
The Role of Dominating
Sets in Planning of
Process Networks

“Abstract of Ph.D. Dissertation”

Zoltán Blázsik

University of Szeged
Szeged, 2008



1 Introduction

The analysis of network problems provided mathematically and practically
significant results. The main subject of this thesis is an overview of the
candidate’s results in three topics. The first one is the Process Network
Synthesis (PNS) problem, while the second one is an investigation of the
existence of a perfect dominating set in de Bruijn graphs. The third topic
of the thesis is the HPPIT problem.

2 The mathematical model of the PNS
problem

Let M be a finite nonempty set, the set of materials. Let O ⊆ ϕ′(M) ×
ϕ′(M) be a nonempty set, the set of operating units, where ϕ′(M) denotes
the set of all nonempty subsets of M . For an u = (α, β) ∈ O, α and β
are called the input-set and output-set of u, respectively. The pair (M,O)
is defined as process graph or P-graph in short. The vertex set of this
directed bipartite graph is M ∪ O, and the arc set is A = A1 ∪ A2 with
A1 = {(X,Y ) : Y = (α, β) ∈ O and X ∈ α} and A2 = {(Y,X) : Y =
(α, β) ∈ O and X ∈ β}. In case there exist vertices X1, X2, ..., Xn, such
that (X1, X2), (X2, X3), . . . , (Xn−1, Xn) are arcs of process graph (M,O),
then [X1, Xn] is defined to be a path from X1 to Xn. Let the process
graphs (m, o) and (M,O) be given; (m, o) is defined to be a subgraph of
(M,O), if m ⊆ M , o ⊆ O, and o ⊆ ϕ′(m) × ϕ′(m). We can consider
elements of O as abstract transformer machines which produce the set β
from α.

Now we can define a structural model of PNS. Denote M ′ as the set
of available materials, P ⊆ M ′ is the set of desired materials and R ⊆
M ′ is the set of raw materials (P ∩ R = ∅). By the structural model of
PNS, we mean the triplet, M = (P,R,O). Then, the process graph is
(M,O), where M = ∪{α ∪ β : (α, β) ∈ O} ∪ P ∪ R. (M,O) is the P -
graph that represents the interconnections among the operating units of
O. Furthermore, every feasible process network, producing the desired
material set P from the given set R by using operating units from O,
corresponds to a subgraph of (M,O). If additional constraints, e.g. the
material balance, are disregarded, the subgraphs of (M,O), which can be
assigned to the feasible processes, have common combinatorial properties.
Such properties, explored in [18], are given below.

1



Subgraph (m, o) of (M,O) is called a feasible solution of M = (P,R,O)
if the following properties are satisfied.

(A1) P ⊆ m,

(A2) ∀X ∈ m, X ∈ R⇔ there exists no (Y,X) arc in (m, o),

(A3) ∀Y0 ∈ o, ∃ path [Yo, Yn] with Yn ∈ P ,

(A4) ∀X ∈ m, ∃(α, β) ∈ o such that X ∈ α ∪ β.

Let us denote S(M) the set of the feasible solutions of M. It is easy to
see that S(M) is closed under the finite union. Consequently,

∪{(m, o) : (m, o) ∈ S(M)}

is also a feasible solution provided that S(M) 6= ∅; it is the greatest fea-
sible solution with respect to the relation of subgraph ordering. This
distinguished graph is called the maximal structure of M.

The first PNS problem is the question, how we can obtain feasible so-
lutions, and how we can generate the maximal structure from a structural
model. In [14] and [19] a simple polynomial time algorithm is presented
for the generation of the maximal structure, if it is exists.

The structural model of PNS problem M = (P,R,O) be given; more-
over, let z be a positive real-valued weight function defined on S(M). The
basic model is then

min{z((m, o)) : (m, o) ∈ S(M)}. (1)

The cost minimization of feasible solution of a process network is in-
deed essential. For this purpose, several papers appeared for solving PNS
problems by global optimization methods (cf. [13] and [22]) and by com-
binatorial approaches based on the feasible graphs of processes (see, e.g.,
[14], [18], [21]). However, its solution is difficult in general.

Now, a class of PNS problems can be defined, when each operating
unit has a positive fixed cost. We want to find a feasible solution with the
minimum sum of costs of the units. Let w : O → R+ be a fixed weight
function defined on O. Our objective function is

min{
∑
u∈o

w(u) : (m, o) ∈ S(M)}. (2)

2



3 The PNS problem is NP–complete

It is a very important, fundamental question in theory of PNS, whether the
combinatorial optimization problem (2) is in P. It is easy to check whether
(m, o) ∈ S(M), and what is the value of the objective function for (m, o),
so (2) is in NP. We proved in [2] the fact, that (2) is NP–hard.

We referred to the problem (2) as a PNSw-problem; we denote the class
of such problems by PNSw. In what follows, we define a subclass of PNSw,
which is equivalent to the class of the classical set covering problems.

Let us denote by PNSw1 the subclass of PNSw for which a problem
from PNSw given by (P,R,O) and w is contained in PNSw1 if and only if
O ⊆ ℘′(R)× ℘′(P ). The meaning of this subclass can be given as follows:

It contains such process design problems in which the operating units
use only the raw materials as inputs and yield only the desired materials as
outputs; moreover, they perform in parallel. The following two statements
were shown in [2]:

Theorem 3.1 The class PNSw1 is equivalent to the class of the set co-
vering problems.

Obviously, if a PNSw1-problem is equipped with the condition that each
desired product can be produced by at most one operating unit in each
solution-structure, then we can construct an equivalent set partitioning
problem and vice versa. Since both the set covering and set partitioning
problems are well-known to be NP–complete, the PNSw1-problem must be
NP-complete as well. This leads immediately to the next corollary.

Corollary 3.2 The PNS problem is NP-hard.

Let us observe that in a PNSw1-problem the set of materials is divided
into two disjoint sets P and R, and each operating unit has a nonempty
subset of R as inputs and a nonempty subset of P as outputs. General-
izing this feature, we defined in [2] further subclasses of PNSw-problems.
Specifically, let k ≥ 1 be an arbitrary fixed integer in order to consider the
problems in which M = M1

⋃
· · ·
⋃
Mk+1 where the sets M1, . . . ,Mk+1

are pairwise disjoint nonempty sets. Furthermore, let O = O1

⋃
· · ·
⋃
Ok

with Oi ⊆ ℘′(M1

⋃
· · ·
⋃
Mi) × ℘′(Mi+1), i = 1, . . . , k. We have called

such a PNSw-problem a PNSwk-problem.

These PNS classes were the motivation for [20] and [27]. In these papers
there is a proof to another direction; the authors have pointed out that (2)

3



is a special case of the set covering problem, too. The (2) minsum version
of weighted PNS problem is one of the NP–complete problems, thus we can
investigate well-solvable special classes [28], [29], and heuristic algorithms
[8].

