ■

Corollary 2.2.20 Suppose that V is a Moore pseudovariety with $D_1 \subseteq V$. Then V is a cascade pseudovariety if and only if $V \times_c D_1 \subseteq V$.

Proof. Suppose that $V \times_c D_1 \subseteq V$. Then $V \times_c V = V \times_M V$, so that V is a Moore pseudovariety if and only if it is a cascade pseudovariety. ■
2.2. PRODUCTS OF TREE AUTOMATA

We now turn to the second construction. Let \(A = (A, \Sigma) \) be a finite \(\Sigma \)-tree automaton. We denote the set \(A \cup \bigcup_{n \in R} (\Sigma_n \times A^n) \) by \(\hat{A} \).

Let \(\hat{\Sigma} \) denote the signature with

\[
\hat{\Sigma}_n = \{ \sigma_a : \sigma \in \Sigma_n, a \in \text{Img}_A(\sigma) \},
\]

for each \(n \in R \). Note that since \(A \) is finite, \(\hat{\Sigma} \) is also finite, and thus a signature (of rank type \(R \)).

Now we construct a finite \(\hat{\Sigma} \)-tree automaton \(\hat{A} = (\hat{A}, \hat{\Sigma}) \) as follows. For any \(\sigma_a \in \hat{\Sigma}_n \) and \(b_1, \ldots, b_n \in \hat{A} \), let

\[
\sigma_a^\hat{A}(b_1, \ldots, b_n) = \begin{cases}
(\sigma, a_1, \ldots, a_n) & \text{if } \sigma^\hat{A}(a_1, \ldots, a_n) = a; \\
(\sigma, c_1, \ldots, c_n) & \text{otherwise,}
\end{cases}
\]

where for each \(i \in [n] \),

\[
a_i = \begin{cases}
 b_i & \text{if } b_i \in A; \\
\sigma_i^\hat{A}(a_{i1}, \ldots, a_{ik}) & \text{if } b_i = (\sigma_i, a_{i1}, \ldots, a_{ik}) \text{ for some } \sigma_i \in \Sigma_k, a_{i1}, \ldots, a_{ik} \in A,
\end{cases}
\]

and \(c_1, \ldots, c_n \in A \) are arbitrary fixed elements of \(A \), depending only on \(\sigma \) and \(a \), with \(\sigma^\hat{A}(c_1, \ldots, c_n) = a \).

The following fact is straightforward from the above definition.

Lemma 2.2.21 For any (variable-free) \(\hat{\Sigma} \hat{A} \)-polynomial symbol \(p \) with \(\text{Root}(p) = \sigma_a \) for some \(\sigma \in \Sigma_n \) and \(a \in A \) it holds that \(p^\hat{A} = (\sigma, a_1, \ldots, a_n) \) for some \(a_1, \ldots, a_n \) with \(\sigma^\hat{A}(a_1, \ldots, a_n) = a \).

With this lemma, we can prove the following:

Lemma 2.2.22 For any finite tree automaton \(A \), the tree automaton \(\hat{A} \) is contained in \(D_2 \).

Proof. Let \(p, q \) be \(\hat{\Sigma} \hat{A} \)-polynomial symbols that agree up to depth one. We show that \(p^\hat{A} = q^\hat{A} \).

When \(\text{Root}(p) \in \hat{A} \), then from \(\text{Root}(p) = \text{Root}(q) \) this clearly holds. Otherwise, write \(p = \sigma_a(p_1, \ldots, p_n) \) and \(q = \sigma_a(q_1, \ldots, q_n) \). Then for each \(i \in [n] \), \(\text{Root}(p_i) = \text{Root}(q_i) \). We define the states \(a_1, \ldots, a_n \in A \) as follows: let

\[
 a_i = \begin{cases}
\sigma_i^\hat{A}(a_{i1}, \ldots, a_{ik}) & \text{if } \text{Root}(p_i) = (\sigma_i, a_{i1}, \ldots, a_{ik}) \in \Sigma_k \times A^k; \\
 b_i & \text{if } \text{Root}(p_i) = \sigma_{ib}, \text{ for some } \sigma_i \in \Sigma, b_i \in \text{Img}_\hat{A}(\sigma_i); \\
p_i & \text{otherwise (i.e. when } p_i \in A).
\end{cases}
\]
2.2. PRODUCTS OF TREE AUTOMATA

Then,

\[p^k = q^k = \begin{cases}
(\sigma, a_1, \ldots, a_n) & \text{if } \sigma^k(a_1, \ldots, a_n) = a; \\
(\sigma, c_1, \ldots, c_n) & \text{otherwise,}
\end{cases} \]

where the states \(c_i \) are fixed elements depending only on \(\sigma \) and \(a \).

Suppose that \(A \) is a finite \(\Sigma \)-tree automaton. Then the delay automaton of \(A \) is the following \(\Sigma \)-tree automaton \(\text{Del}(A) \). The set of states of \(\text{Del}(A) \) is \(\hat{A} \) (thus, \(\text{Del}(A) \) is also finite). The operations are defined as follows. Given states \(z_i, i \in [n] \) and \(\sigma \in \Sigma_n \), let

\[\sigma^{\text{Del}(A)}(z_1, \ldots, z_n) = (\sigma, a_1, \ldots, a_n), \]

where

\[a_i = \begin{cases}
z_i & \text{if } z_i \in A; \\
\sigma_i^k(a_{i1}, \ldots, a_{ik_i}) & \text{if } z_i = (\sigma_i, a_{i1}, \ldots, a_{ik_i}) \in \Sigma_{k_i} \times A_{k_i}. \end{cases} \]

Note that \(A \) is a quotient of \(\text{Del}(A) \), a homomorphism \(\text{Del}(A) \rightarrow A \) is the map \((\sigma, a_1, \ldots, a_n) \mapsto \sigma^k(a_1, \ldots, a_n) \) for each \(\sigma \in \Sigma_n, a_1, \ldots, a_n \in A \) and \(a \mapsto a \) for each \(a \in A \). More generally, we show that the delay automaton and the strict Moore product together can be used to simulate a cascade product:

Lemma 2.2.23 Any cascade product \(\mathbb{A} \times_\gamma \mathbb{B} \) of a finite \(\Sigma \)-tree automaton \(\mathbb{A} \) and a finite \(\Delta \)-tree automaton \(\mathbb{B} \) is a quotient of a strict Moore product \(\text{Del}(\mathbb{A}) \times_\beta \mathbb{B} \).

Proof. We define \(\beta \) as

\[\beta((\sigma, a_1, \ldots, a_n), n) = \gamma(a_1, \ldots, a_n, \sigma), \]

for all \(a_1, \ldots, a_n \in A \) and \(\sigma \in \Sigma_n \). A homomorphism \(\text{Del}(\mathbb{A}) \times_\beta \mathbb{B} \rightarrow \mathbb{A} \times_\gamma \mathbb{B} \) maps \((\sigma, a_1, \ldots, a_n, b)\) to \(\sigma^k(a_1, \ldots, a_n, b)\), and \((a, b)\) to \((a, b)\) for all \(\sigma \in \Sigma_n, a, a_1, \ldots, a_n \in A \) and \(b \in B \).

Remark 2.2.24 Actually \(\mathbb{A}_\gamma \) is a quotient of \(\text{Del}(\mathbb{A}) \), so Lemma 2.2.23 follows from Lemma 2.2.18.

Lemma 2.2.25 For any finite \(\Sigma \)-tree automaton \(\mathbb{A} \), the tree automaton \(\text{Del}(\mathbb{A}) \) divides the Moore product \(\mathbb{B} = \mathbb{A} \times_\alpha \mathbb{\hat{A}} \) determined by the map \(\alpha(a, \sigma) = \sigma a \), for all \(a \in A \) and \(\sigma \in \Sigma \).
Proof. Let B' be the subautomaton of B consisting the states of the form (a, a) and of the form $(\sigma^+(a_1, \ldots, a_n), (\sigma, a_1, \ldots, a_n))$. A homomorphism $B' \to \text{Del}(A)$ is given by the map $(a, a) \mapsto a$ for each $a \in A$ and
\[
(\sigma^+(a_1, \ldots, a_n), (\sigma, a_1, \ldots, a_n)) \mapsto (\sigma, a_1, \ldots, a_n)
\]
for all $\sigma \in \Sigma_n$, $n \in \mathbb{R}$, $a_1, \ldots, a_n \in A$.

Corollary 2.2.26 For any pseudovariety V of finite tree automata and tree automaton $A \in V$, $\text{Del}(A)$ is contained in $V \times_M D_2$.

Corollary 2.2.27 For any pseudovarieties V and W of finite tree automata,
\[
V \times_c W \subseteq (V \times_M D_2) \times_s W.
\]
Thus, if $V \times_M D_2 \subseteq V$, then $V \times_c W = V \times_M W = V \times_s W$.

So finally, we have the following:

Corollary 2.2.28 For any class K of finite tree automata,
\[
\langle D_2 \cup K \rangle_M = \langle D \cup K \rangle_M = \langle D \cup K \rangle_c.
\]
In particular, from $D = \langle D \rangle_c$ we have $D = \langle D_2 \rangle_M$.

Analogous facts hold for classes of finite connected tree automata.

Summarizing the results of this subsection, we conclude the section with the following corollary:

Corollary 2.2.29 The following conditions are equivalent for any class V of finite tree automata.

1. V is a Moore pseudovariety containing D_2.
2. V is a Moore pseudovariety containing D.
3. V is a cascade pseudovariety containing D.
2.3 Definability and membership

In this section we state a characterization theorem that establishes a correspondence between the definability problem of logics of the form $\text{FTL}(\mathcal{L})$ and the membership problem of connected Moore pseudovarieties of finite connected tree automata, at least in the case when \mathcal{L} is a class of regular tree languages satisfying a natural property.

When \mathcal{L} is a class of tree languages, the *definability problem* of $\text{FTL}(\mathcal{L})$ is stated as follows: given a tree language L, is L contained in $\text{FTL}(\mathcal{L})$?

Also, when \mathcal{V}^c is a pseudovariety of finite connected tree automata, the *membership* problem of \mathcal{V}^c is stated as follows: given a finite connected tree automaton A, is it contained in \mathcal{V}^c?

Following [15], we also associate a logic $\text{FTL}(\mathcal{K}^c)$ to each class \mathcal{K}^c of finite connected tree automata. First let $\mathcal{L}_{\mathcal{K}^c}$ denote the class of regular tree languages recognizable by the members of \mathcal{K}^c. Then we let $\text{FTL}(\mathcal{K}^c)$ be the logic $\text{FTL}(\mathcal{L}_{\mathcal{K}^c})$ and define $\text{FTL}(\mathcal{K}^c) = \text{FTL}(\mathcal{L}_{\mathcal{K}^c})$. In [15] it was shown that for any class \mathcal{L} of regular tree languages, $\text{FTL}(\mathcal{L})$ is a literal variety of tree languages if and only if $\text{FTL}(\mathcal{L}) = \text{FTL}(\mathcal{K}^c)$ for some class \mathcal{K}^c of finite connected tree automata.

Our aim is to show that for every class \mathcal{K}^c of finite connected tree automata, a language L is definable in the logic $\text{FTL}(\mathcal{K}^c)$ if and only if its minimal tree automaton A_L belongs to $(D^c_1 \cup \mathcal{K}^c)_M$, the least connected Moore pseudovariety of finite connected tree automata containing \mathcal{K}^c and the 1-definite connected tree automata. As a consequence of this fact we obtain that the Eilenberg correspondence establishes a bijection between connected Moore pseudovarieties of finite connected tree automata containing D^c_1 and literal varieties of tree languages of the form $\text{FTL}(\mathcal{K}^c)$. Moreover, we obtain that for any class \mathcal{L} of regular tree languages such that any quotient of each language in \mathcal{L} belongs to $\text{FTL}(\mathcal{L})$, a language L is in $\text{FTL}(\mathcal{L})$ if and only if A_L is in the least connected Moore pseudovariety of finite connected tree automata containing D^c_1 and the minimal automata of the languages in \mathcal{L}.

We note that the following are equivalent for any regular tree language L and class \mathcal{V} of finite tree automata:

1. A_L is contained in the least connected Moore pseudovariety of finite connected tree automata containing \mathcal{V}^c;
2. A_L is contained in the least Moore pseudovariety of finite tree automata containing \mathcal{V}.

(This is due to the fact that the two above classes contain the same connected tree automata and for any regular tree language L, the minimal automaton A_L is connected).
Proposition 2.3.1 Suppose that \(\mathcal{L} \) is a class of regular tree languages, \(\mathbb{A} \) is a finite connected \(\Sigma \)-tree automaton, \(\mathbb{B} \) is a finite connected \(\Delta \)-tree automaton and \(\mathbb{C} = (C, \Sigma) = \mathbb{A} \times_\alpha \mathbb{B} \) is a connected Moore product of \(\mathbb{A} \) and \(\mathbb{B} \). If every language recognizable by \(\mathbb{A} \) or \(\mathbb{B} \) belongs to \(\text{FTL}(\mathcal{L}) \), then every language recognizable by \(\mathbb{C} \) also belongs to \(\text{FTL}(\mathcal{L}) \).

Proof. It suffices to show that for each \((a, b) \in C\), the language \(h^{-1}((a, b)) \) belongs to \(\text{FTL}(\mathcal{L}) \), where \(h \) denotes the unique homomorphism \(T_\Sigma \to C \). Recall that every connected Moore product can be viewed as a connected cascade product. Let \(\alpha \) denote the family of functions \(\mathbb{A}^n \times \Sigma_n \to \Delta_n, n \in \mathbb{R} \) determined by \(\alpha \) such that \(\mathbb{A} \times_\alpha \mathbb{B} \) is the connected cascade product corresponding to the connected Moore product \(\mathbb{A} \times_\alpha \mathbb{B} \).

By assumption, for each \(a \in \mathbb{A} \) there exists a formula \(\tau_a \) over \(\Sigma \) in \(\text{FTL}(\mathcal{L}) \) defining the tree language \(h^{-1}(\pi^{-1}(a)) \), where \(\pi \) denotes the projection \(C \to A \), \((a, b) \mapsto a \). For each \(b \in \mathbb{B} \), let \(T_b = \{ s \in T_\Delta : s^B = b \} \).

It is shown in [15] that \(h^{-1}((a, b)) \) is definable by the formula
\[
\varphi = \tau_a \land T_b(\delta \mapsto \varphi_\delta)_{\delta \in \Delta}
\]
where
\[
\varphi_\delta = \bigvee_{\alpha(a_1, \ldots, a_n, \sigma) = \delta} p_\sigma \land X_1 \tau_{a_1} \land \ldots \land X_n \tau_{a_n}.
\]
Here for each \(i \), \(X_i \tau_{a_i} \) holds for a tree if and only if its \(i \)th immediate subtree exists and satisfies the formula \(\tau_{a_i} \). But since our connected cascade product is derived from a connected Moore product, we have \(\overline{\alpha}(a_1, \ldots, a_n, \sigma) = \delta \) if and only if \(\alpha(\sigma^A(a_1, \ldots, a_n), \sigma) = \delta \). Thus we can redefine \(\varphi_\delta \) as
\[
\varphi_\delta = \bigvee_{\alpha(a', \sigma) = \delta} p_\sigma \land \tau_{a'}.
\]
(2.2)

Since by assumption each \(T_b \) is definable in \(\text{FTL}(\mathcal{L}) \), and \(\text{FTL} \) is a closure operator, it follows that there is a formula in \(\text{FTL}(\mathcal{L}) \) which is equivalent to \(\varphi \). \hfill \blacksquare

Proposition 2.3.2 Suppose that \(\varphi = K(\delta \mapsto \varphi_\delta)_{\delta \in \Delta} \) is a formula over \(\Sigma \) in \(\text{FTL}(\mathcal{L}) \), where \((\varphi_\delta)_{\delta \in \Delta} \) is a complete and deterministic family. Suppose that \(K \) is recognizable by \(\mathbb{B} \) and that each \(L_{\varphi_\delta} \) is recognizable by \(\mathbb{A} \), where \(\mathbb{A} \) and \(\mathbb{B} \) are (possibly infinite) connected tree automata. Then \(L_\varphi \subseteq T_\Sigma \) is recognizable by a connected strict Moore product of \(\mathbb{A} \) and \(\mathbb{B} \).

Proof. The proof of the corresponding fact in [15], Proposition 28 actually constructs a connected strict Moore product. \hfill \blacksquare

From these results, we can derive:
2.3. DEFINABILITY AND MEMBERSHIP

Theorem 2.3.3 For any class \mathbf{K}^c of finite connected tree automata, every language in $\text{FTL}(\mathbf{K}^c)$ is recognizable by some tree automaton in $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$.

Proof. Let φ denote a complete and deterministic formula over Σ in $\text{FTL}(\mathbf{K}^c)$. We show that L_φ is recognizable by some tree automaton in $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$. When φ is p_σ, for some $\sigma \in \Sigma$, then L_φ is 1-definite and thus recognizable by some tree automaton in \mathbf{D}_i^c. We proceed by induction on the structure of φ. Assume that $\varphi = \varphi_1 \lor \varphi_2$ such that L_{φ_i} is recognizable by A_i in $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$, $i = 1, 2$. Then L_φ is recognizable by the connected direct product $A_1 \times A_2$ which is also in $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$. When $\varphi = \neg \varphi_1$, where L_{φ_1} is recognizable by A_1 above, then L_φ is also recognizable by A_1. Finally, when $\varphi = L(\delta \mapsto \varphi_2)_{\delta \in \Delta}$ and each L_{φ_2} is recognizable by some tree automaton in $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$, then it follows by Proposition 2.3.2 that L_φ is recognizable by some tree automaton in $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$. (Note that since $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$ is closed with respect to the connected direct product, we may assume without loss of generality that each L_{φ_2} is recognizable by the same tree automaton A in $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$.)

Note that $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M = \langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_s$ is just $\mathbf{D}_i^c \times \langle \mathbf{K}^c \rangle_M$.

Theorem 2.3.4 For any class \mathbf{K}^c of finite connected tree automata, a language L belongs to $\text{FTL}(\mathbf{K}^c)$ if and only if its minimal tree automaton A_L belongs to $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$ if and only if L is recognizable by an automaton in $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$.

Proof. It is clear that $\text{FTL}(\mathbf{K}^c)$ contains the 1-definite tree languages and thus $\text{FTL}(\mathbf{K}^c) = \text{FTL}(\mathbf{D}_i^c \cup \mathbf{K}^c)$, by Theorem 2.1.1. Let us define the rank of $A \in \langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$ to be the least number of Moore product and quotient operations needed to generate A from $\mathbf{D}_i^c \cup \mathbf{K}^c$. We prove by induction on the rank of A that every language recognizable by A is in $\text{FTL}(\mathbf{D}_i^c \cup \mathbf{K}^c)$. When the rank is 0 we have $A \in \mathbf{D}_i^c \cup \mathbf{K}^c$ and the result is immediate. When the rank of A is positive, then A is either a quotient of a tree automaton B in $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$, of smaller rank, or A is a connected Moore product of some tree automata in $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$ of smaller rank. In the first case, every language recognizable by A is recognizable by B. In the second case, the result follows from Proposition 2.3.1. Conversely, by Theorem 2.3.3, every language in $\text{FTL}(\mathbf{K}^c)$ is recognizable by some tree automaton in $\langle \mathbf{D}_i^c \cup \mathbf{K}^c \rangle_M$.

Corollary 2.3.5 Assume that \mathcal{L} is a class of regular tree languages such that any quotient of each language in \mathcal{L} belongs to $\text{FTL}(\mathcal{L})$. Then a language L is in $\text{FTL}(\mathcal{L})$ if and only if A_L is in the least connected (strict) Moore pseudovariety of finite connected tree automata containing \mathbf{D}_i^c and the minimal automata of the languages in \mathcal{L}.
For every connected Moore pseudovariety V^c of finite connected tree automata containing D^c_1 it holds that $\mathcal{L}_{V^c} = \text{FTL}(V^c)$. Moreover, the map $V^c \mapsto \text{FTL}(V^c)$ is an order isomorphism between the lattice of all connected Moore pseudovarieties of finite connected tree automata containing D^c_1 and the lattice of all literal varieties of regular tree languages V with $\text{FTL}(V) = \mathcal{V}$.

Proof. By Theorem 2.3.4, $\text{FTL}(V^c) = \mathcal{L}_{(D^c_1 \cup V^c)_M}$. When V^c is a connected Moore pseudovariety containing D^c_1, then $(D^c_1 \cup V^c)_M = V^c$ and thus $\text{FTL}(V^c) = \mathcal{L}_{V^c}$. Let V^c_1 and V^c_2 be connected Moore pseudovarieties of finite connected tree automata containing D^c_1. By the Eilenberg correspondence, $V^c_1 \subseteq V^c_2$ if and only if $\mathcal{L}_{V^c_1} \subseteq \mathcal{L}_{V^c_2}$, i.e., when $\text{FTL}(V^c_1) \subseteq \text{FTL}(V^c_2)$. Assume finally that V is a literal variety of regular tree languages containing the definite tree languages and satisfying $\text{FTL}(V) = \mathcal{V}$. By the Eilenberg correspondence, there exists a pseudovariety V^c of finite connected tree automata with $V = \mathcal{L}_{V^c}$. Since $D^c_1 \subseteq V$, we have $D^c_1 \subseteq V^c$. Thus, $\mathcal{V} = \mathcal{L}_{V^c} = \text{FTL}(V^c)$.

In [15] it has been shown that the map $V^c \mapsto \text{FTL}(V^c)$, restricted to connected cascade pseudovarieties containing D^c, is an order isomorphism between such connected cascade pseudovarieties of finite connected tree automata and literal varieties V of tree languages containing the definite tree languages and satisfying $\text{FTL}(V) = \mathcal{V}$. Combining this result with Corollary 2.3.6, we obtain a new proof of the fact, proved in Corollary 2.2.29, that any connected Moore pseudovariety containing D^c is a connected cascade pseudovariety.

2.4 Application

In this section, we present some applications of Theorem 2.3.3. The characterization provided by the Theorem is not effective by itself; in the major part of this section we show that some fragments of the temporal logic CTL have a decidable definability problem.

2.4.1 Fragments of CTL

Below we assume that the lexicographic order on Bool (see page 29) satisfies $\uparrow_n < \downarrow_n$, for each $n \in R$ (as we have seen before, the particular ordering is not important).

Let $L_{\text{EF}^+} \subseteq T_{\text{Bool}}$ denote the regular language of those trees in T_{Bool} having at least one non-root vertex labeled in $\{\uparrow_n : n \in R\}$, and let $L_{\text{EF}^*} \subseteq T_{\text{Bool}}$ consist of all trees in T_{Bool} with at least one vertex labeled in $\{\downarrow_n : n \in R\}$. Let Σ be a signature and φ a fixed formula over Σ. If $(\varphi_\delta)_{\delta \in \text{Bool}}$ is such that $\varphi_{\uparrow_n} = \varphi$, for all $n \in R$, then $t \models L_{\text{EF}^+}(\delta \mapsto \varphi_\delta)_{\delta \in \text{Bool}}$ if and only if $s \models \varphi$ for some proper subtree s of t. And $t \models L_{\text{EF}^*}(\delta \mapsto \varphi_\delta)_{\delta \in \text{Bool}}$ if and
only if some subtree of \(t \) satisfies \(\varphi \). Thus, the modal operators corresponding to these languages are closely related to the strict and non-strict EF modalities of CTL, cf. [45].

