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Abbrevations 
 
 
AD 
 

Alzheimer’s disease 

ADRDA 
 

Alzheimer's Disease and Related Disorders Association 

Ag/AgCl 
 

silver/silver chloride 

ApoE 
 

Apolipoprotein E 

AR 
 

autoregressive 

CAP 
 

cyclic alternating pattern 

ch 
 

chanel 

CNS 
 

central nervous system 

CSA 
 

compressed spectral arrays 

DSM-IV 
 

Diagnosic and Statistical Manual of Mental Disorders 

ECG 
 

electrocardiography 

EEG 
 

electroencephalography 

EMG 
 

electromyography 

ENG 
 

electroneurography 

ERP 
 

event-related potencial 

ESES 
 

electrical status epilepticus during slow-wave sleep 

FDR 
 

false discovery rate 

FFT 
 

Fast Fourier Transformation 

FIRDA 
 

frontal intermittent rhythmic delta activity 

fMRI 
 

functional magnetic resonance imaging 

GSW 
 

generalized spike-and-wave 

HMPAO 
 

Hexamethylpropyleneamine Oxime 

Hz 
 

hertz 

ICD-10 International Classification of Disease 
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ID number 
 

identification number 

log 
 

logarithmic 

min 
 

minute 

MMSE 
 

Mini-Mental State Examination 

NINCDS National Institute of Neurological and Communicative 
Disorders and Stroke  

NLCP 
 

non-linear cross prediction 

PD2i 
 

point correlation dimension 

PDA 
 

polymorphic delta activity 

PET 
 

Positron Emission Tomography 

Pi 
 

data points 

rCBF 
 

regional cerebral blood flow 

REM 
 

rapid eye movement 

s 
 

second 

SD 
  

standard deviation 

SL 
 

synchronization likelihood 

SPECT 
 

Single Photon Emission Computed Tomography 

SSP 
 

subacute sclerosing panencephalitis 

λ 
 

tau 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5 

CONTENTS 
 
 

1. Introduction…………………………………………………………………………………7 

 1.1. Methods for the functional analysis of the central nervous system……….7 

                  1.1.1. Linear neurophysiological methods – spectral analysis       

   in the EEG……………………………………………………………………9 

  1.1.2. Nonlinear dynamical analysis of EEG…….…………………………….11 

   1.1.2.1. Short historical background…………..………………………….11 

   1.1.2.2. Nonlinear cross prediction……...………………………………..11 

   1.1.2.3. Phase synchronization…………………………………………….12 

   1.1.2.4. Mutual dimension………………………………………………….13 

   1.1.2.5. Correlation dimension……………………………………………..13 

   1.1.2.6. Synchronization likelihood……………….……………………….14 

2. Aims………………………………………………………………………………………..15 

3. Materials and methods………………………………………………………………….16 

 3.1. Healthy subjects……………………………………………………………….16 

 3.2. Alzheimer’s disease patients………………………………………………...16 

 3.3. EEG recordings………………………………………………………………..17 

 3.4. Smell and taste stimuli……………………………………………………..…18 

 3.5. Infusion protocol……………………………………………………………….18 

 3.6. Data analysis……………………………………………………………………18 

  3.6.1. Spectral analysis………………………………………………………...18 

  3.6.2. Point correlation dimension…………………………………………...21 

  3.6.3. Synchronization likelihood…………………………………………….24 

 3.7. Statistical analysis……………………………………………………………..26 

4. Results…………………………………………………………………………………….27 

 4.1. Olfactory and taste stimulation………………………………………………27 

  4.1.1. Subjective report after smell and taste stimulation………………...27 

  4.1.2. Analysis of PD2i after smell and taste stimulation…………………27 

  4.1.3. Synchronization likelihood after smell and taste stimulation……..28 

              4.2. Quantitative EEG changes in patients in Alzheimer’s patients after 

   lactate infusion………………………………………………………………….32 

           4.2.1. Spectral analysis in AD patients before and after lactate  

  infusion…………………………………………………………..32 



 6 

     4.2.2. Synchronization likelihood analysis in AD patients before  

  and after lactate infusion………………………..……………………34 

5. Discussion………………………………………………………………………...36 

 5.1. Olfactory and taste stimulation…………………………………………….36 

  5.1.1. Point correlation dimensional changes after smell and taste  

  stimulation………………………………………………………………..36 

   5.1.2. Synchronization likelihood changes after smell and taste  

  stimulation………………………………………………………………..36 

 5.2. Quantitaive EEG effects in AD patients after lactate infusion…………...…37 

  5.2.1. Relative power changes after lactate infusion………………...………..37 

  5.2.2. Synchronization likelihood changes after lactate infusion…………..…38 

  5.2.3. Methodological problems……………………………………………....39 

6. Conclusion………………………………………………………………………….40 

7. Acknowledgements………………………………………….………………………42 

8. References…….……………………………………………………………………..43 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7 

1. Introduction 

 

1.1 Methods for the functional analysis of the central nervous system 

The adaptive reaction of the living organs to the ever changing environment is their 

most important function. For this purpose they collect external as well as internal information, 

process it and perform the appropriate action best suiting their needs. There is a machinery 

organized around this task called nervous system which consist of a central and peripheral 

parts in the simple and complex animal as well as human organisms. The functions of the 

nervous system could be studied by the direct observation of the spontaneous or provoked 

behavior elicited by special stimulation. On the basis of these observations the researchers can 

construct a ‘black box’ with appropriate input and output variables. However, they could be 

interested in the function of these ‘black boxes’ and make assumptions on their possible 

structure and related functioning. 

There are several disciplines to test these alternative models. The neurophysiologic 

approaches extend the possibilities of the direct observation giving measurable physical 

parameters on the event under study. The function of the neurons and glia cells is related to 

trans-membrane ionic movements which could generate potential and current changes suitable 

for physical detection and registration. The morphological approaches give information on the 

structural changes in several stages of the processing mainly with fine space but large time 

resolution. Some new imaging methods can combine the functional, structural and neuro-

biochemical features using isotop radio-ligands (SPECT, PET) or the changes of the nuclear 

magnetic correlates of the excitable tissue during their work (fMRI) in smaller time scale. 

The neurophysiological methods can give high time (in ms range) and because of their 

mainly indirect character lower space resolution. Several methods are available in 

experimental and even clinical use for function testing of the central and peripheral nervous 

system: electromyography (EMG) for muscle and nerve, electroneurography (ENG) for nerve, 

event-related potential studies (ERP) for peripheral and central sensory as well as motor, 

electro- and magneto-encephalography (EEG, MEG) for central sensory and motor analysis. 

The neurophysiological methods are based on the principle that during the work of the 

excitable tissue there are ion current changes through their membranes which are reflected in 

measurable electrical current flow and potential differences. These electrical dipoles could be 

measured by micro-electrodes in situ or after their summation in the surrounding space by 

electrical macro-electrodes and by detecting the very subtle concomitant magnetic field 
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changes. Because of the electrical nature of the detection and registration the neurophysiology 

is often referred as electrophysiology. 

The electroencephalography (EEG) first used by Caton (1875) in animal and Berger 

(1924) in human examinations deals with the electrical phenomena connected to the work of 

the brain. There are two approaches in the detection of the function of the central nervous 

system (CNS). In the case of the evoked potentials the examiner is interested in the localized 

changes of the CNS mainly after sensory stimulations. These localized potential changes are 

of very small amplitudes therefore they could not be seen in the background EEG activity of 

comparable size. After using repetitive stimulation and time locked averaging of the 

recordings the event related component of these potentials became visible and the background 

activity disappeared. By the help of this technique the integrity of the sensory pathways and 

the primary data processing of the CNS could be detected. There are, however, situations 

when the features of the background activity are of more importance than the evoked potential 

changes. The source of the EEG is thought to be (Niedermeyer, Lopes da Silva) the 

summation of the postsynaptic dendritic field potentials of the neurons localized near the 

surface of the cerebral cortex. So it can mainly reflect the influences coming to the site of the 

recording and only additionally the output reactions through possible returning collaterals. 

