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1. Introduction

1.1 Methods for the functional analysis of the ceal nervous system

The adaptive reaction of the living organs to tkerechanging environment is their
most important function. For this purpose theyeaxillexternal as well as internal information,
process it and perform the appropriate action besing their needs. There is a machinery
organized around this task called nervous systemhatonsist of a central and peripheral
parts in the simple and complex animal as well @®dn organisms. The functions of the
nervous system could be studied by the direct ¥aten of the spontaneous or provoked
behavior elicited by special stimulation. On theibaf these observations the researchers can
construct a ‘black box’ with appropriate input amatput variables. However, they could be
interested in the function of these ‘black boxest anake assumptions on their possible
structure and related functioning.

There are several disciplines to test these aliemanodels. The neurophysiologic
approaches extend the possibilities of the dirdigeovation giving measurable physical
parameters on the event under study. The functidheoneurons and glia cells is related to
trans-membrane ionic movements which could geng@atential and current changes suitable
for physical detection and registration. The motpbizal approaches give information on the
structural changes in several stages of the progessainly with fine space but large time
resolution. Some new imaging methods can combieefdhctional, structural and neuro-
biochemical features using isotop radio-ligandsHSP, PET) or the changes of the nuclear
magnetic correlates of the excitable tissue duttieg work (fMRI) in smaller time scale.

The neurophysiological methods can give high timex(s range) and because of their
mainly indirect character lower space resolutiorevedal methods are available in
experimental and even clinical use for functiortitgsof the central and peripheral nervous
system: electromyography (EMG) for muscle and neglectroneurography (ENG) for nerve,
event-related potential studies (ERP) for peripharal central sensory as well as motor,
electro- and magneto-encephalography (EEG, MEGEéotral sensory and motor analysis.
The neurophysiological methods are based on thecipte that during the work of the
excitable tissue there are ion current changesugfireheir membranes which are reflected in
measurable electrical current flow and potentiffedences. These electrical dipoles could be
measured by micro-electrodes in situ or after tsemmation in the surrounding space by

electrical macro-electrodes and by detecting they wibtle concomitant magnetic field



changes. Because of the electrical nature of ttectien and registration the neurophysiology
is often referred as electrophysiology.

The electroencephalography (EEG) first used by €&1&875) in animal and Berger
(1924) in human examinations deals with the eleatpphenomena connected to the work of
the brain. There are two approaches in the detediahe function of the central nervous
system (CNS). In the case of the evoked potenti@sxaminer is interested in the localized
changes of the CNS mainly after sensory stimulatidiese localized potential changes are
of very small amplitudes therefore they could netseen in the background EEG activity of
comparable size. After using repetitive stimulatiand time locked averaging of the
recordings the event related component of thesengiats became visible and the background
activity disappeared. By the help of this technitjue integrity of the sensory pathways and
the primary data processing of the CNS could beatet. There are, however, situations
when the features of the background activity armofe importance than the evoked potential
changes. The source of the EEG is thought to bed@meyer, Lopes da Silva) the
summation of the postsynaptic dendritic field ptitda of the neurons localized near the
surface of the cerebral cortex. So it can mainfiece the influences coming to the site of the
recording and only additionally the output reactidhrough possible returning collaterals.
The first analysis of the background EEG signals weade by visual assessment of the
recordings. Beside the recognition of abnormal wahe amplitude, frequency of the activity
at different sites of the scalp made the basishfervisual as well as instrumental assessment.
The changes in the frequency and amplitude corgemnell as in the local and inter-local
organization of the EEG activity were found usafulthe characterization of physiological
and pathological processes. Different patterns le€tecal impulses can indicate various
problems in the brain. The sensitivity of the EESGvery high, but the specificity is low.
There are only some diseases, where EEG is enooglhé diagnosis: for example
hypsarrhythmia in West syndrome; Radermacker coxmpie subacute sclerosing
panencephalitis (SSP); generalized spike-and-w®&\W() discharges in absence epilepsy;
triangular waves in hepatic encephalopathy; ancciBpeEEG abnormalities in Jakob-
Creutzfeld-syndrom (Rajna, 2006).

The first tools of the instrumental analysis wene tinalogous frequency analyzers
which used filters and integrators for the caldolatof the first ‘power spectra’ with low
resolution. Later, in the era of digital data psgiag the autocorrelation function of the EEG
or the EEG itself became the basis for the constmuof higher resolution power spectra by

Fast Fourier Transformation (FFT). The calculatainthe cross spectra made possible the



linear interdependence i.e. coherence estimatiomeSyears ago it became clear that the
linear approach alone in the analysis was not dméaiget all of information inherent in the
EEG signal because of the nonlinearities founchenldrain’s electrical activity. A dynamical
system is linear if all the equations describing dtynamics are linear; otherwise it is
nonlinear. In a linear system there is a lineaatr@h between causes and effects (small causes
have small effects); in a nonlinear system thisas necessarily so (Stam, 2005). Especially
the characterization of the local and global dyranm the EEG activity needed the use of the

combination of linear and nonlinear analysis meghod

1.1.1 Linear neurophysiological methods - spectaalalysis in the EEG

There are some basic features of the EEG whiclalarays taken into account in the
investigation of the electro-genesis of the braimphysiological and pathological conditions.
Even the visual examiner has to make observatiorthenfrequency content of the EEG
sample under study. The dominant frequency meaas ttie waves of this particular
frequency are seen most frequently in the samptle remarkable amplitude values. Besides
the range of the visible frequencies (the lowesi &ighest detectable) as well as the
regularity and organization of the activity havelt® recognized. The first two features i.e.
dominant and associated frequencies could be detdry the several frequency analysis
methods.

Fourier (1807) made the observation that everyoperilike function could be
generated by addition of several periodic sinesasihes functions of different frequencies
and amplitudes. So the principle of the inversegss which is called Fourier Transformation
was to decompose the time-varying signal into pkciavaves of different frequencies and
amplitudes by assigning amplitude values to evesguency component measured. The first
instrumental analyzers worked on analogous priaciphe frequencies were selected by a set
of analogous filters and the area below the cuwas measured by integrator circuits for
getting amplitude values in the given particulaegitency range defined by the filter
characteristics. Based on the technical possdslithe selection of the traditional frequency
bands (alpha, beta, theta, delta and gamma) wagjkrmmrrect for the examinations at that
time. By the advent of the digital data processhmgso called periodograms were used first
for spectral calculations. On the basis of theatis¢ between two consecutive zero crossing
or wave peaks these methods separated the EEG aagtesimmarized the amplitude values

in the selected range to show the frequency anditaig relations.
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Secondly an indirect calculation was used for tlséination of the frequency-
amplitude functions called power spectra. The aatwelograms which give the measure of
the dependence of the differently shifted valueshef original signal were estimated first.
Later these correlograms were Fourier transfornoegot from time to frequency domain to
get finally power spectra. In a more advanced ntettih® power spectra were calculated
directly from the samples of fixed length (where ZN=using a simplified quick algorithm
called Fast Fourier Transformation.

The digitalization itself and the use of the digit@nsformations, however, need to
fulfill strict assumptions what are only seldom mBhe assumption of the infinite length and
stationarity of the epochs are the most importamhtp among them. The resulting lower
resolution and the wider confidence interval arotinel calculated power spectra decrease
their reliability and usefulness. The power spect@culated on the basis of the
autoregressive (AR) models fitted to the EEG sample better for the comparison of the
consecutive epochs because of their narrower ceméil intervals based on their higher level
of freedom. The fitted AR models of different ordey give the coefficient of the function for
the estimation of the next point from the valuepivious n points of the EEG curve. These
methods could give information on the frequency-kiongle content of the electrical activity
of a scalp electrode in the multi-electrode montdde inter-electrode relations in frequency
domain could be estimated by the so called coherealculation which is based on the use of
the cross-spectra.