In the same way, the strict and non-strict EG modalities are closely related to the modal operators associated to the following languages, where we use the letter \(p \) to range over the maximal paths of a tree, while \(u \) and \(v \) range over non-root vertices and all vertices, respectively:

\[
L_{\text{EG}^+} = \{ t \in T_{\text{Bool}} : \exists p \forall u \in p \ t(u) \in \{ \uparrow_n : n \in R \} \}
\]

\[
L_{\text{EG}^*} = \{ t \in T_{\text{Bool}} : \exists p \forall v \in p \ t(v) \in \{ \uparrow_n : n \in R \} \}.
\]

It is easy to check that the minimal tree automaton of \(L_{\text{EF}^+} \) is the automaton \(E_{\text{EF}^+} = (\{0, 1, 2\}, \text{Bool}) \), where the interpretation of the function symbols is the following:

\[
\uparrow_{n}^{\text{EF}^+} (x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } x_i = 0 \text{ for all } i \in [n]; \\ 2 & \text{otherwise} \end{cases}
\]

and

\[
\downarrow_{n}^{\text{EF}^+} (x_1, \ldots, x_n) = \begin{cases} 0 & \text{if } x_i = 0 \text{ for all } i \in [n]; \\ 2 & \text{otherwise}. \end{cases}
\]

Moreover, the minimal tree automaton of \(L_{\text{EF}^*} \) is \(E_{\text{EF}^*} = (\{0, 1\}, \text{Bool}) \), where the interpretation of the function symbols is the following:

\[
\uparrow_{n}^{\text{EF}^*} (x_1, \ldots, x_n) = 1
\]

and

\[
\downarrow_{n}^{\text{EF}^*} (x_1, \ldots, x_n) = \begin{cases} 0 & \text{if } x_i = 0 \text{ for all } i \in [n]; \\ 1 & \text{otherwise}. \end{cases}
\]

As for the languages \(L_{\text{EG}^+} \) and \(L_{\text{EG}^*} \), their minimal automata are \(E_{\text{EG}^+} = (\{0, 1, 2\}, \text{Bool}) \) and \(E_{\text{EG}^*} = (\{0, 1\}, \text{Bool}) \) with

\[
\uparrow_{0}^{\text{EG}^+} = 2; \quad \downarrow_{0}^{\text{EG}^+} = 1; \\
\uparrow_{0}^{\text{EG}^*} = 1; \quad \downarrow_{0}^{\text{EG}^*} = 0,
\]

and when \(n > 0 \),

\[
\uparrow_{n}^{\text{EG}^+} (x_1, \ldots, x_n) = \begin{cases} 0 & \text{if } x_i \in \{0, 1\} \text{ for all } i \in [n]; \\ 2 & \text{otherwise}, \end{cases}
\]

\[
\downarrow_{n}^{\text{EG}^+} (x_1, \ldots, x_n) = \begin{cases} 0 & \text{if } x_i \in \{0, 1\} \text{ for all } i \in [n]; \\ 1 & \text{otherwise}, \end{cases}
\]
and
\[
\uparrow_{n}^{E_G} (x_1, \ldots, x_n) = \begin{cases} 0 & \text{if } x_i = 0 \text{ for all } i \in [n]; \\ 1 & \text{otherwise}, \end{cases}
\]
\[
\downarrow_{n}^{E_G} (x_1, \ldots, x_n) = 0.
\]

It is easy to show that any quotient of the language \(L_{EF^+}\) is in \(\text{FTL}(\{L_{EF^+}\})\): any language of the form \(\zeta^{-1}(L_{EF^+})\) where \(\zeta\) is a proper Bool-context, is either \(T_{\text{Bool}}\) (when \(\zeta\) has a non-root vertex labeled \(\uparrow_n\) for some \(n\)), or \(L_{EF^+} \cup \{t \in T_{\text{Bool}} : \text{Root}(t) = \downarrow_n\) for some \(n\}\) (when all non-root vertices but \(x_1\) of \(\zeta\) are labeled by \(\downarrow_n\) for some \(n\); these languages are clearly definable in \(\text{FTL}(\{L_{EF^+}\})\). Analogous facts hold also for the other languages.

Thus we have that the logics corresponding to the languages \(L_{EF^+}, L_{EF^*}, L_{EG^+}\) and \(L_{EG^*}\) are exactly the logics corresponding to the automata \(E_{EF}^+, \ E_{EF}^*, \ E_{EG}^+\) and \(E_{EG}^*\). Let us denote these logics by \(\text{CTL}(EF^+), \text{CTL}(EF^*), \text{CTL}(EG^+)\) and \(\text{CTL}(EG^*)\), respectively.

Proposition 2.4.1 Let \(Y\) denote either \(F\) or \(G\). Then a tree language is definable in \(\text{CTL}(EY^+)\) if and only if its minimal automaton is in the connected Moore pseudovariety \(\langle D_{c} \cup \{E_{EF}^+\} \rangle_M\) of finite connected tree automata. Similarly, a tree language is definable in \(\text{CTL}(EY^*)\) if and only if its minimal automaton is in the connected Moore pseudovariety \(\langle D_{c} \cup \{E_{EF}^*\} \rangle_M\) of finite connected tree automata.

In the following subsections, we give decidable characterizations of the connected Moore pseudovarieties \(\langle D_{c} \cup \{E_{EF}^+\} \rangle_M\) and \(\langle D_{c} \cup \{E_{EF}^*\} \rangle_M\), and hence of the logics \(\text{CTL}(EF^+)\) and \(\text{CTL}(EF^*)\).

2.4.2 Some Moore properties of tree automata

When \(A\) is a \(\Sigma\)-tree automaton, let \(\preceq_A\) denote the accessibility relation of \(A\), that is, \(a \preceq_A b\) holds for \(a, b \in A\) if and only if for some \(\Sigma A\)-polynomial context \(p\) we have \(p^A(a) = b\). Clearly, \(\preceq_A\) is a reflexive and transitive relation (a preorder). The relation \(\sim_A\) over \(A\) is defined by \(a \sim_A b\) if and only if \(a \preceq_A b\) and \(b \preceq_A a\) hold; since \(\preceq_A\) is a preorder, \(\sim_A\) is an equivalence relation. \(a \prec_A b\) denotes \(a \preceq_A b\) \(\land\) \(b \not\sim_A a\).

Before we continue with a deeper investigation of these relations, we need the following auxiliary results:

Lemma 2.4.2 Let \(A = (A, \Sigma)\) be a finite tree automaton and \(\Theta\) a congruence of \(A\). Let \(\overline{\pi}\) denote the congruence class \(a/\Theta\), and let \(\overline{B}\) denote the factor automaton \(A/\Theta\). Let \(a, b \in A\) with \(a \sim_B b\). Then there exist \(a', b' \in A\) such that \(a'\Theta a, b'\Theta b\) and \(a' \sim_A b'\).
Similarly, if $\bar{a} \preceq_B \bar{b}$ then there exists $b' \in A$ with $b' \Theta b$ and $a \preceq_A b'$.

Proof. We only prove the first claim.

Suppose \mathbb{A}, Θ, a and b satisfy the assumptions above. From $\bar{a} \preceq_B \bar{b}$ there exists a ΣB-polynomial context p_1 with $p_1^B(\bar{a}) = \bar{b}$. Similarly, from $\bar{b} \preceq_B \bar{a}$ there exists a ΣB-polynomial context p_2 with $p_2^B(\bar{b}) = \bar{a}$. Let q_1 be a ΣA-polynomial context such that $h(q_1) = p_1$ for the relabeling h induced by the map $A \rightarrow B$, $a \mapsto \bar{a}$. Such a relabeling always exists, since B is a homomorphic image of \mathbb{A}. Let q_2 be a ΣA-polynomial context with $h(q_2) = p_2$.

Consider the following sequence $a_0, b_0, a_1, b_1, \ldots$ of states of A as follows: let $a_0 = a$, $b_i = q_1^A(a_i)$ and $a_{i+1} = q_2^A(b_i)$ for each $i \geq 0$. Then for all i we have $a_i \Theta a$ and $b_i \Theta b$.

From the definition of the sequence it is clear that $a_j \preceq_A a_k$ for all $j < k$. Since A is finite, there exist integers $j < k$ such that $a_j = a_k$. For the states $a' = a_j$ and $b' = b_j$, all the required properties hold.

We state a corollary of Lemma 2.2.1:

Corollary 2.4.3 Suppose that $\mathbb{C} = (C, \Sigma) = \mathbb{A} \times_\gamma \mathbb{B}$ is a cascade product of the tree automata $\mathbb{A} = (A, \Sigma)$ and $\mathbb{B} = (B, \Delta)$. Then for any (a, b) and $(a', b') \in C$, if $(a, b) \preceq_C (a', b')$ then $a \preceq_A a'$ and $b \preceq_B b'$. Thus, if $(a, b) \sim_C (a', b')$ then $a \sim_A a'$ and $b \sim_B b'$.

Proof. Suppose $(a, b) \preceq_C (a', b')$ holds. Then there exists a ΣC-polynomial context p with $p^C((a, b)) = (a', b')$. By Lemma 2.2.1, there exists a ΣA-polynomial context p' and a ΔB-polynomial context p'' (depending on p and a) such that $p'^A(a) = a'$ and $p''^B(b) = b'$. Thus, $a \preceq_A a'$ and $b \preceq_B b'$ indeed hold.

A tree automaton \mathbb{A} is called **monotone** if \preceq_A is a partial order (or equivalently, when $\sim_A = \Delta_A$).

It is known, c.f., e.g. [15], that any homomorphic image of a finite monotone tree automaton is monotone. Moreover, as noted in [15], any cascade product of monotone tree automata is monotone, so that finite monotone tree automata form a cascade pseudovariety of finite tree automata.

We call a property \mathcal{P} of finite tree automata a **Moore property** if the class of all finite tree automata having \mathcal{P} forms a Moore pseudovariety of finite tree automata. **Cascade properties** are defined a similar way.

Corollary 2.4.4 Monotonicity is a cascade property.

Let \mathbf{Mon} denote the class of all finite monotone tree automata. Then, \mathbf{Mon}^c denotes
the class of all finite monotone connected tree automata, which is a connected cascade pseudovariety.

Remark 2.4.5 Finite monotone word automata (corresponding to the case $R = \{0, 1\}$) have been studied in detail in [9, 37], for example. They correspond to finite R-trivial monoids. In [37], finite monotone automata are called extensive. The equivalence of finite extensive automata and finite automata having an R-trivial monoid was extended to tree automata in [39]. Monotone tree automata were also investigated in [23].

The second property we will study is that of maximal dependency.

Definition 2.4.6 We call a tree automaton $A = (A, \Sigma)$ maximal dependent if for any function symbol $\sigma \in \Sigma_n$ and $a_1, \ldots, a_{n-1}, a_n, a'_n \in A$ with $a_n \preceq_A a_i$ and $a'_n \preceq_A a_j$ for some $i, j \in [n-1]$, we have $\sigma^A(a_1, \ldots, a_{n-1}, a_n) = \sigma^A(a_1, \ldots, a_{n-1}, a'_n)$.

Note that for unary symbols $\sigma \in \Sigma_1$ this property is trivial, so that when $R = \{0, 1\}$, all tree automata are maximal dependent.

Proposition 2.4.7 Any homomorphic image of a finite maximal dependent tree automaton is also maximal dependent.

Proof. Let $A = (A, \Sigma)$ be a finite maximal dependent tree automaton and Θ a congruence of A. The congruence class a/Θ of a state a will be denoted by \overline{a}. We have to prove that the factor automaton $B = A/\Theta$ is maximal dependent.

Now let $\sigma \in \Sigma_n$ be a function symbol and $\overline{a_1}, \ldots, \overline{a_{n-1}}, \overline{b}, \overline{c}$ states of B such that for some indices $i, j \in [n-1]$ both $\overline{b} \preceq_B \overline{a_i}$ and $\overline{c} \preceq_B \overline{a_j}$ hold. By Lemma 2.4.2, there exist $a'_i, a'_j \in A$ such that $\overline{a'_i} = \overline{a_i}$, $\overline{a'_j} = \overline{a_j}$, $b \preceq_A a'_i$ and $c \preceq_A a'_j$. So from the congruence properties and the maximal dependency of A we get:

$$
\begin{align*}
\sigma^B(\overline{a_1}, \overline{a_2}, \ldots, \overline{a_{n-1}}, \overline{b}) &= \sigma^B(\overline{a_1}, \ldots, \overline{a_{i-1}}, \overline{a'_i}, \overline{a_{i+1}}, \ldots, \overline{a_{n-1}}, \overline{b}) \\
&= \sigma^B(\overline{a_1}, \ldots, \overline{a_{i-1}}, \overline{a'_i}, \overline{a_{i+1}}, \ldots, \overline{a_{n-1}}, \overline{a'_i}) \\
&= \sigma^B(\overline{a_1}, \ldots, \overline{a_{i-1}}, \overline{a_i}, \overline{a_{i+1}}, \ldots, \overline{a_{n-1}}, \overline{a'_i}) \\
&= \sigma^B(\overline{a_1}, \ldots, \overline{a_{i-1}}, \overline{a_i}, \overline{a_{i+1}}, \ldots, \overline{a_{n-1}}, \overline{a_j}) \\
&= \sigma^B(\overline{a_1}, \ldots, \overline{a_{j-1}}, \overline{a'_j}, \overline{a_{j+1}}, \ldots, \overline{a_{n-1}}, \overline{a'_j}) \\
&= \sigma^B(\overline{a_1}, \ldots, \overline{a_{j-1}}, \overline{a'_j}, \overline{a_{j+1}}, \ldots, \overline{a_{n-1}}, \overline{c}) \\
&= \sigma^B(\overline{a_1}, \ldots, \overline{a_{j-1}}, \overline{a'_j}, \overline{a_{j+1}}, \ldots, \overline{a_{n-1}}, \overline{c}).
\end{align*}
$$

(Note: we do not change $\overline{a_i}$ and $\overline{a_j}$ in one single step in order to handle the case $i = j$ properly.) So $B = A/\Theta$ is indeed maximal dependent.

\begin{flushright}
\hfill \blacksquare
\end{flushright}
Proposition 2.4.8 If \(A = (A, \Sigma) \) and \(B = (B, \Delta) \) are maximal dependent tree automata, then any Moore product \(C = (C, \Sigma) = A \times_a B \) is also maximal dependent.

Proof. Let \(\sigma \in \Sigma_n, (a_1, b_1), \ldots, (a_{n-1}, b_{n-1}), (y_1, y_2), (z_1, z_2) \in C \) and let \(i, j \in [n - 1] \) be indices such that both \((y_1, y_2) \preceq_C (a_i, b_i) \) and \((z_1, z_2) \preceq_C (a_j, b_j) \) hold.

By Corollary 2.4.3, we have \(y_1 \preceq_A a_i, \quad z_1 \preceq_A a_j, \quad y_2 \preceq_B b_i \) and \(z_2 \preceq_B b_j \). Let \(a = \sigma^A(a_1, a_2, \ldots, a_{n-1}, y_1) \). Since \(A \) is maximal dependent, we also have \(a = \sigma^A(a_1, a_2, \ldots, a_{n-1}, z_1) \).

Thus,

\[
\begin{align*}
\sigma^C((a_1, b_1), \ldots, (a_{n-1}, b_{n-1}), (y_1, y_2)) &= (a, \sigma(a, \sigma)^B(b_1, b_2, \ldots, b_{n-1}, y_2)) \\
&= (a, \sigma(a, \sigma)^B(b_1, b_2, \ldots, b_{n-1}, z_2)) \\
&= \sigma^C((a_1, b_1), \ldots, (a_{n-1}, b_{n-1}), (z_1, z_2)),
\end{align*}
\]

since \(B \) is maximal dependent.

So \(C \) is indeed maximal dependent. \(\blacksquare \)

Corollary 2.4.9 Maximal dependency is a Moore property.

Let \(\text{MaxDep} \) denote the Moore pseudovariety of finite tree automata containing exactly the finite maximal dependent tree automata. Then, \(\text{MaxDep}^c \) denotes the connected Moore pseudovariety of finite maximal dependent connected tree automata.

Definition 2.4.10 We call a tree automaton \(A = (A, \Sigma) \) component dependent if for any function symbol \(\sigma \in \Sigma_n \) and \(a_1 \sim_A a_1', \ldots, a_n \sim_A a_n' \in A \) it holds that \(\sigma^A(a_1, \ldots, a_n) = \sigma^A(a_1', \ldots, a_n') \).

Note that in any component dependent automaton \(A \) the relation \(\sim_A \) is a congruence relation. However, this latter property is not a Moore property (not preserved under taking Moore products); this is the reason why we have to define the stronger concept of component dependency. Also note that any monotone tree automaton is trivially component dependent, as well as any 1-definite tree automaton.

Proposition 2.4.11 Any homomorphic image of a finite component dependent tree automaton is component dependent.
2.4. APPLICATION

Proof. Let $A = (a, \Sigma)$ be a finite component dependent tree automaton, Θ a congruence of A and let B denote the factor automaton A/Θ. For each $a \in A$, let \overline{a} denote the congruence class a/Θ. Let $\sigma \in \Sigma_n$ be a function symbol and $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$ such that $\overline{a_i} \sim_B \overline{b_i}$ for all $i \in [n]$.

Then, by Lemma 2.4.2 there exist $a'_1, \ldots, a'_n, b'_1, \ldots, b'_n \in A$ such that $a'_i \Theta a_i, b'_i \Theta b_i$ and $a'_i \sim_A b'_i$ for all $i \in [n]$. Then we have

\[
\sigma^B(\overline{a_1}, \ldots, \overline{a_n}) = \sigma^B(\overline{a'_1}, \ldots, \overline{a'_n}) = \sigma^B(\overline{b_1}, \ldots, \overline{b_n}).
\]

Proposition 2.4.12

Let A and B be component dependent tree automata and $C = A \times_\alpha B$ a Moore product. Then C is also component dependent.

Proof. Let $\sigma \in \Sigma_n$ be a function symbol and $(a_1, b_1), \ldots, (a_n, b_n), (a'_1, b'_1), \ldots, (a'_n, b'_n)$ be states of C such that $(a_i, b_i) \sim_C (a'_i, b'_i)$ for all $i \in [n]$.

By Corollary 2.4.3 we know that $a_i \sim_A a'_i$ and $b_i \sim_B b'_i$ for all $i \in [n]$. Let δ denote the symbol $\alpha(a, \sigma)$ where $a = \sigma^A(a_1, \ldots, a_n)$. From the component dependency of A we know that $a = \sigma^A(a'_1, \ldots, a'_n)$ also holds. Now we have the following:

\[
\sigma^C((a_1, b_1), \ldots, (a_n, b_n)) = (a, \delta^B(b_1, \ldots, b_n)) = (a, \delta^B(b'_1, \ldots, b'_n)) = \sigma^C((a'_1, b'_1), \ldots, (a'_n, b'_n)).
\]

Corollary 2.4.13 Component dependency is a Moore property.

Let CompDep denote the Moore pseudovariety containing exactly the finite component dependent tree automata. Then, the class CompDep^c of all finite component dependent connected tree automata is a connected Moore pseudovariety.

The last property considered in this section is the following:

Definition 2.4.14 Call a tree automaton $A = (a, \Sigma)$ componentwise unique if for any $a, b \in A$ and proper ΣA-polynomial contexts p_1, p_2 such that $\text{Root}(p_1) = \text{Root}(p_2)$, $p_1^A(a) = b$ and $p_2^A(b) = a$, it holds that $a = b$.

2.4. APPLICATION

Proposition 2.4.15 Any homomorphic image of a finite componentwise unique tree automaton is componentwise unique.

Proof. Let \(A = (A, \Sigma) \) be a finite componentwise unique tree automaton and \(\Theta \) a congruence of \(A \). We write \(\overline{a} \) for \(a/\Theta \) as before. Let \(B = (B, \Sigma) \) be the factor automaton \(A/\Theta \). Let \(\overline{a}, \overline{b} \in B \) and \(p_1, p_2 \) be proper \(\Sigma \)-polynomial contexts such that \(\text{Root}(p_1) = \text{Root}(p_2) \), \(p_1^B(\overline{a}) = \overline{b} \) and \(p_2^B(\overline{b}) = \overline{a} \).

Let \(q_1 \) and \(q_2 \) respectively be \(\Sigma A \)-polynomial contexts such that \(h(q_1) = p_1 \) and \(h(q_2) = p_2 \) for the relabeling \(h \) induced by the mapping \(A \rightarrow B, a \mapsto \overline{a} \). Such relabelings always exist, moreover, \(\text{Root}(q_1) = \text{Root}(p_1) = \text{Root}(p_2) = \text{Root}(q_2) \) holds.

Consider the sequence \(a_0, b_0, a_1, b_1, \ldots \in A \) of states such that \(a_0 = a, b_i = q_1^a(a_i) \) and \(a_{i+1} = q_2^b(b_i) \) for each \(i \geq 0 \). Clearly, \(\overline{a_i} = \overline{a} \) and \(\overline{b_i} = \overline{b} \) for all \(i \geq 0 \). Since \(A \) is finite, there exist integers \(0 \leq j < k \) with \(a_j = a_k \). Thus, we have \(q_1^a(a_j) = b_j \) and \((q_2(q_1q_2)^{k-j-1})^a(b_j) = a_k = a_j \).

Moreover \(\text{Root}(p_1) = \text{Root}(p_2(p_1p_2)^{k-j-1}) \), since \(\text{Root}(p_1) = \text{Root}(p_2) \). From the componentwise uniqueness of \(A \) we have \(a_j = b_j \), so \(\overline{a_j} = \overline{b_j} = \overline{b} \). \(\blacksquare \)

Proposition 2.4.16 Any Moore product of two componentwise unique tree automata is also componentwise unique.

Proof. Let \(A = (A, \Sigma) \) and \(B = (B, \Delta) \) be componentwise unique tree automata and \(C = A \times_\alpha B \) a Moore product. Let \((a_1, b_1), (a_2, b_2) \in C \) be two states of \(C \) and \(p_1, p_2 \) proper \(\Sigma \)-polynomial contexts such that \(\text{Root}(p_1) = \text{Root}(p_2) \), \(p_1^C((a_1, b_1)) = (a_2, b_2) \) and \(p_2^C((a_2, b_2)) = (a_1, b_1) \).

Then there exist proper \(\Sigma A \)-polynomial contexts \(p'_1 \) and \(p'_2 \) with \(p_1^a(a_1) = a_2 \) and \(p_2^a(a_2) = a_1 \), moreover \(\text{Root}(p'_1) = \text{Root}(p_1) = \text{Root}(p_2) = \text{Root}(p'_2) \). Since \(A \) is componentwise unique we have that \(a_1 = a_2 \). Let \(a \) denote \(a_1 \) from now on.