The first analysis of the background EEG signals was made by visual assessment of the 

recordings. Beside the recognition of abnormal waves the amplitude, frequency of the activity 

at different sites of the scalp made the basis for the visual as well as instrumental assessment. 

The changes in the frequency and amplitude content as well as in the local and inter-local 

organization of the EEG activity were found useful in the characterization of physiological 

and pathological processes. Different patterns of electrical impulses can indicate various 

problems in the brain. The sensitivity of the EEG is very high, but the specificity is low. 

There are only some diseases, where EEG is enough for the diagnosis: for example 

hypsarrhythmia in West syndrome; Radermacker complex in subacute sclerosing 

panencephalitis (SSP); generalized spike-and-wave (GSW) discharges in absence epilepsy; 

triangular waves in hepatic encephalopathy; and specific EEG abnormalities in Jakob-

Creutzfeld-syndrom (Rajna, 2006).  

The first tools of the instrumental analysis were the analogous frequency analyzers 

which used filters and integrators for the calculation of the first ‘power spectra’ with low 

resolution. Later, in the era of digital data processing the autocorrelation function of the EEG 

or the EEG itself became the basis for the construction of higher resolution power spectra by 

Fast Fourier Transformation (FFT). The calculation of the cross spectra made possible the 
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linear interdependence i.e. coherence estimation. Some years ago it became clear that the 

linear approach alone in the analysis was not enough to get all of information inherent in the 

EEG signal because of the nonlinearities found in the brain’s electrical activity. A dynamical 

system is linear if all the equations describing its dynamics are linear; otherwise it is 

nonlinear. In a linear system there is a linear relation between causes and effects (small causes 

have small effects); in a nonlinear system this is not necessarily so (Stam, 2005). Especially 

the characterization of the local and global dynamics in the EEG activity needed the use of the 

combination of linear and nonlinear analysis methods. 

 

1.1.1 Linear neurophysiological methods - spectral analysis in the EEG 

There are some basic features of the EEG which are always taken into account in the 

investigation of the electro-genesis of the brain in physiological and pathological conditions. 

Even the visual examiner has to make observation on the frequency content of the EEG 

sample under study. The dominant frequency means that the waves of this particular 

frequency are seen most frequently in the sample with remarkable amplitude values. Besides 

the range of the visible frequencies (the lowest and highest detectable) as well as the 

regularity and organization of the activity have to be recognized. The first two features i.e. 

dominant and associated frequencies could be detected by the several frequency analysis 

methods. 

Fourier (1807) made the observation that every periodic-like function could be 

generated by addition of several periodic sines and cosines functions of different frequencies 

and amplitudes. So the principle of the inverse process which is called Fourier Transformation 

was to decompose the time-varying signal into periodic waves of different frequencies and 

amplitudes by assigning amplitude values to every frequency component measured. The first 

instrumental analyzers worked on analogous principle. The frequencies were selected by a set 

of analogous filters and the area below the curves was measured by integrator circuits for 

getting amplitude values in the given particular frequency range defined by the filter 

characteristics. Based on the technical possibilities the selection of the traditional frequency 

bands (alpha, beta, theta, delta and gamma) was enough correct for the examinations at that 

time. By the advent of the digital data processing the so called periodograms were used first 

for spectral calculations. On the basis of the distance between two consecutive zero crossing 

or wave peaks these methods separated the EEG waves and summarized the amplitude values 

in the selected range to show the frequency and amplitude relations.  
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Secondly an indirect calculation was used for the estimation of the frequency-

amplitude functions called power spectra. The auto-correlograms which give the measure of 

the dependence of the differently shifted values of the original signal were estimated first. 

Later these correlograms were Fourier transformed to go from time to frequency domain to 

get finally power spectra. In a more advanced method the power spectra were calculated 

directly from the samples of fixed length (where N=2n) using a simplified quick algorithm 

called Fast Fourier Transformation. 

The digitalization itself and the use of the digital transformations, however, need to 

fulfill strict assumptions what are only seldom met. The assumption of the infinite length and 

stationarity of the epochs are the most important points among them. The resulting lower 

resolution and the wider confidence interval around the calculated power spectra decrease 

their reliability and usefulness. The power spectra calculated on the basis of the 

autoregressive (AR) models fitted to the EEG samples are better for the comparison of the 

consecutive epochs because of their narrower confidence intervals based on their higher level 

of freedom. The fitted AR models of different order (n) give the coefficient of the function for 

the estimation of the next point from the values of previous n points of the EEG curve. These 

methods could give information on the frequency-amplitude content of the electrical activity 

of a scalp electrode in the multi-electrode montage. The inter-electrode relations in frequency 

domain could be estimated by the so called coherence calculation which is based on the use of 

the cross-spectra. 

The whole power spectra were used only in some applications e.g. in the visual trend 

analysis of the compressed spectral arrays (CSA) at the intensive care units. Relative and 

absolute band powers were compared instead in the majority of the studies. Here are some 

recent investigations as follows: Otto (2008) has used EEG spectral analysis for narcosis 

monitoring in animal experiments. The cognitive decline (van der Hiele et al., 2007) and 

mental functions of the early Alzheimer’s patients (Czigler et al., 2008) were correlated by the 

EEG’s spectral and complexity features. Spectral EEG and coherence changes were 

investigated after performance test in the AD (Hidasi et al., 2007) The spectral changes were 

found to reflect the complexity of the cognitive tasks (Kurova and Cheremushkin, 2007). 

Besides some other parameters were derived from the spectra to highlight and extract the 

specific information inherent in the EEG signal at various conditions. The dominant 

frequency is represented by a visible peak in the spectra, the mean or median frequency in a 

given frequency band are calculated characteristic values not always seen clearly. The spectral 

edge-95 is a frequency value above it only the 5 percent of the total power could be found. 
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The robust derived Hjorth’s parameters: Activity, Mobility and Complexity gave a purposeful 

characterization of the different physiological and pathological conditions. These linear 

methods were and even are the most popular in the quantitative EEG because of their 

robustness and relative easy interpretation. 

 

1.1.2. Nonlinear dynamical analysis of EEG 

 

1.1.2.1. Short historical background 

The beginning of the nonlinear EEG analysis was in 1985, when Rapp et al. described 

their results with ’chaos analysis’ of spontaneous neural activity in the motor cortex of a 

monkey (Rapp et al., 1985), and Babloyantz et al. published the correlation dimension of 

human sleep EEG (Babloyantz et al., 1985). ’Deterministic chaos’ is a paradoxical 

phenomenon, because it describes unpredictable behaviour in deterministic dynamical 

systems (Li and Yorke, 1975).  

Edward Lorenz published the first graph of a strange attractor, the so-called ’Lorenz 

attractor’ (Lorenz, 1963). Packard et al. transformed a time series of observations into a 

representation of the dynamics of the system in a multi-dimensional state space or phase 

space (Packard et al., 1980). In 1983, Grassberger and Procaccia described, how to calculate 

the correlation dimension of a reconstructed attractor (Grassberger and Procaccia, 1983a, b). 

In the early phase of nonlinear EEG analysis the aim was to search for low-dimensional 

chaotic dynamics in various types of EEG. Later with the ’surrogate data testing’ the check of 

the validity of the results became possible. Now the new measures of the EEG are based upon 

phase synchronization and generalized synchronization.  

There are so much nonlinear methods, for example nonlinear forecasting, cross 

recurrence, false nearest neighbors, cross prediction, but here I would like to introduce some 

of the most important nonlinear time series methods:  

1. Nonlinear cross prediction  

2. Phase synchronization 

3. Mutual dimension 

4. Correlation dimension 

5. Synchronization likelihood 

 

1.1.2.2. Nonlinear cross prediction 
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This method is based on nonlinear forecasting and the predictability of a time series 

and its time reversed copy (Stam et al., 1998). Here we have to choose a point on the attractor, 

and to predict the future course of this point by fitting a local linear model to the dynamics. 