4 Bounds for the number of the
consistent decision-mappings

The first approach was to develop exponential time algorithms for solving
the PNS problem. Exponential time algorithms based on the Branch and
Bound technique were developed and studied for the PNS problem in [24]
and [25], and the notion of the decision-mapping (see [15]) has been intro-
duced. The P-graph (M,O) of M determines a function ∆ of M \R into
ϕ′(O) as follows. For any material X ∈M \R, let

∆(X) = {(α, β) : (α, β) ∈ O & X ∈ β}.

Let m be a subset of M \ R; furthermore, let δ(X) be a subset of ∆(X)
for each X ∈ m. Mapping δ from set m into the set of subsets of O,
δ[m] = {(X, δ(X)) : X ∈ m}, is called a decision-mapping belonging to
M; δ[m] is said to be consistent when δ(X) ∩∆(Y ) ⊆ δ(Y ) is valid for all
X,Y ∈ m, and the set of all consistent decision-mappings of M is denoted
by ΩM. In particular, if δ[m] ∈ ΩM and m = M \ R, then sometimes we
use the shorter notation δ instead of δ[M \ R]. A decision-mapping can
be visualized as a sequence of decisions, each of which is concerned with a
single material involved in the process being synthesized; it identifies the
set of operating units to be considered for producing directly the material
of interest. The meaning of the consistency can be presented as follows.
Material X is to be produced by operating units included in δ(X). Then,
those operating units of δ(X) that also participate in the production of
material Y , i.e., δ(X) ∩ ∆(Y ), must be considered for the production of
material Y , and thus, δ(Y ) ⊇ δ(X) ∩∆(Y ).

We define the function op on ΩM for selecting the set of those operating
units that are decided to produce any of the materials in set m based on
the consistent decision-mapping δ[m]. Formally, for any δ[m] ∈ ΩM,

op(δ[m]) = ∪{δ(X) : X ∈ m}.

Furthermore, we need the following functions. For any finite set of ope-
rating units o, let

matin(o) = ∪(α,β)∈oα, matout(o) = ∪(α,β)∈oβ.

4



Let δ1[m1] and δ2[m2] be arbitrary consistent decision-mappings. Then,
δ2[m2] is called an extension of δ1[m1] if m1 ⊆ m2 and δ1(X) = δ2(X)
for all X ∈ m1; this is denoted by δ1[m1] ≤ δ2[m2]. In particular, if
δ1[m1] ≤ δ2[m2] and m1 ⊂ m2, a proper extension exists; it is denoted
by δ1[m1] < δ2[m2]. Relation extension is reflexive, antisymmetric and
transitive; hence, it is a partial ordering on ΩM. Let us denote the set of
all maximal elements of this partially ordered set by Ωmax

M .

Theorem 4.1 For every ∅ 6= m ⊆ M \ R, the number of the decision-
mappings defined on m is 2

∑
X∈m |∆(X)|.

Let us denote by τ(m) the number of the consistent decision-mappings
defined on m.

Theorem 4.2 ([3]) For every ∅ 6= m ⊆M \R, τ(m) = 2|∪{∆(X):X∈m}|.

Remark 4.3 In particular, if m = M \R, then τ(m) = 2|O|. This shows
that there is a strong relationship between the maximal consistent decision-
mappings and the subsets of O. Indeed, it can be proved that mapping γ
defined by γ(δ) = op(δ) is a one-to-one mapping of Ωmax

M onto ϕ(O) where
ϕ(O) denotes the set of all subsets of O.

Regarding the relationship between the maximal decision-mappings
and the feasible solutions, let us define mapping ρ in the following way.
For any (m, o) ∈ S(M), let ρ(m, o) = δ where δ is defined by

δ(X) = {u : u = (α, β) ∈ o & X ∈ β}

for all X ∈M \R. It can be easily proved that ρ is a one-to-one mapping
of S(M) into Ωmax

M . Therefore, 2|O| is a trivial upper bound for |S(M)|.
Taking into account property (A2), this bound can be improved as

follows. Let (m, o) ∈ S(M) be an arbitrary feasible solution and ρ(m, o) =
δ. Then, (A2) implies the following inclusion:
(A′2) matin(op(δ)) ⊆ matout(op(δ)) ∪R.

Let us denote by τ ′(m) the number of the consistent decision-mappings
defined on m satisfying (A′2). Then τ ′(m) ≥ |S(M)|.

Let O = {u1, . . . , un}, M = {X1, . . . , Xk}, O(Xj) = {u : u = (α, β) ∈
O & Xj ∈ α}, for all Xj ∈M , and for all j ∈ {1, . . . , k}

Aj = {δ : δ ∈ Ωmax
M & Xj ∈ matin(op(δ)) \ (matout(op(δ)) ∪R)}.

5



Then, (A′2) is not satisfied by δ and the reason for it is that Xj ∈
matin(op(δ)) and Xj 6∈ matout(op(δ)) ∪ R. For every ∅ 6= I ⊆ {1, . . . , k},
let us define the set AI by AI = ∩i∈IAi, and in particular, let A∅ = Ωmax

M .
If I = {i1, . . . , il}, then

AI =
{
δ : δ ∈ Ωmax

M & {Xi1 , . . . , Xil} ⊆ matin(op(δ)) \ (matout(op(δ)) ∪R)
}

Now we can count τ ′(m) by the Inclusion-Exclusion Formula as an
upper bound to |S(M)|.

Theorem 4.4 [3] τ ′(m) = |Ωmax
M \ (A1 ∪A2 ∪ ... ∪Ak)| =

= ΣI⊆{1,...k}(−1)|I| · |AI | .

Remark 4.5 It is worth noting that the bound presented above is indepen-
dent of the set of the required products. It is valid for arbitrary P ⊆M \R.

Unfortunately, to count |AI | is a difficult problem. In the general case we
have to cover {Xi1 , . . . , Xil} with such a system, αj1 , . . . , αjs , for which
there are operating units (αjt , βjt) ∈ O, t = 1, . . . , s, with {Xi1 , . . . , Xil}∩
βjt = ∅, t = 1, . . . , s, and |AI | is equal to the number of such covering
systems.

5 Explicit bounds for the number of feasible
solutions of special PNS problem classes

The determination of |AI | is easier if we restrict ourselves to special classes
of PNS problems. An interesting special case is the class containing se-
parator type operating units, i.e., |α| = 1 is valid for all u = (α, β) ∈ O.
Let us consider the set I = {i1, . . . , il} again. Let O∗(Xij ) = O(Xij ) \
(∪i∈I∆ (Xi)). Then, O∗(Xij ) is the set of operating units such that they
do not produce any material from {Xt : t ∈ I} and each of them has Xij

as input material.

