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Chapter 1

Introduction

We have been developing intelligent observation systems to take over
the duties of human eyes, in this way helping and relieving man’s
labour as well as opening up new prospects. The efficiency and com-
pleteness of the eyes and brain is unparalleled in comparison with any
piece of apparatus or instrumentation ever invented. However, some
specific tasks such as the accurate extraction of tree crowns in most
aerial images, which is the main purpose of this thesis, is already pos-
sible. We provide a probabilistic framework for our approach, and
review the literature pertinent to our work, finally we describe the re-
levance of the work in this thesis to forestry management.

WE present a probabilistic framework to our work in section 1.1, which assist us in
classifying image segmentation and energy minimization methods. In section 1.2 we

discuss previously published work in the area, ranging from image processing to the models
introduced in this thesis. We give an introduction to image processing as applied in forestry
management, as well as presenting the results we achieved in this area in section 1.3. Finally
in section 1.4 we review the structure of this thesis.

1.1 Prior knowledge and beyond, probabilistic view

In this section we have two purposes. One is to introduce the image segmentation models
from a probabilistic point of view. The other is to provide an interpretation of the methods
presented in the state of the art section and our methods in the thesis.

Note, the space of possible hypotheses H, let H be a variable over H and h a point in
this space. Similarly D denotes the space of all available data while D is a variable and
d is a point in D. If P (D = d|H = h), our knowledge of how the model represented
by the hypothesis generates the data is known, for given h ∈ H and d ∈ D, and our
prior knowledge of the likelihood for a given h is P (H = h). Then, we can compute the
posterior probability of the correctness of our h for a given d and our prior knowledge, using
the Bayes theorem, as:
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P (H = h|D = d) =
P (D = d|H = h)P (H = h)

P (D = d)
.

In image processing using the notations R the space of regions, I the space of images, and
K the space of a priori knowledge. With the Bayes theorem we can infer R from a given I
and K as follows:

P (R|I,K) =
P (I|R,K)P (R)

P (I|K)
. (1.1.1)

If the task is to find one R from R, according to some defined criteria ( e.g. most probable
R for given I and K), we need to define a loss function defined on H×H or in the case of
image segmentation R × R and called L. L(ĥ, h) gives a loss measure, assuming the true
hypothesis is ĥ when it is in fact h. Different uses of the available I , K, and R may involve
different loss functions. In general we want to find the R̂ that minimizes the value:

< L(R̂) >=
∫

dR L(R̂, R)P (R|I, K) . (1.1.2)

Apart from some special cases, if one can use special loss functions (Jermyn, 2000), in
general in the absence of any information except the preconditions for probability theory,
the delta function is the only one obvious loss function, L(R̂, R) = −δ(R̂, R). Substituting
this function into equation 1.1.2, gives that < L(R̂) >=

∫
dR − δ(R̂, R)P (R|I, K) =

−P (R̂|I, K). Consequently, the region minimizing the mean loss is given by:

R̂ = arg max
R∈R

P (R|I,K) . (1.1.3)

This is the maximum a posteriori (MAP) estimate. The MAP estimate can be rewritten
by minimizing the negative logarithm of the probability. The negative logarithm of the
probability in statistical physics is known as the energy. In the rest of this section we
concentrate on this expression.

Notice that we look for the region R̂ that maximizes the probability defined in equa-
tion 1.1.1 for a given image I and prior knowledge K, therefore P (I|K) in the denominator
is constant. We can rewrite the probabilities in the nominator as:

P (I|R, K) =
1

Zi(R,K)
e−Ei(I,R,K) and

P (R|K) =
1

ZP (K)
e−EP(R,K) ,

where Ei and EP are the image and prior energies respectively and Zi and ZP are normal-
izing functions. Notice that ZP has no dependency on the region R̂. We can determine now
the optimal region by maximizing the probability:

Ropt = arg max
R∈R

e−Ei(I,R,K)

Zi(R, K)
e−EP(R,K)

2



Finally, as we discussed above, rather than maximizing this probability we can minimize its
negative logarithm, and so we define a very important approach in image segmentation, the
energy minimization methods:

Ropt = Ei(I, R,K)︸ ︷︷ ︸
image energy

+ ln(Zi(R, K)) + EP(R, K)︸ ︷︷ ︸
prior energy

.

In this section, we have presented a probabilistic interpretation of our problem: how it is
possible to find the region(s) in a given image that fits best with our prior knowledge. This
framework is very general and all image segmentation models can be classified by using it.
In the second half of the section, we described one of the possible ways to compute MAP
estimates.

1.2 State of the art: from image segmentation to the ‘gas of cir-
cles’ model

This section gives an overview starting from image segmentation focusing on variational
methods, to the ‘gas of circles’ higher-order active contour (HOAC) model. We follow the
‘general to specific’ direction, but sometimes diverge if necessary.

The main goal of image segmentation models is to divide the image into regions that
hopefully corresponds to structural units in the scene or distinguished objects of interest.
In the book of Sonka et al. (1999), or in Gonzalez and Woods (2002), we find the funda-
mentals of image segmentation, such as edge-based models, thresholding, region growing,
etc. Even in the case of the simplest segmentation models, we can observe the presence of
prior knowledge, as described in section 1.1, albeit very simple. The knowledge K is the
threshold level in the case of thresholding, the definition of edge in edge detection case, etc.
The hypothesis space is the set of all possible regions R, and the best segmentation Ropt
is one element of this set. To find Ropt is usually very easy, because this type of knowl-
edge does not suggest non-local pixel dependencies. In other words, it is easy to classify
a given pixel (w.r.t. the model parameters) without any information about nearby pixel
values. Classical methods cannot deal very well with high noise, a cluttered background
or occlusions, and they strongly depend on the model parameters. As a result the idea of
incorporating some prior knowledge about the shape of the region has been considered by
many researchers. Early shape priors were quite generic, enforcing some kind of homo-
geneity and contour smoothness (Geman and Geman, 1984, Blake and Zisserman, 1987,
Kass et al., 1988, Mumford and Shah, 1989, Cohen, 1991, Kato et al., 1996, Caselles et al.,
1997a). For example, Geman and Geman (1984), Kato et al. (1996), and Szirányi and Zeru-
bia (1997) use a Markovian smoothness prior (basically a Potts model (Potts, 1952, Baxter,
1990)); Blake and Zisserman (1987) use a line process to control the formation of region
boundaries; and active contour model (Kass et al., 1988) use elasticity, rigidity, contour
length, and balloon or area minimizing forces (Cohen, 1991, Caselles et al., 1997a) in order
to favor smooth closed curves. In spite of their simplicity, these methods proved to be very
efficient in dealing with noisy images. From the probabilistic point of view, we add extra
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knowledge to K. To find Ropt is more difficult, usually MAP estimate coupled with various
minimization approaches have been used ( e.g. simulated annealing, gradient descent).

We concentrate on variational methods (for a detailed summary see Leymarie (2003),
Bresson (2005)) and two very important families within this approach, namely active con-
tours (Kass et al., 1988) and the Mumford-Shah functional (Mumford and Shah, 1989).

The goal of the Mumford-Shah model is to divide the image into distinct homogeneous
regions.1 To reach the criterion they introduced a functional and its minimization in Mum-
ford and Shah (1985, 1989). The functional gives a piecewise smooth approximation of the
image (for a detailed explanation, see (Aubert and Kornprobst, 2002)). The functional is
defined as:

EMS = λ2

∫

Ω
dx (u0 − u)2 +

∫

Ω\γ
dx |∇u|2 + µ|γ| ,

where Ω ⊂ R2 and u0 is the original image defined on Ω, u is the piecewise smooth approx-
imation of the image, γ is the boundary between the regions and |γ| is its length. λ and µ are
the strategic parameters of the functional. The first term considers that the smoothed image
should be close to the original image, the second enforces the smoothness, and the third
minimizes the contour length. The minimization of the functional is not easy, as explained
by Chan and Vese (2002) and Aubert and Kornprobst (2002). The numerical approximation
is usually based on the Euler-Lagrange equations, but the length of the contour is not con-
tinuous in any compact topology which makes it difficult to use the calculus of variations.
Hence, many authors have proposed to approximate the functional by a sequence of regular
functionals, e.g. Ambrosio and Tortorelli (1990), Chambolle (1995), and Chan and Vese
(2001).

Active contour models capture the closest object to their initialization state. They were
first introduced by Kass et al. (1988). The model is able to capture sharp image intensity
variations by deforming, according to this behaviour sometimes it is called as a snake model.
The energy function is defined as:

EAC = α

∫ 1

0
ds |γ̇(s)|2 + β

∫ 1

0
ds |γ̈(s)|2 + Ei(γ, u0) , (1.2.1)

where γ(s) is a parametrization of the contour s ∈ [0, 1], and α and β are weighting para-
meters that control the snake’s tension and rigidity. The external energy Ei(γ, u0) is derived
from the image so that it takes on smaller values at the features of interest. EAC is a non-
convex function, with possibly many local minima, one of them can be reached by solving
an Euler-Lagrange equation (Kass et al., 1988). A fast numerical algorithm has been pro-
posed but in the case of closed curves it does not allow changes of topology, since the final
curve has the same topology as the initial one. To overcome the limitation of the changes of
topology, Osher and Sethian (1988) proposed the level-set method, where the curve γ is im-
plicitly represented by a higher dimensional function (see also in Sethian (1999), and Osher
and Paragios (2003)).

1We note that this requirement is not well defined goal because ‘homogenous’ is not defined.
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One of the main direction along which the active contour idea had been further de-
veloped, was introduced by Caselles et al. (1993), and called geometric active contours.
In Caselles et al. (1997a) they proposed the geodesic active contours, a new curve paramet-
rization invariant energy function based on the model in equation 1.2.1:

EGAC(γ) =
∫ 1

0
dp f(|∇u0(γ(p))|)|γ| =

∫ |γ|

0
ds f(|∇u0(γ(s))|) ,

where the function f is the edge function similar to the Ei in equation 1.2.1. Caselles et
al. also proved that the curve, which minimizes this energy is a geodesic in a Riemannian
space. Cohen (1991) introduced a new constant artificial force term into the geodesic active
contour energy called, the balloon force. The advantages of this model are the possibility of
detecting non-convex objects, and faster convergence to the steady state solution. Geodesic
active contours were extended to more than two dimensions in Kichenassamy et al. (1995),
and Caselles et al. (1997b).

To eliminate the problems of active contour-like models during topological changes,
Osher and Sethian (1988) proposed the level-set method. The method has been used in
many applications from physics to image processing, such as fluid dynamics, control, ray
tracing, image restoration, image segmentation, etc. (Malladi et al., 1995, Sethian, 1999).
The general evolution equation for the problem of curve evolution is given by the partial
differential equation (PDE):

{
∂φ
∂t = |∇φ|div

(
∇φ
|∇φ|

)

φ(0, x) = φ0(x)
.

The evolution governs the motion by the curvature. φ(t, x), t ∈ [0,∞), x ∈ R2, where x
parameterizes the level-set surface and t parameterizes the evolution. The main idea of the
level set method is to implicitly represent an interface γ in Rn as a level set of a function
φ. For details of and numerical implementation, see Sethian (1999), Chan and Vese (2001),
and Osher and Paragios (2003).

We illustrate the evolution of a curve using the level-set framework in figure 1.1. In
the top two rows we present the contour evolution, starting from the left-hand side. The
bottom two rows contain the corresponding level-set functions of every second contour (i.e.
the first surface is the level-set function corresponding to the first contour, while the second
one corresponds to the third contour, etc.).

Chan and Vese (2001) introduced a new data term of the piecewise constant approxima-
tion of the Mumford-Shah functional, using the level-set framework. The energy functional
is defined as:

ECV(c1, c2, R) =µL(∂R) + νA(R)

+ λ1

∫

R
dxdy (u0(x, y)− c1)

2 + λ2

∫

R
dxdy (u0(x, y)− c2)

2 ,

where R is a region in the image domain and ∂R is its boundary; L and A are the boundary
length and the region area functionals respectively. c1 and c2 are the average intensity values
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5 7

Figure 1.1: Evolution of a curve (top) and the related level-set function (bottom). However
the curve goes through topological changes, there is no topological change on the level-set
surface. The level-set functions correspond to the first, third, fifth and seventh contours
respectively.

inside and outside of R, updated dynamically. The parameters control the strength of the
terms.

Paragios (2000), and Paragios and Deriche (2002a) proposed the geodesic active region
model, based on the combination of a classical snake model and the region growing algo-
rithm (Zhu and Yuille, 1996). This model unifies boundary and region based knowledge in a
variational and statistical framework. The information depends on a statistical estimation of
the image histogram using a mixture of Gaussian distributions, each of them represents one
of the desired regions. Paragios and Deriche (2002b) extended the framework to supervised
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texture segmentation.
Samson et al. (2000) presented a variational supervised image segmentation technique

based on known intensity means and variances for each region to be segmented. They used
the multi phase level-set model of Zhao et al. (1996).

A new level-set energy function was proposed by de Rivaz and Kingsbury (2000) for
which it is possible to obtain a good estimate for the optimum step size in a gradient descent
and which therefore produces much faster convergence. The surface is represented by the
coefficients of a complex wavelet transform.

The above presented models have some common properties, they minimize a functional,
which is a composition of energies coming from the image and the properties of the contour
(length, tension, rigidity, etc.). It is possible to introduce higher level knowledge into the
geometric part of the energy function as:

Eg = E0 + EP ,

where the prior energy EP is a functional, which has a minimum if the current segmentation
is similar to a given template shape or a mean computed from a set of shapes allowing small
variances over the contour. E0 is one of the classical models described above.

Leventon et al. (2000b) presented a method using PCA to extract and embed the main
variation of a training set and remove the redundant information. They represent the shape
information by embedding the template shape into the level-set framework. The PCA
method is applied not to the curve directly, but to the signed distance function. This ap-
proach is robust to slight differences between the template and the segmented shapes. No-
tice that Cootes and Taylor (1992) used a similar technique for parametric active contours.

Leventon et al. (2000a) defined a joint distribution between intensity value and distance
to the boundary, given by a non-parametric density estimation based distance function. Tsai
et al. (2001) integrated this model with a region-based energy functional to segment organs
in 3-D medical images.

One of the most important methods was introduced by Paragios and Rousson (2002).
They defined a new level-set based shape representation and registered the sample shape
with the actual segmentation using rigid transformations. They minimized the sum of
squared distances. The model is invariant w.r.t. translation, rotation, and scale. Rous-
son and Paragios (2002) combined the active shape model of Cootes and Taylor (1992)
with level set methods using the PCA based representation framework of Leventon et al.
(2000b). Huang et al. (2004) presented a registration method using distance functions and
using a global registration criterion.

Cremers et al. (2001, 2002) introduced diffusion snakes. They modified the Mumford-
Shah functional and its cartoon limit to segment known object types. They transformed
the functional from non-convex to convex using a quadratic shape energy term. They used
quadratic B-spline during the numerical implementation. They applied the proposed method
with success to delineating noisy or occluded shapes. They also extended the linear shape
model to a nonlinear space using a kernel PCA method.

Cremers and Soatto (2003) published a technique called pseudo-distance. This novel
approach represents the shape as a signed distance function. They improved the presented
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model to be invariant w.r.t. translation and scale. Rotation invariance is also possible.
Cremers et al. (2004, 2006) proposed a novel approach using more than one template shape,
and they partially solved one of the main challenges of shape representation methods, which
is the segmentation of different known shapes at the same time. They use additional level-
set functions to distinguish the different shapes. The number of template shapes increases
the computational complexity, even in the case of multiple instances of a fixed object.

Foulonneau et al. (2003) presented a translation and scale invariant Legendre-moments
based model, they minimize the sum of the square distances between shape moments of a
template shape and the actual segmented region. Foulonneau et al. (2006) introduced affine-
invariant priors allowing rotation as well. As regularization, they combined the prior term
with the Chan and Vese model (Chan and Vese, 2001).

Rousson and Paragios (2007) introduced a level set method for shape-driven object
extraction, using a voxelwise probabilistic level set formulation. The objects are represented
in an implicit form.

Riklin-Raviv et al. (2005) presented a method invariant to general projective transfor-
mations. Riklin-Raviv et al. (2007) introduced a novel shape similarity measure and em-
bed the projective homography between the prior shape and the image to segment within
a region-based segmentation functional. They combined their method with the Chan and
Vese framework.

Rochery et al. (2003, 2005a, 2006) introduced a method using a new generation of active
contours called higher-order active contours (HOACs). They proposed a novel energy term
composed of multiple integrals over the contour and creating non-local interactions between
contour points far from each other. With this energy they are able to describe families of
shapes without using templates, and multiple instances of similar shapes do not increase the
complexity of the model. They used the proposed model to detect road networks in aerial
images. They extended the above model with a more complex prior term to close gaps
on the road structure (Rochery et al., 2004) . In Rochery et al. (2005b), they introduced a
phase field model, which is a level-set based modelling technique, well known in physics.
They proposed an equivalent higher-order phase field model to the HOAC, leading to faster
energy minimization.

1.3 The ‘gas of circles’ model for tree crown detection

In the last few decades computers have been playing an essential part in everyday life, since
with the help of these electronic devices work can be carried out more quickly and effi-
ciently, and requires less human interaction. One of the most important areas, in which
computers are used, is called image processing: analyzing and evaluating images. Nowa-
days, thanks to the development of software and hardware components, faster and more
accurate image acquisition equipment, advanced algorithms and faster computers, image
processing is applied in more and more areas of life. Economically as well as ecologically
one of the most significant areas to which image processing is applied is agriculture. In
modern agriculture, image processing methods, which are used from microbiological ap-
plications to aerial and satellite imagery, are just a few among other things. We will apply
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image processing to forestry management.
In fact computer-based methods are widely used by forestry inventories (Shao and

Reynolds, 2006). Some of the most important applications are: active remote-sensing;
creating digital elevation models; terrain-mapping; radar and LIDAR (Light Detection and
Ranging) images on forested areas; forestry information systems for managing huge da-
tabases; forest change and growth forecasting and planning; spatial data visualization;
computer-aided decision making using artificial intelligence; and last but not least it is pos-
sible to analyze forests on the scale of individual trees, by solving the ‘tree crown extraction’
problem, which is the main purpose of this thesis.

Information on the size of individual trees enables forestry managers to study forests at
the scale of trees. In this way, it is possible to get a more accurate evaluation of resources,
e.g. biomass, average tree crown size, number of trees, their size, density of the stands, the
changes of population, growth etc. At present there are two ways to gather this type of data:
1.) field surveys, which provides accurate information, though it is time-consuming and
very costly. 2.) methods to extract tree crowns from aerial images. Different approaches
exist, ranging from very expensive manual segmentation to semi-automatic methods. The
semi-automatic methods require user interaction and only a few are able to delineate the
shapes of the trees.

In this thesis, we propose a method for extracting tree crowns. We assume that tree
crowns are approximately circular-shaped, and are of about the same size. We evaluate our
method using Colour Infrared (CIR) and grayscale panchromatic aerial images provided by
the French Forest Inventory (IFN) and the Hungarian Central Agricultural Office, Forestry
Administration (CAO, FA) . A typical image can be seen in figure 1.2. In the image, planted
poplar forests can be seen in different sizes and shades.

Figure 1.2: Real image with planted forest c©IFN.
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To solve the problem of individual tree crown delineation, we propose a model of a ‘gas
of circles’ (GOC) (Horváth et al., 2006a, b), the ensemble of regions in the image domain
consisting of an unknown number of circles with approximately fixed radius and short range
repulsive interactions. The method is based on the ‘higher-order active contour’ (HOAC)
framework, introduced by Rochery et al. (2003, 2005c, 2006), which incorporates long-
range interactions between contour points, and thereby include prior geometric information
without using a template shape. This makes them ideal when looking for multiple instances
of an entity in an image. For such a model to work, the circles must be stable to small
perturbations of their boundaries, i.e. they must be local minima of the HOAC energy, for
otherwise a circle would tend to ‘decay’ into other shapes. This is a non-trivial requirement.
We impose it by performing a functional Taylor expansion of the HOAC energy around a
circle, and then demanding that the first order term be zero for all perturbations, and that
the second order term be positive semi-definite. These conditions allow us to fix one of the
model parameters in terms of the others, and constrain the rest. The energy is minimized
using gradient descent algorithm, and implemented using the level-set method. Experiments
using the HOAC energy demonstrate empirically the coherence between these theoretical
considerations.

The general ‘gas of circles’ model has many potential applications in varied domains,
but it suffers from a drawback: such local minima can trap the gradient descent algorithm
used to minimize the energy, thus producing phantom circles even with no supporting data.
The model as such is not at fault: an algorithm capable of finding the global minimum
would not produce phantom circles. This suggests two approaches to tackling the difficulty.
One is to find a better algorithm. The other is to compromise with the existing algorithm
by changing the model to avoid the creation of local minima, while keeping intact the prior
knowledge contained in the model. We choose this second approach (Horváth et al., 2006c).
We solve the problem of phantom circles by calculating, via a Taylor expansion of the
energy, parameter values that make the circles into inflection points rather than minima. In
addition, we find that this constraint halves the number of model parameters, and severely
constrains one of the two that remain, while improving the empirical success of the model.

Although the HOAC ‘gas of circles’ model is an effective tool to model circular shapes,
there are some difficulties. It is complicated to express the space of regions in the contour
representation, and consequently difficult to work with a probabilistic formulation. In addi-
tion, from the algorithmic point of view, the current model does not allow enough topolo-
gical freedom, and the implementation of the HOAC model is difficult and computationally
expensive. But it is possible to create an alternative formulation of HOAC models, based
on the ‘phase field’ framework much used in physics to model regions and interfaces. The
standard phase field model is, to a good approximation, equivalent to a classical active con-
tour (CAC) model with energy given by boundary length. Rochery et al. (2005b) showed
how to extend the basic phase field energy with extra, non-local terms that produce phase
field models equivalent to higher-order active contours. The new formulation has several
important advantages:

• There is more topological freedom during the gradient descent evolution than with
other methods, which is important when the topology is unknown a priori as it is
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the case in the tree crown extraction problem. In addition, more topological freedom
means less chance of becoming stuck in local minima.

• The implementation of the phase field version of CACs, and in particular of HOACs,
is much simpler than the equivalent contour or level set implementation. Gradient
descent consists of a single partial differential equation derived directly from the
model energy with no need for reinitialization or regularization. HOAC terms consist
of convolutions and can be evaluated in Fourier space, causing two orders of magni-
tude increase in computation time.

• Phase field models provide a neutral initialization for gradient descent—no initial
region is needed—meaning that bias, caused by the initialization, is reduced.

In Horváth and Jermyn (2007b) we address the tree crown extraction problem by construct-
ing a phase field model of a ‘gas of circles’. We compute, as a function of the HOAC energy
parameters, the phase field energy parameters that produce an equivalent model. This means
that we can adjust the phase field parameters to ensure stable circles of a given radius also.