This method is suitable for detection of amplitude and time asymmetry (Stam et al., 1998), 

and for test irreversibility based upon symbolic dynamics (Daw et al., 2000). Nonlinear cross 

prediction (NLCP) is seemed to be useful in various areas of physics: for the sleep analysis of 

healthy adults, children with epilepsy, premature and full-term newborns. It was found that 

the NLCP test provided evidences of significant non-linear dynamics in all epochs of non-

REM sleep, when electrical status epilepticus during slow-wave sleep (ESES) was evident. 

Only during this stage, the possible presence of low-dimensional chaos could also be 

suspected. EEG without ESES could not be distinguished from linearly filtered noise (Ferri et 

al., 2001). Sleep EEG tends to show non-linear structure only during cyclic alternating pattern 

(CAP) periods, both during S2 and SWS. During CAP periods, non-linearity can only be 

detected during the phase A1 subtypes (and partially A2) of CAP. The A3 phases show 

characteristics of non-stacionarity and bear some resemblance to wakefulness (Ferri et al., 

2002). The structure of sleep EEG in newborns is significantly different from that of adults, it 

cannot be distinguished from that of high-dimensional noise in the majority of epochs, and 

shows a tendency to become nonlinear in nature, mostly during quiet sleep in a small 

percentage of the epochs analyzed (Ferri et al., 2003). Another study investigated that frontal 

intermittent rhythmic delta activity (FIRDA) was more predictable than polimorphic delta 

activity (PDA). Most PDA segments could not be distinguished from linearly filtered noise. In 

contrast, FIRDA activity showed strong evidence of nonlinear dynamics (Stam and Pritchard, 

1999).  

 

1.1.2.3. Phase synchronization 

‘Synchronization of chaos refers to a process, wherein two (or many) systems (either 

equivalent or nonequivalent) adjust a given property of their motion to a common behavior 

due to a coupling or to a forcing (periodical or noisy)’ (Boccaletti et al., 2002). Phase 

synchronization is characterized by a non uniform scattering of the phase differences between 

two time series, and it can be computed using the Hilbert transform (Mormann et al., 2000; 

Tass et al., 1998) or by means of wavelets analysis (Lachaux et al., 1999). The difference 

between the analysis of Mormann et al. and Tass et al. was that Mormann et al. used the 

circular variance to characterize the distribution of phase differences, while Tass et al. used a 

Shannon information entropy measure. Further it was found that this method was suitable not 
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only to detect the direction of coupling between two systems (Cimponeriu et al., 2003; 

Rosenblum and Pikovsky, 2001; Smirnov and Bezruchko, 2003), but also to track rapid 

changes in the level of coupling between dynamical systems (Breakspear et al., 2004; Kozma 

and Freeman, 2002; Van Putten, 2003a, b). Mean phase coherence R─ a bivariate measure for 

phase synchronization – can be archived with cellular nonlinear networks’s using polinomial-

type templates (Sowa et al., 2005), this could be promising method for brain-computer 

interfaces, and it provides a new idea for recognition of mental tasks (Aihua and Yuhan, 

2005). 

 

1.1.2.4. Mutual dimension 

Mutual dimension is the measure of the shared degrees of freedom of two dynamical 

systems (Buzug et al., 1994; Meng et al., 2001; Wojcik et al., 2001). This method seemed to 

be suitable for studying EEG changes during mental activity (Stam et al., 1996; Meyer-

Lindenberg et al., 1998; Aftanas et al., 1998). Mutual dimension is sensitive not only to look 

for subtle aspects of emotional processing (Aftanas et al., 1998), but also to examin EEG 

changes during simple visual information processing and mental archimetric (Stam et al., 

1996). 

 

1.1.2.5. Correlation dimension 

Correlation dimension method has been developed to characterize the reconstructed 

attractor in a quantitative way. Correlation dimension is a useful method in the analysis of 

different pathological conditions: for example in epilepsy detection (Kannathal et al., 2004a; 

Adeli et al., 2007; Lee et al., 2007, Járdánházy et al., 2007) and in Alzheimer’s disease (Jelles 

et al., 2008). With this measure, the dynamic and depth levels of anesthesia also can be 

detected (Gifani et al., 2007; Lalitha and Eswaran, 2007). This method is also suitable for the 

nonlinear dynamical analysis of the neonatal time series: to find the relationship between 

neurodevelopment and complexity (Janjarajitt et al., 2008a) and between sleep state and 

complexity (Janjarajitt et al., 2008b). 

The only problem with this method is, that in case of long epochs the biological data 

of the system has uncontrollably changes (e.g. int he shifts from sleeping to waking, or from 

quiescence to alertness). Therefore Skinner’s laboratory developed the PD2i algorhythm to 

address data nonstationarity. In nonstationary data, the vectors made from ’points’ of data that 

are stationary with respect to the ’point’ that the reference vector is in (a ’point’ is a small 

strip of data, m*τ data points long) will contribute uncontaminated vector-difference lengths 
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only to the small log r part of the scaling region. (The further details of the method can be 

found in Data analysis section 3.6.2.). 

 

1.1.2.6. Synchronization likelihood 

The synchronization likelihood is a measure of the generalized synchronization 

between two dynamic systems X and Y (Stam and van Dijk, 2002). This method seemed to be 

suitable for studying seizures: in the neonatal EEG (Altenburg et al., 2003; Smit et al., 2004); 

in adult intensive care unit patients (Slooter et al., 2006); in nocturnal frontal lobe (Ferri et al., 

2004) and in mesial temporal lobe epilepsy (Ponten et al., 2007). It seemed to be also suitable 

for the analysis of other brain pathologies: brain tumors (Bartolomei et al., 2006); 

schizophrenia (Micheloyannis et al., 2006); stroke (Molnár et al., 2006a, b); Alzheimer 

disease (Stam et al., 2003a; Babiloni et al., 2004; Pijnenburg et al., 2004; Stam et al., 2005; 

2007; Járdánházy et al., 2008; Czigler et al., 2008). SL can be used to study the global 

dynamics in healthy adults (Stam et al., 2002; 2003b; 2004; Smit et al., 2007). 

The cognitive mental processes need a lot of connections and cooperation among 

different specific as well as non-specific areas of the brain. The local and global (i.e. inter-

local) organization of the data processing suppose a good metabolic state in the background 

for the proper functioning. The smell and taste sensations are special types of cognitive 

processes because of their old phylogenetical and strong emotional character. There are 

reports on the issue that the disturbancies of the smell and taste sensations are the first and 

fundamental signs of the mental decline in the dementias.  

The Alzheimer’s dementia is characterized by localized damage of the neural as well 

as glial elements with a consequent decrease of the circulation and metabolism in the involved 

areas. The infusion of the metabolite sodium lactate which was found an effective vasodilator 

and metabolic enhancer in healthy population seemed to be a potential test treatment in 

Alzheimer’s patients. 

These two experimental conditions looks appropriate for the comparison of different 

linear and non-linear EEG analysis methods reflecting several sides of the metabolic and 

functional organization. 

There is not enough evidence now, however, on the issue what linear and nonlinear 

studies from the processing battery can give the most useful additional information in the 

exploration of special cognitive processes and dementia conditions for early diagnosis. 

Therefore the aim of the present study was to use and compare linear and nonlinear methods 

in different ‘low and high level’ reactions of the human brain. 
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2. Aims 

 

Based on the premises found in the Introduction chapter we decided to get information 

on the usefulness of the different linear- and nonlinear EEG analysis methods for the selection 

of appropriate technical tools in the early diagnosis of dementia syndromes. 

 

In the first study, therefore, we wanted to know whether 

 

A) The changes of the local (Point Correlation Dimension (PD2i)) or global/inter-local 

(Synchronization Likelihood (SL)) organization of the scalp EEG can better characterize the 

chemo-sensory cognitive process after pleasant smell and taste stimulation in healthy persons. 

 

B) Which parameters are suitable for the proper collection of a normative database for a later 

comparison with some neurodegenerative diseases? 

 

In the second investigation we tried to answer the question 

 

C) Whether the power spectral analysis can reflect the different alteration of the Alzheimer’s 

brain regions after metabolic active sodium lactate infusion. 