Theorem 5.1 [3] For separator type operating units

|AI | =

(
l∏
t=1

(
2|O

∗(Xit)| − 1
))
· 2|O\(∪i∈I∆(Xi))\(∪i∈IO(Xi))|.

6



A model for the PNS problem with separator type operating units is
called Line model, if

u1 = (α1, β1) with α1 = X1 and β1 = X2,

uk = (αk, βk) with αk = Xk and βk = Xk−1,

and in general:

ui = (αi, βi) with αi = Xi and βi = {Xi−1, Xi+1}, (2 ≤ i ≤ k − 1).

In our second model we modify β1 and βk such that:

β1 = {X2, Xk} and βk = {Xk−1, X1}.

Then we obtain a more symmetric another model called the Chain model.

Theorem 5.2 [4] In the Line model |S(M)| ≤ L(1),

where

L(1) = 2k+
∑

1≤j≤ k+1
2

(−1)j ·

 ∑
0≤r≤j−1

k−3j+r+2≥0

(
j − 1

r

)
·
(

k − 2j
j − r − 2

)
· 2k−3j+r+2 +

+
∑

0≤r≤j−1
k−3j+r+1≥0

(
j − 1

r

)
·
(

k − 2j
j − r − 1

)
· 2k−3j+r+1 +

+
∑

0≤r≤j−1
k−3j+r≥0

(
j − 1

r

)
·
(

k − 2j
j − r

)
· 2k−3j+r


= 1 +

∑
2≤t≤k

∑
1≤q≤min{ t

2 ;k−t+1}

(
t − q − 1

q − 1

)
·
(

k − t + 1
q

)
.

Theorem 5.3 [4] In the Chain model |S(M)| ≤ C(1),

where

C(1) = 2k+
∑

1≤j< k
2

(−1)j ·
∑

0≤r≤j−1
k−3j+r≥0

k

j
·
(
j
r

)
·
(
k − 2j − 1
j − r − 1

)
·2k−3j+r+ek =

= 1 +
∑

2≤t≤k

 ∑
1≤q≤min{ t

2 ;k−t}

(
t− q − 1
q − 1

)
·
(
k − t− 1
q − 1

)
+

7



+
∑

2≤i≤t

∑
1≤q≤ t−i

2 +1

(
t− i− q + 1

q − 1

)
·
(
k − t− 1
q − 1

)
+

+
∑

1≤i≤k−t

∑
1≤q≤min{ t

2 ;k−t−i+1}

(
t− q − 1
q − 1

)
·
(
k − t− i
q − 1

)+ 1,

where

ek =
{

(−1)
k
2 · 2 , if k is even,

0 , if k is odd.

In the general case, the Inclusion-Exclusion-Formula cannot be used
because of complicate combinatorial and graph theory problems. In par-
ticular, the special structures of the considered classes allow also to count
directly the required upper bounds.

L(2) = 1 +
∑

2≤t≤k

∑
1≤q≤min{ t

2 ;k−t+1}

(
t− q − 1
q − 1

)
·
(
k − t+ 1

q

)
.

C(2) = 1 +
∑

2≤t≤k

 ∑
1≤q≤min{ t

2 ;k−t}

(
t− q − 1
q − 1

)
·
(
k − t− 1
q − 1

)
+

+
∑

2≤i≤t

∑
1≤q≤ t−i

2 +1

(
t− i− q + 1

q − 1

)
·
(
k − t− 1
q − 1

)
+

+
∑

1≤i≤k−t

∑
1≤q≤min{ t

2 ;k−t−i+1}

(
t− q − 1
q − 1

)
·
(
k − t− i
q − 1

)+ 1 .

Summarizing the results, we obtained two nice combinatorial identity,
L(1) = L(2) and C(1) = C(2).

6 Bottleneck and k-sum PNS-problems

In [6], we have shown that the k-sum version of the PNS problem is well-
solvable, and thus, the PNS problem is such a particular case of the Min-
sum problem which is NP-complete while its k-sum version is well-solvable
for fixed k.

Let a reduced structural model of PNS problem M = (P,R,O) be
given.

8



6.1 Bottleneck PNS-problem

We are to find such a feasible solution in which the weightest operating
unit has the least weight. Formally, we want to solve

min{ max{w(u) : u ∈ o} : (m, o) ∈ S(M)}. (3)

Let O = {u1, . . . , un}. Without loss of generality, it can be supposed that
w(u1) ≤ w(u2) ≤ · · · ≤ w(un). For every positive integer i(≤ n), let
Oi = {u1, . . . , ui} and Mi = mat(Oi). Furthermore, let Mi = (P,R,Oi).

Lemma 6.1 If for some integer 1 ≤ i ≤ n, S(Mi) has the maximal struc-
ture and S(Mi−1) does not have the maximal structure, then ui is included
in every feasible solution in S(Mi).

By the above statement, we could show [6] that the optimal value of
(3) is w(ui).

Now, we can solve (3) by the following procedure.

Procedure 1.

• Initialization

Let i = 1 and Oi = {u1}.

• Iteration (i-th).

Let Mi = mat(Oi). Let us perform the Algorithm for Maximal
Structure Generation for the structural model Mi = (P,R,Oi). If we
have the maximal structure, then terminate; the maximal structure
is an optimal solution and the optimal value is w(ui). In the opposite
case, let Oi+1 = {u1, . . . , ui+1}, i := i + 1, and proceed to the next
iteration.

Procedure 1. provides a better time complexity, q(n) · log(n), where q(n)
denotes the time complexity of the Algorithm for Maximal Structure Gen-
eration.

6.2 The k-sum version of the PNS problem

Let k be a fixed positive integer. We are to find such a feasible solution
for which the sum of weights of the k heaviest operating units is minimal.

To formalize the considered problem, let us denote by ui1 , . . . , uik the
k heaviest operating units of (m, o). The k-sum PNS problem is then

9



k∑
t=1

w(uit) : (m, o) ∈ S(M). (4)

For solving (4), after a similar ordering of operating units let us fix
such a linear ordering, denoted by �, on the subsets of at most k elements
of O for which

{ui1 , . . . , uir} � {uj1 , . . . , ujs} if and only if
r∑
t=1

w(uit) ≤
s∑
t=1

w(uit).

Such an ordering exists; moreover, it can be determined by some rules.

For every subset {ui1 , . . . , uir} ⊆ O, let

O{ui1 ,...,uir} = {ui1 , . . . , uir} ∪ {ut : ut ∈ O & w(ut) ≤ w(ui1)},

where it is supposed that ui1 has the smallest index in {ui1 , . . . , uir}.
Furthermore, let M{ui1 ,...,uir} = (P,R,O{ui1 ,...,uir}). Then, the following
assertion is valid.