We extend the phase field ‘gas of circles’ model in Horváth and Jermyn (2007a) to the
case of having an inflection point instead of a minimum in the circle energy at the desired
radius. With this model we benefit from all the advantages both of the phase field model
and of the model presented in Horváth et al. (2006c).

In Horváth et al. (2006b, c) we also define a data model. This model describes the
behaviour of only one, the most significant, infrared band of the three available bands in the
CIR images. The model is Gaussian, with the values at different pixels independent, and
with different means and variances for tree crowns and the background. While successful,
this model, even with the strong region prior, it is not capable of extracting accurately the
borders of all the trees. Some trees are simply too similar to the background. To solve
this problem in Horváth (2007) we construct a new data model that makes use of all three
bands in the CIR images. We study the improvement or otherwise of the extraction results
produced by modelling the three bands as independent or as correlated. As we will see, even
at the level of maximum likelihood, the inclusion of ‘colour’ information, and in particular,
interband correlations, can improve the results, and in conjunction with the region prior, the
full model is considerably better than that based on one band alone.

The above models are not restricted to forest management. They can also be applied
to detection of other circular objects. A few other examples: in nanotechnology to detect
various particles and microarrays in electron-microscopic images; in biology to segment
circular cells and molecules, or to detect pollen grains; in medical image processing, to
detect 2D circular objects; in remote sensing, in the processing of aerial and satellite images,
for meteorological, military, and agricultural management.

1.4 Road map

In chapter 2, we describe general higher-order active contour energies, and introduce the
quadratic energy model we use. We present the stability analysis of this energy, to create
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a set of stable circles with approximately fixed radius, the so called ‘gas of circles’ model.
To demonstrate the prior knowledge contained in the model, and the empirical correctness
of the stability analysis, we present experimental results using the new energy. To solve a
drawback of the model, which is producing phantom circles even with no supporting image
data, we determine the parameters so that the energy has an inflection point rather than a
minimum. This constraint also halves the number of parameters and improves the empirical
success of the model.

In chapter 3 we describe a novel representation of the HOAC energy, the phase field
model. We present that the basic phase field energy is equivalent with the classical active
contour energy, and define a new phase field model, which is approximately equivalent with
the HOAC model, but offers very important advantages. For the tree crown extraction prob-
lem, the computation time is two orders of magnitude faster, provides topological freedom
and a less complex implementation. We introduce an algorithm to convert the ‘gas of cir-
cles’ HOAC parameters to the phase field model. We examine the energy with an inflection
point at the desired radius and present experimental results to confirm its empirical success.

To produce a successful tree crown segmentation model, we couple our prior model with
real data in chapter 4. We propose two different energies. First, we describe a Gaussian
model taking into account the mean values and variances of the image intensities in the
tree crowns and also in the background. This model uses the most representative spectral
channel of the images. Our second model uses all three spectral bands of the images. In the
second half of the chapter, we present experimental results obtained by combining the prior
geometric models with the proposed data models.

In chapter 5, we summarize the contributions and novelties of the thesis. We propose
ideas for future work and suggest concepts for tackling unresolved difficulties.

In appendices A and B, we describe the detailed steps of the stability analysis of the
HOAC model and the parameter settings for the inflection point model.
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Chapter 2

The higher-order active contour ‘gas
of circles’ model

We present models of a ‘gas of circles’, the ensemble of regions
consisting of an unknown number of circles with approximately the
same radius and short-range repulsive interactions. The methods use
higher-order active contours (HOACs), which incorporate long-range
interactions between contour points, and thereby include prior geo-
metric information without using a template shape. This makes them
ideal when looking for multiple instances of an entity in an image.
First, we present the existing HOAC model for networks, and show via
a stability calculation that circles stable to perturbations are possible
for constrained parameter sets. Second, we solve a drawback of the
energy function, i.e. that it creates phantom shapes on homogenous ar-
eas, choosing the parameters so that without image support the shape
vanishes.

THE aim of this chapter is to develop a model to describe an unknown number of similar
circles with short-range of inter-circle interaction. We use the recently introduced

higher-order active contour framework.
Higher-order active contours (Rochery et al., 2003, 2005c, 2006) introduce long-range

interactions between boundary points not via the intermediary of a template region or re-
gions to which the actual segmentation is compared, but directly, by using energy terms that
involve multiple integrals over the boundary. The integrands of such integrals thus depend
on two or more, perhaps widely separated, boundary points simultaneously, and can thereby
impose relations between tuples of points. Euclidean invariance of such energies can be im-
posed directly on the energy, without the necessity to estimate a transformation between
the boundary sought and the template. More importantly, because there is no template, the
topology of the region needs not be constrained, a factor that is critical when the topology
is not known a priori. A short introduction to HOAC models can be found in section 2.1.

The ‘gas of circles’ (GOC) model is a HOAC model favouring regions composed of an
a priori unknown number of circles of a certain radius. For such a model to work, the circles
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must be stable to small perturbations of their boundaries, i.e. they must be local minima of
the HOAC energy, for otherwise a circle would tend to ‘decay’ into other shapes. This is a
non-trivial requirement. We impose it by performing a functional Taylor expansion of the
HOAC energy around a circle, and then demanding that the first order term be zero for all
perturbations, and that the second order term be positive semi-definite. These conditions
allow us to fix one of the model parameters in terms of the others, and constrain the rest.
Synthetic experiments using the HOAC energy demonstrate empirically the coherence be-
tween these theoretical considerations and the gradient descent algorithm used in practice
to minimize the energy. The computation is described in section 2.2.

Although the GOC model is useful in many applications, it suffers from a drawback:
such local minima can trap the gradient descent algorithm used to minimize the energy, thus
producing phantom circles even with no supporting data. The model as such is not at fault:
an algorithm capable of finding the global minimum would not produce phantom circles.
This suggests two approaches to tackling the difficulty. One is to find a better algorithm.
The other is to compromise with the existing algorithm by changing the model to avoid the
creation of local minima, while keeping intact the prior knowledge contained in the model.
In section 2.3, we take this second approach. We solve the problem of phantom circles by
calculating, via a Taylor expansion of the energy, parameter values that make the circles
into inflection points rather than minima. In addition, we find that this constraint halves
the number of model parameters, and severely constrains one of the two that remain, while
improving the empirical success of the model.

The minimization of classical active contour energies is computationally fast, but diffi-
cult to implement, and it is hard to handle changes in contour topology. The level-set frame-
work handles topology change easily, but computationally is more expensive, the contour is
represented implicitly and can be extracted meshing the surface at the zero level-set. Most
of the time this thresholding approach is sufficient, but in the case of higher-order active
contours it is not enough to extract the contour points by meshing, because the quadratic
energy is defined on the contour as a closed curve using properties which are not available in
this case. Moreover, we need to compute the tangent vectors. The way to achieve this is by
contour extraction. Rochery et al. (2005c, 2006) presented an implementation of the HOAC
using the level-set framework combined with contour extraction. In section 2.4, we give
a short overview of this technique. We also present the detailed numerical approximation
used to find the ‘gas of circles’ parameters, described in sections 2.2 and 2.3.

2.1 The higher-order active contour model

As with all active contour models, a region R is represented by its boundary, ∂R. There
are various ways to think of the boundary of a region. If the region has only one connected
component, which is also simply-connected, then a boundary is an equivalence class of
embeddings of the circle S1 under the action of orientation-preserving diffeomorphisms of
S1. When more, possibly multiply-connected components are included, however, things
get complicated. First, the number of embeddings of S1 that are required depends on the
topology, and second, there are constraints on the orientations of different components if
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they are to represent regions with handles.
An alternative is to view ∂R as a closed 1-chain γ in the image domain Ω (Choquet-

Bruhat et al. (1996) is a useful reference for the following discussion). Although region
boundaries correspond to a special subset of closed 1-chains known as domains of integra-
tion, active contour energies themselves are defined for general 1-chains. It is convenient to
use this more general context to distinguish HOAC energies from classical active contours,
because it allows for notions of linearity to be used to characterize the complexity of energy
functionals.

Using this representation, HOAC energies can be defined as follows (Rochery et al.,
2005c, 2006). Let γ be a 1-chain in Ω, and ¤γ be its domain, the energy functional is:

E(γ) =
∫∫

(¤γ)2
dt dt′ γ̇(t) · F (γ(t), γ(t′)) · γ̇(t′) , (2.1.1)

where F (x, x′), for each (x, x′) ∈ Ω2, is a 2 × 2 matrix, t is a coordinate on ¤γ, and γ̇ is
the tangent vector to γ.

By imposing Euclidean invariance on this term, and adding linear terms, Rochery et al.
(2003) defined the following higher-order active contour prior:

Eg(γ) = λCL(γ) + αCA(γ)− βC

2

∫∫
dt dt′ γ̇(t′) · γ̇(t) Ψ(R(t, t′)) , (2.1.2)

where L is the boundary length functional, A is the interior area functional and R(t, t′) =
|γ(t)− γ(t′)| is the Euclidean distance between γ(t) and γ(t′). Rochery et al. (2003) used
the following interaction function (figure 2.1) Ψ:

Ψ(z) =





1 z < d− ε ,
1
2

(
1− z−d

ε − 1
π sin π(z−d)

ε

)
d− ε ≤ z < d + ε ,

0 z ≥ d + ε .

(2.1.3)

In this thesis, we use the same interaction function with d = ε, but other monotonically
decreasing functions lead to qualitatively similar results.

Figure 2.2 illustrates two situations, where contour points are located on the same and
on the opposite side of the contour. Using Ψ described in equation 2.1.3, if the points are
close enough to each other, then their tangential dot product determines the arising energy
between them. In the left image this dot product is strongly positive, while in the right it is
negative. This means, that situation on the left part of the image is more favoured than the
right one.

For certain ranges of the parameters involved, the energy (2.1.2) favours regions in the
form of networks, consisting of long narrow arms with approximately parallel sides, joined
together at junctions, as described by Rochery et al. (2003, 2005c, 2006). Figure 2.2 gives
an explanation on the reason of appearing network shapes. Without the quadratic term the
region tries to be as small as possible, both in the sense of its area and boundary length.
With the quadratic term, if we have a situation presented in the left side of figure 2.2, there
is no energy change coming from the quadratic term if the region becomes smaller. But,
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Figure 2.1: The interaction function.

Figure 2.2: Two situations of point pairs. In the left image case the dot product of the
tangent vectors is positive, while in the second case (right image) this product is negative,
causing opposite effect on the energy.

if the region turns into so small that its opposite boundary is closer than d + ε then the
situation illustrated on the right image can be observed. But this situation is not favoured,
so the region tends to avoid it. The possible way to do so, is to stop somewhere, where
this unfavourable energy is not strong, in other words stop at the equilibrium, where the
quadratic energy is as strong as the rest. This equilibrium can be a road network with a
given road width or as we will discuss in the next section, it can also be a stable circle,
with radius influenced by the interaction function. Two examples can be seen in figure 2.3.
In both cases the initial regions were circles, and the minimized energy was Eg(γ) with
different parameters. In the lower row we can observe a more dense network system, with
smaller width (d = 3), meanwhile in the top row the width is bigger (d = 7), but the density
of the arms is less.

The energy Eg thus provides a good prior for network extraction from images. Rochery
et al. (2003) used the proposed model to detect road structures in remotely-sensed, single-
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Figure 2.3: Examples of gradient descent using the HOAC energy with different parameter
settings. Left: Initial region, three rightmost: evolution after 100, 500, and 1000 iterations
respectively (Rochery et al., 2005c).

Figure 2.4: Road detection on a SPOT satellite image. Left: Original image; four rightmost:
evolution. Image c©French Space Agency (CNES) (Rochery et al., 2005c).

band images. An example can be seen in figure 2.4. In the high resolution SPOT image
c©CNES the roads are perfectly extracted. The data term was based on the gradient of the

image.

2.2 The ‘gas of circles’ model

The creation of network structures does not persist for all parameter values, however, and we
will exploit this parameter dependence to create a model for a ‘gas of circles’, an energy that
favours regions composed of an a priori unknown number of circles of a certain radius. To
illustrate this, figure 2.5 shows the evolution of the contour using different βC parameters,
the initial region is a rounded rectangle slightly smaller than the image, αC = 5.8, and
d = ε = 15. In the first row, the contour completely vanishes. This is because the quadratic
parameter is not strong enough to compensate the thinning effect of the area parameter. The
second row illustrates the behaviour with a relatively strong quadratic term. The contour
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grows arms. In the last row, we can observe the most interesting evolution related to our
aims, the contour forms stable circles with the same radius. The βC parameter was slightly
stronger than in the first case. We analyze the energy creating a ‘gas of circles’.

Initial 50 100 150 200

Figure 2.5: Curve evolution using different βC parameters (αC = 5.8, d = ε = 15). Left:
Initial region, rightmost images: curve evolution. For different parameter settings we find
different contour behaviour. First row: the contour completely vanishes (βC = 0.5). Second
row: The contour grows arms (βC = 3.8). Third row: The final regions are stable circles
(βC = 0.8).

For this to work, a circle of the given radius, hereafter denoted r0, must be stable, that
is, it must be a local minimum of the energy. In section 2.2.1, we conduct a stability analysis
of a circle, and discover that stable circles are indeed possible provided certain constraints
are placed on the parameters. More specifically, we expand the energy Eg in a functional
Taylor series to second order around a circle of radius r0. The constraint that the circle
be an energy extremum then requires that the first order term be zero, while the constraint
that it be a minimum requires that the operator in the second order term be positive semi-
definite. These requirements constrain the parameter values. In subsection 2.2.2, we present
numerical experiments using Eg that confirm the results of this analysis.

2.2.1 Stability analysis

We want to expand the energy Eg around a circle of radius r0. We denote a member of the
equivalence class of maps representing the 1-chain defining the circle by γ0. The energy
Eg is invariant to diffeomorphisms of ¤γ0, and thus is well-defined on 1-chains. To second
order:

Eg(γ) = Eg(γ0 + δγ) = Eg(γ0) + 〈δγ|δEg

δγ
〉γ0 +

1
2
〈δγ|δ

2Eg

δγ2
|δγ〉γ0 , (2.2.1)
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where 〈·|·〉 is a metric on the space of 1-chains.
Since γ0 represents a circle, the easiest is to express it in terms of polar coordinates r, θ

on Ω. For a suitable choice of coordinate on S1, a circle of radius r0 centred on the origin is
then given by γ0(t) = (r0(t), θ0(t)), where r0(t) = r0, θ(t) = t, and t ∈ [−π, π). We are
interested in the behaviour of small perturbations δγ = (δr, δθ). The first thing to notice is
that because the energy Eg is defined on 1-chains, tangential changes in γ do not affect its
value. We can therefore set δθ = 0, and concentrate on δr.

On the circle, using the arc length parameterization t, the integrands of the different
terms in Eg are functions of t− t′ only; they are invariant to translations around the circle.
In consequence, the second derivative δ2Eg/δγ(t)δγ(t′) is also translation invariant, and
this implies that it can be diagonalized in the Fourier basis of the tangent space at γ0. It thus
turns out to be easiest to perform the calculation by expressing δr in terms of this basis:

δr(t) =
∑

k

ake
ir0kt , (2.2.2)

where k ∈ {m/r0 : m ∈ Z}. Below, we simply state the resulting expansions to second
order in the ak for the three terms appearing in equation (2.1.2). Details can be found in
appendix A.

The boundary length and interior area of the region are given to second order by:

L(γ) =
∫ π

−π
dt |γ̇(t)| = 2πr0

{
1 +

a0

r0
+

1
2

∑

k

k2|ak|2
}

(2.2.3)

A(γ) =
∫ π

−π
dθ

∫ r(θ)

0
dr′ r′ = πr2

0 + 2πr0a0 + π
∑

k

|ak|2 . (2.2.4)

Note the k2 in the second order term for L. This is the same frequency dependence as
the Laplacian, and shows that the length term plays a similar smoothing role for boundary
perturbations as the Laplacian does for functions. In the area term, by contrast, the Fourier
perturbations are ‘white noise’.

It is also worth mentioning, that there are no stable solutions using these terms alone.
For the circle to be an extremum, we require λC2π + αC2πr0 = 0, which tells us that
αC = −λC/r0. The criterion for a minimum is, for each k, λCr0k

2 + αC ≥ 0. Note that
we must have λC > 0 for stability at high frequencies. Substituting for αC , the condition
becomes λC(r0k

2 − r−1
0 ) ≥ 0. Substituting k = m/r0, gives the condition m2 − 1 ≥ 0.

Two points are worth noting. The first is the one we have already made: the zero frequency
perturbation is not stable. Zero frequency means changes of radius, i.e. the energy thus
defined is the maximum w.r.t. changes of radius, and hence is not stable. The second is that
the m = 1 perturbation is marginally stable to second order, that is, such changes require
no energy to this order. To fully analyse them, we must therefore go to higher order in the
Taylor series.
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The quadratic term can be expressed to second order as

∫∫ π

−π
dt dt′ γ̇(t′) · γ̇(t) Ψ(R(t, t′)) = 2π

∫ π

−π
dp F00(p) + 4πa0

∫ π

−π
dp F10(p)

+
∑

k

2π|ak|2
{[

2
∫ π

−π
dp F20(p) +

∫ π

−π
dp e−ir0kpF21(p)

]

−
[
2ir0k

∫ π

−π
dp e−ir0kpF23(p)

]
+

[
r2
0k

2

∫ π

−π
dp e−ir0kpF24(p)

]}
, (2.2.5)

The Fij are functionals of Ψ (hence functions of d and ε for Ψ given by equation (2.1.3)),
and functions of r0, as well as functions of the dummy variable p.

Combining equations (2.2.3), (2.2.4), and (2.2.5), we find the energy functional (2.1.2)
up to the second order:

Eg(γ0 + δγ) =E0(r0) + a0E1(r0) +
1
2

∑

k

|ak|2E2(k, r0)

=
{

2πλCr0 + παCr2
0 − πβCG00(r0)

}

+ a0

{
2πλC + 2παCr0 − 2πβCG10(r0)

}

+
1
2

∑

k

|ak|2
{

2πλCr0k
2 + 2παC

− 2πβC

[
2G20(r0) + G21(k, r0)

− 2ir0kG23(k, r0) + r2
0k

2G24(k, r0)
]}

,

(2.2.6)

where Gij =
∫ π
−π dp e−ir0(1−δ(j))kpFij(p). Note that as anticipated, there are no off-

diagonal terms linking ak and ak′ for k 6= k′: the Fourier basis diagonalizes the second
order term.

Parameter constraints

Note, that a circle of any radius is always an extremum for non-zero frequency perturbations
(ak for k 6= 0), as these Fourier coefficients do not appear in the first order term (this is also
a consequence of invariance to translations around the circle). The condition that a circle be
an extremum for a0 as well (E1 = 0) gives rise to a relation between the parameters:

βC(λC , αC , r̂0) =
λC + αC r̂0

G10(r̂0)
, (2.2.7)

where we have introduced r̂0 to indicate the radius at which there is an extremum, to
distinguish it from r0, the radius of the circle about which we are calculating the expan-
sion (2.2.1). Figure 2.6 left shows a typical plot of the energy E0 of a circle versus its radius
r0, with the βC parameter fixed using the equation (2.2.7) with λC = 1.0, α = 0.8, and
r̂0 = 1.0. The energy has a minimum at r0 = r̂0 as desired. The relationship between r̂0
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and βC is not quite as straightforward as it might seem though. As can be seen from fig-
ure 2.6 left, the energy also has a maximum at some radius. It is not a priori clear whether
it will be the maximum or the minimum that appears at r̂0. If we graph the positions of
the extrema of the energy of a circle against βC for fixed αC , we find a curve qualitatively
similar to that shown in figure 2.7 (this is an example of a fold catastrophe). The solid curve
represents the minimum, the dashed the maximum. Note that there is indeed a unique βC

for a given choice of r̂0. Denote the point at the bottom of the curve by (β(0)
C , r̂

(0)
0 ). Note,

that at βC = β
(0)
C , the extrema merge and for βC < β

(0)
C , there are no extrema: the energy

curve is monotonic because the quadratic term is not strong enough to overcome the shrink-
ing effect of the length and area terms. Note also that the minimum cannot move below
r0 = r

(0)
0 . This behaviour is easily understood qualitatively in terms of the interaction func-

tion in equation (2.1.3). If 2r0 < d − ε, the quadratic term will be constant, and no force
will exist to stabilize the circle. In order to use equation (2.2.7) then, we have to ensure that
we are on the upper branch of figure 2.7.
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Figure 2.6: left: The energy of a circle E0 plotted against radius r0 for λC = 1.0, α = 0.8,
and βC = 1.39 calculated from equation (2.2.7) with r̂0 = 1.0. (The parameters of Ψ are
d = 1.0 and ε = 1.0, but note that it is not necessary in general that d = r̂0.) The function
has a minimum at r0 = r̂0 as desired. right: The second derivative of Eg, E2, plotted
against r̂0k for the same parameter values as in the left plot. The function is non-negative
for all frequencies.

Equation (2.2.7) gives the value of βC that provides an extremum of E0 with respect to
changes of radius a0 at a given r̂0 (E1(r̂0) = 0), but we still need to check that the circle
of radius r̂0 is indeed stable to perturbations with non-zero frequency, i.e. that E2(k, r̂0) is
non-negative for all k. Scaling arguments mean that in fact the sign of E2 depends only on
the combinations r̃0 = r0/d and α̃C = (d/λC)αC . The equation for E2 can then be used
to obtain bounds on α̃C in terms of r̃0. Figure 2.6 right shows a plot of E2(k, r̂0) against
r̂0k for the same parameter values used in figure 2.6 left, showing that it is non-negative for
all r̂0k.

We call the resulting model, the energy Eg with parameters chosen according to the
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Figure 2.7: Schematic plot of the positions of the extrema of the energy of a circle versus
βC , for αC fixed.

above criteria, the ‘gas of circles’ model.

2.2.2 Geometric and synthetic experiments

In order to illustrate the behaviour of the prior energy Eg with parameter values fixed ac-
cording to the above analysis, in this section we show the results of some experiments using
it. In the first case we show examples using only the geometric term, while in the rest we
use image terms as well, computed using pixel intensity values.

The geometric energy

Figure 2.8 shows the result of gradient descent using Eg starting from various different
initial regions. (For details of the implementation of gradient descent for higher-order active
contour energies using level-set methods, see section 2.4 or Rochery et al. (2005c, 2006),
Rochery (2005).) In the first column, four different initial regions are shown. The other
three columns show the final regions, at convergence, for three different sets of parameters.
In particular, the three columns have r̂0 = 15.0, 10.0, and 5.0 respectively.