Now consider the automaton \(B \). From \(p_1^a(a, b_1) = (a, b_2) \) we have that there exists a proper \(\Delta B \)-polynomial context \(p'_1 \) such that both \(p_1^B(b_1) = b_2 \) and \(\text{Root}(p'_1) = \alpha(a, \text{Root}(p_1)) \) hold. Also, since \(p_2^C(a, b_2) = (a, b_1) \) we have that there exists a proper \(\Delta B \)-polynomial context \(p'_2 \) with \(p_2^B(b_2) = b_1 \) and \(\text{Root}(p'_2) = \alpha(a, \text{Root}(p_2)) \). Since \(\text{Root}(p_1) = \text{Root}(p_2) \) we have \(\text{Root}(p'_1) = \text{Root}(p'_2) \), and from the componentwise uniqueness of \(B \) it follows that \(b_1 = b_2 \), so \(C \) is indeed componentwise unique. \(\blacksquare \)

Corollary 2.4.17 Componentwise uniqueness is a Moore property.

Let \(\text{CompUnique} \) denote the Moore pseudovariety containing exactly the finite componentwise unique tree automata. Also, \(\text{CompUnique}^c \) denotes the corresponding connected Moore pseudovariety.
The following relation holds between the properties we defined so far:

Proposition 2.4.18

\[\text{CompDep} \cap \text{MaxDep} \cap \text{Com} \subseteq \text{CompUnique}. \]

Consequently,

\[\text{CompDep}^c \cap \text{MaxDep}^c \cap \text{Com}^c \subseteq \text{CompUnique}^c. \]

Proof. Let \(A = (A, \Sigma) \) be a finite tree automaton that is component dependent, maximal dependent and commutative. Suppose \(a, b \in A \) are states and \(p, q \) are proper \(\Sigma A \)-polynomial contexts such that \(p^A(a) = b, q^A(b) = a \) and \(\text{Root}(p) = \text{Root}(q) = \sigma \in \Sigma_n \). We prove that \(a = b \) also holds in this case.

Write \(p = \sigma(p_1, \ldots, p_n) \). There exists exactly one index \(i_0 \in [n] \) such that \(p_{i_0} \) is a \(\Sigma A \)-polynomial context. For each \(i \in [n] \), let \(a_i \) denote the state \(p^A_i(a) \) if \(i \neq i_0 \), and let \(a_{i_0} \) be the state \(p^A_{i_0}(a) \). We clearly have \(a \leq_A a_{i_0} \preceq_A b \), moreover, \(a_i \preceq_A a_{i_0} \) for each \(i \in [n] \). Thus, since \(a \sim_A b \), we have \(a_{i_0} \sim_A a \) and \(a_i \preceq_A a_{i_0} \) for each \(i \in [n] \).

It follows now from commutativity and maximal dependency that

\[b = \sigma^A(a_1, \ldots, a_n) = \sigma^A(a_{i_0}, \ldots, a_{i_0}). \]

We have thus proved that there exists \(a' \in A \) with \(a' \sim_A a \) and \(b = \sigma^A(a', \ldots, a') \). Analogously, there exists a state \(b' \sim_A b \) with \(a = \sigma^A(b', \ldots, b') \).

But since \(a' \sim_A a \sim_A b \sim_A b' \) and \(A \) is component dependent, we have \(a = b \). \(\blacksquare \)

2.4.3 Characterizing \(\langle E_{EF}^+ \rangle_M \)

Recall the automaton \(E_{EF}^+ \) defined on page 39. In this subsection, we characterize the connected Moore pseudovariety \(\langle E_{EF}^+ \rangle_M \) by three easily verifiable conditions.

It can be checked easily that \(E_{EF}^+ \) is a finite, monotone, commutative and maximal dependent connected tree automaton, so by the results of Subsection 2.4.2,

\[\langle E_{EF}^+ \rangle_M \subseteq \text{Mon}^c \cap \text{Com}^c \cap \text{MaxDep}^c. \]

We will show that the reverse inclusion is also true.

First we claim the following facts about commutative and maximal dependent tree automata:
Proposition 2.4.19 Let $A = (A, \Sigma)$ be a commutative and maximal dependent tree automaton. Let $\sigma \in \Sigma_{j+k}$ be a function symbol, where $j \geq 1$ and $k > 0$, and assume that $a_1, \ldots, a_j, b_1, \ldots, b_k, c_1, \ldots, c_k \in A$ such that for all $i \in [k]$ there exist $i', i'' \in [j]$ such that $b_i \preceq_A a_{i'}$ and $c_i \preceq_A a_{i''}$. Then $\sigma^A(a_1, \ldots, a_j, b_1, \ldots, b_k) = \sigma^A(a_1, \ldots, a_j, c_1, \ldots, c_k)$.

This statement can be proved easily by a straightforward induction on k.

Proposition 2.4.20 Any commutative maximal dependent tree automaton is idempotent.

The proof of this statement is analogous to that of Proposition 2.4.22 below.

For a tree automaton $A = (A, \Sigma)$, we define the function Values^+_A mapping Σ-trees to finite subsets of A as follows. Given a Σ-tree t we define $\text{Values}^+_A(t)$ to be the (finite) set \{ $s^A : s$ is a proper subtree of t \}.

We prove a couple of facts concerning the function Values^+_A.

Proposition 2.4.21 Let $A = (A, \Sigma)$ be a monotone tree automaton and $t = \sigma(t_1, \ldots, t_n)$ a Σ-tree. Then for any maximal element a of $\text{Values}^+_A(t)$ (with respect to \preceq_A) there exists an index $i_a \in [n]$ such that $t_{i_a}^A = a$.

Proof. Let a be a maximal element of $\text{Values}^+_A(t)$. From the definition of $\text{Values}^+_A(t)$ we have that there exists a proper subtree s of t with $s^A = a$. Since s is a proper subtree of t, there exists an integer $i_a \in [n]$ such that s is a subtree of t_{i_a}. For this t_{i_a} we clearly have $a = s^A \preceq_A t_{i_a}^A \in \text{Values}^+_A(t)$.

Since a is a maximal element of $\text{Values}^+_A(t)$, it follows that $a = t_{i_a}^A$ completing the proof. \[\blacksquare\]

Proposition 2.4.22 Let $A = (A, \Sigma)$ be a monotone, commutative and maximal dependent tree automaton. Assume that $s, t \in T_\Sigma$ are Σ-trees such that $\text{Values}^+_A(s) = \text{Values}^+_A(t)$ and $\text{Root}(s) = \text{Root}(t)$. Then $s^A = t^A$.

Proof. Let $t = \sigma(t_1, \ldots, t_n)$ and $s = \sigma(s_1, \ldots, s_n)$ be two Σ-trees satisfying the assumptions. Let $\{a_1, \ldots, a_k\}$ be the set of maximal elements of $\text{Values}^+_A(t) = \text{Values}^+_A(s)$ (this set, as well as $\text{Values}^+_A(t)$ itself, is finite). From Proposition 2.4.21 we have that for all $i \in [k]$ there exist $i', i'' \in [n]$ such that $t_{i'}^A = s_{i'}^A = a_i$. Of course if $i \neq j$ then $i' \neq j'$ and $i'' \neq j''$. Let π and ν be permutations of $[n]$ with $t_{\pi(i)}^A = s_{\nu(i)}^A = a_i$ for all $i \in [k]$. Then, for
any $k < i \leq n$ there exist indices $i', i'' \in [k]$ with $t_{\pi(i)}^\mathcal{A} \preceq_{\mathcal{A}} a_{i'}$ and $s_{\nu(i)}^\mathcal{A} \preceq_{\mathcal{A}} a_{i''}$. Applying Proposition 2.4.19 we have

$$
t^\mathcal{A} = \sigma^\mathcal{A}(t_1^\mathcal{A}, \ldots, t_n^\mathcal{A}) = \sigma^\mathcal{A}(t_{\pi(1)}^\mathcal{A}, t_{\pi(2)}^\mathcal{A}, \ldots, t_{\pi(n)}^\mathcal{A}) = \sigma^\mathcal{A}(s_{\pi(1)}^\mathcal{A}, \ldots, s_{\pi(n)}^\mathcal{A}) = \sigma^\mathcal{A}(s_1^\mathcal{A}, \ldots, s_n^\mathcal{A}) = s^\mathcal{A}.
$$

\[\square\]

Remark 2.4.23 The implication

$$\text{Values}_+^\mathcal{A}(s) = \text{Values}_+^\mathcal{A}(t) \wedge \text{Root}(s) = \text{Root}(t) \implies s^\mathcal{A} = t^\mathcal{A}$$

appearing in Proposition 2.4.22 corresponds to the notion of “typeset dependency” of [5].

In the next couple of statements we connect the tree automaton $\mathcal{E}_+^{\mathcal{E}_F}$ and the functions $\text{Values}_+^\mathcal{A}(t)$.

Definition 2.4.24 Let $\mathcal{A} = (A, \Sigma)$ be a tree automaton. We say that a tree automaton $\mathcal{B} = (B, \Sigma)$ is a $\text{Values}_+^\mathcal{A}$-automaton of \mathcal{A} if there exists a mapping $h : B \rightarrow P(A)$ to the power set $P(A)$ of A such that for any tree $t \in T_\Sigma$ it holds that $h(t^\mathcal{B}) = \text{Values}_+^\mathcal{A}(t)$.

Observe that h is uniquely determined on the connected part of \mathcal{B} and is thus unique whenever \mathcal{B} is connected. Thus, in this case we call h the canonical $\text{Values}_+^\mathcal{A}$-mapping from \mathcal{B} to \mathcal{A}.

We have the following:

Proposition 2.4.25 Let \mathcal{A} be a finite connected tree automaton. There exists a finite $\text{Values}_+^\mathcal{A}$-automaton of \mathcal{A} in the connected Moore pseudovariety $\langle \mathcal{A}, \mathcal{E}_F^+ \rangle_M$.

Proof. Let $\mathcal{A} = (A, \Sigma)$ be a finite connected tree automaton with $A = \{a_1, \ldots, a_k\}$. For each state $a \in A$ define the connected Moore product $\mathcal{B}[a] = \mathcal{A} \times_{\alpha[a]} \mathcal{E}_F^+$, where

$$
\alpha[a](a', \sigma) = \begin{cases}
\uparrow_n & \text{if } a = a'; \\
\downarrow_n & \text{otherwise}
\end{cases}
$$
for all \(a' \in A \) and \(\sigma \in \Sigma_n \), \(n \geq 0 \). Then for any \(\Sigma \)-tree \(t \) we have \(t^B[a] = (t^A, e) \), where \(e = 2 \) if and only if \(a \in \text{Values}_A^+(t) \).

Now the connected direct product \(\prod_{a \in A} B[a] \) is isomorphic to a tree automaton \(C = (C, \Sigma) \) all of whose states are of the form \((a, e_1, \ldots, e_k) \) with \(a \in A \) and \(e_1, \ldots, e_k \in \{0, 1, 2\} \), moreover, for any \(\Sigma \)-tree \(t \), \(t^C = (t^A, e_1, \ldots, e_k) \) for the integers \(e_1, \ldots, e_k \) with \(e_i = 2 \) if and only if \(a_i \in \text{Values}_A^+(t) \). Now considering the function \(h : C \rightarrow P(A) \) that is defined by \(h((a, e_1, \ldots, e_k)) = \{a_i : i \in [k], e_i = 2\} \), we get that \(C \) is a \(\text{Values}^+ \)-automaton of \(A \).

When \(R \) contains an integer \(> 1 \), then any finite monotone tree automaton \(A = (A, \Sigma) \) has a unique maximal element with respect to the partial order \(\preceq_A \). Indeed, from finiteness we get that at least one maximal element exists; and if \(a, b \) are both maximal elements and if the arity of a symbol \(\sigma \) is at least two, then by \(a, b \preceq A \sigma (a, b, a, \ldots, a) \) we have \(a = b \). However, when \(R = \{0, 1\} \), there may be several maximal elements. In order to be able to handle the two cases in a unified manner, we now prove:

Proposition 2.4.26 Assume that \(A = (A, \Sigma) \) is a finite monotone tree automaton. Then \(A \) is a renaming of a monotone tree automaton \(A' \) which has a unique maximal element \(a_{\text{max}} \) with respect to \(\preceq_{A'} \).

Moreover, if \(A \) is commutative, maximal dependent, stutter invariant or subdirectly irreducible, then so is \(A' \).

Proof. Suppose that \(A = (A, \Sigma) \) is a finite monotone tree automaton. If it has more than one maximal element, then we can add a new symbol \(\sigma \) to \(\Sigma \) of rank \(> 0 \), and define the corresponding operation \(\sigma^A \) as a constant function with value a fixed maximal element of \(A \) with respect to \(\preceq_A \). The congruences of the new automaton \(A' \) are exactly the same as the congruences of \(A \), so that \(A \) is subdirectly irreducible if and only if \(A' \) is. It is also straightforward to check that commutativity, maximal dependency and stutter invariance are also preserved.

Proposition 2.4.27 Suppose \(A \) is a subdirectly irreducible finite monotone tree automaton with a unique maximal element \(a_{\text{max}} \). Then the set \(A^- = A - \{a_{\text{max}}\} \) also has a unique maximal element with respect to \(\preceq_A \).

Proof. Assume that \(A \) has a unique maximal element \(a_{\text{max}} \). It is clear that for each maximal element \(a \in A^- \), the relation that collapses \(a \) and \(a_{\text{max}} \) and keeps all other states separated is a congruence relation. Moreover, for different maximal elements \(a, a' \in A^- \), the intersection of the two congruences is \(\Delta_A \), showing that \(A \) is subdirectly irreducible.
Thus, if \(A \) is subdirectly irreducible, then there is a unique maximal element in \(A^- \) with respect to \(\preceq_A \).

Suppose now that \(A = (A, \Sigma) \) is a subdirectly irreducible finite monotone tree automaton which has a unique maximal element \(a_{\text{max}} \). Then let \(a_0 \) denote the unique maximal element of \(A^- = A - \{a_{\text{max}}\} \).

Define \(A^- \) to be the \(\Sigma \)-tree automaton \((A^-, \Sigma) \) with

\[
\sigma^{A^-}(a_1, \ldots, a_n) = \begin{cases}
\sigma^\Lambda(a_1, \ldots, a_n) & \text{if } \sigma^\Lambda(a_1, \ldots, a_n) \in A^-; \\
0 & \text{otherwise.}
\end{cases}
\]

Proposition 2.4.28 \(A^- \) is a quotient of \(A \).

Proof. Map each \(a \in A^- \) to \(a \) and \(a_{\text{max}} \) to \(a_0 \). ■

Proposition 2.4.29 Under the above assumptions on the subdirectly irreducible finite monotone tree automaton \(A = (A, \Sigma) \), if \(A \) is commutative, maximal dependent and connected then \(A \) is contained in the connected Moore pseudovariety \(\langle A^-, E_{EF} \rangle_M \).

Proof. From Proposition 2.4.25 we know that there exists a tree automaton \(B = (B, \Sigma) \) in \(\langle A^-, E_{EF} \rangle_M \) that is a Values\(^+\)-automaton of \(A^- \). Let \(h : B \to P(A^-) \) be the associated canonical Values\(^+\)-mapping. Consider the connected Moore product \(C = B \times_\alpha E_{EF}^+ \), where

\[
\alpha(b, \sigma) = \begin{cases}
\uparrow_n & \text{if there exists a } \Sigma\text{-tree } t \text{ such that } \text{Root}(t) = \sigma, t^\Lambda = a_{\text{max}} \text{ and } \text{Values}^+_A(t) = h(b); \\
\downarrow_n & \text{otherwise.}
\end{cases}
\]

It is clear that for any \(\Sigma\)-tree \(t \) we have \(t^C = (t^B, e) \) for some \(e \in \{0, 1, 2\} \).

We claim that \(e > 0 \) if and only if \(t^\Lambda = a_{\text{max}} \). We prove this claim by induction on the height of \(t \). Let \(t \) be the tree \(\sigma(t_1, \ldots, t_n) \) (if \(t \) is a constant symbol, then \(n = 0 \)).

Assume that \(t^C = (t^B, 0) \). From the definition of \(E_{EF}^+ \) it has to be the case \(t^C_i = (t^B_i, 0) \) for all \(i \in [n] \); from the induction hypothesis it follows that \(t^\Lambda_i \neq a_{\text{max}} \) for any \(i \in [n] \). In this case we have that \(h(b) = \text{Values}^+_A(t) = \text{Values}^+_A(t) \), since if \(a_{\text{max}} \) occurred in \(\text{Values}^+_A(t) \), then for some index \(i \in [n] \) we would have \(t^\Lambda_i = a_{\text{max}} \). Since \(t^C = (t^B, 0) \), we also have that \(\alpha(t^B, \sigma) = \downarrow_n \). From the definition of \(\alpha \) we get that there is no tree \(t' \) such that each of the conditions \(\text{Root}(t') = \sigma, t'^\Lambda = a_{\text{max}} \) and \(\text{Values}^+_A(t') = h(b) \) hold. Since the first and the third condition both hold for \(t \), it has to be the case \(t^\Lambda \neq a_{\text{max}} \).

Now assume that \(t^C = (t^B, e) \) for some \(e \in \{1, 2\} \). We have two cases.
2.4. APPLICATION

i) If there exists an index \(i \in [n] \) such that \(\tau_i^C = (\tau_i^B, e') \) for some \(e' \in \{1, 2\} \), then by the induction hypothesis we have \(\tau_i^A = a_{\text{max}} \). Since \(a_{\text{max}} \) is the maximal element of \(A \), also \(\tau_i^A = a_{\text{max}} \).

ii) If \(\tau_i^C = (\tau_i^B, 0) \) for all \(i \in [n] \), then it has to be the case \(\alpha(\tau_i^B, \sigma) = \uparrow_n \). Moreover, by the induction hypothesis we have \(\tau_i^A \neq a_{\text{max}} \) for any \(i \in [n] \); from this it follows that \(\text{Values}_{\Lambda}^+(t) = \text{Values}_{\Lambda}^-(t) \) (since \(a_{\text{max}} \) cannot occur in \(\text{Values}_{\Lambda}^+(t) \)). From the definition of \(\alpha \) we have that there exists a tree \(t' \) with \(\text{Root}(t') = \sigma, \tau_i^A = a_{\text{max}} \) and \(\text{Values}_{\Lambda}^+(t') = h(t^B) \). But since \(\text{Root}(t) = \sigma \) and \(\text{Values}_{\Lambda}^+ = h(t^B) \), from Proposition 2.4.22 we get that \(\tau_i^A = \tau_i^A = a_{\text{max}} \).

Finally, form the connected direct product \(\Lambda^- \times C \). It is clear that whenever \((a, (b, e)) \) is a state of this automaton then there is a tree \(t \) with \(\tau_i^- = a \) and \(h(b) = \text{Values}_{\Lambda^-}^-(t) \). Mapping each \((a, (b, 0)) \) to \(a \) and \((a_0, (b, 1)) \) and \((a_0, (b, 2)) \) to \(a_{\text{max}} \), we obtain a homomorphism \(\Lambda^- \times C \to \Lambda \).

As a corollary we get the main result of this subsection:

Theorem 2.4.30 The connected Moore pseudovariety \((E^+_{EF})_M \) contains exactly the finite connected tree automata that are monotone, commutative and maximal dependent:

\[
(E^+_{EF})_M = \text{Mon}^c \cap \text{Com}^c \cap \text{MaxDep}^c.
\]

Proof. Let \(\Lambda = (A, \Sigma) \) be a finite, monotone, commutative and maximal dependent connected tree automaton. We prove by induction on \(n = |A| \) that \(\Lambda \) is contained in \((E^+_{EF})_M \).

When \(n = 1 \), \(\Lambda \) is a trivial tree automaton contained in any pseudovariety of finite connected tree automata.

Suppose that \(n > 0 \) and we have proved the claim for all \(i < n \). We have two cases: either \(\Lambda \) is subdirectly reducible or not.

i) If \(\Lambda \) is subdirectly reducible, then \(\Lambda \) is isomorphic to a connected direct product \(\prod_{i \in [k]} A_i / \Theta_i \) for some finite family \((\Theta_i)_{i \in [k]} \) of nontrivial congruences of \(A \). Since each \(A_i / \Theta_i \) has less than \(n \) states, we get from the induction hypothesis that each \(A_i / \Theta_i \) is contained in \((E^+_{EF})_M \), thus \(\Lambda \) is also contained in \((E^+_{EF})_M \).

ii) If \(\Lambda \) is subdirectly irreducible, then by Proposition 2.4.26 \(\Lambda \) is a connected renaming of some subdirectly irreducible, finite, monotone, commutative and maximal dependent connected tree automaton \(\Lambda_0 \) having a unique maximal element \(a_{\text{max}} \).
From Proposition 2.4.29 we get that \(A_0 \) is contained in \(\langle A_0^-, E_{EF}^+ \rangle_M \). From the induction hypothesis, \(A_0^- \) is contained in \(\langle E_{EF}^+ \rangle_M \), thus \(A_0 \) (hence also \(A \)) is contained in \(\langle E_{EF}^+ \rangle_M \), proving the statement.

\[\blacksquare \]

2.4.4 Characterizing \(\langle E_{EF}^* \rangle_M \)

Since \(E_{EF}^* \) (see page 39) is a quotient of \(E_{EF}^+ \), it holds that \(\langle E_{EF}^* \rangle_M \subseteq \langle E_{EF}^+ \rangle_M \). We will prove that \(\langle E_{EF}^* \rangle_M \) is a proper subclass of \(\langle E_{EF}^+ \rangle_M \) characterized by one extra condition: stutter invariance. Indeed, \(E_{EF}^* \) is a monotone, commutative, maximal dependent and stutter invariant connected tree automaton, so that

\[
\langle E_{EF}^* \rangle_M \subseteq \text{Mon}^c \cap \text{Com}^c \cap \text{MaxDep}^c \cap \text{Stu}^c = \langle E_{EF}^+ \rangle_M \cap \text{Stu}^c.
\]

In this subsection we will show that the reverse inclusion also holds. Our argument requires somewhat more work than in the case of \(\langle E_{EF}^+ \rangle_M \).

Let \(A = (A, \Sigma) \) be a tree automaton. We define the mapping \(\text{Values}_{A}^* : T_{\Sigma} \rightarrow P(A) \) mapping \(\Sigma \)-trees to finite subsets of \(A \) as follows: \(\text{Values}_{A}^* (t) = \{ s^A : s \) is a subtree of \(t \} \).

The notion of a \(\text{Values}^* \)-automaton is defined accordingly: a tree automaton \(B = (B, \Sigma) \) is a \(\text{Values}^* \)-automaton of \(A \) if there exists a mapping \(h : B \rightarrow P(A) \) such that for any tree \(t \in T_{\Sigma} \) it holds that \(h(t^B) = \text{Values}_{A}^* (t) \). This mapping \(h \) is uniquely determined on the connected part of \(B \), thus when \(B \) is connected, we call \(h \) the canonical \(\text{Values}^* \)-mapping from \(B \) to \(A \).