Lemma 6.2 If for some {ui1 , . . . , uir} ⊆ O, S(M{ui1 ,...,uir}) has the max-
imal structure and for every subset {uj1 , . . . , ujs} ⊆ O with
{uj1 , . . . , ujs} � {ui1 , . . . uir}, S(M{uj1 ,...,ujs}) has no maximal structure,
then the maximal structure of S(M{ui1 ,...,uir}) is an optimal solution of
(4), and the optimal value is

∑r
t=1 w(uit).

On the basis of Lemma 6.2, one can determine an optimal solution of
(4) by the following procedure.

Procedure 2.

• Step 1. Establish the corresponding linear ordering.

• Step 2. Let i = 1.

• Step 3. Consider the i-th subset of O regarding the fixed ordering.
Let {ui1 , . . . , uir} be this subset. Perform the Algorithm for Maximal
Structure Generation for M{ui1 ,...,uir}. If the maximal structure was
found, then terminate; the maximal structure is an optimal solution.
In the opposite case, let i := i+ 1 and repeat Step 3.

10



The time complexity of this procedure is
∑k
t=1

(
n
t

)
·q where q(n) denotes

the time complexity of the Algorithm for Maximal Structure Generation.

It is worth noting that the technique presented in this section is suit-
able to solve a generalized version of (4). Namely, if the object function
is not the sum of the weights of the k weightest operating units but it
only depends on them, i.e., it has a form z(w(ui1), . . . , w(uik)), where the
fictious operating units are allowed, then we obtain the following problem:

min{z(w(ui1), . . . , w(uik)) : (m, o) ∈ S(M)}. (5)

In this case, the linear ordering has to satisfy the following condition:

{ui1 , . . . , uir} � {uj1 , . . . , ujs} iff

z(w(ui1), . . . , w(uik)) ≤ z(w(uj1), . . . , w(ujk)).

Although the bottleneck PNS problem is well-solvable, the minsum PNS

problem is NP – complete. Our method for solving of k-sum version of
PNS problem is polynomial for “small” fixed k.

7 Application of a Blossom-type Algorithm
for the Minimum Cost Edge Covering prob-
lem

In some cases we can exploit the fact that the set of input materials and
the set of output materials of the operating units do not contain too many
elements. Our goal in [9] and [10] was to present heuristic solution methods
to PNS problems using only simplified operating units.

7.1 Substitution of operating units with simpler ones

We say that an operating unit is simple if the number of its input and
output materials is at most 3. For an arbitrary P-graph, we construct
an equivalent P-graph consisting of simple operating units. This problem
is called the simplified PNS problem. To construct the simplified prob-
lem some new operating units and materials need to be introduced, but
the increase in size is not drastic. Let M = (P,R,O) be an arbitrary
PNS problem and let u = (α, β) ∈ O be an operating unit with the sets
α = {X1, . . . , Xn} and β = {Y1, . . . , Ym}. If an operating unit u is not

11



simple, i.e., (n = 2,m = 2), (n > 2) or (m > 2), then we define the new
operating units u1, . . . , un+m as

u1 = ({X1, X2}, {Z1}),
ui = ({Xi+1, Zi−1}, {Zi}) i = 2, 3, ..., n− 1,
un = ({Zn−1, Zn+m}, {Zn}),
un+j = ({Zn−1+j}, {Zn+j , Yj}) j = 1, 2, ...,m,

where Z1, Z2, . . . , Zn+m denote new materials and Z1, Z2, . . . , Zn+m 6∈
M ∪ O. Next, we replace the operating unit u with the operating units
u1, u2, . . . , un+m in the set O and let O∗ = O\{u}∪{u1, u2, . . . , un+m} be
the new set of operating units and {Z1, Z2, . . . , Zn+m} be the new mate-
rials which are added to the set M . By making the substitutions of all
non-simple units with simple units, we get new disjoint operating unit sets
{u1, u2, . . . , un+m} and disjoint new material sets {Z1, Z2, . . . , Zn+m} for
any two different units. Let M∗ = (P ∗, R∗, O∗) be the derived new PNS
problem where the set of product P ∗ = P and the set of raw materials
R∗ = R.

Theorem 7.1 There exists a bijective mapping of S(M) onto S(M∗).

7.2 Application of the Algorithm for Minimum-cost
Edge Covering

Some heuristic algorithms are developed for the simplified PNS problem.
In every iteration step the procedure has a set of materials called the
set of required materials. (In the first step this set is equal to P.) The
procedure constructs a graph G for this set in the following way. Two
required materials are connected with an edge if there exists an operating
unit, the so-called parent operating unit, which has these two materials as
outputs.

Recall that we have several operating units with exactly two materi-
als as outputs. The cost of this edge is the weight of the minimal weight
parent operating unit. Excluding the isolated vertices and applying this al-
gorithm, an edge cover is counted. Then the succeeding set of the required
materials contains the materials which are input materials for the current
collection of operating units or materials excluded as singular points in this
step, but they are not output materials for any operating unit which has
already been selected in an iteration step. The procedure is terminated
when the current set of required materials is empty. Then the operating

12



units which have been selected in some iteration step constitute a feasible
solution.

What is the idea behind of our heuristic algorithm? There is no way of
finding an efficient algorithm for the solution of a PNS problem because it
is an NP-hard (see [2]) problem. In some well-selected particular cases we
can find useful results [3], [4], [7].

In general, heuristics seem to be suitable tools. In what follows we
search for an optimal set of operating units which produce the required
material set at every step. But we prefer an operating unit if its two
outputs are the required material set. Our main tool for the exact opti-
mization at every step is a Blossom-type algorithm for the Minimum Cost
Edge Covering (MCEC) (see [34] and [35]). This is fairly similar to the
famous Edmonds’ matching algorithm. But for this algorithm we can find
very few applications in graph theory.

7.3 Heuristics for simplified PNS problems

Let (P,R,O) be the structural model of a simplified-type PNS problem.
R: raw materials, P : desired products, P ∩ R = ∅, M ⊇ P ∪ R the set of
materials. The type of every operating unit u ∈ O is (1, 2) or (2, 1). For
every mq ∈M \R there exists (α, β) ∈ O such that mq ∈ β.

Algorithm 1:

Notation:
RMi : Required Materials after Step i.
PMi : Produced Materials after Step i.
Gi(Ni, Ai) (c(e) : e ∈ Ai).
We connect two material points mq,mr ∈ RMi−1, with an edge e iff
there exist (α, β) ∈ O and mq,mr ∈ β (β = {mq,mr}).
(α, β)q,r := one of the minimal weight operating units which produces
mq and mr, such an operating unit exists.
c(e) = w(α, β)q,r if e = (mq,mr).
Ai = {e : e = (mq,mr) mq,mr ∈ RMi−1 mq 6= mr

and ∃(α;mq,mr) ∈ O}.
If Ai = ∅ then Gi doesn’t exist.
Ni ={nodes incident with edges of Ai} (⊆ RMi−1).

