
Improvements of Silent Speech
Interface Algorithms

PhD Thesis

Amin Honarmandi Shandiz
Supervisor: Dr. László Tóth
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Preface

Speech is a vital mode of communication, but for some individuals, speaking out
loud may not be an option. Silent speech interfaces are a promising technology that
allows for speech generation from articulatory signals, enabling individuals who are
unable to speak to communicate. The focus of this topic is on the development and
improvement of silent speech interfaces, which involves generating speech from data
gathered from the movement of the tongue, lips, and jaw.

To explore this topic, I have planned a comprehensive agenda that covers various
aspects of silent speech interface development. The agenda includes the following
topics:

Preparing Data: This topic covers the collection and processing of data from the
articulatory movements of a speaker. It includes data acquisition techniques such
as Electromagnetic Articulography (EMA), Ultrasound Imaging, and Magnetic Reso-
nance Imaging (MRI).

Different Model Implementations: This topic covers various models that have
been implemented for generating speech from articulatory signals, such as deep neu-
ral networks, support vector machines, and Hidden Markov Models.

New Evaluation Metrics: This topic covers the development of new evaluation
metrics for assessing the performance of silent speech interfaces. These metrics aim
to provide a more accurate measure of speech quality and intelligibility, as traditional
metrics may not be suitable for evaluating speech generated from articulatory signals.

Model Improvement: This topic covers various techniques for improving the per-
formance of silent speech interfaces, such as regularization, transfer learning, and
data augmentation.

Generalization of the Model for Unseen Data: This topic covers the development
of models that can generalize well to new data and unseen speakers, which is essen-
tial for practical applications of silent speech interfaces.

Throughout this topic, I have relied on extensive research and consultations with
experts in the field. Their insights and guidance have been invaluable in developing
a comprehensive understanding of silent speech interfaces.

I am grateful to my professor and colleagues who have provided invaluable sup-
port and guidance throughout the research process. Their feedback and insights have
been instrumental in shaping this topic, and I am grateful for their contributions. Last
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but not least, I would like to express my gratitude to my family, friends, colleagues,
and anyone who played a significant role in helping me reach this point in my life
with their support.

”As one stage comes to an end, another stage begins.”
Amin Honarmandi Shandiz, August 2023
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ELTE Eötvös Loránd University 10

EMA Electromagnetic articulography 7

EMG Electromyography 8

FBANK Filterbank 19

fMRI functional MRI 8

fNIRS functional near-infrared spectroscopy 42

GAN Generative Adversarial Network 41

GRU gated recurrent unit 32

LDA Linear Discriminant Analysis 19

LPC Linear Predictive Coding 22

5



6 Abbreviations

LSP Line Spectral Pair representation 34

LSTM Long Short-Term Memory 11

MFCC Mel-frequency Cepstral Coefficients 19

MFGG Mel-Generalized Cepstral Coefficients 34

MRI Magnetic Resonance Imaging 8

NLP Natural Language Processing 25

PCA Principal Component Analysis 19

PLP Perceptual Linear Prediction 19

RNN Recurrent Neural Networks 7

SSI Silent Speech Interface 7

STFT Short-Time Fourier Transform 19

TDNN time-delay neural networks 32

TTS Text-to-speech 25

UDI Ultrasound Direct Imaging 9

VAD voice activity detection 12



Chapter 1

Introduction

A silent speech interface is a technology that allows individuals to communicate with-
out speaking out loud. It works by detecting the movements of the tongue, lips,
jaw, and other facial muscles involved in speech production (Articulatory signals)
and then translating those movements into speech (Acoustic signals) or text. Silent
speech interfaces are primarily designed to assist people who are unable to speak
or have difficulty speaking due to medical conditions such as neurological disorders,
tracheostomies, or other speech impairments. By using silent speech interfaces, these
individuals can communicate more effectively and independently, without the need
for a human intermediary or traditional assistive devices such as speech-generating
devices.

As you can see in figure 1.1 the Silent Speech Interface (SSI) process typically
includes several components that are involved in converting silent speech into rec-
ognizable audio signals. The process begins with the acquisition of silent speech
using sensors such as ultrasound, Electromagnetic articulography (EMA), or Elec-
troencephalogram (EEG). The acquired data is then preprocessed to remove noise
and irrelevant information, and feature extraction techniques are applied to identify
relevant articulatory features.

The extracted features are then used to train machine learning models that can
map the articulatory features to corresponding acoustic features. The machine learn-
ing models used in this process could be based on different architectures such as
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), or Deep
Neural Networks (DNN).

After training, the machine learning models are used to predict the acoustic fea-
tures of the silent speech signals. Finally, the predicted acoustic features are synthe-
sized into audible speech using speech synthesis techniques such as concatenative
synthesis or parametric synthesis.

The figure of the SSI process gives a clear visual representation of the various
steps involved in the conversion of silent speech into recognizable audio signals, see
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8 Introduction

fig 1.1. It highlights the importance of each component in the process and how they
work together to achieve the final output. This can be useful for researchers and
engineers working in the field of SSI to better understand the process and develop
improved methods for converting silent speech into speech signals.

Figure 1.1: The figure shows the process of speech synthesis from ultrasound tongue
images using a silent speech interface(the original speech used only during the training).

SSI research has utilized various recording techniques, including EEG, Electromyo-
graphy (EMG), Magnetic Resonance Imaging (MRI), ultrasound, and others, to de-
velop technologies that enable communication without the need for vocalization.

The earliest implementation of a SSI used EMG to detect the electrical signals
generated by the muscles involved in speech production. In the early 1970s [99],
researchers began exploring the possibility of using EMG to develop a device that
could generate speech from muscle movement, without the need for vocalization.

Around the same time, the EEG was introduced as a tool for SSI research, as it can
provide real-time measurement of brain activity with high temporal resolution. EEG
has since been used to study the neural mechanisms underlying speech production
and to develop SSI technologies that can translate brain signals into speech.

Advancements in MRI technology in the following decades led to the development
of functional MRI (fMRI) for studying brain activity during speech production. FMRI
has since been used to study the neural pathways involved in speech production and
to develop new SSI technologies that can decode brain signals into speech.

Ultrasound was introduced as a tool for SSI research in the 1980s, with re-
searchers using it to image the tongue, lips, and jaw during speech production. Ul-
trasound imaging was later combined with EMG to create the EMA technique, which
allowed researchers to track the movement of the tongue and other articulators dur-
ing speech production.
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Some recording devices such as EEG, EMG were one of the earliest implemen-
tations in SSI because they could provide real-time measurement of brain activity
with high temporal resolution. This means that EEG can capture changes in brain
activity that occur in a matter of milliseconds, making it a useful tool for detecting
neural activity associated with speech production in real-time. Additionally, EEG is
non-invasive, portable, and relatively inexpensive compared to other imaging tech-
niques such as FMRI, which makes it a more accessible option for researchers and
clinicians who want to develop SSI applications. Therefore, EEG has been an attrac-
tive option for researchers interested in developing SSI applications for individuals
with communication difficulties.

Figure 1.2 shows an individual seated and wearing a cap with multiple electrodes
attached to their scalp. These electrodes are designed to detect and record the elec-
trical activity of the individual’s brain as they attempt to produce speech without
vocalizing. This electrical activity can then be analyzed and used to generate speech
output through a computer interface, providing a means of communication for indi-
viduals who are unable to speak or have difficulty speaking.

Figure 1.2: The figure depicts a person who is undergoing EEG recording for silent
speech interface (SSI).

While EEG has the advantage of providing real-time measurement with high tem-
poral resolution, it has limitations in terms of spatial resolution and specificity. EEG
signals are influenced by the activity of large groups of neurons, so it can be difficult
to determine the exact location of neural activity using EEG alone. This is where
other imaging techniques such as MRI and Ultrasound Direct Imaging (UDI) can be
useful. MRI provides excellent spatial resolution, allowing researchers to locate the
exact areas of the brain that are active during speech production. UDI can also pro-
vide detailed imaging of the structures involved in speech production, such as the
tongue, lips, and jaw. Combining these imaging techniques with EEG can provide
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a more complete picture of neural activity during speech production, and can help
improve the accuracy and reliability of SSI applications. Therefore, different imaging
techniques are used in SSI research to address the limitations of each technique and
to obtain a more comprehensive understanding of the neural mechanisms underlying
speech production.

In explanation of different ways of recording articulatory signals, UDI is just one
of several recording devices used for SSI development, and each device has its own
strengths and limitations. Compared to other recording devices, such as EEG, EMG,
and MRI, UDI has several advantages for SSI development.

Firstly, ultrasound provides direct imaging of the articulators, which are the tongue,
lips, and jaw involved in speech production. In contrast, EEG and EMG measure elec-
trical activity in the brain and muscles, respectively, which indirectly infer the move-
ments of the articulators. Ultrasound’s direct imaging provides a more accurate and
detailed representation of the movements of the articulators during speech, which
can help improve the accuracy of SSI systems.

Secondly, ultrasound has high temporal and spatial resolution, which means it can
capture movements in real-time and with high precision. EEG and EMG have high
temporal resolution but lower spatial resolution compared to ultrasound. MRI has
high spatial resolution but lower temporal resolution compared to ultrasound. Ultra-
sound’s high temporal and spatial resolution allows for precise tracking of articulator
movements, which is important for accurate speech synthesis.

Thirdly, ultrasound is a non-invasive and safe method for recording speech pro-
duction. EEG and EMG are also non-invasive but may require electrodes to be at-
tached to the skin or scalp, which can cause discomfort or irritation. MRI is safe but
requires the participant to lie still in a confined space for an extended period, which
can be uncomfortable for some individuals and not good for practical use.

Lastly, ultrasound is portable and cost-effective compared to other recording de-
vices, which makes it more accessible for SSI research and development.

Overall, while each recording device has its own strengths and limitations, ultra-
sound’s direct imaging of the articulators, high temporal and spatial resolution, non-
invasive nature, cost-effectiveness and portability make it a better way and more
relevant nowadays for SSI development, especially in clinical settings and with a
wider range of populations.

Figure 1.3 shows a person sitting in a room at Eötvös Loránd University (ELTE)
in Budapest, Hungary. The person sits on a chair while an ultrasound probe is placed
under the jaw to record tongue movements, and the probe is connected to a computer
via a cable. The computer is running specialized software to capture and analyze the
ultrasound signals produced by the person’s vocal tract during silent speech.

Ultrasound is a non-invasive and safe technique that uses high-frequency sound
waves to create images of internal structures in the body. In the case of a SSI, ul-
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trasound is used to capture the movement of the tongue, lips, and jaw, which are
important in generating speech. By placing the ultrasound probe on the throat, the
researcher can visualize the shape and movement of the vocal tract during silent
speech, and use this information to generate speech sounds.

The use of ultrasound for SSI has several advantages. It provides high-resolution
images of the vocal tract and can capture detailed movements that are not easily
visible with other techniques. Additionally, it is safe and non-invasive, making it
suitable for use with a wide range of individuals, including children and those with
medical conditions.

Figure 1.3: A person using an ultrasound probe to record their vocal tract movements
during silent speech, which is a useful technique for developing SSI technology.

In my thesis, I focused on exploring the advantages of ultrasound recordings for
SSI and its relation to Artificial Intelligence (AI). I found that previous methods for
SSI using ultrasound recordings suffered from high error rates and long training
times beside lack of generalization ability over unseed data, which made them less
practical for real-world applications.

To address these challenges, I implemented several new models and techniques.
Firstly, I developed new models that significantly improved the synthesized data error
rate, which is critical to generate good quality speech. To achieve this, I proposed a
novel approach using 3D Convolutional Neural Networks (3D CNN).

Specifically, I first converted the 2D ultrasound data into a 3D format by using a
sliding window approach. This involved breaking the data down into small windows
and then sliding the window along the time axis, with a certain amount of overlap
between each window and the previous one. By doing this, I was able to create a 3D
representation of the data that could be fed into a 3D CNN and use the technique of
parallel processing.

Next, I compared the performance of this 3D CNN approach with other commonly
used methods, such as RNN like Long Short-Term Memory (LSTM) networks. After
conducting extensive experiments, I found that the 3D-CNN approach outperformed
the other methods, resulting in significantly improved synthesized data error rates.
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Secondly, I improved the training model time by implementing a new technique
that optimizes the use of hardware resources. This resulted in a faster and more
efficient training process. To do that, I propose a new combination of ConvLSTM
and 3D-CNN, By using a combination network of ConvLSTM and Conv3D, I was able
to decrease the model training time. ConvLSTM is a type of RNN that is effective
for processing sequential data, while Conv3D is a type of CNN that is efficient in
processing volumetric data. By combining the two networks, I was able to effectively
process both sequential and volumetric data. Moreover, I decreased the number of
layers and the number of units in each layer, which helped to reduce the model’s
complexity and therefore its training time. As a result, the training process became
faster and more efficient, without compromising the accuracy of the model.

Additionally, I introduced a new technique for preprocessing the data that im-
proves the quality of the recorded signals and makes it easier to analyze them. When
recording speech signals for SSI, there may be periods of silence or background noise
that can interfere with the analysis. Traditionally, researchers have used algorithms
to remove these silent or noisy portions of the speech before analyzing the remaining
signal. However, this can be challenging, as it is difficult to distinguish between silent
portions of speech and silence due to background noise.

A better approach is to use voice activity detection (VAD) algorithms to identify
which portions of the speech signal actually contain speech. Therefore, to solve this
challenge we divide the speech signal into frames and analyze each frame separately,
VAD algorithms can accurately detect the presence of speech and remove any silent
portions within the frames. This makes it easier to analyze the remaining signal and
improves the overall quality of the recorded signals.

In contrast, when the entire speech signal is given as input to a silence remover,
it may not be able to accurately detect and remove all silent portions of the speech,
leading to a loss of important information in the recorded signals. Therefore, using
VAD algorithms over the speech signals in frame level is a more effective way to
improve the quality of the recorded signals and make them easier to analyze for SSI.

I also developed a new method to generalize the data for unseen speakers, which
is crucial for SSI to be useful in real-world settings where the speaker is not known
in advance. By using x-vector features of the speakers in the speaker recognition
method and embedding them as features in the ultrasound-to-speech model, the
model can better capture the unique characteristics of each speaker’s voice. This can
help improve the generalization ability of the model to unseen data from different
speakers, as the model can better differentiate between speakers and adapt to their
unique voice characteristics. The x-vector features can also help reduce the effect
of inter-speaker variability and make the model more robust to variations in voice
quality, accent, and speaking style. As a result, the model can perform better on
unseen data, which is important for the practical application of SSI systems in real-
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world scenarios where there is a wide range of speakers and speaking conditions.
Finally, another challenge was improving the accuracy and generalization ability

of neural silent speech interface models. The traditional methods for speech recogni-
tion rely on audio signals, but silent speech interface models use ultrasound signals,
which have a different structure and pose unique challenges for processing and anal-
ysis.

To address this challenge, we proposed a novel method of using adversarial train-
ing to improve the accuracy and generalization ability of neural silent speech inter-
face models. Adversarial training involves using two neural networks: a generator
network that generates synthesized speech signals from the ultrasound data, and a
discriminator network that tries to distinguish between the synthesized speech sig-
nals and real speech signals. The two networks are trained simultaneously, with the
goal of improving the accuracy and generalization ability of the generator network.

We found that our proposed method improved the accuracy and generalization
ability of the neural silent speech interface models, as compared to traditional meth-
ods. This has important implications for the development of more accurate and re-
liable silent speech interface systems, which can be used in a variety of applications
such as speech therapy, human-computer interaction, and assistive technology.
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1.1 Speech Production and Articulatory Features

1.1.1 Speech Production

Speech production is the process of producing speech sounds using various parts of
the human body, such as the lungs, vocal cords, tongue, lips, and teeth. The process
involves a series of coordinated movements and adjustments of these articulators to
produce different sounds and speech patterns.

The production of speech involves three main stages: the initiation of an idea or
thought, the formulation of that idea into a linguistic structure, and the actual artic-
ulation or production of the speech sounds. During the initiation stage, the speaker
decides what they want to say and how they want to say it. In the formulation stage,
the speaker selects the appropriate words, phrases, and grammatical structures to
convey their message. Finally, during the articulation stage, the speaker produces
the sounds of the language using their articulators.

Speech production is a complex process that involves the coordination of multiple
systems in the human body, including the respiratory, phonatory, and articulatory
systems. Any disruptions in these systems can affect speech production and result in
speech disorders or difficulties. Understanding the mechanisms of speech production
is important for developing interventions and treatments for speech disorders, as well
as for developing technologies such as speech recognition and synthesis systems.

Figure 1.4 titled ”speech production anatomy” depicts the different structures and
organs involved in the production of speech sounds. At the bottom of the figure, we
see the lungs, which provide the air pressure required for speech. The air passes
through the trachea and into the larynx, where the vocal cords are located. The
vocal cords vibrate when the air passes through them, producing sound.

Moving further up the figure, we see the pharynx and the oral cavity, which
shape the sound waves produced by the vocal cords into specific speech sounds.
The tongue, teeth, and lips play a critical role in shaping the sound waves, creating
different consonant and vowel sounds. The nasal cavity is also shown, which allows
for the production of nasal sounds.
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Figure 1.4: This figure provides a comprehensive view of the complex process involved
in producing speech and highlights the crucial role played by different structures and
organs in this process [55].

Finally, the motor cortex is responsible for controlling the movement and coordi-
nation of the muscles involved in speech production. It sends signals to the articu-
lators, such as the tongue and lips, to produce specific speech sounds. The auditory
cortex, on the other hand, processes the sound of our own voice, which enables us to
monitor and adjust our speech as required. Therefore, the brain plays a crucial role
in speech production, not only in controlling the physical movements necessary for
speech but also in providing feedback to ensure that we speak accurately.

Figure 1.5 compares the speech production process in humans with that of a
speech coder.

It shows a block diagram of the speech production process in humans, which
involves several anatomical components such as the lungs, vocal cords, throat, and
mouth. The air from the lungs is passed through the vocal cords, which vibrate to
produce a source signal. This signal is then modified by the vocal tract to produce
the final speech signal.

The figure also shows a block diagram of a speech coder, which consists of an
excitation model and an articulatory model, as described in the previous figure. The
excitation model generates a waveform that represents the sound source for speech
production, while the articulatory model transforms the excitation waveform into
speech.

The comparison between the two block diagrams illustrates that while the human
speech production process is complex and involves multiple anatomical components,
a speech coder can model the process using only two main components: an excitation
model and an articulatory model.

The figure also shows several sub-blocks within the excitation and articulatory
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Figure 1.5: General voice or speech coder: Human vs. Voice Coder Speech Produc-
tion [10].

models. These sub-blocks may include signal analysis, quantization, coding, and
decoding stages. These stages are used to process the speech signal and reduce the
amount of data needed to transmit or store it.

1.1.2 Articulatory-To-Acoustic Conversion

Articulatory-to-acoustic conversion is the process of transforming articulatory fea-
tures (which represent the movements of the articulators in the vocal tract during
speech production) into acoustic features (which represent the acoustic properties
of the speech signal). This conversion can be challenging due to the complex and
nonlinear relationship between articulatory and acoustic features.

Deep learning, specifically neural networks, has been used to tackle this problem.
One approach is to train a neural network to map articulatory features to acoustic
features directly, without the need for intermediate steps such as acoustic model-
ing or speech synthesis. This can be achieved using a variety of neural network
architectures such as feedforward neural networks, recurrent neural networks, and
convolutional neural networks.

WaveGlow is a neural vocoder that used for speech synthesis that uses a flow-
based generative model to produce high-quality audio waveforms. It has also been
used for articulatory-to-acoustic conversion, where the articulatory features are used
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to generate the speech waveform directly [75].
In this approach, the articulatory features are first transformed into a latent repre-

sentation using an encoder network. The latent representation is then used as input
to the WaveGlow model, which generates the corresponding acoustic waveform dur-
ing training. The resulting acoustic waveform is compared to the waveform using a
loss function, and the parameters of the encoder network and WaveGlow model are
optimized to minimize this loss.

Figure 1.6: Process of transforming articulatory features to acoustic features using deep
learning methods for speech synthesis [12].

The figure 1.6 is an example of a flowchart that illustrates the process of trans-
forming articulatory features (such as tongue and lip positions) to acoustic features
(such as spectral envelopes and prosody) using deep learning methods LSTM for
speech synthesis. It shows the various stages involved in the conversion process,
such as data acquisition and feature extraction until synthesizing the speech [12].

Articulatory Features

Articulatory features describe the different movements and configurations made by
the speech organs during speech production. These features describes the position
and movement of the tongue, lips, velum, jaw, and vocal folds. The use of articula-
tory features in speech processing and recognition is an active area of research, as it
can provide valuable information about the articulation patterns of a speaker [20].
Articulatory features are important in the context of articulatory-to-acoustic models
that aim to synthesize speech by mapping articulatory movements to acoustic fea-
tures. These models rely on capturing the relationship between the movements of
the vocal tract and the resulting acoustic signals produced by them. The use of ar-
ticulatory features in these models allows for a more direct mapping between the
physical processes involved in speech production and the resulting acoustic signal.
Articulatory-to-acoustic models have been developed in recent years, and they have
shown promising results in synthesizing natural-sounding speech. One example is
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the work of [39], which proposes an articulatory-to-acoustic mapping model that
uses a combination of deep neural networks and articulatory features to synthesize
speech from articulatory data. The model is based on a three-stage architecture that
first predicts articulatory features from raw acoustic data, then maps these features
to a compact representation, and finally generates a high-quality acoustic signal from
this representation.

The use of articulatory features in articulatory-to-acoustic models can help im-
prove the accuracy and naturalness of synthesized speech. These models have the
potential to be used in various applications, such as speech synthesis for individuals
with speech impairments, and the development of virtual assistants and chatbots that
can produce natural-sounding speech.

Acoustic featurs

Acoustic signals refer to the sound waves produced by speech and other sources,
which can be captured and analyzed using digital signal processing techniques. Acous-
tic features, on the other hand, refer to the measurable characteristics of the sound
signal that are used to distinguish between different sounds or analyze their proper-
ties.

In speech analysis, some common acoustic features are pitch, formants, spectral
features, and energy. Pitch refers to the perceived frequency of the voice, which can
provide information about the speaker’s gender, age, and emotional state. Formants
are the resonant frequencies of the vocal tract, which can be used to distinguish
between different vowel sounds. Spectral features, such as spectral centroid, spectral
flatness, and spectral roll-off, provide information about the spectral content of the
signal. Energy, on the other hand, refers to the intensity or loudness of the signal and
can be used to detect changes in emphasis or emotion.

In addition to speech analysis, acoustic features are used in a variety of applica-
tions such as music analysis, speaker identification, and emotion recognition. For
example, in music analysis, spectral features are often used to detect different instru-
ments or identify musical genres. In speaker identification, pitch and formants can
be used to distinguish between different speakers. In emotion recognition, energy
and spectral features can be used to detect changes in a speaker’s emotional state.