In the first row, the initial shape is a circle of radius 32 pixels. The stable states, which
can be seen in the other three columns, are circles with the desired radii in every case. In the
second row, the initial region is composed of four circles of different radii. Depending on
the value of r̂0, some of these circles shrink and disappear. This behaviour can be explained
by looking at figure 2.6 left. As already noted, the energy of a circle E0 has a maximum
at some radius rmax. If an initial circle has a radius less than rmax, it will ‘slide down the
energy slope’ towards r0 = 0, and disappear. If its radius is larger than rmax, it will finish in
the minimum, with radius r̂0. This is precisely what is observed in this second experiment.
In the third row, the initial condition is composed of four squares. The squares evolve to
circles of the appropriate radii. The fourth row has an initial condition composed of four
differing shapes. The nature of the stable states depends on the relation between the stable
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radius, r̂0, and the size and shape of the initial shapes. If r̂0 is much smaller than an initial
shape, this shape will ‘decay’ into several circles of radius r̂0.

(Initial) (r̂0 = 15) (r̂0 = 10) (r̂0 = 5)

Figure 2.8: Experimental results using the geometric term: the first column shows the initial
conditions; the other columns show the stable states for various choices of the radius.

Noisy synthetic images

Here, we present the results of tests of the sensitivity of the model to noise in the image. The
energy used is E = Eg + Ei, where Ei is the energy coming from the image, based on the
pixel intensity values and the image gradient. We model the background and foreground
with Gaussian distributions and fix the parameters by learning them. The region, which
minimizes the image term has pixels close to the mean foreground intensity and its boundary
is on places where the gradient is high (for details see section 4.2.1). Fifty synthetic images
were created, each with ten circles with radius 8 pixels and ten circles with radius 3.5 pixels,
placed at random but with overlaps rejected. Six different levels of white Gaussian noise,
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noise (dB) FP (%) FN (%) J (%)
20 0 0 0
15 0 0 0
10 0 0 0
5 2 0 0
0 6.4 4 0
-5 27.6 3.6 23

Table 2.1: Results on synthetic noisy images. FP, FN, J: percentages of false positive, false
negative, and joined circle detections respectively, with respect to the potential total number
of correct detections.

with signal-to-noise ratios from−5 dB to 20 dB1, were then added to the images to generate
300 noisy images. Six of these, corresponding to noisy versions of the same original image,
were used to learn µin, σin, µout, and σout, the mean and variance values on the foreground
and background regions. The model used was the same as that used for the aerial images,
except that the image gradient parameter λi was set equal to zero. The parameters were
adjusted to give a stable radius of 8 pixels.

The results obtained on the noisy versions of one of the fifty images are shown in fig-
ure 2.9. Table 2.1 shows the proportion of false negative and false positive circle detections
with respect to the total number of potentially correctly detectable circles (500 = 50× 10),
as well as the proportion of ‘joined circles’, when two circles are grouped together (an ex-
ample can be seen in the bottom right image of figure 2.9). Detections of one of the smaller
circles (which only occurred a few times even at the highest noise level) were counted as
false positives. The method is very robust with respect to all but the highest levels of noise.
The first errors occur at 5 dB, where there is a 2% false positive rate. At 0 dB, the error rate
is ∼ 10%, i.e. one of the ten circles in each image was misidentified on average. At −5 dB,
the total error rate increases to ∼ 30%, rendering the method not very useful.

Note that the principal error modes of the model are false positives and joined circles.
There are good reasons why these two types of error dominate. We will discuss them further
in chapter 5.

Circle separation: comparison to classical active contours

In our second experiment, we simulated one of the most important causes of error in tree
crown extraction, and examined the response of classical active contour and HOAC models
to this situation. The errors, which involve joined circles similar to those found in the
previous experiment, are caused by the fact that in many cases nearby tree crowns in an
image are connected by regions of significant intensity with significant gradient with respect
to the background, thus forming a dumbbell shape. Calling the bulbous extremities, the

1Noise is usually measured in Signal-to-noise ratio (SNR), its unit is the decibel (dB) (Kato).

SNR (dB) = 10 log10

(
σ2

image
σ2

noise

)
, where σimage and σnoise are the variances of the image and noise respectively.
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(0.90, 0.028, 0.11, 0.028, 100, 100, 170) (0.85, 0.043, 0.16, 0.043, 33, 33, 58)

(0.78, 0.061, 0.23, 0.062, 13, 13, 22) (0.71, 0.081, 0.31, 0.081, 4, 4, 6.9)

(0.65, 0.098, 0.37, 0.099, 1.4, 1.4, 2.5) (0.60, 0.11, 0.43, 0.11, 0.51, 0.51, 0.89)

Figure 2.9: One of the synthesized images, with six different levels of added white Gaussian
noise. Reading from left to right, top to bottom, the image variance to noise power ratios
are 20, 15, 10, 5, 0, −5 dB. Parameter values in the form (µin, σin, µout, σout, λC , αC , βC)
are shown under the six images. The parameters d and r0 were fixed to 8 throughout.
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‘bells’, and the join between them, the ‘bar’, the situation arises when the bells are brighter
than the bar, while the bar is in turn brighter than the background, and most importantly, the
gradient between the background and the bar is greater than that between the bar and the
bells. The image term Ei we used during this experiment is only the image gradient.

The first row of figure 2.10 shows a sequence of bells connected by bars. The intensity
of the bar varies along the sequence, resulting in different gradient values. We applied the
classical active contour and HOAC ‘gas of circles’ models to these images.

Figure 2.10: Results on circle separation comparing the HOAC ‘gas of circles’ model to
the classical active contour model. Top: the original images. The intensity of the bar takes
values equally spaced between 48 and 128 from left to right; the background is 255; the
bells are 0. In the middle: the best results obtained using the classical active contour model
(8, 1, 1). Either the circles are not separated or the region vanishes. Bottom: the results
using the HOAC ‘gas of circles’ model (2, 1, 5, 4.0, 8, 8). All the circles are segmented
correctly. Parameter values are shown in the form (λi, λC , αC) and (λi, λC , αC , βC , d, r0)
respectively.

The middle row of figure 2.10 shows the best results obtained using the classical active
contour model. The model was either unable to separate the individual circles, or the region
completely vanished. The intuition is that if there is insufficient gradient to stop the region
at the sides of the bar, then there will also be insufficient gradient to stop the region at the
boundary between the bar and the bells, so that the region will vanish. On the other hand, if
there is sufficient gradient between the bar and the background to stop the region, the circles
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will not be separated, and a ‘bridge’ will remain between the two circles.2

The corresponding results using the HOAC ‘gas of circles’ model can be seen in the
bottom row of figure 2.10. All the circles were segmented correctly, independent of the
gray level of the junction. Encouraging as this is, it is not the whole story, as we indicated
in section 2.2.2. We make a further comment on this issue in chapter 5.

2.3 The inflection point ‘gas of circles’ model

Figure 2.6 left shows a plot of the energy of a circle versus radius for parameter values
selected according to the energy minimum criteria at the desired radius. This curve has
just the form we require: circles of radius r0 are metastable (i.e. local minima), with an
energy that is low but nevertheless higher than that of the empty region. In the absence of
supporting data, the global minimum will thus be the empty region, the correct behaviour.
A gradient descent algorithm, however, cannot escape from these local minima, meaning
that circles of radius r0, once formed during gradient descent, cannot disappear, even if the
data does not support their existence. In practice such circles sometimes do form, which
is clearly undesirable. The best solution to this problem would be an algorithm capable of
finding the global minimum of the energy. A slightly less ambitious approach, which we
take here, involves making a compromise with the algorithm, changing the model to avoid
the creation of these local minima, while preserving as much of the prior knowledge as
possible.

The idea we will pursue is to adjust the parameters so that the minimum of the curve
on the left of figure 2.6 is replaced by a broad, approximately flat area, as shown in the
plots in figure 2.13. Such an energy means that in the absence of image data, a circle will
shrink and disappear, whereas small amounts of image data will be sufficient to create a
minimum in the flat area, thus producing a stable circle. The natural method to achieve
such a broad flat region is to create an energy function that has a single inflection point. If
necessary the parameters can then be tweaked to ensure that the gradient of energy w.r.t.
radius is positive rather than simply non-negative. It is, however, a nontrivial exercise to
find parameter values that result in inflection points.

In figure 2.11, we present a small piece of real aerial image and the segmentation results
to demonstrate the importance of our novel model. On the left side we can see the original
image. The image contains a poplar plantation and a field in the right top corner. The
energy we minimize is E = Eg + Ei, where Ei is the data energy described in more details
in section 4.2.1. The image is difficult because the field has a homogenous intensity, very
similar to the tree crowns. The ‘gas of circles’ HOAC model creates phantom objects in this
area, as can be seen in the middle, while the new model using an inflection point provides a
better result without phantom shapes (right-hand image).

We address this problem via further analysis of the energy 2.1.2. We still require that a
circle of radius r0 be stable to sinusoidal perturbations with k > 0, but now we also require
that such a circle be an inflection point with respect to perturbations with k = 0, that is,

2‘Bar’ and ‘bell’ refer to image properties; we use ‘bridge’ and ‘circle’ to refer to the corresponding pieces
of a dumbbell-shaped region.
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Figure 2.11: Regularly planted poplars c©French Forest Inventory (IFN) (left). Result with
the ‘gas of circles’ model in section 2.2 (middle). Result with the monotonic energy function
(right).

changes of radius. We will see that these demands are sufficient to fix the prior energy Eg
up to an overall multiplicative constant and a small range of values for d. More precisely,
we still require that E1(r0) = 0 and E2(k, r0) > 0 for k > 0, but we now require that
E2(0, r0) = 0 too. The first condition gives equation 2.2.7. The second condition, which
follows from the last term of equation 2.2.6, also relates α and β:

α(r0) = β(r0)G̃(r0) , (2.3.1)

where G̃(r0) = 2G20(r0) + G21(0, r0). We can solve equations 2.2.7 and 2.3.1 for α and
β, giving:

α(r0) =
λG̃(r0)

G10(r0)− r0G̃(r0)
and β(r0) =

λ

G10(r0)− r0G̃(r0)
. (2.3.2)

These equations fix α and β as functions of r0 and d. Since r0 is fixed by the application, the
only remaining parametric degrees of freedom are the value of d, and the overall strength
of the prior term, represented by λ. Recall, however, that we also require α and β to be
positive. The question is then how to find values of d for a given r0 so that α(r0) > 0 and
β(r0) > 0.

Determination of d

To illustrate the behaviour we want to understand, figure 2.12 shows plots of α and β against
d for fixed r0, in this case r0 = 5. There are two critical points, dmin and dmax. Only for
the range dmin < d < dmax are both α and β positive. Our goal is therefore to find dmin and
dmax as functions of r0.

From equations (2.3.2), it can be seen that dmax arises from a zero in the denominator,
while dmin arises from a zero in the numerator. It is, therefore sufficient to find these zeros in
order to find dmin and dmax. To proceed, we first note a scaling property of G00. The function
G00 is given by the following integral (see Appendix A and Horváth et al. (2006b)):

G00(r) =
∫ π

−π
dp cos(p) r2 Ψ

(
2r

∣∣∣sin p

2

∣∣∣
)

. (2.3.3)

28



0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

d

al
ph

a
alpha values, r

0
 = 5

d
max

 

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

d

be
ta

beta values, r
0
 = 5

d
max

 

5.5 6 6.5 7 7.5 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

d

al
ph

a

alpha values, r
0
 = 5

d
min

 d
max

 

Figure 2.12: Top left: α plotted against d; Top right: β plotted against d; Bottom: enlarged
plot of α near the critical domain. (r0 = 5.0 throughout)

Since Ψ(z) is a function of z/d only, by pulling d2 out of the integral we can write G00 as
G00(r) = d2Ĝ00(r/d). Now recall that G10 = 1

2∂rG00 and G̃ = ∂rG10 (Horváth et al.,
2006c). We then find that:

G̃(r0) = ˆ̃G(r0/d) and G10(r0)− r0G̃(r0) = d
(
Ĝ10(r0/d)− r0

d
ˆ̃G(r0/d)

)
, (2.3.4)

where Ĝ10(z) = 1
2∂zĜ00(z) and ˆ̃G(z) = ∂zĜ10(z). Thus both numerator and denominator

of equations (2.3.2) can be written, up to multiplication by positive coefficients, as functions
of r0/d. Now, f(r, d) = f̂(r/d) and f(r, d0) = 0 imply f(ar, ad0) = 0 for all a ∈ R; thus
if we determine dmin and dmax for one value of r0, we know their values for any r0.

To determine dmin and dmax while avoiding iterative numerical procedures to find these
points, we use a polynomial approximation to G00 (for more detailed computations see
appendix B):

G00(r) =
∞∑

n=0

bnrn .
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It is easy to show that:

bm =

{
0 m < 2 ,

1
(m−2)!

∫ π
−π dp cos(p) Y (m−2)(0) m ≥ 2 ,

(2.3.5)

where Y (r) = Ψ(2r| sin(p/2)|). The derivatives of Y evaluated at zero are:

Y (m)(0)
(2| sin(p/2)|)m

= Ψ(m)(0) =





1 m = 0 ,

0 m = 1 or m even ,

(−1)
m−1

2
1
2d

(
π
d

)m−1
m ≥ 3 and m odd .

Substituting into equation (2.3.5) gives bm:

bm =

{
0 m < 5 or m even ,

(−1)
m−1

2
4(2π)m−3

m!!(m−4)!!
1

dm−2 m ≥ 5 and m odd .

We can then derive expressions for G̃ and G10 − rG̃:

G̃(r) = 2
∑

m≥3
m odd

(−1)
m+1

2 (2π)m−1(m + 1)
m!!(m− 2)!!

(r

d

)m

G10(r)− rG̃(r) = 2d
∑

m≥4
m even

(−1)
m−2

2 (2π)m−2

[(m− 3)!!]2
(r

d

)m
.

We computed the roots of these polynomials including terms up to m = 49. The small-
est positive roots furnish the values of dmin and dmax. The result is that dmin ' 1.2776r0

and dmax ' 1.4499r0. The graphs in figure 2.13 show plots of E0 against r for r0 = 5, with
d values chosen from the domain dmin < d < dmax. From left to right d is increasing. This
influences the shape of the energy function, but the inflection point is correctly located at
the desired radius in each case.
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Figure 2.13: Plot of E0 against r for r0 = 5.0 with α and β determined by equations (2.3.2).
First, d = 6.4; second , d = 6.8; third, d = 7.2. For this value of r0, dmin = 6.3880,
dmax = 7.2495.

30



2.4 Minimization of the energy, implementation issues

We minimize the geometric energy using gradient descent. In section 2.4.1 we approach
the process from a more theoretical point of view. More precisely we present the descent
equation and give a short overview on the level-set framework. Section 2.4.2 contains the
implementation details proposed and used by Rochery et al. (2005c). to realize the HOAC
model. This approach is based on a method using both contour extraction as well as level-
set functions. Finally, in section 2.4.3 the implementation of the ‘gas of circles’ parameter
computations and the inflection point parameters are discussed.

2.4.1 Minimization of the higher-order active contour energy

The energy is minimized using gradient descent. Thus, the contour evolution is determined
by:

∂tγ(t) = − δE

δγ(t)
, (2.4.1)

where δE/δγ is the functional derivative of the energy with respect to the contour. The
descent equation can be written as:

n̂ · ∂tγ(t) = κ(t)− αC + 2βC

∫
dt′ r̂(t, t′) · n(t′)Ψ′(r(t, t′)) , (2.4.2)

where r̂(t, t′) = (γ(t)− γ(t′))/|γ(t)− γ(t′)|, n is the outward pointing normal vector and
n̂ is its normalized version.

Although, the linear space is useful for constructing functionals, the minimization of
the energy takes place over the space of region boundaries, not over the space of closed
1-chains. To minimize the energy we use gradient descent, but we embed the contour into a
higher dimensional space using the level-set framework (Osher and Sethian, 1988) to evolve
it. If the contour propagates along its outward normal direction with speed F , namely
n̂ · ∂tC(t) = F [C](t), then the changes in the level-set function can be written as:

∂tφ = −∇φ · F n̂ = F∇φ · φ/|∇φ| = F |∇φ| , (2.4.3)

During the evolution φ appears as a signed distance function, which is usually initialized
in this way, but during the evolution it is difficult to guarantee. However, since the exact
evolution of φ off the contour is of no consequence provided it is well enough behaved,
it can be chosen for convenience, reinitializing every so often if necessary to restore the
signed distance function. A typical choice is to apply the expression for F to each level-
set, and evolve the function φ accordingly. However, as can be seen from equation 2.4.2,
the evolution equations derived from quadratic energies contain nonlocal terms, and this
creates new difficulties. Following the procedure of applying the expression for F to every
level-set is impractical, since it means extracting the level-set belonging to each point of the
discretized version of Ω and integrating over it. In order to construct the speed at all points
of Ω from the speed on the contour, we therefore use the technique of ‘extension velocities’
(Adalsteinsson and Sethian, 1999).
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Figure 2.14: Contour tracing algorithm.

1. Choose a starting point A in a set of points R. Set current point C = A
and search direction S = 6.
2. While C is different from A or first= 1, do steps 3 to 9.
3. found= 0.
4. While found= 0, do steps 5 to 8, at most 3 times.
5. If B, the neighbour (S − 1) of C is in R; C = B, S = S − 2, found= 1.
6. Else, if B, the neighbour S of C is in R, C = B and found= 1.
7. Else, if B, the neighbour (S + 1) of C is in R, C = B and found= 1.
8. Else S = S + 2.
9. first= 0.

2.4.2 Implementation of the higher-order active contour evolution

The evolution of the level-set is done in four steps. The first step is the reinitialization of the
variable φ, then we compute the zero level-set and the speed of the contour. The third step
is to extend the speed of the contour to Ω. Finally we update φ. In this section we briefly
overview the drawbacks and crucial steps of the implementation.

To (re)initialize φ as a signed distance function an approach from Sussman et al. (1994)
was used. This classical method caused a drawback, namely area loss, which was solved
in Sussman and Fatemi (1997).

One of the most important steps of the implementation is the very precise contour ex-
traction. To find the exact intersections of the level-set surface with the grid, Rochery et al.
(2005c) used ENO interpolation by Siddiqi et al. (1997). After interpolation, the boundary
is extracted using the contour tracking algorithm shown in figure 2.14 by Pavlidis (1982).
At each step, one starts from the current point and considers six possible directions for the
next point. Figure 2.15 shows these directions are adapted to the different possible con-
figurations. We obtain an ordered set of points {C(pi); i = 1, . . . , n} representing the
boundary.

The bottom right image of figure 2.15 shows an example that some of the configurations
are ambiguous, creating complicated situations. To deal with these, it is necessary to adopt
a convention: either the interior or the exterior, but not both, can have subcellular width.
We choose the former.

Having extracted the boundary, and after interpolating the necessary values from the
grid, we compute the speed F for each extracted point by performing a numerical integra-
tion over the contour.

We need to extend the speed to the domain Ω. Rochery et al. (2005c) used the ‘extension
velocities’ method of Adalsteinsson and Sethian (1999).

In practice, it is not necessary to compute the evolution of the level-set function over
the whole of Ω. Computational efficiency can be increased by restricting computation to
a band around the zero level-set, known as the ‘Narrow Band’ (Sethian, 1999), defined by
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Figure 2.15: Top row and bottom left: configurations encountered in the contour track-
ing algorithm. Bottom right: an ambiguous configuration. Figure courtesy of M.
Rochery (Rochery, 2005).

|φ(x, y)| < t, where t is a threshold. When the zero level-set comes too close to the edge of
the Narrow Band, the level-set function is reinitialized as described above, and the Narrow
Band is reconstructed.

2.4.3 Implementation of the parameter estimations

Determination of βC parameter:

In section 2.2 we described the ‘gas of circles’ model, which fixes one of the HOAC para-
meters, assuming that the rest are given. We recall equation 2.2.7:

βC(λC , αC , r0) =
λC + αCr0

G10(r0)
, (2.4.4)

i.e. , αC , λC , and r0 are given, and we determine βC . All but G10(r0) are known. To deter-
mine the value of the integral we used numerical approximation. We applied the recursive
adaptive Simpson quadratic form to integrate, and we chose the accuracy of the approxi-
mation to be 10−6. Since the function is symmetric, it is sufficient to evaluate the integral
on the [0, π] domain and double the value. Using the above described parameter values one
can successfully create a ‘gas of circles’. Going further, determining the zeroth and second
order energies, we can follow the described procedure and approximate the G00, G20, G21,
G23, and G24 functionals.
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The inflection point parameters:

We need to compute the right-hand sides of equations 2.3.2:

α(r0) =
λG̃(r0)

G10(r0)− r0G̃(r0)
and β(r0) =

λ

G10(r0)− r0G̃(r0)
. (2.4.5)

To compute the value of G̃, we use the same scheme as in the G10 case.

Determination of d:

In practice to determine the zero crossings of the α and β functions, we created polyno-
mials up to a given order, and used the classical root finder method of MATLAB based on
companion matrix. In our experiments we used 49th order polynomials, which provided us
with a very accurate approximation.
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Chapter 3

The phase field ‘gas of circles’ model

Phase-field models are widely used in physics in solving diffusion
equations for heat and solute without explicitly tracking the liquid-
solid interface. Considering phase fields as a level-set framework, it
is possible to create phase field models equivalent to the higher-order
active contour models discussed in previous chapter. Phase fields pro-
vide more topological freedom, easier and faster implementation, eas-
ier probabilistic formulation and on the other hand all the opportuni-
ties of the HOAC model. In this chapter, we present how to transform
the ‘gas of circles’ parameters into the phase field model. We then
describe a phase field version of the inflection point model.

PHASE field models are well-studied and popular in physics during the last decades (Boet-
tinger et al., 2002, Sun and Beckermann, 2007). During the solidification of different

materials, they create different sometimes complicated and practically important shapes.
The analysis of these shapes was the interest of many researchers in the recent years. The
problem of accurately calculating the solid-liquid interface, using phase fields, became pop-
ular due to the increasing power of computers. The phase field variable is a function of time
and position which describes whether the material is solid or liquid according to a threshold
value. The behavior of the variable is determined by an energy function which describes
the heat and solute transport. The interface domain between the solid and liquid states is
a smooth but highly localized change of the variable. The non-interface regions are char-
acterized by fixed values of the variable, (usually 0 and 1; or -1 and +1 as solid and liquid
stages respectively). This approach emerges from the mathematically difficult problem of
applying boundary conditions at an interface whose location is part of the unknown solution
(the so-called Stefan problem, see Gupta (2003) for details). No boundary conditions are
required and, as discussed above, the location of the interface is determined by thresholding
the phase field variable (this threshold value is usually 0 or 1/2 but sometimes determined
by the energy function’s parameters). The method is also powerful because it treats topol-
ogy changes easily, unlike the methods dealing with contours. Therefore, phase fields are
widely used in physics for modeling dentritic-growth in pure materials, dentritic-, eutectic-,
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and peritectic-growth in alloys, solute trapping during rapid solidification, etc..
Although, the model has the above mentioned advantages its, application in image pro-

cessing is not frequent yet. It was used for image inpainting (Grossauer and Scherzer,
2003), and to detect codimension 2 objects in the image domain (Aubert et al., 2004), while
in Samson et al. (2000), a model with multiple minima was used with Gamma convergence
to construct piecewise constant approximations to an image. In this chapter we present a
phase field model equivalent to classical active contours, and then extend it to higher-order
active contours. The reason for being interested in an equivalent higher-order active contour
model is that the phase field formulation has the following advantages:

• Phase field models provide a neutral initialization for gradient descent, no initial re-
gion is needed.