 

D) Can the linear as well as nonlinear inter-local synchronization likelihood analysis add 

some more information on the metabolic reactivity for the differentiation of the altered brain 

regions? 
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3. Materials and methods 

 

3.1. Healthy subjects 

Nine healthy subjects (two men, seven women) whose mean age was 49 +-19 years, 

participated in the first study. None of them had any neurological disease, nor had 

symptomatic viral infection or used psychoactive medication during the investigation or in the 

previous weeks. All of them were right handed and non-smokers. All subjects underwent a 

standard clinical examination, including neurological assessment. Based on their personal 

reports and our orientational examination made by some smell and taste samples all of them 

were representative for normosmic and taste population. After the EEG recording, a verbal 

description of the patients experience concerning the two kinds of stimuli was given. The 

protocol for this study was approved by the Medical Ethics Committee of the University 

Hospital. All volunteers signed a written consent to take part in the study. 

 

3.2. Alzheimer’s disease patients 

Twelve Caucasian AD patients (five men, seven women) with an average age of 72.67 

± 2.57 years participated in the second investigation. All of them met the criteria of the 

International Classification of Disease (ICD-10) and NINCDS-ADRDA for probable AD. 

They had moderate-to-severe dementia syndrome as their Mini-Mental State Examination 

(MMSE) score was 13.4 ± 5.72 points. The probands were late onset AD cases and sporadic 

type. Standard clinical examination, including neurological assessment, had been performed 

on each participant. Five patients out of twelve (three female and two men) participated in an 

earlier study (Kálmán et al., 2005a) where the lactate effect on the regional cerebral blood 

flow (rCBF) was studied by 99mTC-HMPAO SPECT as well. Their average age was 73.6 ± 

2.30 years. (For the reference see the publication’s Table 2. with the proband ID number 3, 4, 

8, 12, 13 where their ApoE genotype, anxiety symptoms and the localization of the decreased 

rCBF as well as changes observed after sodium lactate infusion are shown.) The other seven 

patients (four women and three men, with an average age of 72.1 +-2.71 years) participated 

only in the EEG studies. 

None of the AD probands had a history of panic disorder, agoraphobia with panic 

attacks or generalized anxiety disorders (according to the DSM-IV and ICD-10 criteria) based 

on the interview with the patients and their caregivers. No psychotropic medication, e.g., 

acetylcholinesterase inhibitors, nootropics, anxiolytics, antidepressants or other drugs known 

to interfere with the EEG, were administered three weeks before or during the experiments. 
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All AD patients were non-smokers and outpatients. All volunteers and caregivers gave their 

informed consent to participate. The study protocol was approved by the local Medical Ethics 

Committee. 

 

3.3. EEG recordings 

The EEG was recorded in a silent room with eyes closed. The subjects were seated in 

a comfortable chair under constant control for their state of alertness. The Ag/AgCl electrodes 

were placed on the scalp according to the international 10-20 system. EEG signal was 

recorded (EEG-16X/Mikromed, Hungary; time constant 0.3 s; high frequency filter 70 Hz; 

common average reference) and after digitalization (256 Hz, 12 bit, with LI-01/A laboratory 

interface/Mikromed, Hungary, by their Neuromap program) simultaneously stored on hard 

disk. The records were inspected off-line to remove epochs with movement artifacts, muscle 

activities, eye blinking and drowsiness. 

The analyses were performed on 16 channels (Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, 

T4, T5, T6, P3, P4, O1, and O2) (Fig. 1). 

 

 

 
Fig. 1. Topographic view of scalp electrode positions used in our studies.  
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3.4. Smell and taste stimuli 

During the baseline condition (which was 30s) the subjects sat still with closed eyes 

and no stimuli were applied. This control interval was divided into first and second 15s parts. 

After 30s, the patients were given a perfume smell continuously for 30s. After an interval of a 

few minutes of rest with eyes open (which helped the patients keep the arousal level constant) 

a 30s EEG with closed eyes without activation was recorded again. After this a small piece of 

milk chocolate was placed near the tip of the subjects’ tongue. During this, they continued to 

sit with eyes closed for 30s to feel the taste. The subjects kept the chocolate near the tip and 

waited for its taste. After the recordings a pleasant-unpleasant scale was given to the patients. 

 

3.5. Infusion protocol 

In the second investigation twenty minutes were given for each Alzheimer’s volunteer 

to adapt to the circumstances to reduce stress levels. After this, 5 mL/kg sodium lactate (0.5 

M) was infused over 20 min. The intravenous lines were placed into both forearms of the 

participants. ECG, blood pressure, venous blood gas and electrolytes were assessed before the 

study, every 5 min during the infusion and 10 min after the treatment. In order to control any 

potential side-effect (panic attack, alkalosis, and ECG changes), all parameters were 

continuously monitored by an intensive care specialist. 

 

3.6. Data analysis 

3.6.1. Spectral analysis 

The off-line spectral analysis was performed by means of Fast Fourier Transform 

facility of the DigEEGXP v2.0 program on 16 s long (4096 points) epochs. This program uses 

‘split-radix ‘ FFT algorithm for the calculation of the power spectra. 

 

Mathematical background of split –radix FFT algorithm (cited from Duhamel and Vetterli, 

1990) 

The split-radix FFT is a fast Fourier transform (FFT) algorithm for computing the 

discrete Fourier transform (DFT). In particular, split radix is a variant of the Cooley-Tukey 

FFT algorithm that uses a blend of radices 2 and 4: it recursively expresses a DFT of length N 

in terms of one smaller DFT of length N/2 and two smaller DFTs of length N/4. 

The split-radix FFT, along with its variations, long had the distinction of achieving the 

lowest published arithmetic operation count (total exact number of required real additions and 

multiplications) to compute a DFT of power-of-two sizes N. Although the number of 
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arithmetic operations is not the sole factor in determining the time required to compute a DFT 

on a computer, the question of the minimum possible count is of important theoretical 

interest. 

Split-radix decomposition 

Recall that the DFT is defined by the formula: 

 

where k is an integer ranging from 0 to N − 1 and ωN denotes the primitive root of unity: 

 

and thus . 

The split-radix algorithm works by expressing this summation in terms of three smaller 

summations. Below we give the "decimation in time" version of the split-radix FFT; the dual 

decimation in frequency version is essentially just the reverse of these steps. 

First, a summation over the even indices . Second, a summation over the odd indices 

broken into two pieces: and , according to whether the index is 1 or 3 modulo 

4. Here, nm denotes an index that runs from 0 to N / m − 1. The resulting summations look 

like: 

 

where we have used the fact that . These three sums correspond to portions 

of radix-2 (size N/2) and radix-4 (size N/4) Cooley-Tukey steps, respectively. The underlying 

idea is that the even-index subtransform of radix-2 has no multiplicative factor in front of it, 

so it should be left as-is, while the odd-index subtransform of radix-2 benefits by combining a 

second recursive subdivision. 

These smaller summations are now exactly DFTs of length N/2 and N/4, which can be 

performed recursively and then recombined. 

More specifically, let Uk denote the result of the DFT of length N/2 (for 

), and let Zk and Z'k denote the results of the DFTs of length N/4 (for 

). Then the output Xk is simply: 

. 
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This, however, performs unnecessary calculations, since turn out to share 

many calculations with k < N / 4. In particular, if we add N/4 to k, the size-N/4 DFTs are not 

changed (because they are periodic in k), while the size-N/2 DFT is unchanged if we add N/2 

to k. So, the only things that change are the and terms, known as twiddle factors. 

Here, we use the identities: 

 

 

to finally arrive at: 

 

 

 

 

which gives all of the outputs Xk if we let k range from 0 to N / 4 − 1 in the above four 

expressions. 

Notice that these expressions are arranged so that we need to combine the various DFT 

outputs by pairs of additions and subtractions, which are known as butterflies. In order to 

obtain the minimal operation count for this algorithm, one needs to take into account special 

cases for k = 0 where the twiddle factors are unity and for k = N / 8 where the twiddle factors 

are and can be multiplied more quickly. Multiplications by and are 

ordinarily counted as free (all negations can be absorbed by converting additions into 

subtractions or vice versa). 