1.2 Feature Extraction for Speech Processing

Feature extraction is a critical step that involves transforming raw speech data into a
set of meaningful features that can be used for analysis and modeling. The main goal
of feature extraction is to capture the relevant information from the speech signal
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that is important for the intended application, such as speech recognition, speaker
identification, or emotion recognition.

The process of feature extraction involves several steps, including pre-processing,
feature selection, and feature transformation. Pre-processing involves filtering and
normalization of the speech signal to remove noise and other artifacts. Feature selec-
tion involves choosing a subset of features that are most relevant for the application
at hand, based on their discriminative power and computational complexity. Feature
transformation involves transforming the selected features into a new representation
that is more suitable for the intended analysis or modeling approach.

Some commonly used features in speech processing include Mel-frequency Cep-
stral Coefficients (MFCC), Linear Predictive Coding (LPC) coefficients, pitch, for-
mants, and energy. MFCC are widely used in speech recognition and speaker identi-
fication, as they capture the spectral envelope of the speech signal and are relatively
robust to noise and other distortions. LPC coefficients are used to model the vocal
tract characteristics of speech and can be used for speech synthesis and compression.
Pitch and formants are useful for identifying the prosodic and phonetic characteris-
tics of speech, respectively. Energy is often used to detect changes in loudness and
stress in speech [110].

1.2.1 Filterbanks

Filterbank (FBANK) features are calculated using a Filterbank, which is a set of band-
pass filters that simulate the human auditory system’s frequency response. The Fil-
terbanks is typically applied to the magnitude of the Short-Time Fourier Transform
(STFT) of the speech signal, resulting in a series of Filter outputs that represent
the energy in each frequency band over time. The Filterbanks are outputs are then
typically transformed using a logarithmic compression to approximate the human
perception of loudness.

One of the main challenges with using FBANKs features as features for SSI models
is that they are highly correlated, which can lead to collinearity issues and suboptimal
performance in the model. To overcome this, various methods have been proposed,
such as Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA),
to reduce the dimensionality and decorrelate the features before using them in the
model. Additionally, other feature extraction techniques, such as MFCC or Perceptual
Linear Prediction (PLP), have been developed that capture similar spectral informa-
tion as Filterbank features but with improved performance in SSI tasks.

Figure1.7 shows Filterbank features in speech feature extraction which contains
of the process of filtering a speech signal using a bank of triangular filters on the
mel-scale, resulting in a set of Filterbank coefficients that represent the power of
the signal within each frequency band, which can be further processed and used as
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features for speech recognition or other speech-related tasks.

Figure 1.7: The horizontal axis of the figure represents the frequency in hertz (Hz), and
the vertical axis represents the amplitude. The lower frequency range is shown on the
left side of the graph, and the higher frequency range is shown on the right side of the
graph. The power spectrum of the speech signal is represented by a series of bars that
indicate the energy level at each frequency [110].

The equation for computing the Filterbank features for a given speech signal x(t)
is:

Fm =
N−1∑
k=0

|X(k)|2Hm(k) (1.1)

where Fm is the FBANK output for the mth filter, N is the length of FFT, Xk is the
discrete Fourier transform (DFT) of the input signal X(t), and Hm(k) is the Filter
weight for the mth filter at frequency bin k. The Filter weights can be computed using
a set of triangular filters that approximate the Mel scale, as shown in the figure 1.7.

Once the Filterbank output is computed, it is typically logarithmically compressed
to obtain a more compact representation:

fm = log(fm) (1.2)

The resulting filterbank features fm are then used as input to various speech pro-
cessing tasks.

1.2.2 Mel-spectrogram

Mel-spectrograms (see Fig 1.8) are derived from the traditional spectrogram, which
represents the spectrum of a signal as a function of time. However, instead of using
a linear frequency scale, Mel-spectrogram features use a non-linear Mel-frequency
scale that better approximates the human auditory system’s response to sound.

To calculate Mel-spectrogram features, the speech signal is first divided into small
frames of equal duration (typically 20-30 ms), and for each frame, the Fourier trans-
form is computed to obtain the power spectrum. The power spectrum is then trans-
formed into the Mel-scale using a Mel-filterbank, which consists of a set of triangular
filters that are uniformly spaced in the Mel-frequency scale. The output of each filter
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is then summed, resulting in a set of Mel-spectrogram coefficients that represent the
spectral content of the speech signal in different frequency bands, see Fig 1.7.

The number of Mel-spectrogram features depends on the number of filters used in
the Mel-filterbank, which is typically between 20 and 40. Mel-spectrogram features
have several advantages over other types of speech features, including their robust-
ness to noise and their ability to capture important spectral information in different
frequency bands. They are commonly used as input features in speech recognition
and other speech-related tasks.

1.2.3 Mel-Frequency Cepstral Coefficient

Mel-Frequency Cepstral Coefficients are commonly used acoustic features in speech
recognition systems. MFCCs are calculated by first applying a mel-scale filterbank
to the power spectrum of the speech signal. The resulting mel-frequency spectrum
is then transformed into the cepstral domain using the Discrete Cosine Transform
(DCT). The first several coefficients, typically ranging from 12 to 40, are used as
features for speech recognition.

MFCCs have several advantages as speech features. First, they are robust to vari-
ations in speech production caused by different speakers, speaking rates, and speak-
ing styles. Second, they can capture both the spectral and temporal characteristics of
speech. Third, they are computationally efficient to compute and have been widely
used in many speech recognition systems.

Figure 1.8: An example of a Mel-spectrogram for a speech signal [35].

Figure 1.8 shows a visualization of the Mel-spectrogram for a speech signal. The
MFCC are computed using a series of processing steps, including framing, window-
ing, Fourier transform, Mel filtering, logarithmic compression, and discrete cosine
transform. The resulting MFCC are typically arranged in a matrix or image format,
where each column corresponds to a different frame of the signal and each row cor-
responds to a different MFCC coefficient. The image provides a way to visualize the
frequency and temporal variations in the MFCC and can be used as a feature rep-
resentation for various speech processing tasks such as speech recognition, speaker
identification, and emotion recognition.
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WaveGlow

WaveGlow is a neural vocoder that generates high-quality speech waveforms from
acoustic features, such as Mel-spectrograms or other spectral representations, using
a flow-based generative model that enables efficient parallel generation and high-
fidelity synthesis of speech.

1.2.4 Linear Predictive Coding

Linear Predictive Coding (LPC) is a widely used technique for speech signal process-
ing that involves modeling the speech signal as a linear combination of past samples.
The coefficients obtained from this linear prediction model are known as Linear Pre-
dictive Coding coefficients.

Linear Predictive Coding is based on the assumption that speech signals are highly
correlated and can be predicted using a linear combination of past samples. The
Linear Predictive Coding coefficients are obtained by minimizing the prediction error
between the original speech signal and the predicted signal.

The Linear Predictive Coding coefficients are commonly used in speech coding,
speech synthesis, and speech recognition applications. They can be calculated using
the following formula:

ak =

∑p
i=k+1 riak−i∑p

i=0 ri
(1.3)

where ak is the kth Linear Predictive Coding coefficient, p is the order of the Linear
Predictive Coding model, ri is the ith autocorrelation coefficient, and ak-i is the k-ith

Linear Predictive Coding coefficient. The Linear Predictive Coding coefficients can
be calculated recursively using the Levinson-Durbin algorithm, which is an efficient
algorithm for solving the set of linear equations that arise in Linear Predictive Coding
analysis.

There are several visual representations of Linear Predictive Coding coefficients,
including plots of the Linear Predictive Coding spectra and Linear Predictive Cod-
ing cepstra. These representations provide insight into the frequency content and
spectral envelope of the speech signal [10].

1.2.5 Gammatone filter features

Gammatone filter features are another type of speech feature extraction method that
is based on modeling the human auditory system. They are calculated by filtering
the speech signal with a bank of gammatone filters, which are modeled after the
tuning of the auditory system’s hair cells. The output of each filter is then rectified
and low-pass filtered, and the resulting signals are then used as features.
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The number of features in gammatone filter features can vary depending on the
number of filters used. Typically, a bank of 40-80 filters is used, resulting in a corre-
sponding number of features.

One advantage of gammatone filter features is that they are designed to better
capture the spectral characteristics of speech, particularly in the higher frequency
ranges. This can be useful in tasks such as speaker recognition or speech recognition
in noisy environments.

Gammatone filter features can be more computationally expensive to compute
than other feature extraction methods, such as MFCCs. Additionally, they may re-
quire more data to train CNN models effectively.

1.3 Artificial Neural Networks

Artificial neural networks (ANN) are a type of machine learning model inspired by
the structure and function of biological neurons in the human brain [9]. ANN consist
of layers of interconnected nodes, or neurons, each performing a simple computa-
tion on its inputs and passing the result to the next layer. The connections between
neurons have weights that are adjusted during training to optimize the model’s per-
formance on a given task.

1.3.1 Ativation Functions

In artificial neural networks, an activation function is applied to the output of each
neuron in a layer to introduce non-linearity into the network. It allows the network
to learn complex patterns and relationships in the data. There are several commonly
used activation functions in ANNs. Here are a few examples:

The sigmoid function is defined as:

σ(x) =
1

1 + e−x
(1.4)

The ReLU function is defined as:

f(x) = max(0, x) (1.5)

The tanh function is defined as:

tanh(x) =
ex − e−x

ex + e−x
(1.6)

This function is commonly used in ANNs as an activation function for hidden layers
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due to its smooth and symmetric S-shaped curve, which allows for effective gradient
descent during backpropagation.

ANN consist a large number of interconnected processing nodes (artificial neu-
rons) organized into layers. The most common types of ANNs include feedforward
neural networks, recurrent neural networks, convolutional neural networks, and
deep neural networks.

1.3.2 Convolutional Neural Networks

CNN stands for Convolutional Neural Network, which is a type of artificial neural
network commonly used for image and video analysis. CNN is good for image pro-
cessing because of its ability to automatically learn and extract hierarchical features
from the input image, making it highly effective in handling complex image struc-
tures and patterns.

In the case of ultrasound articulatory to acoustic SSI, CNNs are well-suited be-
cause they can effectively extract relevant features from the ultrasound images to
produce accurate acoustic predictions. The use of CNNs in this field has shown
promising results in improving the accuracy and robustness of SSI models, mak-
ing the networks more effective in various applications such as speech recognition,
language translation, and human-computer interaction.

1.3.3 Long Short Term Memory

Long Short Term Memory networks are a type of Recurrent Neural Networks de-
signed to overcome the problem of vanishing gradients in traditional RNNs, which
can make it difficult to learn long-term dependencies in sequential data. LSTMs use
a gating mechanism to selectively retain or forget information over time, allowing
them to effectively model sequences with long-term dependencies.

In the context of ultrasound SSI models, LSTMs have been shown to be effective
in modeling the complex relationships between articulatory movements and acoustic
signals over time. By leveraging the memory and gating mechanisms of LSTMs,
these models can capture the dynamics of speech production and generate accurate
predictions of acoustic signals from ultrasound images.

LSTMs have been widely applied in various sequential data processing tasks, such
as speech recognition, language translation, and time series prediction. They are
especially useful in tasks where long-term dependencies are important, and where
the input data may have varying lengths or irregular time frames.
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1.3.4 Residual networks

Residual networks, also known as ResNets, are a type of deep neural network archi-
tecture that was introduced to address the problem of vanishing gradients in very
deep networks. They are composed of residual blocks, which contain skip connec-
tions that allow for the gradient to flow directly from one layer to another.

In ultrasound SSI models, ResNets can be particularly useful for improving model
performance because they allow for the training of deeper networks without suffering
from the vanishing gradient problem. This can result in better feature representation
and improved model accuracy.

ResNets have been widely used in various applications, such as image classifi-
cation, object detection, and speech recognition. They are particularly effective in
sequential data processing tasks, where the input data has a temporal or spatial or-
der, such as audio and video processing, language modeling, and speech synthesis.

1.4 Text To Speech

Text-to-speech (TTS) is a technology that converts written text into spoken words.
TTS systems use Natural Language Processing (NLP) and machine learning tech-
niques to generate speech that is indistinguishable from human speech. TTS systems
have many applications, including accessibility for the visually impaired, language
learning, and automated customer service.

Tacotron2 is a deep learning-based TTS system developed by Google. It uses a
neural network to generate speech from text inputs. The network is trained on a
large dataset of paired text and speech examples, and it learns to map input text to a
sequence of acoustic features that can be used to synthesize speech.

Tacotron2 is particularly well-suited for speech synthesis in difficult-to-model do-
mains, such as ultrasound SSI. In these domains, the acoustic properties of speech
are highly variable and can be difficult to model using traditional rule-based ap-
proaches. Tacotron2 is able to learn these complex patterns from data and generate
high-quality speech.

One of the key advantages of Tacotron2 is its ability to generate speech with
natural-sounding intonation and prosody. This is achieved through the use of an at-
tention mechanism that allows the network to selectively attend to different parts
of the input text as it generates speech. The attention mechanism ensures that the
generated speech is closely aligned with the input text, and that it reflects the appro-
priate intonation and prosody.

It is able to produce speech with natural-sounding intonation and prosody.
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1.5 Datasets

As a part of our research, we used an already existing Hungarian dataset for speech
production research. The dataset contained parallel ultrasound and speech record-
ings from a Hungarian female subject reading sentences aloud, which were collected
using specialized equipment. The whole duration of the recordings was around half
an hour, from which 310 sentences were used for training, 41 for development and
87 for testing, respectively.

To compare our implementation methods for more languages, we decided to add
an extra English dataset to our research. For this, we used the TAL corpus, which
contains parallel recordings of speech, tongue ultrasound, and lip videos from 81
speakers. We selected the TAL1 subset of the corpus [82], which includes recordings
of a single trained native English speaker. The recording conditions for the English
dataset were very similar to those of the Hungarian dataset. After dividing the data
into train, validation, and test sets, we obtained 1015, 50, and 24 utterances, respec-
tively.

We applied the same preprocessing steps to the English Data, as we did for the
Hungarian dataset to ensure consistency in our research. By adding the English
dataset to our research, we were able to compare our implementation methods across
multiple languages and draw more comprehensive conclusions.

1.6 Summary by chapters

The Thesis is organised as follows:

In Chapter 2., we addresses the challenge of accurately predicting speech from ultra-
sound data using deep learning methods. The proposed method utilizes 3D convo-
lutional neural networks to learn spatiotemporal features from the ultrasound data,
which are then used to predict speech. The performance of the proposed method
is evaluated on a Hungarian dataset consisting of ultrasound and speech recordings
from a Hungarian speaker, and compared with other methods in the literature. The
results demonstrate that the proposed method outperforms other methods in terms
of accuracy, and is able to accurately predict speech from ultrasound data.

To improve the results of this approach, we added more combined networks with
an LSTM implementation, which was published in a Hungarian conference. The
combined networks consist of a 3D CNN and a Long Short-Term Memory network.
The addition of the LSTM network allows the proposed approach to capture the
temporal dependencies in the ultrasound data, which further improves the accuracy
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of speech decoding.

Chapter 3. presents a method to improve the performance of neural models used for
silent speech interfaces by incorporating adversarial training. The main challenge in
SSIs is the limited availability of training data, which leads to overfitting and poor
generalization. To address this issue, we proposed an adversarial training approach
that incorporates a discriminator network to guide the generator network towards
producing more realistic and diverse speech representations.

The proposed method involves training a generator network to generate realistic
speech signals from silent articulation data and a discriminator network to distin-
guish between generated speech signals and real speech signals. The generator and
discriminator networks are trained in an adversarial manner, where the generator is
trained to fool the discriminator, and the discriminator is trained to accurately clas-
sify the generated and real speech signals. This adversarial training process improves
the ability of the generator network to generate more realistic speech signals, which
in turn improves the performance of the silent speech interface model.

The performance of the proposed method is evaluated on two datasets including
Hungarian and English and compared with several baseline methods and the results
were also avaluated with several metrics. The results show that the adversarial train-
ing approach significantly improves the performance of the silent speech interface
model, compared to the best baseline method. Additionally, the proposed method
is shown to be robust to variations in the input data, such as different speakers and
speaking styles, which makes it a promising approach for real-world applications of
silent speech interfaces.

Chapter 4. : The objective of this chapter is to improve the accuracy and robustness
of ultrasound-based silent speech interfaces by integrating speaker information into
the model to enhance the model’s generalization capability for unseen speakers. To
achieve this, a method is proposed for learning speaker embeddings using a deep
neural network that can be utilized as a feature representation in the SSI model. The
proposed approach involves a multi-task neural network that jointly learns speaker
embeddings and SSI transcription from ultrasound data. The network includes a clas-
sification model that extracts features from the ultrasound data for each speaker and
a speaker embedding network that maps the extracted features and ultrasound data
to speech. For unseen speakers, the model predicts the features based on the already-
trained model and then embeds these features into the unseen speaker’s ultrasound
data to forecast the speech features. The performance of the proposed method is
evaluated on an English dataset with one speaker and multiple speakers, and the
results demonstrate that integrating speaker embeddings improves the accuracy and
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robustness of the SSI model, especially for speaker-independent models.

In Chapter 5., the challenge of preprocessing in Silent Speech Interfaces addressed
by implementing a new Voice Activity Detection (VAD) method. Previous literature
removed the silent parts of the speech by applying VAD on the whole utterance be-
fore preparing spectrogram as ground truth features. However, this implementation
caused some misalignment between the spectrogram and ultrasound frames as the
decreased signal was used as output data, which could not align with the ultrasound
frames properly. To address this issue, we suggest splitting each utterance with time
equal to the ultrasound time duration and implementing VAD on each speech frame
instead of the whole speech. By doing this, we remove the respective silence part
from both the ultrasound and the speech signal, avoiding misalignment issues.

To measure the performance of the detected frames as voice or silent, we classi-
fied the ultrasound labeled by VAD as silent or speech. The results were promising,
indicating that the extracted features were useful in achieving better performance in
the model. Additionally, we compared the method of applying silence removing to
the whole speech versus in the frame level, and the results showed that the latter
method was more effective in improving the model’s performance. In conclusion,
implementing VAD on each speech frame instead of the whole speech improved the
accuracy of the SSI model, resulting in better alignment between spectrogram and
ultrasound frames, leading to more reliable features for the model.

In Chapter 6., we present a novel approach to deal with the challenge of high com-
putational cost in deep learning models, which requires large amounts of data to
achieve good performance. To address this issue, we suggest using a combination of
Convolutional Neural Networks and Recurrent Neural Networks called ConvLSTM,
along with a 3D Convolutional Network that can extract the sequential and volumet-
ric information from the data.

By combining these two models, we aim to decrease the number of layers and
parameters needed to train the model while still achieving high performance. The
proposed method is evaluated on a Hungarian dataset and compared against previ-
ous high-performance models.

The chapter explains the implementation of the ConvLSTM model and demon-
strates its ability to extract spatial and temporal features from ultrasound tongue
videos. The results show that the proposed method outperforms the previous state-
of-the-art models, achieving better accuracy and efficiency.

Overall, the method presents a promising approach to improving the performance
of deep learning models while reducing the computational cost, which could be valu-
able for future research in the field of image processing and deep learning.

Chapter 7., focuses on addressing the challenges of speaker-specific models and poor
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performance in cross-session scenarios. We proposed the integration of a spatial
transformer network (STN) module into deep networks to enable quick speaker and
session adaptation of ultrasound tongue imaging-based silent speech interface (SSI)
models.

The chapter begins by highlighting the sensitivity of current tongue ultrasound-
based SSI systems to changing speakers and slight displacements of the recording
device. These factors hinder quick switches between users and lead to poor perfor-
mance when the recording equipment is dismounted and re-mounted. To mitigate
these issues, we extend our previous deep networks with an STN module capable of
performing an affine transformation on the input images.

We conducted experiments to evaluate the effectiveness of adapting the STN mod-
ule and the linear output layer for spectral estimation. The results showed that al-
lowing only the adaptation of the STN module could reduce the error rate. The ex-
periments were performed on both 2D and 3D input blocks, with similar tendencies
observed in both cases.

Considering that the STN module and the output layer together comprise only
10% of the weights of the full network, and the improvements were consistent for
cross-session and cross-speaker setups, the proposed method offers a promising ap-
proach for quicker adaptation of the ultrasound tongue imaging (UTI)-processing
workflow.

Overall, Chapter 7 demonstrates the potential of the STN module in address-
ing the challenges of speaker-specific models and poor cross-session performance in
tongue ultrasound-based SSI systems. By incorporating the STN module, the pro-
posed method allows for quicker adaptation and shows significant improvements in
reducing error rates, making it a valuable contribution to the field of silent speech
interfaces.



Chapter 2

3D Convolutional Neural Networks
for Developing Silent Speech
Interfaces Utilizing Ultrasound

Over the past few years, there has been a growing interest in converting articula-
tory movements into acoustic signals. In Chapter 1 we discussed the increasing in-
terest in converting articulatory movements into acoustic signals to create ”Silent
Speech Interfaces” (SSI). These interfaces record soundless articulatory movements
and use them to automatically generate speech, making them useful for those who
are speaking-impaired but can still move their articulators. SSIs can also be used in
noisy environments or military applications.

The standard way to transform movement recordings into speech is through a
two-step process involving recognition and synthesis, as described in [88]. First, a
speech recognition system converts the biosignal into text, which is then used by
a text-to-speech synthesis system to generate speech. However, this method has
some drawbacks, including a significant delay between input and output and errors
introduced by the speech recognizer. Furthermore, this approach results in the loss
of prosodic information that can be estimated from the articulatory signal, such as
energy and pitch, as noted in [31].

More recent systems prefer direct synthesis, where speech is generated directly
from articulatory data without an intermediate step. As deep neural networks have
become increasingly dominant in speech technology, recent studies have focused on
using deep learning to solve the articulatory-to-acoustic conversion problem, regard-
less of the recording technique employed [15, 25, 31, 45, 47, 53]. DNN technology
has been applied to various aspects of speech technology, including speech recogni-
tion [33], speech synthesis [62], and language modeling [111].

It appears that the main challenge leading to poor results in the literature’s im-
plementation of SSI models was the failure to consider the type of data being used
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to implement the actual DNN model for extracting better features. Many of these
studies utilized DNN technology for articulatory-to-acoustic conversion without re-
gard to the recording technique used. Consequently, the results were not satisfactory,
indicating the need to explore more effective strategies that account for the type of
data being used in the SSI model.