13



Step 1: Initialization O0 := ∅, RM0 := P,
PM0 := R, i := 0

Step 2: Construction of Gi
If there exists a Gi, (apply Algorithm MCEC to Gi), −→ Step 3.

If Gi doesn’t exist −→ Step 4

Step 3: Apply Algorithm MCEC to Gi, and let Ei denote the solution
set of edges. Let

Oi := Oi−1 ∪ {(α, β)q,r : (mq,mr) ∈ Ei},
RMi := (P ∪matinOi) \matoutOi,
PMi := R ∪matoutOi.
If RMi = ∅, then O1 = Oi, the solution set of operating units of
Algorithm 1.

If RMi 6= ∅, then i := i+ 1−→ Step 2.

Step 4: Let ui one of minimal weight operating units which produce one
of materials of RMi−1. Moreover, let

Oi := Oi−1 ∪ ui,
RMi := (P ∪matinOi) \matoutOi,
PMi := R ∪matoutOi,
If RMi = ∅, then O1 = Oi, the solution set of operating units of
Algorithm 1.

If RMi 6= ∅, then i := i+ 1−→ Step2.

In [9] and [10] we defined more modified algorithms.

8 Domination sets in de Bruijn graphs

The concept of a perfect d-dominating set have appeared first in a paper
[1] by Biggs, who introduced the term perfect d-code to denote what we
call a perfect d-dominating set. He defined the distance-transitive graphs
and derived an important necessary condition for the existence of a per-
fect d-code in such graphs. In [31] M. Livingston and Q. F. Stout have
studied other families of graphs arising from the interconnection networks
of parallel computers. They proved a theorem about the existence of a do-
minating set of some de Bruijn graphs, but leaved open questions on other

14



infinite de Bruijn graph classes. We proved in [11] two conjectures. In this
section we study different type of dominating sets in de Bruijn graphs and
we prove conjectures on perfect dominating sets.

8.1 Notions

Let |A| = n. The de Bruijn graph is defined as:

B(n, k) = (V (n, k), E(n, k))

with V (n, k) = Ak as the set of vertices, and E(n, k) = Ak+1 as the set of
directed arcs. There is an arc from x1x2 . . . xk to y1y2 . . . yk if x2x3 . . . xk =
y1y2 . . . yk−1.

In a graph G = (V,E) a vertex y is dominated by a vertex x (or x
dominates y) if there exists an arc from x to y or x = y. A set of vertices
D ⊆ V is a dominating set of G if every vertex of G is dominated by
at least one vertex of D. The size of a set of least cardinality among
all dominating sets for G is called the domination number of G and any
dominating set of this cardinality is called a minimum dominating set for
G. When each vertex of G is dominated by exactly one element of D then
the set D is called a perfect dominating set of G. A vertex x d-dominate a
vertex y if there is a path from x to y in G of length at most d. A set D of
vertices is a d-dominating set in G if each vertex of G is d-dominated by
at least one vertex of D. This set D is a perfect d-dominating set (d-PDS)
if each vertex of G is d-dominated by exactly one vertex of D.

8.2 Minimum dominating sets

In general graphs every domination problem is NP – complete. We have a
constructive result about minimum dominating sets in directed de Bruijn
graphs.

Theorem 8.1 [11] In the de Bruijn graph B(2, k) a minimum dominating

set has
⌈

2k

3

⌉
vertices.

Theorem 8.2 [11] In the de Bruijn graph B(n, k) a minimum dominating

set has
⌈

nk

n+ 1

⌉
vertices.

M. Livingston and Q. F. Stout proved in [31] the following result (The-
orem 2.12).

15



Statement 8.3 For any d ≥ 1 and for k a positive integer of the form
(d + 1)m or (d + 1)m− 1 or k < d, let Tk denote a subset of the vertices
of B(2, k) defined as

(i) T1 = T2 = . . . = Td = {0},
(ii) T(d+1)(m+1)−1 = T(d+1)m−1 ∪ {j : 2(d+1)m−1 ≤ j ≤ 2(d+1)m − 1},
(iii) T(d+1)m = T(d+1)m−1 ∪ {2(d+1))m − 1− s : s ∈ T(d+1)m−1}.

Then the set Tk is a perfect d-dominating set for B(2, k).

In [31] the following conjecture was set out: there is no perfect 2-
dominating set for B(2, k), when (k−1) is a multiple of 3. We proved this
conjecture in [11]:

Theorem 8.4 [11] In the de Bruijn graph B(2, k) there is no perfect 2-
dominating set if (k − 1) is a multiple of 3.

M. Livingston and Q. F. Stout in [31] considered the undirected case,
too. We can define the undirected version of the de Bruijn graph B(n, k)
if we change arcs to undirected edges. Let us denote by B∗(n, k) the
undirected de Bruijn graph. Now there is an edge between x1x2 . . . xk and
y1y2 . . . yk if x2x3 . . . xk = y1y2 . . . yk−1 or x1x2 . . . xk−1 = y2y3 . . . yk. We
can give all definitions about domination (and d-domination) in a very
similar way. In [31] we can read the fact that the undirected de Bruijn
graph B∗(2, k) has a perfect dominating set (PDS) for k=1 or 2, but has
no PDS for k=3, 4, or 5. In [11] we proved that B∗(2, k) has PDS only for
k=1 or 2.

Theorem 8.5 [11] There is no PDS in B∗(2, k) if k > 2.

9 The HPPIT problem

In many important combinatorial optimization problems it is required to
find a permutation of vertices of a complete directed graph that minimizes
a certain cost function. The most familiar one is the min-cost Hamiltonian
path problem, or its closed-path version, the Traveling Salesman Problem
(TSP ). Another problem known as the Linear Ordering Problem (LOP )
is to find a linear order of the nodes of a directed graph such that the
sum of the arc weights, which are consistent with this order, is as large as
possible.

16



9.1 Common generalization of TSP and LOP
problems

In [12] we considered a new optimization model using a mixed linear cost
function from these two. The motivation of this common generalization
of TSP and LOP is the following practical question. We consider the
problem where a vehicle has to visit some places but it can be used for
internal transports during its tour. The goal is to find an ordering of
the places which maximize the total profit which can be achieved by the
internal transports. This vehicle routing question leads to the LOP model.