This decomposition is performed recursively when N is a power of two. The base 

cases of the recursion are N=1, where the DFT is just a copy X0 = x0, and N=2, where the DFT 

is an addition X0 = x0 + x1 and a subtraction X1 = x0 − x1. 

These considerations result in a count: 4Nlog2N − 6N + 8 real additions and multiplications, 

for N a power of two greater than 1. 

Relative (expressed as percentage of the whole spectrum) EEG power values were 

calculated and considered for each electrode due to their lower inter-subject variability 

(Nuwer, 1988). The relative power values were calculated in the delta (0.5-4 Hz), theta (4-8 
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Hz), alpha (8-12 Hz), beta1 (12-20 Hz) beta2 (20-30 Hz), and gamma (30-48 Hz) frequency 

bands. 

 

3.6.2. Point correlation dimension 

Mathematical background of Point Correlation Dimension (PD2i) 

The point correlation is an algorithm that allows compution of the dimension as a 

function of time (Skinner et al., 1994; 2000; 2002). 

In order to be able to quantify the dimensional complexity of a system its state space 

(phase space) has to be constructed. The coordinates of this space are the degrees of freedom 

of the analyzed system. It is possible to construct the state space from a single time series 

(such as the EEG) by the delay-time embedding procedure (Packard et al., 1980; Takens, 

1985). Grassberger and Procaccia (1983a, b) developed an algorithm that provides an efficient 

procedure in the calculation of correlation dimension (D2). Consider the set of {Xi, 

i=1,….,N}of points on the attractor, i.e., Xi ≡ X(t+iτ) with a fixed time increment τ between 

the measurements, then correlation integral is defined as 
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where m is the embedded dimension, r is the fixed distance, θ(y) is the Heaviside step 

function, with θ(y)=1 for y>0 and θ(y)=0 for y≤0, and │X i - Xj│shows the distance in any 

usual norm. 

 

The correlation dimension (D2) of a time-series is defined as 

 

C(r,n) = r D2 

 

where C(r,n) is the cumulative number of all rank-ordered vector-differences within a range 

(r) and n is the number of vector-differences. Vector-differences are calculated in the 

following way: A reference vector (nref) is chosen that begins at a specific point in the data 

and takes a specified number (m) of sequential time-steps in the data stream that are of a fixed 

length (τ). Each value encountered in the time-steps is used as one coordinate of the m-

dimensional vector. A different vector is then made by moving to a new starting point, for 
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example to the next point in the time-series using the same number of τ-steps. Then another 

vector is made by starting at the third point in the series, and so on for all of the points in the 

time series. All possible vector-differences for every possible nref made with a given 

embedding dimension (m) are then rank-ordered and a log C (r,n) versus log r plot is made. 

The slope of the linear region in this plot is then measured; this linear region reflects 

the range of  r  over which the model  

r

nrC
nrC

log

),(log
),( =  

is valid. The value of m is incremented and the corresponding slope noted, thus yielding slope 

and m pairs. The values of m are selected to span the size of the expected D2 value (that is, m 

ranges from 1 to 2D2 + 1). The number of embedding dimensions is relevant up to the point 

where its increment is no longer associated with an increase in slope (i.e., it converges). D2 is 

defined as the slope of the linear region at the convergent values of m.  

Mathematical stationarity is presumed in the above application which presumption is 

rarely tenable for biological data. The „pointwise” scaling dimension was suggested by 

Farmer et al. (1983) to calculate the D2 for biological data since it does not presume 

stationarity because nref remains fixed for each D2 estimate. The difference-vectors made 

with respect to this single nref still span and probe the entire data stream, but they alone are 

the basis for the log – log plot and the consequent slope and m pairs. As nref is chosen 

sequentially for each digitized point in the time-series, dimension thus is estimated as a 

function of time. 

The „point-D2” (PD2i) estimate of the correlation dimension was developed by 

Skinner et al. (Skinner et al., 1991; Skinner and Molnár, 1999). The point-D2 does not use all 

possible vector-differences, like the Grassberger and Procaccia algorithm, nor all vector-

differences with respect to a fixed nref, like the pointwise algorithm; rather it rejects those 

nref vector-differences for which linear scaling and smooth convergence cannot be found. 

Accepting every data-points as an nref means erroneously including those vectors for which 

the relationship  

C(r,n)=rD2 

does not hold. In other words, the dimension cannot be estimated at some nrefs because the 

data points, being finite, are not distributed on the m-dimensional „strange-attactor” in a 

manner suitable for estimating the correlation dimension starting at that particular nref. The 

model for the point-D2 is  

C(r,n,nref*)= rD2  
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where nref* passes two criteria: (a) linear scaling in the log C(r,n,nref) versus log r plots and 

(b) convergence of slope versus m.  

The value of τ is irrelevant only if the number of points in the time-series is infinite, 

which condition is never approached for biological data. A conventional way of determining 

the τ to use is to calculate the first zero crossing of the autocorrelation function of the data 

time-series (i.e., approximately one quarter cycle of the dominant frequency). One should be 

cautious about new τ requirements when non-stationarities arise in finite data; the 

autocorrelation function and τ selection should be evaluated for each subepoch. 

 

PD2i parameters 

If recordings are made from a sine-wave generator that is suddenly replaced by, for 

instance, a Lorenz chaotic generator, then nonstationarity will occur in the data stream. 

Formally, the statistical properties of the data will be different the moment after the 

replacement. Skinner’s laboratory developed the PD2i algorithm to address data 

nonstationarity, because this problem invariably arises in long epochs of biological data when 

the system uncontrollably changes state (e.g. in the shifts from sleeping to waking, or from 

quiescence to alertness). The first insight that led to their algorithm was that, in nonstationary 

data, the vectors made from ‘points’ of data that are stationary with respect to the ‘point’ that 

the reference vector is in (a ‘point’ is a small strip of data, m*τ data points long) will 

contribute uncontaminated vector-difference lengths only to the small log r part of the scaling 

region. 

Skinner et al. (1994) found that this restricted segment could be defined by a linearity 

criterion (LC) and a plot length (PL) criterion. The LC permits detection of the upper limit of 

the floppy tail, and the PL sets the upper limit of the restriction (usually 15%, starting from 

the small log r end). To prove that this insight about this restriction was valid, they tested the 

PD2i algorithm with obviously nonstationary data made from concatenated samples of sine, 

Lorenz, Henon and random data. It was found that the mean PD2i of each sub-epoch had an 

error that was < 4% of that made by D2 for the stationary variety of the data (Skinner et al., 

1994).  

The PD2i program used for nonlinear analysis of the data was provided by courtesy of 

JE Skinner. First, from the segments of four channels, single channels were isolated because 

of the requirements of the PD2i calculation program used. At the beginning of the program 

run, an autocorrelation and power spectral analysis was performed to obtain the τ value for 

the time delay embedding, which is essential for correct estimation of the attractors. The τ 
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value at the first zero crossing of the autocorrelation function was selected to acquire 

statistically independent (i.e. uncorrelated) points for the reliable construction of an attractor 

in the m-dimensional space for the given EEG signal. 

After the PD2i calculations for the whole segment of one channel, two diagrams were 

obtained. One was the compressed original EEG signal under study. The other diagram 

depicted the ’cloud’ of individual values of the point correlation dimension in the same time 

resolution as the EEG signal above.  

The PD2i values were characterized in two different ways. First, a qualitative 

assessment was made by visual observation of the behavior of the PD2i points. The 

quantitative analysis was performed by comparison of the histograms derived from the 

correlation dimension points of the epochs. After selection of an epoch by its starting and end 

points, the program was able to provide the distribution of the PD2i values within the time 

window given. The histograms yielded the peak, the average and standard deviation of the 

point correlation dimension values in the histogram. The percentage of accepted points was 

also given, which is informative on the stationarity of the analyzed signal. 