• The implementation of the phase field version of classical active contours, and in
particular of HOACs, is much simpler than the equivalent contour or level-set imple-
mentation. Gradient descent consists of a single partial differential equation derived
directly from the model energy with no need for reinitialization or regularization.
HOAC terms consist of convolutions and can be evaluated in Fourier space.

• There is more topological freedom during the gradient descent evolution than with
other methods, which is important when the topology is unknown a priori as is the
case in the tree crown extraction problem. In addition, more topological freedom
means less occurrence of becoming stuck in local minima.

• The computation time does not depend on the complexity of the region, and for the
tree crown extraction problem, is two order of magnitude faster for HOACs than the
level-set implementation.

Rochery et al. (2005b) applied the phase field version of their HOAC network model to the
road network extraction problem. In Horváth and Jermyn (2007a, b) we extended Rochery’s
phase field model to our ‘gas of circles’ model, and applied it to tree crown extraction.

In section 3.1, we present a framework based on phase field. We present how to define
an equivalent active contour model minimizing the area and the length of the segmented
objects. Defining the normal vector of the contour as the normal of the phase field sur-
face at the threshold level, we also describe the higher-order phase field model, which is
approximately equivalent with the HOAC model.

Rochery et al. (2005b) defined the transformation of the phase field parameters into
the HOAC parameters. In the previous chapter we described the parameter settings of the
‘gas of circles’ model. We give an algorithm to convert the existing HOAC ‘gas of circles’
parameters into higher-order phase field parameters in section 3.2.

Section 3.3 presents the settings of the phase field parameters which create an inflection
point in the energy function at the desired radius. We justify the accuracy of the inflection
point ‘gas of circles’ model with synthetic examples.

In section 3.4, we describe how to minimize the geometric phase field energy and dis-
cuss implementation issues.
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3.1 The higher-order phase field model

The phase field function φ is a level-set function on Ω. For a given threshold z, φ defines
region in the space of all possible regions R with a map ζz(φ) ∈ R = {x ∈ Ω : φ(x) > z}.
In contrast to many other segmentation methods, which use representation spaces isomor-
phic to R (e.g. snakes, distance functions), there is no constraint on φ: it can be any element
of a linear function space, and thus many functions correspond to the same region. One of
the simplest phase field energies can be formulated as:

E0(φ) =
∫

Ω
d2x





D

2
∂φ · ∂φ + λ(

1
4
φ4 − 1

2
φ2) + α(φ− 1

3
φ3)

︸ ︷︷ ︸
V (φ)





. (3.1.1)

We call the sum of the last two terms V (φ). If α = 0, the model is known as the Ginzburg-
Landau model (Ginzburg and Landau, 1950). If λ > |α| the V term of E0(φ) has two
minima, at ±1. For positive α values, the lower of the two minima is at −1. We will show
that using this configuration we can give a good estimation for the region boundary and the
area of the interior. One of these possible V functions can be seen in figure 3.1.
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−4

−3

−2

−1

0

1

2

3

α / λ

Figure 3.1: The V term of equation 3.1.1 for λ = 10 and α = 2.

Without the gradient term, minimizing the energy E0 while keeping the region R fixed
would create a discontinuity in φ at ∂R with values −1 and +1 on the exterior and interior
areas respectively. However, with the gradient term, the minimized φ function has a soft
transition region instead of sharp jump at the boundary of R. The variable φ defines a region
energy which approximates a linear combination of the region’s interior area A(R) and the
length of the boundary L(R). The usage of this connection is novel in image processing,
first having been introduced by Samson et al. (2000) and Rochery et al. (2005b). However,
we notice that for λ → ∞ and on a discrete grid this is known as the Ising model (Ising,
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1925). We briefly overview the connection between a simple active contour model EC,0(R),
minimizing the area and the boundary length, and E0(R).

Rochery et al. (2005b) used a simplified model (φ̃ ≈ φ) to show the equivalence of the
models and the relation between the parameters. Divide the domain into three pieces: Rγ ,
R+, and R−. Rγ is a narrow interface region around ∂R characterized by its width w. The
interior region R+ = R\Rγ , and the exterior region R− = R̄\Rγ . The approximated phase
field function is ±1 in R± respectively, while on Rγ it changes between ±1. The described
model φ̃ can be seen in figure 3.2.

w ( s )

R
+

R
-

R
c

Figure 3.2: Simplified model to approximate the parameters.

If we consider a very small arc on ∂R, we can suppose that φ changes linearly and can
estimate φ̃ in a polar coordinate system as1:

φ̃(r, θ) = − 2
w

(r − r0) + z . (3.1.2)

If one substitutes this form back into equation 3.1.1, one finds that the energy, up to an
additive constant, is:

E0(φ̃) =
∫ L(R)

0
ds

{
2D

w
+ w

(
2λK

15
+

3α

40
wκ

)}
+

4α

3
A(R) , (3.1.3)

where the integral is parameterized by the arc length and K = 1 + 5(α/λ)2. Minimizing
the energy w.r.t. the width of the interface w, the optimal width w∗ can be determined,
supposing that wκ ¿ 1, as w2∗ = (15D)/(λK). Therefore, one can approximate the
classical active contour model energy as:

EC,0(R) ∼= E0(φ̃) = λCL(R) + αCA(R) . (3.1.4)

The parameters of the active contour model are given approximately by:
1Here we suppose that the centre of the polar coordinates is the centre of curvature.
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αC =
4α

3
and λ2

C =
16DλK

15
. (3.1.5)

Rochery et al. (2005b) noticed that this approximation gave parameter values, which were
very close to those obtained by more sophisticated methods. Notice, that this is true in
the case of road network or in general, in situations where the curvature is relatively small,
however we need to be careful in the cases of large curvatures around the contour. Using the
phase field model instead of the active contour model in the case of the ‘gas of circles’, we
have observed that this accuracy gives satisfactory results even in the case of the inflection
point model.

Figure 3.3: Evolution of the region using the simple phase field model in equation 3.1.1
(D = 0.6, λ = 1.5, and α = 0.01).

To illustrate the behaviour of the region under the energy E0, figure 3.3 shows the
evolution of an initial region containing arms and indentations. From left to right and from
top to bottom, notice that the evolution fills the indentations and smooths the arms, so
that finally we end up having a circle, which vanishes. This phenomenon is due to the
minimization of the length of the region boundary and its area.

Rochery et al. (2005b) shown how it is possible to create a phase field term equivalent
to a HOAC’s quadratic term. Our geometric energy takes the form Eg = E0 + ENL,
where ENL is a non-local term, similarly to the quadratic term of the HOAC model. HOAC
energies are integral(s) over the contour, while phase field energies are defined as integrals
on Ω. The non-local phase field energy is defined as:

ENL(φ) = −β

2

∫

Ω2

d2x d2x′ ∂φ(x) ·G(x, x′) · ∂φ(x′) , (3.1.6)

where G is defined in term of Ψ by:
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Figure 3.4: Region evolution using the non-local phase field energy. In the course of the
evolution the region grows arms with a given width. Upper left: initial region, from left to
the right: evolution, bottom right: final result (D = 0.6, λ = 1.1, α = 0.1, β = 0.1, and
d = ε = 5.0 ).

G(x, x′) = Ψ(|x− x′|)I (3.1.7)

where I is the 2× 2 unit matrix.
Using the simplified approximation of the phase field variable, described in equation

3.1.2, one can determine the connection between βC and β. The regions R+ and R− contain
zero gradient, so all the contribution comes from the double integral over the interface
region Rγ . The gradient of φ in Rγ is given by ∂φ = −(2/w)n̂, where n̂ is the outward
normal to the boundary, extended to Rγ . The integrals across the interface in (3.1.6) are
thus easy to perform, if we assume that G is roughly constant over distances ∼ w. Each
integral simply contributes a factor w, which cancels that in the corresponding gradient. We
are left with two boundary integrals of EQ, with βC = 4β.

Figure 3.4 shows an example of the evolution of a region using the non-local phase field
energy (Eg = E0 + ENL). We initialized with a circle and with parameters creating road
network structure. The steps of the evolution can be seen in the figure, starting from the
upper left side.

3.2 The ‘gas of circles’ phase field model

In the previous chapter and in Horváth et al. (2006a, b), we analyzed the HOAC model and
showed how to set the parameters so that the energy favours regions consisting of sets of
circles with a prescribed radius. The aim of this section is to present an algorithm con-
verting the existing ‘gas of circles’ parameters into phase field parameters. We will present
synthetic experiments starting with different initial conditions and creating circles with the
given radius, and present a comparison between the HOAC and phase field ‘gas of circles’
models.

We need to invert the expressions for the phase field parameters in terms of the HOAC
parameters. Equation 3.1.5 gives α and λ, while at the and of section 3.1, we defined β in
the terms of the HOAC parameters. In the case of the α and β parameters it is clear that
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α = 3αC/4 and β = βC/4. It is slightly more difficult to compute λ. It turns out to be
simplest to use the interface width w as a parameter instead of D (recall that w = 4D/λC).
There are in principle two solutions, given by:

λ̃± =
λ±
λC

=
15
8w

[
1±

√
1− 4α̃C

2w2/5
]

, (3.2.1)

where ·̃ denotes division by λC . In practice, we choose λ+. Note that this equation imposes
a constraint on αC for there to be a solution: α̃C ≤ √

5/(2w). Finally, D = λCw/4. Note
that for fixed α̃C and β̃C , the effect of λC is simply to scale all the phase field parameters.

3.2.1 Recipe: determination of the parameters

We can take the following steps to create a phase field ‘gas of circles’ model for a prescribed
radius r0. (We assume that units have been chosen so that d = 1. If other units are chosen,
e.g. pixel units, the parameters must be rescaled.)

• Choose w. It cannot be too small, or a subpixel discretization will be needed for
gradient descent, and it cannot be too large or the phase field model will not be a
good approximation to the HOAC model (Rochery et al., 2005b). We have found that
w = 3 or w = 4 works well.

• Equation (3.2.1) now determines an upper bound on α̃C . Choose α̃C in this range.

• Determine the β̃C parameter corresponding to r0 and α̃C using the method in Horváth
et al. (2006b).

• Set λ̃ = λ̃+, α̃ = 3α̃C/4, β̃ = β̃C/4, and D̃ = w/4.

• Choose λC appropriately for the application and multiply D̃, λ̃, α̃, and β̃ by the
chosen value.

3.2.2 Synthetic experiments

In our first experiment we compare the evolution of the HOAC and phase field ‘gas of
circles’ models, initialized with a number of different shapes. The first row of figure 3.5
shows the evolution produced by EC,G with parameters chosen so that the contour creates
circles with radius 5 pixels. Time runs from left to right. In the second row the initial value
of φ was equivalent to that used in the experiment shown in the first row. The phase field
parameters were derived using the algorithm given in section 3.2.1. The evolution is very
similar to the HOAC evolution.

In figure 3.6 the initialization was the neutral initialization plus Gaussian noise of very
small amplitude (for a more detailed explanation please see section 3.4.3). As it can be
seen, the phase field evolves towards a set of circles with the prescribed radius.
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Figure 3.5: Comparison of the HOAC and phase field evolutions. First row: gradient des-
cent using EC,G (λC = 10, αC = 1, βC = 2.3137, r0 = 5). Second row: gradient descent
using Eg, with parameters equivalent to those used in the first row (λ = 9.064, α = 0.75,
β = 0.5784, D = 10, r0 = 5). The initialization used was equivalent to that used in the
first row. Time runs from left to right.

3.3 Inflection point in the energy function

Now, we present how to choose the phase field ‘gas of circles ’ parameters so that the circle
energy would have an inflection point rather than a minimum at the desired radius. This is
a non-trivial requirement. Rochery et al. (2005b) presented the relations between the phase
field and contour parameters using an approximate “ansatz” for φR in section 3.1. For the
‘gas of circles’ model, the approximations are not expected to be important, since small
errors in the parameters will produce small changes in behaviour. However, an inflection
point represents a set of measure zero in the parameter space. It is important to see whether
these approximate parameter relations preserve the inflection point behaviour.

In the previous section, we chose α̃C according to the constraint α̃C ≤ √
5/(2w). In

section 2.3 we described how a given value of r fixes α̃C and β̃C .
To determine the parameters of the new phase field inflection point ‘gas of circles’

model, we therefore take the following steps:

1. Choose a d value satisfying 1.2776 ≤ d ≤ 1.4499. This fixes α̃C and β̃C .

2. Choose w using the above criterion.

3. Determine λ̃, α̃, β̃, and D̃ as before.

4. Multiply these parameters by λC .
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Figure 3.6: Gradient descent using Eg, with parameters (λ = 9.064, α = 0.75, β = 0.5784,
D = 10, r0 = 5). The initialization was the neutral initialization with a small amount of
added Gaussian noise. Time runs from left to right.

3.3.1 Experimental verification

To test that the parameter transformations work in practice, we fixed a set of contour para-
meters corresponding to an inflection point at r0 = 10, and then translated these parameters
to give an equivalent phase field model, the corresponding energy functions can be seen in
figure 3.7. We then performed three gradient descent experiments using Eg. One used the
value of β corresponding to the inflection point, β∗, while the other two used β values 4%
above and below β∗. The region was initialized to a circle of radius r0. Figure 3.8 shows
the results. In the first row, with β < β∗, the region shrinks and disappears. In the second
row, with β > β∗, the region grows until it reaches the corresponding energy minimum, at
a radius of 12 pixels. In the third row, with β = β∗, the circle is almost stable, grows only
very slightly, to a radius of 10.5 pixels. This is because we initialize exactly in the inflection
point, and using gradient descent there is no arising force because the gradient is zero. The
inflection point behaviour is therefore preserved to a very good approximation.

0 2 4 6 8 10 12 14 16 18 20

α
C
 = 0.0868, β

C
 = 0.0837

r

E
g

0 2 4 6 8 10 12 14 16 18 20

α
C
 = 0.0868, β

C
 = 0.0906

r

E
g

0 2 4 6 8 10 12 14 16 18 20

α
C
 = 0.0868, β

C
 = 0.0871

r

E
g

Figure 3.7: Graphs of the energy of a circle.

3.4 Minimization of the phase field energy

In this section, we describe the minimization of the phase field energy terms. We show
different choices for the initialization. We also describe useful implementation details.
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Figure 3.8: Preservation of the inflection point.

3.4.1 Minimization of the local term, topology

The energy of the phase field is minimized by gradient descent. The functional derivative
of the local energy term E0 is:

δE0

δφ
= −D∂2φ + λ(φ3 − φ) + α(1− φ2) . (3.4.1)

Gradient descent thus follows the equation, given by Allen and Cahn (1979). If we guar-
antee that the interface width is relatively small compare to the discretization grid size,
the implementation can be performed using finite differences. The main advantage of the
model compared to those that use a distance function representation (Osher and Sethian,
1988, Sethian, 1999, Osher and Paragios, 2003), is that no reinitialization and ad hoc regu-
larization are required.

As we mentioned above, the new framework provides greater topological freedom than
previous explicit or implicit contour based models. In the standard level-set framework,
topology change can happen only by merging or splitting of the regions. In the phase field
case regions can appear or disappear. In figure 3.9 we give an example to illustrate the
topological freedom provided by the phase field model. We used E0 as a geometric energy
and a data energy which takes its minimum when the region boundary corresponds to edges
in the image (for more details, see chapter 4). The underlying data was a black annulus on
a white background. In the first row the initial region was a disk in the size of the annulus,
while in the second row we used the neutral initialization (see section 3.4.3). Both the
experiments segmented the desired shape correctly.

In addition, in the standard level-set framework, the number of handles of a region can
only change by wrapping or separating. Phase fields again show more topological freedom:
handles can appear and disappear within an existing region. This is illustrated in the top
row of figure 3.9. The data and energy are the same as for the bottom row, but now the
initialization is a circle. Note the formation of the hole in the centre.
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Figure 3.9: Phase field evolution with different initial conditions, showing topological free-
dom. The image used was a black annulus corresponding to a white background, while the
energy was the non-local phase field energy combined with the image gradient. In the top
row the initial region was a circle while in the bottom row, we initialized with the neutral
initialization. After the evolution the stable state was the region on the original annulus.

3.4.2 The non-local term

The functional derivative of the non-local phase field energy (equation 3.1.6) can be written
as:

δENL

δφ
(x) = β

∫

Ω
dx′ ∂2G(x− x′)φ(x′) . (3.4.2)

We see explicitly the particular advantage of the phase field formulation for HOAC energies.
Instead of the complex evaluation of the force due to EQ described by Rochery et al. (2006),
involving, at each iteration, contour tracing, contour integration, and force extension, the
equivalent force arising from ENL can be computed with a simple convolution. It can, for
example, be evaluated in the Fourier domain. Implementation is thereby made much easier,
and execution much faster. Execution time for the HOAC formulation scales as the square
of the boundary length, which in turn scales as the number of trees, which in turn scales
as the number of pixels. Thus execution time for the HOAC formulation can be expected
to scale as the number of pixels squared. In contrast, execution time for the phase field
formulation scales as the number of pixels. For large images, then, the advantage of the
phase field formulation in practical terms is obvious.

3.4.3 Initialization

As we discussed before, the unconstrained nature of the phase field function offers greater
topological freedom than previous methods. It also gives us a nice opportunity to choose
the initial conditions.

Using the gradient descent method, we can initialize the phase field variable using a
constant value φinit = α/λ. Using this constant and choosing the threshold value of the
map function ζ to be z = α/λ this initial condition is completely neutral, where neutral
means that this constant corresponds to the maximum of the potential V , so it is not biased
towards one or the other potential minimum, nor it is biased towards the inside or outside
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area, because both are empty. Neutral initialization means that the phase field variable
can create regions in the image domain, where necessary, so that we do not need complex
initialization techniques or to initialize a region covering the whole image.

We note that two other initial conditions can be applied successfully. During our ge-
ometric experiments we used Gaussian noise, with a mean of µ = α/λ, and very small
variance. This initialization creates random interior and exterior regions and during the
evolution, the geometric terms control their behaviour. An example for this initialization
can be seen in figure 3.6. The model preserves the opportunity to initialize the phase field
variable with a predefined region. In this case we choose the interior R+ = α/λ+ c and the
exterior R− = α/λ − c, where c is an arbitrary constant value, however in practice values
R+ ≈ 1 and R− ≈ −1 were the most successful. An example can be seen in the bottom
row of figure 3.5.

3.4.4 Implementation details

As we mentioned above, the functional derivative of the quadratic term can be computed
easily in the Fourier domain. Here we briefly describe one way to perform this computation.

The interaction operator

First we need to determine the Fourier transform of the interaction operator. This can be
done by constructing the interaction function on the grid, and applying the Fourier trans-
form. An example can be seen in figure 3.10. For visualization purposes, we have taken its
logarithm.

Figure 3.10: The logarithm of the amplitude of the Fourier transform of the interaction
function. The grid size was 128× 128, d = ε = 4.

The higher-order term

We need to compute the Fourier transform of the phase field. This we should multiply
point-by-point with the interaction operator and computing its inverse Fourier transform.
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Boundary condition

Using the Fourier transform we need to take into account its periodicity. In other words,
we should picture the image as defined on the surface of a torus. This creates problems
in detecting tree crowns on the boundaries, producing some false positive and negative
detections.

Figure 3.11: Mapping of a forestry image onto a torus. Image by c©French Forest Inventory
(IFN) .

Figure 3.11 illustrates the situation. On the left we can see an aerial image, while on the
right the same image mapped onto a torus. It is clear that where the boundaries meet, there
will be jumps in the image function, which creates problems during the segmentation. To
solve this problem we enlarged the boundary with d pixels in all directions and set the
pixel intensities to the value of µout

2. This simple method was appropriate in our case for
two reasons: first, in practice using the enlarged images produced satisfactory results; and
second, since the tree crown size is relatively small compared to the image size, the approach
is computationally efficient, because the size of the image not changing significantly. If we
need longer range interactions or more accurate boundary conditions, we would need to use
more complex methods e.g. Reeves (2005).

2We note that one could also solve this problem by duplicating or mirror the boundaries.
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Chapter 4

Tree crown extraction

Herein we give a short overview of the history of the application of
aerial imagery to forestry and of the recent publications on tree crown
extraction. We introduce the multispectral and panchromatic aerial
images we use. We develop two image data terms, one based on the
intensity and the gradient of the most representative spectral band of
the images, while the other uses up all three bands. Finally, we present
our experimental results combining the different prior terms studied
above with the data models.

FORESTRY applications, involving tree crown delineation in aerial images is a popular
and well-studied image processing area. However, this area has a long history. Most

of the models proposed are semi-automatic, and require quite a lot of human-interaction
before or during the segmentation, and have difficult parameter setting procedures. There
are only a few recent models that offer more automatic segmentation and need less human-
interaction. The methods use only the most representative spectral band of the images or a
very simplified model based on the multispectral bands. In section 4.1 we review the history
of forestry remote sensing applications and previous publications in the field. The image
data we use was provided by the French Forest Inventory (IFN) and the Hungarian Central
Agricultural Office, Forestry Administration (CAO, FA) .

The images are color infrared (CIR) and panchromatic images and have three or one
single spectral bands. To integrate the data into our model, we present two image terms
(Horváth et al., 2006b, Horváth, 2007). The first one uses only one band. In the CIR case
this is the infrared band, in which the reflectance of the vegetation is the highest. This model
is based on two observations: one is that there is a significant change of intensity (gradient)
between the tree crowns and the background, while the other is that the intensity levels
both of the background and of the tree crowns follow normal distributions. Based on these
observations, we define our first energy model so that a segmentation corresponding to the
constraints minimizes it. The second model is based on the fact that by using the other bands
of the CIR images, in many cases we can significantly improve the quality of the result. We
present four different ways to incorporate multispectral data into the segmentation process
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and analyze them in two ways: accuracy on a known image and generalization ability on an
unknown image. We show that the best choice is Gaussian distributions with full covariance
matrices. We present the minimization of both terms. Our data terms can be found in
section 4.2. In section 4.3 we present an exhaustive series of experiments combining the
different geometric prior models with the different data terms.

4.1 History of tree crown extraction from aerial images

Aerial imaging is more than 150 years old as a discipline. The first aerial image was taken
from an air-balloon in the late 1850’s in Paris by Tournachor. However the quality and
the altitude can not be compared to current techniques. During the beginning of the 20th

century and the First and Second World Wars, aerial imaging really developed. Balloons
were replaced by airplanes and better cameras were used. Nowadays the field benefits
from modern aircraft and space technology, make use of modern navigation techniques, and
the development of computers to process the acquired data faster and with sophisticated
methods.