2.1 Introduction

In this dissertation, we utilize deep neural networks to convert ultrasound video of
tongue movements into speech. Previous studies used fully connected neural net-
works for this purpose, but as we were working with a sequence of images, we
applied convolutional neural networks that are popular for image recognition [15,
45, 47, 53, 56]. Our input here was a video sequence that contains time trajectory
information of tongue movements. We explore different network structures for pro-
cessing time sequences, including the stacking of a 2D CNN and a recurrent neural
network like long short-term memory and extending the 2D CNN to 3D by adding
time as an extra dimension [25, 48, 52, 53, 63, 108]. We follow the latter approach
and investigate the applicability of a special 3D CNN model called the (2+1)D CNN
[104] for ultrasound-based direct speech synthesis. Our finding suggests that our 3D
CNN model achieves a lower error rate, is smaller, and has a faster training than the
CNN+LSTM model. Therefore, for ultrasound video-based speech synthesis interface
systems, 3D CNNs are a feasible alternative to a recurrent neural model.

2.2 Convolutional Neural Networks for Video Process-
ing

Deep neural networks are a type of artificial neural network that use multiple lay-
ers of processing nodes to learn and represent complex relationships between inputs
and outputs. Convolutional neural networks are a specific type of DNN that are par-
ticularly effective for image recognition tasks. Ever since the invention of ’Alexnet’,
CNNs have remained the leading technology in the recognition of still images [56].
These standard CNNs apply the convolution along the two spatial axes, that is, in
two dimensions (2D). However, there are several tasks where the input is a video,
and handling the video as a sequence (instead of simply processing separate frames)
is vital for obtaining good recognition results. The best example is human gait recog-
nition, but we can talk about action recognition in general [48, 119, 120]. In these
cases, the sequence of video frames forms a three-dimensional data array, with the
temporal axis being the third dimension in addition to the two spatial dimention (see
Fig 2.1).
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Figure 2.1: Illustration of how the (2+1)D CNN operates. The video frames (at the
bottom) are first processed by layers that perform 2D spatial convolution, then their
outputs are combined by 1D temporal convolution. The model is allowed to skip video
frames by changing the stride parameter of the temporal convolution.
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In the context of ultrasound-based direct speech synthesis, previous studies have
applied CNNs to convert ultrasound video of tongue movements into speech. How-
ever, these studies did not always consider the type of input data, and simply im-
plemented CNN models without adjusting them to the specific characteristics of the
ultrasound data. Additionally, the ground truth labels used in these studies, such
as frames of spectrograms, may have contained some information from previous or
later frames.

For the processing of sequences, recurrent neural structures such as the LSTM are
the most powerful tool [34]. However, the training of these networks is known to be
slow and problematic, which led to the invention of simplified models, such as the
gated recurrent unit (GRU) [13] or the quasi-recurrent neural network [11]. Alterna-
tively, several convolutional network structures have been proposed that handle time
sequences without recurrent connections. In speech recognition, time-delay neural
networks (TDNN) have proved very successful [74, 101], but we can also mention
the feedforward sequential memory network [115]. As regards video processing, sev-
eral modified CNN structures have been proposed to handle the temporal sequence
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of video frames [48, 119, 120]. Unfortunately, the standard 2D convolution may
be extended to 3D in many possible ways, giving a lot of choices for optimization.
Tran et al. performed an experimental comparison of several 3D variants, and they
got the best results when they decomposed the spatial and temporal convolution
steps [104]. The model they called ’(2+1)D convolution’ first performs a 2D con-
volution along the spatial axes, and then a 1D convolution along the time axis (see
Fig. 2.1). By changing the stride parameter of the 1D convolution, the model can
skip several video frames, thus covering a wider time context without increasing the
number of processed frames. Interestingly, a very similar network structure proved
very efficient in speech recognition as well [101]. This model allows for flexibility
in window length and overlapping sliding windows, which allows for more precise
extraction of input data. Stacking several such processing blocks on top of each other
is also possible, resulting in a very deep network [104]. Here, we are going to ex-
periment with a similar (2+1)D network structure for ultrasound-based SSI systems.
The performance of the new model was compared to other CNN-based models, such
as (CNN+BiLSTM), (CNN+LSTM), 2D CNN, and FCN (for the details, see sec. 2.4).

2.3 Data Acquisition and Signal Preprocessing

The ultrasound recordings were collected from a Hungarian female subject (42 years
old, with normal speaking abilities) while she was reading sentences aloud. Her
tongue movement was recorded in a midsagittal orientation – placing the ultrasonic
imaging probe under the jaw – using a ”Micro” ultrasound system by Articulate In-
struments Ltd. The transducer was fixed using a stabilization headset. The 2-4 Mhz
/ 64 element 20 mm radius convex ultrasound transducer produced 82 images per
second. The speech signal was recorded in parallel with an Audio-Technica ATR 3350
omnidirectional condenser microphone placed at a distance of 20 cm from the lips.
The ultrasound and the audio signals were synchronized using the software tool pro-
vided with the equipment. Altogether 438 sentences (approximately half an hour)
were recorded from the subject, which was divided into train, development and test
sets in a 310-41-87 ratio. We should add that the same dataset was used in several
earlier studies [15, 31]. The ultrasound probe records 946 samples along each of its
64 scan lines. The recorded data can be converted to conventional ultrasound images
using the software tools provided. However, due to its irregular shape, this image is
harder to process by computers, while it contains no extra information compared
to the original scan data. Hence, we worked with the original 964x64 data items,
which were downsampled to 128x64 pixels. Fig. 2.2 shows an example of the data
samples arranged as a rectangular image, and the standard ultrasound-style display
generated from it. The intensity range of the data was min-max normalized to the
[-1, 1] interval before feeding it to the network.



34
3D Convolutional Neural Networks for Developing Silent Speech Interfaces

Utilizing Ultrasound

Figure 2.2: Example of displaying the ultrasound recordings as a) a rectangular image
of raw data samples b) an anatomically correct image, obtained by interpolation.

The speech signal was recorded with a sampling rate of 11025 Hz, and then
processed by a vocoder from the SPTK toolkit (http://sp-tk.sourceforge.net). The
vocoder represented the speech signals by 12 Mel-Generalized Cepstral Coefficients
(MFGG) converted to a Line Spectral Pair representation (LSP), with the signal’s
gain being the 13th parameter. These 13 coefficients served as the training targets in
the DNN modeling experiments, as the speech signal can be reasonably well recon-
structed from these parameters. Although perfect reconstruction would require the
estimation of the pitch (F0 parameter) as well, here we ignored this component dur-
ing the experiments. To facilitate training, each of the 13 targets were standardized
to zero mean and unit variance.

2.4 Experimental Setup

We implemented our neural networks using the Keras framework with a Tensorflow
backend [22]. We created five different models: a fully connected network that
processes a single frame, a 2D convolutional network that still operates on a single
frame (2D CNN), a 3D convolutional network that takes a sequence of frames as input
(3D CNN), a network that combines the results of the 2D CNN layers processing the
frames using an LSTM (CNN+LSTM) for comparison, and a bidirectional version of
the same network (CNN+BiLSTM). To ensure that they were comparable in terms of
the number of parameters, we set each network to have approximately 4.3 million
trainable parameters. We used the Adam optimizer with a batch size of 100 for
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training. The mean squared error was used as the training loss function.

2D CNN 3D CNN
Conv2D(30, (13,13), strides=(2,2)) Conv3D(30, (5,13,13), strides=(s, 2,2))
Dropout(0.2) Dropout(0.2)
Conv2D(60, (13,13), strides=(2,2)) Conv3D(60, (1,13,13), strides=(1,2,2))
Dropout(0.2) Dropout(0.2)
MaxPooling2D(pool size=(2,2)) MaxPooling3D(pool size=(1,2,2))
Conv2D(90, (13,13), strides=(2,1)) Conv3D(90, (1,13,13), strides=(1,2,1))
Dropout(0.2) Dropout(0.2)
Conv2D(150, (13,13), strides=(2,2)) Conv3D(85, (1,13,13), strides=(1,2,2))
Dropout(0.2) Dropout(0.2)
MaxPooling2D(pool size=(2,2)) MaxPooling3D(pool size=(1,2,2))
Flatten() Flatten()
Dense(1000) Dense(1000)
Dropout(0.2) Dropout(0.2)
Dense(13, activation=’linear’) Dense(13, activation=’linear’)

Table 2.1: The layers of the 2D and 3D CNNs in the Keras implementation, along with
their most important parameters. The differences are highlighted in bold.

Fully Connected Network (FCN): The simplest network structure is achieved
when using fully connected (in Keras, ”Dense”) layers. In our case, the network was
built with five hidden layers, each containing 430 neurons, while the output layer
consisted of 80 linear activation neurons, corresponding to the Mel-spectral target
vector. The network input is a single frame, i.e., 8192 pixels (128x64). The hidden
layers used the Swish activation function [79], and after each hidden layer, a dropout
layer with a dropout probability of 0.2 followed.

Convolutional Network (2D CNN): Similar to the previous network, this net-
work also processes a single frame, however, each of the four layers below the top
Dense layer performs spatial convolution on the data. The detailed configuration
of the layers can be seen in Table 2.1, We searched for the best meta-parameters
through experimentation, and for the hidden layers also used the swish activation
function in this case.

3D Convolutional Network (3D CNN): In this network, instead of 2D convolu-
tion, we used 3D convolution, which allows for processing a short sequence of images
instead of a single image. The specific network structure (see Table 2.1) processes
five images that are s distance apart from each other, where s is the stride parame-
ter along the temporal axis of the convolution. Following the (2+1)D convolution
concept presented in Section 2.2, the network first processes each of the five images
separately, and then performs the temporal convolutional step. In Table 2.1), we
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highlighted in bold the modifications that were necessary compared to the original
2D CNN network. Note that reducing the size of the top convolutional layer was
necessary to keep the number of parameters in the two networks approximately the
same.

Convolutional LSTM Neural Network (CNN+LSTM): The fully connected and
2D CNN networks process a single frame, so it can be assumed that they will not be
worthy competitors for the 3D CNN network operating on a sequence of images. For
processing sequences, the LSTM network is recommended, and since it is a sequence
of images, it is worth combining the feedback network with the 2D CNN network
that processes the images. The bottom four layers of the CNN+LSTM model we
used were the same as the bottom four layers of the 2D CNN network; however, we
replaced the top hidden layer with a Dense layer that was switched to an LSTM layer.
To preserve the number of parameters, we added 500 LSTM neurons to this layer,
and the input to the network consisted of 21 consecutive frames.

Convolutional Bidirection LSTM Neural Network(CNN+BiLSTM): If we do not
insist on real-time processing, the LSTM layer can operate not only in a forward
direction (from left to right) but also in a backward direction (from right to left)
in time. It is also common to create a forward and a backward layer and combine
their outputs. Our model called CNN+BiLSTM is such a bidirectional network, which
differs from the previous CNN+LSTM model only in the bidirectionalization of the
LSTM layer. To preserve the number of parameters, we had to reduce the size of the
LSTM layer to 320 in this model.

2.5 Results

There are several options for evaluating the performance of our networks. In the
simplest case, we can compare their performance by simple objective metrics, such
as the value of the target function optimized during training (the MSE function in our
case). Unfortunately, these metrics do not perfectly correlate with the users’ subjec-
tive sense of quality of the synthesized speech. Hence, many authors apply subjective
listening tests such as the MUSHRA method [50]. This kind of evaluation is tedious,
as it requires averaging the scores of a lot of human subjects. As an interesting short-
cut, Kimura et al. applied a set of commercial speech recognizers to substitute the
human listeners in the listening tests [53]. In this paper, we will simply apply objec-
tive measures, namely the mean squared error and the (mean) R2 score, which are
simple and popular methods for evaluating the performance of neural networks on
regression tasks.
As we have seen in the theoretical overview, the 3D convolutional network has a very
important meta-parameter, the s parameter. In the first experiment, we examined
its effect on the value of the error function. This parameter determines how much
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information the network receives about the input time period: the distance between
the two outer frames can be determined by the formula w = 4 ∗ s + 1. For example,
with s = 5, the size of the time frame covered by the network is w = 21 frames. Con-
sidering the video sampling rate of 82 frames/sec, this corresponds to approximately
a quarter of a second, roughly half the length of a syllable.

Figure 2.3: MSE rates of the 3D CNN on the development set for various s stride values.
For comparison, the MSE attained by the 2D CNN is also shown (leftmost column).

Fig. 2.3 shows the MSE values obtained with the 3D CNN network for different
values of the s parameter. For comparison, we also included the error of the 2D
CNN network (which only processes a single frame). It can be seen that by taking
into account not only the current frame but also its neighborhood, significant error
reduction can be achieved. Even by using only 2 immediate neighbors (s=1), we
obtain better results, but the improvement is much greater with s values between
3 and 6. Therefore, considering a wider context is important, even at the cost of
skipping frames. Based on the above result, we fixed the value of the s parameter to
5.

In the next experiment, we compared five different network structures, summa-
rizing the MSE and R2 values obtained on the validation and test sets in Table 2.2 (in
the case of R2, a higher value indicates a better model). It can be seen that, among
the FC and 2D CNN networks that process a single frame, the convolutional network
is clearly better, but much better results can be achieved with network variants that
process sequences of frames instead of a single frame (3D CNN and CNN+LSTM
networks).
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Network Val Test

Type MSE Mean R2 MSE Mean R2

FCN 0.410 0.600 0.419 0.585

2D CNN 0.392 0.617 0.401 0.603

3D CNN (s=5) 0.292 0.714 0.293 0.710

CNN + LSTM [50] 0.303 0.701 0.269 0.709

CNN + BiLSTM 0.301 0.706 0.296 0.707

Table 2.2: MSE and R2 values obtained with different network architectures on the
validation and test sets.

To compare the 3D CNN and LSTM-based networks, we set the input of the LSTM
networks to 21 frames, as this proved to be optimal for the 3D CNN. As shown in
table 2.1, the CNN+LSTM model clearly outperformed the single-frame models, but
could not surpass the accuracy of the 3D CNN network. Even the bidirectional LSTM
layer did not change this: while it usually brings a small improvement in other tasks,
here we got essentially the same result as with the unidirectional network. We consid-
ered the possibility that the optimal window size might be different for CNN+LSTM
models, so we tried to change the 21-frame input size, but we did not get signifi-
cantly better results with other values. Based on the obtained error values, it seems
that subsampling the frames is just as effective in helping information fusion as pro-
cessing all frames with the LSTM’s more sophisticated feedback and internal memory
techniques. However, because of its recurrent nature, the LSTM cannot skip frames,
although this might be necessary in this case. Due to the preservation of all frames,
the training of the CNN+LSTM network took about 70% longer than the training of
the 3D CNN network, despite having the same number of parameters. Interestingly,
the memory requirements of the LSTM network were also higher, presumably due to
the preservation of all input frames.

The authors of [15] applied a fully connected network on the same data set. They
obtained slightly better results than those given by our FCN, presumably due to the
fact that their network had about 4 times as many parameters. More interestingly,
they attempted to include more neighboring frames in the processing, simply by con-
catenating the corresponding image data. Feature selection was applied to alleviate
the problems caused by the large size of the images (∼ 8000 pixel per image), these
simple methods failed to significantly reduce the error rate. Our current experiments
show that the frames should be placed farther apart (3 ≤ s ≤ 8) for optimal perfor-
mance. Moreover, instead of reducing the input size by feature selection, it seems to
be more efficient to send the frames through several neural layers, with a relatively
narrow ’bottleneck’ layer on top.
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Finally, we note that Moliner and Csapó also attempted to combine 2D CNN and
LSTM networks on a similar task [50]. However, their results are not directly compa-
rable to ours because they used a different model and therefore used different target
values during training. Additionally, the network they used was much larger, with
more than four times the number of parameters compared to our networks. They
also did not observe a significant difference in performance between unidirectional
and bidirectional LSTM variations. Parallel to our work, Saha and colleagues also
attempted to process language-audio-video and identified a similar 3D convolutional
network structure as optimal. They achieved significantly better results with the 3D
CNN network than with the CNN+LSTM combination [85].

STOI PESQ MCD

FCN 0,661 1,562 4,602

2D CNN 0,658 1,551 4,569

3D CNN (s=5) 0,743 1,831 4,161

CNN + LSTM 0,742 1,792 4,139

CNN + BiLSTM 0,736 1,789 4,152

Table 2.3: Comparison of our five models with objective quality metrics for speech.

Various objective metrics have been proposed for evaluating sound quality. These
attempt to take into account the main characteristics of human hearing, and therefore
provide a more accurate estimate of sound quality than the MSE error function op-
timized during training. In Table 2.3 above, we evaluated three such metrics on the
five test sets synthesized by the models: STOI (Short-Term Objective Intelligibility,
[97]), PESQ (Perceptual Evaluation of Speech Quality,[2]), and MCD (Mel-Cepstral
Distance, [57]). Higher values indicate better quality for the first two, while lower
values indicate better quality for the last one. The numbers obtained show a clear
qualitative leap between the models that process only one frame (FC and 2D CNN)
and those that convert sequences of frames (3D CNN, LSTM, and BiLSTM). Two met-
rics favored the 3D CNN, and one favored the LSTM, but the difference between their
performance according to all three metrics was minimal, so we cannot declare a clear
winner.

2.6 Summary

Based on the better results achieved in the experiments, we have decided to choose
3D CNN as the preferred implementation for later model improvements. The 3D CNN
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network performed equivalently or slightly better than the CNN+LSTM network,
while requiring less training time. While both models have many meta-parameters,
further in-depth measurements would be required to claim the superiority of the 3D
CNN. However, we can conclude that the 3D CNN network is a competitive alter-
native to combined CNN+LSTM networks when building a silent speech interface
based on visual speech input. Therefore, this method will be preferred for future
improvements to the model.

The author of this PhD thesis has contributed in two main aspects presented in
this chapter:

II/1. Implementing the neural networks used in the experiments to restore speech
signals from articulatory recordings. Specifically, they implemented a 3D con-
volutional neural network with different window length and compared it with
different variations of CNN and combination with CNN+LSTM and BiLSTM
networks.

II/2. Calculating the performance of the models using objective metrics such as
STOI, PESQ, and MCD. The results obtained from these metrics were analyzed
to compare the performance of the different network architectures.

It should be noted that the results of this chapter have been published in two different
publications, indicating the relevance and significance of the research [60, 102].



Chapter 3

Utilizing adversarial training to
improve Deep Neural Network models

In deep neural network based ultrasound image SSI projects, conventional loss func-
tions for 3D CNNs (3D convolutional neural networks) are often used to optimize
the performance of the models. These loss functions can be simple mathematical
formulas that measure the difference between the predicted output of the model and
the actual ground truth. The most commonly used loss function for image processing
tasks is the mean squared error.

However, conventional loss functions for 3D CNNs in ultrasound image SSI projects
face several challenges. For example, conventional loss functions do not always cap-
ture the perceptual quality of the output spectrogram images. Additionally, conven-
tional loss functions may result in blurry spectrogram images or spectrogram images
with loss of fine details. Therefore, there is a need to use alternative loss functions
that can capture the perceptual quality of the spectrogram images.

Perceptual loss functions are one type of alternative loss functions that can im-
prove the performance of ultrasound image SSI models. Perceptual loss functions
are originally designed to measure the similarity between two images in terms of
their perceptual qualities, such as texture, contrast, and sharpness, instead of just
measuring the pixel-wise differences between the images. Perceptual loss functions
are commonly used in image style transfer and image generation tasks.

Adversarial networks, such as Generative Adversarial Network (GAN), can also
be used to improve the conventional loss function for ultrasound image SSI mod-
els. GANs consist of two neural networks, a generator network and a discriminator
network, that are trained together in a game-like setting. The generator network
generates images that try to mimic the ground truth images, while the discrimina-
tor network tries to differentiate between the generated images and the real ground
truth images. Through this process, the generator network learns to produce images
that are more realistic and similar to the ground truth images.
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In the context of ultrasound image SSI projects, adversarial networks can be used
to improve the perceptual quality of the data predicted by the model. By using
adversarial training, the SSI model can learn to generate spectrogram images that
are not only pixel-wise similar to the ground truth spectrogram images, but also have
better perceptual quality, such as sharper edges, better contrast, and more realistic
texture.

In the experimental part, we used adversarial networks to improve the conven-
tional loss function for ultrasound image SSI models. The experiments were run
on two Hungarian and English datasets, and different evaluation metrics were used
to evaluate the results. The results of the experiments showed that using adversar-
ial networks can improve the perceptual quality of the images, as measured by the
evaluation metrics.

3.1 Problem Description and Literature Overview

As we discussed in Chapter1, the process of human speech production involves
complex motor processes that include speech planning in the brain, respiratory, la-
ryngeal, and articulatory movements. Electromagnetic Articulography, Ultrasound
Tongue Imaging, Permanent Magnetic Articulography, and surface electromyography
are methods used to record articulatory movements. Silent Speech Interfaces re-
construct the speech signal from these signals, and their applications include aiding
impaired individuals and situations where speaking loudly is not feasible. Brain-
computer interfaces like functional Magnetic Resonance Imaging or functional func-
tional near-infrared spectroscopy (fNIRS) can be used to record brain activity in the
cases of imagined speech and inner speech where no articulatory movement is in-
volved.

There are two approaches to articulatory-to-acoustic conversion, including the
two-step approach, which first converts the signal to text and then to speech [23, 40,
52, 106], and the direct approach, which converts the articulatory signal to a speech
signal without any intermediate steps. The direct approach, which typically uses a
deep neural network, has become more popular with the development of powerful
deep learning techniques [25, 45, 86, 98]. As we follow the second approach using
ultrasound tongue imaging videos as the input, and we will experiment with a special
DNN configuration to perform the conversion.
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3.2 Silent Speech Interfaces Built on Ultrasound Tongue
Imaging and Neural Vocoders

Here, we worked with an ultrasound-based data acquisition technique. In this frame-
work, an ultrasound probe is placed under the chin of the subject, so it can record
images of the tongue movement in a midsagittal orientation (see Fig 3.1). The device
applied was the ”Micro” ultrasound system produced by Articulate Instruments Ltd.
To support DNN training, the subjects were asked to speak loud, and their speech was
recorded in parallel with the ultrasound output (cf. Fig 3.1 again). The ultrasound
and speech recordings served as the training inputs and training targets for the DNN,
respectively. As the input and target signals were synchronized, we applied con-
ventional network structures which perform the conversion in a time-synchronized,
frame-by-frame manner.

Figure 3.1: Illustration of the data acquisition process.

Training a network to generate speech signals directly would require a huge
amount of training data. Hence, we opted for a two-step solution, which was moti-
vated by speech synthesis. In text-to-speech systems, a popular approach is to first
convert the text to a spectrogram, then convert the spectrogram to a speech signal.
Nowadays, both steps can be implemented by neural networks [75]. To adjust this
approach to our task, only the first network needs to be modified, as our input is an
ultrasound video and not a text. This way, we can apply large, pre-trained networks
for the second task, while our network has to estimate only a dense spectral represen-
tation instead of the speech waveform itself. Several neural vocoders are available



44 Utilizing adversarial training to improve Deep Neural Network models

for the speech generation task [29], and we chose to use the WaveGlow model [75].
As WaveGlow requires a sequence of 80-dimensional mel-scaled spectral vectors as
input, the task of our network was to estimate such a spectral vector form each frame
of the video. The next section discusses the details of this step.