The parameters used in the current study were PL = 0.15, LC = 0.3, convergence 

criterion (m vs. slope) = 0.4, and τ was selected at the first zero crossing of the corresponding 

autocorrelogram (see above). These are the same PD2i settings as used previously in both 

animal (Skinner et al., 1991; 1994; 1999) and human studies (Skinner et al., 1993; Vybiral 

and Skinner, 1993). 

 

3.6.3. Synchronization likelihood 

 

Mathematical background of synchronization likelihood (cited from Ponten et al., 2007) 

The synchronization likelihood (SL) is a measure of the generalized synchronization 

between two dynamical systems X and Y (Stam and van Dijk, 2002). Generalized 

synchronization (Rulkov et al., 1995) exists between X and Y of the state of the response 

system is a function of the driver system: Y = F(X). The first step in the computation of the 

synchronization likelihood is to convert the time series xi and yi recorded from X and Y as a 

series of state space vectors using the method of time delay embedding (Takens, 1981): 
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where L is the time lag, and m is the embedding dimension. From a time series of N samples, 

N-(m x L) vectors can be reconstructed. State space vectors Yi are reconstructed in the same 

way. Synchronization likelihood is defined as the conditional likelihood that the distance 

between Yi and Yj will be smaller than a cutoff distance ry, given that the distance between Xi 

and Xj is smaller than a cutoff distance rx. In the case of maximal synchronization this 

likelihood is 1; in the case of independent systems, it is a small, but nonzero, number, namely 

Pref. This small number is the likelihood that two randomly chosen vectors Y (or X) will be 

closer than the cut-off distance r. In practice, the cut-off distance is chosen such that the 

likelihood of random vectors being close is fixed at Pref, which is chosen the same for X and 

for Y. To understand how Pref is used to fix rx and ry we first consider the correlation integral: 

 

 

 

Here the correlation integral Cr is the likelihood that two randomly chosen vectors X 

will be closer than r. The vertical bars represent the Euclidean distance between the vectors. N 

is the number of vectors, w is the Theiler correction for autocorrelation (Theiler, 1986) and θ 

is the Heaviside function: θ(X) = 0 if X > = 0 and θ(X) = 1 if X < 0. Now, rx is chosen such 

that Crx = Pref and ry is chosen such that Cry = Pref. The synchronization likelihood between X 

and Y can now be formally defined as: 

 

 

SL is a symmetric measure of the strength of synchronization between X and Y (SLXY = 

SLYX). In equation (3) the averaging is done over all i and j;  by doing the averaging only over 

j SL can be computed as a function of time i. From (3) it can be seen that in the case of 

complete synchronization SL = 1; in the case of complete independence SL = Pref. In the case 

of intermediate levels of synchronization Pref < SL < 1. In the present study the following 

parameters were used: Pref was set at 0.01, for the state space embedding a time lag of 10 

samples, an embedding dimension of 10 and a Theiler correction (W2) of 0.1. When we tried 

the algorithm proposed by Montez et al. (2006), the results were comparable. 
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3.7. Statistical analysis 

The SL and power spectrum calculation results and the PD2i changes were analyzed 

by the non-parametric Wilcoxon Signed Rank Test because of its robustness. The distribution 

of the grand average SL values became normalized by the averaging, therefore we analyzed 

them by one way ANOVA and subsequent pair wise comparisons of Student t-test where pre- 

and two post-stimulus values were compared. 

Because of the multiple comparisons the row p-values were corrected by false 

discovery rate (FDR) method. Statistical significance was set at p<0.05. 
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4. Results 

4.1. Olfactory and taste stimulation 

4.1.1. Subjective report after smell and taste stimulation 

After every stimulation record a pleasant-unpleasant scale was given to the patients 

(the scale was from 1 (bad) to 10 (excellent)). The average of the smell pleasantness was 8 

(range 6-10), the taste average was 7.5 (range 5-10). 

 

4.1.2. Analysis of PD2i after smell and taste stimulation  

The most important observation of our PD2i study was that after smell stimulation a 

short lasting, but immediate reaction was found on both sides; in contrast, the effect of taste 

stimulation was seen later and appeared mainly on the right side (Fig. 2 (A),(F)). 

Fig. 2. Significant mean and standard deviation changes of Point Correlation Dimension (PD2i) between control 

condition and first 15s smell stimulation (A), control condition and second 15s (B), control condition and whole 

(15+15)=30s activation (C), and between first and second 15s stimulation period (D) as well as between control 

condition and first 15s taste stimulation (E), control condition and second 15s (F), control condition and whole 

(15+15)=30s activation (G), and between first and second 15s stimulation (H). Mean decreases are denoted with 

normal characters; mean increases with bold; SD decreases with italic; and SD increases with bold italic letters. 

Significance set at p<0.05. 
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During the detailed analysis of the smell stimulation, first the mean PD2i decreased 

from resting state to first 15s, and afterwards, we found an increase between first 15s to 

second 15s of the activation. There was no significant difference in the mean PD2i between 

the control condition and the whole 30s after smell stimulation. 

The localizational features of PD2i changes after olfactory stimulation are shown in 

Fig. 2(A),(B),(C),(D): the mean PD2i decreased significantly from pre-smelling baseline to 

first 15s activation in the left fronto-occipital (7, 14, and 10), and in the right temporo-parieto-

central (3, 12, and 4) leads. The standard deviation (SD) of the PD2i histogram also decreased 

in 2, 3 and 8, 9. Between control condition versus the second 15s activation, only the SD 

changed significantly on both sides mainly in the anterior parts (2, 11, 14). Between the first 

and second 15s activation, the mean of the PD2i significantly increased in the fronto-occipital 

(7, 10) leads on the left, and central leads on the right side (3). Between the control condition 

and the whole 30s stimulation, the only significant change was a decrease in one lead (4), but 

the SD decreased in both sides (2, 9). 

In contrast, during taste stimulation with a piece of chocolate (Fig. 2(E),(F),(G),(H)), 

significantly lower PD2i mean values were found on the right side between baseline and 

second 15s epoch alone (3, 5). Comparing the baseline to the first 15s, there was no change in 

the mean values, but the SD values have increased (11, 12 and 10). The SD was also higher 

between baseline and the whole 30s stimulation (12, 10), and lower between the first and 

second 15s (14, 11, 10 and 5). 

 

4.1.3. Synchronization likelihood analysis after smell and taste stimulation 

Fig. 3. shows the comparison of the grand average SL values. During the first 15s after 

both olfactory and gustatory stimulation the SL decreased in the slow alpha band. The 

decrease of the grand average SL values in the fast alpha was significant only after olfactory 

stimulation. Later (during the second 15s) a very appreciable SL increase was seen in all of 

the frequency ranges, especially in beta and gamma bands. 
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Fig. 3. Grand mean synchronization likelihood (SL) in different frequency bands during basic condition (gray 

column), after the first 15s (black column) and second 15s (white column) smell (A) or taste (B) stimulations.    

* highlights significant changes in comparison to the baseline at p<0.05 
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Fig. 4(A) and (B) represent the topography of the average SL. It showed some 

similarities between the two sensory modalities in the 7-14 Hz frequency range as follows: the 

connections between the different areas disappeared in the first 15s of the stimulation but 

reappeared on the second 15s. Anterior-temporal to central (14-7 ch) and middle-temporal to 

occipital connections (15-10 ch) were active during the first 15s. In other bands only small 

differences were found after stimulations. Both in the 0.5-7 Hz and the 14-30 Hz frequency 

ranges, the mean SL seemed to have a temporo-occipital dominance. In the left fronto-central 

area (7-8 ch) the interconnections became stronger in the gamma band, a little earlier after 

olfactory than in gustatory stimulations. 

 
Fig. 4. Average level of synchronization likelihood in different frequency bands before (Basic), in the first and 

second post-stimulus 15s periods of olfactory (A) and gustatory (B) stimulations. The thick lines ( __________ ) 

represent SL values > 0.15 , the thin ones ( _____ ) average SL values 0.15> x > 0.08 . 