On the other hand we also have to take into account the cost of the
tour. We reduce the profit by this cost and the difference gives the ob-
jective function of the mathematical model. We call this problem min-
cost Hamiltonian path problem with internal transport, HPPIT in short.
HPPIT is a generalization of two NP-hard problems therefore it is also
NP-hard. For NP-hard optimization problems, the construction and ana-
lysis of heuristic algorithms is a rapidly developing area. We extend some
heuristic algorithms which are defined for the TSP problem to this more
general model, and we develop some further algorithms. The algorithms
are analyzed by an empirical analysis [12].

9.2 Notions and notation

Let G(V,A) be a directed complete graph, where V = v0, v1, . . . , vn is
the set of vertices, (v0 is the depot, and the other vertices are the places
which should be visited by the vehicle). Furthermore two (n+ 1)× (n+ 1)
nonnegative matrices are given, B and D. Bij is the possible profit which
can be achieved by the inner transportation from vi to vj if vi is visited
before vj (Bii = 0 for each i). Dij gives the cost of travelling from vi to
vj (Dii = 0 for each i).

In the HPPIT problem we would like to find a tour which visits each
city exactly once and starts at the depot and returns there at the end of the
tour. The objective is to maximize the total profit achieved by the inner
transportation taking into account the cost of the tour. A feasible solution
can be defined as a permutation p of the set {1, .., n}. The permutation
describes the tour where the vehicle starts and ends at v0 and visits the
other vertices in the order vp(1), vp(2), .., vp(n). Then the objective function
is given by the formula z(p) =∑
0<i<j<n+1

Bp(i),p(j) +
n∑
i=1

(B0,p(i) +Bp(i),0)−
∑

0≤i<n

Dp(i),p(i+1) −Dp(n),0,

17



and the goal is to maximize this function. We can also represent the
solutions as the directed cycles of the graph V which contain all of the
vertices.

9.3 Tour building algorithms

In [12] we present some heuristic algorithms for the solution of the problem.
First we give six tour building algorithms which use different heuristic
rules to build a feasible solution. Then a tour improvement algorithm is
presented which is based on the neighborhood search technique. In one of
these greedy algorithms builds the order in two directions: forward and
backward. In each step we choose a vertex backward and one forward
to extend the current partial order. We always choose the vertices which
yield the maximal profit (taking the travelling cost into account). The
algorithm can be defined as follows:

Algorithm 3:

Step 1: (Definition of the last and the first vertices vp(n) and vp(1)):
Let 0 < k < n+ 1 be the value, where∑

0<j<n+1Bjk − Dk0 = max0<i<n+1

∑
0<j<n+1Bji − Di0. If more than

one k exist with this property, then we choose the largest one. Let p(n) =
k, F = {k} (F is the set of the ordered vertices). If n > 1, then let
0 < k < n+ 1, k /∈ F be the value, where

∑
0<j<n+1,j 6=p(n))Bkj −D0k =

max0<i<n+1,i/∈F
∑

0<j<n+1,j 6=p(n)Bij − D0i. Let p(1) = k. If more than
one k exist with this property, then we choose the largest one. Let t = n−1,
z = 2, and F = F ∪ {k}.

Step 2: We determine p(t), the next element from backward in the
tour. If z = n, then the procedure is finished, p is defined, and the tour
is v0, vp(1), . . . , vp(n), v0. If z < n, then let p(t) be the maximal k, k /∈ F
such that −Dk,p(t+1)+

∑
0<j<n+1,j /∈F Bjk = max0<i<n+1,i/∈F {−Di,p(t+1)+∑

0<j<n+1,j /∈F Bji}. Let z = z + 1, t = n− t+ 1, F = F ∪ {k}.

Step 3: Determine p(t), the next element forward in the tour. If z = n,
then the procedure is finished, p is defined, the tour is v0, vp(1), . . . , vp(n), v0.
If z < n, then let p(t) be the minimal k, k /∈ F , such that −Dp(t−1),k +∑

0<j<n+1,j /∈F Bkj = max0<i<n+1,i/∈F {−Dp(t−1),i +
∑

0<j<n+1,j /∈F Bij}
Let z = z + 1, t = n− t, F = F ∪ {k}, and go to Step 2.

18



10 Conclusion

In Process Network Synthesis a desired material set P is given, and our
goal is to find an operating unit set to produce P. For every unit we have
a material set as input set of the unit, which are need to be a subset of
the dominated set of all units union raw material set. In a manufacturing
system or in other practical application of the PNS model we need not a
unit if it is not d-dominate some material from P, for a positive integer d.
The role of dominating sets in topic of process networks presents in the
original sense only in chapter 8. The third topic of the thesis is the HPPIT
problem. One of the two parent problems is the LOP. We need to count
all the arcs forward in the case of constant weight function. The question
is, how many the sum of the number of dominated vertices consistent to
the order, and which ordering give a maximal value.

The second chapter is a survey of basic notions and notations of PNS.
The definition of the structural model, the first combinatorial properties
of the feasible solution processes, the notion of maximal structure were
in [14], [15], [16], [17], [18], [19], [21], [24], [25] papers. The first goal
was to find an appropriate feasible solution with minimal sum of costs of
units in it. This objective function yields the so-called minsum version of
the weighted PNS problems. For the solution of this PNS problem, more
algorithms were developed, most of them are based on Branch and Bound
technique.

How can we solve a PNS problem efficiently? Can we use combinatorial
ideas for an algorithm to solve PNS in polynomial time? In chapter 3 we
were able to show a nice polynomial transformation of a special case of
Minsum PNS problem (2) to the set covering problem [2]. We proved this
fundamental question of theory of PNS, the problem is NP–hard (Theorem
3.2)!

Exponential time Branch and Bound algorithms were studied for PNS
problem in [15]. In chapter 4 we considered the bounding problem of the
number of consistent decision-mappings belonging to an M = (P,R,O)
structural model. It is important to improve bounding function, and to
put smaller the space of maximal consistent decision-mappings of a Branch
and Bound technique. Taking into account axiom (A2) only, this bound
can be improved (Theorem 4.4). In a special PNS class we have given a
complicated formula for |AI |, see [3]. We considered two more special mod-
els, the so-called Line model and Chain model. We could count a formula
for these bounds with Inclusion–Exclusion Formula and with direct way,
too. So we obtained two nice combinatorial identity from these counting.

19



The general Minmax or Bottleneck optimization problem and the k-
sum versions are NP–complete problems. The Minsum version of the PNS
problem is NP–complete, what we can tell about complexity of these two
versions of PNS? In [6] we answered these questions. We have Procedure
1. based on Lemma (6.1) which solve the Bottleneck optimization problem
for PNS efficiently. For the k-sum version of PNS we proved Lemma 6.2
and gave an algorithm to solve this problem, too. Our method for solving
of k-sum version of PNS problem is polynomial for “small” fixed k.