3.3 Generative Adversarial Networks

Generative Adversarial Network is a type of neural network that consists of two net-
works: a generator network and a discriminator network. The generator network
is responsible for generating synthetic data while the discriminator network’s job is
to distinguish between the synthetic data and the real data. The two networks are
trained together in a process known as adversarial training, where the generator tries
to produce more realistic data, and the discriminator tries to improve its ability to
differentiate between the real and fake data [27]. This system is called adversarial,
as the generator and the discriminator work against each other.

Figure 3.2: A typical GAN implementation consists of two neural networks (generator
and discriminator) trained in an adversarial manner, with noise vectors as input to the
generator and real/fake labels as input to the discriminator.

Figure 3.2 shows the implementation of a GAN (for image generation). It consists
of two main components, the generator network and the discriminator network. The
generator network takes a random noise vector as input and generates a synthetic
image as output. The discriminator network takes the synthetic image generated
by the generator network or a real image from the dataset as input and outputs a
probability value that indicates whether the input image is real or fake. The two
networks are trained in an adversarial manner, where the generator tries to generate
more realistic images to fool the discriminator, and the discriminator tries to improve
its ability to differentiate between the real and fake images. During the training
process, the generator learns to generate more realistic images, and the discriminator
learns to accurately classify the images as real or fake. Once the training is complete,
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the generator can be used to generate new images that are similar to the real images
in the dataset. This approach has been used in a wide range of applications, including
image generation, speech synthesis, and natural language processing.

3.3.1 Conditional Generative Adversarial Networks

Conditional Generative Adversarial Networks (CGANs) are a type of GAN that add
additional information (see fig 3.3), or conditions, to the generator and discrimina-
tor [68]. This extra information can be in the form of labels, attributes, or any other
relevant data that can be used to guide the generation process, as it can be seen as y
vector in fig3.3. CGANs have been successfully applied to a variety of tasks, such as
image-to-image translation, text-to-image generation, and style transfer.

Figure 3.3: Conditional Generative Adversarial Networks [68]

Image-to-image translation is a popular application of cGANs, where the goal is
to translate an image from one domain to another [42]. For example, translating
a grayscale image to a colored image, or translating a sketch to a realistic image.
cGANs can also be used for text-to-image generation, where the goal is to generate
an image from a textual description.

Another popular application of cGANs is style transfer, which involves transferring
the style of one image onto another image while preserving the content. For example,
taking a photograph and applying the style of a famous painting to create a new,
stylized image.

Overall, cGANs are a powerful extension of GANs that allow for more precise
control over the generation process and have many practical applications in fields
such as computer vision, natural language processing, and creative arts.



46 Utilizing adversarial training to improve Deep Neural Network models

3.4 Generative Adversarial Networks for Articulatory-
to-Acoustic Mapping

As we use WaveGlow for the speech synthesis step, the task for our DNN was to
convert each ultrasound video frame (64x128 pixels) into a mel-spectral vector (with
80 components). In chapter 2 we found that the best results can be achieved by using
a short sequence of video frames as input, rather than just a single frame [102]. We
got the lowest error rate with a special 3D convolutional neural network structure,
and other authors reported similar findings [86]. Here, we apply the same 3D CNN
structure that was found the best in chapter 2. The input of this network consists of
a 25-frame block of the ultrasound video, and the output is a mel-spectral vector.

A crucial parameter of DNN training is the loss function which formalizes the
difference between the training targets and the DNN output. In regression tasks,
the simplest solution is to use general loss functions such as the mean-squared er-
ror. However, such mathematically motivated loss functions may not conform with
our perception. When the network output is a speech signal, such as in speech en-
hancement, one may try to apply objective speech quality metrics as the loss func-
tion [66, 121]. Here, we explore another method where a second, discriminator
network is trained to judge the quality of the output signal. This approach leads to
the subject of Generative Adversarial Networks.

As we discussed in section 3.3.1 when the goal is not data generation but data
transformation, we can modify the original GAN formulas by adding the input to be
transformed as a ‘condition‘ of the data distribution, and hence this model is called
the conditional GAN or CGAN [68]. GANs and CGANs were shows to produce very
good quality images in broad types of vision tasks like image generation [27], image
translation [42, 122], and text-to-image synthesis [80]. In speech technology, the
GAN-based approach is the most successful in speech enhancement [116] and voice
conversion [51].

In our case, the role of the generator was played by the network that converts
the ultrasound data to mel-spectral data. For this purpose we used the same network
as in chapter 2. As the baseline system, we trained this network conventionally, us-
ing the MSE loss function. Then we created a discriminator which was trained to
discriminate real mel-spectrograms from those produced by the generator. As was
explained earlier, the generator was trained in an adversarial manner, so it was op-
timized to create spectrograms that cannot be discriminated from real spectrograms
by the discriminator.

The generator and the discriminator was trained in parallel, using a two-step pro-
cess [116]. As shown in Fig. 3.4a, the first step trains the discriminator on two types
of images: on real spectrograms (lower data path), and on spectrograms created by
the generator (upper path). These serve as positive and negative training examples,
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Figure 3.4: The error calculation (forward arrows) and weight update (backward ar-
rows) training steps for the discriminator (upper image) and the generator (lower im-
age) networks of the GAN.

denoted by the target labels of 1 and -1 in the figure. For the training, we applied the
hinge loss function, which is frequently used as a GAN objective [58], and optimized
it using the Adam optimizer with a learning rate of 0.0002. In this step, only the
weights of the discriminator are updated, while the generator weights are frozen.

Fig. 3.4b shows the other training step that updates the generator weights (now
the discriminator weights are frozen). We combine two error functions to calculate
the loss, and hence the gradient. First, we compare the generator output and the tar-
get spectrograms using the MSE loss (lower path). The second loss value is obtained
from the discriminator (upper path). Notice that now the discriminator target labels
are flipped, as we wish to train the generator in an adversarial manner, to create
outputs that look like a real spectrogram.
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3.5 Experimental Setup

The goal of the experiments was to compare the performance of the 3D CNN gener-
ator network trained conventionally, using the MSE loss function, with the training
scheme that applies the GAN-style discriminator network. In the experiments we
evaluated our models on two data sets – one of them being recorded from a Hun-
garian speaker and the other from an English speaker. Here, we shall present the
technical details of the experiments.

3.5.1 Data Sets and Data Preprocessing

Hungarian Data Set: The parallel ultrasound and speech recordings were collected
from a Hungarian female subject reading sentences aloud as far as we explain in
chapter 2.3, using the equipment briefly described in Section 3.2. The whole duration
of the recordings was about half an hour (438 sentences), from which 310 were used
for training, 41 for development and 87 for testing, respectively.

The ultrasound transducer produces an ultrasound video of the tongue movement
at a rate of 82 frames per second. One frame of this video has a resolution of 64x946;
that is, the device collects 946 data samples along 64 scan lines. As these ultrasound
images are very noisy and they contain very few details, we decreased the image size
to 64x128 by applying a bicubic interpolation. The pixel intensities were min-max
scaled to the [-1, 1] range.

The speech signals were recorded in parallel with the ultrasound video at a sam-
pling rate of 22050 Hz. The speech and ultrasound signals were synchronized using
the software tool provided by Articulate Instruments.

English Data Set: As the English data set, we used the TAL corpus [82]. It con-
tains parallel speech, tongue ultrasound and lip video recordings from 81 speakers.
Here, we just used the TAL1 subset of the corpus, which contains the recordings of
a single trained native English speaker. The recording conditions were very similar
to that of the Hungarian data set and, after division, the train, validation and test
sets contained 1015, 50 and 24 utterances, respectively. We applied exactly the same
preprocessing steps as for the Hungarian data.

3.5.2 DNN Configuration and Training

As the generator we used the 3D CNN from chapter 2, with the slight modification
that instead of one target vector, here we specified 5 consecutive spectral vectors as
targets. We hoped this modification would improve the performance of the discrimi-
nator.

As the discriminator, we applied the so-called Patch-GAN method [42, 122]. In-
stead of a two-class decision for the whole spectrogram image, the discriminator of
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Layer Filters Size Strides Padding Activation

Conv2D 64 (4,4) (2,2) same relu
Conv2D 128 (4,4) (2,2) same relu
Conv2D 256 (4,4) (2,2) same relu
ZeroPadding2D – – – – –
Conv2D 512 (2,2) (1,1)) valid relu
ZeroPadding2D – – – – –
Conv2D 1 (4,4) (1,1) valid tanh

Table 3.1: The layers of the discriminator network (following Keras’ terminology). Al-
beit not shown, each but the last Conv2D layer is followed by batch normalization.

a patch-GAN returns a set of output values for different regions of the spectrogram.
We applied a fully convolutional CNN for this purpose, with an output vector of 10
components. The actual network configuration and its parameters are shown in Ta-
ble 3.1.

When synchronized training targets are available, as in our case, adversarial train-
ing can be combined with conventional MSE-training. We got the best results when
the MSE loss function was combined with the adversarial training loss using a weight-
ing ratio of 0.75-0.25 for the two loss functions, respectively.

Hungarian Corpus English Corpus
Training Method Dev Test Dev Test

MSE Mean R2 MSE Mean R2 MSE Mean R2 MSE Mean R2

MSE 0.327 0.68 0.326 0.677 0.316 0.683 0.317 0.68
GAN 0.287 0.719 0.29 0.713 0.287 0.715 0.293 0.71

Table 3.2: The MSE and R2 scores of the generator with the MSE and GAN training
approaches.

3.6 Results

Evaluating the quality of the generator is not trivial, as its output is a spectrogram,
which is converted to a speech signal by WaveGlow. Our main goal is to increase
the quality of the synthesized speech, and we have two ways to measure this quality.
First, we can perform subjective listening tests such as MUSHRA [43]. Unfortunately,
this would require a lot of human subjects, hence it would be slow and troublesome,
which we wished to avoid here. Instead, we can evaluate objective, formally defined
metrics. As the simplest of these, we report two metrics that are popular in machine
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learning for regression tasks, namely the mean squared error and the correlation-
based mean R2 score (the former has to be minimized, while the latter should be
maximized). As can be seen in Table 3.2, all these metrics gave a slight improve-
ment when the GAN-style training was applied, both for the Hungarian and English
subjects, and both for the development and the test sets.

As we mentioned in Section 3.2, our output is a speech signal, and in this case the
above simple metrics may not perfectly reflect human perception. Fortunately, sev-
eral objective measures have been developed in speech technology and in telecom-
munications to compare the quality or intelligibility of speech recordings. These mea-
sures include the Short-Time Objective Intelligibility (STOI) [66] and its extended
version (ESTOI), the perceptual evaluation of speech quality (PESQ) method [66],
and its extended version known as perceptual metric for speech quality evaluation
(PMSQE) [66]. While the first three measure quality, and hence a higher value means
a better performance, PMSQE was designed to be applicable as a loss function in
DNN training, so in this case a lower value indicates better quality. We also eval-
uated the signal-to-distortion ratio (SDR) and its extended, scale invariant version
(SI-SDR) [49]. As their name suggests, for these metrics a higher value means bet-
ter quality. Finally, we calculated the mel-cepstral distortion (MCD) [66], which is a
distortion metric, so it should be minimized to increase speech quality. These results
are summarized in Table 3.3 for the test sets of the two databases. To aid readibility,
the two metrics that are to be minimized were placed in the rightmost columns, and
the best scores are highlighted for both corpora. As the results indicate, extending
the MSE training criterion with GAN-style adversarial training led to a consistent
improvement in all the evaluated metrics and for both corpora. Although in certain
cases the improvement is only slight, the results clearly justify the utility of generative
adversarial networks for the articulatory-to-acoustics mapping task. In comparison,
Ribeiro et al. reported an MCD score of 2.99 for the English dataset using a much
more sophisticated endocer-decoder neural architecture [82].

Corpus and
Training method

STOI ESTOI PESQ SISDR SDR PMSQE MCD

Hun - MSE 0.7050 0.456 1.282 -39.363 -18.021 2.797 4.627
Hun - GAN 0.7067 0.4673 1.311 -37.868 -16.893 2.777 4.558

Eng - MSE 0.612 0.385 1.464 -36.176 -18.31 2.827 3.38
Eng - GAN 0.623 0.405 1.503 -36.031 -17.672 2.735 3.229

Table 3.3: Objective quality scores for the two training methods and the two corpora.
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3.7 Summary

The application of the GAN framework has already proved successful in speech en-
hancement and voice conversion tasks, and here we made the first attempts to apply
it to the articulatory-to-acoustic mapping task of ultrasound-based silent speech in-
terfaces. As the baseline, we trained the generator network conventionally, using the
MSE loss, and then we extended its training with adversarial training by means of a
discriminator. We applied our method on two data sets, a Hungarian corpus and an
English corpus, and in both cases we found that the quality of the generated speech
signals improved, according to several objective speech quality metrics. Based on the
results I presented, it was found that incorporating perceptual loss into an ultrasound
SSI model could enhance its performance.

The author of this PhD thesis is responsible for the following contributions pre-
sented in this chapter:

III/1. Implementation of GAN and CGAN models for image generation.

III/2. Utilization of various SSI models as generators in the GAN and CGAN frame-
works.

III/3. Calculation and analysis of performance metrics to evaluate the effectiveness
of the models.

III/4. Conducting research in the field of GANs and image generation.

This chapter’s results were published in [36] and received a best paper award (see
fig 3.5).
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Figure 3.5: Best paper award for the Resulting publication



Chapter 4

Neural Speaker Embeddings for
Generalizing our Ultrasound SSI
model

In earlier chapters, we discussed the development of new models and the improve-
ment of their performance. However, when these models are tested on unseen data,
their results may not be accurate. This could be due to a lack of comprehensive stud-
ies on generating intelligible speech from biosignals, which are often conducted on
small databases of just one or a few speakers. Collecting data for these studies is
time-consuming and requires the patience and motivation of the subjects. Addition-
ally, articulatory tracking devices are highly sensitive to the anatomy of the individual
speaker, and a misalignment of the recording equipment can further impact the ac-
curacy of the results.

To address these challenges, various methods have been developed, such as signal
normalization and model adaptation. These methods have been applied different
modalities, including EMG and acoustic signals. One study by Ribeiro [81], used x-
vector features to improve speaker-independent models by adding information from
speaker recognition models. Although their research was applied to acoustic signals,
we implemented their idea on articulatory signals to improve the performance of
speaker-independent models. Our experiments were conducted on the English TAL
dataset, and we presented new extracted features. Our results showed that this
method was useful for improving the performance of speaker-independent models in
the ultrasound SSI framework.

4.1 Problem Description and Literature Overview

Although there are lots of studies on generating intelligible speech from the above
ultrasound video, most of these were conducted on relatively small databases of just a
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single or a small number of speakers [20, 26, 88]. Meanwhile, all of the articulatory
tracking devices are obviously highly sensitive to the actual speaker’s anatomy. A
further source of variance may come from the possible misalignment of the recording
equipment. For example, for ultrasound recordings, the probe fixing headset has to
be remounted onto the speaker for each recording session. This inevitably causes the
recorded ultrasound videos to become slightly misaligned between each recording
session.

Although the properly working cross-session and cross-speaker methodologies are
still missing, there have already been studies in this direction. Kim et al. investigated
speaker-independent Silent Speech Recognition using EMA with 12 healthy and la-
ryngectomized speakers [52]. For EMG-based recognition, several signal normal-
ization and model adaptation methods were investigated by Maier-Hein et al. [65].
Janke et al. studied session-independent sEMG over 16 sessions of a speaker, and the
results showed that sEMG is quite robust to minor changes in the electrode place-
ment [46]. Wand et al. utilized domain-adversarial DNN training to increase the
session-independency of their EMG-based speech recognizer [106]. For EOS-based
SSR with a small vocabulary, Stone and Birkholz found the speaker-independent av-
erage word accuracy to be relatively stable, varying between 56–62% [96].

Ultrasound-based SSI systems, however, might be less robust, as slight changes in
probe positioning causes shifts and rotations in the resulting image.

In this Chapter, we examined the session dependency of UTI-based direct speech
synthesis, and we proposed a simple session adaptation method [28]. Ribeiro et al.
experimented with the classification of UTI images of phonetic segments [81], and
found that speaker dependent systems perform much better than speaker indepen-
dent ones, but adding speaker information in a simple form (e.g. mean ultrasound
image) helps the model generalize to unseen speakers.

The same authors reported that unsupervised model adaptation can improve the
results for silent speech (but not for modal speech) [83]. They also performed
multi-speaker recognition and synthesis experiments where they applied x-vectors
for speaker conditioning – but they extracted the x-vectors from the acoustic data
and not from the ultrasound [82].

Just like the above-mentioned biosignals, speech signals also contain speaker-
specific factors that hurt the cross-speaker performance of speech processing systems.
Various DNN training and adaptation methods have been proposed as remedies, per-
haps the simplest being is to use auxiliary input features that encapsulate information
on speaker characteristics. The classic such representation was the i-vector [89], but
its role has recently been taken by the x-vector [94]. The x-vector can be created by
training a DNN for speaker classification, and then the activation values of an upper
hidden layer are used as the speaker embedding vector in other tasks. Our goal here
is to adjust this x-vector scheme to ultrasound tongue videos. To this aim, we train
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a DNN for speaker classification, using 3D blocks of adjacent ultrasound frames as
input. First, we report the speaker recognition accuracy of this network in 4.5.1.
Next, we evaluate the speaker embedding vector provided by this network on a sepa-
rate set of speakers via very simple speaker recognition experiments in 4.5.2. Finally,
we attempt to apply the embedding vectors as auxiliary input for a second network
which is trained to perform speech synthesis, more precisely, to estimate spectral vec-
tors from the ultrasound frames (4.5.3). Before the experiments, brief descriptions
are given regarding our SSI framework, x-vectors and the experimental conditions in
Sections 4.2, 4.3 and 4.4, respectively.

4.2 The SSI framework for Speaker Embedding model

We presented our approach for creating an ultrasound-based SSI in previous chap-
ters, so we just give a brief overview here. As Fig 4.1 shows, the input to our sys-
tem is a sequence of ultrasound tongue imaging frames, and the target sequence
is a speech signal. This is a sequence-to-sequence mapping problem, which could
be addressed by sophisticated encoder-decoder networks that would not even re-
quire aligned training data [82]. However, as we have synchronized input-output
samples, most authors apply simpler networks that perform the mapping frame by
frame [18, 100]. The optimal output representation is also a matter of choice. While
training DNNs that generate speech signals directly is feasible [75], it would require
large amounts of training data. Alternatively, one can use a dense spectral represen-
tation as the training target that can be converted to speech [15]. Recently, speech
synthesis technology has introduced neural vocoders for synthesizing speech from
spectrograms [75]. The main advantage of applying these in the SSI task is that we
can borrow large pre-trained networks for the speech synthesis step, and we have
to deal only with the ultrasound-to-spectrum mapping task. In the chapter 3, we
used WaveGlow [18], and we obtained higher quality speech than with standard
vocoders [15].

As WaveGlow requires a mel-spectrogram with 80 spectral components as input,
our DNN was trained to estimate such spectral vectors from the UTI video in a frame-
by-frame manner. The input of our network is a 3D array of consecutive images, and
the output is a 80-dimensional spectral vector. The convolutional network structure
that we applied here [102] was the same as the lower, ’frame-level’ part of the xx-
vector network, so we delay its presentation to the next section. As here the task is to
estimate spectral vectors, we used a linear output layer and the network was trained
to minimize the mean-squared error of the regression task.
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Figure 4.1: Schematic diagram of the UTI-to-speech conversion process applied in our
SSI model.

4.3 Speaker embedding vectors for ultrasound tongue
imaging

The x-vector concept was introduced by Snyder et al., motivated by the goal of re-
placing the previous Gaussian-based i-vector approach with a purely neural solu-
tion [94]. The basis behind the x-vector is a DNN that is trained to discriminate
speakers. The network structure is unusual in the sense that it consists of three main
parts. The lower layers – typically a time-delay network (TDNN [74]) – operate on
the level of frames. Then, the subsequent temporal pooling layer aggregates statistics
over the frames of a given speech segment or utterance. This layer may collect only
the mean values [61], the mean and the standard deviation [92, 94, 95] or it may
even apply a sophisticated attention mechanism [72, 109]. The aggregated values
are processed further by several fully connected layers. As these layer operate on the
segment level, after training they can produce a fixed-size speaker embedding vector
even from utterances of variable lengths. The embedding vector is typically obtained
as the linear activation output of the fully connected layer right below or two layers
below the softmax output [94].

We adjusted the x-vector DNN to operate with a sequence of ultrasound images
instead of a sequence of speech feature vectors as follows (see also Fig 4.2).

The frame-level part has the same structure as the network we apply in the spec-
tral estimation step of Fig 4.1 [102]. Its input consists of 21 consecutive images,
which are processed by a 3D convolutional layer in 5-image blocks, using a relatively
large stride size of 4 along the time axis. The subsequent convolutional layers apply
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Figure 4.2: Illustration of the UTI-based x-vector network.
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the 3D convolution in a decomposed “(2+1)D” form, first processing these blocks
locally, and aggregating their content along time only at higher layers. This architec-
ture was motivated by the findings of Tran et al. for video recognition [104], and
also by the success of TDNNs in speech recognition [74, 101]. The top layer of the
frame-level part is a dense layer that produces a local output vector at each frame
position (ie., for the center frame of the input block).

The statistical pooling layer performs a simple average pooling. We leave more
complex solutions such as standard deviation pooling or attention-based weighting
for future work.

The segment-level part consists of two fully connected layers and a softmax
output layer that has one output neuron for each speaker in the training set. The
neural speaker embedding vector for a given input segment or utterance is extracted
from one of these dense layers (see the experiments in Section 4.5).

4.4 Experimental Setup

In the experiments we used the TaL80 corpus [82], which contains ultrasound, speech
and lip video recordings from 81 speakers. Apart from the silent speech experiments,
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the speech signals were also recorded in parallel with the ultrasound, and here we
used these synchronized ultrasound and speech tracks. The ultrasound was recorded
using Articulate Instruments’ Micro system that captures a midsaggital view of the
tongue at a frame rate of 82 fps. The raw ultrasound images contain 64 x 842 data
values, which were resized to 64 x 128 pixels. More details about the recording
process can be found in [82].

We divided the data into two sets, so we used 50 speakers to create the x-vector
network, and we held out 31 speakers to train and evaluate the SSI network. Al-
though the x-vector network is able to handle inputs with different sizes, for techni-
cal simplicity we chose to work with short uniform 2-second long chunks from each
recording (similar to Shon et al. [92]). To train the x-vector network, we extracted
such 2-second (164 frames) chunks from each training file of the 50-speaker subset
of the corpus, resulting in 76 chunks from each speaker on the average (minimum
65, maximum 85). Altogether we obtained 3800 such blocks, from which 2298 were
used for training, 357 for development, and 1145 blocks for testing.