The whole power spectra were used only in somecgtjans e.g. in the visual trend
analysis of the compressed spectral arrays (CSAheatntensive care units. Relative and
absolute band powers were compared instead in #jerity of the studies. Here are some
recent investigations as follows: Otto (2008) hasduEEG spectral analysis for narcosis
monitoring in animal experiments. The cognitive laex (van der Hiele et al., 2007) and
mental functions of the early Alzheimer’s patief@zigler et al., 2008) were correlated by the
EEG’s spectral and complexity features. SpectralGEBnd coherence changes were
investigated after performance test in the AD (ldida al., 2007) The spectral changes were
found to reflect the complexity of the cognitiveska (Kurova and Cheremushkin, 2007).
Besides some other parameters were derived fronsghetra to highlight and extract the
specific information inherent in the EEG signal \arious conditions. The dominant
frequency is represented by a visible peak in geztsa, the mean or median frequency in a
given frequency band are calculated charactensiizes not always seen clearly. The spectral

edge-95 is a frequency value above it only the reqre of the total power could be found.
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The robust derived Hjorth’s parameters: ActivitypMlity and Complexity gave a purposeful
characterization of the different physiological apdthological conditions. These linear
methods were and even are the most popular in tlatigative EEG because of their

robustness and relative easy interpretation.

1.1.2. Nonlinear dynamical analysis of EEG

1.1.2.1. Short historical background

The beginning of the nonlinear EEG analysis was985, when Rapp et al. described
their results with 'chaos analysis’ of spontaneoesiral activity in the motor cortex of a
monkey (Rapp et al.,, 1985), and Babloyantz et ahliphed the correlation dimension of
human sleep EEG (Babloyantz et al., 1985). 'Detmistic chaos’ is a paradoxical
phenomenon, because it describes unpredictablevibehain deterministic dynamical
systems (Li and Yorke, 1975).

Edward Lorenz published the first graph of a steaagractor, the so-called 'Lorenz
attractor’ (Lorenz, 1963). Packard et al. transkedra time series of observations into a
representation of the dynamics of the system inudtifimensional state space or phase
space (Packard et al., 1980). In 1983, GrassbarggiProcaccia described, how to calculate
the correlation dimension of a reconstructed atbra@Grassberger and Procaccia, 1983a, b).
In the early phase of nonlinear EEG analysis time aias to search for low-dimensional
chaotic dynamics in various types of EEG. Latehwfite 'surrogate data testing’ the check of
the validity of the results became possible. Nogriew measures of the EEG are based upon
phase synchronization and generalized synchrooizati

There are so much nonlinear methods, for exampldinear forecasting, cross
recurrence, false nearest neighbors, cross predjdbut here |1 would like to introduce some
of the most important nonlinear time series methods
1. Nonlinear cross prediction
2. Phase synchronization
3. Mutual dimension
4. Correlation dimension

5. Synchronization likelihood

1.1.2.2. Nonlinear cross prediction
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This method is based on nonlinear forecasting aedptedictability of a time series
and its time reversed copy (Stam et al., 1998)ekier have to choose a point on the attractor,
and to predict the future course of this point ity a local linear model to the dynamics.
This method is suitable for detection of amplitwadel time asymmetry (Stam et al., 1998),
and for test irreversibility based upon symbolicamics (Daw et al., 2000). Nonlinear cross
prediction (NLCP) is seemed to be useful in variateas of physics: for the sleep analysis of
healthy adults, children with epilepsy, prematune &ull-term newborns. It was found that
the NLCP test provided evidences of significant-finear dynamics in all epochs of non-
REM sleep, when electrical status epilepticus dustow-wave sleep (ESES) was evident.
Only during this stage, the possible presence wof-donensional chaos could also be
suspected. EEG without ESES could not be distimgaigrom linearly filtered noise (Ferri et
al., 2001). Sleep EEG tends to show non-lineacsira only during cyclic alternating pattern
(CAP) periods, both during S2 and SWS. During CAdiquls, non-linearity can only be
detected during the phase Al subtypes (and partRl) of CAP. The A3 phases show
characteristics of non-stacionarity and bear soesemblance to wakefulness (Ferri et al.,
2002). The structure of sleep EEG in newbornsgsificantly different from that of adults, it
cannot be distinguished from that of high-dimenalamoise in the majority of epochs, and
shows a tendency to become nonlinear in naturetlyndsiring quiet sleep in a small
percentage of the epochs analyzed (Ferri et dd32®nother study investigated that frontal
intermittent rhythmic delta activity (FIRDA) was meo predictable than polimorphic delta
activity (PDA). Most PDA segments could not be idigtiished from linearly filtered noise. In
contrast, FIRDA activity showed strong evidencenohlinear dynamics (Stam and Pritchard,
1999).

1.1.2.3. Phase synchronization

‘Synchronization of chaos refers to a process, gihetivo (or many) systems (either
equivalent or nonequivalent) adjust a given prgpefttheir motion to a common behavior
due to a coupling or to a forcing (periodical origyy (Boccaletti et al., 2002). Phase
synchronization is characterized by a non unifocattering of the phase differences between
two time series, and it can be computed using titleeH transform (Mormann et al., 2000;
Tass et al., 1998) or by means of wavelets analysishaux et al., 1999). The difference
between the analysis of Mormann et al. and Tasd.aetas that Mormann et al. used the
circular variance to characterize the distributbdrphase differences, while Tass et al. used a

Shannon information entropy measure. Further it fwaed that this method was suitable not
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only to detect the direction of coupling betweerp taystems (Cimponeriu et al., 2003;
Rosenblum and Pikovsky, 2001; Smirnov and Bezruct#i®3), but also to track rapid
changes in the level of coupling between dynansgatems (Breakspear et al., 2004; Kozma
and Freeman, 2002; Van Putten, 2003a, b). Mearepiw®erence R a bivariate measure for
phase synchronization — can be archived with @llobnlinear networks’s using polinomial-
type templates (Sowa et al., 2005), this could bemgsing method for brain-computer
interfaces, and it provides a new idea for recagmiof mental tasks (Aihua and Yuhan,
2005).

1.1.2.4. Mutual dimension

Mutual dimension is the measure of the shared @sgoé freedom of two dynamical
systems (Buzug et al., 1994; Meng et al., 2001;da@t al., 2001). This method seemed to
be suitable for studying EEG changes during meataivity (Stam et al., 1996; Meyer-
Lindenberg et al., 1998; Aftanas et al., 1998). bélidimension is sensitive not only to look
for subtle aspects of emotional processing (Aftasaal., 1998), but also to examin EEG
changes during simple visual information processing mental archimetric (Stam et al.,
1996).

1.1.2.5. Correlation dimension

Correlation dimension method has been developech&wacterize the reconstructed
attractor in a quantitative way. Correlation dimensis a useful method in the analysis of
different pathological conditions: for example ipilepsy detection (Kannathal et al., 20044,
Adeli et al., 2007; Lee et al., 2007, Jardanhazl.e2007) and in Alzheimer’s disease (Jelles
et al.,, 2008). With this measure, the dynamic aegtld levels of anesthesia also can be
detected (Gifani et al., 2007; Lalitha and Eswagdl)7). This method is also suitable for the
nonlinear dynamical analysis of the neonatal tirages: to find the relationship between
neurodevelopment and complexity (Janjarajitt et 2008a) and between sleep state and
complexity (Janjarajitt et al., 2008b).