Every P-graph can be transformed into a simplified form. This simpli-
fied form consist of simple operating units in which the total number of
input and output materials is at most 3. This observation facilitates use-
ful application of the Edge Covering Problem of weighted graphs, which
can be used to develop a new heuristic procedure for the PNS problem.
In chapter 7 we prove Theorem 7.1 about an equivalent transformation
of P-graph. Using the algorithm MCEC we have defined 4 algorithms for
simplified PNS problems, and gave an analysis of our computational ex-
periments see [9] and [10]. Our main tool for the exact optimization at
every step of heuristics was the algorithm MCEC, which is a blossom-type
algorithm, it is very similar to the famous Edmonds’ matching algorithm.

In [31] M. Livingston and Q. F. Stout gave a construction of a PDS
for de Bruijn graphs in infinitely many cases, but their characterization
was not complete. We have proved two theorems, 8.4 and 8.5 about their
conjectures. These results claim for infinite k parameter values that some
directed and undirected de Bruijn graphs with parameter k if there have
a 2-PDS or PDS, [11]. We have a construction for a minimal dominating
set in directed de Bruijn graphs in general.

In chapter 9 we consider a new combinatorial optimization model as a
common generalization of TSP and LOP problems. These two problem are
well-known NP–complete problems. Why I define HPPIT, a more com-
plex problem with a mixed linear cost function from the parent problems?
The motivation was given by practical optimization questions. The objec-
tive was to maximize the total profit achieved by the inner transportation
taking into account the cost of the tour of a vehicle.

Thesis 1

Theorem 3.1 [2] The class PNSw1 is equivalent to the class of the set
covering problems.

Corollary 3.2 [2] The PNS problem is NP-hard.

20



Thesis 2

Theorem 4.2 [3] For every ∅ 6= m ⊆M \R, τ(m) = 2|∪{∆(X):X∈m}|.

Theorem 4.3 [3] τ ′(m) = |Ωmax
M \ (A1 ∪A2 ∪ ... ∪Ak)| =

= ΣI⊆{1,...k}(−1)|I| · |AI | .

Theorem 5.1 [3] For separator type operating units

|AI | =

(
l∏
t=1

(
2|O

∗(Xit)| − 1
))
· 2|O\(∪i∈I∆(Xi))\(∪i∈IO(Xi))|.

Theorem 5.2 [4] In the Line model |S(M)| ≤ L(1)

Theorem 5.3 [4] In the Chain model |S(M)| ≤ C(1)

Thesis 3

Lemma 6.1 [6] If for some integer 1 ≤ i ≤ n, S(Mi) has the maximal
structure and S(Mi−1) does not have the maximal structure, then ui is
included in every feasible solution in S(Mi).

Procedure 1. [6]

Lemma 6.2 [6] If for some {ui1 , . . . , uir} ⊆ O, S(M{ui1 ,...,uir}) has
the maximal structure and for every subset {uj1 , . . . , ujs} ⊆ O with
{uj1 , . . . , ujs} � {ui1 , . . . uir}, S(M{uj1 ,...,ujs}) has no maximal structure,
then the maximal structure of S(M{ui1 ,...,uir}) is an optimal solution of
(4), and the optimal value is

∑r
t=1 w(uit).

Procedure 2. [6]

Thesis 4

Theorem 7.1 [9] There exists a bijective mapping of S(M) onto
S(M∗).

Algorithm 1–4

21



Thesis 5

Theorem 8.1 [11] In the de Bruijn graph B(2, k) a minimum domi-

nating set has
⌈

2k

3

⌉
vertices.

Theorem 8.2 [11] In the de Bruijn graph B(n, k) a minimum domi-

nating set has
⌈

nk

n+ 1

⌉
vertices.

Theorem 8.4 [11] In the de Bruijn graph B(2, k) there is no perfect
2-dominating set if k − 1 is a multiple of 3.

Theorem 8.5 [11] There is no PDS in B∗(2, k) if k > 2.

Thesis 6

Definition of the HPPIT problem. [12]

Algorithm 1-4

Publications of the results

Blázsik, Z., B. Imreh, A note on connection between PNS and set covering
problems, Acta Cybernetica, 12, 1996, 309-312. (MR1428741)

Blázsik, Z., Cs. Holló, B. Imreh, On Decision-Mappings Related to Pro-
cess Network Synthesis Problem, Acta Cybernetica, 13, 1998, 319-328.
(MR1644388)

Blázsik, Z., Cs. Holló, B. Imreh, Explicit bound for the number of feasible
solutions of special PNS-problem classes, Pure Mathematics and Applica-
tions, 9, 1998, 17-27. (MR1677229)

Blázsik, Z., Cs. Holló, B. Imreh, Cs. Imreh, Z. Kovács, On Bottleneck
and k-sum version of the Process Network Synthesis Problem, Novi Sad
Journal of Mathematics, 3, 2000, 11-19. (MR1776440)

Blázsik, Z., K. Keserű, Z. Kovács, Heuristics for simplified Process Net-
work Synthesis problems with a Blossom-type Algorithm for the edge cov-
ering problem, Optimization Theory: Recent Developments from Matra-
haza,(eds.: F. Gianessi, P. Pardalos, T. Rapcsák), Kluwer Academic Pub-
lishers, Dordrecht, 2001, 19-31. (MR1886425)

22



Blázsik, Z., K. Keserű, Z. Kovács, Heuristics for PNS problems and its
empirical analysis, Pure Mathematics and Applications, 11, 2001, 139-151.
(MR1839923)

Blázsik, Z., Z. Kása, Dominating sets in de Bruijn graphs. Algebraic
systems (Felix-Oradea, 2001). Pure Mathematics and Applications, 13,
2002, 79-85. (MR1987200)

Blázsik Z., T. Bartók, B. Imreh, Cs. Imreh, Z. Kovács, Heuristics on a
Common Generalization of TSP and LOP, accepted for publication.

References

[1] N. Biggs, Perfect codes in graphs, J. Comb. Theory (B), 15, 1973,
289-296.

[2] Blázsik, Z., B. Imreh, A note on connection between PNS and set
covering problems, Acta Cybernetica, 12, 1996, 309-312.

[3] Blázsik, Z., Cs. Holló, B. Imreh, On Decision-Mappings Related to
Process Network Synthesis Problem, Acta Cybernetica, 13, 1998, 319-
328.

[4] Blázsik, Z., Cs. Holló, B. Imreh, Explicit bound for the number of
feasible solutions of special PNS-problem classes, Pure Mathematics
and Applications, 9, 1998, 17-27.

[5] Blázsik, Z., Cs. Holló, B. Imreh, Kiszámolható korlátok speciális PNS-
problémaosztályok lehetséges megoldásai számára, Új utak a magyar
operációkutatásban, szerk. Komlósi, S., Szántai T., Dialóg Campus
Kiadó, Budapest-Pécs, 1999, 182-194.