The network used for the spectral estimation task in the SSI and the frame-
level part of the x-vector network were structurally identical, consisting of 4 3D-
convolutional layers (with a MaxPooling layer after every second convolution), and
a fully connected layer that aggregates the convolutional outputs (the exact model
parameters can be found in chapter 2). The fully connected hidden layer was fol-
lowed by a linear output layer for the spectral estimation task, while in the x-vector
network the fully connected layer outputs were aggregated along time by average
pooling. The segment-level part consisted of two fully connected layers (FC#1 and
FC#2 in Fig 4.2) with sizes of 500 and 250, and the softmax output layer contained
50 neurons, corresponding to the 50 speakers of the train set. Both networks were
trained using the Adam optimizer with a learning rate of 0.0002, using a batch size
of 100 for the SSI network, and batch sizes of 4-16 for the x-vector network (us-
ing smaller batch sizes for longer segments). The nonlinearity applied in all hidden
layers was the swish function.

4.5 Results

4.5.1 Training the x-vector network

In the first experiment we were interested to measure the speaker classification ac-
curacy of our x-vector network, and how it is influenced by the input duration. The
motivation for the aggregation step in the original x-vector model is that normally
we have not just a single frame but whole utterances (at least a word) from a given
speaker, and that certain phonetic segments may be less speaker-discriminative than
others [92] – the most trivial example are the silent parts. But the situation is differ-
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Segment length Aggregated Error rate
(frames & seconds) frames (Dev Set)

21 (0.25 sec) 1 3.16%
41 (0.50 sec) 21 2.87%
82 (1.0 sec) 62 2.10%

164 (2.0 sec) 144 1.96%

Table 4.1: Speaker recognition error rates for the 50-speaker set as a function of the
input segment duration.

ent when the input is an ultrasound tongue video, as the recording device always re-
turns an image of the tongue, even when the speaker remains silent, and thus longer
segments may not be necessary. In the first experiment we gradually increased the
size of the input segment from 21 frames (when the lower part of the network returns
one frame-level output, so effectively no temporal pooling occurs) to 164 frames (2
seconds).

Table 4.1 shows the speaker recognition error rates on the development set of
the 50-speaker corpus for different durations of temporal pooling. As we expected,
we obtained a very low error rate already with just a single-frame output, which
shows that the UTI videos are very speaker-specific. Gradually increasing the seg-
ment length and thus the number of aggregated frames improves the results, but the
improvements are smaller than those reported, for example, in language recogni-
tion [93].

4.5.2 Validating the x-vectors on an independent speaker set

The second experiment sought to test the generalization ability of the x-vector. We
were worried about overfitting the training speakers, as the popular x-vector imple-
mentations are trained with orders of magnitudes more training data and typically
with more than a thousand speakers [94]. Thus, to validate our x-vector DNN, we
performed a speaker recognition experiment on the dataset of the 31 speakers not
used during x-vector training.

Using the speaker embeddings to recognize or verify a new set of speakers is not
trivial, as the speakers will be different from those seen during training. For optimal
performance, the embedding vectors are typically post-processed by factor analysis
or dimension reduction methods [19, 94]. A simple and fast, though somewhat sub-
optimal solution is to calculate the similarity score of two speakers based on the
cosine similarity of their embedding vectors [19]. According to this, we performed
a simple speaker recognition experiment with a 1-nearest neighbor classifier using
the cosine distance as follows. We fused the development and the test sets of the
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31 speakers, and calculated the x-vectors for each segment. Then we performed
leave-one-out classification, that is, to each vector in this set we found the closest
one (excluding itself). The classification was considered correct if the speaker IDs of
the two segments were identical. We intentionally used the simplest possible 1-NN
classifier, as it is very sensitive to the accuracy of the distance function applied, and
hence to the accuracy of the underlying x-vectors.

Embedding layer FC#1 FC#2
Activation swish linear swish linear
Error rate 0.96% 0.96% 2.03% 0.70%

Table 4.2: Speaker recognition error rates for the held-out 31 speakers using 1-NN
leave-one-out testing.

Snyder et al. defined the x-vector as the linear output of the first fully connected
layer after statistical pooling [94]. However, some authors questioned whether this
is the optimal strategy, and also whether dropping the nonlinearity is required [92].
So we also examined which fully connected layer gives the best result, and if the
nonlinearity is necessary or not. The results are shown in Table 4.2. As can be seen,
all embedding extraction methods resulted in very low speaker recognition error
rates around 1-2%. The best result was obtained when the speaker embedding was
produced by the lower fully connected layer (FC#2) without the nonlinearity. This
coincides with the findings of Snyder et al. [94] and Shon et al. [92].

Figure 4.3: Normalized histogram of the cosine distances for randomly chosen same-
speaker and different-speaker x-vector pairs from the 31-speaker set.
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To further demonstrate the speaker discriminative abilities of the x-vectors on
a new set of speakers, a histogram of the cosine distances is shown in Fig 4.3 for
10000 randomly selected same-speaker and different-speaker vector pairs from the
31-speaker dev+test subset. Although the distributions overlap slightly, this figure
also suggests that the embedding vectors behave as expected, that is, vectors from
the same speaker are closer to each other than vectors from different speakers.
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4.5.3 Applying the speaker embedding in speech synthesis

In the last experiment we attempted to use the x-vector as an auxiliary input for
the spectral estimator network of our SSI system (cf. Fig 4.1). As the baseline, we
trained the net with the single-speaker TaL1 corpus. The obtained mean squared
error rates shown in table 4.3 are around 0.26, which results in a speech signal with
a mel-cepstral distortion of 3.12 after speech synthesis. This corresponds to a low-
quality, but intelligible speech [18]. For multi-speaker training and testing we used
samples from the 31-speaker subset. We did not use all the available data from the
31 speakers to demonstrate how the accuracy of the SSI network drops when switch-
ing to a multi-speaker scenario with a similar amount of training data. Table 4.3
shows that the multi-speaker setup led to a drastically larger MSE. We note that the
multi-speaker scenario is still speaker-dependent in the sense that the training, de-
velopment and test sets are from the same speakers. Even larger performance drops
can be expected in a speaker-independent configuration [81].

Finally, we re-trained the multi-speaker model with the x-vector as auxiliary input.
However, the optimal way of combining the ultrasound input with the x-vector is not
trivial. As the ultrasound images are processed by convolution, simple concatenation
was not an option. We decided to inject the x-vector into the network only after
the convolutional layers, which were initialized by transfer learning from the multi-
speaker model. However, this solution might be suboptimal and requires further
studies. We mention that Ribeiro et al. used the mean ultrasound frame to represent
the speaker, so they could add this image to the CNN input as a second channel [81].

SSI Train+Test Size of training MSE
configuration set (frames) Dev Test

single-speaker 254306 0.256 0.265

multi-speaker
305040

0.603 0.669
multi-spk + Xvec 0.589 0.653

Table 4.3: Mean squared error for the SSI spectral estimation task in the single-speaker
and multi-speaker scenarios.

The bottom row of Table 4.3 shows that although the introduction of the x-vector
resulted in a consistent improvement for both the development and the test sets, this
improvement is marginal. Ribeiro et al. reported similarly small gains from using the
speaker mean as the speaker-characteristic input [81].
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4.6 Summary

Here, we adjusted the x-vector framework of speech processing to ultrasound tongue
videos to create a speaker-characteristic embedding vector. We modified the network
architecture to process videos as input, and trained the network for speaker recog-
nition. We obtained very low speaker recognition error rates, and our embedding
vectors also seem to generalize well to new speakers. However, our first attempts to
apply the embedding vector in a multi-speaker SSI scenario resulted in just a minimal
improvement, showing that further studies are required on the proper application of
the x-vector in this field.

The author of this PhD thesis is responsible for the following contributions pre-
sented in this chapter:

IV/1. Preparing data for the experiments.

IV/2. Implementing the model and conducting the experiments.

IV/3. Comparing the results obtained from the experiments.

IV/4. Calculating the relevant metrics to evaluate the model’s performance.

And the results presented in this chapter were published in [37].



Chapter 5

Convolutional Neural Networks for
Detecting Voice Activity in Silent
Speech Interfaces based on
Ultrasound

In order to prepare data for an SSI system and generate spectrograms from speech
ultrasound videos, researchers often employ methods to remove parts of the signal
that contain silence. One such method is voice activity detection [105], which has
multiple benefits. However, previous implementations of VAD have resulted in mis-
alignment between spectrograms and ultrasound frames due to the removal of silent
parts prior to spectrogram generation.

To address this, we propose a new approach for implementing VAD, where we
detect and separate silence from speech and only remove the former. We test this
method on an English corpus dataset and use both objective evaluation metrics and
conventional metrics to demonstrate the improved performance of our model.

5.1 Problem Description and Literature Overview

Voice Activity Detection is an important component in many speech processing ap-
plications, for example automatic speech recognition (ASR) [5, 64] and speech en-
hancement [105]. Its main role is to detect the presence or absence of speech [105],
but sometimes it also involves a voiced/unvoiced decision [71]. Its application can
not only significantly reduce the computational costs, but it may also influence the
speech recognition accuracy [7]. In speech enhancement, VAD is used to identify
frames which contain only noise to remove them from the signal [105]. In ma-
chine learning-based speech synthesis, during training removing noisy segments and
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pauses may help generate more accurate models.
In this chapter, the focus is on improving the prepared data for silent speech

interfaces which convert articulatory signals to acoustic signals using deep neural
networks. As we discussed in previous chapters, ultrasound images that record the
movement of the tongue during speaking serve as the articulatory input. The recent
studies in this field have all utilized DNNs, including structures that combine convo-
lutional neural network (CNN) layers and recurrent layers like the long short-term
memory layer.

Similar to speech applications, voice activity detection may also be useful in SSI
systems, for example for sparing with the energy consumption in wearable ultrasound-
based SSI devices. However, in this case creating VAD algorithms is much more dif-
ficult, as the lack of speech does not correspond to a lack of high-amplitude input
signal. The tongue position is continuously being recorded and presented by the
ultrasound imaging tool, even when the subject is not speaking.

In this part, we first demonstrate that the application of VAD may impact the
accuracy of our SSI neural model, the speech synthesis network we apply, and even
the evaluation metric we use. Then we implement a CNN to separate silence and
speech frames based on the ultrasound tongue images, so we basically create a VAD
algorithm that works with ultrasound images. Finally, we evaluate the performance
of this algorithm experimentally, and we also compare the performance of our SSI
framework with and without using the VAD algorithm.

The chapter5 is organized as follows. In section 5.2, we briefly present our SSI
approach, the we talk about the problem of voice activity detection in 5.3. Then the
experimental setup is described in section 5.4 and the experiments are presented and
discussed in Section 5.5. We close the chapter with conclusions in Section 5.6.

5.2 The Ultrasound-Based SSI Framework

Our SSI system follows the structure explaind in chapetr 3. The input of the system
is a sequence of ultrasound tongue images that were recorded at a rate of 82 frames
per second. The goal of the SSI system is to estimate the speech signal that belongs
to the articulatory movement recorded in the ultrasound images, so the SSI system
has to create a model for the articulatory-to-acoustic mapping. We estimate this
mapping using deep neural networks. For the training procedure, we assume that
the speech signal was also recorded in parallel with the ultrasound video, as this
speech signal serves as the training target. Also, to reduce the amount of training
data required, we estimate a dense spectral representation instead of the speech
signal itself. In practice it means that our SSI network converts the ultrasound video
into a mel-spectrogram, and the output speech signal is generated from the mel-
spectrogram using the WaveGlow neural vocoder [75]. we shown that this approach
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is feasible, and it can generate intelligible speech from a sequence of ultrasound
images (chapter 3).

Here, we evaluate the accuracy of spectral regression by two simple metrics. One
of them is simply the Mean Squared Error loss for the training of the neural network.
The other one is the Mel-Cepstral Distortion between the original speech signal and
the speech signal reconstructed from the ultrasound input [57], which is a popular
metric of speech quality in speech synthesis [54].

5.3 Voice Activity Detection from Speech and from Ul-
trasound

The main role of Voice Activity Detection is to estimate the presence or absence of
speech [105]. In the simplest case, that is, in a quiet environment the lack of speech
activity corresponds to silent parts in the input signal. Hence, the simplest VAD algo-
rithms compare conventional acoustic features such as the signal’s energy to a thresh-
old [78]. Exceeding the threshold signs the presence of speech (VAD=1), otherwise
the signal is identified as silence (VAD=0). However, the task becomes much more
difficult under noisy conditions. The speech phones can be voiced and unvoiced, and
the most difficult is to separate unvoiced parts from background noise. Thus many
VAD algorithms extend the two-class classification to 3 classes, corresponding voiced,
unvoiced and silent (V/UV/S) parts [71, 105]. Moreover, under noisy conditions sim-
ple acoustic features such as the signal’s energy may be insufficient, so several more
sophisticated features have been proposed. For example, the classic paper by Atal
et al. performs the prediction based on five different measurements including zero-
crossing rate, speech energy, correlation features, 12-pole linear predictive coding
(LPC), and the energy of the prediction error [5]. Other authors used features such
as the zero-crossing rate, spectral or cepstral features, empirical mode decomposition
(EMD), and so on [5, 32, 71]. More recent studies apply machine learning methods
to perform the voiced/unvoiced decision [21, 69, 76, 77]. Mondal et al. applied
clustering over temporal and spectral parameters to implement their VAD [70].

While there are a lot of studies on voice activity detection from speech, the input
of our SSI system consists of ultrasound tongue images. Fig 5.1 shows two examples
of the tongue position recorded by the device, when the subject is speaking (produc-
ing a vowel) and when he is not – the diagonal light stripes in the images correspond
to the tongue of the speaker. After examining several samples, we got the impression
that speaking versus remaining silent typically results in more drastic changes in the
speech signal than in the corresponding ultrasound tongue images, so voice activity
detection based on the latter is presumably much harder. In the following we train
a CNN to perform the voiced/invoiced classification using such ultrasound images.
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Figure 5.1: Two UTI examples from the database, one for a speech (vowel) frame (left)
and one for a silent frame (right).

As the structure of this VAD-CNN and the network that we apply for the SSI task are
very similar, we describe them together in the next Section.

5.4 Experimental Setup

5.4.1 The Ultrasound Dataset

For the experiments we used the English TAL corpus [82]. It contains parallel ultra-
sound, speech and lip video recordings from 81 native English speakers, and we used
just the TaL1 subset which contains recordings from one male native speaker. We par-
titioned his files into training, testing and validation sets using 1015, 24 and 50 files,
respectively. To preprocess the ultrasound images we applied minmax normalization
to the [-1,1] range, and resized the images to 64*128 pixels using bicubic interpola-
tion. As regards the normalization of the speech mel-spectrogram features, we tried
different normalization techniques, but we got the best results with the standard
mean-deviance normalization (standardization). These 80 mel-spectrogram coeffi-
cients served as the training target values for the SSI network.
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5.4.2 CNNs for the SSI and for the VAD Task

Convolutional Neural Networks are currently the most popular tool in image recog-
nition, as they proved very powerful in extracting complex features from images by
creating very deep network architectures [56]. Standard CNNs convolve 2D filters
with the images, but when the input is a video or a time series, CNNs can be ex-
tended to 3D by considering time as the third dimension [48, 119]. Recurrent neural
networks such as the LSTM can also be very effective in extracting and combining
temporal information from a sequential input [34]. However, these networks are
known to be slow, so variants such as the quasi-recurrent neural network have been
proposed [11]. This is why several authors apply 3D-CNNs to substitute recurrent
layers when applying CNNs to a sequence of images [119]. Here, we experiment
with two neural network configurations in our SSI framework, that is, to estimate a
speech mel-spectrogram from a sequence of ultrasound images. The first network is
a 3D-CNN, folloeing the proposal of chapter 2. The second configuration combines
the 3D-CNN layers with and additional BiLSTM layer, as it may be more effective in
aggregating the information along the time axis. The structure of the two networks
is compared in Table 5.1. The input for both networks is the same, a short sequence
of adjacent UTI frames. The output corresponds to the 80 mel-spectral coefficents
that has to be estimated for the WaveGlow speech synthsis step, and the network is
trained to minimize the MSE between the target and the output spectral vectors.

Conv3D Conv3D+BiLSTM
Conv3D(30,(5,13,13),
strides=(5,2,2))
Dropout(0.2)
Conv3D(30,(5,13,13),
strides=(5,2,2))
Dropout(0.2)

Conv3D(30,(5,13,13),
strides=(5,2,2))
Dropout(0.2)
Conv3D(30,(5,13,13),
strides=(5,2,2))
Dropout(0.2)

Conv3D(60,(1,13,13),
strides=(1,2,2))
Dropout(0.2)
MaxPooling3D
Conv3D(60,(1,13,13),
strides=(1,2,2))
Dropout(0.2)
MaxPooling3D

Conv3D(60,(1,13,13),
strides=(1,2,2))
Dropout(0.2)
MaxPooling3D
Conv3D(60,(1,13,13),
strides=(1,2,2))
Dropout(0.2)
MaxPooling3D

Table 5.1: The structure of the 3D-CNN and the 3D-CNN + BiLSTM networks in Keras
for the SSI task. The differences are shown in bold.

In addition to using the VAD implementation available from WebRTC[1], we
trained a CNN to perform VAD directly from ultrasound images. The training in-
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Conv2D
Conv2D(32, (3, 3), padding=’same’, Activation=’relu’)
MaxPooling2D

Conv2D(32, (3, 3), padding=’same’, Activation=’relu’)
MaxPooling2D((2,2))
Conv2D(64, (3, 3), padding=’same’, activation=’relu’)
MaxPooling2D

Conv2D(64, (3, 3), padding=’same’, activation=’relu’)
MaxPooling2D((2,2))
Conv2D(128, (3, 3), padding=’same’, Activation=’relu’)
MaxPooling2D()
Flatten()

Conv2D(128, (3, 3), padding=’same’, Activation=’relu’)
MaxPooling2D((2,2))
Flatten()
Dense(128, activation=’relu’))
Dense(1, activation=’sigmoid’)

Table 5.2: The structure of the 2D-CNN used for classification of speech/silent ultra-
sound images.

volved using a simple frame-by-frame approach, where a single image was used as in-
put and a 2D-CNN was applied to classify each frame as either silence or speech(SI/SP).
The network had a single output that estimated the probability of the frame contain-
ing silence. To train the network, we used the binary cross-entropy loss function. The
architecture of the network can be found in Table 5.2.

5.5 Results

5.5.1 The Impact of VAD on the MCD Metric and on Speech Syn-
thesis

In the first experiment, our objective was to investigate the impact of VAD application
on our outcomes. It is noteworthy that this experiment did not involve SSI. Rather,
we transformed the speech signals into mel-spectrograms and reconstructed them
using WaveGlow. The results of this experiment highlighted the significance of VAD
in improving the quality of reconstructed speech signals, especially in the removal
of unwanted noise and silence. The findings demonstrate the potential of VAD as an
effective pre-processing tool in speech-related tasks (see Fig 5.2).
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Figure 5.2: Illustration of the experimental configurations applied in Table 5.3,(values
are in second).

To measure the deviation between the original and reconstructed speech signals,
we used the Mel-Cepstral Distortion (MCD) metric. In this experiment, we employed
the VAD implementation from WebRTC [1] to detect voice activity and remove silence
from the speech signals. By applying VAD, we aimed to minimize the effect of silent
segments on the MCD metric and improve the quality of the reconstructed speech
signals.

Configuration MCD
A: VAD (window length = 10 ms) 1.55
B: VAD (window length = 10 ms), plus keeping 180ms silence at both ends 2.03
C: applying A after B 1.34

Table 5.3: MCD values of the speech analysis-synthesis process when applying silence
removal with three different VAD configurations.

As shown in the first two rows of Table 5.3, retaining longer silent parts before
and after the speech signal does influence the MCD.

In the third row of Table 5.3 we present one more experiment where we per-
formed two analysis-synthesis steps. Theoretically, the analysis and synthesis steps
should be the perfect inverse of each other, so experiment (c) should give the same
result as experiment (a). However, we obtained a slightly different MCD value. The
probable explanation is that the WaveGlow speech synthesis network does not give a
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prefect reconstruction, and it is sensitive to certain parameters such as the duration
of the silent parts or the positioning of the input windows.

Figure 5.3: Retaining more silence increases the MCD.

In our experiments, we observed the impact of preserving longer silent parts on
the performance of the Mel-Cepstral Distortion metric. As shown in Fig 5.3, the MCD
values consistently increased with longer silent parts, suggesting that the amount of
silence in the input significantly affects the MCD values. However, it is worth noting
that some authors exclude non-speech frames from the MCD calculation [54], while
others do not specify this step in their methods.

5.5.2 The impact of VAD on the SSI

In the second experiment we evaluated how the application of VAD on the training
corpus influences the performance of our SSI system. In these UTI-to-speech con-
version experiments we used the ultrasound data set presented in Section 5.4.1, and
the two network configurations we described in Table 5.1. Both models were trained
using the Adam optimizer with a initial learning rate of 0.0002. We repeated the ex-
periment with using the original training data and with removing most of the silent
parts from the speech signals using the WebRTC VAD implementation, which in order
of this removal the respective parts in ultrasound video were removed as well.
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Table 5.4: Evaluation metrics of the SSI system after training the models with removing
or retaining silence in the speech data.

No silence(VAD) VAD + 180ms silence
MSE (dev) MSE (test) MCD MSE (dev) MSE (test) MCD

3DCNN 0.46 0.45 3.20 0.30 0.33 3.29
3DCNN+BiLSTM 0.39 0.42 3.08 0.259 0.29 3.13

In Table 5.4 we report the MSE of the training process and the MCD values ob-
tained from comparing the originals speech signals with those synthesized from the
UTI input. The first thing we may notice is that the 3D-CNN+BiLSTM network pro-
duced much lower MSE rates and also slightly lower MCD errors. This shows the
clear advantage of using a BiLSTM layer instead of a simple Dense layer. Second, the
MCD scores are much higher in this case than in the previous experiment. This is
because there we worked with the original spectrograms, so the reported MCD val-
ues of 1.3-2.0 were caused by the inaccuracy of the WaveGlow neural vocoder. Here,
the spectrograms were estimated from the UTI images, so the errors of our spectral
estimation network and the WaveGlow network add up. Our best MCD score of 3.08
corresponds to a low-quality but intelligible speech [18]. In comparison, Ribeiro et
al. obtained an MCD score of 2.99 on the same corpus using more sophisticated
encoder-decoder networks [82].

One interesting observation from our experiments is that retaining more silence
in the corpus leads to lower mean squared error rates during training. However,
this reduction in MSE can be misleading as it results in an increase in Mel-Cepstral
Distortion values on the test set, as we observed. This suggests that adding more
training samples from a single class, especially from a trivial class like silence, may
shift the focus of training and have a negative effect on the performance of a DNN.
Therefore, it is essential to carefully balance the amount of speech and silence in the
training data for SSI systems.