The only problem with this method is, that in ca$déong epochs the biological data
of the system has uncontrollably changes (e.ghenshifts from sleeping to waking, or from
qguiescence to alertness). Therefore Skinner's &boy developed the PD2i algorhythm to
address data nonstationarity. In nonstationary, dlaéavectors made from 'points’ of data that
are stationary with respect to the ’point’ that tieéerence vector is in (a 'point’ is a small

strip of data, mt data points long) will contribute uncontaminatexttor-difference lengths



14

only to the small log part of the scaling region. (The further detaildlee method can be

found in Data analysis section 3.6.2.).

1.1.2.6. Synchronization likelihood

The synchronization likelihood is a measure of tieneralized synchronization
between two dynamic systerKsandY (Stam and van Dijk, 2002). This method seemecketo b
suitable for studying seizures: in the neonatal EBIBenburg et al., 2003; Smit et al., 2004);
in adult intensive care unit patients (Slooterlgt2906); in nocturnal frontal lobe (Ferri et al.,
2004) and in mesial temporal lobe epilepsy (Poetead., 2007). It seemed to be also suitable
for the analysis of other brain pathologies: braimors (Bartolomei et al., 2006);
schizophrenia (Micheloyannis et al., 2006); strqkéolnar et al., 2006a, b); Alzheimer
disease (Stam et al., 2003a; Babiloni et al., 2@0¢henburg et al., 2004; Stam et al., 2005;
2007; Jardanhazy et al., 2008; Czigler et al., 2088 can be used to study the global
dynamics in healthy adults (Stam et al., 2002; B0@804; Smit et al., 2007).

The cognitive mental processes need a lot of cdiamscand cooperation among
different specific as well as non-specific areaghaf brain. The local and global (i.e. inter-
local) organization of the data processing sup@ogeod metabolic state in the background
for the proper functioning. The smell and tastesaéinns are special types of cognitive
processes because of their old phylogenetical @&mhgs emotional character. There are
reports on the issue that the disturbancies ofthell and taste sensations are the first and
fundamental signs of the mental decline in the deras.

The Alzheimer’s dementia is characterized by I@ealidamage of the neural as well
as glial elements with a consequent decrease alittidation and metabolism in the involved
areas. The infusion of the metabolite sodium lactatich was found an effective vasodilator
and metabolic enhancer in healthy population seetoede a potential test treatment in
Alzheimer’s patients.

These two experimental conditions looks appropriatehe comparison of different
linear and non-linear EEG analysis methods refigcseveral sides of the metabolic and
functional organization.

There is not enough evidence now, however, ongbeei what linear and nonlinear
studies from the processing battery can give thetmeeful additional information in the
exploration of special cognitive processes and deismeconditions for early diagnosis.
Therefore the aim of the present study was to ndecampare linear and nonlinear methods

in different ‘low and high level’ reactions of theman brain.
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2. Aims

Based on the premises found in the Introductiorptgrave decided to get information
on the usefulness of the different linear- and im@alr EEG analysis methods for the selection

of appropriate technical tools in the early diagea$ dementia syndromes.

In the first study, therefore, we wanted to knowetier
A) The changes of the local (Point Correlation Disien (PD2i)) or global/inter-local
(Synchronization Likelihood (SL)) organization tfetscalp EEG can better characterize the

chemo-sensory cognitive process after pleasant ameltaste stimulation in healthy persons.

B) Which parameters are suitable for the propelectbn of a normative database for a later

comparison with some neurodegenerative diseases?

In the second investigation we tried to answeigiestion

C) Whether the power spectral analysis can retteedifferent alteration of the Alzheimer’s
brain regions after metabolic active sodium laciatesion.

D) Can the linear as well as nonlinear inter-losghchronization likelihood analysis add
some more information on the metabolic reactivaythe differentiation of the altered brain

regions?
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3. Materials and methods

3.1. Healthy subjects

Nine healthy subjects (two men, seven women) winosan age was 49 +-19 years,
participated in the first study. None of them hady aneurological disease, nor had
symptomatic viral infection or used psychoactivedioation during the investigation or in the
previous weeks. All of them were right handed and-smokers. All subjects underwent a
standard clinical examination, including neurol@ji@assessment. Based on their personal
reports and our orientational examination madedmgessmell and taste samples all of them
were representative for normosmic and taste papulaffter the EEG recording, a verbal
description of the patients experience concernimgttvo kinds of stimuli was given. The
protocol for this study was approved by the Medieghics Committee of the University

Hospital. All volunteers signed a written consentake part in the study.

3.2. Alzheimer’s disease patients

Twelve Caucasian AD patients (five men, seven wgmeth an average age of 72.67
+ 2.57 years participated in the second investogatiAll of them met the criteria of the
International Classification of Disease (ICD-10)daNINCDS-ADRDA for probable AD.
They had moderate-to-severe dementia syndrome eas Nhini-Mental State Examination
(MMSE) score was 13.4 £ 5.72 points. The probandeeviate onset AD cases and sporadic
type. Standard clinical examination, including redogical assessment, had been performed
on each participant. Five patients out of twel\egg female and two men) participated in an
earlier study (Kalman et al., 2005a) where theal@ceffect on the regional cerebral blood
flow (rCBF) was studied by*™TC-HMPAO SPECT as well. Their average age was #3.6
2.30 years. (For the reference see the publicaidable 2. with the proband ID number 3, 4,
8, 12, 13 where their ApoE genotype, anxiety symst@nd the localization of the decreased
rCBF as well as changes observed after sodiumtéasttusion are shown.) The other seven
patients (four women and three men, with an aveeageof 72.1 +-2.71 years) participated
only in the EEG studies.

None of the AD probands had a history of panic misn agoraphobia with panic
attacks or generalized anxiety disorders (accortbrtge DSM-1V and ICD-10 criteria) based
on the interview with the patients and their caregs. No psychotropic medication, e.g.,
acetylcholinesterase inhibitors, nootropics, arytic, antidepressants or other drugs known

to interfere with the EEG, were administered thneeks before or during the experiments.
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All AD patients were non-smokers and outpatient.vAlunteers and caregivers gave their
informed consent to participate. The study protacas approved by the local Medical Ethics
Committee.

3.3. EEG recordings

The EEG was recorded in a silent room with eyesedo The subjects were seated in
a comfortable chair under constant control forrteate of alertness. The Ag/AgClI electrodes
were placed on the scalp according to the inteynati 10-20 system. EEG signal was
recorded (EEG-16X/Mikromed, Hungary; time const@rg s; high frequency filter 70 Hz;
common average reference) and after digitalizatg®® Hz, 12 bit, with LI-O1/A laboratory
interface/Mikromed, Hungary, by their Neuromap perg) simultaneously stored on hard
disk. The records were inspected off-line to remepechs with movement artifacts, muscle
activities, eye blinking and drowsiness.

The analyses were performed on 16 channels (F@#,, F/y F4, F7, F8, C3, C4, T3,
T4, T5, T6, P3, P4, O1, and OBig. 1).