We have a result which is similar to Proposition 2.4.25:

Proposition 2.4.31 Let \(A = (A, \Sigma) \) be a tree automaton. Then there exists a finite \(\text{Values}^* \)-automaton of \(A \) in the connected Moore pseudovariety \(\langle A, E_{EF}^* \rangle_M \).

Proof. Let \(A = (A, \Sigma) \) with \(A = \{ a_1, \ldots, a_k \} \). For every \(a \in A \) we define the connected Moore product \(\mathbb{B}[a] = A \times_{\alpha[a]} E_{EF}^* \) as follows: for each \(a' \in A \) and \(\sigma \in \Sigma_n \) let

\[
\alpha[a](a', \sigma) = \begin{cases}
\uparrow_n & \text{if } a' = a; \\
\downarrow_n & \text{otherwise}.
\end{cases}
\]

It is easy to see that for any tree \(t \) we have \(t^{\mathbb{B}[a]} = (t^A, e) \), where \(e = 1 \) if and only if \(a \in \text{Values}_{A}^* (t) \).

From this fact we can conclude that the connected direct product \(\prod_{a \in A} \mathbb{B}[a] \) is isomorphic to a tree automaton \(C \) all of whose states are of the form \((a, e_1, \ldots, e_k) \) with \(a \in A \),
2.4. APPLICATION

\[e_1, \ldots, e_k \in \{0, 1\}, \text{ moreover, for any tree } t \text{ we have } t^C = (t^A, e_1, \ldots, e_k) \text{ where } e_i = 1 \text{ if and only if } a_i \in \text{Values}^*_A(t). \]

Thus, \(C \) is a Values*-automaton of \(A \) with the canonical Values*-mapping \((a, e_1, \ldots, e_k) \mapsto \{a_i : i \in [k], e_i = 1\}\).

We have the following property:

Proposition 2.4.32 Let \(A \) be a commutative, maximal dependent and stutter invariant tree automaton. Let \(\sigma \in \Sigma_n \) be a symbol and \(a_1, \ldots, a_n \in A \) be states such that \(a_n \in \text{Img}_A(\sigma) \) and \(a_1, \ldots, a_{n-1} \preceq_A a_n \). Then \(\sigma^A(a_1, \ldots, a_n) = a_n \).

Proof. Let \(b_1, \ldots, b_n \in A \) be states with \(\sigma^A(b_1, \ldots, b_n) = a_n \). Note that in this case \(a_i, b_i \preceq_A a_n \) holds for all \(i \in [n] \). From the definition of stutter invariance and applying the commutativity of \(A \) and Proposition 2.4.19 we get:

\[
a_n = \sigma^A(b_1, \ldots, b_n) = \sigma^A(b_1, \ldots, b_{n-1}, a_n) = \sigma^A(a_1, \ldots, a_{n-1}, a_n).
\]

We will introduce a decomposition method similar to the one in the previous subsection, but with more workaround. We define the following auxiliary automaton:

Definition 2.4.33 Let \(A_{\text{Aux}} \) be the (finite, connected) tree automaton \((\{0, 1, 2\}, \Gamma)\), where \(\Gamma_n = \{l_n, s_n, e_n, o_n\} \) for all \(n \in R \) and the interpretation of the function symbols is the following: for all \(x_1, \ldots, x_n \in \{0, 1, 2\} \),

\[
\begin{align*}
l_{n}^A_{\text{Aux}}(x_1, \ldots, x_n) &= \max_{i \in [n]} x_i, \\
s_{n}^A_{\text{Aux}}(x_1, \ldots, x_n) &= \begin{cases} 1 & \text{if } x_i < 2 \text{ for all } i \in [n]; \\
2 & \text{otherwise,} \end{cases} \\
e_{n}^A_{\text{Aux}}(x_1, \ldots, x_n) &= \begin{cases} 2 & \text{if either } x_i = 2 \text{ for some } i \in [n] \\
&\text{or } x_i = 0 \text{ for all } i \in [n]; \\
1 & \text{otherwise,} \end{cases} \\
o_{n}^A_{\text{Aux}}(x_1, \ldots, x_n) &= 2.
\end{align*}
\]

The function symbols \(l, s, e \) and \(o \) are the first letters of the words “less”, “set”, “equal” and “over”, respectively. Informally, the application of the operations corresponding to these function symbols will have the meaning that the value of the currently evaluated
tree is less than a specific value, set to this value, equal to this value and over this value, respectively. The difference between “set” and “equal” is that in the latter case we require that at least one of the immediate subtrees also has to evaluate to this specific value.

We first note that A_{Aux} is in the pseudovariety considered in this subsection:

Proposition 2.4.34 A_{Aux} is contained in the connected Moore pseudovariety $\langle \mathbb{E}_{\text{EF}}^* \rangle_M$.

Proof. Let $A = (\{0, 1\}, \Gamma)$ be the renaming of \mathbb{E}_{EF}^* given by the assignment $l_n^A = e_n^A = \downarrow e_n$ and $s_n^A = \uparrow s_n$ for each $n \in R$. Let us define the connected Moore product $B = A \times_{\alpha} \mathbb{E}_{\text{EF}}^*$, where

$$\alpha(a, \sigma) = \begin{cases} \uparrow_n & \text{if either } \sigma = o_n \text{ or both } \sigma = e_n \text{ and } a = 0; \\ \downarrow_n & \text{otherwise} \end{cases}$$

for all $a \in \{0, 1\}$ and $\sigma \in \{l_n, s_n, e_n, o_n\}$, $n \in R$.

Then the following hold for all $n \in R$ and $x_1, \ldots, x_n \in \{0, 1\} \times \{0, 1\}$:

$$l_n^B(x_1, \ldots, x_n) = \begin{cases} (0, 0) & \text{if } x_i = (0, 0) \text{ for all } i \in [n]; \\ (1, 0) & \text{if } x_i \in \{(0, 0), (1, 0)\} \text{ for all } i \in [n] \\ (0, 1) \text{ or } (1, 1) & \text{otherwise.} \end{cases}$$

$$s_n^B(x_1, \ldots, x_n) = \begin{cases} (1, 0) & \text{if } x_i \in \{(0, 0), (1, 0)\} \text{ for all } i \in [n]; \\ (1, 1) & \text{otherwise.} \end{cases}$$

$$e_n^B(x_1, \ldots, x_n) = \begin{cases} (1, 0) & \text{if } x_i \in \{(0, 0), (1, 0)\} \text{ for all } i \in [n] \\ (0, 1) \text{ or } (1, 1) & \text{otherwise.} \end{cases}$$

$$o_n^B(x_1, \ldots, x_n) = (1, 1).$$

Since the automaton A_{Aux} is a homomorphic image of B under the map $(0, 0) \mapsto 0$, $(1, 0) \mapsto 1$ and $(0, 1), (1, 1) \mapsto 2$ our claim is proven. \blacksquare

We now use A_{Aux} for decomposing finite, monotone, commutative, maximal dependent and stutter invariant connected tree automata.

Lemma 2.4.35 Let $A = (A, \Sigma)$ be a subdirectly irreducible, finite, monotone, commutative, maximal dependent and stutter invariant connected tree automaton with the unique maximal element a_{max}. Then A is contained in the connected Moore pseudovariety $\langle A^{-}, \mathbb{E}_{\text{EF}}^* \rangle_M$.

2.4. APPLICATION

Proof. From Proposition 2.4.27 we get that \(A^+ = A - \{ a_{\max} \} \) also has a unique maximal element \(a_0 \).

From Proposition 2.4.31 we have that there exists a Values*-automaton \(B = (B, \Sigma) \) of \(\mathbb{A}^- \) in the pseudovariety \(\langle \mathbb{A}^-, \mathbb{E}_E^+ \rangle_M \). Let \(h : B \to P(A^-) \) be the canonical Values*-mapping from \(B \) to \(\mathbb{A}^- \).

Since \(\mathbb{A}^- \) is monotone, for any tree \(t \) it holds that \(t^{A^-} \) is the unique maximal element of \(\text{Values}^*_{\mathbb{A}^-}(t) \). As a shorthand, when \(b \in B \), we let \(\overline{b} \) denote the unique maximal element of the set \(h(b) \). Note that since \(B \) is connected, \(\overline{b} \) is defined for each \(b \in B \).

Let us define the connected Moore product \(C = B \times_\alpha \mathbb{A}_{\text{Aux}} \), where

\[
\alpha(b, \sigma) = \begin{cases}
 l_n & \text{if } \overline{b} \neq a_0; \\
 s_n & \text{if } \overline{b} = a_0, \text{ and there exists a tree } t \in T_\Sigma \text{ with } t^A = a_0 \text{ such that both } \text{Values}^+_A(t) = h(b) - \{ a_0 \} \text{ and } \text{Root}(t) = \sigma \text{ hold;} \\
 o_n & \text{if } \overline{b} = a_0 \text{ and no tree } t \in T_\Sigma \text{ exists with both } t^A = a_0 \text{ and } \text{Root}(t) = \sigma; \\
 e_n & \text{otherwise.}
\end{cases}
\]

Note that the last case applies when \(\overline{b} = a_0 \) and there is a tree \(t \in T_\Sigma \) with \(t^A = a_0 \) and \(\text{Root}(t) = \sigma \), but \(\text{Values}^+_A(t) \neq h(b) - \{ a_0 \} \) for any such tree \(t \).

It is clear that for any tree \(t \in T_\Sigma \) we have \(t^C = (t^B, e) \) for some \(e \in \{ 0, 1, 2 \} \). We claim that \(e = 1 \) if and only if \(t^A = a_0 \), moreover, \(e = 2 \) if and only if \(t^A = a_{\max} \). We prove this by induction on the height of \(t = \sigma(t_1, \ldots, t_n) \). Let \(t_i^C = (t_i^B, e_i) \) for all \(i \in [n] \).

Note also that if \(t^A \neq a_{\max} \), then \(\text{Values}^+_A(t) = \text{Values}^+_2(t) = h(t^B) \).

Assume \(t^A = a_0 \). It is clear that \(t^A_i \preceq a_0 \) for all \(i \in [n] \). We have two cases:

i) If \(t^A_i \preceq a_0 \) for all \(i \in [n] \), then by the induction hypothesis \(e_i = 0 \) for all \(i \). Moreover, in this case \(\text{Values}^+_A(t) = \text{Values}^+_A(t) - \{ a_0 \} = h(t^B) - \{ a_0 \} \), \(\text{Root}(t) = \sigma \) and \(t^B = a_0 \), so \(e = s^{\mathbb{A}_{\text{Aux}}}_n(e_1, \ldots, e_n) = s^{\mathbb{A}_{\text{Aux}}}_n(0, \ldots, 0) = 1 \).

ii) If there exists an integer \(i \in [n] \) such that \(t^A_i = a_0 \), then \(\alpha(t^B, \sigma) \) is either \(s_n \) or \(e_n \) (depending on \(h(t^B) \)). From the induction hypothesis we have that \(\{ e_1, \ldots, e_n \} = \{ 0, 1 \} \) or \(\{ e_1, \ldots, e_n \} = \{ 1 \} \), thus, from the definition of \(\mathbb{A}_{\text{Aux}} \) we get that \(e = s^{\mathbb{A}_{\text{Aux}}}_n(e_1, \ldots, e_n) = e^{\mathbb{A}_{\text{Aux}}}_n(e_1, \ldots, e_n) = 1 \) indeed holds.

Now assume \(t^A = a_{\max} \). We have three cases:

i) If \(t^A_i = a_{\max} \) for some \(i \in [n] \), then by the induction hypothesis \(e_i = 2 \). Since \(\mathbb{A}_{\text{Aux}} \) is monotone, \(e = 2 \) indeed holds in this case.
ii) If $t_i^k < a_{\text{max}}$ for all $i \in [n]$ and there exists an integer $i \in [n]$ such that $t_i^k = a_0$, then (since $t_i^k < a_{\text{max}}$ is equivalent to $t_i^k \preceq a_0$), by Proposition 2.4.32 we have that $a_0 \notin \text{Img}_\Lambda(\sigma)$ (since otherwise we would have $t^k = a_0$). From this it follows that $e = e_n^{\Lambda_{\text{Aux}}}(e_1, \ldots, e_n) = 2$.

iii) If $t_i^k < a_0$ for all $i \in [n]$ then we have

$$\text{Values}_+^k(t) = \text{Values}_-^k(t) - \{a_{\text{max}}\} = \text{Values}_-^k(t) - \{a_0\}.\,$$

From Proposition 2.4.22 we get that there is no tree t' with $\text{Root}(t') = \sigma$, $t'^k = a_0 \neq a_{\text{max}} = t^k$ and $\text{Values}_+^k(t') = \text{Values}_-^k(t)$. It follows that $\alpha(t^k, \sigma) = e_n$ and by the induction hypothesis we have $e_i = 0$ for all $i \in [n]$. Finally we have $e = e_n^{\Lambda_{\text{Aux}}}(0, \ldots, 0) = 2$.

The last fact we have to show is that if $t^k \notin \{a_0, a_{\text{max}}\}$ then $e = 0$. Assume that $t^k = a < a_0$. Then $t_i^k < a_0$ for all $i \in [n]$. By the induction hypothesis we have $e_i = 0$ for all $i \in [n]$. Now from the definition of α we get $e = t_n^{k_{\text{Aux}}}(0, 0, \ldots, 0) = 0$ (since from $t^k \notin \{a_0, a_{\text{max}}\}$ we have $t_n^k = t_n^{k_{\text{Aux}}} \neq a_0$).

From the above facts it follows that Λ is a homomorphic image of C under the function that maps each element (b, e) of C to b if $e = 0$, to a_0 if $e = 1$, and to a_{max} if $e = 2$. Since C is in $\langle \Lambda^{-}, E_{\text{EF}} \rangle_M$, the result follows.

From the above lemma we get the main result of this subsection as a consequence (which can be proved analogously to Theorem 2.4.30):

Theorem 2.4.36 The connected Moore pseudovariety $\langle E_{\text{EF}}^* \rangle_M$ contains exactly the finite connected tree automata that are monotone, commutative, maximal dependent and stutter invariant:

$$\langle E_{\text{EF}}^* \rangle_M = \text{Mon}^c \cap \text{Com}^c \cap \text{MaxDep}^c \cap \text{Stu}^c = \langle E_{\text{EF}}^+ \rangle_M \cap \text{Stu}^c.$$

2.4.5 Adding D_0

Our aim in this subsection is to provide characterizations of the connected Moore pseudovarieties $\langle E_{\text{EF}}^+, D_0 \rangle_M = \langle E_{\text{EF}}^+ \rangle_M \times D_1^c$ and $\langle E_{\text{EF}}^*, D_0 \rangle_M = \langle E_{\text{EF}}^* \rangle_M \times D_1^c$. Since both E_{EF}^+ and E_{EF}^* are contained in Mon^c but D_0 is not, first we study the pseudovariety $\text{Mon}^c \times D_1^c$ of finite connected tree automata.

We make the following observation:

Proposition 2.4.37

$$\text{Mon} \times D_1 \subseteq \text{CompDep} \cap \text{CompUnique}.$$
Proof. We know that monotone automata are both component dependent and com-
ponentwise unique. It is clear that the same holds for 1-definite automata.

Our aim now is to show that we in fact have equality. In order to prove this, we introduce
another notion: we say that a tree automaton $A = (A, \Sigma)$ has the disjoint images property,
if for any pair of symbols $\sigma_1 \neq \sigma_2 \in \Sigma$, the sets $\text{Img}_A(\sigma_1)$ and $\text{Img}_A(\sigma_2)$ are disjoint.

Recall the definition of the 1-definite automata of the form A^A_Σ (see page 30).

Lemma 2.4.38 Let $A = (A, \Sigma)$ be a finite, component dependent and componentwise
unique connected tree automaton having the disjoint images property. Then there exists a
congruence Θ of A such that the following both hold:

1. A/Θ is monotone;
2. A divides the direct product $(A/\Theta) \times A^A_\Sigma$.

Proof. Assume $A = (A, \Sigma)$ is such a tree automaton. We claim that the relation \sim_A
satisfies the required properties. Since A is component dependent, \sim_A is a congruence.
Since \sim_A is a congruence, we clearly have by Lemma 2.4.2 that $B = (B, \Sigma) = A/\sim_A$
is monotone. So it remains to show that A is a divisor of the direct product $C = B \times A^A_\Sigma$.
Let \overline{a} denote the class a/\sim_A.

Let (\overline{a}, σ) be a state of C with $a \in A$ and $\sigma \in \Sigma$. Then there exists at most one
$a' \in A$, $a' \sim_A a$ such that $a' \in \text{Img}_A(\sigma)$. Indeed, suppose $\sigma^A(a_1, \ldots, a_n) = a' \sim_A a$ and
$a^A(b_1, \ldots, b_n) = a'' \sim_A a$. Then $a' \sim_A a''$, thus there exists ΣA-polynomial contexts p and
q with $p^A(a') = a''$ and $q^A(a'') = a'$. If either p or q is x_1, then we clearly have
$a' = a''$. Suppose both p and q are proper. Then, from the disjoint images property and
that $a', a'' \in \text{Img}_A(\sigma)$, $\text{Root}(p) = \text{Root}(q) = \sigma$ holds, which implies $a' = a''$, since A is
componentwise unique.

Let C' be the subautomaton of C consisting of the states of the form (\overline{a}, a), $a \in A$ and
of the form (\overline{a}, σ) with $a \in \text{Img}_A(\sigma)$ (it is easy to see that this set indeed determines a
subautomaton of C). Then, a homomorphism $C' \to A$ is given by the function which
maps each state (\overline{a}, a) to a and each state (\overline{a}, σ) to the unique state a' with $\overline{a} = \overline{a'}$ and
$a' \in \text{Img}_A(\sigma)$.

From this we get the desired result:

Corollary 2.4.39

$$\text{Mon} \times D_1 = \text{CompDep} \cap \text{CompUnique}.$$
2.4. APPLICATION

Proof. Let $A = (A, \Sigma)$ be a finite, component dependent and componentwise unique tree automaton. Consider the direct product $A \times A_\Sigma$. It is still a finite, component dependent and componentwise unique tree automaton since A_Σ also has these properties; moreover, it has the disjoint images property. So by Lemma 2.4.38 we have that $A \times A_\Sigma$ is contained in the pseudovariety $\text{Mon} \times D_1$ of finite tree automata. Since A is a homomorphic image of this automaton, the same holds for A. ■

Both of the aimed characterizations are consequences of the following theorem:

THEOREM 2.4.40 Let V be a pseudovariety of finite tree automata such that $D_1 \subseteq V \subseteq \text{Mon} \times D_1$. Then $(\text{Mon} \cap V) \times D_1 = V$.

Proof. We have that

\[
(\text{Mon} \cap V) \times D_1 \subseteq (\text{Mon} \times D_1) \cap (V \times D_1) \\
\subseteq (\text{Mon} \times D_1) \cap V \quad (\text{since } D_1 \subseteq V) \\
\subseteq V.
\]

Let $A = (A, \Sigma) \in V$. From Lemma 2.4.38 we know that A divides some direct product $B \times A_\Sigma^A$, where B is a monotone quotient of A. From this it follows that $B \in \text{Mon} \cap V$ and thus $A \in (\text{Mon} \cap V) \times D_1$; so $V \subseteq (\text{Mon} \cap V) \times D_1$. ■

As consequences we get:

COROLLARY 2.4.41 The following equalities hold:

\[i) \langle E_{EF}^+, D_0 \rangle_M = \langle E_{EF}^+ \rangle_M \times D_1^c = \text{CompDep}^c \cap \text{Com}^c \cap \text{MaxDep}^c;\]
\[ii) \langle E_{EF}^*, D_0 \rangle_M = \langle E_{EF}^* \rangle_M \times D_1^c = \text{CompDep}^c \cap \text{Com}^c \cap \text{MaxDep}^c \cap \text{Stu}^c.\]

Proof. By Proposition 2.4.18, $\text{CompDep}^c \cap \text{Com}^c \cap \text{MaxDep}^c = \text{CompUnique}^c \cap \text{CompDep}^c \cap \text{Com}^c \cap \text{MaxDep}^c$. Applying Corollary 2.4.39 this further equals $(\text{Mon}^c \times D_1^c) \cap \text{Com}^c \cap \text{MaxDep}^c$. Let V^c denote this pseudovariety of finite connected tree automata. By Theorem 2.4.30 we have $\langle E_{EF}^+ \rangle_M = \text{Mon}^c \cap V^c$. Since we also have $D_1^c \subseteq V^c \subseteq \text{Mon}^c \times D_1^c$, thus by Theorem 2.4.40

\[\langle E_{EF}^+, D_0 \rangle_M = (\langle E_{EF}^+ \rangle_M \times D_1^c) = (\text{Mon}^c \cap V^c) \times D_1^c = V^c,
\]

proving i). The proof of ii) is analogous. ■

From Theorem 2.3.3 we get the following alternative formulation:
Corollary 2.4.42 The following hold for any tree language \(L \):

i) \(L \) is in \(\text{CTL}(\text{EF}^+) \) if and only if its minimal tree automaton \(A_L \) is contained in \(\text{CompDep}^c \cap \text{Com}^c \cap \text{MaxDep}^c \).

ii) \(L \) is in \(\text{CTL}(\text{EF}^*) \) if and only if its minimal tree automaton \(A_L \) is contained in \(\text{CompDep}^c \cap \text{Com}^c \cap \text{MaxDep}^c \cap \text{Stu}^c \).

Since membership in the above varieties is clearly decidable, it follows that it is decidable for a given finite tree automaton \(A = (A, \Sigma) \) and a set \(F \subseteq A \) whether the regular language \(L(A, F) \) is in \(\text{CTL}(\text{EF}^+) \), or in \(\text{CTL}(\text{EF}^*) \). In [19] we have shown polynomial-time decision procedures for the membership problems of each of the connected Moore pseudovarieties \(\langle \text{EF}^+ \rangle_M \), \(\langle \text{EF}^* \rangle_M \), \(\langle \text{EF}^+, \text{D}_0 \rangle_M \) and \(\langle \text{EF}^*, \text{D}_0 \rangle_M \), which proves that the definability problem of each of the fragments \(\text{CTL}(\text{EF}^+) \) and \(\text{CTL}(\text{EF}^*) \) is decidable in polynomial time, when the language \(L \) is given by its minimal tree automaton. For the fragment \(\text{CTL}(\text{EF}^+) \) this was already shown in [5] using different methods.

In [56] (see also [34]), it was proved that in the case of word automata (which corresponds to the case when \(R = \{0, 1\} \)) it holds that a regular language \(L \) is definable in the logic \(\text{CTL}(\text{EF}^+) \) if and only if it is definable in \(\text{CTL}(\text{EF}^*) \) and its minimal automaton is stutter invariant. We note that for word languages, the logic \(\text{CTL}(\text{EF}^*) \) corresponds to \(\text{TL}[F] \), the fragment of linear temporal logic determined by the strict \(F \) modality, since in that case there is no branching and the path quantifiers \(E \) and \(A \) coincide. In the same way, \(\text{CTL}(\text{EF}^*) \) corresponds to \(\text{TL}[F_{st}] \), linear temporal logic equipped with only the non-strict (also called stutter-free) \(F \)-modality.