5.5.3 Classification of Speech and Silence from Ultrasound

In the previous experiment, VAD was applied to the speech signal. However, in prac-
tical SSI scenarios, the speech signal may not be accessible, and thus VAD should
be performed using ultrasound input. To address this, we conducted experiments
to classify speech and silence frames of the ultrasound video using the 2D-CNN pre-
sented earlier in Table 5.2. This involved frame-by-frame training, where the input
was a single image, and a 2D-CNN was applied to classify the frame as either silence
or speech. The results are discussed in the following.
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Figure 5.4: Illustration of obtaining the VAD training labels and training the 2D-CNN
for silence/speech classification.

The training labels for this 2-class classification process were obtained as follows
(see also Fig 5.4). As we have the synchronized speech signals for the ultrasound
videos, we first identified the speech frames that belong to each ultrasound image
based on the ultrasound frame rate. We split the speech signal into frames and fed it
to the speech VAD function to decide about the speech/silence label of each image.
We used these target labels with the ultrasound images as input to train the 2D-CNN
for ultrasound-based voice activity detection. We used the ReLU activation function
for all layers except the last layer which applies a sigmoid activation function to pro-
duce an output value between 0 and 1. For training we used SGD optimization with
an initial learning rate of 0.001. We extracted the speech/silence training labels from
the same train, development and test files as earlier, and the amount of speech labels
was approximately 2-3 times more than the number of frames labelled as silence.

The evaluation metrics for this 2-class task are shown in Table 5.5. Besides the
usual classification accuracy, we also report the precision and recall values which
show that the two classes were slightly imbalanced.

Dev set Test set
Accuracy 0.87 0.852
recall 0.94 0.95
precision 0.877 0.864
F1 0.91 0.9
ROC AUC 0.894 0.859
Cohen’s Kappa 0.672 0.57

Table 5.5: Evaluation metrics for the silence/speech classification task.
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This is also reflected by the confusion matrices which can be seen in Table 5.6.
Thus, we also evaluated the AUC score based on the ROC of the classifier, which
gave 0.89 for the development and 0.86 for the test set, respectively. Finally, we also
mention that the F1 measure of 0.9 is also very good, and it could even be slightly
improved by fine-tuning the decision threshold (which we did not adjust here). We
also display the Cohen’s Kappa values, which is a preferred metric in the case of
imbalanced classes[41].

Dev Data Test Data
Predicted Predicted

Actual
Negative Positive

Actual
Negative Positive

Negative 2850 1302 Negative 1671 1268
Positive 502 9295 Positive 418 8096

Table 5.6: Confusion Matrices for the silence/speech classification task for the develop-
ment and test sets.

5.5.4 Replacing Speech-VAD by UTI-VAD

Finally, we repeated the experiment of Table 5.4, but this time using the UTI-based
VAD algorithm instead of the speech VAD. As the results in Table 5.7 show, in this
case we obtained even slightly better MSE rates than earlier with the standard VAD
function. The MCD values are basically equivalent with those obtained earlier, and
the slight advantage of training the system with the removal of the long silent parts
remained. In summary, we can say that our ultrasound-based VAD algorithm per-
formed similarly to the standard, speech-based VAD algorithm in this experiment.

Table 5.7: Training the SSI system with removing or retaining silence from the data
using the ultrasound-based VAD algorithm.

No silence(VAD) VAD + 180ms silence
MSE(dev) MSE(test) MCD MSE(dev) MSE(test) MCD

3DCNN 0.436 0.428 3.15 0.38 0.27 3.28
3DCNN+BiLSTM 0.393 0.41 3.05 0.35 0.26 3.12

5.6 Summary

Here we showed that – similar to voice activity detection for speech – ultrasound
images can also be used to discriminate between Si/Sp segments. We estimated our
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training labels based on the parallel speech recording using a public VAD implemen-
tation. Our classifier attained a promising accuracy of 86% in discriminating frames
of silence and speech. We also showed that preserving too much silence in the train-
ing set can influence both the training of the model and the quality of the generated
speech. For our later data preparation we use our VAD technique as a method of
silence removal as an initial step before feature extraction. That it, we window the
speech signal in synchrony with the ultrasound frames and feed them to the VAD,
and perform the subsequent feature extraction steps for synthesizing speech or other
related tasks by using only the frames retained by VAD.

The author of this PhD thesis is responsible for the following contributions pre-
sented in this chapter:

V/1. Implementing the model for voice activity detection using a CNN architecture
and training it with binary cross-entropy loss function.

V/2. Developing the idea of applying VAD to remove silence from the speech signal
in SSI systems.

V/3. Analyzing the results of experiments with different amounts of silence in the
corpus, comparing the MCD and MSE metrics, and evaluating the impact of
VAD on the SSI.

And the results presented in this chapter were published in [35].



Chapter 6

Enhanced analysis of ultrasound
tongue videos via the fusion of
ConvLSTM and 3D Convolutional
Networks

In previous chapters, we mentioned the traditional two-step process of estimating
speech signals from articulatory data in SSI systems, which involved converting the
input to text using speech recognition and then synthesizing speech based on the
text. However, the more popular approach nowadays is to directly convert the artic-
ulatory signals to speech using Deep Neural Networks. For our work, we followed
this direct approach and utilized DNNs, specifically convolutional neural networks,
for our image-based SSI task.

As our input consists of a sequence of images, we combined an LSTM with a 2D
CNN to extract information from individual video frames. Alternatively, we could
have extended the 2D convolution to 3D by adding the time axis as an extra dimen-
sion as we implement it in Chapter 2. While ConvLSTM models have shown potential
in improving model performance, the training time cost is still a concern. Deep neural
networks generally require more data for better performance, which in turn requires
more time to train the model. In order to address this issue, we explored the possibil-
ity of combining convolutional layers and LSTM layers into a single layer to improve
both model performance and training efficiency. Although the conv(2+1)D model
has shown improvements in model performance, the training time cost remains a
concern. However, in this chapter we chose to experiment with the ConvLSTM layer
type, which combines the advantages of both convolutional and recurrent processing
in one layer, resulting in a more efficient training process with fewer parameters.
This model first was used for precipitation nowcasting [91], the application of Con-
vLSTM models on ultrasound data has not been extensively studied, with only a few
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works focusing on this approach. One such task involved using ConvLSTM to de-
tect tongue motion in ultrasound data[118]. Here we compare the performance of
ConvLSTM models with previous 2D-CNN+LSTM and 3D-CNN approaches, as well
as hybrid models that combined all three types of layers. Our results show that the
hybrid approach yields the best performance for our task with less training time and
fewer parameters.

The chapter is organized as follows. In Section 6.1, we briefly introduce the
concept of the convolutional LSTM that we are going to use. In Section 6.2, we
explain the data acquisition and processing steps for our input and output data. In
Section 6.3, we present our experimental setup, while in and following Section 6.4,
the experimental results are discussed and explained. Finally, in Section 6.5 our main
conclusions are given.

6.1 Convolutional LSTM for SSI

SSI systems synthesize speech from articulatory videos by learning the mapping be-
tween the input ultrasound image sequence and the output audio signal. SSI is a
sequential task, as both the input and the output are sequences, with a strong cor-
relation between consecutive elements of the sequence. As in our case the input
data consist of ultrasound images, convolutional networks seems to be a proper tool
for processing the input, as they are known to perform well when working with im-
ages [56], and also in particular with SSI ultrasound tongue images [50, 53]. As our
input is a sequence, the information content along the time axis of the data can be
extracted by applying Recurrent Neural Networks.

In particular, a variant of recurrent networks called the Long-Short Term Memory
is known to be more effective in extracting long-term dependencies in the input
sequence [34]. These networks have special gates in their internal implementations
which improve their abilities to handle large-distance relations between time-related
features.

The Long Short-Term Memory model is a type of Recurrent Neural Network that
can effectively handle sequential data. In the standard implementation of LSTM,
the input sequence is composed of vectors, and the data flow is shown in Fig 6.1.
There are also variants of LSTM, such as the ”peephole” variant, which contains
extra connections shown on the right side of Fig. 6.1, In both cases, the input of the
LSTM consist of a sequence of vectors.

When processing a sequence of images, combining a Convolutional Neural Net-
work with an LSTM is a common approach. In this approach, the images are first pro-
cessed by a 2D-CNN to extract features along the spatial axes, and then the sequence
of CNN outputs is integrated over time using an LSTM. This method is known as the
CNN+LSTM approach, and it has been shown to work well in Single Slice Imaging
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Figure 6.1: Internal structure of a standard LSTM cell and its extended version (with
extra peephole connections) used in Convolutional LSTMs [3, 4].

implementations [50].
However, this method requires the combination of two types of layers, which can

be computationally expensive. To address this issue, Shi et al. proposed a more effi-
cient solution called the Convolutional LSTM. This method performs the two process-
ing steps in one by applying a convolution operation in the inner steps of LSTM, in-
stead of matrix multiplication. This allows the ConvLSTM to extract spatio-temporal
features from the input data more efficiently [91].

Figure 6.2: The equations behind the operation of Long Short Term Memory versus
Convolutional LSTM neurons [91].

This is reflected in the equations of Fig ??, where ∗ represents the convolution op-
eration, and ◦ stands for gating. Note that, apart from the convolution, the equations
are exactly the same as those of the (peephole) LSTM. The convolution allows the
more efficient processing of image sequences, resulting in better performance with
much fewer parameters. For example, Kwon et al. successfully applied a hierarchical
ConvLSTM for speech recognition [59]. Recently, Zhao et al. used ConvLSTMs for
predicting subsequent ultrasound images in an SSI task [118].
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Processing a sequence of images is also viable by extending the convolution oper-
ation to the time axis, resulting in a three-dimensional convolution (3D-CNN) model.
The main advantage of this approach is that it is faster, as it applies only convolution
operations. Convolution also allows the skipping of input images, which is not possi-
ble in an LSTM framework. In chapter 2, the 3D-CNN model gave results that were
comparable or slightly better than those with the more conventional CNN+LSTM ap-
proach. Here, we extend this earlier comparison to the ConvLSTM model, and we are
also going to experiment with hybrid models that combine 3D-CNN and ConvLSTM
layers.

6.2 Data acquisition and preprocessing

The ultrasound data was collected from a Hungarian female subject (42 years old)
while she was reading sentences aloud. Her tongue movement was recorded in a
midsaggital orientation – placing the ultrasonic imaging probe under the jaw – using
a ”Micro” ultrasound system by Articulate Instruments Ltd. The transducer was fixed
using a stabilizer headset. The 2-4 Mhz / 64 element 20 mm radius convex ultra-
sound transducer produced 82 images per second. The speech signals were recorded
in parallel with an Audio-Technica ATR 3350 omnidirectional condenser microphone
placed at a distance of 20 cm from the lips. The ultrasound and the audio signals
were synchronized using the software tool provided with the equipment. Altogether
438 sentences (approximately half an hour) were recorded from the subject, which
was divided into train, development and test sets in a 310-41-87 ratio. We should
add that the same data set was used in several earlier studies [16, 30, 102], and the
data set is publicly available1. The ultrasound probe records 946 samples along each
of its 64 scan lines. The recorded data can be converted to conventional ultrasound
images using the software tools provided. However, due to its irregular shape, this
image is harder to process by computers, while it contains no extra information com-
pared to the original scan data. Hence, we worked with the original 964x64 data
items, which were downsampled to 128x64 pixels. The intensity range of the data
was min-max normalized to the [-1, 1] interval before feeding it to the network.

The speech signal was recorded with a sampling rate of 11025 Hz, and then con-
verted to a 80-bin mel-spectrogram using the SPTK toolkit (http://sp-tk.sourceforge
.net). The goal of the machine learning step was to learn the mapping between
the sequence of ultrasound images and the sequence of mel-spectrogram vectors.
As the two sequences are perfectly synchronized, it was not necessary to apply a
sequence-to-sequence learning strategy. We simply defined the goal of learning as
an image-to-vector mapping task, using the mean squared error as the loss function

1The dataset is available upon request from csapot@tmit.bme.hu
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in the network training step. The 80 mel-frequency coefficients served as training
targets, from which the speech signal was reconstructed using WaveGlow [75]. To
facilitate training, each of the 80 targets were standardized to zero mean and unit
variance. The input of training consisted of a block of 25 consecutive images. This al-
lowed all DNN variants to involve the time axis in the information extraction process.
The whole SSI framework followed the earlier chapter 2.

6.3 Experimental Setup

We implemented our networks using Keras with a tensorflow back-end [22]. We
applied three different network architectures that can process 3-dimensional blocks
of data. In the tables, ”3D-CNN” refers to the fully convolutional model proposed in
Chapter 2. This model does not have any LSTM component. ”3D-CNN + BiLSTM”
refers to a combination which applies a BiLSTM layer as the topmost hidden layer
to integrate the temporal features extracted by the previous 3D-CNN layers. The
final model referred to as ”3D-CNN + ConvLSTM” replaces the top first 3D-CNN and
BiLSTM layers by a ConvLSTM layer. Notice that the ConvLSTM technique fuses the
convolution and the LSTM operations into one layer, so here we can also spare one
hidden layer by this substitution, therefore it could help the model to improve the
model trainig time. In the following, we give a more detailed description of the three
configurations.

3D Convolutional Neural Network(3D-CNN): This model was described in de-
tail in [102] and Chapter 2, and its network layers are shown in Table 6.1. The
networks processes the input sequence of 25 video frames in 5-frame blocks using
3D convolution. The overlap between these blocks is minimized by setting the stride
parameter s of the time axis to 5. These blocks are processed further by 3 additional
Conv3D layers, with pooling layers after every second convolution layer. Finally, the
output is flattened and integrated over the time axis by a dense layer as the topmost
hidden layer. The output hidden layer is a linear layer with 80 neurons, correspond-
ing to the 80 spectral parameters given as training targets. This special network
structure was motivated by Tran et al., who found that for the best result the pro-
cessing should focus on the two spacial axes first, performing the integration over the
temporal axis only afterwards [104]. Toth at al. also obtained the best result with
performing the 3D convolution in this decomposed, ”(2D+1)” form [102]. Compared
to that study, we achieved slightly better results with the same architecture by switch-
ing to the Adam optimizer instead of SGD, and by adjusting some meta-parameters,
for example the dropout rate.

3D CNN + BiLSTM: As the output of the four layers of 3D convolution, the 3D-
CNN network produces a sequence of 5 matrices, which are combined by a simple
dense layer (cf. Table 6.1). Our first modification was to replace this fully connected
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3D-CNN 3D-CNN + BiLSTM
Conv3D(30, (5,13,13), strides=(s, 2,2)) Conv3D(30,(5,13,13), strides=(s,2,2))
Dropout(0.3) Dropout(0.3)
Conv3D(60, (1,13,13), strides=(1,2,2)) Conv3D(60,(1,13,13),strides=(1,2,2))
Dropout(0.3) Dropout(0.3)
MaxPooling3D(pool size=(1,2,2)) MaxPooling3D(pool size=(1,2,2))
Conv3D(90, (1,13,13), strides=(1,2,1)) Conv3D(90,(1,13,13),strides=(1,2,1))
Dropout(0.3) Dropout(0.3)
Conv3D(85, (1,13,13), strides=(1,2,2)) Conv3D(85, (1,13,13), strides=(1,2,2))
Dropout(0.3) Dropout(0.3)
MaxPooling3D(pool size=(1,2,2)) MaxPooling3D(pool size=(1,2,2))
Flatten() Reshape((5, 340))
Dense(500) Bidirectional(LSTM(320,
Dropout(0.3) ret seq=False))
Dense(80, activation=’linear’) Dense(80, activation=’linear’)

Table 6.1: The table compares the implementation of Conv3D and Conv3D+BiLSTM
models, where Conv3D model uses 3D convolutional layers to extract spatial and tem-
poral features, while the Conv3D+BiLSTM model combines the 3D convolutional layers
with a bidirectional LSTM layer to capture the spatiotemporal dynamics of the data.

layer with a (bidirectional) LSTM, which required us to reshape the matrices into
vectors. The LSTM is a more sophisticated solution to extract the information from a
temporal sequence, so we hoped to get slightly better results from this approach. As
Table 6.1 shows, we set the return sequences parameter of the LSTM to False, so the
output is a simple vector, which serves as the input of the subsequent dense linear
output layer.

3D CNN + ConvLSTM: Our main goal in this chapter was to examine the effi-
ciency of the ConvLSTM layer for this task and improve the model training time by
using a optimised network which is using both convolution and sequence process-
ing in one layer. In the first experiment we applied it only at the topmost hidden
layer of our 3D-CNN model (see Table 6.2). As the ConvLSTM layer implements the
operation of a convolutional and an LSTM layer in one, we replaced the uppermost
Conv3D and LSTM layers by a ConvLSTM layer, reducing the number of neural hid-
den layers from 5 to 4. Also, as the ConvLSTM layer works with matrices and also
outputs matrices, the reshaping was required after the layer and not before it.
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3D-CNN + ConvLSTM
Conv3D(30,(5,13,13),strides=(s,2,2))
Dropout(0.35)
Conv3D(60,(1,13,13),strides=(1,2,2))
Dropout(0.35)
MaxPooling3D(poolsize =(1,2,1))
Conv3D(90,(1,13,13),strides=(1,2,2))
Dropout(0.35)
ConvLSTM2D(64, (3,3), Strides=(2,2), ret seq=False)
Flatten()
Dense(80,activation=’linear’)

Table 6.2: The ConvLSTM model is implemented by combining a convolutional neural
network (CNN) with a long short-term memory (LSTM) network, where the CNN ex-
tracts spatiotemporal features from the input data and the LSTM processes them along
the temporal axis.

6.4 Results

In the first experiment we compared the performance of the baseline 3D-CNN model
we the two hybrid solutions proposed in the previous chapter and in Table 6.2 and Ta-
ble 6.1. In Table 6.3 we report two simple objective metrics of the quality of training,
the mean squared error and the R2 score, which is popular in regression tasks imple-
mented with neural networks (for R2 a higher value means better performance). As
can be seen, replacing the dense layer by the LSTM layer already brings a slight but
consistent improvement in the results, both on the development and on the test set.
Fusing the uppermost Conv3D and the LSTM layer into a ConvLSTM layer resulted
in further error reduction of about the same rate, even though the network depth is
decreased. This clearly proves the efficiency of the ConvLSTM layer. However, we
also observed a drawback, namely that the ConvSLTM layer has much more train-
able parameters than the Conv3D layer. Hence, we had to reduce the filter size in the
ConvLSTM layer, in order to keep the number of parameters in the original range.
Theoretically, similar to the LSTM layer, the ConvLSTM layer can also be made bidi-
rectional. However, we ran into the same problem that it tremendously increased the
number of parameters while yielding only a marginal improvement. Thus, we stuck
with using the unidirectional variant. Finally, to fuse the Conv3D and the LSTM lay-
ers, we had to remove the second MaxPooling layer. We also tried to insert it back
after the ConvLSTM layer, but the results did not change considerably.

Obviously, many other possible configurations exist that combine Conv3D and
ConvLSTM layers. In the second experiment we tried out further combinations of
these two layers. We experimented with 4 hidden layer constructs, and we fixed the



82
Enhanced analysis of ultrasound tongue videos via the fusion of ConvLSTM

and 3D Convolutional Networks

Network Type
Dev Test

MSE Mean R2 MSE Mean R2

3D-CNN 0.292 0.714 0.293 0.710

3D-CNN + BiLSTM 0.285 0.721 0.282 0.721

3D-CNN + ConvLSTM 0.276 0.727 0.276 0.73

Table 6.3: The MSE and mean R2 scores obtained with the various network configura-
tions for the development and test sets, respectively. The best results are highlighted in
bold.

Layer 1 Layer 2 Layer 3 Layer 4 Dev Test

ConvLSTM ConvLSTM ConvLSTM ConvLSTM 0.31 0.31

ConvLSTM ConvLSTM ConvLSTM — 0.29 0.3

Conv3D ConvLSTM ConvLSTM ConvLSTM 0.31 0.31

Conv3D Conv3D ConvLSTM ConvLSTM 0.36 0.35

Conv3D Conv3D Conv3D ConvLSTM 0.27 0.27

Conv3D ConvLSTM Conv3D ConvLSTM 0.3 0.3

ConvLSTM Conv3D Conv3D ConvLSTM 0.34 0.34

Table 6.4: The MSE for different combinations of Conv3D and ConvLSTM layers in the
four hidden layers of the network. The best results are highlighted in bold.

uppermost layer to be a ConvLSTM, as it convincingly proved to be the better setup
in the previous experiment. Table 6.4 summarizes the architectures we experimented
with. As regards ConvLSTM layers, the returns sequences parameter was set to True
for intermediate layers, and set to False only when the ConvLSTM layer was the
topmost hidden layer. The meta-parameters were always chosen so that the global
count of the free parameters stayed similar to that of the baseline model.

Seeing the good performance of the ConvLSTM layer in the previous experiment,
we first tried to build a fully ConvLSTM model. However, as the first row of Table 6.4
shows, we obtained no improvement. As the ConvLSTM layer proved to be more
efficient than the Conv3D layer earlier, next we tried to create a network of just 3
ConvLSTM layers instead of 4. As shown in the second row of the table, the results
became slightly better, but still worse than the baseline. This result reinforces our
previous observation that ConvLSTM networks do not require the same depth as a
convolutional network.

Conv3D layers have the advantage that they can easily downsample the time axis
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using a stride parameter larger than 1. On the contrary, ConvLSTM units cannot
easily skip elements of their input sequence, due to their recurrent nature, which
results in a large parameter count and a slow training. Hence, it seemed to be more
efficient to put a Conv3D layer into the first hidden layer. We tried to place Conv3D
layers in the lower layers, and ConvLSTM layers in the remaining layers. The middle
block of Table 6.4 shows that the optimal solution is to have just one ConvLSTM
layer, as in our original experiment. Lastly, we tried two further configurations with
alternating Conv3D and ConvLSTM layers, motivated by papers like [59, 118], but
we did not receive any better results.

6.5 Summary

Here, we were seeking the optimal neural network architecture for the articulatory-
to-acoustic mapping task of SSI systems. The task involves the processing of 3D data
blocks – sequences of images – for which one can apply 3D-CNN models, such as
in chapter 2. Alternatively, one may apply a ConvLSTM model proposed by [91].
Besides comparing the purely convolutional and ConvLSTM models, we also exper-
imented with hybrid architectures where the two layers types are mixed. The 3D-
CNN + ConvLSTM hybrid model obtained the best results, better than the baseline
3D-CNN model, and it also outperformed other models with a different order of lay-
ers, as applied in [59] for emotion recognition, and in [118] for the prediction of the
subsequent ultrasound image. Applying the ConvLSTM layer in the uppermost hid-
den layer even made the model smaller (with one hidden layer) and slightly faster to
train. The optimal model arrangement consists of three Conv3D layers and a (Con-
vLSTM) on top of them, which illustrates that it is worth combining the ConvLSTM
layer with other layer types such as the Conv3D to extract spatio-temporal features
from videos – in our case, to better capture the tongue movement. The winning
architecture also shows that the Conv3D blocks are more efficient in extracting lo-
cal spectro-temporal information, while ConvLSTM is more efficient in fusing these
pieces of information along the time axis. Interestingly, this coincides with the ob-
servation of Tran et al. about the optimal order of feature extraction for 3D video
blocks [104].