LEFT FROMTAL RIGHT

~

Fpl Fp2

(ChE) (Chl)
F7 F&
(Chl4) F3 F4  (Chll)
(ChT) (Ch2)
T3 T4
(Chlsy 3 R (s )
(ChE) (Ch) IJ
TS Pz P4 T
(Chig)  (Che) (Chd)  (ChIZ)

01
(Ch10)

Fig. 1. Topographic view of scalp electrode positions usealr studies
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3.4. Smell and taste stimuli

During the baseline condition (which was 30s) thbjects sat still with closed eyes
and no stimuli were applied. This control interwals divided into first and second 15s parts.
After 30s, the patients were given a perfume spwitinuously for 30s. After an interval of a
few minutes of rest with eyes open (which helpexightients keep the arousal level constant)
a 30s EEG with closed eyes without activation vem®rded again. After this a small piece of
milk chocolate was placed near the tip of the sttbjgongue. During this, they continued to
sit with eyes closed for 30s to feel the taste. Shigects kept the chocolate near the tip and

waited for its taste. After the recordings a ple&smpleasant scale was given to the patients.

3.5. Infusion protocol

In the second investigation twenty minutes weregifor each Alzheimer’s volunteer
to adapt to the circumstances to reduce strestslefter this, 5 mL/kg sodium lactate (0.5
M) was infused over 20 min. The intravenous linesevplaced into both forearms of the
participants. ECG, blood pressure, venous bloochgdselectrolytes were assessed before the
study, every 5 min during the infusion and 10 nfierathe treatment. In order to control any
potential side-effect (panic attack, alkalosis, aBG@G changes), all parameters were

continuously monitored by an intensive care spistial

3.6. Data analysis
3.6.1. Spectral analysis

The off-line spectral analysis was performed by mseaf Fast Fourier Transform
facility of the DIQEEGXP v2.0 program on 16 s lo@@96 points) epochs. This program uses

‘split-radix * FFT algorithm for the calculation ¢iie power spectra.

Mathematical background of split —radix FFT algotitm (cited from Duhamel and Vetterli,
1990)

The split-radix FFT is a fast Fourier transform {FFRalgorithm for computing the
discrete Fourier transform (DFT). In particularlitspadix is a variant of the Cooley-Tukey
FFT algorithm that uses a blend of radices 2 aritirdcursively expresses a DFT of length
in terms of one smaller DFT of lengii2 and two smaller DFTs of lenghi4.

The split-radix FFT, along with its variations, gphad the distinction of achieving the
lowest published arithmetic operation count (tetedct number of required real additions and

multiplications) to compute a DFT of power-of-twizes N. Although the number of
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arithmetic operations is not the sole factor iredeining the time required to compute a DFT
on a computer, the question of the minimum possdaant is of important theoretical
interest.
Split-radix decomposition
Recall that the DFT is defined by the formula:
N—1
Xy =) _ Tawy

n=I(

wherek is an integer ranging from 0 - 1 andwy denotes the primitive root of unity:

and thus"-"*'}wﬂ{ =1

The split-radix algorithm works by expressing tisismmation in terms of three smaller
summations. Below we give the "decimation in tireefsion of the split-radix FFT; the dual
decimation in frequency version is essentially jhstreverse of these steps.

First, a summation over the even indict2nz2. Second, a summation over the odd indices
broken into two piecesT4na+landT4ns+3, according to whether the index is 1 or 3 modulo

4. Here,n,, denotes an index that runs from ONd m — 1. The resulting summations look
like:

N/2—1 N/i—1 N /i1
roo_ ok - nak ok . nalk
Xy = Z TonpWpyyy T Wi Z Ting+1Wpy + Wy Z Ting+3Wpy
no=I ng=>0 ng=>0
cmnk _ nk
where we have used the factt N “N/m _ These three sums correspongdotions

of radix-2 (sizeN/2) and radix-4 (siz&l/4) Cooley-Tukey steps, respectively. The undedyin
idea is that the even-index subtransform of radha® no multiplicative factor in front of it,
so it should be left as-is, while the odd-indextsafisform of radix-2 benefits by combining a
second recursive subdivision.

These smaller summations are now exactly DFTsngjtheN/2 andN/4, which can be
performed recursively and then recombined.

More specifically, let Uy denote the result of the DFT of length/2 (for
k= 0,..., N/Q - 1), and letZx andZx denote the results of the DFTs of lenty (for
k= 0,..., N/4 - 1). Then the outpuXy is simply:

Xy = Up + Wy Zp + wi'Zy
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k> N/A

This, however, performs unnecessary calculatiansg’ turn out to share
many calculations witlk < N / 4. In particular, if we adtll/4 tok, the sizeN/4 DFTs are not

changed (because they are periodik)jrwhile the sizeN/2 DFT is unchanged if we add/2

k 3k _
to k. So, the only things that change are “*~ and ““~ terms, known as twiddle factors.

Here, we use the identities:

N/ ok
Wy = —Uy
(k4N .k
Wy = Wy

to finally arrive at:
Xi = Ux + (W5 Zx + 0 Z))
Xiynyz = U — (05 Zi + w0 Zy)
Xitnys = Upgnys — 1 (ﬁii'zk — wgsz;i) :

Xitan/s = Upgnps + 0 (Mi'zk — wiﬁz;i) :
which gives all of the outputXy if we letk range from O tdN / 4 — 1 in the above four
expressions.

Notice that these expressions are arranged savthated to combine the various DFT
outputs by pairs of additions and subtractions,civtare known as butterflies. In order to
obtain the minimal operation count for this algomit, one needs to take into account special
cases fok = 0 where the twiddle factors are unity andKer N / 8 where the twiddle factors

are (£1 - E'jf"\’/ﬁand can be multiplied more quickly. Multiplicatioby =+1and +-zare
ordinarily counted as free (all negations can beodled by converting additions into
subtractions or vice versa).

This decomposition is performed recursively whérns a power of two. The base
cases of the recursion axe1, where the DFT is just a copy = o, andN=2, where the DFT
is an additiorXy = X + x; and a subtractioX; = Xp — X;.

These considerations result in a coumlog,N — 6N + 8 real additions and multiplications,
for N a power of two greater than 1.

Relative (expressed as percentage of the wholetrspg@cEEG power values were
calculated and considered for each electrode duthdw lower inter-subject variability
(Nuwer, 1988). The relative power values were dated in the delta (0.5-4 Hz), theta (4-8
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Hz), alpha (8-12 Hz), betal (12-20 Hz) beta2 (202}, and gamma (30-48 Hz) frequency
bands.