[6] Blázsik, Z., Cs. Holló, B. Imreh, Cs. Imreh, Z. Kovács, On Bottleneck
and k-sum version of the Process Network Synthesis Problem, Novi
Sad Journal of Mathematics, 3, 2000, 11-19.

[7] Blázsik, Z., Cs. Holló, B. Imreh, Cs. Imreh, Z. Kovács, On a well-
solvable class of the PNS problem, Novi Sad Journal of Mathematics,
3, 2000, 21-30.

23



[8] Blázsik, Z., Cs. Holló, Cs. Imreh, Z. Kovács, Heuristics for the Pro-
cess Network Synthesis Problem, New Trends in Equilibrium Systems,
Mátraháza Optimization Days, Kluwer Academic Publishers, 2000, 1-
16.

[9] Blázsik, Z., K. Keserű, and Z. Kovács, Heuristics for simplified Process
Network Synthesis problems with a Blossom-type Algorithm for the
edge covering problem, Optimization Theory: Recent Developments
from Matrahaza,(eds.: F. Gianessi, P. Pardalos, T. Rapcsák), Kluwer
Academic Publishers, Dordrecht, 2001, 19-31.

[10] Blázsik, Z., K.. Keserű, and Z. Kovács, Heuristics for PNS problems
and its empirical analysis, Pure Mathematics and Applications, 11,
2001, 139-151.

[11] Blázsik, Z., Z. Kása, Dominating sets in de Bruijn graphs. Algebraic
systems (Felix-Oradea, 2001). Pure Mathematics and Applications,
13, 2002, 79-85.

[12] Blázsik Z., T. Bartók, B. Imreh, Cs. Imreh, Z. Kovács, Heuristics on
a Common Generalization of TSP and LOP, accepted for publication.

[13] Floudas, C. A., I. E. Grossmann, Algorithmic Approaches to Process
Synthesis: Logic and Global Optimization, AIChE Symposium Series
No. 304, 91 (Eds: L. T. Biegler and M. F. Doherly), 1995, 198-221.

[14] Friedler, F., K. Tarján, Y. W. Huang, and L. T. Fan, Graph-Theoretic
Approach to Process Synthesis: Polynomial Algorithm for maximal
structure generation, Computer chem. Engng. 17, 1993, 924-942.

[15] Friedler, F., J. B. Varga, and L. T. Fan, Decision-Mappings: A Tool
for Consistent and Complete Decisions in Process Synthesis, Chem.
Eng. Sci., 50 (11), 1995, 1755-1768.

[16] Friedler, F., J.B. Varga, E. Fehér, and L.T. Fan, Combinatorially Ac-
cerelated Branch-and-Bound Method for Solving the MIP Model of
Process Network Synthesis, International Conference on State of the
Art in Global Optimization: Computational Methods and Applica-
tions, Princeton, 1995.

24



[17] Friedler, F., J. B. Varga, E. Fehér, L. T. Fan, Combinatorially Ac-
celerated Branch-and -Bound Method for Solving the MIP Model of
Process Network Synthesis, Nonconvex Optimization and its Applica-
tions, (eds.: C. A. Floudas and P. M. Pardalos), Kluwer Academic
Publishers, Norwell, MA, U.S.A., 1996, 609-626.

[18] Friedler, F., K. Tarján, Y. W. Huang, L. T. Fan, Graph-Theoretic
Approach to Process Synthesis: Axioms and Theorems, Chem. Eng.
Sci., 47 (8), 1992, 1973-1988.

[19] Friedler, F., K. Tarján, Y. W. Huang, L. T. Fan, Combinatorial Al-
gorithms for Process Synthesis, Computer chem. Engng., 16, 1992,
313-320.

[20] Friedler, F., J. Fülöp, B. Imreh, On the reformulation of some classes
of PNS-problems as set covering problems, Acta Cybernetica, 13,
1998, 329-337.

[21] Friedler, F., L. T. Fan, B. Imreh, Process Network Synthesis: Problem
Definition, Networks, 28, 1998, 119-124.

[22] Grossmann, I. E., V. T. Voudouris, O. Ghattas, Mixed-Integer Lin-
ear Programming Reformulations for Some Nonlinear Discrete Design
Optimization Problems, In: Recent Advances in Global Optimization
(Eds: C. A. Floudas and P. M. Pardalos) Princeton University Press,
New Jersey, 1992.

[23] Holló, Cs., Z. Blázsik, Cs. Imreh, Z. Kovács, On a Merging Reduc-
tion of the Process Network Synthesis Problem, Acta Cybernetica, 14,
1999, 251-261.

[24] Imreh, B., F. Friedler, L. T. Fan, An Algorithm for Improving
the Bounding Procedure in Solving Process Network Synthesis by
a Branch-and-Bound Method, Developments in Global Optimization,
ed. I. M. Bomze, T. Csendes, R. Horst, P. M. Pardalos, Kluwer Aca-
demic Publisher, Dordrecht, Boston, London, 1996, 301-348.

[25] Imreh, B., G. Magyar, Empirical Analysis of Some Procedures for
Solving Process Network Synthesis Problem, Journal of Computing
and Information Technology, 6, 1998, 373-382.

25



[26] Imreh, B., Kombinatorikus optimalizálás, Novadat, Győr, 2000.

[27] Imreh, B., J. Fülöp, F. Friedler, A note on the Equivalence of the Pro-
cess Network Synthesis and Set Covering problems, Acta Cybernetica,
14, 2000, 497-502.

[28] Imreh, Cs., Jól megoldható PNS osztályokról, Új utak a magyar
operációkutatásban, szerk. Komlósi, S., Szántai T., Dialóg Campus
Kiadó, Budapest-Pécs, 1999, 168-181.

[29] Imreh, Cs., A new well-solvable class of PNS problems, Computing,
66, 2001, 289-296.

[30] Karp R. M., Reducibility among Combinatorial Problems in Com-
plexity of Computer Computations, R. E. Miller and T. W. Thatcher,
eds., Plenum Press, New York, 1972.

[31] Livingston, M., Q. F. Stout, Perfect dominating sets, Congr. Numer.,
78, 1990, 187-203.

[32] Lothaire, M., Combinatorics on words, Addison-Wesley, Reading,
1983.

[33] de Luca, A., On the combinatorics of finite words, Theor. Comput.
Sci., 218, 1999, 13-39.

[34] Murty, Katta G., Clovis Perin, A 1-Matching Blossom-Type Algo-
rithm for Edge Covering Problems, Networks, 12, 1982, 379-391.

[35] Murty, Katta G., Network Programming, Prentice Hall, 1992.

26