The author of this PhD thesis is responsible for the following contributions pre-
sented in this chapter:

VI/1. Preparing data for the specific task.

VI/2. Implementing code for the models (Conv3D, Conv3D+BiLSTM, ConvLSTM).

VI/3. Analyzing and interpreting the results.

VI/4. Calculating the evaluation metric for the results.
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And the results presented in this chapter were published in [38].



Chapter 7

Enhancing Tongue Ultrasound-Based
Silent Speech Interfaces with Spatial
Transformer Networkss

In the previous chapters, we explored the generation of speech from articulatory
signals associated with speech production. As discussed in Chapter 1, these signals
can be recorded using various devices such as ultrasound, EEG, fMRI, etc. All of the
articulatory tracking devices are highly sensitive to 1) the alignment of the recording
equipment, 2) the actual speaker’s anatomy. For example, in the case of ultrasound
recordings, the probe fixing headset has to be remounted onto the speaker for each
recording session. This inevitably causes the recorded ultrasound videos to become
misaligned between each recording session [17]. Moreover, there are large individual
differences across speakers, so even a system trained on the data of several speakers
may still perform poorly for a new speaker.

There have already been several cross-session and cross-speaker studies, of which
we mention only those related to imaging. To handle the session dependency of UTI-
based synthesis, Gosztolya et al. used data from different sessions [28]. Ribeiro et al.
reported that, for a speaker-independent system, unsupervised model adaptation can
improve the results for silent speech [83]. In a multi-speaker framework, in Chapter 4
we experimented with the use of x-vectors features extracted from the speakers,
leading to a marginal improvement in the spectral estimation step [37]. Zhang et al.
evaluated UTI and lip video based unconstrained multi-speaker voice recovery with a
transfer learning strategy and encoder-decoder architecture [114]. There have been
more studies on multi-speaker lip-to-speech synthesis [67, 73, 87, 107]. One of the
first papers that could produce intelligible speech for unseen speakers was based on
WGAN with new additional critics and losses [67]. Another study proposed speaker
disentanglement by inputting speaker identities or embeddings to the DNN [73].
An end-to-end ResNet-based model was claimed to outscore previous approaches on
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unseen speakers [87].
Most of the above approaches hope to solve speaker sensitivity simply by ac-

quiring articulatory training data from a large quantity of speakers. In this chapter,
we experiment with a direct adaptation of an UTI-based SSI network to the actual
speaker or session. To avoid the need for a full retraining, we extend our network
with a spatial transformer network (STN) module and retrain only this module dur-
ing the adaptation step. The STN learns an affine transformation on the input images,
and our assumption is that this transformation should mostly be able to compensate
for the misalignment of the recording device, and to a certain extent also for the
inter-speaker differences.

7.1 The UTI-to-Speech framework

Approaches for articulatory-to-acoustic mapping were described in the previous chap-
ters and so we just give a brief overview here (see also Fig. 7.3). The input to our
system is a sequence of ultrasound tongue images, which record the movement of
the articulators at a relatively high frame rate. Our goal is to estimate the speech
signal produced during articulation, but instead of producing a speech signal, we es-
timate only a mel-spectrogram at the network output, and we apply a neural vocoder
to convert the spectrogram to speech. The main advantage of this approach is that
the mel-spectrum is a very dense representation, which is easier to estimate than
the speech signal itself, and we can apply large pre-trained networks for the synthe-
sis step, such as WaveGlow [75]. Our training data consists of precisely time-aligned
pairs of ultrasound videos and speech signals, so the ultrasound-to-spectrogram map-
ping can be performed on a simple frame-by-frame basis, converting each ultrasound
image to a spectral vector [18, 100]. While this simple arrangement already per-
forms reasonably well, significant improvement can be achieved by involving the
input context, that is, by using a block of video frames as input instead of just one
image. Several network architectures have been proposed to process 3D blocks of
input data, for video processing in general [24, 48, 104], and for ultrasound input
in particular [53, 86, 102, 113]. In the experimental section we will experiment
both with 2D and 3D Convolutional Neural Networks (CNNs) for the mapping task.
The problem could also be addressed even in the lack of aligned training data using
encoder-decoder networks [83, 114] or video transformers [8, 90].

7.2 The Spatial Transformer Network

The concept of the Spatial Transformer Network (STN) was motivated by the fact
that in image recognition the actual input is frequently shifted, rotated or scaled
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Figure 7.1: Illustration of the network architecture used.
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compared to the training data, due to changes in camera angle, distance, and other
factors [44]. Although CNNs are somewhat invariant to translations, their over-
all flexibility would greatly improve by introducing a dynamic mechanism that can
spatially transform the input image by an appropriate transformation before classifi-
cation. The STN is a network module that can be inserted into a CNN architecture
at any point, but typically it is applied between the input and the first network layer.
In this arrangement, the STN performs an affine transformation on the input image,
and returns a transformed image of the same size. As it manipulates only the input,
it can be combined with practically any type of classification or regression network.
The affine transform defined by the STN is quite powerful and includes translation,
scaling, rotation, shearing and cropping as special cases.

The STN consists of three main parts, namely the localization network, the grid
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Figure 7.2: An example UTI image, before and after STN.

generator and the sampler [44]. The grid generator and the sampler together are
responsible for executing the affine transformation defined by the parameter θ, which
consists of 6 components in the case of a 2D input, (for example see Fig. 7.3).

The grid generator and the sampler are differentiable. This is vital for propagating
the error back to the third component, the localization network, which learns to
estimate the θ parameters, conditioned on the actual input image. The localization
network can take any form, but its uppermost layer must be a regression layer to
produce the θ values.

While we explained the STN concept assuming 2D images, the whole idea can be
naturally extended to 3D data blocks [6, 44]. The 3D variant has already been used
in visual speech recognition (e.g., lip reading) by Yu and Wang [112]. We discuss the
options for a 3D extension in Section 7.5.3.

Although the original concept uses the STN to decrease the variance of the train-
ing data by transforming the input images to a canonical, expected pose, it may
also be useful in handling a domain mismatch between the training and testing con-
ditions. It was applied for domain adaptation in various image processing situa-
tions [14, 84], and here we evaluate its efficiency for speaker and session adaptation
in UTI-to-speech conversion.
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7.3 Experimental Set-Up

7.3.1 Data Acquisition and Preprocessing

The data utilized in this chapter consisted of the Hungarian dataset, which was pre-
viously introduced in Chapter 6.

7.3.2 Network Configuration

In the first set of experiments we applied a simple 2D convolutional (2D-CNN) net-
work that transforms one ultrasound image to one spectral vector, and the localiza-
tion network of the STN also was a 2D-CNN. Although this approach is suboptimal, it
may already show whether the STN is suitable to perform domain adaptation, while
visualization and interpretation is easier in 2D. Fig. 7.3). The input to our system
is a sequence of ultrasound tongue images, which record the movement of the ar-
ticulators at a relatively high frame rate. Our goal is to estimate the speech signal
produced during articulation, but instead of producing a speech signal, we estimate
only a mel-spectrogram at the network output, and we apply a neural vocoder to
convert the spectrogram to speech. The main advantage of this approach is that
the mel-spectrum is a very dense representation, which is easier to estimate than
the speech signal itself, and we can apply large pre-trained networks for the synthe-
sis step, such as WaveGlow [75]. Our training data consists of precisely time-aligned
pairs of ultrasound videos and speech signals, so the ultrasound-to-spectrogram map-
ping can be performed on a simple frame-by-frame basis, converting each ultrasound
image to a spectral vector [18, 100]. While this simple arrangement already per-
forms reasonably well, significant improvement can be achieved by involving the
input context, that is, by using a block of video frames as input instead of just one
image. Several network architectures have been proposed to process 3D blocks of
input data, for video processing in general [24, 48, 104], and for ultrasound input
in particular [53, 86, 102, 113]. In the experimental section we will experiment
both with 2D and 3D Convolutional Neural Networks (CNNs) for the mapping task.
The problem could also be addressed even in the lack of aligned training data using
encoder-decoder networks [83, 114] or video transformers [8, 90].

7.4 The Spatial Transformer Network

The concept of the Spatial Transformer Network (STN) was motivated by the fact
that in image recognition the actual input is frequently shifted, rotated or scaled
compared to the training data, due to changes in camera angle, distance, and other
factors [44]. Although CNNs are somewhat invariant to translations, their over-
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Figure 7.3: Illustration of the network architecture used.
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all flexibility would greatly improve by introducing a dynamic mechanism that can
spatially transform the input image by an appropriate transformation before classifi-
cation. The STN is a network module that can be inserted into a CNN architecture
at any point, but typically it is applied between the input and the first network layer.
In this arrangement, the STN performs an affine transformation on the input image,
and returns a transformed image of the same size. As it manipulates only the input,
it can be combined with practically any type of classification or regression network.
The affine transform defined by the STN is quite powerful and includes translation,
scaling, rotation, shearing and cropping as special cases.

The STN consists of three main parts, namely the localization network, the grid
generator and the sampler [44]. The grid generator and the sampler together are
responsible for executing the affine transformation defined by the parameter θ, which
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Figure 7.4: An example UTI image, before and after STN.

consists of 6 components in the case of a 2D input (see Fig. 7.3).

The grid generator and the sampler are differentiable. This is vital for propagating
the error back to the third component, the localization network, which learns to
estimate the θ parameters, conditioned on the actual input image. The localization
network can take any form, but its uppermost layer must be a regression layer to
produce the θ values.

While we explained the STN concept assuming 2D images, the whole idea can be
naturally extended to 3D data blocks [6, 44]. The 3D variant has already been used
in visual speech recognition (e.g., lip reading) by Yu and Wang [112]. We discuss the
options for a 3D extension in Section 7.5.3.

Although the original concept uses the STN to decrease the variance of the train-
ing data by transforming the input images to a canonical, expected pose, it may
also be useful in handling a domain mismatch between the training and testing con-
ditions. It was applied for domain adaptation in various image processing situa-
tions [14, 84], and here we evaluate its efficiency for speaker and session adaptation
in UTI-to-speech conversion.
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7.5 Experimental Set-Up

7.5.1 Data Acquisition and Preprocessing

The data utilized in this chapter consisted of a Hungarian dataset, which was previ-
ously explained in Chapter 6.

7.5.2 Network Configuration

For the data In the first set of experiments we applied a simple 2D convolutional
(2D-CNN) network that transforms one ultrasound image to one spectral vector, and
the localization network of the STN also was a 2D-CNN. Although this approach is
suboptimal, it may already show whether the STN is suitable to perform domain
adaptation, while visualization and interpretation is easier in 2D. Fig. 7.3 illustrates
this network arrangement, while Fig. 7.4 demonstrates the effect of STN on an actual
ultrasound image. The 2D-CNN network had a quite simple and traditional structure.
It consisted of 4 convolutional layers with 30-60-90-120 filters, with a MaxPooling
layer after every second layer. The convolutional processing was followed by a fully
connected layer of 300 neurons, and the linear output layer of 80 neurons. All hid-
den layers applied the Swish nonlinearity, and overfitting was minimized by placing
dropout layers (p=0.2) after each processing layer. We applied the mean squared
error (MSE) loss function, which was minimized using the Adam optimizer with a
batch size of 100 and a learning rate of 2 · 10−3. Training was halted using early
stopping on the validation set.

The input of the STN module is the same image as that of the spectral regression
module, and it also has to perform regression. Hence we used exactly the same 2D-
CNN architecture for the STN as for the main network. However, as the STN has
to estimate only 6 parameters (the θ vector) instead of 80, we configured it to be
much smaller than the regression network. The number of free parameters in the
STN module was only about 10% of that of the whole network.

7.5.3 Extension to 3D

The simple framework presented above can be significantly improved by extending
the input from just one image to a sequence of video frames. Such 3D blocks of
input data can be processed by various network types, such as by combining 2D-CNN
and LSTM layers, by 3D-CNN models, or by using Convolutional LSTM layers (see
previous chapters) [53, 86, 102, 117]. Here, we applied the 3D-CNN architecture
that we used in Chapter 2. This network had the same global architecture as the
2D-CNN presented above. However, the convolutions were extended to the time axis
as well, in a somewhat special arrangement. The first Conv3D layer applied a large
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stride along the time axis, dividing the sequence of 25 input images into 5 five blocks
along time. The next two Conv3D layers had a filter size of 1 along time, practically
processing the 5 blocks separately. Finally, the extracted information was fused along
time by the last Conv3D layer and by the topmost two fully connected layers.

As regards the STN, there are several options to extend it to 3D. First, we could
reformulate the affine transformation to operate on 3D data. However, for our ul-
trasound data, translation, shearing and rotation along the time axis seemed to be
unnecessary. Hence, we chose to keep the transformation in 2D. The second question
was whether the localization network should operate on 2D or 3D data.

We chose the technically simpler solution, and used the same 2D localization net-
work as for the 2D-CNN. In this configuration, the STN applies the same 2D trans-
formation to all the 25 images of the actual input block.

7.6 Results

Table 7.1: MSE rates of the 2D-CNN on the dev set of the 4 speakers (top), and for the
4 extra sessions of speaker 048 (down).

s048 s049 s102 s103

no STN 0.361 0.387 0.390 0.343
with STN 0.358 0.396 0.389 0.340

s048-2 s048-3 s048-4 s048-5

no STN 0.505 0.462 0.464 0.504
with STN 0.495 0.458 0.467 0.483

First of all, we examined whether the inclusion of the STN module has any pos-
itive effect on the results when using only training data from one speaker and one
session. Table 7.1 shows the MSE scores of the 2D network, with and without the
STN module, for all the 4 speakers and the 4 extra sessions from speaker 048. In
this configuration, we expected no significant benefit from the STN, and this is ex-
actly what we see. The scores we obtained are quite similar accross all speakers and
the extra sessions of speaker 048. One notable difference is that the results are con-
sistently worse for the additional sessions of speaker 048 than for her main session.
The explanation is that these extra sessions were much shorter than the multi-speaker
recordings (3.5 vs. 15 minutes).

In the adaptation experiments we considered the network trained on the data of
speaker 048 as our base model. First, we evaluated it on the samples from the other
speakers and the additional sessions of the same speaker without any adaptation.
These results will be considered as the base results.
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Adaptation method
Speaker no stn stn+out full mean θ

spk049 1.049 0.588 (-71%) 0.517 (-82%) 0.400 0.887 (-25%)

spk102 1.401 0.609 (-78%) 0.449 (-94%) 0.389 1.015 (-38%)

spk103 1.322 0.552 (-79%) 0.469 (-88%) 0.350 0.909 (-42%)

avg.diff. -0% -76% -88% -100% -35%

Adaptation method
Session no stn stn+out full mean θ

ses-2 1.131 0.646 (-77%) 0.547 (-93%) 0.503 0.913 (-34%)

ses-3 0.998 0.619 (-69%) 0.485 (-94%) 0.451 0.934 (-11%)

ses-4 1.054 0.641 (-70%) 0.522 (-90%) 0.468 0.908 (-24%)

ses-5 1.174 0.604 (-85%) 0.566 (-91%) 0.506 0.955 (-32%)

avg.diff. -0% -75% -92% -100% -26%

Table 7.2: MSE rates of the 2D-CNN model of spk048 for the other 3 speakers (top), and
for the 4 extra sessions of the same speaker (down), using various adaptation strategies.

Table 7.2 summarizes the results achieved with the different adaptation strategies
for the additional speaker (upper panel) and for the additional sessions of the same
speaker (lower panel). As the relative improvements are more informative than the
actual MSE values, in parenthesis we display the relative error reductions (consid-
ering the no-adaptation case as 0% and full retraining as 100%), and in the bottom
line we summarize the average improvements. The first column (’no’ adaptation)
clearly shows that the results are unacceptable without any adaptation – the error
rates are actually worse than those for a randomly initialize net without any train-
ing. Moreover, the scores in the ’full’ adaptation column are pretty similar to those
in the baseline table, so pre-training on speaker 048 seems to be neither beneficial
nor detrimental (interestingly even for the extra sessions from the same speaker).
By allowing only the STN module to adapt (’stn’ column) we can get rid of 75-76%
of the performance gap between the non-adapted and fully adapted models. This
is pretty good, considering that the regression network itself is not modified at all,
we just simply allow the STN to learn a more optimal affine transformation for the
images of the given speaker or session. The improvement is even larger if we also al-
low the linear output layer of the regression network to adjust its weights to the new
speaker or session (’stn+out’). In this case, the average error reduction is 88% for
cross-speaker and 92% for cross-session adaptation. The better cross-session score
is reasonable, as one would expect that the differences caused by the misalignment
of the device might be easier to compensate by an affine transformation than the
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inherent anatomical differences between speakers.
As in the baseline evaluation (Table 7.1) the STN had no effect on the results,

we speculated that maybe it is unnecessary to learn a separate transformation for
each image – perhaps learning one global θ for each speaker or session would be
enough. We examined the within-speaker variance of the 6 components of theta
for the baseline models, and we indeed found that it was very low, on the order
of 0.01, while the between-speaker variance of the θ vectors was 3-5 times larger.
This fact seemed to underpin our conjecture, so we preformed the following simple
experiment. Instead of using a unique theta for each image, we simply replaced the
STN of the adapted models with the mean θ vector over the samples of the given
speaker/session. The results are shown in the rightmost columns of Table 7.2 (’mean
θ’), but the findings are negative: while there is a 25-35% reduction in the error
rates, it is very far from the best achievable. It seems that even though the variance
of θ is small, the minor nuances in the learned transformations per image play an
important role in the regression accuracy.

Finally, we extended our experiments to 3D input blocks consisting of 25 subse-
quent images, using a 3D-CNN for the regression task and a 2D-CNN for the STN
module (Section 7.5.3). In this case, the baseline model yielded an MSE of 0.275
and 0.278 with and without the STN on the data set of speaker 048. As speaker
and session adaptation gave very similar results previously, we repeated only the
cross-speaker adaptation experiments with this network, and the results are shown
in Table 7.3. While all the error rates are typically lower than they were for the 2D-
CNN, the relative improvements with respect to the various adaptation strategies are
very similar.

7.7 Summary

Current tongue ultrasound-based SSI systems are sensitive to changing speakers, or
to a slight displacement of the recording device. Here, we examined whether an STN
module is able to counterbalance these factors by applying an affine transform on the

Adaptation method
Speaker no stn stn+out full
spk049 1.105 0.553 (-73%) 0.497 (-80%) 0.348
spk102 1.451 0.502 (-84%) 0.416 (-91%) 0.315
spk103 1.541 0.501 (-83%) 0.418 (-90%) 0.294

avg.diff. -0% -80% -87% -100%

Table 7.3: MSE rates for cross-speaker adaptation, using the 3D-CNN network.
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input image. When applying a simple 2D-CNN for spectral estimation, we found that
allowing only the adaptation of the STN module can decrease the error rate by about
75%, while allowing also the linear output layer to adapt can compensate for 88-
92% of the error. We extended the experiments to 3D input blocks, and we observed
similar tendencies, although the improvement was somewhat smaller. In the future
we plan to run experiments with a 3D localization network and with smaller amounts
of adaptation material.

The author of this PhD thesis is responsible for the following contributions pre-
sented in this chapter:

VII/1. Preparing data .

VII/2. Implementing code for the models.

VII/3. Analyzing and interpreting the results.

And the results presented in this chapter were published in [103].
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Articulatory-to-Acoustic Mapping with WaveGlow Speech Synthesis. In Proc.
Interspeech 2020, pages 2727–2731, 2020.

[19] N. Dehak, R. Dehak, P. Kenny, N. Brummer, P. Ouellet, and P. Dumouchel.
Support vector machines versus fast scoring in the low-dimensional total vari-
ability space for speaker verification. In Proc. Interspeech, pages 1559–1562,
2009.

[20] B. Denby, T. Schultz, K. Honda, T. Hueber, J. M. Gilbert, and J. S. Brumberg.
Silent speech interfaces. Speech Communication, 52(4):270–287, 2010.

[21] H. Deng and D. O’Shaughnessy. Voiced-unvoiced-silence speech sound classifi-
cation based on unsupervised learning. In 2007 IEEE International Conference
on Multimedia and Expo, pages 176–179. IEEE, 2007.
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interfészekben. In MSZNY 2018, pages 196–205, Szeged, Hungary, 2018.

[32] JA. Haigh and JS. Mason. Robust voice activity detection using cepstral fea-
tures. In Proceedings of TENCon’93. IEEE Region 10 International Conference on
Computers, Communications and Automation, volume 3, pages 321–324. IEEE,
1993.

[33] G. Hinton, L. Deng, D. Yu, G. Dahl, AR. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. Sainath, and B. Kingsbury. Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.



100 Bibliography

[34] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.
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Summary

This thesis presented new strategies for improving various aspects of the ultrasound
SSI project, including model implementation and enhancement, data preparation
and processing, generalization, and model training speedup. The proposed meth-
ods were tested on two large datasets, and the results were evaluated. Chapter 1
provided a brief introduction to the basic components of the SSI system, such as
the feature extractor, different modalities, and model training. The chapter also de-
scribed how deep neural networks, particularly CNNs, work and their usefulness in
image processing. In subsequent chapters, various aspects of the SSI system were ex-
amined, and algorithms from related areas were adapted to improve the performance
of the SSI system.

3D Convolutional Neural Networks for Ultrasound-Based
Silent Speech Interfaces

In Chapter 2, we used deep neural networks to convert ultrasound video of tongue
movements into speech. We used convolutional neural networks (CNNs) to process
the sequence of images, which is popular for image recognition. The input was a
video sequence containing time trajectory information of tongue movements. Then
We explored different network structures for processing time sequences, including
stacking a 2D CNN and a recurrent neural network, and extending the 2D CNN to 3D
by adding time as an extra dimension. We found that the 3D CNN model achieved
a lower error rate, was smaller, and had faster training than the CNN+LSTM model,
suggesting that 3D CNNs are a feasible alternative to recurrent neural models for
ultrasound video-based speech synthesis interface (SSI) systems. This chapter repre-
sents a significant contribution to the field of speech synthesis, demonstrating the po-
tential for using deep neural networks to convert ultrasound video into speech. The
use of CNNs for processing time sequences offers a new approach that can achieve
lower error rates with faster training times, making it a promising alternative to pre-
vious methods. The findings suggest that 3D CNNs may offer a feasible alternative to
recurrent neural models for SSI systems, which could have implications for improv-
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ing speech synthesis technology in the future.