3.6.2. Point correlation dimension

Mathematical background of Point Correlation Dimeign (PD2i)

The point correlation is an algorithm that allon@mpution of the dimension as a
function of time (Skinner et al., 1994; 2000; 2Q02)

In order to be able to quantify the dimensional ptaxity of a system its state space
(phase space) has to be constructed. The coorgliohthis space are the degrees of freedom
of the analyzed system. It is possible to consttietstate space from a single time series
(such as the EEG) by the delay-time embedding poee(Packard et al., 1980; Takens,
1985). Grassberger and Procaccia (1983a, b) dexelap algorithm that provides an efficient
procedure in the calculation of correlation dimensi(D2). Consider the set of {X
i=1,....,N}of points on the attractor, i.e., ¥ X(t+it) with a fixed time increment between

the measurements, then correlation integral is\ddfas

_ 1 NN
C(m,r,n)—|'5rﬂ Nzigljél@(r—‘xi—xj‘)

i#]

where m is the embedded dimension, r is the fixed distaf(g is the Heaviside step
function, with6(y)=1 for y>0 andb(y)=0 for y<0, and | Xi - X; | shows the distance in any

usual norm.
The correlation dimension (D2) of a time-seriedefined as
C(r,n) = r*?

where C(r,n) is the cumulative number of all ramdeved vector-differences within a range
(n and n is the number of vector-differences. Yedlifferences are calculated in the
following way: A reference vector (nref) is chosat begins at a specific point in the data
and takes a specified numban) (of sequential time-steps in the data streamatebdf a fixed
length ¢). Each value encountered in the time-steps is @sedne coordinate of the m-

dimensional vector. A different vector is then mdemoving to a new starting point, for
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example to the next point in the time-series usirgsame number afsteps. Then another
vector is made by starting at the third point ia #eries, and so on for all of the points in the
time series. All possible vector-differences foresv possible nref made with a given
embedding dimensionm) are then rank-ordered and a log C (r,n) versgs [dot is made.

The slope of the linear region in this plot is threeasured; this linear region reflects
the range of r over which the model

C(r,n) = —loglglérr, n)

is valid. The value of m is incremented and theesponding slope noted, thus yielding slope
and m pairs. The values ofare selected to span the size of the expectedald2 \that ism
ranges from 1 to 2D2 + 1). The number of embeddingensions is relevant up to the point
where its increment is no longer associated witinarease in slope (i.e., it converges). D2 is
defined as the slope of the linear region at threvegent values ah.

Mathematical stationarity is presumed in the abappglication which presumption is
rarely tenable for biological data. The ,pointwisetaling dimension was suggested by
Farmer et al. (1983) to calculate the D2 for biatay data since it does not presume
stationarity because nref remains fixed for eached®mate. The difference-vectors made
with respect to this single nref still span andljgrdhe entire data stream, but they alone are
the basis for the log — log plot and the consequséopie andm pairs. As nref is chosen
sequentially for each digitized point in the tinmexigs, dimension thus is estimated as a
function of time.

The ,point-D2” (PD2i) estimate of the correlationménsion was developed by
Skinner et al. (Skinner et al., 1991; Skinner amalridr, 1999). The point-D2 doest use all
possible vector-differences, like the Grassberget Brocaccia algorithm, nor all vector-
differences with respect to a fixed nref, like fh@ntwise algorithm; rather it rejects those
nref vector-differences for which linear scalingdasmooth convergence cannot be found.
Accepting every data-points as an nref means eousig including those vectors for which
the relationship

C(r,n)=r?
does not hold. In other words, the dimension caieoestimated at some nrefs because the
data points, being finite, are not distributed twe mn-dimensional ,strange-attactor” in a
manner suitable for estimating the correlation disien starting at that particular nref. The
model for the point-D2 is
C(r,n,nref*)= P2
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where nref* passes two criteria: (a) linear scalmghe log C(r,n,nref) versus log r plots and
(b) convergence of slope versus

The value ofr is irrelevant only if the number of points in thee-series is infinite,
which condition is never approached for biologidata. A conventional way of determining
the r to use is to calculate the first zero crossinghef autocorrelation function of the data
time-series (i.e., approximately one quarter cyéléhe dominant frequency). One should be
cautious about newr requirements when non-stationarities arise intdindata; the

autocorrelation function andselection should be evaluated for each subepoch.

PD2i parameters

If recordings are made from a sine-wave generdat is suddenly replaced by, for
instance, a Lorenz chaotic generator, then noosttity will occur in the data stream.
Formally, the statistical properties of the datdl vde different the moment after the
replacement. Skinner's laboratory developed the iPRRyorithm to address data
nonstationarity, because this problem invariabigesin long epochs of biological data when
the system uncontrollably changes state (e.g.enstiifts from sleeping to waking, or from
guiescence to alertness). The first insight thattéetheir algorithm was that, in nonstationary
data, the vectors made from ‘points’ of data thatstationary with respect to the ‘point’ that
the reference vector is in (a ‘point’ is a smallipstof data, m*z data points long) will
contribute uncontaminated vector-difference lengihly to the small log part of the scaling
region.

Skinner et al. (1994) found that this restrictegrsent could be defined by a linearity
criterion (LC) and a plot length (PL) criterion. 8hC permits detection of the upper limit of
the floppy tail, and the PL sets the upper limitthoé restriction (usually 15%, starting from
the small log end). To prove that this insight about this resitsh was valid, they tested the
PD2i algorithm with obviously nonstationary datadedrom concatenated samples of sine,
Lorenz, Henon and random data. It was found thatmkan PD2i of each sub-epoch had an
error that was < 4% of that made by D2 for theiatairy variety of the data (Skinner et al.,
1994).

The PD2i program used for nonlinear analysis ofd#ia was provided by courtesy of
JE Skinner. First, from the segments of four chmrengle channels were isolated because
of the requirements of the PD2i calculation prognased. At the beginning of the program
run, an autocorrelation and power spectral analysis performed to obtain thevalue for

the time delay embedding, which is essential farez estimation of the attractors. The
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value at the first zero crossing of the autocoti@bafunction was selected to acquire
statistically independent (i.e. uncorrelated) poifar the reliable construction of an attractor
in them-dimensional space for the given EEG signal.

After the PD2i calculations for the whole segmeinbre channel, two diagrams were
obtained. One was the compressed original EEG Isignder study. The other diagram
depicted the 'cloud’ of individual values of theipiocorrelation dimension in the same time
resolution as the EEG signal above.

The PD2i values were characterized in two differarays. First, a qualitative
assessment was made by visual observation of thavime of the PD2i points. The
guantitative analysis was performed by comparisbrthe histograms derived from the
correlation dimension points of the epochs. Afeestion of an epoch by its starting and end
points, the program was able to provide the distiim of the PD2i values within the time
window given. The histograms yielded the peak, dlierage and standard deviation of the
point correlation dimension values in the histogrdine percentage of accepted points was
also given, which is informative on the stationaaf the analyzed signal.

The parameters used in the current study were RL15, LC = 0.3, convergence
criterion (mvs. slope) = 0.4, anglwas selected at the first zero crossing of theesponding
autocorrelogram (see above). These are the same deRidgs as used previously in both
animal (Skinner et al., 1991; 1994; 1999) and humstadies (Skinner et al., 1993; Vybiral
and Skinner, 1993).

3.6.3. Synchronization likelihood

Mathematical background of synchronization likeliloal (cited from Ponten et al., 2007)
The synchronization likelihood (SL) is a measurehaf generalized synchronization
between two dynamical system$ and Y (Stam and van Dijk, 2002). Generalized
synchronization (Rulkov et al., 1995) exists betw&eandY of the state of the response
system is a function of the driver systevh= F(X). The first step in the computation of the
synchronization likelihood is to convert the timexiesx, andy; recorded fromX andY as a

series of state space vectors using the methachefdelay embedding (Takens, 1981):

]{ = II[.-'f.'--'f.'Ia'.--'f.'l ol i dud - - - "T.'II."I—ll'J'.]
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wherelL is the time lag, anth is the embedding dimension. From a time serids$ sémples,
N-(m x L)vectors can be reconstructed. State space veXtarg reconstructed in the same
way. Synchronization likelihood is defined as thenditional likelihood that the distance
betweeny; andY; will be smaller than a cutoff distancg given that the distance betwexn
and X; is smaller than a cutoff distance In the case of maximal synchronization this
likelihood is 1; in the case of independent systatris a small, but nonzero, number, namely
Prer. This small number is the likelihood that two randy chosen vector¥ (or X) will be
closer than the cut-off distanee In practice, the cut-off distance is chosen stidt the
likelihood of random vectors being close is fixédPa;, which is chosen the same férand
for Y. To understand ho®s is used to fix, andry we first consider the correlation integral:

- N W=

e Hr — X — X)) 2]
c, I,%,{N_"_]z th{f X — X)) (2)

Here the correlation integrdr is the likelihood that two randomly chosen vectérs
will be closer tham. The vertical bars represent the Euclidean disgtéretween the vectors. N
is the number of vectors, w is the Theiler cor@ttior autocorrelation (Theiler, 1986) afd
is the Heaviside functiori(X) = 0 if X > = 0 andd(X) = 1 if X < 0. Now, k is chosen such
that Cx = Prer andry is chosen such that Cr Prer. The synchronization likelihood betwein
andY can now be formally defined as:
2

SL=—eronon——
N(N — w)p,.