The need to use aerial images in forestry grew at the end of the first half of the last
century (Spurr, 1948) by recognizing their possibilities in resource management, statistics,
etc. This idea can be considered the parent of the worldwide ground gathering automated
interpretation of high spatial resolution digital imagery in silviculture. The main goal is to
partly or fully exchange the human interpreter for an intelligent computer vision system,
able to make decisions, and which requires minimal human interaction during the image
analysis.

4.1.1 Data acquisition and the aerial images

In this section, we review the most important types of existing aerial data. In recent decades,
the quality of the most common film types has been developed, and recently fine tuning of
film characteristics is a focus of research (Brandtberg, 1999, Shao and Reynolds, 2006). We
distinguish four main categories of film for aerial photography:

• black-and-white panchromatic

• colour

• black-and-white infrared

• colour infrared (CIR).

The CIR film type has the ability to capture the reflectance characteristics of vegetation.
Vegetation has a unique spectral signature which enables it to be readily distinguished from
other types of land cover in an optical/near-infrared image. The reflectance, as can be seen
in figure 4.1, is low in both the blue and red regions of the spectrum, due to absorption by
chlorophyll for photosynthesis. It has a peak at the green region, which gives rise to the
green colour of vegetation. In the near infrared (NIR) region, the reflectance is much higher
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than that in the visible band, due to the cellular structure in the leaves. Hence, vegetation
can be identified by high NIR but generally low visible reflectance. This property was used
in early reconnaissance missions in war for “camouflage detection”.
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Figure 4.1: Plot of vegetation reflectance against wavelength.

For our experiments, we used CIR images provided by the French Forest Inventory
(IFN) and panchromatic images provided by the Hungarian Central Agricultural Office,
Forestry Administration (CAO, FA) taken by analogue cameras. Herein, we introduce the
main properties of the images. The CIR image capturing time is usually close to 1200 PM,
and in most cases the exact time is available. The flight height is ∼ 4000 m and the focal
length of the camera is f = 300 mm. The film has three different spectral layers in the
520-900 nm wavelength domain. The film layers have three typical pigment colours, i.e.
cyan, magenta and yellow. Each of them is dedicated to capturing the primary colours of
light. The film layers are tuned so that they extract the 520-900 nm, 520-700 nm and 520-
600 nm, respectively. This technique is called the false colouring infrared representation,
which translates the green into blue, the red into green and the infrared colours into red,
respectively (see figure 4.2). The film has an interesting feature, namely that the second and
the third layers have sensitivity almost three times higher than the first layer, to compensate
for the fact that the reflectance of healthy vegetation is significantly stronger in the near-
infrared domain. The panchromatic images provided by the Hungarian Central Agricultural
Office, Forestry Administration (CAO, FA) are grayscale images. The capturing times were
between 900 AM and 1200 PM, during the summer of 2002. The magnification is 1 : 10000,
the flight height is ∼ 1680 m, and the camera focal length is 153 mm.

The last step before digital image processing is digitization. We need to take into ac-
count the Shannon sampling theorem (Shannon, 1948), namely the sampling interval should
be chosen to be less than half the size of the smallest interesting detail in the image. In our
case, the images have ∼ 0.5 m/pixel resolution. This implies that the size of the smallest
details we are able to handle is 1 m. The usual size of the tree crowns that we are interested
in, is between 3 m and 9 m , so this image resolution is satisfactory. In figure 4.3, we can
see a typical CIR image.
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Figure 4.2: False colouring technique.

Figure 4.3: Real color infrared (CIR) image with forest and urban area c©IFN.

4.1.2 Individual tree crown delineation

If we observe a forest in an aerial image, it contains trees in different positions next to each
other. We can distinguish three different types of configurations, as shown in figure 4.4, for
which different image features can be used by visual systems. In the first case (left), each
tree stands individually. To extract the exact crown-shape it might be sufficient to threshold
the image. In second case (middle), the local maximum might be useful to detect the bright
tree top; contour extraction or valley detection (Eberly et al., 1994) might also be able to
separate the crowns. In the third case (right), a group of overlapped trees without grey-level
valleys, the detection of the individual trees must be based on the visible edges or contours.

Now we overview the most important results published on this topic. Three fundamental
approaches exist to delineate individual tree crowns. The methods in the first group are
based on the detection of local intensity extrema as the top of the crowns; methods in the
second group are based on the contours between the crowns and background; while the third
group matches templates and looks for the best local correlations. Finally, we present new,
interesting works published very recently. Exhaustive overviews can be found in Brandtberg
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Figure 4.4: Three typical cases of segmentation of individual tree crowns.

(1999), Erikson (2004), Perrin (2006), and Shao and Reynolds (2006).
The simplest group of tree crown delineation models uses local intensity maxima to

identify the most illuminated, i.e. the brightest, part of the crowns, which is usually the
tree top. Local maxima are pixels which have greater intensity than all the other pixels
in a defined neighbourhood. Blazquez (1989) introduced a method for finding citrus trees
using local maxima to identify tree crown centres, combined with crown perimeter, mean
intensity and area. He also presented a method for separating joined trees, using shadows
and radiometric normalization between photographs. The aerial images are often affected
by noise, resulting in bright pixels and misleading the local maximum search algorithms.
Notice that the difference between this situation and tree crowns, which is a bright circular
area with usually 10–30 pixel diameter, is that in the crown case a bigger bright area is
present. Therefore, one idea for handling this situation is to convolve the image with a
Gaussian-kernel. Dralle and Rudemo (1996) presented a model to find the appropriate
parameters. The model is based on smoothing the images with different filters, i.e. different
scales, and comparing the result with field plot data of the number of stems present.

The second group of methods is based on contours. The term ‘contour’ in image pro-
cessing is used as a delimiter between homogenous areas, but we note that in tree crown
detection we distinguish contours between tree crowns and the background and valleys tak-
ing place between individual tree crowns. Gougeon (1995) presented an approach to tree
crown delineation. He separated the crowns from the background vegetation and from each
other. The tree crowns are subsequently delineated using a five-level rule-based method
designed to find circular shapes, but with some small variations permitted. Using MEIS-II
images of coniferous plantations with a resolution of 31 cm/pixel, 81 % of the crowns are
the same as those obtained by visual interpretation of the imagery. Brandtberg and Walter
(1998) decompose an image into multiple scales (Lindeberg, 1998), and then define tree
crown boundary candidates at each scale as zero crossings with convex greyscale curvature.
Edge segment centres of curvature are then used to construct a candidate tree crown region
at each scale. These are then combined over different scales and a final tree crown region is
grown.

Using templates to model tree crowns is a well studied and successful part of the field.
Although template matching methods are known as a classical searching technique, their
success in the field is due to all the necessary information being available about aerial im-
ages to create a very precise tree model. The first vision system capable of recognizing
individual tree crowns, based on matching of a synthetic tree crown image model with an
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aerial image, was developed by Pollock (1996). The system was tested on monocular high
spatial resolution image data in Ontario and Alberta (Pollock, 1998). The procedure is based
on a model of the image formation process at the scale of an individual tree. Natural vari-
ation of the tree crown is considered, as is the species. Larsen (1998, 1999) concentrated
on spruce tree detection using a template matching method. The main difference between
these two papers is the use of multiple templates in the second. The 3D shape of the tree
is modelled using a generalized ellipsoid, while illumination is modelled using the position
of the sun and a clear-sky model. Reflectance is modelled using single reflections, with the
branches and needles acting as scatterers, while the ground is treated as a Lambertian sur-
face. Template matching is used to calculate a correlation measure between the tree image
predicted by the model and the image data. The local maxima of this measure are treated as
tree candidates, and various strategies are then used to eliminate false positives.

More recently, new approaches have been proposed using novel ideas and mixing the
three previously used image data. Erikson (2003) used a region-growing method to sepa-
rate crowns of mixed forest in high-resolution aerial images in central Sweden. The method
starts from single (seed) pixels as representative pixels on the crown and spreads over neigh-
bouring pixels that satisfy spatial and spectral requirements. In Erikson (2003), the region-
growing part was completed with a random walk. The methods described so far use multiple
steps rather than a unified model. Closer in spirit to the present work is that of Perrin et al.
(2004, 2005), who model the collection of tree crowns by a marked point process, where
the marks are circles or ellipses. An energy is defined that penalizes, for example, overlap-
ping shapes, and controls the parameters of the individual shapes. Reversible Jump Markov
chain Monte Carlo and simulated annealing are used to estimate the tree crown configu-
ration. Compared to our model, the method has the advantage that overlapping trees can
be represented as two separate objects, but the disadvantage that the tree crowns are not
precisely delineated due to the small number of degrees of freedom for each mark.

4.2 Data terms for tree crown extraction

In this section, we present two data terms designed to incorporate the information from
aerial images into the global energy. The first is based on the following observations: the
infrared spectral band of the vegetation images, and hence the tree crowns, is the most
representative (see subsection 4.1.1); thus we can use this band on its own1; the intensity
of the tree crowns is different from non-forested areas, and the distribution of the intensity
values can be characterized by a normal distribution; the gradient of the intensity values is
significantly bigger at the transition between the crowns and the background. Using these
facts, in subsection 4.2.1 we present a data term based on the intensity and gradient of the
infrared spectral band.

Although, the reflectance of the vegetation is highest in the infrared band, using all
the available bands we can improve the segmentation. We analyzed four different possible
candidates to incorporate multispectral information and concluded that modeling the distri-
butions of the crowns and the background with normal distributions using full covariance

1in the case of panchromatic images we have only one spectral band
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matrices gives the best results: generalization ability is strong, few parameters are needed
and the learning process is simple. The details can be found in section 4.2.2.

4.2.1 Model for single band images

The images have a resolution ∼ 0.5m/pixel, and tree crowns have diameters of the order
of ten pixels. Very little, if any, dependence remains between the pixels at this resolution,
which means, when combined with the paucity of statistics within each tree crown, that
pixel dependencies (i.e. texture) are very hard to use for modelling purposes. Therefore we
choose a lower level image representation. In the upper left image of figure 4.5, we see the
infrared spectral band of a typical CIR image containing poplar stands, while on the right is
its ground truth segmentation.
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Figure 4.5: Infrared spectral band of a CIR image. Upper left: real image with poplar forest
c©French Forest Inventory (IFN) . Upper right: ground truth segmentation of the image.

Bottom: Histogram of the intensity values based on the ground truth segmentation and the
corresponding normal distribution functions. Black: non forest areas, blue: tree crowns.

Our data energy contains two parts, one based on the intensities in the foreground and
background, the other on the gradient. The bottom image in figure 4.5 shows the histograms
of the intensities corresponding to the ground truth segmentation. Since, both the histograms
can be approximated with Gaussian distributions, we model the interior of the tree crowns
with mean µin and covariance σ2

inδR, where δA is the identity operator on images on A ⊂ Ω,
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and R is the region of our interest. In most cases, e.g. in figure 4.5, the background also
follows a Gaussian distribution. However it can be very varied, and thus hard to model in a
precise way. We use a Gaussian distribution with mean µout and variance σ2

outδR̄.

Figure 4.6: Magnitude of the gradient of the infrared spectral band.

The boundary of each tree crown has significant inward-pointing image gradient, and
although the Gaussian models should in principle take care of this, we have found in practice
that it is useful to add a gradient term to the likelihood energy. Figure 4.6 shows how
significant is the magnitude of the gradient at the boundary of the crowns.

Our likelihood thus has three factors:

P(I|R, K) = Z−1 gR(IR) gR̄(IR̄) f∂R(I∂R) .

where IR and IR̄ are the images restricted to R and R̄ respectively, and gR and gR̄ are
proportional to the Gaussian distributions already described, i.e.

− ln gR(IR) =
∫

R
d2x

1
2σ2

in
(IR(x)− µin)2

and similarly for gR̄. The function f∂R depends on the gradient of the image ∂I on the
boundary ∂R:

− ln f∂R(I∂R) = λi

∫

¤γ
dt n(t) · ∂I(t)

where n is the unnormalized outward normal to γ. The normalization constant Z is thus
a function of µin, σin, µout, σout, and λi. Z is also a functional of the region R. To a first
approximation, it is a linear combination of L(∂R) and A(R). It thus has the effect of
changing the parameters λC and αC in the prior energy. However, these parameters are
essentially fixed by hand, knowledge of the normalization constant does not change their
values, and we ignore it once the likelihood parameters have been learnt.
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The data model is then given by:

EC,I(I, R) = − lnP(I|R, K) + lnZ = − ln gR(IR)− ln gR̄(IR̄)− ln f∂R(I∂R) .

Energy minimization

The energy is minimized by gradient descent. The gradient descent equation for EC,I is

n̂ · ∂γ

∂s
(t) = −∂2I(γ(t))− (I(γ(t))− µin)2

2σ2
in

+
(I(γ(t))− µout)2

2σ2
out

, (4.2.1)

where s is the descent time parameter. As already mentioned, to evolve the region we use
the level-set framework of Osher and Sethian (1988) extended to the demands of nonlocal
forces such as equation (2.4.2) (Rochery et al., 2005c, 2006).

Phase field data term

It is easy to reformulate active contour likelihoods as phase field models via the dictionary:
normalized inward-pointing boundary normal vector ∂φ/2; boundary characteristic func-
tion |∂φ|2; region characteristic function φ+ = (1+φ)/2; region complement characteristic
function φ− = (1 − φ)/2. Using these definitions, the phase field data term equivalent to
the previous contour data term is:

Ei(I, R) =
∫

Ω
d2x

{
λi ∂I · ∂φ +

(I − µin)2

2σ2
in

φ+ +
(I − µout)2

2σ2
out

φ−
}

.

4.2.2 Multispectral data model

In this section, we study data models that use all three bands of the CIR image data.
The left of figure 4.7 shows the falsely coloured CIR version of figure 4.5. It is of a

poplar stand. To see how colour can help, note that the bright pixels in the spaces between
the trees are light grey in the colour image, while the trees are red. In the greyscale im-
age, they have roughly the same intensity, making the separation of trees and background
difficult. Although, the prior model helps to disambiguate these situations, it is not always
successful, and it makes sense to consider a data model that uses the available information
to the full.

We want to construct a data model for the observed CIR image, given that region R
corresponds to tree crowns. We can divide the image I (a three-component quantity) into
two pieces, IR and IR̄ corresponding to the tree crowns and the background. Then we have
P(I|R, K) = P(IR, IR̄|R, K). Without further information, IR and IR̄ are not independent
given R. However, we may introduce parameters for the two regions, θR and θR̄, so that
the two pieces of the image become independent given these parameters. We note, that
similarly to the previous case using only the infrared spectral band, due to the small size of
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Figure 4.7: (left): typical CIR aerial image of a poplar plantation; (middle): another CIR
image; (right): corresponding ground truth. Images c©French Forest Inventory (IFN) .
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Figure 4.8: Histograms of pixel values in the three bands of figure 4.7 (left), based on the
manual labelling shown in figure 4.5 (upper right). Green is background; blue is tree crown.

the tree crowns we cannot define meaningful texture features. Thus, we will assume that
the image values at different pixels are independent. The data model then takes the form

P(I|R, θR, θR̄, K) =
∏

x∈R

P(IR(x)|θR,K)
∏

x∈R̄

P(IR̄(x)|θR̄,K) .

To help us design the model for individual pixels, we examine the statistics of the pixel
values in the different bands. Figure 4.8 shows histograms of the pixel values in figure 4.7
(left) for all three bands, separated into tree crown and background based on a manual
labelling shown on figure 4.5 (upper right). As expected, the infrared band shows the largest
separation. Can adding the other two bands help?

To test this idea, we performed four different types of maximum likelihood classifica-
tion, based on four different estimates of the probability distributions for individual pixels
of each class. Two of these estimates use raw histograms with different bin sizes. Of these,
one is constructed as a product of the individual histograms for each band (independent
bands), called HI for short, while the other uses the colour histogram (HC). The other two
estimates use Gaussian models, either with covariances diagonal in colour space (indepen-
dent bands), called GI, or with full covariances (G3D). The models parameters were learned
from figure 4.7 (left) and figure 4.7 (middle), based on the manual labellings. The resulting
models were then used to classify the image in figure 4.7 (left).
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(HI, n = 64) (HI, n = 128) (HC, n = 64)

(HC, n = 128) (GI) (G3D)

Figure 4.9: Maximum likelihood classifications of figure 4.7 (left) using the different mod-
els trained on the same image.

The results of maximum likelihood classification on the same image are shown in fig-
ure 4.9. The images have four different colours: black and dark grey correspond to correct
classification of background and tree crowns respectively, while light grey and white cor-
respond to incorrect classifications in which tree crowns were classified as background and
vice-versa respectively. Table 4.1 (top) shows the resulting classification error rates.

Naturally, the results using HC are almost perfect. The number of bins is very large,
and this means that there are unlikely to be more than one or two pixels in each bin. Con-
sequently, any given pixel is very likely to have zero probability to be in the incorrect class.
Equally clearly, the results using HI are poor: the different bands are not independent. This
is confirmed by the result for GI. G3D, however, produces a reasonable performance, sec-
ond only to the HC results. Bearing in mind that G3D has 3 + 6 = 9 parameters, while
HC has the same number of parameters as bins, this is encouraging. These conclusions are
confirmed by the label images, which clearly show the inferior classifications produced by
the models with independent bands.

To test the generalization ability of the models, we used a different image to learn the
model parameters, and used them to classify figure 4.7 (left). The new training image is
figure 4.7 (middle), along with a manual labelling. Figure 4.10 shows the results, while
table 4.1 (bottom) shows the error rates.

It is not a surprise that the error rates are larger. The histogram-based methods do not
generalize well, and produce more errors than both Gaussian models. The Gaussian results
are naturally not as good as in the previous test, but are adequate in the absence of a prior
energy. The model with dependent bands performs considerably better than the independent
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(HI, n = 64) (HI, n = 128) (HC, n = 64)

(HC, n = 128) (GI) (G3D)

Figure 4.10: The same classification trained on figure 4.7 (middle).

Method B→F F→B error (%)
HI (64 bins) 446 404 9.64

HI (128 bins) 446 399 9.58
HC (643 bins) 121 214 3.8
HC (1283 bins) 19 97 1.32

GI 470 426 10.16
G3D 256 328 6.62

Method B→F F→B error (%)
HI (64 bins) 748 242 11.22

HI (128 bins) 752 253 11.39
HC (643 bins) 1028 490 17.21
HC (1283 bins) 1747 1277 34.52

GI 1106 123 13.93
G3D 841 85 10.5

Table 4.1: Error rates for the maximum likelihood classification of figure 4.7 (left), using
models trained on the same image (upper table) and on figure 4.7 (middle) (bottom table).
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band model in both cases. In particular, the independent band models, whether histogram-
based or Gaussian, consistently confuse certain types of inter-tree background with the tree
crown foreground.

Energy minimization

Our full energy functional for tree crown extraction is a combination of the energy associ-
ated to the likelihood, EC,I(γ, I) = − ln P(I|R, θR, θR̄,K), and the HOAC ‘gas of circles’
prior geometric term Eg: E(γ, I) = Eg(γ) + EC,I(γ, I), θR and θR̄ are the mean and vari-
ance parameters on the foreground and background respectively. In the previous section, we
established that the Gaussian model with full covariance provides the best compromise be-
tween precision and generalization. Here we describe this data term and how we minimize
the energy.

The parameters of EC,I are learnt from samples of each class using maximum likeli-
hood, and then fixed. We denote the mean vectors inside and outside as Min and Mout and
the covariance matrices Σin and Σout. We define the energy as above:

E(γ) = Eg(γ)−
∫

R
d2x ln

[
det−1/2(Σin/2π)e−

1
2
(I(x)−Min)

T Σ−1
in (I(x)−Min)

]

−
∫

R̄
d2x ln

[
det−1/2(Σout/2π)e−

1
2
(I(x)−Mout)T Σ−1

out (I(x)−Mout)

]
.

The energy is minimized using gradient descent. The descent equation is

n̂ · ∂γ

∂s
(t) =

1
2

ln
( det(Σin)

det(Σout)

)

− 1
2

{
(I(γ(t))−Min)T Σ−1

in (I(γ(t))−Min)−(I(γ(t))−Mout)T Σ−1
out(I(γ(t))−Mout)

}
,

To evolve the contour we use the level-set framework (Osher and Sethian, 1988) extended
to cope with the nonlocal forces arising from higher-order active contours (Rochery et al.,
2005c, 2006).

4.3 Experimental results

In this section, we present an exhaustive series of experiments combining our prior energy
with the data terms we defined in this chapter. We will split this section into five different
subparts. In each of them we present one of our models, and compare with previous results
where appropriate.

The models and the list of the parameters we used during the experiments are the fol-
lowing:

• The ‘gas of circles’ (GOC) model combined with the single spectral data model in
subsection 4.3.1. (λi, λC , αC , d, r0)
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• The inflection point ‘gas of circles’ (AGOC) model with the single spectral model
in 4.3.2. (λi, d, r0)

• The higher-order phase field ‘gas of circles’ (PF GOC) model with single spectral
data term in 4.3.3. (λi, λ, α, β, D, r0)

• The phase field inflection point ‘gas of circles’ (PF AGOC) model in subsection 4.3.4.
(λi, d, r0)

• And the inflection point HOAC ‘gas of circles’ (CAGOC) model combined with mul-
tispectral data term in 4.3.5. (λi, d, r0)

The parameters, learned from the image, are shown when the data is mentioned, in the form
(µin, σin, µout, σout). Unless otherwise specified, images were scaled to take values in [0, 1].
Sometimes we compare our models with the classical active contour, the contour parameters
are in the form (λi, λC , αC).

We present our results on aerial images provided by the Hungarian Central Agricultural
Office, Forestry Administration (CAO, FA) and the French Forest Inventory (IFN) . Details
of the acquisition can be found in section 4.1.1. The panchromatic images were provided
by the Hungarian Central Agricultural Office, Forestry Administration (CAO, FA) , taken
in Hungary near to the cities of Kecskemét and Nagybajom. The images contain mainly
different individual tree groups and regularly planted poplar forests. The color infrared
images were provided by the French Forest Inventory (IFN) from the region Saône et Loire
in France. The images represent mostly regular tree stands and some of them irregular
tree groups. In most cases (except in subsection 4.3.5), we used only the infrared spectral
channel of the images. If it is not essential or not ambiguous, we will not especially highlight
this fact. During the experiments, for visualization purposes sometimes we set the images
darker.

4.3.1 The ‘gas of circles’ HOAC model

The tree crowns in the images are∼ 8–10 pixels in diameter, i.e. ∼ 4–5m. We compare our
model to a classical active contour model (βC = 0). The parameters µin, σin, µout, and σout
were the same for both models, and were learned from hand-labelled examples in advance.
We fixed r0 based on our prior knowledge of tree crown size in the images, and d was
then set equal to r0. Once αC has been fixed, βC is determined by equation (2.2.7). There
are thus three effective parameters for the HOAC model. In the absence of any method to
learn λi, αC , they were fixed by hand to give the best results, as with most applications of
active contour models. The values of λi, λC and αC were not the same for the classical
active contour and HOAC models; they were chosen to give the best possible result for each
model separately.