Utilizing adversarial training to improve Deep Neural
Network models

In Chapter 3, GANs were employed to enhance the performance of ultrasound SSI
models by incorporating perceptual loss in addition to conventional loss for two dif-
ferent datasets. The goal was to generate high-quality ultrasound images with im-
proved accuracy and fidelity, which is crucial for SSI project. The proposed method
involves adding a perceptual loss term to the conventional loss function used in the
SSI model. The perceptual loss term is calculated based on the difference between
the features extracted from the real and synthetic images by a pre-trained neural
network. This approach enables the GAN to generate images that not only match the
target distribution but also capture the relevant features and structures of the real
images. To evaluate the performance of the proposed method, the SSI model was
trained on two different datasets: one containing images of Hungarian corpus, and
the other containing images of English corpus. The results showed that incorporat-
ing perceptual loss led to a significant improvement in the quality and accuracy of
the generated images. The proposed method has the potential to improve the per-
formance of ultrasound SSI models, making them more reliable and accurate for SSI
applications. Moreover, the use of GANs and perceptual loss can be extended to other
modalities.

Neural Speaker Embeddings for Generalizing Ultrasound
SSI model

Chapter 4, delved into the exploration of Embedding Neural Networks to enhance
the SSI model. The SSI model had previously not been performing optimally due
to poorly tuned parameters. To address this issue, a new approach called x-vector
was implemented and evaluated on unseen speakers to determine its effectiveness in
improving the model’s performance by incorporating speaker information into the in-
put ultrasound data. The proposed strategy was tested on an English corpus dataset
prepared at both the frame and speaker levels, including their respective spectro-
grams. The results indicated that this approach significantly improved the model’s
generalizability.
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Convolutional Neural Networks for Detecting Voice Ac-
tivity in Silent Speech Interfaces based on Ultrasound

In Chapter 5, we demonstrated that ultrasound images can be used to differentiate
between silent and speech segments, similar to voice activity detection in speech.
The training labels were estimated based on a public VAD implementation applied to
the parallel speech recording. The classifier achieved an accuracy of 86% in discrim-
inating silence and speech frames. We also highlighted the impact of retaining too
much silence in the training set, which can affect the quality of the generated speech
and the training of the model.

To address the challenge of preprocessing in Silent Speech Interfaces (SSI), we
proposed a new method of voice activity detection. We implemented VAD on each
speech frame instead of the entire speech, which resulted in better alignment be-
tween spectrogram and ultrasound frames and more reliable features for the model.
we used VAD technique as a method of silence removal as an initial step before fea-
ture extraction. Then synchronized the windowed speech signal with the ultrasound
frames and fed them to the VAD. Finally We performed the subsequent feature ex-
traction steps for synthesizing speech or other related tasks using only the frames
retained by VAD.

Overall, we showed that implementing VAD on each speech frame rather than the
entire speech improved the accuracy of the SSI model. The proposed VAD method
was effective in removing silence from the input data and generating more reliable
features for the model. The results suggest that ultrasound images can be a use-
ful tool for discriminating between silent and speech segments, which could have
important implications for the development of SSI technology.

Enhanced analysis of ultrasound tongue videos via the
fusion of ConvLSTM and 3D Convolutional Networks

In this Chapter, we present a structured approach to address the challenge of high
computational cost in deep learning models, which require a large amount of data to
achieve good performance. Our proposed solution involves a combination of Convo-
lutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), which we
call ConvLSTM, along with a 3D Convolutional Network (Conv3D). This combina-
tion allows us to extract sequential and volumetric information from the data and
decrease the number of layers and parameters needed to train the model, while still
achieving high performance.

To evaluate our proposed method, we conducted experiments on a Hungarian
dataset and compared our results against previous high-performance models. Our
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chapter explains in detail the implementation of the ConvLSTM model and demon-
strates its ability to extract spatial and temporal features from ultrasound tongue
videos. The results of our experiments show that our proposed method outperforms
the previous state-of-the-art models, achieving better accuracy and efficiency.

In conclusion, our method presents a promising approach to improving the per-
formance of deep learning models while reducing the computational cost. We believe
that our approach could be valuable for future research in the field of image process-
ing and deep learning.

Enhancing Tongue Ultrasound-Based Silent Speech In-
terfaces with Spatial Transformer Networks

In the Chapter 7 we explored the use of spatial transformer networks (STNs) to en-
hance the speaker and session adaptation of ultrasound tongue imaging-based silent
speech interfaces (SSIs). SSIs leverage deep learning algorithms to synthesize in-
telligible speech from articulatory movement data. However, existing models are
often speaker-specific and perform poorly when switching between users or across
different sessions.

To address this limitation, we propose extending deep networks with a spatial
transformer network module. The STN module enables affine transformations on
the input images, facilitating quick adaptation for different speakers and sessions.

By integrating the spatial transformer networks, the adapted SSI models can im-
prove performance when faced with variations in tongue articulation across speakers
or changes in the recording setup.
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Contributions of the thesis

In the first thesis group, the contributions are related to the publication ’3D Convolu-
tional Neural Networks for Developing Silent Speech Interfaces Utilizing Ultrasound’.
Detailed discussion can be found in Chapter 2.

I/1. Implementing the neural networks used in the experiments to restore speech
signals from articulatory recordings. Specifically, we implemented a 3D con-
volutional neural network with different window length and compared it with
different variations of CNN and combination with CNN+LSTM and BiLSTM
networks.

I/2. Calculating the performance of the models using objective metrics such as
STOI, PESQ, and MCD. The results obtained from these metrics were analyzed
to compare the performance of the different network architectures.

In the second thesis group, the contributions are related to the publication ’Utilizing
adversarial training to improve Deep Neural Network models’. Detailed discussion
can be found in Chapter 3.

II/1. Implementation of GAN and CGAN models for image generation.

II/2. Utilization of various SSI models as generators in the GAN and CGAN frame-
works.

II/3. Calculation and analysis of performance metrics to evaluate the effectiveness
of the models.

II/4. Conducting research in the field of GANs and image generation.

In the third thesis group, the contributions are related to the publication ’Neural
Speaker Embeddings for Generalizing Ultrasound SSI model’. Detailed discussion
can be found in Chapter 4.

III/1. Preparing data for the experiments.

III/2. Implementing the model and conducting the experiments.

III/3. Comparing the results obtained from the experiments.

III/4. Calculating the relevant metrics to evaluate the model’s performance.
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In the forth thesis group, the contributions are related to the publication ’Convolu-
tional Neural Networks for Detecting Voice Activity in Silent Speech Interfaces based
on Ultrasound’. Detailed discussion can be found in Chapter 5.

IV/1. Implementing the model for voice activity detection using a CNN architecture
and training it with binary cross-entropy loss function.

IV/2. Developing the idea of applying VAD to remove silence from the speech signal
in SSI systems.

IV/3. Analyzing the results of experiments with different amounts of silence in the
corpus, comparing the MCD and MSE metrics, and evaluating the impact of
VAD on the SSI.

In the fifth thesis group, the contributions are related to the publication ’Enhanced
analysis of ultrasound tongue videos via the fusion of ConvLSTM and 3D Convolu-
tional Networks’. Detailed discussion can be found in Chapter 6.

V/1. Preparing data for the specific task.

V/2. Implementing code for the models (Conv3D, Conv3D+BiLSTM, ConvLSTM).

V/3. Analyzing and interpreting the results.

V/4. Calculating the evaluation metric for the results.

In the six thesis group, the contributions are related to the publication ’Enhanc-
ing Tongue Ultrasound-Based Silent Speech Interfaces with Spatial Transformer Net-
works’. Detailed discussion can be found in Chapter 7.

VI/1. Preparing data .

VI/2. Implementing code for the models.

VI/3. Analyzing and interpreting the results.



Összefoglalás

Ez a dolgozat új stratégiákat mutatott be az ultrahang SSI projekt különböző aspektu-
sainak jav́ıtására, beleértve a modell megvalóśıtását és továbbfejlesztését, az adatok
előkésźıtését és feldolgozását, az általánośıtást és a modell betańıtási gyorśıtását. A
javasolt módszereket két nagy adathalmazon tesztelték, és az eredményeket értékelték.
A 1 fejezet röviden bemutatta az SSI rendszer alapvető összetevőit, mint például a
funkciókivonó, a különböző módozatok és a modellképzés. A fejezet bemutatta a
mély neurális hálózatok, különösen a CNN-ek működését és hasznosságát a képfeldol-
gozásban. A következő fejezetekben az SSI rendszer különböző aspektusait vizsgálták
meg, és a kapcsolódó területekről származó algoritmusokat adaptálták az SSI rend-
szer teljeśıtményének jav́ıtására.

3D konvolúciós neurális hálózatok ultrahang alapú csen-
des beszéd felületekhez

A 2 fejezetben mély neurális hálózatokat használtunk a nyelvmozgások ultrahangos
videójának beszéddé alaḱıtására. Konvolúciós neurális hálózatokat (CNN) használtunk
a képsorok feldolgozásához, ami népszerű a képfelismerésben. A bemenet egy videoso-
rozat volt, amely a nyelvmozgások időpálya-információit tartalmazza. Ezután különb-
öző hálózati struktúrákat vizsgáltunk az időszekvenciák feldolgozásához, beleértve
a 2D CNN és egy ismétlődő neurális hálózat egymásra helyezését, valamint a 2D
CNN kiterjesztését 3D-re az idő extra dimenzióként való hozzáadásával. Azt találtuk,
hogy a 3D CNN-modell alacsonyabb hibaarányt ért el, kisebb volt, és gyorsabb volt
a betańıtása, mint a CNN+LSTM modell, ami arra utal, hogy a 3D CNN-ek meg-
valóśıtható alternat́ıvát jelentenek az ultrahangos videó alapú beszédszintézis in-
terfész (SSI) ismétlődő neurális modelljeivel szemben. rendszerek. Ez a fejezet je-
lentős hozzájárulást jelent a beszédszintézis területéhez, bemutatva a mély neurális
hálózatok alkalmazásának lehetőségét az ultrahang videó beszéddé alaḱıtására. A
CNN-ek használata az időszekvenciák feldolgozására új megközeĺıtést ḱınál, amely
alacsonyabb hibaarányt érhet el gyorsabb betańıtási idővel, ı́gy ı́géretes alternat́ıvát
jelent a korábbi módszerekhez képest. Az eredmények azt sugallják, hogy a 3D CNN-
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ek megvalóśıtható alternat́ıvát ḱınálhatnak az SSI-rendszerek visszatérő neurális mod-
elljeivel szemben, amelyek hatással lehetnek a beszédszintézis technológia fejlesztésére
a jövőben.

A kontradiktórius képzés felhasználása a Deep Neural
Network modellek fejlesztésére

A 3. fejezetben a GAN-okat az ultrahangos SSI-modellek teljeśıtményének fokozására
használták azáltal, hogy a hagyományos veszteség mellett az észlelési veszteséget is
beéṕıtették két különböző adatkészlet esetében. A cél az volt, hogy kiváló minőségű
ultrahangképeket hozzanak létre, jav́ıtott pontossággal és pontossággal, ami kulcs-
fontosságú az SSI projekt számára. A javasolt módszer magában foglalja az észlelési
veszteség kifejezés hozzáadását az SSI modellben használt hagyományos veszteségfü-
ggvényhez. Az észlelési veszteséget a valós és a szintetikus képekből egy előre be-
tańıtott neurális hálózat által kinyert jellemzők különbsége alapján számı́tjuk ki. Ez
a megközeĺıtés lehetővé teszi a GAN számára, hogy olyan képeket álĺıtson elő, ame-
lyek nemcsak a céleloszlásnak felelnek meg, hanem a valós képek releváns jellemzőit
és struktúráit is rögźıtik. A javasolt módszer teljeśıtményének értékeléséhez az SSI-
modellt két különböző adathalmazra betańıtották: az egyik a magyar korpusz képeit,
a másik pedig az angol korpusz képeit tartalmazza. Az eredmények azt mutatták,
hogy az észlelési veszteség beéṕıtése jelentősen jav́ıtotta a generált képek minőségét
és pontosságát. A javasolt módszer jav́ıthatja az ultrahangos SSI-modellek teljeśıtmé-
nyét, megb́ızhatóbbá és pontosabbá téve azokat az SSI alkalmazásokhoz. Sőt, a GAN-
ok és az észlelési veszteség alkalmazása más módokra is kiterjeszthető.

Neurális hangszóró beágyazások az ultrahang SSI mod-
ell általánośıtásához

Fejezet 4, az SSI-modell fejlesztése érdekében végzett neurális hálózatok beágyazásán-
ak feltárásával foglalkozik. Az SSI modell korábban nem működött optimálisan a
rosszul hangolt paraméterek miatt. A probléma megoldása érdekében egy új megköze-
ĺıtést, az x-vektort vezették be és értékelték ki a nem látott hangszórókon, hogy
meghatározzák annak hatékonyságát a modell teljeśıtményének jav́ıtásában azáltal,
hogy a hangszóró információit beéṕıtették a bemeneti ultrahangadatokba. A java-
solt stratégiát egy angol korpusz adatkészleten tesztelték, amelyet mind a keret,
mind a hangszóró szintjén késźıtettek, beleértve a megfelelő spektrogramokat. Az
eredmények azt mutatták, hogy ez a megközeĺıtés jelentősen jav́ıtotta a modell általá-
nośıthatóságát.



116 Összefoglalás

Konvolúciós neurális hálózatok a hangtevékenység észl-
elésére a csendes beszédfelületeken ultrahangon ala-
puló

A 5 fejezetben bemutattuk, hogy az ultrahangképek seǵıtségével megkülönböztethető
a néma és a beszédszegmens, hasonlóan a beszéd hangaktivitás-érzékeléséhez. A
képzési ćımkéket a párhuzamos beszédrögźıtésre alkalmazott nyilvános VAD imple-
mentáció alapján becsültük meg. Az osztályozó 86%-os pontosságot ért el a csend
és a beszédkeretek megkülönböztetésében. Kiemeltük továbbá a túl sok csend meg-
tartásának hatását a tańıtókészletben, ami befolyásolhatja a generált beszéd minőségét
és a modell képzését.

A Silent Speech Interfaces (SSI) előfeldolgozással kapcsolatos kih́ıvások megoldására
új módszert javasoltunk a hangtevékenység észlelésére. A VAD-ot minden beszédkeretre
implementáltuk a teljes beszéd helyett, ami jobb összehangolást eredményezett a
spektrogram és az ultrahang keretek között, és megb́ızhatóbb funkciókat eredményezett
a modell számára. a VAD technikát alkalmaztuk a csend eltávoĺıtásának módszereként,
a jellemzők kivonása előtti kezdeti lépésként. Ezután szinkronizálta az ablakos beszédj-
elet az ultrahang keretekkel, és betáplálta őket a VAD-ba. Végül elvégeztük az ezt
követő jellemző kivonási lépéseket a beszéd szintetizálásához vagy más kapcsolódó
feladatokhoz, csak a VAD által megtartott keretek felhasználásával.

Összességében megmutattuk, hogy a VAD implementálása az egyes beszédkeretekre,
nem pedig a teljes beszédre, jav́ıtotta az SSI modell pontosságát. A javasolt VAD
módszer hatékonyan eltávoĺıtotta a csendet a bemeneti adatokból, és megb́ızhatóbb
jellemzőket generált a modell számára. Az eredmények arra utalnak, hogy az ultra-
hangos képek hasznos eszközei lehetnek a néma és a beszédszegmensek megkülönbö-
ztetésének, aminek fontos következményei lehetnek az SSI technológia fejlődésére.

Az ultrahangos nyelvvideók továbbfejlesztett elemzése
a ConvLSTM és a 3D Convolutional Networks fúziójával

Ebben a fejezetben egy strukturált megközeĺıtést mutatunk be a mély tanulási mod-
ellek magas számı́tási költségéből adódó kih́ıvások kezelésére, amelyek nagy men-
nyiségű adatot igényelnek a jó teljeśıtmény eléréséhez. Javasolt megoldásunk a kon-
volúciós neurális hálózatok (CNN) és a visszatérő neurális hálózatok (RNN) kom-
binációját foglalja magában, amelyeket ConvLSTM-nek nevezünk, valamint egy 3D
konvolúciós hálózatot (Conv3D). Ez a kombináció lehetővé teszi számunkra, hogy
szekvenciális és volumetrikus információkat nyerjünk ki az adatokból, és csökkentsük
a modell betańıtásához szükséges rétegek és paraméterek számát, miközben továbbra
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is nagy teljeśıtményt érünk el.
Javasolt módszerünk értékeléséhez magyar adathalmazon végeztünk ḱısérleteket,

és összehasonĺıtottuk eredményeinket korábbi nagy teljeśıtményű modellekkel. Fe-
jezetünk részletesen elmagyarázza a ConvLSTM modell megvalóśıtását, és bemu-
tatja, hogy képes az ultrahangos nyelvvideókból térbeli és időbeli jellemzőket kiny-
erni. Ḱısérleteink eredményei azt mutatják, hogy a javasolt módszerünk felülmúlja a
korábbi csúcsmodelleket, jobb pontosságot és hatékonyságot ér el.

Összefoglalva, módszerünk ı́géretes megközeĺıtést ḱınál a mély tanulási modellek
teljeśıtményének jav́ıtására, miközben csökkenti a számı́tási költségeket. Meggyőződ-
ésünk, hogy megközeĺıtésünk értékes lehet a jövőbeli kutatások számára a képfeldolgo-
zás és a mély tanulás területén.

A nyelv ultrahang alapú csendes beszéd interfészek jav́ıt-
ása tértranszformátor hálózatokkal

A 7 fejezetben megvizsgáltuk a térbeli transzformátorhálózatok (STN-ek) használatát
az ultrahang-nyelvkép-alapú néma beszéd interfészek (SSI-k) hangszóró- és munkam-
enet-adaptációjának jav́ıtására. Az SSI-k mély tanulási algoritmusokat alkalmaznak,
hogy az artikulációs mozgásadatokból érthető beszédet szintetizáljanak. A meglévő
modellek azonban gyakran hangszóró-specifikusak, és gyengén teljeśıtenek a fel-
használók közötti váltáskor vagy a különböző munkamenetek között.

Ennek a korlátozásnak a megoldására javasoljuk a mély hálózatok térbeli tran-
szformátoros hálózati modullal történő kiterjesztését. Az STN modul affin transz-
formációkat tesz lehetővé a bemeneti képeken, megkönnýıtve a különböző hangszóró-
khoz és munkamenetekhez való gyors alkalmazkodást.

A térbeli transzformátor-hálózatok integrálásával az adaptált SSI-modellek jav́ıthat-
ják a teljeśıtményt, ha a hangszórók nyelvi artikulációjának eltéréseivel vagy a felvételi
beálĺıtások változásaival szembesülnek.
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A dolgozat hozzájárulásai

A első téziscsoport a hozzászólások a 3D konvolúciós neurális hálózatok ultrahangot
használó csendes beszédinterfészek fejlesztéséhez” ćımű kiadványhoz kapcsolódnak.
A részletes vita a 2 fejezetben található.

I/1. A ḱısérletek során alkalmazott neurális hálózatok implementálása beszédjelek
helyreálĺıtására artikulációs felvételekből. Konkrétan egy 3D konvolúciós neur
ális hálózatot implementáltak különböző ablakhosszokkal, majd összehasonĺıt
ották különböző változataival, valamint a CNN+LSTM és a BiLSTM hálózatok
kombinációjával.

I/2. A modellek teljeśıtményének kiszámı́tása objekt́ıv metrikák, például az STOI,
a PESQ és az MCD használatával történt. Az ezekből a metrikákból nyert
eredményeket elemezték annak érdekében, hogy összehasonĺıtsák a különböző
hálózatarchitektúrák teljeśıtményét.

A második téziscsoport a hozzászólások az Adverzális tréning felhasználása a mély
ideghálózati modellek jav́ıtására” ćımű kiadványhoz kapcsolódnak. A részletes vita
a(z) 3 fejezetben található.

II/1. GAN és CGAN modellek megvalóśıtása képgeneráláshoz.

II/2. Különböző SSI modellek felhasználása generátorként a GAN és CGAN kere-
trendszerben.

II/3. Teljeśıtménymutatók kiszámı́tása és elemzése a modellek hatékonyságának
értékelése érdekében.

II/4. Kutatás végzése a GAN-ok és képgenerálás területén.

A third thesis group a hozzászólások a Neurális hangszóró beágyazások az általánośıtó
ultrahang SSI modellhez” ćımű kiadványhoz kapcsolódnak. A részletes vita a 4 fe-
jezetben található.

III/1. Adatok előkésźıtése a ḱısérletekhez.

III/2. A modell megvalóśıtása és a ḱısérletek végrehajtása.

III/3. Az ḱısérletekből nyert eredmények összehasonĺıtása.

III/4. A releváns metrikák kiszámı́tása a modell teljeśıtményének értékeléséhez.

A forth thesis group hozzászólásai a Konvolúciós neurális hálózatok a hangtevékenység
kimutatására ultrahangon alapuló néma beszédfelületeken” ćımű kiadványhoz kapc-
solódnak. A részletes vita a 5 fejezetben található.
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IV/1. A hangaktivitás-detekció modelljének megvalóśıtása CNN architektúrával és
bináris keresztentrópia veszteségfüggvénnyel való betańıtása.

IV/2. Az ötlet kidolgozása a VAD alkalmazásáról a csend eltávoĺıtása érdekében besz
édjelekből a SSI rendszerekben.

IV/3. Az eredmények elemzése különböző csendmennyiséggel rendelkező korpus-
zokon végzett ḱısérletek után, az MCD és MSE metrikák összehasonĺıtása, vala
mint a VAD hatásának értékelése a SSI-re. .

A ötödik téziscsoport hozzászólásai az Ultrahangos nyelvvideók továbbfejlesztett
elemzése a ConvLSTM és a 3D Convolutional Networks fúziójával” ćımű kiadványhoz
kapcsolódnak. A részletes vita a 6 fejezetben található.

V/1. Adatok előkésźıtése a konkrét feladathoz.

V/2. A modellek (Conv3D, Conv3D+BiLSTM, ConvLSTM) kódjának megvalóśıtása.

V/3. z eredmények elemzése és értelmezése.

V/4. Az értékelési metrika kiszámı́tása az eredményekhez.

A hat téziscsoport hozzászólásai az A nyelv ultrahangon alapuló csendes beszédinterfészek
fejlesztése térbeli transzformátor hálózatokkal” ćımű kiadványhoz kapcsolódnak. Részletes
beszélgetés a 7. fejezetben található.

VI/1. Az adatok előkésźıtése.

VI/2. A modellek kódjának implementálása.

VI/3. Az eredmények elemzése és értelmezése.
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