N N—w

SN 0r — X=X, )0(r, —|Y,— Y,]) (3)

SL is a symmetric measure of the strength of syoruhation betweerX andY (Slxy =
SLyx). In equation (3) the averaging is done over aldj; by doing the averaging only over

j SL can be computed as a function of timé&rom (3) it can be seen that in the case of
complete synchronization SL = 1; in the case of glete independence SLP:. In the case

of intermediate levels of synchronizati®h; < SL < 1. In the present study the following
parameters were useB; was set at 0.01, for the state space embeddingealag of 10
samples, an embedding dimension of 10 and a Thealeection (W2) of 0.1. When we tried
the algorithm proposed by Montez et al. (2006),rdsilts were comparable.
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3.7. Statistical analysis

The SL and power spectrum calculation results badPD2i changes were analyzed
by the non-parametric Wilcoxon Signed Rank Testahse of its robustness. The distribution
of the grand average SL values became normalizedebgtveraging, therefore we analyzed
them by one way ANOVA and subsequent pair wise @mpns of Student t-test where pre-
and two post-stimulus values were compared.

Because of the multiple comparisons the row p-\salusere corrected by false

discovery rate (FDR) method. Statistical significanvas set at p<0.05.
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4. Results
4.1. Olfactory and taste stimulation
4.1.1. Subjective report after smell and taste stiation
After every stimulation record a pleasant-unpleasaale was given to the patients
(the scale was from 1 (bad) to 10 (excellent)). @kerage of the smell pleasantness was 8

(range 6-10), the taste average was 7.5 (rangg.5-10

4.1.2. Analysis of PD2i after smell and taste stilaion

The most important observation of our PD2i stud waat after smell stimulation a
short lasting, but immediate reaction was foundooth sides; in contrast, the effect of taste
stimulation was seen later and appeared mainlhemight sidgFig. 2 (A),(F)).

@, ®) (E) ®)

1-3 12 1-3
LEFT FRONTAL RIGHT LEFT FRONTAL RIGHT LEFT FRONTAL RIGHT LEFT FRONTAL RIGHT
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/14 \ /14 o\ / o\
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8 3| | \ | 30
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C D ((©) (H)
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Fig. 2. Significant mean and standard deviation chanfi@®omt Correlation Dimension (PD2i) between cohtro
condition and first 15s smell stimulati¢A), control condition and second 15s (B), controhdition and whole
(15+15)=30s activation (C), and between first amacbsad 15s stimulation period (D) as well as betwegntrol
condition and first 15s taste stimulati@), control condition and second 15s (F), contahdition and whole
(15+15)=30s activation (G), and between first aecbed 15s stimulation (H). Mean decreases are ddmwaith
normal characters; mean increases Withd; SD decreases wititelic; and SD increases withold italic letters.
Significance set at p<0.05.
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During the detailed analysis of the smell stimalatifirst the mean PD2i decreased
from resting state to first 15s, and afterwards, faend an increase between first 15s to
second 15s of the activation. There was no sigmtidifference in the mean PD2i between
the control condition and the whole 30s after srsigthulation.

The localizational features of PD2i changes aftéactory stimulation are shown in
Fig. 2(A),(B),(C),(D) the mean PD2i decreased significantly from preling baseline to
first 15s activation in the left fronto-occipital,(14, and 10), and in the right temporo-parieto-
central (3, 12, and 4) leads. The standard devids®) of the PD2i histogram also decreased
in 2, 3 and 8, 9. Between control condition verthes second 15s activation, only the SD
changed significantly on both sides mainly in tieaor parts (2, 11, 14). Between the first
and second 15s activation, the mean of the PDAifgigntly increased in the fronto-occipital
(7, 10) leads on the left, and central leads orritite side (3). Between the control condition
and the whole 30s stimulation, the only significahéinge was a decrease in one lead (4), but
the SD decreased in both sides (2, 9).

In contrast, during taste stimulation with a pieéehocolate(Fig. 2(E),(F),(G),(H))
significantly lower PD2i mean values were found tbe right side between baseline and
second 15s epoch alone (3, 5). Comparing the Ipastelithe first 15s, there was no change in
the mean values, but the SD values have increddedl? and 10). The SD was also higher
between baseline and the whole 30s stimulation 102, and lower between the first and
second 15s (14, 11, 10 and 5).

4.1.3. Synchronization likelihood analysis after sthand taste stimulation

Fig. 3. shows the comparison of the grand average SL saliaring the first 15s after
both olfactory and gustatory stimulation the SL rdesed in the slow alpha band. The
decrease of the grand average SL values in thalfgisa was significant only after olfactory
stimulation. Later (during the second 15s) a veggraciable SL increase was seen in all of
the frequency ranges, especially in beta and gabands.
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Fig. 3. Grand mean synchronization likelihood (SL) in diffint frequency bands during basic condition (gray
column), after the first 15s (black column) andaset 15s (white column) smell (A) or taste (B) stiations.

* highlights significant changes in comparisontie baseline at p<0.05
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Fig. 4(A) and (B) represent the topography of the average Blshowed some
similarities between the two sensory modalitiethm 7-14 Hz frequency range as follows: the
connections between the different areas disappaaréue first 15s of the stimulation but
reappeared on the second 15s. Anterior-tempore¢ntral (14-7 ch) and middle-temporal to
occipital connections (15-10 ch) were active during first 15s. In other bands only small
differences were found after stimulations. Boththe 0.5-7 Hz and the 14-30 Hz frequency
ranges, the mean SL seemed to have a temporotatcdpminance. In the left fronto-central
area (7-8 ch) the interconnections became stroimgdre gamma band, a little earlier after

olfactory than in gustatory stimulations.
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Fig. 4. Average level of synchronization likelihood inféifent frequency bands before (Basic), in the fursd

second post-stimulus 15s periods_of olfactory (AY ayustatory (B) stimulationsThe thick lines ( )

represent SL values > 0.15, the thin ones (_) average SL values 0.15> x > 0.08 .