Corollary 2.4.42 extends this result to the case of regular languages over finite trees. Let us inspect the word case in more detail. For word languages the properties of commutativity and maximal dependency are trivial. Moreover, component dependency implies componentwise uniqueness. So in the word case the above definability theorem can be reformulated as follows: a word language \(L \) is definable in \(\text{CTL}(\text{EF}^+) \) if and only if it is regular and its minimal automaton \(A_L \) is component dependent; moreover, \(L \) is definable in \(\text{CTL}(\text{EF}^*) \) if and only if \(A_L \) is component dependent and stutter invariant. This yields exactly the same characterization and decision procedure as the one described in [56], where component dependency is defined in terms of forbidden patterns in the labeled graph of the minimal automaton.

We get yet another interesting fact from Theorem 2.4.30 for the classical case. Since both maximal dependency and commutativity are trivial properties, we have that \(\langle \text{EF}^+ \rangle_M = \text{Mon}^c \) in the word case (and similarly, from Theorem 2.4.36 we get that \(\langle \text{EF}^* \rangle_M \) contains exactly the finite connected automata that are both monotone and stutter invariant).
2.5 Ehrenfeucht-Fraïssé type games

In this section we define the so-called \(n \)-round \(\mathcal{L} \)-game for any class \(\mathcal{L} \) of tree languages and number \(n \geq 0 \) of rounds and show its correspondence to the logic \(\text{FTL}(\mathcal{L}) \). The game is played on two trees, between two players, Spoiler and Duplicator.

Let \(\mathcal{L} \) be a class of tree languages, \(n \geq 0 \) an integer, \(\Sigma \) a signature and let \(t_0, t_1 \in T_\Sigma \). The \(n \)-round \(\mathcal{L} \)-game on \((t_0, t_1)\) is played as follows.

1. If \(\text{Root}(t_0) \neq \text{Root}(t_1) \), Spoiler wins. Otherwise, Step 2 follows.
2. If \(n = 0 \), Duplicator wins. Otherwise, Step 3 follows.
3. Spoiler chooses a language \(L \in \mathcal{L} \) over a signature \(\Delta \), an index \(i \in \{0, 1\} \), a \(\Delta \)-relabeling \(\hat{t}_i \in L \) of \(t_i \) and a \(\Delta \)-relabeling \(\hat{t}_j \notin L \) of \(t_j \), where \(j = 1 - i \) is the other index. If he cannot do so, Duplicator wins. Otherwise, Step 4 follows.
4. Duplicator chooses two nodes, \(x \) and \(y \) of the pair \((t_0, t_1)\) of trees with \((\hat{t}_0, \hat{t}_1)(x) \neq (\hat{t}_0, \hat{t}_1)(y)\). If he cannot do so, Spoiler wins. Otherwise, an \((n - 1)\)-round \(\mathcal{L} \)-game is played on the pair \((t_0, t_1)\) of trees. Whoever wins the subgame, also wins the game.

Clearly, for any class \(\mathcal{L} \) of languages, number \(n \geq 0 \) and trees \((s, t)\), one of the players has a winning strategy for the \(n \)-round \(\mathcal{L} \)-game on \((s, t)\). We say that the player having a winning strategy wins the game. Let \(s \sim_n^L t \) denote that Duplicator wins the \(n \)-round \(\mathcal{L} \)-game on \((s, t)\).

We will show that the relations \(\equiv_n^L \) and \(\sim_n^L \) coincide. Recall that \(s \equiv_n^L t \) if and only if the trees \(s \) and \(t \) satisfy the same set of \(\text{FTL}(\mathcal{L}) \)-formulas of depth at most \(n \).

Proposition 2.5.1 For any class \(\mathcal{L} \) of languages, integer \(n \) and trees \(s, t \in T_\Sigma \), if \(s \sim_n^L t \) then \(s \equiv_n^L t \).

Proof. We argue by induction on \(n \) and contraposition. Let \(s, t \) be \(\Sigma \)-trees with \(s \neq_n^L t \).

If \(n = 0 \), then \(\text{Root}(s) \neq \text{Root}(t) \), thus Spoiler indeed wins the \(\mathcal{L} \)-game on \((s, t)\) in 0 rounds.

Suppose that \(n > 0 \) and we have proved the claim for \(n - 1 \). Then, \(s \neq_n^{L-1} t \) implies either \(s \neq_n^{L-1} t \), or \(s \) and \(t \) can be separated by some complete and deterministic \(\text{FTL}(\mathcal{L}) \)-formula \(\varphi = L(\delta \mapsto \varphi_\delta) \) of depth \(n \).

If \(s \neq_n^{L-1} t \), we can apply the induction hypothesis and get that Spoiler wins the \((n - 1)\)-round \(\mathcal{L} \)-game on \((s, t)\), thus also wins the \(n \)-round \(\mathcal{L} \)-game on these trees.
Suppose that \(s \) and \(t \) can be separated by the complete and deterministic FTL\((\mathcal{L})\)-formula \(\varphi = L(\delta \mapsto \varphi_\delta) \) of depth \(n \), say \(s \models \varphi \) and \(t \not\models \varphi \). Then let Spoiler choose the language \(L \) and the relabelings \(\hat{s} \) and \(\hat{t} \) that are the characteristic trees of \(s \) and \(t \), respectively, determined by the family \((\varphi_\delta)_{\delta \in \Delta}\). From the semantics we get that \(\hat{s} \in L \) and \(\hat{t} \notin L \) indeed hold, thus this is a valid move. Now suppose Duplicator responds by choosing the nodes \(x \) and \(y \) of \((s, t)\) such that \(\delta = (\hat{s}, \hat{t})(x) \neq (\hat{s}, \hat{t})(y) \). Since the family \((\varphi_\delta)_{\delta \in \Delta}\) is complete and deterministic, we have that \(\varphi_\delta \) separates the trees \((s, t)|_x \) and \((s, t)|_y \). Since the depth of this formula is at most \(n - 1 \), applying the induction hypothesis we get that Spoiler wins the \((n - 1)\)-round subgame, thus also the whole game. ■

Proposition 2.5.2 For any class \(\mathcal{L} \) of languages, integer \(n \) and trees \(s, t \in T_\Sigma \), if \(s \equiv^n_L t \), then \(s \sim^n_L t \).

Proof. We again argue by induction on \(n \) and contraposition. Let \(s, t \) be trees with \(s \not\equiv^n_L t \).

If \(n = 0 \), then Root\((s) \neq \) Root\((t)\), thus \(s \not\equiv^0_L t \).

Suppose that \(n > 0 \) and we have proved the claim for \(n - 1 \). We have to consider two cases: either Spoiler already wins the \((n - 1)\)-round game, or he chooses an \(L \in \mathcal{L} \) and two relabelings of the trees in the first step when playing a winning strategy.

If Spoiler already wins the \((n - 1)\)-round \(\mathcal{L} \)-game, then by the induction hypothesis \(s \not\equiv^{n-1}_L t \) holds, which clearly implies \(s \not\equiv^n_L t \).

Now without loss of generality, assume Spoiler chooses the tree language \(L \in \mathcal{L} \) over \(\Delta \) and the relabelings \(\hat{s} \in L \), \(\hat{t} \notin L \) of \(s \) and \(t \), when playing his winning strategy. Then for any pair \(x, y \) of nodes of \((s, t)\) with \((\hat{s}, \hat{t})(x) \neq (\hat{s}, \hat{t})(y)\), Spoiler wins the \((n - 1)\)-round \(\mathcal{L} \)-game on \((s, t)|_x \), \((s, t)|_y \). Applying the induction hypothesis, we get that for any such pair \((x, y)\) there exists an FTL\((\mathcal{L})\)-formula \(\varphi_{x,y} \) of depth at most \(n - 1 \) with \((s, t)|_x \models \varphi_{x,y} \) and \((s, t)|_y \not\models \varphi_{x,y} \).

For each \(\delta \in \Delta \), let us define the formula

\[
\varphi_\delta = \bigvee_{(\hat{s}, \hat{t})(x) = \delta, (\hat{s}, \hat{t})(y) \neq \delta} \varphi_{x,y},
\]

where \(x \) and \(y \) range over the nodes of \((s, t)\).

First, observe that,

\[
(\hat{s}, \hat{t})(z) = \delta \implies (s, t)|_z \models \varphi_\delta
\]

for any node \(z \) of \((s, t)\) and symbol \(\delta \in \Delta \). Thus, the family \((\varphi_\delta)_{\delta \in \Delta}\) is complete over \((s, t)\).
2.5. EHRENFEUCHT-FRAİSSÉ TYPE GAMES

Also,

\[(s, t)\models \varphi_\delta \implies (\hat{s}, \hat{t})(z) = \delta.\]

Indeed, suppose \((\hat{s}, \hat{t})(z) \neq \delta\) and \((s, t)\models \varphi_\delta\). Then there exists a node \(x\) with \((\hat{s}, \hat{t})(x) = \delta\) such that \((s, t)\models \bigwedge_{(\hat{s}, \hat{t})(y) \neq \delta} \varphi_{x,y}\). Then \((s, t)\models \varphi_{x,z}\), which contradicts the definition of the formula \(\varphi_{x,z}\).

Thus the family \((\varphi_\delta)_{\delta \in \Delta}\) is complete and deterministic over \((s, t)\), moreover, \(\hat{s}\) and \(\hat{t}\) are the characteristic trees of \(s\) and \(t\), respectively, determined by the family \((\varphi_\delta)_{\delta \in \Delta}\). Now since \(\hat{s} \in L\) and \(\hat{t} \notin L\), we conclude that the FTL\((\mathcal{L})\)-formula \(L(\delta \mapsto \varphi_\delta)\) of depth \(n\) separates \(s\) and \(t\), thus the statement is proven.

Corollary 2.5.3 For any class \(\mathcal{L}\) of tree languages and integer \(n \geq 0\), the relations \(\sim^n_\mathcal{L}\) and \(\equiv^n_\mathcal{L}\) coincide.

Corollary 2.5.4 The following are equivalent for any finite class \(\mathcal{L}\) of tree languages and any language \(L\):

i) \(L\) is definable in FTL\((\mathcal{L})\);

ii) there exists an integer \(n \geq 0\) such that Spoiler wins the \(n\)-round \(\mathcal{L}\)-game on \((s, t)\), whenever \(s \in L\) and \(t \notin L\).

Proof. Suppose \(\mathcal{L}\) is a finite class of tree languages, \(L\) is a tree language and \(n \geq 0\) is an integer such that Spoiler wins the \(n\)-round \(\mathcal{L}\)-game on any pair \((s, t)\) of trees with \(s \in L\) and \(t \notin L\).

Then for any such pair \((s, t)\) of trees there exists an FTL\((\mathcal{L})\)-formula \(\varphi_{s,t}\) such that \(s \models \varphi_{s,t}\) and \(t \not\models \varphi_{s,t}\). Each of these formulas is of depth at most \(n\).

Since \(\mathcal{L}\) is finite, by standard arguments from finite model theory, it follows that, up to equivalence, there exist only a finite number of formulas of depth at most \(n\).

Thus, for any tree \(s \in L\), the “infinitary conjunction” \(\bigwedge_{t \notin L} \varphi_{s,t}\) is equivalent to some FTL\((\mathcal{L})\)-formula \(\varphi_s\) of depth at most \(n\). Also the “infinitary disjunction” \(\bigvee_{s \in L} \varphi_s\) is equivalent to some formula \(\varphi\); it is straightforward to see that \(L_{\varphi} = L\) indeed holds, proving ii) \(\rightarrow\) i). The other direction is a direct consequence of Corollary 2.5.3.
Chapter 3

Aperiodicity

In this chapter we define a hierarchy of aperiodicity notions for finite tree automata by considering \(n \)-tuples of proper trees in \(n \) variables and the semigroup of vector-valued term functions induced by them. We say that a finite tree automaton is \(n \)-aperiodic for some integer \(n > 0 \) if the semigroup of all such term functions is aperiodic. Moreover, we say that a finite tree automaton is strongly aperiodic if it is \(n \)-aperiodic for each \(n \).

We show that \(n \)-aperiodic finite tree automata form a proper hierarchy, and the class of 1-aperiodic finite tree automata is properly contained in the class of context aperiodic finite tree automata, when the rank type \(R \) contains an integer greater than 1. We also show that in this case the class of strongly aperiodic finite tree automata properly contains the class of all finite definite tree automata. Moreover, we establish that each of these classes is a cascade pseudovariety of finite tree automata. We also study the complexity of the membership problem of these classes. In particular, we establish a P-time algorithm for testing strong aperiodicity. We also provide an extension of the above aperiodicity notions which is motivated by the Krohn-Rhodes decomposition theory [9] and study a modified version of aperiodicity obtained by taking polynomial functions instead of term functions. Finally, we relate aperiodicity to logic.

3.1 The notion of \(n \)-aperiodicity

For the balance of this section, we fix an arbitrary rank type \(R \), containing at least one positive integer. Let \(A = (A, \Sigma) \) be a tree automaton. Extending the notion of term functions, we let each \(m \)-tuple \(t = (t_1, \ldots, t_m) \) of trees \(t_i \in T_{\Sigma}(X_n) \) induce a vector-valued term function \(t^A: (t_1^A, \ldots, t_m^A): A^n \to A^m \), which is the target tupling of the \(m \) functions \(t_i^A: A^n \to A \), \(i \in [m] \). When each \(t_i^A \) is proper, \(t^A \) is also called proper. It is clear that for each \(n \geq 1 \), the proper term functions \(A^n \to A^n \) form a semigroup, denoted \(S_n(A) \) which
is finite if A is a finite tree automaton. In this semigroup, product is function composition. We let $C(A)$ denote the subsemigroup of $S_1(A)$ consisting of the term functions induced by the proper contexts if this set is not empty. Otherwise we let $C(A)$ be a trivial semigroup.

Proposition 3.1.1 When $n \leq m$, $S_n(A)$ divides $S_m(A)$.

Proof. First note that since $n \leq m$, we have $T_{\Sigma}(X_n) \subseteq T_{\Sigma}(X_m)$. Consider the functions $f = \langle t_1^k, \ldots, t_m^k \rangle \in S_m(A)$ such that for each $i \in [n]$, t_i is a proper tree in $T_{\Sigma}(X_m)$ not containing any occurrence of a variable x_j with $j > n$. These functions form a subsemigroup T of $S_m(A)$. Moreover, $S_n(A)$ is a homomorphic image of T, one homomorphism being the map that takes any f of the above form to $\langle t_1^k, \ldots, t_n^k \rangle$, where now each t_i is considered as a tree in $T_{\Sigma}(X_n)$ inducing a function $A^n \to A$. ■

The following fact is clear:

Proposition 3.1.2 $C(A)$ is a subsemigroup of $S_1(A)$. When R is either $\{1\}$ or $\{0, 1\}$, $C(A) = S_1(A)$.

Recall from [9] that a finite semigroup S is called aperiodic if it contains no nontrivial group, or equivalently, when there exists an integer $k \geq 1$ such that $s^k = s^{k+1}$, for all $s \in S$.

Definition 3.1.3 We call a finite Σ-tree automaton A n-aperiodic for some $n \geq 1$ if the semigroup $S_n(A)$ is aperiodic. By extension, we call A strongly aperiodic if it is n-aperiodic for each $n \geq 1$.

Definition 3.1.4 We call a finite Σ-tree automaton A context aperiodic if $C(A)$ is aperiodic.

The notion of context aperiodicity was introduced by Thomas in [54] under the name aperiodicity. In the classical case when $R = \{1\}$ or $R = \{0, 1\}$, context aperiodicity and 1-aperiodicity coincide with aperiodicity, or counter-freeness, see below.

Example 3.1.5 In case of semigroups, the signature contains a single binary symbol. Since there are no proper contexts, every finite semigroup is context aperiodic. We show that a finite semigroup S is 1-aperiodic if and only if its exponent is 1 or 2. (Recall that the exponent of S is the least positive integer d such that $s^k = s^{k+d}$ for all $s \in S$.)

Suppose first that S is a finite semigroup which is 1-aperiodic. For each integer $k > 1$, consider the proper tree $x_1^k = x_1 \cdot (x_1 \cdot \ldots \cdot (x_1 \cdot x_1) \ldots)$ in the variable x_1. Since S is
1-aperiodic, there exists some integer \(m \) such that the equation \(x_1^{k+1} = x_1^k \) holds in \(S \). This implies that its exponent \(d \) is a divisor of \(k^{m+1} - k^m = k^m(k - 1) \). Thus, each prime appearing in the prime decomposition of \(d \) must divide \(k(k - 1) \). Since this holds for all \(k > 1 \), we conclude that \(d = 1 \) or \(d \) is a power of 2. But when \(k = 3 \), then \(d \) must divide \(3^m \cdot 2 \) for some \(m \), so that the exponent is 1 or 2.

When the exponent is 1, \(S \) is aperiodic. It is then clear that \(S \) is 1-aperiodic. Assume that the exponent is 2. Then there is an integer \(n \) such that \(s^{n+2} = s^n \) for all \(s \in S \). Consider any tree \(x_1^k \), where \(k \geq 2 \). When \(k^m \geq n \), we have that \(s^{k^{m+1}} = s^{k^m} \) for all \(s \in S \). This means that \(x_1^{km} \) and \(x_1^{km+1} \) induce the same term functions. It follows that \(S \) is 1-aperiodic.

Example 3.1.6 Recall that a semigroup \(S \) is *nilpotent* if there exist an element \(0 \in S \) and an integer \(n > 0 \) such that \(S^n = 0 \). It is clear that any finite nilpotent semigroup is strongly aperiodic. We show that every finite 2-aperiodic semigroup \(S \) is nilpotent. To this end, first note that the exponent of \(S \) is 1 or 2 by the above argument. But if the exponent is 2, then there exist some \(s \in S \) and \(n > 0 \) such that \(s^n = s^{n+2} \) but \(s^n \neq s^{n+1} \). Now both \(s^n \) and \(s^{n+1} \) are fixed points of the proper term function induced by \(x_1^3 \). This, by Proposition 3.1.9 below, is not 2-aperiodic. We conclude that the exponent of \(S \) is 1, i.e., \(S \) is aperiodic, so that there exists \(n > 0 \) such that \(x^{n+1} = x^n \) holds in \(S \). Consider now the pair \((x_2^2, x_1^2)\) of proper trees. Since \(S \) is 2-aperiodic, there exists some \(k \) such that \(2^k \geq n \) and \(x_1^{2^k} = x_2^{2^k+1} \) holds in \(S \). But since \(2^k \geq n \), \(x_1^{2^k} = x_1^n \) and \(x_2^{2^k+1} = x_2^n \), so that \(x_1^n = x_2^n \) also holds. Now this implies that \(S \) has a single idempotent \(e \) and \(e = s^n \) for each \(s \in S \). But then since \(xy^n = x^n = x^n \) and \(y^n x = x^n \) also hold, \(Se = eS = e \). Since all long enough products over \(S \) have a factorization which contains an idempotent, it follows that \(S \) is nilpotent.

Since any divisor of an aperiodic semigroup is aperiodic, from Propositions 3.1.1 and 3.1.2 we have:

Proposition 3.1.7 Every 1-aperiodic finite tree automaton is context aperiodic, and when \(n \leq m \), every \(m \)-aperiodic tree automaton is \(n \)-aperiodic.

When \(A \) is a finite set and \(S \) is a semigroup of functions \(A \rightarrow A \) (product in \(S \) is function composition), then the pair \((A, S)\) is called a *transformation semigroup*, cf. [9]. The (left) action of \(S \) on \(A \) is defined by \(sa := s(a) \), for each \(a \in A \) and \(s \in S \). A transformation semigroup \((A, S)\) is called *counter-free* when there exists no \(s \in S \) which induces a nontrivial (cyclic) permutation of a subset of \(A \). It is well-known that \(S \) is aperiodic if and only if \((A, S)\) is counter-free. Note that for each \(n \), \((A^n, S_n(A))\) is a transformation semigroup as is \((A, C(A))\).
Proposition 3.1.8 A finite Σ-tree automaton A is n-aperiodic if and only if $(A^n, S_n(A))$ is counter-free. Moreover, it is context aperiodic if and only if $(A, C(A))$ is counter-free.

For later use we prove:

Proposition 3.1.9 For any integer $n > 0$, 2n-aperiodic finite tree automaton A and proper term function $f : A^n \rightarrow A^n$ it holds that f has at most one fixed point.

Proof. Let $n > 0$ be an integer, A a 2n-aperiodic finite Σ-tree automaton, $t_1, \ldots, t_n \in T_\Sigma(X_n)$ proper trees and $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in A^n$ two fixed points of $f = (t_1^A, \ldots, t_n^A)$. We have to show that $a_i = b_i$ for all $i \in [n]$.

For any $i \in [n]$ let s_i denote the tree that results from t_i by replacing each occurrence of x_j by x_{n+j}, for each $j \in [n]$ (so we add n to the index of each variable). Now the proper term function

$$f' = (s_1^A, \ldots, s_n^A, t_1^A, \ldots, t_n^A) : A^{2n} \rightarrow A^{2n}$$

satisfies both

$$f'(a_1, \ldots, a_n, b_1, \ldots, b_n) = (b_1, \ldots, b_n, a_1, \ldots, a_n)$$

and

$$f'(b_1, \ldots, b_n, a_1, \ldots, a_n) = (a_1, \ldots, a_n, b_1, \ldots, b_n).$$

Since A is 2n-aperiodic, $(a_1, \ldots, a_n, b_1, \ldots, b_n) = (b_1, \ldots, b_n, a_1, \ldots, a_n)$, hence $a_i = b_i$ for all $i \in [n]$. ■

Proposition 3.1.10 Suppose A is a finite tree automaton which is not n-aperiodic for the integer $n > 0$. Then there exists a proper term function $f : A^n \rightarrow A^n$ having at least two different fixed points.

Proof. If A is not n-aperiodic, then there exist a proper term function $f : A^n \rightarrow A^n$ and a subset $B \subseteq A^n$ with $k > 1$ elements such that the restriction of f to B is a cyclic permutation of B. But then each element of B is a fixed point of the proper term function f^k. ■

Corollary 3.1.11 A finite tree automaton A is strongly aperiodic if and only if for each $n > 0$, no proper term function $A^n \rightarrow A^n$ has two or more different fixed points.

Remark 3.1.12 We can show that a finite tree automaton A is strongly aperiodic if and only if no proper term function $A^n \rightarrow A^n$ has two or more different fixed points where $n = |A|^2$.

3.1. THE NOTION OF N-APERIODICITY 67
3.2 The generalized cascade product

Let A be a Σ-tree automaton, B a Δ-tree automaton and γ a family $(\gamma_n)_{n \in R}$ of functions, where for each $n \in R$, γ_n maps $A^n \times \Sigma$ to the set of all proper ΔX_n-trees. Then the generalized cascade product $A \times \gamma B$ is defined as the tree automaton on the set $A \times B$ of states such that for any $\sigma \in \Sigma^n$ and $(a_1, b_1), \ldots, (a_n, b_n) \in A \times B$,

$$\sigma^{A \times \gamma B}((a_1, b_1), \ldots, (a_n, b_n)) = (\sigma^A(a_1, \ldots, a_n), t^B(b_1, \ldots, b_n))$$

where $t = \gamma_n(a_1, \ldots, a_n, \sigma)$.