The initial region in all real experiments was a rounded rectangle slightly bigger than
the image domain. The image values in the region exterior to the image domain were set to
µout to ensure that the region would shrink inwards.

Figure 4.11 illustrates a first experiment. On the left is the data. The image shows
a small piece of an irregularly planted poplar forest. The image is difficult because the
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intensities of the crowns are varied and the gradients are blurred. In the middle there is the
best result we could obtain by using a classical active contour. On the right there is the result
we obtain with the HOAC ‘gas of circles’ model. Note, that in the classical active contour
result several trees that are in reality separate are merged into single connected components,
and the shapes of trees are often rather distorted, whereas the prior geometric knowledge
included when β 6= 0 allows the separation of almost all the trees and the regularization of
their shapes.

Figure 4.11: From left to right: image of poplars c©IFN (0.73, 0.11, 0.23, 0.094); the best
result with a classical active contour (880, 13, 73); result with the ‘gas of circles’ model
(100, 6.7, 39, 4.2, 4.2).

Figure 4.12 illustrates a second experiment. Again, the data is on the left, the best
result obtained with a classical active contour model is in the middle, and the result with
the HOAC ‘gas of circles’ model is on the right. The trees are closer together than in the
previous experiment. Using the classical active contour, the result is that the tree crown
boundaries touch in the majority of cases, despite their separation in the image. Many of
the connected components are malformed due to background features. The HOAC model
produces more clearly delineated tree crowns, but there are still some joined trees.

Figure 4.13 shows a third experiment. The data is on the left, the best result obtained
with a classical active contour model is in the middle, and the result with the HOAC ‘gas
of circles’ model is on the right. Again, the ‘gas of circles’ model better delineates the
tree crowns and separates more trees, but some joined trees remain also. The HOAC model
selects only objects of the size chosen, so that false positives involving small objects do not
occur.

4.3.2 The inflection point ‘gas of circles’ model

We compare the AGOC model to the GOC model containing an energy minimum. Note,
that the AGOC model has only three free parameters, λi, αC and d, since the other like-
lihood parameters are fixed by training, while the other prior parameters are fixed once r0

is known. As in the previous subsection, the initial contour in all experiments, except that
in figure 4.16, was a rounded rectangle slightly bigger than the image domain. The image
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Figure 4.12: From left to right: image of poplars c©IFN (0.71, 0.075, 0.18, 0.075); the
best result with a classical active contour (24000, 100, 500); result with the ‘gas of circles’
model (1500, 25, 130, 3.5, 3.5).

Figure 4.13: From left to right: image of poplars c©IFN (0.71, 0.075, 0.18, 0.075); the
best result with a classical active contour (35000, 100, 500); result with the ‘gas of circles’
model (1200, 20, 100, 3.5, 3.5).
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values in the region exterior to the image domain were set to µout to ensure that the contour
would shrink inwards.

Figure 4.14 shows the result we obtained on the left image of figure 4.11. Note, that the
parameter values for the model, although fixed, nevertheless produce a good result. One tree
on the border is missing, but on the other hand, two trees are separated that were merged by
the GOC model in figure 4.11 right.

Figure 4.14: Result obtained in figure 4.11 (left) with the AGOC model (1125, 6, 4.16).

Figure 4.15 shows three images. On the left is the data; in the middle is the result
obtained with the GOC model; on the right is the result obtained with the AGOC model.
Despite its fixed parameters, the AGOC model produces a better result, finding a tree missed
by the GOC model, and again separating trees that were merged by the GOC model.

Figure 4.15: Left to right: regularly planted poplars c©IFN; result with the GOC model
(40, 0.05, 5, 3.47, 3.47); result with the AGOC model (1285, 5, 3.47).

Figure 4.16 shows two images. On the left is the data, while on the right is the result ob-
tained. The initial contour in this experiment was the red line. With a couple of exceptions,
the trees are separated and the extraction is accurate.
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Figure 4.16: Left: bigger slice of planted forest c©IFN; right: result using the AGOC model
(2250, 5, 3.47). The contour was initialized to the red line.
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For the experiment in figure 4.17, we used an α value slightly larger than that given
by equations (2.3.2), in order make E1 slightly positive for all r. This ensures that in the
absence of image data, circles will disappear. The resulting E0 is shown on the upper left
in the figure. Next comes the data. The aim of the experiment is to detect the older, larger
radius trees in the upper part of the plantation area. Bottom left is the best result using the
GOC model. Note, the phantom regions generated as the contour becomes trapped in local
energy minima (the phantom regions in the bright exterior area are also reinforced by the
image term). On the bottom right is the result using the AGOC model. With one exception,
the phantom regions are eliminated, while the level of error elsewhere is comparable to the
GOC model.
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Figure 4.17: Top left: energy of a circle with α slightly greater than the value given by
equation (2.3.2), to create slightly positive gradient everywhere; top right: regularly planted
poplars c©IFN; bottom left: result with the GOC model (15, 0.008, 4.5, 2.51, 2.51); bottom
right: result with the AGOC model (40, 3.6, 2.51), αC = 6 > 5.40.

4.3.3 The ‘gas of circles’ phase field model

In this section, we compare the PF GOC model with a classical active contour (CAC) model,
and with the GOC model. The CAC, GOC and AGOC code is in C++, while both the PF
GOC and the PF AGOC code is in Matlab. This should be born in mind when comparing
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execution times.
To count the number of free parameters for PF GOC models, we note that: w is fixed a

priori; r0 is fixed by the application; we always choose d = r0; βC is determined from αC

and r0; the phase field parameters are determined once the contour parameters are chosen.
This means, that the only truly free parameters are λi, αC and λC (or equivalently λi, D,
and α). In addition, for the phase field model, αC is constrained. Thus, both the GOC
and PF GOC models have three effectively free parameters, the same number as the CAC
model. The free parameters for each model, in common with most variational and many
other methods, were fixed empirically (separately for each model) to give good results.

Figure 4.18 shows the result we obtained on the image in figure 4.13 (105× 236). With
the CAC model the segmentation is poor: there are many misclassified and fused objects.
The best result obtained using the GOC model, although significantly better than the CAC
one (see figure 4.13), required execution time was 152 minutes. The best result of the PF
GOC model is still not perfect, but is an improvement over the GOC result, showing fewer
misclassified tree crowns, and the execution time was less than 1 minute.

Figure 4.18: Experimental result with the PF GOC model on figure 4.13 left
(1200, 239, 22.5, 16.8, 150, 3.5).

Figure 4.19 shows the result on figure 4.11 left (128 × 128). This is a less regularly-
planted poplar stand. The challenge of this image is that the tree crowns sometimes appear
connected, and their crowns have varied intensities. In the best result obtained using a CAC
model, several crowns are merged together, and the boundary is rather noisy. The best result
obtained using the GOC model took 96 minutes to compute (see figure 4.11). Figure 4.19
shows the best result obtained using the PF GOC model. Again, it is an improvement on
the GOC result, with fewer fused tree crowns, while it took only 15 seconds to compute.

4.3.4 The inflection point ‘gas of circles’ phase field model

We compare the PF AGOC model with the AGOC model and with the PF GOC model.
We made our first experiment on the upper right image of figure 4.17 (200 × 200) with

a regularly-planted poplar forest. In the top right and bottom left there are fields, while in
the middle, two different sizes of poplars. The aim is to extract the larger trees. The result
with the AGOC model is good, but the method found two small trees, and there is another
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Figure 4.19: Experimental result with the PF GOC model on figure 4.11 (left)
(100, 24.9, 5.63, 2.59, 18.8, 4.2).

false positive in the bottom left of the image (see figure 4.17). The execution time was 89
minutes. Figure 4.20 left shows the result using the PF GOC model. There were no false
negatives, but the model found false positives in the fields. Figure 4.20 right shows the
result with the PF AGOC model. All but two somewhat smaller circles were successfully
found. For the phase field models, the execution time was less than 3 minutes.

Figure 4.20: Left: result on figure 4.17 with the PF GOC model (1111, 278, 177.2, 55.8,
30, 2.5); right: result with the PF AGOC model (1160, 3.57, 2.5).

Figure 4.21 left shows an image (133 × 271) of a planted forest. Figure 4.21 middle
shows the result with the PF GOC model. The result is good, with only a few joined tree
crowns. Figure 4.21 right shows the result with the PF AGOC model. There are fewer
joined tree crowns. Both results were obtained in less than 2 minutes.

The upper row of figure 4.22 left shows a difficult image (129 × 139) to analyse. It
has two fields with different intensities on the right. The result with the PF GOC model is
shown in figure 4.22 middle. This result clearly demonstrates the disadvantage of the non-
inflection point model: phantom objects are created in the homogenous areas. Figure 4.22
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Figure 4.21: Left: an image of regularly planted poplar stands with a less regularly planted
trees in the upper part c© IFN (0.8, 0.06, 0.43, 0.2, 3.5); middle: result with the PF GOC
model (500, 50, 34.2, 9.3, 5.2, 3.5); right: result with the PF AGOC model (500, 4.73, 3.5).

right shows the result with the PF AGOC model. The result is very good, with only one
false positive. Both results were obtained in less than 1 minute. In the bottom image of
figure 4.22 the corresponding phase field surface is illustrated meshed at the threshold level
with the original image.

Figure 4.23 top shows an image (646 × 639) with agricultural areas and some planted
trees. The result obtained with the PF AGOC model can be seen in the bottom image. The
aim was to find all the crowns. The image is a difficult task, because the intensity of the tree
crowns is very similar to the field intensity, and between the different fields we can observe
significant gradient. The result, however is good, all the crowns were successfully detected,
while the execution time was 4 minutes.

In the left image of figure 4.24, a real image (323 × 174) is presented with a regularly
planted poplar grove next to a farm. The goal of the segmentation was to find all the tree
crowns. The result we obtained can be seen in the right image. We find most of the crowns
but some are missing, and a false positive error also can be seen near to a building. The run
time was 5 minutes.

Figure 4.25 left shows an image (376 × 349) with a field and irregularly grown trees
with slightly different crown sizes. Our aim was to detect all the crowns. The result is on
the right. The algorithm found all but one tree, which is relatively small, in 7 minutes.

In the upper image of figure 4.26, we show a very difficult, however regularly planted
pine forest (430 × 301). The challenge of the image is that the size of the trees varies
and the branches can be seen, which reduces the circular shapes of the crowns. Our result
can be observed in the bottom image. Beyond two merged regions, the method found very
accurately all the crowns in 2 minutes.
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In figure 4.27 planted trees with different crown size can be seen (368 × 486). The
aim of the segmentation was to find as many crowns as possible, although their size is quite
varied. The result, as we can see in the right image is quite good, but one tree is missing,
the exact crown shape of the bigger trees is not extracted and in the middle of the bottom
part one big crown was segmented as two trees. The execution time was 5 minutes.

Finally, in the upper image of figure 4.28 (577 × 268) we can see a regularly planted
poplar forest with very similar crown size. The challenge in the image is to successfully
avoid false positive detections in the fields in the upper left and bottom right. Our method
was able to detect all the crowns except some very young trees, and made only one false
positive error. This can be seen in the bottom image. The result was obtained in 4 minutes.
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Figure 4.22: Upper row; left: an image of regularly planted poplars with different fields on
the right c© IFN (0.8, 0.06, 0.43, 0.2); middle: result with the PF GOC model (500, 50,
34.2, 9.3, 5.2, 3.5); right: result with the PF AGOC model (500, 4.73, 3.5). Bottom: The
corresponding phase field surface, thresholded with the original image.
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Figure 4.23: Top: image with sparsely planted trees c© CAO, FA. (0.41, 0.14, 0.66, 0.07)
Bottom: result with the PF AGOC model (60, 12.15, 9).
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Figure 4.24: Left: real image with regularly planted poplars next to a farm c© CAO, FA.
(0.27, 0.1, 0.65, 0.1) Right: result obtained with the PF AGOC model (1000, 5.4, 4).

Figure 4.25: Left: separated tree crowns c© CAO, FA. (0.4, 0.09, 0.8, 0.1) Right: result
obtained with the PF AGOC model (1000, 9.45, 7).
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Figure 4.26: Top: regularly planted pine forest c©CAO, FA. (0.72, 0.05, 0.34, 0.13) Bottom:
result obtained with the PF AGOC model (400, 4.05, 3).
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Figure 4.27: Left: Real image with trees of different sizes c© CAO, FA. (43, 0.12, 0.68,
0.09) Right: result with the PF AGOC model (250, 10.8, 8).

Figure 4.28: Top: regularly planted poplar forest with fields in the top and bottom corners
c© CAO, FA. (0.25, 0.14, 0.66, 0.05) Right: result obtained with the PF AGOC model (225,

5.4, 4).
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4.3.5 Experiments on color infrared images

We compare three models: the CAGOC model, which uses the multispectral data term with
the ‘gas of circles’ prior; the AGOC model, which uses only the infrared band of the CIR
image with the ‘gas of circles’ prior; and a classical active contour model, which uses the
multispectral data model, but only the length and area terms of Eg, i.e. βC = 0. There is
thus no prior shape information in this third model. In all experiments.

Figure 4.29: Results obtained on the image shown in figure 4.7, using the CAGOC model
(left) (14.25, 3.58, 2.5), the AGOC model (middle) (0.25, 3.58, 2.5), and the classical active
contour model combined with the multispectral data term (right). c© IFN

Figure 4.29 shows the results obtained on the image shown in figure 4.7 left, using the
CAGOC model, the AGOC model, and the classical active contour model respectively. The
CAGOC model is the most successful, separating trees that are not separated by the other
models.

Figure 4.30: Results obtained on the image shown in figure 4.7 middle, using the CAGOC
model (left) (17.5, 3.58, 2.5), the AGOC model (middle) (0.2, 3.58, 2.5), and the classical
active contour model (right). c© IFN

Figure 4.30 shows the results obtained on the image shown in figure 4.7 (middle). None
of the results is perfect, all the models failing to separate some trees, but the CAGOC model
detects several trees that are not detected by the AGOC model. The classical active contour
model was not be able to separate all the crowns, and found a large connected area at the
bottom right, due to the missing prior shape information.
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Figure 4.31: Top left: a CIR image; top right: result with the CAGOC model (30, 3.58, 2.5);
bottom left: result with the AGOC model (0.3, 3.58, 2.5); bottom right: result with classical
active contour model combined with the multispectral data term.

Figure 4.31 (top left) shows a difficult image with a field at the top, and strong shadow-
ing. The result with the CAGOC model, shown in figure 4.31 (top right), is good, detecting
all the trees and ignoring the field and shadows. The result with the AGOC model, shown in
figure 4.31 (bottom left), is not as good. Some trees are missed, but more importantly, the
fact that the field has a similar IR response to the tree crowns means that a large incorrect
region is produced. The result with the classical active contour model, shown in figure 4.31
(bottom right), avoids this error thanks to the multispectral information, but the lack of prior
shape information means that some trees are merged.

Figure 4.32 (top left) shows a different type of image, of isolated trees in fields. The
result with the CAGOC model, shown in figure 4.32 (top right), is correct, ignoring the
field, for example. The result with the AGCO model is not as good, with one large false
positive, and smaller errors on each of the detected trees, due to confusion between the field
and parts of the road and the tree crowns (figure 4.32 (bottom left)). Figure 4.32 (bottom
right) shows the result obtained using the multispectral data term combined with a classical
active contour model. The result is almost as good as the CAGOC model, except that the
contours are slightly less smooth, and there is a small false positive area in the upper right
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Figure 4.32: Top left: a CIR image; top right: result with CAGOC model (25, 9.5, 7);
bottom left: result with the AGOC model (0.3, 9.5, 7); bottom right: result with classical
active contour model (βC = 0) combined with the multispectral data term. c© IFN

corner, which was not detected by the CAGOC model, presumably because it is not circular.
Figure 4.33 (left) shows another CIR image with fields and some sparse trees. It is a

difficult image, because some of the fields have a similar colour to the trees. The result
with the CAGOC model, shown in the second image of figure 4.33, is good, detecting all
the trees, and only merging two of them. The result with the AGOC model shown in the
third image of figure 4.33, is not as good. The greyscale level between some of the trees is
too similar to the tree crowns to be separated, despite the prior shape information, meaning
that several trees are merged. In addition, some non-tree objects were detected as tree
crowns, again due to similarity of grey scale. The result obtained with the classical active
contour and multispectral data model is slightly better, but due to the missing prior shape
information several tree crowns are merged and a small non-tree area was detected.
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Figure 4.33: From left to right: a CIR image; result with the CAGOC model; result with the
AGOC model (stable radius r0 = 4.0); result with classical active contour model (βC = 0)
combined with the multispectral data term. c© IFN
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Chapter 5

Conclusion, unsolved problems

In this chapter we give a summary of the aims and methods. We
present the unsolved problems raised in this thesis and propose pos-
sible solutions to them. We discuss future directions for the methods,
and possible ways to improve the data term, the prior model, and the
optimization algorithms speed.

In section 5.1, we describe our initial goal and the way we approached it; the process we
applied; the results we achieved. In section 5.2 we present the insufficiencies of our method
and provide some possible solutions. In section 5.3, we set some tasks for the future that
need to be dealt with in order to improve the modelling capacity of the method, accuracy,
and complexity.

5.1 Summary

The initial aim of our work was to create a computer-based model for the extraction of indi-
vidual tree-crowns, which combine shape prior information with available image features.
We used a new generation of active contour (AC) model, the higher-order active contours
(HOAC), initially created to detect road networks. However, we have shown that with the
proper setting of the parameters, the same model can be used to produce stable circles. We
analyzed its energy; and introduced the ‘gas of circles’ (GOC) model. While this model
had resulted in a great improvement over classical methods (e.g. active contours), some
problems still arose. The model formed phantom circles in those areas, where there were
no edge and no difference from the tree crowns in intensity. The model had too many free
parameters, and its complexity was large compared to the classical methods. We solved the
problem of phantom circles by setting the values of the parameters in such way that the en-
ergy had an inflection point at the desired radius. If there is no information coming from the
image then the circles vanishes, but a very small amount of image information can create a
minimum in the energy function (AGOC). This model also helped in reducing the number
of parameters. The inflection point criteria halve the number of parameters. To solve the
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question of computational complexity, we modelled the energy within the phase field (PF)
framework. The results were two orders of magnitude faster runtime, more topological
freedom, a less difficult implementation, and other modelling and algorithmic opportuni-
ties. With the aid of the phase field model, it is possible to create a higher-order phase field
(HOPF) framework similar to HOAC; we showed how to set the parameters of this model
so as to result in a model (PF GOC) approximately equivalent to the ‘gas of circles’ model.
Finally, we introduced the inflection point version of the model (PF AGOC). The derivation
tree of the evolution and logical connection of the methods can be seen in figure 5.1.

A C

P F H O A C

H O P F G O C

P F  G O C A G O C

P F  A G O C

Figure 5.1: Overview and connection between the methods we used and developed. The
methods we developed can be found under the red curve. AC: active contour model; PF:
phase field model; HOAC: higher-order active contour model; HOPF: higher-order phase
field model; GOC: ‘gas of circles’ model; PF GOC: phase field ‘gas of circles’ model;
AGOC: inflection point ‘gas of circles’ model; PF AGOC: phase field inflection point ‘gas
of circles’ model

The development of our model has been viewed from a modelling viewpoint so far, but
we also used different data models to be able to combine the information content of the
image with the prior model. First, we presented a data model based on the gradient and
intensity values of the most significant spectral-band of the images. Taking advantage of
working on multispectral images, we then introduced another data model based on the mean
intensity and covariance matrix of tree crown and background statistics.
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5.2 Unsolved problems

We describe two unsolved problems of our model in this section. Using the current param-
eter settings, those circles that get too close to each other tend to merge: first they form a
dumbbell shape, then an ellipse shape and finally a circle. This process is illustrated in fig-
ure 5.2. In the presence of an image term that is not too strong, circles situated too close to
each other fuse and form into a dumbbell shape. We do not offer a solution to the problem,
but introduce two possible models which might provide a useful approach.

Figure 5.2: Illustration of the attraction arising between circles. The evolution goes from
left to right. Starting from two separated circles with the desired radius, they merge and
create a dumbbell shape and later a stable circle.

In the current model, the fusion of the circles generates a decrease in energy. We pro-
pose to find parameter settings for which approaching circles would generate an increase
in energy, i.e. the force between two circles is repulsive. A possible way is to define an
extra parameter w, the distance between the circles. Then, adjust the parameters so that the
change of global energy w.r.t. w satisfies the requirements. In figure 5.3, we present two
simple configurations where the change of the energy can be determined. The upper model
illustrates two, not yet fused circles. This ideal configuration rarely occurs in practice, but
mathematically can be handled easily. The HOAC energy of the system can be defined
rather simply. On separate circles which have the desired radius r0, the arising force is
zero, otherwise the circles would deform. The distance between the two circles does not
affect the area and the length, so the only force on the points of the two circles is from the
quadratic energy. This energy can be defined as a function of w. In figure 5.3, the lower im-
age illustrates already fused circles. Besides the value w, the model can be completed with
a parameter rout, that describes the radius of the arcs between the centres of the two circles
in the dumbbell shape. The local components of the energy (i.e. area, region boundary) can
easily be determined analytically given the parameters. It is more challenging to calculate
the non-local energy but notice that we can divide the contour into four arcs and determine
the interactions between the individual arcs and their self-energies. The computations can
be simplified using symmetries. We can further simplify the model by supposing that the
outer radius is rout = r0.

The other problem we experienced during our work that although the forest as a coherent
region has a very characteristic texture. The size of the individual tree crowns is too small
to have useful texture. Therefore, to detect the crowns we use the gradient and the color or
intensity.
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Figure 5.3: Proposed configurations to determine the repulsive force between circles.

5.3 Possible directions

We can divide the possible directions to follow into three separate groups: the improvement
of the data model, the development of the shape prior, and new approaches for modeling
and optimization.

In the future, one could expand our data term with a new term, based on color gradi-
ent, and incorporate it into the active contour and phase field models. This should offer
a more precise segmentation result on those regions where the color information itself is
insufficient.

We used a simplification to determine the parameters of the ‘gas of circles’ phase field
model (see figure 3.2). For the parameter range we used, we did not meet any problem, but
in the case of smaller radii or sharper edges difficulties may occur. In the future one could
analyze the parameters more accurately with a more sophisticated approximation taking
into account changes of curvature.

The phase field framework improves over active contours from a modeling and as well
as from an algorithmic point of view. In the future, it is possible to introduce a new repre-
sentation using Markov random fields or wavelets as in de Rivaz and Kingsbury (2000).