 

Figs. 5 and 6 demonstrate the topographic results of the statistical analysis in the SL 

changes. The 7-14 Hz seemed to be the most important frequency range during both smell and 

taste stimulation, where the strength of the neuronal interconnections reflected in the SL 

values significantly decreased after 15s stimulation (1-2) in both inter- and intra-
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hemispherical localizations. This is one of the main characteristic findings of this SL study. 

During the second 15s activation, a significant SL increase has appeared in relation to the 

control condition during smell stimulation (Fig. 5(A), (B)); in contrast, during taste 

stimulation, the SL values significantly decreased. In higher frequencies (14-30 Hz and 30-48 

Hz) significant SL increases were observed in the second period after olfactory stimulation (1-

3) with inter-hemispherical dominance (Fig. 6(A), (B)). 

 
Fig 5. Significant decreases (A) and increases (B) of the interconnections (SL) between different EEG 

localizations from control condition to first (1-2) and second (1-3) 15s periods of olfactory stimulation. The thick 

lines ( __________  ) represent connection changes at the level of p<0.01 , the thin ones ( _____ ) at the level of 

p<0.05.  
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Fig. 6. Significant decreases (A) and increases (B) of the interconnections (SL) between different EEG 

localizations from control condition to first (1-2) and second (1-3) 15s periods of gustatory stimulation. The 

thick lines ( __________  ) represent connection changes at the level of p<0.01 , the thin ones ( _____ ) at the level of 

p<0.05 . 

 

After gustatory stimulation there was a frequency shift from lower to higher 

frequencies compared to the control condition: significant decreases appeared only in the 0.5-

7 Hz and the increases in the 30-48 Hz bands. In other ranges and conditions (e.g. olfactory 

stimulation: 0.5-7 Hz: 1-2, 1-3 (characteristic decrease); 14-30 Hz and 30-48 Hz: 1-2; 

gustatory stimulation: 14-30 Hz: 1-2) the changes were not so representative. Both SL 

increases and decreases appeared between different inter- and intra-hemispherical 

localizations. 

 

4.2. Quantitative EEG changes in Alzheimer’s patients after lactate infusion 

4.2.1. Spectral analysis in AD patients before and after lactate infusion 

Fig. 7. summarizes our major findings on the relative band power values.  
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Fig. 7. (a) Topographic view of scalp electrode positions used in this study. The bold letters here represent the 

channels where the relative power increase in the delta band after sodium lactate infusion was accompanied by 

power decrease in the higher frequency range. The T4 shows a localization where only significant relative delta 

power decrease was found. 

(b) p-values of the relative power changes corrected by false discovery rate (FDR) method after lactate infusion 

in six frequency bands and sixteen channels found by non-parametric Wilcoxon signed rank test. Bold letters in 

the delta band represent increases, all others show decreases. The * denotes localizations where the changes were 

significant at the level of p<0.05. 
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The main relevant observation was seen on certain scalp localizations (C3, C4, T3, T6) 

where the delta increase was combined with decrease in the theta, alpha, beta1 or beta2 bands, 

which were highlighted on Fig. 7. by bold letters as well. The most characteristic changes 

were at C4 where the concomitant significant decreases were seen in three (alpha, beta1 and 

beta 2) bands. At the C3, T3 and T5 the decreases were only in the beta1 band. In the T4 

localization only a significant delta increase has appeared. 

At frontal (Fp1, F3) as well as in occipital (O1) localizations non-significant decreases 

were found in the left side at. Similarly, on the right side the frontal (Fp2, F4) and T4 leads 

showed tendency of decrease in alpha and/or beta1 band power values. The very fast 

components (beta2 and gamma) of the EEG activity had some non-significant decreases 

mainly in the right central (C4) and frontal (Fp2) leads. 

 

4.2.2. Synchronization likelihood analysis in AD patients before and after lactate infusion 

In AD patients the grand average of the SL was at about ten times higher in the 0.5-4 

Hz frequency band than in all other bands either before or after lactate infusion. Theta (4-7 

Hz) and alpha 1-2 (7-10 Hz, 10-13 Hz) frequency bands (Fig. 8.) had slightly higher grand 

mean values than in the higher frequency bands (13-20 Hz, 20-30 Hz, 30-48 Hz). No 

significant changes were found between the grand average values before and after lactate in 

any frequency band. 

 
Fig. 8.  Grand average and SD values of the synchronization likelihood before and after sodium lactate infusion. 

Please note that the mean SL in the delta band (with its 0.35 value) is many times higher than in all other 

frequency bands which show a little higher values in the 4-13Hz than in the 13-48 Hz range. There are no 

significant changes in the grand mean at any frequency band before and after lactate infusion. 
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We did not expect systematic reactions after lactate in our patients because of the 

observed variability of the SL values. However, we were interested in the SL changes at the 

right fronto-polar (Fp2) region, which was found to be spectrally non-reactive similarly to the 

seriously damaged P3-P4 area. Our SL analysis revealed a visible frequency shift from lower 

to higher frequency bands on the right side in Fp2 (Fig. 9), the interconnections of the slow 

generators in the 4-7 Hz band decreased (a) and the fast connections in the 13-20 Hz range 

increased (b). It is important to highlight, that there were no changes in the seriously affected 

parietal leads (P3 and P4) as well. 

 
Fig. 9. The average and SD synchronization likelihood values in the right fronto-polar (Fp2) leads before and 

after sodium lactate infusion in the (a) theta (4-7 Hz) and (b) beta1 (13-20 Hz) frequency bands. The changes 

were significant by Wilcoxon signed rank test at the false discovery rate (FDR) corrected probability level set at 

p<0.0375. 
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5. Discussion 

 

5.1. Olfactory and taste stimulation  

5.1.1. Point correlation dimensional changes after smell and taste stimulation 

During our PD2i analysis we found significantly lower mean values after the 

appearance of both chemical sensations compared to the control condition. The less complex 

brain activity denoted in the decreased mean PD2i activity is probably the sign of pre-

stimulation processing. This may be related to the changes in ’cooperation’ among the 

underlying cortical neurons that assist in the electrical reaction after conditioned stimuli 

(Skinner and Molnár, 1999). The lower correlation dimension could also be the consequence 

of the relaxed state of the brain after sound or reflexologic stimulation (Kannathal et al., 

2004b). These changes appeared earlier (first 15s) after smell and later (30s) after taste 

stimulation. The difference between the time courses of the two different sensations might be 

interpreted either by the different chemical pathways or by our experimental protocol. The 

smell was felt immediately after the presentation; taste, however, only after the chocolate 

dissolved. Smell sensation and perception caused significantly higher mean PD2i values in the 

second 15s activation compared to the first 15s, which seemed to be the real effect of the 

stimulation. This is in concordance with the enhanced cognitive activity and consequently it 

might be a sign of data processing. No significant increases were found after taste stimulation, 

possibly because of the above mentioned reasons. Smell stimulation resulted in changes of the 

correlation dimension at the left fronto-occipital, and right centro-temporo-parietal areas. 

Kline et al. (2000) found that the activation in the frontal areas is in connection with pleasant 

smell sensations. The occipital changes could possibly be the projections of the cerebellar 

activation as well, which would be in turn the consequence of the frontal activation (Smejkal 

et al., 2003). The right sided activation after taste stimulation is possibly in correlation with 

memory processes (Royet and Plailly, 2004). 

 

5.1.2. Synchronization likelihood changes after smell and taste stimulation 

The dominant rhythm of these healthy subjects was in the alpha and delta bands and 

was reflected in the highest mean SL values in the control condition. The SL values were 

significantly lower in the alpha band during the first 15s activation. This is possibly the 

consequence of a pleasant stimulus (Masago et al., 2000) or could be explained by the use of 

the working memory (Stam et al., 2002). These processes could be defined with less complex 

neuronal interconnections, during this period the brain is preparing for data processing. In our 
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concept the lower SL would mean less coupling or more independent brain networks. This 

could be confirmed by the localizational features of the mean SL. Many connections 

disappeared in the first 15s activation, but reappeared in the second 15s in the 7-14 Hz 

frequency range. The most intense connections in the alpha band were on the left side in the 

antero-temporal and central (14-7 ch), middle-temporal and occipital (15-10 ch) connections. 