Remark 3.2.1 When the range of each γ_n only contains trees of the form $\delta(x_1, \ldots, x_n)$, where $\delta \in \Delta_n$, we may view each γ_n as a function $A^n \times \Sigma_n \rightarrow \Delta_n$ and thus $A \times \gamma B$ can be viewed as a cascade product.

Remark 3.2.2 The generalized cascade product can be defined in terms of the cascade product. We say that a tree automaton B' is a derived automaton of a tree automaton B if B and B' have the same set of states and each basic operation of B' is a proper term function of B. Any generalized cascade product $A \times \gamma B$ of the finite tree automata A and B is clearly a cascade product $A \times _\alpha B'$ for some derived automaton B' of B and for some α.

Definition 3.2.3 We say that a nonempty class of finite tree automata is a generalized cascade pseudovariety of finite tree automata if it is closed under taking subautomata, homomorphic images, renamings and the generalized cascade product.

Remark 3.2.4 A cascade pseudovariety of finite tree automata is a generalized cascade pseudovariety if and only if it is closed under derived automata.

In the rest of this section we show that for each $n > 0$, the class of all n-aperiodic finite tree automata is a generalized cascade pseudovariety. Hence, the class of all strongly aperiodic finite tree automata is also a generalized cascade pseudovariety.

We begin with the following lemma.

Lemma 3.2.5 Let $n > 0$ be an integer and A an n-aperiodic finite tree automaton. Then any divisor of A is also n-aperiodic.

Proof. It is clear that taking subautomata preserves n-aperiodicity.

Let $B = (B, \Sigma)$ be a homomorphic image of A under the mapping $a \mapsto \overline{a}$. Let \overline{t} be an n-tuple of proper ΣX_n-trees. Since A is n-aperiodic, there exists an integer $N > 0$ such
that \((t^A)^N = (t^A)^{N+1}\). Hence, for any \(n\)-tuple of states \(a_1, \ldots, a_n \in B\) it holds that
\[
\begin{align*}
(t^B)^N(a_1, \ldots, a_n) &= \frac{(t^A)^N(a_1, \ldots, a_n)}{\Delta} \\
&= \frac{(t^A)^{N+1}(a_1, \ldots, a_n)}{\Delta} \\
&= (t^B)^{N+1}(a_1, \ldots, a_n),
\end{align*}
\]
showing that \(B\) is indeed \(n\)-aperiodic. \(\blacksquare\)

Before proving that the generalized cascade product also preserves \(n\)-aperodicity, we make the following observation, that is similar to Lemma 2.2.1:

Lemma 3.2.6 Let \(A\) be a \(\Sigma\)-tree automaton, \(B\) a \(\Delta\)-tree automaton and \(C = A \times \gamma B\) a generalized cascade product of \(A\) and \(B\). Then for any integer \(n \geq 0\), proper tree \(t \in T_\Sigma(X_n)\) and states \(a_1, \ldots, a_n \in A\) there exists a proper tree \(s \in T_\Delta(X_n)\) such that
\[
t^nC((a_1, b_1), \ldots, (a_n, b_n)) = (t^A(a_1, \ldots, a_n), s^B(b_1, \ldots, b_n))
\]
for any \((a_1, b_1), \ldots, (a_n, b_n) \in C\).

Lemma 3.2.7 Let \(n > 0\) be an integer, \(A\) an \(n\)-aperiodic finite \(\Sigma\)-tree automaton, \(B\) an \(n\)-aperiodic finite \(\Delta\)-tree automaton, and \(C = A \times \gamma B\) a generalized cascade product of \(A\) and \(B\). Then \(C\) is also \(n\)-aperiodic.

Proof. We know that there exist integers \(N_A\) and \(N_B\) such that \(f^{N_A} = f^{N_A+1}\) and \(g^{N_B} = g^{N_B+1}\) for all proper term functions \(f : A^n \to A^n\) and \(g : B^n \to B^n\) of \(A\) and \(B\), respectively. We show that this implies that \(h^{N_A+N_B} = h^{N_A+N_B+1}\) for all proper term functions \(h : (A \times B)^n \to (A \times B)^n\) of \(C\).

Let \(t = (t_1, \ldots, t_n)\) be an \(n\)-tuple of proper \(\Sigma X_n\)-trees. Let us denote by \(((a_1', b_1'), \ldots, (a_n', b_n'))\) the \(n\)-tuple \((t^C)^{(N_A)}((a_1, b_1), \ldots, (a_n, b_n))\). Applying Lemma 3.2.6 to the trees \((t_1, \ldots, t_n)\) and the states \(a_1', \ldots, a_n' \in A\) we get that there exist proper trees \(s_1, \ldots, s_n \in T_\Delta(X_n)\) such that for any \((a_1', y_1), \ldots, (a_n', y_n) \in C\) the value of \((t^C)((a_1', b_1), \ldots, (a_n', b_n))\) can be written as
\[
((t_1^A(a_1', \ldots, a_n'), s_1^B(y_1, \ldots, y_n)), \ldots, (t_n^A(a_1', \ldots, a_n'), s_n^B(y_1, \ldots, y_n))).
\]
From the definition of \(a_1', \ldots, a_n'\) we get that \(t_i^A(a_1', \ldots, a_n') = a_i'\) for all \(i \in [n]\), so
\[
(t^C)((a_1', y_1), \ldots, (a_n', y_n)) = ((a_1', s_1^B(y_1, \ldots, y_n)), \ldots, (a_n', s_n^B(y_1, \ldots, y_n))).
\]
Iterating this from \((a_1', b_1'), \ldots, (a_n', b_n')\) it follows that for any \(k \geq 0\) we can write \((t^C)^k((a_1', b_1'), \ldots, (a_n', b_n'))\) as
\[
((a_1', (s_1^B)^k(b_1', \ldots, b_n')), \ldots, (a_n', (s_n^B)^k(b_1', \ldots, b_n')))\]
But we know that \((s_i^B)^{N_B} = (s_i^B)^{N_B+1}\) holds for all \(i \in [n]\). Summing up we get the following equality:

\[
(t^C)^{N_A+N_B}((a_1, b_1), \ldots, (a_n, b_n))
= (t^C)^{N_B}((a'_1, b'_1), \ldots, (a'_n, b'_n))
= ((a'_1, (s_1^B)^{N_B}(b'_1, \ldots, b'_n)), \ldots, (a'_n, (s_n^B)^{N_B}(b'_1, \ldots, b'_n)))
= ((a'_1, (s_1^B)^{N_B+1}(b'_1, \ldots, b'_n)), \ldots, (a'_n, (s_n^B)^{N_B+1}(b'_1, \ldots, b'_n)))
= (t^C)^{N_B+1}((a'_1, b'_1), \ldots, (a'_n, b'_n))
= (t^C)^{N_A+N_B+1}((a_1, b_1), \ldots, (a_n, b_n)),
\]

so \(C\) is indeed \(n\)-aperiodic. □

For each \(n\), let \(\text{SAper}_n\) denote the class of all \(n\)-aperiodic finite tree automata. Thus, \(\text{SAper} = \bigcap_{n \geq 1} \text{SAper}_n\) is the class of all strongly aperiodic finite tree automata. Moreover, let \(\text{CAper}\) denote the class of all context aperiodic finite tree automata. From the above facts we get the following:

Theorem 3.2.8 For any integer \(n > 0\), \(\text{SAper}_n\) is a generalized cascade pseudovariety of finite tree automata. Hence, \(\text{SAper}\) is also a generalized cascade pseudovariety.

In a similar way, we have:

Theorem 3.2.9 \(\text{CAper}\) is a cascade pseudovariety of finite tree automata.

Recall that \(\text{D}\) denotes the class of all finite definite tree automata.

Corollary 3.2.10

\[
\text{D} \subseteq \text{SAper}.
\]

Proof. It was shown in [12] that \(\text{D}\) is the least cascade pseudovariety of finite tree automata containing \(\text{D}_0\). It is easy to check that \(\text{D}_0\) is strongly aperiodic. □

3.3 Strict containments

By Propositions 3.1.1, 3.1.2 and Corollary 3.2.10,

\[
\text{CAper} \supseteq \text{SAper}_1 \supseteq \text{SAper}_2 \supseteq \ldots \supseteq \text{SAper} \supseteq \text{D} \tag{3.1}
\]
3.3. STRICT CONTAINMENTS

is a decreasing chain. In this section we prove that when \(R \) contains an integer \(> 1 \), then each of the containments in (3.1) is strict. But first we treat the case when \(R = \{1\} \) or \(R = \{0,1\} \). (Recall that in order to avoid trivial situations, we assume that the rank type contains at least one positive integer.)

Proposition 3.3.1 When \(R = \{1\} \) or \(R = \{0,1\} \), it holds that

\[
\text{CAper} = \text{SAper}_1 \supset \text{SAper}_2 = \text{Saper} = \text{D}.
\]

Proof. So let \(R = \{1\} \) or \(R = \{0,1\} \). The first equality is clear. We also know that \(\text{Saper} \supset \text{D} \). If we can show that \(\text{SAper}_2 \subset \text{D} \), then it follows that \(\text{SAper}_2 = \text{Saper} = \text{D} \). Moreover, \(\text{SAper}_1 \supset \text{SAper}_2 \), since there exist counter-free finite automata which are not definite. For instance, the tree automaton \(\mathbb{E}^*_{\text{EF}} \) (see page 39) is finite, counter-free and not definite for any rank type.

To prove that \(\text{SAper}_2 \subset \text{D} \), suppose that \(A \) is not definite. When \(R = \{1\} \), it is known that \(A \) has a proper term function having two or more different fixed points, cf. [9]. Thus, by Proposition 3.1.9, \(A \) is not 2-aperiodic. If \(0 \in R \) the same reasoning applies, since if \(A \) is not definite, then the automaton \(A' \) obtained from \(A \) by removing the constants (so that the rank type of \(A' \) is \(\{1\} \)) is also not definite. □

Thus, when \(R \) does not contain any integer \(> 1 \), then the hierarchy (3.1) collapses. In the remaining part of this section we will show that when \(R \) contains an integer \(> 1 \), then the hierarchy is proper.

Proposition 3.3.2 If \(R \) contains an integer \(n > 1 \) then \(\text{SAper}_1 \subset \text{CAper} \).

Proof. Let \(\Sigma \) contain the symbol \(\sigma \) of rank \(n > 1 \). Define the \(\Sigma \)-tree automaton \(A \) on the set \(A = \{0,1,2\} \) of states as follows:

\[
\sigma^A(x_1, \ldots , x_n) = \begin{cases}
0 & \text{if } x_1 = \ldots = x_n = 1; \\
1 & \text{if } x_1 = \ldots = x_n = 0; \\
2 & \text{otherwise.}
\end{cases}
\]

Let the interpretation of any other symbol be a constant function. (We may add all constant functions if \(\Sigma \) is large enough.) This tree automaton is not 1-aperiodic, since the proper term function \(A \to A \) induced by the tree \(\sigma(x_1, \ldots , x_1) \) maps 0 to 1 and 1 to 0.

However, \(A \) is context aperiodic: for any proper term function \(f : A \to A \) induced by a proper context it holds that \(f^2 \) is a constant function, so that \(f^2 = f^3 \). □

Proposition 3.3.3 Suppose that \(R \) contains an integer \(> 1 \). Then for each \(n > 1 \) there exists an \((n - 1) \)-aperiodic finite tree automaton which is not \(n \)-aperiodic.
3.3. STRICT CONTAINMENTS

Proof. Given \(n \), we will first prove the claim assuming that the rank type contains an integer \(m \geq n \).

We are going to construct a tree automaton \(\mathbb{A} \) on the set

\[
\{0, 1, \ldots, n, 1', \ldots, n'\}
\]

having at least the operations \(\sigma_i^A : A^n \rightarrow A \), \(i \in [n] \). For each \(i \in [n] \), we define

\[
\sigma_i^A(1, \ldots, n, \ldots, n) = i', \\
\sigma_i^A(1', \ldots, n', \ldots, n') = i.
\]

In all remaining cases, the operations \(\sigma_i^A \) return 0. For each integer \(k \in R \), \(k \neq m \), we take a single operation symbol in \(\Sigma_k \) and interpret it as the constant function \(A^k \rightarrow A \) with value 0. This defines the tree automaton \(\mathbb{A} \).

For each \(i \in [n] \), let \(s_i = \sigma_i(x_1, \ldots, x_n, \ldots, x_n) \in T_\Sigma(X_n) \). If \(f = (s_1^A, \ldots, s_n^A) \), then \(f(1, \ldots, n) = (1', \ldots, n') \) and \(f(1', \ldots, n') = (1, \ldots, n) \), showing that \(\mathbb{A} \) is not \(n \)-aperiodic.

To prove that \(\mathbb{A} \) is \((n-1)\)-aperiodic, consider any proper tree \(t \in T_\Sigma(X_{n-1}) \). We show that \(t^A : A^{n-1} \rightarrow A \) is constant with value 0. This is clearly true when an operation symbol different from one of the \(\sigma_i \) appears in \(t \). Suppose now that all operations symbols appearing in \(t \) are in the set \(\{\sigma_1, \ldots, \sigma_n\} \). Then \(t \) has a subtree of the form \(s = \sigma_i(x_{j_1}, \ldots, x_{j_m}) \).

Since the first \(n \) variables \(x_{j_1}, \ldots, x_{j_n} \) cannot be all distinct, \(s^A \) is the constant function \(A^{n-1} \rightarrow A \) with value 0. It follows now that \(t^A \) is also this function.

We show how to modify the above construction when each integer in \(R \) is less than \(n \). Let \(m \) denote the maximal integer in \(R \), so that \(m > 1 \). Let \(k \) denote the least integer with \(1 + k(m-1) \geq n \), so that \(k \geq 2 \). We take symbols \(\sigma_{i,1}, \ldots, \sigma_{i,k} \) of rank \(m \), for all \(i \in [n] \).

Consider the trees in \(T_\Sigma(X_n) \),

\[
\begin{align*}
\sigma_{i,1}(x_1, \ldots, x_m) & \quad s_{i,1} \\
\sigma_{i,2}(s_{i,1}, x_{m+1}, \ldots, x_{m+m-1}) & \quad s_{i,2} \\
\vdots & \\
\sigma_{i,k-1}(s_{i,k-2}, x_{m+(k-2)(m-1)+1}, \ldots, x_{m+(k-1)(m-1)}) & \quad s_{i,k-1} \\
\sigma_{i,k}(s_{i,k-1}, x_{m+(k-1)m+1}, \ldots, x_n, \ldots, x_n) & \quad s_{i,k}
\end{align*}
\]

Let \(s_i = s_{i,k} \), \(i \in [n] \). Now define the interpretation of the \(\sigma_{i,j} \) so that

\[
\begin{align*}
\sigma_i^A(1, \ldots, n) & = i' \\
\sigma_i^A(1', \ldots, n') & = i,
\end{align*}
\]

for all \(i \), moreover, for each \(i \) and \(j < k \),

\[
\begin{align*}
\sigma_{i,j}^A(1, \ldots, n) & \quad s_{i,j}^A(1, \ldots, n) \\
\sigma_{i,j}^A(1', \ldots, n') & \quad s_{i,j}^A(1', \ldots, n')
\end{align*}
\]
are new elements. The set A is the union of the set $\{0, 1, \ldots, n, 1', \ldots, n'\}$ with these new elements. In all other cases, the operations $a_{i,j}$ return 0. As before, for all $p \neq m$, we take a single operation symbol in Σ_p whose interpretation is a constant function with value 0. We omit the formal verification of the correctness of this construction.

Proposition 3.3.4 If R contains an integer $k > 1$, then $D \subset S_{Aper}$.

Proof. Let Σ be a signature of rank type R and $\sigma \in \Sigma$ a function symbol with $k > 1$. Define the Σ-tree automaton A as follows. Let $A = \{0, 1\}$ and

$$\sigma^k(a_1, \ldots, a_k) = \begin{cases} 1 & \text{if } 0 \in \{a_1, \ldots, a_k\} \subseteq \{0, 1\}; \\ 2 & \text{otherwise,} \end{cases}$$

for all $a_1, \ldots, a_k \in A$. All other symbols in Σ are interpreted as a constant function with value 2.

It is clear that for any proper tree $t \in T_\Sigma(X_n)$, $t^k(a_1, \ldots, a_n) \in \{1, 2\}$ holds; moreover, if $a_1, \ldots, a_n \in \{1, 2\}$, then $t^k(a_1, \ldots, a_n) = 2$. It follows that for any proper term function $f : A^n \to A^n$, each component of f^2 is a constant function with value 2.

We show that A is not definite. Consider the following sequences p_i, q_i of Σ-polynomial symbols: $p_0 = \sigma(0, \ldots, 0)$, $p_{n+1} = \sigma(0, \ldots, 0, p_n)$ and $q_0 = \sigma(1, \ldots, 1)$, $q_{n+1} = \sigma(0, \ldots, 0, q_n)$. It is easy to check that $p_n^k = 1$ and $q_n^k = 2$ holds for any integer $n \geq 0$, hence—since the polynomial symbols p_n and q_n agree up to depth n—A is not definite.

3.4 Decidability and complexity

Since for any finite Σ-tree automaton A and for any $n \geq 1$, $S_n(A)$ is finite and effectively constructible, it is clear that there exists an algorithm to decide, given a finite Σ-tree automaton A and an integer n, whether A is n-aperiodic. Also, context aperiodicity is decidable. Strong aperiodicity of a finite tree automaton is not immediately decidable, since the definition of strong aperiodicity involves a condition for each n. (However, see Remark 3.1.12.)

In this section, we show that strong aperiodicity is decidable in polynomial time. On the other hand, it is known that deciding aperiodicity of classical automata (the case when $R = \{1\}$) is PSPACE-complete, cf. [4, 7]. We use this fact to show that for any fixed n, the membership problem of the class S_{Aper_n} is PSPACE-hard.

Let A be a finite Σ-tree automaton and consider the direct product $A \times A$ of A with itself. Let $B \subseteq A \times A$ a set of state pairs. We denote by $[B]$ the following set containing state
pairs:
\[\{ t^A \times A((a_1, b_1), \ldots, (a_n, b_n)) : n \geq 0, \ t \in T_\Sigma(X_n) \text{ proper}, (a_i, b_i) \in B \}. \]

Note that for any \(A \) and \(B \subseteq A \times A \), the set \([B]\) is computable in time polynomial in \(|A|\), the size of \(A \) defined as \(n + \sum_{i \in R} s_i n^i \), where \(n = |A| \) and \(s_i = |\Sigma_i| \), for all \(i \in R \). We make the following observation:

Lemma 3.4.1 The following are equivalent for any finite \(\Sigma \)-tree automaton \(A \):

i) There exist an integer \(n \) and a proper term function \(f : A^n \rightarrow A^n \) of \(A \) with at least two different fixed points.

ii) There exist an integer \(n \) and a proper term function \(f : (A \times A)^n \rightarrow (A \times A)^n \) of the direct product \(A \times A \) such that \(f \) has a fixed point of the form \(((a_1, b_1), \ldots, (a_n, b_n)) \) with \(a_i \neq b_i \) for some \(i \in [n] \).

Proposition 3.4.2 The following are equivalent for any finite \(\Sigma \)-tree automaton \(A \):

i) \(A \) is not strongly aperiodic;

ii) there exist an integer \(n > 0 \) and proper trees \(t_1, \ldots, t_n \in T_\Sigma(X_n) \) such that \((t_1, \ldots, t_n)^A \) has at least two different fixed points;

iii) there exist a set \(S \subseteq A \times A \) and states \(a \neq b \in A \) such that \((a, b) \in S \subseteq [S] \);

iv) the mapping \(P(A \times A) \rightarrow P(A \times A) \) defined by \(B \mapsto [B] \cap B \) has a fixed point \(S \) which contains a pair \((a, b) \) with \(a \neq b \);

v) the greatest fixed point of the mapping \(B \mapsto [B] \cap B \) contains some pair \((a, b) \) with \(a \neq b \).

Proof. i) \(\rightarrow \) ii). We have already proved this (Corollary 3.1.11).

ii) \(\rightarrow \) iii). Let \(n > 0 \) be an integer, \(t_1, \ldots, t_n \in T_\Sigma(X_n) \) proper trees and \((a_1, \ldots, a_n) \neq (b_1, \ldots, b_n) \) different state tuples such that both \((a_1, \ldots, a_n) \) and \((b_1, \ldots, b_n) \) are fixed points of \((t_1, \ldots, t_n)^A \). Then \(((a_1, b_1), \ldots, (a_n, b_n)) \) is a fixed point of \((t_1, \ldots, t_n)^A \times A \). Hence, choosing \(S = \{(a_i, b_i) : i \in [n]\} \) we get that \(S \subseteq [S] \), and since \((a_1, \ldots, a_n) \neq (b_1, \ldots, b_n) \), there exists a state pair \((a_i, b_i) \in S \) with \(a_i \neq b_i \).

iii) \(\rightarrow \) iv). This is a simple reformulation.
iv) \rightarrow v). The mapping $B \mapsto |B| \cap B$ is monotone, so it has a greatest fixed point. Clearly, if some fixed point contains an element (a, b) with $a \neq b$, then the greatest fixed point also contains this element.

v) \rightarrow i). Suppose $S = \{(a_1, b_1), \ldots, (a_n, b_n)\}$ is the greatest fixed point. Since S is a fixed point, $S = [S] \cap S$. Moreover, by assumption, $a_i \neq b_i$ holds for some $i \in [n]$. It follows (from the definition of $[S]$) that there exist proper trees $t_1, \ldots, t_n \in T_{\Sigma}(X_n)$ such that $((a_1, b_1), \ldots, (a_n, b_n))$ is a fixed point of $(t_1, \ldots, t_n)^{\Delta \times \Delta}$. Now we can apply Lemma 3.4.1 and Corollary 3.1.11 and get the result.

Theorem 3.4.3 It is decidable in polynomial time whether a given finite tree automaton A is strongly aperiodic.

Proof. The condition v) of Proposition 3.4.2 is clearly decidable in polynomial time: we have to compute $F^n(A \times A)$, where $F : P(A \times A) \to P(A \times A)$ is defined by $F(B) = |B| \cap B$ and n is $|A|$, and check whether the resulting set contains an ordered pair whose components are different.

Since F is computable by a polynomial time procedure, its iteration for n^2 steps runs in polynomial time.

It is clear that for any fixed n, testing whether a tree automaton is in SAper_n can be done in exponential time, since there are exponentially many proper term functions $A^n \to A^n$ (in terms of $|A|$), which can be even enumerated in exponential time; also checking whether $f^k = f^{k+1}$ holds for some $k \geq 1$ can also be done in exponential time. The following proposition establishes a PSPACE lower bound.

Proposition 3.4.4 For each fixed n, it is PSPACE-hard to decide, given a finite tree automaton A, whether A is n-aperiodic.