Presently, the HOAC framework provides ways to model networks and circular objects,
but hopefully the modeling of other shape families is also possible. Another important task
is to determine inter-circle interactions so that the circles organize into different desired
structures. We need to emphasize that while changing the model parameters can result in a
slightly different behaviour of the shapes, in many cases it may be better to choose an other
interaction function. On the other hand, note that we can achieve stable circles not only
with the interaction function defined in equation 2.1.3, but also with other monotonically
decreasing functions (e.g. exponential or Bessel-type functions).
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Finally, we discuss the extension of the model to 3D applications. While it is easy to
extend the local terms to higher-dimensions, the extension of the non-local term can create
difficulties (e.g. extraction of the exact surface). The phase field model can be helpful also
in this case. The other difficulty is the stability analysis of spheres and other 3D objects.
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Appendix A

Details of stability computations

In this appendix, starting from the equation for the circle and the expression for the radial
perturbation in terms of its Fourier coefficients,

γ(t) = γ0(t) + δγ(t) = (r(t), θ(t)) = (r0(t) + δr(t), θ0(t)) (A.0.1a)

where

γ0(t) = (r0(t), θ0(t)) = (r0, t) (A.0.1b)

and

δr(t) =
∑

k

ake
ir0kt , (A.0.1c)

with k ∈ {m/r0 : m ∈ Z}, we give most of the steps involved in reaching the expression,
equation 2.2.6, for the expansion to second order of Eg around a circle.

The derivative of γ is given by

θ̇(t) = 1 (A.0.2a)

ṙ(t) = δ̇r(t) =
∑

k

akir0keir0kt . (A.0.2b)

The tangent vector field is given by

γ̇(t) = ṙ(t)∂r + θ̇(t)∂θ . (A.0.3)

We need the magnitude of this vector to second order. The metric in polar coordinates is
given by ds2 = dr2 + r2dθ2, so we have that |γ̇(t)|2 = ṙ(t)2 + r(t)2 by equation (A.0.2a).
Substituting from equations (A.0.1) and (A.0.2b) gives

|γ̇(t)|2 = r2
0 + 2r0

∑

k

ake
ir0kt +

∑

k,k′
akak′e

ir0(k+k′)t(1− r2
0kk′) . (A.0.4)
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Taking the square root, expanding it as
√

1 + x ≈ 1 + 1
2x − 1

8x2, and keeping terms to
second order in the ak then gives

|γ̇(t)| = r0



1 +

∑

k

ak

r0
eir0kt − 1

2

∑

k,k′
akak′kk′eir0(k+k′)t



 . (A.0.5)

A.1 Length

Using equation (A.0.5), the boundary length is then given to second order by

L(γ) =
∫ π

−π
dt |γ̇(t)| = 2πr0

{
1 +

a0

r0
+

1
2

∑

k

k2|ak|2
}

,

where we have used the fact that
∫ π

−π
dt eir0kt = 2πδ(k) , (A.1.1)

and that a−k = a∗k, where ∗ indicates complex conjugation, because δr is real.

A.2 Area

We can write the interior area of the region as

A(γ) =
∫ π

−π
dθ

∫ r(θ)

0
dr′ r′ =

∫ π

−π
dθ

1
2
r2(θ) .

Thus, using equations (A.0.1), and again using equation (A.1.1) to integrate Fourier basis
elements, we have that

A(γ) = πr2
0 + 2πr0a0 + π

∑

k

|ak|2 . (A.2.1)

A.3 Quadratic energy

To compute the expansion of the quadratic term in equation (2.1.2) for Eg, we need the
expansions of γ̇(t) · γ̇(t′) and Ψ(R(t, t′)).

A.3.1 Inner product of tangent vectors

The tangent vector is given by equation A.0.3, but we must take care as γ̇(t) and γ̇(t′) live
in different tangent spaces, at γ(t) and γ(t′) respectively. Since parallel transport does not
preserve the coordinate basis vectors ∂r and ∂θ, it will change the components of γ̇(t′), say,
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when we parallel transport it to the tangent space at γ(t). It is easiest to convert the tangent
vectors to the Euclidean coordinate basis,

∂r = cos(θ)∂x + sin(θ)∂y

∂θ = −r sin(θ)∂x + r cos(θ)∂y ,

as these basis vectors are preserved by parallel transport. Doing so, and then taking the
inner product gives

γ̇ · γ̇′ = cos(θ′ − θ)[r2
0 + r0δr + r0δr

′ + δrδr′ + δ̇rδ̇r
′
]

+ sin(θ′ − θ)[r0δ̇r
′ − r0δ̇r + δrδ̇r

′ − δ̇rδr′] .

where unprimed quantities are evaluated at t and primed quantities at t′. Note that when
t = t′, the expression reduces to equation (A.0.4).

A.3.2 Distance between two points

The squared distance between γ(t′) and γ(t) is given by

|γ(t′)− γ(t)|2 =(x(t′)− x(t))2 + (y(t′)− y(t))2

=[(r0 + δr′) cos(θ′)− (r0 + δr) cos(θ)]2

+ [(r0 + δr′) sin(θ′)− (r0 + δr) sin(θ)]2 ,

which after expansion gives

|γ(t′)− γ(t)|2 =

2r2
0(1− cos(∆t))

{
1 +

1
r0

(δr + δr′) +
δr2 + δr′2 − 2 cos(∆t)δrδr′

2r2
0(1− cos(∆t))

}
,

where ∆t = θ′ − θ = t′ − t. Expanding
√

1 + x ≈ 1 + 1
2x − 1

8x2 to second order and
collecting terms, we then find

R(t, t′) = |γ(t′)− γ(t)| =

2r0| sin(∆t/2)|+ | sin(∆t/2)|(δr + δr′) +
A(∆t)

4r0
(δr − δr′)2 , (A.3.2)

where A(z) =
(

cos2( z
2)

|sin z
2 |

)
.

A.3.3 Interaction function

Expanding Ψ(z) in a Taylor series to second order, and then substituting R(t, t′) for z using
the approximation in equation (A.3.2), and keeping only terms up to second order in δγ
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then gives

Ψ(R(t, t′)) = Ψ(X0) +
∣∣∣∣sin

∆t

2

∣∣∣∣Ψ′(X0)(δr + δr′)

+
1

4r0
A(∆t)Ψ′(X0)(δr − δr′)2 +

1
2

sin2
(∆t

2

)
Ψ′′(X0)(δr + δr′)2 , (A.3.3)

where X0 = 2r0| sin(∆t/2)|.

A.3.4 Combining terms

Now let G(t, t′) = γ̇(t) · γ̇(t′)Ψ(R(t, t′)). Combining the expressions already derived, we
have

G(t, t′) = r2
0 cos(∆t)Ψ(X0)︸ ︷︷ ︸

F00, even

+ (δr + δr′) r0 cos(∆t)
{

Ψ(X0) + r0

∣∣∣∣sin
∆t

2

∣∣∣∣Ψ′(X0)
}

︸ ︷︷ ︸
F10, even

+ (δ̇r
′ − δ̇r) r0 sin(∆t)Ψ(X0)︸ ︷︷ ︸

F11, odd

+ (δr2 + δr′2) r0 cos(∆t)
{

1
4
A(∆t)Ψ′(X0)

︸ ︷︷ ︸
F20a, even

+
1
2
r0 sin2

(∆t

2

)
Ψ′′(X0) +

∣∣∣∣sin
∆t

2

∣∣∣∣ Ψ′(X0)
}

︸ ︷︷ ︸
F20b, even

+ (δrδr′) cos(∆t)
{

Ψ(X0) + 2r0

∣∣∣∣sin
∆t

2

∣∣∣∣Ψ′(X0)
︸ ︷︷ ︸

F21a, even

−1
2
r0A(∆t)Ψ′(X0) + r2

0 sin2
(∆t

2

)
Ψ′′(X0)

}

︸ ︷︷ ︸
F21b, even

+ (δr′δ̇r
′ − δrδ̇r) r0

∣∣∣∣sin
∆t

2

∣∣∣∣ sin(∆t)Ψ′(X0)
︸ ︷︷ ︸

F22, odd

+ (δrδ̇r
′ − δr′δ̇r) sin(∆t)

{
Ψ(X0) + r0

∣∣∣∣sin
∆t

2

∣∣∣∣Ψ′(X0)
}

︸ ︷︷ ︸
F23, odd

+ (δ̇rδ̇r
′
) cos(∆t)Ψ(X0)︸ ︷︷ ︸

F24, even

.
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where we have introduced the notation F00 . . . F24 for the functions appearing in the terms
of G, and ‘odd’ and ‘even’ refer to parity under exchange of t and t′. Note that the F are
functionals of Ψ, and functions of r0 and t′ − t (but not t and t′ separately). Note also that
each line, and hence G, is symmetric in t and t′.

The integral in the quadratic energy term is now given by
∫∫ π
−π dt dt′ G(t, t′). We can

now substitute the expressions for δr and δ̇r in terms of their Fourier coefficients, δr(t) =∑
k ake

ir0kt and δ̇r(t) =
∑

k akir0keir0kt. Due to the dependence of the F on t− t′ only,
the resulting integrals can be reduced, via a change of variables p = t′ − t, to integrals
over p. We note that in the terms involving F10, F11, F20, F22, and F23, the presence of the
symmetric or antisymmetric factors in δr and δr′ simply leads to a doubling of the value
of the integral for one of the terms in these factors, due to the corresponding symmetry or
antisymmetry of the F functions. For example,

∫∫ π

−π
dt dt′ (δrδ̇r

′ − δ̇rδr′) F23(t′ − t) = 2
∫∫ π

−π
dt dt′ δrδ̇r

′
F23(t′ − t) .

We therefore only need to evaluate one of these integrals for the relevant terms. Below we
list the calculations for all the F integrals for completeness:

∫∫ π

−π
dt dt′ F00(t′ − t) =

∫∫ π

−π
dp dt′ F00(p)

= 2π

∫ π

−π
dp F00(p) ,

which survives because F00 is symmetric;

∫∫ π

−π
dt dt′ δr(t) F10(t′ − t)

=
∫∫ π

−π
dt dt′

∑

k

ake
ir0kt F10(t′ − t)

=
∑

k

ak

∫∫ π

−π
dp dt′ eir0k(−p+t′) F10(p)

=
∑

k

ak

∫ π

−π
dt′ eir0kt′

∫ π

−π
dp e−ir0kp F10(p)

=
∑

k

ak2πδ(k)
∫ π

−π
dp e−ir0kp F10(p)

= 2πa0

∫ π

−π
dp F10(p) ,

which survives because F10 is symmetric;
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∫∫ π

−π
dt dt′ δ̇r(t) F11(t′ − t)

=
∫∫ π

−π
dt dt′

∑

k

akir0keir0kt F11(t′ − t)

=
∑

k

akir0k

∫∫ π

−π
dp dt′ eir0k(−p+t′) F11(p)

=
∑

k

akir0k

∫ π

−π
dt′ eir0kt′

∫ π

−π
dp e−ir0kp F11(p)

=
∑

k

akir0k2πδ(k)
∫ π

−π
dp e−ir0kp F11(p)

= 0 ;

∫∫ π

−π
dt dt′ δr2(t) F20(t′ − t)

=
∫∫ π

−π
dt dt′

∑

k

∑

k′
akak′e

ir0(k+k′)t F20(t′ − t)

=
∑

k

∑

k′
akak′

∫∫ π

−π
dp dt′ eir0(k+k′)(−p+t′) F20(p)

=
∑

k

∑

k′
akak′

∫ π

−π
dt′ eir0(k+k′)t′

∫ π

−π
dp e−ir0(k+k′)p F20(p)

=
∑

k

∑

k′
akak′2πδ(k + k′)

∫ π

−π
dp e−ir0(k+k′)p F20(p)

=
∑

k

aka−k2π

∫ π

−π
dp F20(p)

= 2π
∑

k

|ak|2
∫ π

−π
dp F20(p) ,

which survives because F20 is symmetric;
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∫∫ π

−π
dt dt′ δr(t)δr(t′) F21(t′ − t)

=
∫∫ π

−π
dt dt′

∑

k

∑

k′
akak′e

ir0(kt+k′t′) F21(t′ − t)

=
∑

k

∑

k′
akak′

∫∫ π

−π
dp dt′ eir0k(−p+t′)eir0k′t′ F21(p)

=
∑

k

∑

k′
akak′

∫ π

−π
dt′ eir0(k+k′)t′

∫ π

−π
dp e−ir0kp F21(p)

=
∑

k

∑

k′
akak′2πδ(k + k′)

∫ π

−π
dp e−ir0kp F21(p)

=
∑

k

aka−k2π

∫ π

−π
dp e−ir0kp F21(p)

= 2π
∑

k

|ak|2
∫ π

−π
dp e−ir0kp F21(p) ;

∫∫ π

−π
dt dt′ δr(t)δ̇r(t) F22(t′ − t)

=
∫∫ π

−π
dt dt′

∑

k

∑

k′
akak′ir0keir0(k+k′)t F22(t′ − t)

=
∑

k

∑

k′
akak′ir0k

∫∫ π

−π
dp dt′ eir0(k+k′)(−p+t′) F22(p)

=
∑

k

∑

k′
akak′ir0k

∫ π

−π
dt′ eir0(k+k′)t′

∫ π

−π
dp e−ir0(k+k′)p F22(p)

=
∑

k

∑

k′
akak′ir0k2πδ(k + k′)

∫ π

−π
dp e−ir0(k+k′)p F22(p)

= 0 ,

because with k + k′ = 0 from the delta function, the integral becomes one over F22 only,
which vanishes due to the antisymmetry of F22;
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∫∫ π

−π
dt dt′ δr(t)δ̇r(t′) F23(t′ − t)

=
∫∫ π

−π
dt dt′

∑

k

∑

k′
akak′ir0k

′eir0(kt+k′t′) F23(t′ − t)

=
∑

k

∑

k′
akak′ir0k

′
∫∫ π

−π
dp dt′ eir0(k(−p+t′)+k′t′) F23(p)

=
∑

k

∑

k′
akak′ir0k

′
∫ π

−π
dt′ eir0(k+k′)t′

∫ π

−π
dp e−ir0kp F23(p)

=
∑

k

∑

k′
akak′ir0k

′2πδ(k + k′)
∫ π

−π
dp e−ir0kp F23(p)

= −2π
∑

k

|ak|2ir0k

∫ π

−π
dp e−ir0kp F23(p) ;

∫∫ π

−π
dt dt′ δ̇r(t)δ̇r(t′) F24(t′ − t)

=
∫∫ π

−π
dt dt′

∑

k

∑

k′
akak′i

2r2
0kk′eir0(kt+k′t′) F24(t′ − t)

= −
∑

k

∑

k′
akak′r

2
0kk′

∫∫ π

−π
dp dt′ eir0(k(−p+t′)+k′t′) F24(p)

= −
∑

k

∑

k′
akak′r

2
0kk′

∫ π

−π
dt′ eir0(k+k′)t′

∫ π

−π
dp e−ir0kp F24(p)

= −
∑

k

∑

k′
akak′r

2
0kk′2πδ(k + k′)

∫ π

−π
dp e−ir0kp F24(p)

= 2π
∑

k

|ak|2r2
0k

2

∫ π

−π
dp e−ir0kp F24(p) .

Using these results then gives equation 2.2.5, which in combination with equations 2.2.3
and 2.2.4, gives equation 2.2.6.
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Appendix B

Polynomial approximation

We present the scaling analysis of the G00, G10 and G̃ functions which allow us to general-
ize our approximation to the complete domain of r, and we compute a polynomial approxi-
mation of the energy function using a Taylor expansion around r = 0.

B.1 Scaling analysis of the circle energy

G00, G10 and G̃ are functions of r and d. We can write these functions in an equivalent
form so that they only depend upon the ratio r/d. Since dmin and dmax are the first roots of
G00 and G̃ respectively, using the scaling property, it is sufficient to determine the roots for
a single value of r and it generalizes to the complete domain of radii.

The interaction function in equation 2.1.3 is a function of x/d, while in G00 the variable
of the interaction function is a function of r and a parameter, so we can set

Ψ
(
2r sin

∣∣∣p
2

∣∣∣
)

= Ψ̂
(r

d

)
. (B.1.1)

We define a new Ĝ00 function from G00 which is also just a function of r
d .

G00(r) = d2

∫ π

−π
dp cos(p)

(r

d

)2
Ψ̂

(r

d

)
= d2Ĝ00

(r

d

)
. (B.1.2)

If G00(r, d) = 0 for a given r and d than G00(ar, ad) = 0 for all a ∈ R. We require G̃ and
G10 − rG̃ for further analysis. G̃ can be transformed

G̃(r) =
1
2

(
∂

∂r

)2

G00(r) =
d2

2

(
∂

∂r

)2

Ĝ00

(r

d

)
= ˆ̃G

(r

d

)
, (B.1.3)

where ˆ̃G(z) = 1
2

(
∂
∂z

)2
Ĝ00(z). G10 can be written as

G10(r) =
1
2

∂

∂r
G00(r) =

d2

2
∂

∂r
Ĝ00

(r

d

)
= dĜ10

(r

d

)
, (B.1.4)

where Ĝ10(z) = 1
2

∂
∂z Ĝ00(z). Finally
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G10(r)− rG̃(r) = dĜ10

(r

d

)
− r ˆ̃G

(r

d

)
= d

(
Ĝ10

(r

d

)
−

(r

d

)
ˆ̃G

(r

d

))
. (B.1.5)

B.2 The Taylor-polynomial of the energy function

We present a polynomial approximation to the above functions and determine the roots for
one r value; using the scaling property we can than determine them for any other radii. To
find the critical points dmin and dmax we determine the zero-crossings of G10, and G̃, which
are the derivatives of G00. We use a polynomial approximation around zero. Here we give
the approximation of the function G00, which can be written as:

G00(r) =
∫ π

−π
dp cos(p) r2 Ψ

(
2r

∣∣∣sin p

2

∣∣∣
)

, (B.2.1a)

=
∞∑

n=0

bnrn (B.2.1b)

To determine the coefficients bn, we use
(

∂

∂r

)m

G00(r)
∣∣∣∣
r=0

= bm ·m! . (B.2.2)

Thus,

bm =
1
m!

(
∂

∂r

)m

G00(r) . (B.2.3)

In the following subsections we will give the derivatives of G00. For this we define the
derivatives of the interaction function, the argument of the interaction function and finally
G00 itself. We mention that if we use a new interaction function, we need to compute the
derivatives of the function and substitute, following the steps below.

B.2.1 The interaction function

We compute the derivatives of the interaction function in equation 2.1.3 on the x < 2d
domain

Ψ(1)(x) =
1
2d

(
−1 + cos

πx

d

)
. In general, if i > 1:

Ψ(i)(x) =





1
2d

(
π
d

)i−1 sin πx
d if (i mod 4) = 0 ,

1
2d

(
π
d

)i−1 cos πx
d if (i mod 4) = 1 ,

− 1
2d

(
π
d

)i−1 sin πx
d if (i mod 4) = 2 ,

− 1
2d

(
π
d

)i−1 cos πx
d if (i mod 4) = 3 .

(B.2.4)
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The derivatives of the variable X0 of the interaction function w.r.t. r are

X0(r) = 2r
∣∣∣sin p

2

∣∣∣

X
(1)
0 (r) = 2

∣∣∣sin p

2

∣∣∣
X

(n)
0 (r) = 0, if x ≥ 2 . (B.2.5)

B.2.2 The derivatives of G00

The derivatives of G00 defined in B.2.1b

(
∂

∂r

)m

G00(r) =
∫ 2π

0
dp cos(p)

(
∂

∂r

)m [
r2Ψ(X0(r))

]
. (B.2.6)

To determine the derivatives, we define the derivative of the product of two functions in
general and substitute the factors of G00 into the expression. Let X and Y the functions,
the derivatives of their product can be defined as:

(
∂

∂r

)m

[X(r)Y (r)] =
m∑

i=0

(
m
i

)(
∂

∂r

)i

X(r)
(

∂

∂r

)m−i

Y (r)

= X(0)(r)Y m(r) + mX(1)(r)Y m−1(r)+
m(m− 1)

2
X(2)(r)Y m−2(r) + ... (B.2.7)

We can use this formula substituting X(r) = r2 and Y (r) = Ψ(X0(r)). The derivatives of
X(r) are computed by definition. The derivatives of Y (r) function are:

Y (r) = Ψ(X0(r)) ,

Y (1)(r) = Ψ(1)(X0(r))X
(1)
0 (r) ,

Y (2)(r) = Ψ(2)(X0(r))
[
X

(1)
0 (r)

]2
,

...
... (B.2.8)

Y (n)(r) = Ψ(n)(X0(r))
[
X

(1)
0 (r)

]n
, (B.2.9)

where Ψ(n) and X
(m)
0 are defined in equations B.2.4 and B.2.5. Using B.2.7 we can write

the derivatives of the product as

(
∂

∂r

)m [
r2Ψ(X0(r))

]
= r2Y (m)(r)+2mrY (m−1)(r)+m(m−1)Y (m−2)(r) . (B.2.10)
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After substituting back into the product, we can write G00 using equation B.2.6 as

(
∂

∂r

)m

G00(r) =
∫ 2π

0
dp cos(p)

[
r2Y (m)(r) + 2mrY (m−1)(r) + m(m− 1)Y (m−2)(r)

]
. (B.2.11)

We then find that

(
∂

∂r

)m

G00(r)
∣∣∣∣
r=0

=
∫ 2π

0
dp cos(p)m(m− 1)Y (m−2)(0) , (B.2.12)

where Y (m−2)(0) can be defined substituting r = 0 back to the form given in equa-
tion B.2.8.

Y (m−2)(0) = Ψ(m−2)(X0(0))[X(1)
0 (0)]m−2

= Ψ(m−2)(0)
[
2

∣∣∣sin p

2

∣∣∣
]m−2

=

{
0 if m even ,[
2

∣∣sin p
2

∣∣]m−2 · (−1)
m−3

2
1
2d

(
π
d

)m−3 if m odd .
(B.2.13)

B.2.3 The polynomial coefficients

In this subsection, we give a closed form for the polynomial coefficients we defined in
equation B.2.3. Using this equation and the result of B.2.12 we can express the coefficients
as:

bm =
1
m!

(
∂

∂r

)m

G00(r)
∣∣∣∣
r=0

=
(

m(m− 1)
m!

)∫ 2π

0
dp cos(p)Y (m−2)(0) . (B.2.14)

In equation B.2.13, we defined the evaluation of Y (i) at 0, using this we can give the form
for bm for odd m values as

bm =
m(m− 1)

m!

∫ 2π

0
dp cos(p)(−1)

m−3
2

1
2d

(π

d

)m−3 [
2

∣∣∣sin p

2

∣∣∣
]m−2

= (−1)
m−3

2
m(m− 1)(2π)m−3

m! · dm−2

∫ 2π

0
dp cos(p)

∣∣∣sin p

2

∣∣∣
m−2

. (B.2.15)

We note, that we can use sin p
2 instead of its absolute value. The integral is given by
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0
dp cos(p)
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2
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2
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− 2
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2
= q and dp = 2dq

= 4
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2

0
dq (sin q)m−2 − 2

∫ π
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dq (sin q)m

}

using that
∫ π

2

0
dq (sin q)m =

(m− 1)!!
m!!

= 4
{

(m− 3)!!
(m− 2)!!

− 2
(m− 1)!!

m!!