Figs. 5and6 demonstrate the topographic results of the stlsanalysis in the SL
changesThe 7-14 Hz seemed to be the most important &éegyrange during both smell and
taste stimulation, where the strength of the nealramterconnections reflected in the SL

values significantly decreased after 15s stimutatid-2) in both inter- and intra-
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hemispherical localizations. This is one of the meharacteristic findings of this SL study.
During the second 15s activation, a significantiBtrease has appeared in relation to the
control condition during smell stimulatiofFig. 5(A), (B)) in contrast, during taste
stimulation, the SL values significantly decreadachigher frequencies (14-30 Hz and 30-48
Hz) significant SL increases were observed in #eosd period after olfactory stimulation (1-
3) with inter-hemispherical dominandég. 6(A), (B))
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Fig 5. Significant decreases (A) and increases @B)the interconnections (SL) between different EEG

localizations from control condition to first (1-ahd second (1-3) 15s periods of olfactory stinwoiatThe thick
lines ( ) represent connection changes at the level ofQi<0 the thin ones ( ) at the level of
p<0.05.
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Fig. 6. Significant decreases (A) and increases (B)the interconnections (SL) between different EEG

13

14

localizations from control condition to first (1-2nd second (1-3) 15s periods_of gustatory stinmrafThe

thick lines ( ) represent connection changes at the level ofQi<Qthe thin ones (

p<0.05.

After gustatory stimulation there was a frequendyftsfrom lower to higher
frequencies compared to the control condition: ificant decreases appeared only in the 0.5-
7 Hz and the increases in the 30-48 Hz bands.Heratatnges and conditions (e.g. olfactory
stimulation: 0.5-7 Hz: 1-2, 1-3 (characteristic e&se); 14-30 Hz and 30-48 Hz: 1-2;
gustatory stimulation: 14-30 Hz: 1-2) the changesrewvnot so representative. Both SL

increases and decreases appeared between difféneat and

localizations.
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4.2. Quantitative EEG changes in Alzheimer’s patisrafter lactate infusion

4.2.1. Spectral analysis in AD patients before aatfter lactate infusion

Fig. 7. summarizes our major findings on the relative bamder values.

) at the level of
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(a) Frontal
Left Right

Moderately damaged

Seriously damaged

0.5-4 Hz 4-8 Hz
Fpl| 0.0930 0.1479

-12 Hz 12-20 Hz 20-30 Hz 30-48 Hz

.0645 0.0614 0.1479 0.1380

Fp2| 0.1256 0.1462 .1342 0.0614 0.1479 0.1380

F3 0.0850 0.1479 .1342 0.0684 0.1479 0.1380

F7 0.1514 0.1479 .1763 0.1465 0.1479 0.1380

F8 | 0.1380 0.1476

8
0
0
0
F4 0.0930 0.1476 0.0860 0.1479 0.1479 0.1380
0
0.1763 0.1763 0.1479 0.1380
0

T3 0.0109* 0.1479 .1342 0.0130* 0.1479 0.1380
T4 0.0109* 0.1462 0.1342 0.0614 0.1479 0.1380
C3 0.0109* 0.1462 0.1465 0.0137* 0.1479 0.1380
C4 [0.0109*% 0.0547 0.0234* 0.0130* 0.0391%* 0.1380
T5 | 0.0929 0.1462 0.1342 0.1615 0.1479 0.1380
T6 [ 0.0109* 0.1462 0.0645 0.0130* 0.1479 0.1514
P3 0.1136 0.1514 0.1763 0.1479 0.1514 0.1380
P4 0.0850 0.1514 0.1763 0.1465 0.1514 0.1380

o1 0.1136 0.1462 0.0645 0.1234 0.1479 0.1380

02 0.0850 0.1476 0.1342 0.1234 0.1479 0.1380

Fig. 7. (a) Topographic view of scalp electrode positions usetthis study. Théold letters here represent the
channels where the relative power increase in #lie dand after sodium lactate infusion was accaneplaby
power decrease in the higher frequency raige T4 shows a localization where only significant relatidelta
power decrease was found.

(b) p-values of the relative power changes correciethlse discovery rate (FDR) method after lactatasion

in six frequency bands and sixteen channels foynddm-parametric Wilcoxon signed rank teald letters in
the delta band represent increases, all others deoreases. The * denotes localizations wherettaages were

significant at the level of p<0.05.
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The main relevant observation was seen on certaip $ocalizations (C3, C4, T3, T6)
where the delta increase was combined with decieake theta, alpha, betal or beta2 bands,
which were highlighted ofrig. 7. by bold letters as well. The most characterishanges
were at C4 where the concomitant significant desgsavere seen in three (alpha, betal and
beta 2) bands. At the C3, T3 and T5 the decreases vnly in the betal band. In the T4
localization only a significant delta increase bhppeared.

At frontal (Fpl, F3) as well as in occipital (Obghlizations non-significant decreases
were found in the left side at. Similarly, on thght side the frontal (Fp2, F4) and T4 leads
showed tendency of decrease in alpha and/or besatl power values. The very fast
components (beta2 and gamma) of the EEG activity $@me non-significant decreases
mainly in the right central (C4) and frontal (Fpeads.

4.2.2. Synchronization likelihood analysis in AD fiants before and after lactate infusion

In AD patients the grand average of the SL wadattten times higher in the 0.5-4
Hz frequency band than in all other bands eithdéorbeor after lactate infusion. Theta (4-7
Hz) and alpha 1-2 (7-10 Hz, 10-13 Hz) frequencydsdfig. 8.) had slightly higher grand
mean values than in the higher frequency bands2Q13iz, 20-30 Hz, 30-48 Hz). No

significant changes were found between the gramdage values before and after lactate in
any frequency band.

0.5

04 T

0.3+

.Before lactate infusion

0.2+ |:| After lactate infusion

0.1+

Synchronization likelihood

07

0.5-4 4-7 7-10 10-13 13-20 20-30 30-48
Frequency (Hz)

Fig. 8. Grand average and SD values of the synchronizéikelihood before and after sodium lactate infusio
Please note that the mean SL in the delta bandh (#gt0.35 value) is many times higher than incailier
frequency bands which show a little higher valueghe 4-13Hz than in the 13-48 Hz range. Therenare

significant changes in the grand mean at any fregguband before and after lactate infusion.
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We did not expect systematic reactions after lacitour patients because of the
observed variability of the SL values. However, wiere interested in the SL changes at the
right fronto-polar (Fp2) region, which was foundie spectrally non-reactive similarly to the
seriously damaged P3-P4 area. Our SL analysis lesl@avisible frequency shift from lower
to higher frequency bands on the right side in 8. 9), the interconnections of the slow
generators in the 4-7 Hz band decreased (a) anthsheonnections in the 13-20 Hz range
increased (b). It is important to highlight, thlaette were no changes in the seriously affected

parietal leads (P3 and P4) as well.