Proof. Consider an ordinary automaton, i.e., a Σ-tree automaton A, where Σ is of rank type $\{1\}$. We construct a Δ-tree automaton B, for some Δ, which is n-aperiodic if and only if A is aperiodic. We define $B = \{0\} \cup \{(a, j) : a \in A, j \in [n]\}$ so that B has $|A| \times n + 1$ states. Then let $\Delta = \Delta_n = \{(\sigma, i) : \sigma \in \Sigma, i \in [n]\}$. The operations $(\sigma, i)^{\Delta}$ are defined as follows. Suppose that $\sigma^\Delta(a) = b$, for some $a, b \in A$ and $\sigma \in \Sigma$. Then we let $(\sigma, i)^{\Delta}((a, 1), \ldots, (a, n)) = (b, i)$. In all remaining cases, the operation returns 0. For each ΣX_n-tree t, define $t = (t_1, \ldots, t_n) \in T_{\Delta}(X_n)^n$ as follows. If $t = x_1$ then $t_i = x_i$, for each i. If $t = \sigma(s)$, then $t_i = (\sigma, i)(s)$, for each i. Now if $t^\Delta(a) = b$, then $t^B(a) = b$, where $a = ((a, 1), \ldots, (a, n))$ and b is defined in the same way. It follows that if A is not aperiodic, then B is not n-aperiodic.
3.5 APERIODICITY AND LOGIC

We still have to show that if \(B \) is not \(n \)-aperiodic then \(A \) is not aperiodic either. For this reason, we define the paths in a tree \(t \in T_{\Delta}(X_n) \) as follows. If \(t = x_i \) then \(\text{paths}(t) = \{x_1\} \). If \(t = (\sigma, i)(t_1, \ldots, t_n) \) then \(\text{paths}(t) = \{\sigma(s) : s \in \bigcup_{j=1}^{n} \text{paths}(t_j)\} \). Note that \(\text{paths}(t) \subseteq T_{\Sigma}(X_1) \).

Now assume that \(B \) is not \(n \)-aperiodic, so that there exist some \(q_1, \ldots, q_k \in B_n, k > 1 \), a vector \(t = (t_1, \ldots, t_n) \in T_{\Delta}(X_n)^n \) of proper trees such that \(t^B(q_i) = q_{i+1} \), for all \(i \in [k-1] \) and \(t^B(q_k) = q_1 \). Now each \(t_i \) contains a subtree of the form \((\sigma, j)(x_{k_1}, \ldots, x_{k_n}) \). However, the variables \(x_{k_1}, \ldots, x_{k_n} \) must be all distinct, since otherwise \(t^B_i \) would be constant with value 0. Also, the components of each \(q_i \) must also be all distinct, moreover, the components of each \(q_j \) must give a permutation of the states \((a, 1), \ldots, (a, n) \) for some \(a \in A \), since otherwise we would have \(t^B_i(q_j) = 0 \). Also, if \((\sigma, j)(s_1, \ldots, s_n) \) is any subtree of some component of \(t \), then for any \(q_i \) there must exist a state \(a \in A \) such that \(s^B_1(q_i), \ldots, s^B_n(q_i) \) is the sequence \((a, 1), \ldots, (a, n) \). It then follows that there is a permutation \(\pi \) such that for each \(q_i \) there is some state \(a_i \in A \) with \(q_i = ((a_i, \pi(1)), \ldots, (a_i, \pi(n))) \). Of course, the states \(a_i \) are all distinct. Thus, if we take any tree \(s \in \text{paths}(t_j) \), for any \(j \), then we have \(s^A(a_i) = a_{i+1} \) for all \(i \in [k-1] \) and \(s^A(a_k) = a_1 \). This shows that \(A \) is not aperiodic. \[\Box\]

3.5 Aperiodicity and logic

In this section we relate the above aperiodicity notions to formal logic. We establish the following facts for tree languages over signatures of rank type \(R = \{0, 2\} \).

1. If a tree language is in \(\text{CTL} \), then its minimal tree automaton is in \(\text{SAper}_1 \).
2. There exists a tree language in \(\text{CTL} \) whose minimal automaton is not in \(\text{SAper}_2 \).
3. There exists a tree language definable in \(\text{FO(<)} \) which is not 1-aperiodic.
4. There exists a 1-aperiodic tree language which is not definable in \(\text{FO(<, S_i)} \).

The above results can all be extended to rank types containing 0 and at least one integer greater than 1.

In the rest of this section we fix \(R = \{0, 2\} \).

Proposition 3.5.1 If \(L \) is a tree language in \(\text{CTL} \), then the minimal automaton of \(L \) is in \(\text{SAper}_1 \).
Proof. It was shown in [14, 15] that a tree language is in \(\text{CTL} \) if and only if its minimal tree automaton is in the least cascade pseudovariety of finite tree automata containing the tree automaton over the two-element set \(\{0, 1\} \) equipped with the binary \textbf{or} function and the two constants 0, 1. Our claim thus follows from the facts that this tree automaton is 1-aperiodic and that 1-aperiodic finite tree automata form a generalized cascade pseudovariety of finite tree automata, cf. Theorem 3.2.8. ■

Proposition 3.5.2

There exists a tree language in \(\text{CTL}(\text{EF}^*) \) whose minimal tree automaton is not in \(\text{SAper}_2 \).

Proof. Recall the tree automaton \(E_{\text{EF}}^* \). In this automaton, the identity function is a proper term function (induced by the proper tree \(\downarrow_2 (x_1, x_1) \)) having two fixed points. Thus \(E_{\text{EF}}^* \notin \text{SAper}_2 \). ■

Proposition 3.5.3

There exists a (regular) tree language in \(\text{FO}(\prec) \) whose minimal tree automaton is not 1-aperiodic.

Proof. Let us define the signature \(\Sigma \) with \(\Sigma_2 = \{\sigma, \nu_1, \nu_2\} \) and \(\Sigma_0 = \{c\} \). We construct a regular tree language \(L \subseteq T_\Sigma \) in \(\text{FO}(\prec) \) whose minimal automaton is not 1-aperiodic. Let \(L \) be the following language:

\[
L = \{t \in T_\Sigma : \text{AllPaths}(t) \cap (\sigma \nu_1 \sigma \nu_2)^* c \neq \emptyset\}.
\]

Here, \(\text{AllPaths}(t) \) is the set of all words which are label sequences of maximal paths in \(t \), i.e.

\[
\text{AllPaths}(t) = \begin{cases}
t & \text{if } t \in \Sigma_0;
\bigcup_{i=1,2} \{\sigma' : v \in \text{AllPaths}(t_i)\} & \text{if } t = \sigma'(t_1, t_2).
\end{cases}
\]

Now \(L \) is definable in \(\text{FO}(\prec) \): a tree \(t \in T_\Sigma \) belongs to \(L \) if and only if there exists a vertex \(v \) such that the following hold:

1. the label of \(v \) is \(c \) (hence \(v \) is a leaf);
2. if \(y \) is a successor of \(x \) and \(y < v \) then \(x \) is labeled \(\sigma \) if and only if \(y \) is labeled in \(\{\nu_1, \nu_2\} \), and \(x \) is labeled in \(\{\nu_1, \nu_2\} \) if and only if \(y \) is labeled \(\sigma \);
3. if \(y \) is a second successor (“grandchild”) of \(x \) and \(y < v \) then \(x \) is labeled \(\nu_1 \) if and only if \(y \) is labeled \(\nu_2 \), and \(x \) is labeled \(\nu_2 \) if and only if \(y \) is labeled \(\nu_1 \);
4. the root is labeled in \(\{ \sigma, c \} \);

5. if \(v \) is a successor of \(x \) then \(x \) is labeled \(\nu_2 \).

It is clear that all these conditions are expressible in \(\text{FO}(<) \). Now consider the following infinite sequence of trees \(t_i: t_0 = c \), and for all \(i \geq 0 \), \(t_{i+1} = \sigma(\nu_1(t_i, t_i), \nu_2(t_i, t_i)) \). It is clear that \(t_i \in L \) if and only if \(i \) is even. Thus, the minimal automaton of \(L \) is not 1-aperiodic, since for the term function \(f : A \rightarrow A \) induced by the proper tree \(\sigma(\nu_1(x_1, x_1), \nu_2(x_1, x_1)) \) we have \(f^i(c^A) = c^A \) if and only if \(i \) is even. ■

Proposition 3.5.4 There exists a regular tree language not contained in \(\text{FO}(<, S_1, S_2) \) whose minimal automaton is 1-aperiodic.

Proof. Let \(\Sigma_0 = \{ 0, 1 \} \), \(\Sigma_2 = \{ \wedge, \vee \} \), and let us define the following tree automaton \(\mathcal{A} \) on \(A = \{ 0, 1, \bot \} \) that was introduced in [40]:

\[
\wedge^\mathcal{A}(x, y) = \begin{cases}
1 & \text{if } x = y = 1; \\
0 & \text{if } \{x, y\} = \{0, 1\}; \\
\bot & \text{otherwise,}
\end{cases} \quad \vee^\mathcal{A}(x, y) = \begin{cases}
0 & \text{if } x = y = 0; \\
1 & \text{if } \{x, y\} = \{0, 1\}; \\
\bot & \text{otherwise.}
\end{cases}
\]

Let \(L = \{ t \in T_{\Sigma}: t^\mathcal{A} = 1 \} \). It has been shown in [40] that \(L \) is not contained in \(\text{FO}(<, S_1, S_2) \). It is easy to check that \(\mathcal{A} \) is 1-aperiodic. We note that \(\mathcal{A} \) is not 2-aperiodic, since both 1 and \(\bot \) are fixed points of the term function \(A \rightarrow A \) induced by \(\wedge(x_1, x_1) \). ■

3.6 A generalization

In this section, we provide a generalization of the aperiodicity notions studied above. The following definition is motivated by the Krohn-Rhodes decomposition theorem [9].

Definition 3.6.1 Suppose that \(\mathcal{G} \) is a class of finite simple groups closed under division. We say that a finite tree automaton \(\mathcal{A} \) belongs to the class \(\text{Aut}(\mathcal{G}, n) \) for some positive integer \(n \) exactly when each simple group dividing \(S_n(\mathcal{A}) \) is in \(\mathcal{G} \). The intersection of all classes \(\text{Aut}(\mathcal{G}, n) \) is \(\text{Aut}(\mathcal{G}) \). Moreover, we let \(\text{Aut}_c(\mathcal{G}) \) denote the class of all finite tree automata \(\mathcal{A} \) such that every simple group divisor of \(C(\mathcal{A}) \) is in \(\mathcal{G} \).

When \(\mathcal{G} \) contains only the trivial groups, then the above classes are just \(\text{SAper}_n \), \(\text{SAper} \) and \(\text{CAper} \), respectively. The following generalization of Theorems 3.2.8 and 3.2.9 holds.
Theorem 3.6.2 For each n, $\text{Aut}(G, n)$ is a generalized cascade pseudovariety of finite tree automata, as is $\text{Aut}(G)$. The class $\text{Aut}_c(G)$ is a cascade pseudovariety of finite tree automata.

We omit the proof which is based on the following facts. For the definition of the wreath product of transformation semigroups we refer to [9].

Lemma 3.6.3 Suppose that A and B are Σ-tree automata such that A is a subautomaton or a homomorphic image of B. Then for each n, $(A^n, S_n(A))$ divides $(B^n, S_n(B))$. Similarly, $(A, C(A))$ divides $(B, C(B))$.

Lemma 3.6.4 Suppose that A is a Σ-tree automaton, B is a Δ-tree automaton and consider a generalized cascade product $A \times_{\alpha} B$. Then for each n, $((A \times B)^n, S_n(A \times_{\alpha} B))$ divides a wreath product of $(A^n, S_n(A))$ and $(B^n, S_n(B))$.

3.7 Aperiodicity for polynomials

In this section we study a variant of the aperiodicity notions resulting by considering polynomial functions instead of term functions. We will show that in this case the hierarchy collapses at $n = 2$.

Let A be a Σ-tree automaton of rank type R over the set A. For any $n \geq 0$ and $m > 0$, we let each m-tuple $p = (p_1, \ldots, p_m)$ of $\Sigma A X_n$-polynomial symbols induce a vector-valued polynomial function $p^A = \langle p^A_1, \ldots, p^A_m \rangle : A^n \to A^m$, which is the target tupling of the m functions $p^A_i : A^n \to A$, $i \in [m]$. When each p_i is proper, p^A is also called proper. For each $n \geq 1$, let $S^n_{(p)}(A)$ denote the semigroup of proper polynomial functions $A^n \to A^n$ and let $C^{(p)}(A)$ denote the semigroup of proper translations of A.

For each n, we let $\text{SAper}^{(p)}_n$ denote the class of all finite tree automata A such that $S^n_{(p)}(A)$ is an aperiodic semigroup. We define the classes $\text{SAper}^{(p)}$ and $\text{CAper}^{(p)}$ in the same way.

The following was proved in [12], Corollary 3.12.

Lemma 3.7.1 The following are equivalent for any finite Σ-tree automaton A:

i) A is definite;

ii) any proper translation of A has at most one fixed point.
Theorem 3.7.2 The following are equivalent for any finite Σ-tree automaton A:

i) A is definite;

ii) $A \in \text{SAper}^{(p)}$;

iii) $A \in \text{SAper}_2^{(p)}$;

iv) Each proper translation of A has at most one fixed point.

Proof. The first and last conditions are equivalent by Lemma 3.7.1, and the first condition implies the second by Corollary 3.2.10. It is clear that the second condition implies the third. Finally, the third implies the fourth by Proposition 3.1.9. ■

Corollary 3.7.3 It is decidable in polynomial time whether a finite tree automaton is in $\text{SAper}^{(p)}$.

Proof. A polynomial time algorithm is implicit in [12]. ■

Proposition 3.7.4

$$D = \text{SAper}^{(p)} = \text{SAper}_2^{(p)} \subset \text{SAper}_1^{(p)} \subset \text{CAper}^{(p)}.$$

Proof. The inclusions are clear. The second inclusion is strict by the proof of Proposition 3.3.2. The first is strict since the tree automaton on $\{0, 1\}$ with the binary or function as the single operation is in $\text{SAper}_1^{(p)} \setminus D$. ■

Proposition 3.7.5 Suppose the rank type R contains an integer > 1. Then for each n there exist finite tree automata A and B such that both A and B are $(n - 1)$-aperiodic, neither of them is n-aperiodic, moreover, A is contained in $\text{SAper}_1^{(p)}$ and B is not.

Proof. First we deal with the case when R contains an integer $k \geq n$.

Consider the tree automaton A constructed in the proof of Proposition 3.3.3. We have proved that A is $(n - 1)$-aperiodic and not n-aperiodic. It is easy to see that for every non-constant term function $f : A \to A$ of $A^{(p)}$ there exists at most one state a with $f(a) \neq 0$, moreover, this state a is different from 0. From this we can conclude that $f^2 = f^3$ holds for any such function. Thus, A is contained in $\text{SAper}_1^{(p)}$.

Now we construct the tree automaton \(\mathcal{B} \) by modifying the construction of \(\mathcal{A} \) as follows. The state set of \(\mathcal{B} \) is \(B = \{0, \ldots, n\} \cup \{1'\} \). For each \(i \in [n] \), we define \(\sigma_i^B \) as follows:

\[
\sigma_i^B(1, \ldots, n, \ldots, n) = \sigma_i^B(1', 2, \ldots, n, \ldots, n) = i \quad \text{if } i > 1;
\]

\[
\sigma_i^B(1, \ldots, n, \ldots, n) = 1' \quad \text{and } \sigma_i^B(1', 2, \ldots, n, \ldots, n) = 1.
\]

In all remaining cases the functions \(\sigma_i^B \) return 0, and all other function symbols are interpreted as a constant function with value 0.

Now by the same argument as in the proof of Proposition 3.3.3 we get that \(\mathcal{B} \) is \((n-1)\)-aperiodic but not \(n \)-aperiodic. Also, since for the \(\Sigma BX_1 \)-polynomial symbol \(p = \sigma_1(x_1, 2, \ldots, n) \) we have \(p^B(1) = 1' \) and \(p^B(1') = 1 \), \(\mathcal{B} \) is not contained in \(S\text{Aper}^{(p)}_1 \).

If \(R \) contains only integers less than \(n \), then we can modify \(\mathcal{B} \) as in the proof of Proposition 3.3.3. \(\blacksquare \)

Proposition 3.7.6 Suppose \(R \) contains some integer \(k > 1 \). Then there exists an automaton \(\mathcal{A} \) which is strongly aperiodic, and is not contained in \(S\text{Aper}^{(p)}_1 \).

Proof. We define the following \(\Sigma \)-tree automaton \(\mathcal{A} \), where \(\Sigma_i = \{\sigma_i\} \) for each \(i \in R \) and \(A = \{0, 1, 2\} \). For each \(i \in R \) with \(i \neq k \), let \(\sigma_i^A \) be the constant function with value 2 and let us define \(\sigma_k^A \) as follows:

\[
\sigma_k^A(a_1, \ldots, a_k) = \begin{cases}
1 & \text{if } \{a_1, \ldots, a_k\} = \{0, 2\}; \\
2 & \text{otherwise}.
\end{cases}
\]

Now it is easy to see that for any \(n \geq 1 \) and tree \(t \in T_\Sigma(X_n) \) it holds that \(t^A(a_1, \ldots, a_n) \in \{1, 2\} \) for any \(a_1, \ldots, a_n \in A \). Moreover, if each \(a_i \) is 1 or 2, then \(t^A(a_1, \ldots, a_n) = 2 \). It follows that for any tuple of trees \(t = (t_1, \ldots, t_n) \in (T_\Sigma(X_n))^n \), \((t^A)^2 \) is a constant function, hence \(\mathcal{A} \) is strongly aperiodic.

However, since the function induced by \(\sigma_k(0, \ldots, 0, x_1) \) maps 1 to 2 and 2 to 1, \(\mathcal{A} \) is not contained in \(S\text{Aper}^{(p)}_1 \). \(\blacksquare \)

Corollary 3.7.7 As shown in Figure 3.1, the class \(S\text{Aper}^{(p)}_1 \) nontrivially intersects \(S\text{Aper} \) and each member of the hierarchy \(S\text{Aper}_n \) for \(n \geq 2 \).
3.7. APERIODICITY FOR POLYNOMIALS

Figure 3.1: The aperiodicity hierarchies.
Summary

This thesis is concerned with the definability problem of several classes of logics on finite trees. Two main areas of this topic can be identified here. The first area is the algebraic characterization of the logic $\text{FTL}(\mathcal{L})$, when \mathcal{L} is a class of regular tree languages and all the quotients $\zeta^{-1}L$ for $\zeta \in CT_\Sigma$, $L \subseteq T_\Sigma$, $L \in \mathcal{L}$ are expressible in $\text{FTL}(\mathcal{L})$. The second area addresses different notions of aperiodicity in relation to logics on trees.

Chapter 1 is a preliminary one. It contains a brief summary of earlier results related to the thesis, basic notions and well-known theorems from the fields of formal language theory, tree automata and logic.

Chapter 2 is devoted to the family of the temporal logics $\text{FTL}(\mathcal{L})$, and provides an algebraic characterization of its definability problem. To each class \mathcal{L} of tree languages, a branching time future temporal logic $\text{FTL}(\mathcal{L})$ is associated, according to [14, 15]. The class $\text{FTL}(\mathcal{L})$ of tree languages is defined as the class of $\text{FTL}(\mathcal{L})$-definable tree languages. In [15], the following has been proved:

Suppose \mathcal{L} is a class of regular tree languages such that quotients and the next modalities are expressible in $\text{FTL}(\mathcal{L})$. Then a tree language L is contained in $\text{FTL}(\mathcal{L})$ if and only if L is regular, and its minimal automaton A_L is contained in the least pseudovariety of finite tree automata containing the minimal automata of the members of \mathcal{L} and a specific definite tree automaton D_0, which is closed under the cascade product.

Here, the condition “quotients are expressible in $\text{FTL}(\mathcal{L})$” holds if whenever $L \in \mathcal{L}$ is a tree language over Σ, and $\zeta \in CT_\Sigma$ is a Σ-context, then the language $\zeta^{-1}L$ is contained in $\text{FTL}(\mathcal{L})$.

Also, the condition “the next modalities are expressible in $\text{FTL}(\mathcal{L})$” is equivalent to stating that for any $\text{FTL}(\mathcal{L})$-formula φ over a signature Σ of rank type R and integer $i \in [\max R]$ there exists an $\text{FTL}(\mathcal{L})$-formula $X_i\varphi$ with $t \models X_i\varphi$ for a tree $t \in T_\Sigma$ if and only if $t = \sigma(t_1, \ldots, t_n)$ for some $n \geq i$, $\sigma \in \Sigma_n$ and t_1, \ldots, t_n such that $t_i \models \varphi$.

Theorem 2.3.4 and Corollary 2.3.5 strengthen this result. In Section 2.2 we identified a restricted form of the cascade product, called the Moore product, and related it to the
cascade product. Also an even more restrictive variant, the strict Moore product has been introduced. Using the Moore product, the following stronger result was proved (published in [18]):

Suppose \(\mathcal{L} \) is a class of regular tree languages such that quotients are expressible in \(\mathsf{FTL}(\mathcal{L}) \). Then a tree language \(L \) is contained in \(\mathsf{FTL}(\mathcal{L}) \) if and only if \(L \) is regular, and its minimal automaton \(A_L \) is contained in the least pseudovariety of finite tree automata containing the minimal automata of the members of \(\mathcal{L} \) and a specific definite tree automaton \(D_0 \), which is closed under the Moore product.

This characterization establishes a correspondence between definability in the logic \(\mathsf{FTL}(\mathcal{L}) \) and membership in a pseudovariety of finite tree automata (actually, the correspondence is an order isomorphism between the lattice of literal varieties of tree languages closed under the operator \(\mathsf{FTL} \) and the lattice of connected Moore pseudovarieties of finite connected tree automata containing \(D_0 \)). However, the characterization is not effective. The characterization of [15] was applicable to the CTL fragments CTL(EX) and CTL(EF + EX), but not to the fragments CTL(EF\(^*\)) and CTL(EF\(^+\)), the fragment in which only the non-strict, resp. strict variant of the EF modality (“there exists a subtree”) is allowed, since in these logics, the next modalities are not expressible.

In Section 2.3 we gave decidable characterizations of the fragments CTL(EF\(^*\)) and CTL(EF\(^+\)): Corollary 2.4.42, published in [19], states the following:

A tree language \(L \subseteq T_\Sigma \) is definable in the temporal logic CTL(EF\(^+\)) if and only if it is regular and its minimal tree automaton \(A_L \) is commutative, maximal dependent and component dependent, i.e. satisfies the equations

\[
\sigma(x_1, \ldots, x_n) = \sigma(x_{\pi(1)}, \ldots, x_{\pi(n)})
\]

for any \(\sigma \in \Sigma_n \) and permutation \(\pi \), the implications

\[
y \preceq x, z \preceq x_j \quad \Rightarrow \quad \sigma(x_1, \ldots, x_{n-1}, y) = \sigma(x_1, \ldots, x_{n-1}, z)
\]

for each \(\sigma \in \Sigma_n \), where \(\preceq \) is the accessibility relation of \(A_L \), and the implications

\[
x_1 \sim y_1, \ldots, x_n \sim y_n \quad \Rightarrow \quad \sigma(x_1, \ldots, x_n) = \sigma(y_1, \ldots, y_n)
\]

for any \(\sigma \in \Sigma_n \), where \(x \sim y \) holds if and only if \(x \preceq y \) and \(y \preceq x \).