These are perhaps responsible for the detection of the early stimulations. Our opinion is that 

the real data processing of the chemical sensations could be detected with SL method during 

the second 15s when appreciable elevations of the SL turned up in all bands, especially in the 

faster frequency (beta and gamma) bands. 

The higher gamma synchronization is mainly important in cognitive processes and 

higher mental functions (Beshel et al., 2007), but it could be associated with the higher 

activity of the olfactory bulb and/or face muscles represented in the gamma frequency band as 

well. After gustatory stimulation, lower alpha band synchronization was found only, which is 

possibly the sign of an incomplete preparation for data processing. 

 

5.2. Quantitative EEG effects in AD patients after lactate infusion 

5.2.1. Relative power changes after lactate infusion 

The major finding of our present study was that AD patients’ brain can be divided into 

three parts based on the neurophysiological reactivity to sodium lactate: seriously, moderately 

affected and nearly normal areas. In the most seriously affected areas (P3, P4) no significant 

changes were found after lactate infusion either in relative power or in SL. The relative non-

reactivity to sodium lactate infusion of the seriously damaged parietal areas of the AD 

patients (P3 and P4) could be interpreted by the disturbed altered synaptic function, which is a 

characteristic sign of this neurodegenerative disorder (Francis, 2005; Bell et al., 2006) in two 

different ways: First, the decreased mainly acetylcholinergic innervations of the bilateral 

parieto-temporal cortex (Schliebs and Arendt, 2006) and the consequent hypometabolism of 

the same areas have been described by Positron Emission Tomography studies (de Leon et al., 

2007). Second, the local hypoperfusion, which is the succeeding of the decreased direct 

cholinergic vasoreaction (Barbelivien et al., 1999; Sato et al., 2004). This is in possible 

correlation with the decreased number of projections from the nucleus basalis Meynert 

(Mattia et al., 2003; Adler, 2000). Abásolo et al. (2005) published that with Aproximate 

Entropy, significantly lower ‘normal’ irregularity in P3 and P4 localizations was found with 

concomitant relative power increase in the delta (T4, P4) and decrease in the alpha (T3, T4) 

bands in AD patients in comparison with age-matched elderly controls. It is pertinent to 



 38

mention here that the decreased ACh-ergic activation could be reflected by the dominance of 

slow rhythms in the background EEG at and around both parieto-temporal regions (Elmstahl 

and Rosén, 1997). The insufficient acetylcholinergic innervation (Schliebs and Arendt, 2006) 

of the parietal (P3, P4) regions in advanced AD might be responsible for the reduced vascular 

reactivity of the examined brain areas after sodium lactate and might have further influence 

on the brain circulation and metabolism as it was published in our former SPECT brain 

imaging study on similar AD population (Kálmán et al., 2005a). This could be a possible 

explanation why we did not find any significant EEG power and SL changes after the sodium 

lactate infusion mainly over these brain territories. As a result, no beneficial effect of sodium 

lactate infusion on semantic categorization was observed in ERP studies by the same group as 

well (Kálmán et al., 2005b). 

In the moderately involved areas, the relative power of the slow generators increased, 

which is in agreement with the well characterized, but not specific features of the EEG in AD 

(Elmstahl and Rosén, 1997; Prichep, 2007). The main theta and delta frequency dominance 

was shifted to delta after the sodium lactate infusion together with an increase in the relative 

delta band power and a joint decrease in the alpha, beta1, and beta2 bands (Fig. 7(a) bold 

letters, Fig. 7(b) stars). This could be interpreted by a partial metabolic and possibly non 

vascular (Pávics et al., 1999) ’steal’ effect of the intact brain areas, presuming that these 

preserved brain regions has a better response to the supposedly vaso- and metabolic-active 

sodium lactate infusion than the moderately affected areas. 

 

5.2.2. Synchronization likelihood changes after lactate infusion 

The slower dominant frequency of the Alzheimer’s patients is one of the characteristic 

features of their EEGs (Elmstahl and Rosén, 1997).  This could be explained by the decrease 

of the number and activity of the EEG generating elements i.e. neurons and glial cells. Based 

on this feature it is expected that the majority of the communication between all of these 

generators is made in this frequency band. This could be one possible cause of the dominance 

of the grand average SL in the delta (0.5-4.0 Hz) frequency band. The lactate infusion in the 

dose applied did not change the sum of the communications (grand average SL) either in the 

delta or faster EEG bands significantly. We think that this finding could be explained by the 

decreased reactivity of the Alzheimer’s brain to metabolic stimulation. 

However, the detailed study of the localized and not global SL changes could reveal 

some differences between regions which showed same i.e. non-detectable spectral reactivity 

to lactate. The seriously damaged P3, P4 and normal Fp2 activities did not show significant 
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relative power changes but only this later could present tiny signs of the subtle activation. Our 

opinion is that the significant decrease of the SL in the lower (theta) and increase in the faster 

(beta) bands could represent a shift to a stimulated enhanced activity of the Fp2 region. 

 

5.2.3. Methodological problems 

One of the major limitations of our second study is that due to ethical considerations 

we were not able to perform similar experiments on healthy elderly. We can not exclude 

therefore the possibility that our major findings are not specific to AD and the same steal 

phenomenon could be observed in healthy aged population after sodium lactate infusion. 
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6. Conclusions 

 

1. The main important observation of our PD2i study was that the mean values became 

significantly lower after the appearance of both chemical sensations compared to the control 

condition, which is probably the sign of the prestimulus processing. The consequences of 

smell stimulation seemed to be short lasting but immediate, and they appeared on both sides. 

In contrast, the effect of taste stimulation was a later reaction and it was found mainly on the 

right i.e. subdominant side. 

 

2. Our SL study presented significantly lower mean values during the first 15s of both 

chemical activations. The less complex neuronal interconnections could mean that the brain 

was preparing for the detailed data processing. The localisational features of mean SL could 

confirm this statement, as some connections disappeared in the first 15s activation, but 

reappeared in the second 15s in the 7-14 Hz frequency range. The real data processing was in 

connection with an appreciable mean SL increase during the second 15s in all bands, 

especially in the faster ones. 

 

3. Based on the spectral reactivity to sodium lactate the AD patients’ brain could be divided 

into three parts: seriously, moderately damaged and nearly normal areas. In the seriously 

affected areas (P3 and P4) no significant changes were found after lactate infusion either in 

relative power or in SL, which could be interpreted by the altered synaptic function. In the 

moderately involved areas, the relative power of the slow generators increased, and the 

previous theta and delta frequency dominance was shifted to delta, and there was a joint 

decrease in the alpha, beta1 and beta2 bands. This is possibly the sign of a partial metabolic 

and possibly non vascular ‘steal’ effect of the activated intact brain areas where this activation 

is signed by the significant theta decrease and beta increase of the localized SL values e.g. in 

the Fp2 region. 

 

4. The above findings give the answers to the questions taken in the Aims chapter are as 

follows: 

 

A) The local organization measured by mean PD2i changes can reflect the periods of 

preprocessing and real data processing after olfactory and smell stimulation. These periods 
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appeared in the global (inter-local) organization as well investigated by individual SL values 

but they provided additional information on the uni- or bi-lateral nature of the data processing. 

 

B) So we suggest to apply both or at least the SL analysis for the proper collection of a 

normative database for a later comparison with some neurodegenerative diseases. 

 

C) The spectral analysis of the EEG has proven appropriate in the low metabolic level 

detection of the differently altered Alzheimer’s brains’ regions. 

 

D) The combined inter-connectional SL analysis was able to give important information on 

the higher level activation of the different regions which showed otherwise similar spectral 

reactions. 

 

5. The main observation of my thesis is that linear ‘power spectrum’ analysis is the most 

suitable for the analysis of the metabolic and hemodynamic changes. SL and nonlinear PD2i 

is more preferable during the analysis of the cognitive functions.  
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