}

=
4

m!!
{m(m− 3)!!− 2(m− 1)!!} . (B.2.16)

The closed form for bm is then

bm = (−1)
m−1

2
4(2π)m−3

m!!(m− 4)!!
1

dm−2
. (B.2.17)

B.2.4 Polynomial approximation of G00, G10 and G̃

Using equations B.2.1b and B.2.17 the polynomial approximation of the G00 function can
be written as

G00(r) = 4d2
∑

m≥5
m odd

(−1)
m−1

2 (2π)m−3

m!!(m− 4)!!

(r

d

)m
. (B.2.18)

G10 = 1
2

∂
∂rG00 is then given by

G10(r) = 2d
∑

m≥4
m odd

(−1)
m−3

2 (2π)m−1

m!!(m− 4)!!

(r

d

)m−1
, (B.2.19)

while G̃ = ∂
∂rG10 is

G̃(r) = 2
∑

m≥3
m odd

(−1)
m+1

2 (2π)m−1(m + 1)
m!!(m− 2)!!

(r

d

)m
. (B.2.20)

We use the above functions to determine the coefficients of the polynomials which ap-
proximates G̃(r) and G10(r)p− G̃(r), and then we compute their roots.
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Abstract

In this thesis, we present the ‘gas of circles’ (GOC) model, which is a tool to describe a set of
circles with an approximately fixed radius. The model, when combined with image features,
is able to capture circular objects in the image plane without using a template shape. We
use the model, showing its empirical success, for a forestry application: the detection of
the exact crown shape of individual trees in remotely sensed images. The algorithm is
automatic, providing cheaper and faster statistics for forestry management (e.g. the density
of trees, the mean crown area and diameter, etc.).

The ‘gas of circles’ model is based on the recently introduced ‘higher-order active
contour’(HOAC) framework, which incorporates long-range interactions between contour
points, and thereby includes prior geometric information without using a template shape.
The geometric properties of the HOAC model are controlled by an interaction function and
the model parameters. In general the model creates long arms; this property makes it ideal
for detecting road networks in satellite images, as was presented in previous work. For cer-
tain ranges of the parameters, the model creates stable circles with an approximately fixed
radius instead of networks. We show now to determine this set of parameters, thereby creat-
ing the ‘gas of circles’ model. For such a model to work, the circles must be stable to small
perturbations of their boundaries, i.e. they must be local minima of the HOAC energy, for
otherwise a circle would tend to ‘decay’ into other shapes. This is a nontrivial requirement.
We impose it by performing a functional Taylor expansion of the HOAC energy around a
circle, and then demanding that the first order term be zero for all perturbations, and that
the second order term be positive semi-definite. These conditions allow us to fix one of the
model parameters in terms of the others, and constrain the rest. The energy is minimized
using a gradient descent algorithm, and implemented using the level-set method. We illus-
trate with experiments that the geometric model itself creates stable circles with the desired
radius, and is able to distinguish between circles with other radii even in very noisy images.
We also demonstrate how the model behaves in a difficult synthetic case, where two circles
are deformed to a dumbbell shape, and classical models are not able to separate them.

The general ‘gas of circles’ model has many potential applications in varied domains,
but it suffers from a drawback: the local minima corresponding to circles can trap the gra-
dient descent algorithm, thus producing phantom circles even with no supporting data. The
model as such is not at fault: an algorithm capable of finding the global minimum would not
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produce phantom circles. This suggests two approaches to tackling the difficulty. One is to
find a better algorithm. The other is to compromise with the existing algorithm by changing
the model to avoid the creation of local minima, while keeping intact the prior knowledge
contained in the model. We take this second approach. We solve the problem of phantom
circles by calculating, via a Taylor expansion of the energy, parameter values that make the
circles into inflection points rather than minima. The result is that without supporting data
the circles vanish, but even the presence of a small amount of image information can create
an energy minimum at the desired radius. In addition, we find that this constraint reduces
the parameters to one overall weight, and severely constrains one of the two that remain,
while improving the empirical success of the model. We describe the details of how the
parameters are determined.

Although, the HOAC ‘gas of circles’ model is an effective tool for modeling circular
shapes, there are some difficulties. It is complicated to express the space of regions in the
contour representation, and consequently difficult to work with a probabilistic formulation.
In addition, from the algorithmic point of view, the current model does not allow enough
topological freedom, and the implementation of the HOAC model is difficult and compu-
tationally expensive. It is possible to create an alternative formulation of HOAC models,
based on the ‘phase field’ framework much used in physics to model regions and interfaces.
The standard phase field model is, to a good approximation, equivalent to a classical active
contour (CAC) model. Rochery et al. showed how to extend the basic phase field energy
with extra, nonlocal terms that produce phase field models equivalent to higher-order active
contours. The new formulation has several important advantages:

• There is more topological freedom during the gradient descent evolution than with
other methods, which is important when the topology is unknown a priori as is the
case in the tree crown extraction problem. In addition, more topological freedom
means less chance of becoming stuck in local minima.

• The implementation of the phase field version of CACs, and in particular of HOACs,
is much simpler than the equivalent contour or level set implementation. Gradient
descent consists of a single partial differential equation derived directly from the
model energy with no need for reinitialization or regularization. HOAC terms consist
of convolutions and can be evaluated in Fourier space, causing two orders of magni-
tude increase in computation time.

• Phase field models provide a neutral initialization for gradient descent—no initial
region is needed—meaning that bias caused by the initialization is reduced.

We address the tree crown extraction problem by constructing a phase field model of a ‘gas
of circles’. We compute, as a function of the HOAC energy parameters, the phase field en-
ergy parameters that produce an equivalent model. This means that we can adjust the phase
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field parameters to ensure stable circles of a given radius also. Synthetic experimental re-
sults show the consistency between the calculations and practice, i.e. starting from different
initial conditions the gradient descent stops the regions at circles with the desired radius. We
make a comparison between the HOAC and phase field evolution showing that the models
are approximately equivalent.

We also extend the phase field ‘gas of circles’ model to the case of an inflection point
rather than a minimum in the circle energy at the desired radius. With this model we benefit
from all the advantages both of the phase field model and the inflection point GOC model.
The correct parameter transformation is empirically demonstrated by using parameter val-
ues slightly different from the ones resulting in an inflection point, and showing that the
desired behaviour is produced. We present the minimization of the standard phase field en-
ergy, and its HOAC extension. We describe the topological freedom offered by the model,
and finally the implementation details of the framework.

To apply the model to image data, we need to develop an energy term that has a min-
imum value in case the segmented regions are on tree crowns, and that can be combined
with the prior models presented above. The available images are color-infrared (CIR) im-
ages from the French Forest Inventory (IFN) , containing mainly regularly planted poplar
stands and some separated trees, in the Saône et Loire region in France. We also tested our
models on panchromatic images provided by the Hungarian Central Agricultural Office,
Forestry Administration (CAO, FA) , which contain mostly agricultural areas with indi-
vidual trees. We introduce two data models. The first describes the use of only one, in
the CIR case the most significant infrared, band of the three available bands. The model
is based on the image gradient and on Gaussian distributions, with the values at different
pixels independent, and with different means and variances for tree crowns and the back-
ground. While successful, this model, even with the strong region prior, is not capable of
extracting accurately the borders of all the trees. Some trees are simply too similar to the
background. To solve this problem our second data model makes use of all three bands in
the CIR images. We study the improvement or otherwise of the extraction results produced
by modelling the three bands as independent or as correlated. As we will see, even at the
level of maximum likelihood, the inclusion of ‘colour’ information, and in particular, inter-
band correlations, can improve the results, and in conjunction with the region prior, the full
model is considerably better than that based on one band alone.

Combining the data terms with the prior models, we analyze the empirical success of
five possible combinations. We make comparisons among them and describe the execution
time and the parameter settings. In the panchromatic case, the phase field model proves to
be the best, and if there is more than one spectral channel available, then the color model
shows great improvement over the others.

We use the above models to extract tree crowns on aerial images, but the models are not
restricted to forest management. They can also be applied to the detection of other circular
objects. A few examples: in nanotechnology to detect various particles and microarrays
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Horváth et al. (2006b) ∗ ∗
Horváth et al. (2006c) ∗
Horváth and Jermyn (2007b) ∗ ∗
Horváth and Jermyn (2007a) ∗
Horváth (2007) ∗

Table B.1: Connection between the theses and the Author’s publications

in electron-microscopic images; in biology to segment circular cells and molecules, or to
detect pollen grains; in medical image processing, to detect circular objects; in remote
sensing, in the processing of aerial and satellite images, for meteorological, military, and
agricultural management.

In conclusion, we present the evolution of our models starting from the HOAC and
phase field frameworks. We describe one weakness of the method, which is that circles that
are too close to each other tend to merge, and propose two ways to overcome this problem.
Finally, we describe some possible ways to improve the ‘gas of circles’ model.

Summary of the Author’s contributions

We summarize the results of the Author arranging them into four theses. Table B.1 illus-
trates how the thesis points are covered by the publications of the Author.

1. The Author presented the stability analysis of the higher-order active contour model
for a ‘gas of circles’, defined the required conditions and consequent parameter con-
straints.

2. The Author presented new parameter settings of the HOAC energy that creates an
inflection point in the energy function rather than a minimum, so that circles vanish
without supporting image data, but a small amount of image information can create
an energy minimum at the given radius. This criteria fixes all parameters of the prior
except one.

3. The Author showed how to transform the previously determined ‘gas of circles’ pa-
rameters into the phase field model so that it creates stable circles with the desired
radius and determined the constraints on the parameter conversion. The Author pre-
sented the steps of the transformation and the constraints converting the inflection
point ‘gas of circles’ parameters to the phase field framework.

4. The Author introduced two different data models. First, the HOAC model was com-
pleted with a term based on the image gradient and Gaussian-based intensity terms
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coming from a single-spectral image. Second, the previous intensity term was ex-
tended to multispectral images using a multi-dimensional Gaussian model.
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Kivonat

Ebben a tézisben bemutatjuk a ‘gas of circles’ (GOC) modellt, amely megközelítőleg azonos
sugarú körök leírására használható. Ha a modellt képi információkkal kombináljuk, akkor
template alakzat felhasználása nélkül is képes kör alakú objektumok detektálására. A mo-
dell gyakorlati használhatóságát egy erdészeti alkalmazáson keresztül mutatjuk be: kü-
lönálló fák koronájának pontos meghatározása légi felvételeken. Mivel az algoritmus au-
tomatikus, ezért olcsóbb és gyorsabb statisztikák készíthetők az erdészeti hivatalok részére
(pl.: fák sűrűsége; átlagos korona átmérő, terület, stb. ).

A ‘gas of circles’ modell a korábban bemutatott ‘higher-order active contour’ (HOAC)
keretrendszeren alapul, amely a kontúrpontok közötti hosszabb távú interakciókkal előzetes
geometriai információt ír le, template alakzat felhaszálása nélkül. A modell geometriai tu-
lajdonságait egy interakciós függvény és a modell paraméterei határozzák meg. Általános
esetekben a modell hosszú karokat képez, mely tulajdonsága alkalmassá teszi úthálózatok
detektálására műholdképeken, ahogy azt korábbi munkákban már bemutatták. Bizonyos
paraméterek esetén azonban, a modell stabil, megközelítőleg azonos sugarú körök hal-
mazát hozza létre hálózat helyett. Megmutatjuk, hogyan határozható meg ezen paraméterek
egy halmaza, így létrehozva a ‘gas of circles’ modellt. Egy ilyen modell előállításához a
köröknek stabilan kell viselkedniük a határaikon fellépő perturbációkkal szemben, azaz a
körök HOAC energia lokális minimumai kell hogy legyenek, különben átalakulnának más
alakzatokká. Ez egy nem triviális feltétel, a problémát HOAC energia kör körüli Taylor-
sorfejtésével oldjuk meg, majd az első rendű tagtól megköveteljük, hogy nulla legyen min-
den perturbáció esetére, a másodrendű tagtól pedig, hogy pozitív szemidefinit legyen. Ezen
feltételek lehetőséget adnak a modell egyik paraméterének rögzítésére a többi ismeretében.
Az energiát gradiens módszerrel minimalizáljuk, ennek megvalósításához a level-set ke-
retrendszert használjuk. Kísérletekkel igazoljuk, hogy a geometriai modell önmagában
stabil, meghatározott sugarú köröket képez, és képes megkülönböztetni az ettől eltérő su-
garú köröket, még nagyon zajos képeken is. Bemutatjuk a modell viselkedését egy másik
bonyolult esetben is, amikor két egymáshoz közeli kör súlyzó alakká deformálódik, és a
klasszikus módszerek nem képesek szétválasztani azokat.

Az általános ‘gas of circles’ modell több területen is alkalmazható, de van egy hátránya:
a körnek megfelelő lokális minimum képes megállítani a gradiens módszert, így fantom
körök képződnek még akkor is, ha ezt az adatkifejezés nem támogatja. Ez nem jelenti azt,
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hogy a modell rossz. Ha rendelkezésünkre állna egy olyan algoritmus, mely megtalálja a
globális minimumot, akkor nem keletkeznének fantom alakzatok. Ez a probléma két módon
oldható meg. Az egyik, találni egy jobb algoritmust. A másik, beérni a jelenlegi algoritmus-
sal, és úgy megváltoztatni a modellt, hogy az ne tartalmazzon lokális minimumot, de meg-
maradjon az az előzetes tudás, melyet eddig beleintegráltunk. Mi a második megközelítést
választjuk. A problémát a paraméterek olyan választásával oldjuk meg, melyek használatá-
val a körök az energiának nem lokális minimumai, hanem inflexiós pontjai lesznek. Ehhez
az energiát Taylor-sorba fejtjük. Mindezek eredményeképpen azt tapasztaljuk, hogy képi
információ nélkül a körök eltűnnek, de már kicsiny információ is képes energiaminimumot
képezni a kívánt sugárban. Megmutatjuk még, hogy így a modell paramétereinek száma
felére csökken, és a megmaradó paraméterek egyikére korlátozó feltételet kapunk; és ezzel
együtt a modell gyakorlati alkalmazhatósága is javul. Részletesen ismertetjük a paraméterek
meghatározását.

Habár a HOAC ‘gas of circles’ modell hatékonyan használható kör alakú alakzatok
modellezésére, használata során mégis felmerül néhány néhézség. Kontúr reprezentáció
felhasználásával bonyolult kifejezni a régiók terét és ebből következően nehéz valószínűségi
formulákkal dolgozni. Algoritmikai szemszögből nézve a jelenlegi modell nem kínál topoló-
giai szabadságot, és a HOAC modell implementációja bonyolult és számításigényes. Előál-
lítható a HOAC modell egy alternatív formulája, mely a fizikában a régiók és interfészek
modellezésére használt phase field keretrendszeren alapul. Az alap phase field modell ekvi-
valens a klasszikus aktív kontúr modellel. Rochery és tsai. bemutatták a phase field modell
egy nem-lokális taggal való kiterjesztését, mely így ekvivalens a HOAC keretredszerrel. Az
új modellnek van néhány igen kedvező tulajdonsága, ezek:

• Nagyobb topológiai szabadságot kínál a gradiens mószer során mint más modellek,
amely igen fontos, ha a topológia nem ismert előre, mint például a fák koronájának
szegmentálása esetén. Ráadásképpen, a nagyobb topológiai szabadság azt is jelenti,
hogy kisebb eséllyel kerülünk lokális minimumba.

• A klasszikus aktív kontúr (CAC) és különösképpen a HOAC modellek phase field
implementációja sokkal egyszerűbb, mint a velük ekvivalens kontúr vagy level-set
implementáció. A gradiens módszer egyenlete csupán egy egyszerű parciáls differen-
ciál egyenlet, mely közvetlenül számolható a modell energiájából, nincs szükség újra
inicializálásra és regularizálásra sem. A HOAC tagok egy konvolúciót tartalmaznak,
mely a Fourier-térben számolva két nagyságrenddel gyorsabb futásidőt eredményez.

• A phase field modell esetén lehetséges a gradiens módszer teljesen neutrális iniciali-
zációja — nincs szükség kiindulási régióra — amely azt jelenti, hogy megszűntetni
az inicializálásból származó zavarokat.

A fakoronák szegmentálására bemutatjuk a phase field ‘gas of circles’ modellt. A HOAC
energia paramétereinek függvényében meghatározzuk azon phase field paramétereket, mely-
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ek ekvivalens modellt eredményeznek. Ez azt jelenti, hogy meg tudunk határozni olyan
phase field paramétereket melyek stabil, adott sugarú köröket eredményeznek. Megmu-
tatjuk a számításaink és a gyakorlati alkalmazás közötti konzisztenciát azaz, hogy külön-
böző inicializációk esetén a gradiens módszer kívánt sugarú köröket képez. Összehason-
lítjuk a HOAC és phase field modellek evolúcióját és megmutatjuk, hogy azok megközelítő-
leg ekvivalensek.

Kiterjesztjük a phase field ‘gas of circles’ modellünket arra az esetre is, amikor az ener-
giának inflexiós pontja van a kívánt sugarú kör esetén, nem pedig minimuma. Ez a mo-
dell egyesíti mind a phase field, mind az inflexiós pontot tartalmazó GOC modell előnyeit.
A paraméter transzformáció helyességét kísérlettel is igazoljuk, az inflexiós pontot ered-
ményező beállításoktól kissé eltérő értékek választásával, melyek esetén a modell elvárá-
sainknak megfelelően vislekedik. Bemutatjuk, hogyan minimalizálható a phase field ener-
gia és annak HOAC kiterjesztése. Áttekintjük a modell kínálta topológiai szabadságot és a
keretrendszer implementációjának részleteit.

Ha a modellt képi információval együtt szeretnénk használni, ki kell fejlesztenünk olyan
energiatagokat, melyek akkor veszik fel minimumukat, ha a szegmentált régiók a fák ko-
ronáin találhatóak, és kombinálni tudjuk a fent bemutatott előzetes alakzatinformációt leíró
modellekkel. A rendelkezésünkre álló képek színes infravörös (CIR) légifelvételek, mely-
eket a French Forest Inventory (IFN) biztosított számunkra, többségében szabályosan ül-
tetett nyárfákkal, és néhányon kölönálló egyéb fákkal. A felvételek a franciaországi Saône
et Loire térségben készültek. Modelljeinket kipróbáltuk pankromatikus képeken is, mely-
eket a Hungarian Central Agricultural Office, Forestry Administration (CAO, FA) bocsájtott
rendelkezésünkre és főként mezőgazdasági területeken található különálló fákat tartalmaz-
nak.

Szintén bevezetünk két adatmoldellt. Az első azt írja le, hogyan használható a ren-
delkezésünkre álló színes infravörös képeknek egyetlen, a legjellemzőbb csatornája. Ez az
infravörös csatorna. Ez a modell a képgradiensen és Gauss-eloszláson alapul, kihasználva
a fakoronák és a háttér pixel intenzitásainak különböző szórását és középértékét. Habár,
a modell sikeresnek bizonyult, még jelentős előzetes régió információ esetén sem képes
pontosan meghatározni az összes fakorona körvonalát. Ennek megoldására bemutatjuk a
CIR képek mindhárom csatornáját felhasználó második adatmodellünket. Megvizsgáljuk
az eredményeket abban az esetben amikor feltételezzük, hogy a három csatorna független
és amikor azok nem függetlenek. Mint azt látni fogjuk, már a maximum likelihood esetében
is sokat javul az eredmény a ‘szín’ információ felhasználásával, és ez különösképp igaz, ha
a csatornák között korreláció van. Következésképpen, az előzetes alakzat-információval
kombinálva a modellünk jelentős javulást eredményez az egycsatornás-modellhez képest.

Öt különböző, a geometriai és az adattagok kombinálásával kapott modell gyakorlati
működését teszteljük. Összehasonlítjuk őket, ismertetjük futásidejüket és az alkalmazott
paraméterbeállításokat. A pankromatikus képek esetében a phase field modell mutatkozik
legjobbnak, míg ha több spektrális csatorna is rendelkezésünkre áll, akkor a színes modell

119



1 2 3 4
Horváth et al. (2006b) ∗ ∗
Horváth et al. (2006c) ∗
Horváth and Jermyn (2007b) ∗ ∗
Horváth and Jermyn (2007a) ∗
Horváth (2007) ∗

Table B.2: Kapcsolat a tézispontok és a szerző publikációi között.

eredményez jelentős javulást.
Modellünket fakoronák körvonalának detektálására használjuk légi felvételeken, habár

más, nem erdészeti jellegű alkalmazások is lehetségesek. Néhány más példa: nanotech-
nológiában különböző részecskék és microarray-ek detektálására elektronmikroszkóppal
készült képeken; biológiában kör alakú sejtek és molekulák szegmentálására, vagy pollen
részecskék detektálására; orvosi képfeldolgozásban, kör alakú objektumok szegmentálására;
távérzékelésben, légi és műholdképek feldolgozása során, meteorológiai, harcászati vagy
mezőgazdasági alkalmazásokban.

Bemutatjuk modelljeink fejlődését, a HOAC és a phase field keretrendszerektől kezdő-
dően. Ismertetjük modellünk egy gyenge pontját, nevezetesen azt az eshetőséget, amikor az
egymáshoz túl közel kerülő körök összeolvadnak. Majd, két lehetséges megoldást javasol-
unk a problémára. Végül a ‘gas of circles’ lehetséges fejlesztésének új irányzatait mutatjuk
be.

Az eredmények tézisszerű összefoglalása

A szerző eredményeit négy tézispontba rendezve foglaljuk össze. A B.2. táblázat bemutatja,
hogy az egyes tézispontokat a szerző mely publikációiban találhatjuk.

1. A szerző ismertette a higher-order active contour modell stabilitásának analízisét,
elkészítve a ‘gas of circles’ modellt, és definiálta a szükséges feltételeket és az ezek-
ből következő paraméter korlátozásokat.

2. A szerző bemutatta a HOAC paraméterek egy új beállítását, mely az energiafüg-
gvényen lokális minimum helyett inflexiós pontot eredményez, így azon körök, mely-
eket az adatkifejezés nem támogat eltűnnek, de már kicsiny, a kör létezését alátá-
masztó képi információ képes energia-minimumot képezni az adott sugárban. Ezen-
felül, az új kritérium felére csökkentette a paraméterek számát.

3. A szerző megmutatta, hogyan lehetséges a már korábban meghatározott ‘gas of cir-
cles’ paramétereket áttranszformálni phase field paraméterekké úgy, hogy kívánt su-
garú, stabil köröket képezzen, valamint meghatározta a paraméter átalakítás feltételeit.
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Emellett bemutatta még az inflexiós pontot tartalmazó ‘gas of circles’ model paraméter
transzformációjának lépéseit és megszorításait.

4. A szerző bevezetett két különböző adatkifejezést. Először a HOAC modellt egészítette
ki egy a gradiensen és Gauss-eloszláson alapuló taggal, mely egycsatornás képekre
használható, majd demonstrálta az intenzitáson alapuló tag kiterjesztését többcsator-
nás képekre többdimeziós Gauss-eloszlást használva.
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