A tree language \(L \subseteq T_\Sigma \) is definable in CTL(EF\(^*\)) if and only if it is definable in CTL(EF\(^+\)) and its minimal automaton is stutter invariant, i.e. satisfies the equations

\[
\sigma(x_1, \ldots, x_{n-1}, x_n) = \sigma(x_1, \ldots, x_{n-1}, \sigma(x_1, \ldots, x_n))
\]

for each \(\sigma \in \Sigma_n \).
This characterization also shows that the following questions are both decidable in polynomial time: given a tree language L by its minimal tree automaton A_L, is L definable in CTL(EE$^+$) or in CTL(EE*)? This was already known for the fragment CTL(EE$^+$), see [5], whereas the characterization of CTL(EE*) solves a problem mentioned open in [5] (which has also been solved independently in [58]).

In Section 2.5, we provided another characterization in terms of two-player games. We defined for each class L of (not necessarily regular) tree languages and integer $n \geq 0$ the n-round L-game that is played on a pair of trees between two competing players, Spoiler and Duplicator. Corollary 2.5.3 relates FTL(L)-definability and the existence of a winning strategy as follows:

For any finite class L of tree languages, a language L is contained in FTL(L) if and only if there exists a number $n \geq 0$ such that Spoiler wins the n-round L-game on L, that is, whenever $s \in L$ and $t \notin L$ are two trees, Spoiler has a winning strategy in the n-round L-game played on (s, t).

Chapter 3 is devoted to several aperiodicity notions. When Σ is a signature and $A = (A, \Sigma)$ is a finite Σ-tree automaton, any n-tuple (t_1, \ldots, t_n) of proper ΣX_n-trees induces a mapping $(t_1, \ldots, t_n)^A : A^n \to A^n$. For any $n > 0$, these functions form a semigroup $S_n(A)$, with the composition operation as product. We say that the finite tree automaton A is n-aperiodic if the semigroup $S_n(A)$ is aperiodic, i.e. for some K the equation $s^K = s^{K+1}$ holds for any element s of $S_n(A)$. Moreover, A is said to be strongly aperiodic if it is n-aperiodic for each n. Following [54], we say that A is context aperiodic if the semigroup $C(A)$ of term functions induced by proper Σ-contexts is aperiodic. We denote the class of all n-aperiodic finite tree automata by $SAper_n$, the class of all strongly aperiodic finite tree automata by $SAper$ and the class of all context aperiodic finite tree automata by $CAper$. Each of these classes but $CAper$ forms a generalized cascade pseudovariety, whereas $CAper$ forms a cascade pseudovariety.

The inclusions

$$CAper \supseteq SAper_1 \supseteq SAper_2 \supseteq \cdots \supseteq SAper \supseteq D$$

hold for any rank type R. In Proposition 3.3.1 we showed that when $R = \{0,1\}$ or $R = \{1\}$, that is, in the case of words, the hierarchy collapses:

$$CAper = SAper_1 \supset SAper_2 = SAper = D.$$

However, in any non-classical case (when the rank type contains an integer greater than 1) the hierarchy is strict:

$$CAper \supset SAper_1 \supset SAper_2 \supset \cdots \supset SAper \supset D,$$

see Propositions 3.3.2, 3.3.3 and 3.3.4.
The complexity of the membership problems was also studied: we showed that when R is a non-classical rank type, then for each $n > 0$ it is PSPACE-hard to decide whether a tree automaton is n-aperiodic (Proposition 3.4.4). In contrast, we gave a polynomial time decision procedure for testing strong aperiodicity (Theorem 3.4.3).

We related the above aperiodicity notions to logic. In Section 3.5 we showed that the following hold for binary trees (when $R = \{0, 2\}$):

1. If a tree language is in \mathbf{CTL}, then its minimal tree automaton is in \mathbf{SAper}_1.
2. There exists a tree language in \mathbf{CTL} whose minimal automaton is not in \mathbf{SAper}_2.
3. There exists a tree language definable in $\mathbf{FO(<)}$ whose minimal automaton is not 1-aperiodic.
4. There exists a regular tree language whose minimal automaton is 1-aperiodic but which is not definable in $\mathbf{FO(<, S)}$.

The arguments can be extended to any non-classical rank type.

We also introduced a slight modification of the notion of n-aperiodicity, involving the semigroup of proper polynomial functions instead of proper term functions. It turned out (Proposition 3.7.4) that in this case the hierarchy also collapses:

$$D = \mathbf{SAper}^{(p)} = \mathbf{SAper}_2^{(p)} \subset \mathbf{SAper}_1^{(p)} \subset \mathbf{CAper}^{(p)}.$$

As a last result, we showed that $\mathbf{SAper}_1^{(p)}$ is incomparable with \mathbf{SAper}_n, for each $n > 1$, as well as with \mathbf{SAper} (Corollary 3.7.7).

The results of Chapter 3 were published in [17].
Összefoglalás

Jelen dolgozat bizonyos, véges fákon értelmezett logikák definiálhatósági problémájával foglalkozik. Ezen a témán belül két nagyobb érintett terület különül el: az első az FTL(\(L\)) alakú logikák algebrai karakterizációjára, ahol \(L\) reguláris fanyelvek osztálya és ahol minden \(\zeta^{-1}L\) alakú hányados (\(\zeta\) itt \(\Sigma\)-context, \(L\) pedig \(\Sigma\)-fanyelv) kifejezhető FTL(\(L\))-ben. Ez a tulajdonság a továbbiakban a következőképp szerepel: „a hányadosok kifejezhetők FTL(\(L\))-ben”. A második részben az aperiodicitás különböző változatait vizsgáltuk.

Az első fejezet bevezetés: itt definiáltuk a dolgozatban használt jelöléseket a formális nyelvek, faautomaták és logika területeiről, egyszersmind a felhasznált korábbi eredményeket is itt ismertettük.

A második fejezetben vezettük be az FTL elágazó, jövő idejű temporális logikát, illetve ennek FTL(\(L\)) alakú töredékeit, ahol \(L\) fanyelvek egy osztálya. Az FTL(\(L\)) logikában definiálható nyelvek osztályát a [14, 15] munkákat követve FTL(\(L\)) jelöli. A fejezetben továbbá algebrai karakterizációt adtunk az FTL(\(L\)) nyelvosztályra, ha \(L\) reguláris fanyelvek egy olyan osztálya, melyre a hányadosok kifejezhetők FTL(\(L\))-ben. [15]-ben az alábbi karakterizációs tétel került igazolásra:

Tétel: Legyen \(L\) reguláris nyelvek egy olyan osztálya, melyre a hányadosok és a rákövetkezési modalitások kifejezhetők FTL(\(L\))-ben. Akkor egy \(L\) fanyelv pontosan akkor esik az FTL(\(L\)) osztályba, ha reguláris és minimális automatája benne van a véges faautomatáknak abban a legszűkebb pseudovarietásában, mely tartalmazza \(L\) elemeinek minimális automatát, egy bizonyos \(D_0\)-definit faautomatát és amely zárt faautomaták kaszkád szorzataira.

Itt „a rákövetkezési modalitások kifejezhetők FTL(\(L\))-ben” azt jelenti, hogy tetszőleges \(\varphi\), az \(R\) rangtípusú \(\Sigma\) ábécé fölötti FTL(\(L\))-formulára és \(i \in [\max R]\) egészre létezik egy \(\Sigma\) fölötti \(X_i\varphi\) formula FTL(\(L\))-ben, melyre \(t \models X_i\varphi\) pontosan akkor teljesül egy \(t \in T_\Sigma\) fára, ha \(t\)-nek létezik az \(i\)-edik közvetlen részfája, és az kielégíti a \(\varphi\) formulát.

A 2.3.4. tétel és a 2.3.5. következmény ezt az eredményt erősítik. Azonosítottuk faautomaták kaszkád szorzatának egy speciális esetét, amit Moore szorzatnak neveztünk (és melyet a 2.2-es szakaszban definiáltunk). Ezt a szorzatot és egy további speciális esetét, a szigorú Moore szorzatot összehasonlítottuk a kaszkád szorzattal. A Moore szorzatot
felhasználva az alábbi, [18]-ban publikált összefüggést igazoltuk:

Legyen \(L \) reguláris fanyelvek egy olyan osztálya, melyre a hányadosok kifejezhetők \(\mathsf{FTL}(L) \)-ben. Akkor egy \(L \) fanyelv pontosan akkor esik \(\mathsf{FTL}(L) \)-be, ha reguláris és minimális automatája beletartozik a véges faautomaták azon legszűkebb pszudovariétásába, mely tartalmazza \(L \) elemeinek minimális automatát, a \(\mathbb{D}_0 \) automatát és amely zárt faautomaták Moore szorzataira.

Ez a karakterizáció az \(\mathsf{FTL}(L) \) logikák definílhatósági kérdése és faautomaták pszudovariétásainak eldöntési kérdése között létesít kapcsolatot. Valójában ez a kapcsolat egy hálóizomorfizmus, az \(\mathsf{FTL} \) operátora zárt literális fanyelv-varietások és véges, összefüggő faautomatáknak a \(\mathbb{D}_0 \)-t tartalmazó és a Moore szorzatra zárt pszudovariétásai által alkotott teljes hálók között. Ugyanakkor, a karakterizáció nem effektív. A [15]-ben megadott jellemzés alkalmazható volt annak igazolására, hogy a CTL logika két szintaktikus töredéke, \(\mathsf{CTL}(\mathsf{EX}) \) és \(\mathsf{CTL}(\mathsf{EX} + \mathsf{EF}) \) definílhatósági problémája eldönthető. Azonban ha tekintjük az \(\mathsf{CTL}(\mathsf{EF}^+) \) és \(\mathsf{CTL}(\mathsf{EF}^+) \) töredékeket, melyekben egyetlen modalitás, az EF („existence in the future”) megengedő ill. szigorú változata szerepel, ezekre nem alkalmazható a [15]-beli jellemzési tétel, mivel azokban a rákövetkezési modalitások sem kifejezhetők. A 2.3-as szakaszban a Moore szorzat segítségével megadott jellemzést alkalmazva igazoltuk, hogy ennek a két logikának is eldöntethető a definílhatósági problémája. A kapott eredmény (2.4.42. következmény), mely [19]-ban került publikálásra, így szól:

Az \(L \subseteq T_\Sigma \) fanyelv pontosan akkor definílható a \(\mathsf{CTL}(\mathsf{EF}^+) \) logikában, ha reguláris és minimális faautomatája kommutatív, maximális elemfüggő és komponensfüggő, azaz teljesíti a

\[
\sigma(x_1, \ldots, x_n) = \sigma(x_{\pi(1)}, \ldots, x_{\pi(n)})
\]

azonosságot minden \(\sigma \in \Sigma_n \) szimbólumra és \(\pi \) permutációra, valamint az

\[
y \preceq x, z \preceq x_j \implies \sigma(x_1, \ldots, x_{n-1}, y) = \sigma(x_1, \ldots, x_{n-1}, z)
\]

és az

\[
x_1 \sim y_1, \ldots, x_n \sim y_n \implies \sigma(x_1, \ldots, x_n) = \sigma(y_1, \ldots, y_n)
\]

implikációkat minden \(\sigma \in \Sigma_n \)-re. Itt \(\preceq \) jelölő a minimális automata elérhetőségi relációját, \(\sim \) pedig az \(a \sim b \iff a \preceq b \land b \preceq a \) ekvivalenciarelációt.

Továbbá, az \(L \subseteq T_\Sigma \) fanyelv pontosan akkor definílható a \(\mathsf{CTL}(\mathsf{EF}^+) \) logikában, ha definílható a \(\mathsf{CTL}(\mathsf{EF}^+) \)-ban és minimális automatája „dadogás-invariáns”, vagyis teljesül benne a

\[
\sigma(x_1, \ldots, x_{n-1}, x_n) = \sigma(x_1, \ldots, x_{n-1}, \sigma(x_1, \ldots, x_n))
\]
egyenlőség minden \(\sigma \in \Sigma \)-re.

A fenti karakterizáció szerint mindkét kérdés polinom időben eldönthető; ez korábban is ismert volt a CTL(\(\mathrm{EF}^+ \)) esetére, ld. [5], míg a CTL(\(\mathrm{EF}^* \)) jellemzése egy [5]-ben nyitottként felvetett probléma volt. Ez utóbbit [58] eltérő módszerrel, függetlenül megoldotta.

A 2.5. szakaszban egy újabb jellemzést adtunk, kétszemélyes játékok segítségével. Fanyelvek egy (tetszőleges) \(L \) osztályához és az \(n \geq 0 \) egészhez definiáltuk az \(n \)-fordulós \(L \)-játékot, mely egy kétszemélyes, fák egy \((s,t)\) párján játszott játék. A 2.5.3. következmény kapcsolja össze a fenti játékokat az FTL(\(L \))-definiálhatósággal:

Fanyelvek tetszőleges \(L \) véges osztályára és \(L \) fanyelvre fennáll, hogy az \(L \) nyelv pontosan akkor esik bele az FTL(\(L \)) osztályba, ha van egy olyan \(n \geq 0 \) szám, melyre az \(n \)-fordulós \(L \)-játékban a kezdő játékosnak van nyerő stratégiaja, valahányszor a játékot fák olyan \((s,t)\) párján játszák, ahol \(s \in L \) és \(t \notin L \).

A harmadik fejezetben az aperiodicitás különböző fogalmaitvizsgáltuk. Ha \(\Sigma \) egy rangolt ábécé és \(A = (A,\Sigma) \) egy véges \(\Sigma \)-faautomata, akkor nemtriviális \(\Sigma X_n \)-fák bármely \((t_1,\ldots,t_n)\) vektora meghatározz egy \(A^n \to A^n \) transzformációt. Ezek a transzformációk egy félcsoportot alkotnak, melyet \(S_n(A) \) jelöl (és melyben a szorzás a transzformációk kompozíciója). Az \(A \) véges faautomatát \(n \)-aperiodikusnak mondjuk, ha az \(S_n(A) \) félcsoport aperiodikus, vagyis ha benne az \(x^K = x^{K+1} \) azonosság fennáll valamely \(K \)-ra. Továbbá, az \(A \) véges faautomata erősen aperiodikus, ha minden \(n \geq 1 \)-re \(n \)-aperiodikus. Követve [54]-et, \(A \)-t környezet-aperiodikusnak (context aperiodic) nevezzük, ha a nemtriviális környezetek által indukált leképezések félcsoportja aperiodikus. Az \(n \)-aperiodikus véges faautomaták osztályát \(\mathrm{SAper}_n \), az erősen aperiodikusokét \(\mathrm{CAper} \), a környezet-aperiodikusokét pedig \(\mathrm{CAper} \) jelöli. A legutóbbi osztály véges faautomatáknak egy kaszkád szorzatra zárt pseuddovarietása, míg a többi az általánosított kaszkád szorzatára is zárt pseuddovarietás.

A

\[\mathrm{CAper} \supseteq \mathrm{SAper}_1 \supseteq \mathrm{SAper}_2 \supseteq \cdots \supseteq \mathrm{SAper} \supseteq D \]

tartalmazások minden \(R \) rangtípusra fennállnak. A 3.3.1. állításban megmutattuk, hogy ha \(R = \{0,1\} \) vagy \(R = \{1\} \), azaz mikor fánk valójában szavak, a hierarchia összeomlik, ekkor

\[\mathrm{CAper} = \mathrm{SAper}_1 \supseteq \mathrm{SAper}_2 = \mathrm{SAper} = D. \]

Ugyanakkor ha \(R \) tartalmaz egy 1-nél nagyobb egész (másképp fogalmazva, ha \(R \) nemklasszikus), a hierarchia a 3.3.2, 3.3.3 és 3.3.4 állítások szerint valódi:

\[\mathrm{CAper} \supseteq \mathrm{SAper}_1 \supseteq \mathrm{SAper}_2 \supseteq \cdots \supseteq \mathrm{SAper} \supseteq D. \]
Vizsgáltuk továbbá a fenti osztályok eldöntési problémájának bonyolultságát is: megmutattuk, hogy ha R nem-klasszikus rangtípus, akkor bármely rögzített n-re PSPACE-néház kérdés annak eldöntése, hogy egy adott fautomata n-aperiodikus vagy sem (3.4.4. állítás). Ezzel ellentétben, az erős aperiodicitás eldöntésére megadtunk egy polinom idejű algoritmust (3.4.3. tételes).

Az aperiodicitás fogalmainak és a logikai definiálhatóságának a kapcsolatát is vizsgáltuk: a 3.5-ös szakasz eredményei szerint bináris fákra ($R = \{0, 2\}$) a következők állnak fenn:

1. Ha L definiálható CTL-ben, akkor minimális fautomatája 1-aperiodikus.
2. Létezik CTL-ben definiálható nyelv, melynek minimális fautomatája nem 2-aperiodikus.
3. Létezik FO($<$)-ben definiálható fanyelv, melynek minimális automatája nem 1-aperiodikus.
4. Létezik reguláris fanyelv, mely nem definiálható FO($<$, S_i)-ben, de melynek minimális automatája 1-aperiodikus.

Az eredmények bármely nem-klasszikus rangtípusra kiterjeszthetők.

Bevezettük továbbá az n-aperiodicitásnak egy kissé módosított fogalmát, melynek definíciójában a nemtriviális polinomvektorok által indukált leképezések szerepelnek (favektorok helyett). A 3.7.4. állítás kimondja, hogy az így definiált hierarchia minden rangtípusra összeomlik:

$$D = S\text{Aper}^{(p)} = S\text{Aper}_{2}^{(p)} \subset S\text{Aper}_{1}^{(p)} \subset C\text{Aper}^{(p)}.$$

A fejezet zárásaként megmutattuk, hogy a polinom értékelmen 1-aperiodikus véges fautomaták osztálya a tartalmazás reláció szerint összehasonlíthatatlan bármely $S\text{Aper}_n$ osztálytal csakúgy, mint $S\text{Aper}$-rel (3.7.7. következmény).

A 3. fejezet eredményeit [17]-ben publikáltuk.
Bibliography

Index

A^-, 51
L_φ
 in CTL, 18
 in FTL, 21
 in first-order logic, 17
L_{EF}^*, 39
L_{EF}^+, 39
$[n]$, 7
ΔA, 12
ΣX_n-tree, 7
Σ-tree, 8
A^-, 51
A_L, 13
A_{Σ}, 30
A_γ, 32
A_{Aux}, 54
V^c, 28
E_{EF}^*, 40
E_{EF}^+, 40
E_{EG}^*, 41
E_{EG}^+, 40
\equiv
 in FTL, 21
\mathfrak{f}_n, 21
\hat{A}, 33
$\hat{\Sigma}$, 33
$(\mathbf{K})_M$, 25
$(\mathbf{K})_c$, 25
$(\mathbf{K})_s$, 25
(\mathbf{K}), 14
∇_A, 12
$<_{S^*}$, 7
\preceq_A, 41
\preceq_{S^*}, 7
\sim_A, 41
\times_M, 25
\times_c, 25
\times_s, 25
\mathfrak{v}_n, 21
$\zeta^{-1}(L)$, 9
$t \models \varphi$
 in CTL, 17
 in FTL, 20
 in first-order logic, 17
t^A, 11
$(t_1, \ldots, t_n)(v)$, 9
accessibility relation of A, 41
accessible state, 11
action, 66
agree up to depth k, 28
arity, 7

Bool, 29

canonical Values*-mapping, 53
canonical Values$^+$-mapping, 49

CAper, 70

carrier set, 10
cascade product, 23
 connected, 24
cascade property, 42
characteristic tree, 20

Com, 28

Comc, 28

CompDep, 45

CompUnique, 46
INDEX

congruence, 12
 nontrivial, 12
 trivial, 12
connected part, 11
constant symbol, 7
context, 8
counter-free, 66
CTL, 17
CT_{Σ}, 8
D, 29
D_{c}, 29
D_{c}^{\ast}, 29
definability problem of $\text{FTL}(\mathcal{L})$, 36
delay automaton, 34
depth of a formula, 20
derived automaton, 68
direct product
c connected, 14
do tree automata, 10
divisor, 12
D_{k}, 29
D_{k}^{*}, 29
D_{k}^{c}, 29
dom(ℓ), 9
dom(t), 8
ϵ, 7
elementary operation, 10

factor automaton, 13
family of formulas
c complete, 21
do over (t_{1}, \ldots, t_{n}), 21
do over t, 21
deterministic, 21
do over (t_{1}, \ldots, t_{n}), 21
do over t, 21
first-order logic, 16
$\text{FO}(\langle \rangle)$, 17
$\text{FO}(\langle \rangle, S_{i})$, 16
FTL, 20

$\text{FTL}(\mathcal{K})$, 36
$\text{FTL}(\mathcal{L})$, 21
$\text{FTL}(\mathcal{L})$, 21
FTL-formula
c complete, 22
do deterministic, 22
generalized cascade product, 68
$\text{hg}(t)$, 8
homomorphic image, 12
homomorphism, 12
Idem, 28
Idem^{c}, 28
$\text{Img}_{A}(\sigma)$, 10
isomorphic, 12
isomorphism, 12
kernel of a homomorphism, 13
\mathcal{L}-game, 61
$L_{A,A'}$, 11
literal tree homomorphism, 9
MaxDep, 44
membership problem of a pseudovariety, 36
Mon, 42
Moore product, 24
c connected, 24
do connected strict, 24
strict, 24
Moore property, 42
\mathbb{N}, 7
node, 8
polynomial symbol, 9
projection, 11
proper tree, 7
pseudovariety
c connected cascade, 25
do connected Moore, 25
connected strict Moore, 25
generalized cascade, 68
of finite tree automata, 13

quotient
language, 9
of automata, 12

rank type, 7
relabeling, 9
renaming, 11
connected, 14
Root(t), 9

S^*, 7
SAper, 70
SAper$_n$, 70
sentence, 17
signature, 7
state, 10
state set, 10
Stu, 28
Stuc, 28
subautomaton, 10
proper, 10
subtree, 9
immediate, 9
proper, 9
t(t_1, \ldots, t_n), $t(t)$, 8
t(v), 8
term function, 11
proper, 11
transformation semigroup, 66
tree automaton
k-definite, 28
n-aperiodic, 65
commutative, 26
component dependent, 44
componentwise unique, 45
connected, 11
context aperiodic, 65
definite, 28
finite, 10
idempotent, 26
maximal dependent, 43
minimal, 13
monotone, 42
strongly aperiodic, 65
stutter invariant, 27
subdirectly irreducible, 13
trivial, 10
tree language, 9
recognized by A, 11
T_Σ, 8
$T_\Sigma(X_n)$, 7
Values*-automaton, 53
Values$^+$-automaton, 49
variable, 7
vertex, 8
X, 7
X_n, 7