(a) (b)
0,08 0,08
32 p=0.0342 3
2 [ | <
_3: 0,06 - _§> 0,06
= o
kS S p=0.0122
45 <
b E
g 0,04 , T = 004 I I
E £ T
g 5,
& e 7 1
%ﬂjn 0,02 —— & 0,02 F—
< <
0 0
before after before after
lactate infusion lactate infusion

Fig. 9. The average and SD synchronization likelihood e@slin the right fronto-polar (Fp2) leads before and
after sodium lactate infusion in the (a) theta () and (b) betal (13-20 Hz) frequency bands. dtrenges
were significant by Wilcoxon signed rank test a false discovery rate (FDR) corrected probabiéixel set at
p<0.0375.
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5. Discussion

5.1. Olfactory and taste stimulation
5.1.1. Point correlation dimensional changes aftemell and taste stimulation

During our PD2i analysis we found significantly leww mean values after the
appearance of both chemical sensations compart toontrol condition. The less complex
brain activity denoted in the decreased mean PDRRvity is probably the sign of pre-
stimulation processing. This may be related to ¢hanges in 'cooperation’ among the
underlying cortical neurons that assist in the telgal reaction after conditioned stimuli
(Skinner and Molnar, 1999). The lower correlatiomehsion could also be the consequence
of the relaxed state of the brain after sound dexelogic stimulation (Kannathal et al.,
2004b). These changes appeared earlier (first afigj smell and later (30s) after taste
stimulation. The difference between the time caaieethe two different sensations might be
interpreted either by the different chemical patysvar by our experimental protocol. The
smell was felt immediately after the presentatitaste, however, only after the chocolate
dissolved. Smell sensation and perception cauggifisantly higher mean PD2i values in the
second 15s activation compared to the first 153clhwkBeemed to be the real effect of the
stimulation. This is in concordance with the enlemhcognitive activity and consequently it
might be a sign of data processing. No significaateases were found after taste stimulation,
possibly because of the above mentioned reasorell Siimulation resulted in changes of the
correlation dimension at the left fronto-occipitalind right centro-temporo-parietal areas.
Kline et al. (2000) found that the activation iretliontal areas is in connection with pleasant
smell sensations. The occipital changes could plysbie the projections of the cerebellar
activation as well, which would be in turn the cemqgence of the frontal activation (Smejkal
et al., 2003). The right sided activation aftetdastimulation is possibly in correlation with

memory processes (Royet and Plailly, 2004).

5.1.2. Synchronization likelihood changes after slirend taste stimulation

The dominant rhythm of these healthy subjects wa$e alpha and delta bands and
was reflected in the highest mean SL values inctir@rol condition. The SL values were
significantly lower in the alpha band during thesffi15s activation. This is possibly the
consequence of a pleasant stimulus (Masago ét41Q) or could be explained by the use of
the working memory (Stam et al., 2002). These m®es could be defined with less complex

neuronal interconnections, during this period tharbis preparing for data processing. In our
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concept the lower SL would mean less coupling oranindependent brain networks. This

could be confirmed by the localizational featurdstlee mean SL. Many connections

disappeared in the first 15s activation, but reapge in the second 15s in the 7-14 Hz
frequency range. The most intense connectionsearapha band were on the left side in the
antero-temporal and central (14-7 ch), middle-terapand occipital (15-10 ch) connections.

These are perhaps responsible for the detectidheogarly stimulations. Our opinion is that

the real data processing of the chemical sensationlsl be detected with SL method during
the second 15s when appreciable elevations of therSed up in all bands, especially in the
faster frequency (beta and gamma) bands.

The higher gamma synchronization is mainly impdrtancognitive processes and
higher mental functions (Beshel et al., 2007), ibutould be associated with the higher
activity of the olfactory bulb and/or face musatepresented in the gamma frequency band as
well. After gustatory stimulation, lower alpha basyhchronization was found only, which is

possibly the sign of an incomplete preparationdiaa processing.

5.2. Quantitative EEG effects in AD patients aftiaictate infusion
5.2.1. Relative power changes after lactate infusio

The major finding of our present study was that gddients’ brain can be divided into
three parts based on the neurophysiological ragcty sodium lactate: seriously, moderately
affected and nearly normal areas. In the most selyaaffected areas (P3, P4) no significant
changes were found after lactate infusion eitheelative power or in SL. The relative non-
reactivity to sodium lactate infusion of the seslyudamaged parietal areas of the AD
patients (P3 and P4) could be interpreted by thided altered synaptic function, which is a
characteristic sign of this neurodegenerative dso(Francis, 2005; Bell et al., 2006) in two
different ways: First, the decreased mainly acéplioergic innervations of the bilateral
parieto-temporal cortex (Schliebs and Arendt, 208&]) the consequent hypometabolism of
the same areas have been described by PositrosiBmiBomography studies (de Leon et al.,
2007). Second, the local hypoperfusion, which is succeeding of the decreased direct
cholinergic vasoreaction (Barbelivien et al., 198§to et al., 2004). This is in possible
correlation with the decreased number of projestidrom the nucleus basalis Meynert
(Mattia et al., 2003; Adler, 2000). Abasolo et @005) published that with Aproximate
Entropy, significantly lower ‘normal’ irregularitin P3 and P4 localizations was found with
concomitant relative power increase in the deli& H4) and decrease in the alpha (T3, T4)

bands in AD patients in comparison with age-matchktérly controls. It is pertinent to
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mention here that the decreased ACh-ergic activatauld be reflected by the dominance of
slow rhythms in the background EEG at and arourttd parieto-temporal regions (Elmstahl
and Rosén, 1997). The insufficient acetylcholineighervation (Schliebs and Arendt, 2006)
of the parietal (P3, P4) regions in advanced ADhhige responsible for the reduced vascular
reactivity of the examined brain areas after sodiaatate and might have further influence
on the brain circulation and metabolism as it wablighed in our former SPECT brain
imaging study on similar AD population (Kalman ét 2005a). This could be a possible
explanation why we did not find any significant E@Gwer and SL changes after the sodium
lactate infusion mainly over these brain territerids a result, no beneficial effect of sodium
lactate infusion on semantic categorization waenkesl in ERP studies by the same group as
well (Kalméan et al., 2005b).

In the moderately involved areas, the relative powfieghe slow generators increased,
which is in agreement with the well characterizZaat, not specific features of the EEG in AD
(Elmstahl and Rosén, 1997; Prichep, 2007). The rtteta and delta frequency dominance
was shifted to delta after the sodium lactate iofusogether with an increase in the relative
delta band power and a joint decrease in the alpé@l, and beta2 bandsig. 7(a) bold
letters, Fig. 7(b) stars). This could be interpreted by a partialabelic and possibly non
vascular (Pavics et al., 1999) ’'steal’ effect oé tintact brain areas, presuming that these
preserved brain regions has a better responsestsuppposedly vaso- and metabolic-active

sodium lactate infusion than the moderately afidcteas.

5.2.2. Synchronization likelihood changes after tate infusion

The slower dominant frequency of the Alzheimer’'grds is one of the characteristic
features of their EEGs (Elmstahl and Rosén, 199Hhis could be explained by the decrease
of the number and activity of the EEG generatiregreints i.e. neurons and glial cells. Based
on this feature it is expected that the majoritytled communication between all of these
generators is made in this frequency band. Thisddo& one possible cause of the dominance
of the grand average SL in the delta (0.5-4.0 HeQdency band. The lactate infusion in the
dose applied did not change the sum of the commatiaits (grand average SL) either in the
delta or faster EEG bands significantly. We thih&ttthis finding could be explained by the
decreased reactivity of the Alzheimer’s brain taabelic stimulation.

However, the detailed study of the localized antigiobal SL changes could reveal
some differences between regions which showed s&nron-detectable spectral reactivity

to lactate. The seriously damaged P3, P4 and ndfpialactivities did not show significant
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relative power changes but only this later coulespnt tiny signs of the subtle activation. Our
opinion is that the significant decrease of theirsthe lower (theta) and increase in the faster
(beta) bands could represent a shift to a stimdiletdanced activity of the Fp2 region.

5.2.3. Methodological problems

One of the major limitations of our second studyhiat due to ethical considerations
we were not able to perform similar experimentshealthy elderly. We can not exclude
therefore the possibility that our major finding® aot specific to AD and the same steal

phenomenon could be observed in healthy aged pigukfter sodium lactate infusion.
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6. Conclusions

1. The main important observation of our PD2i stwadys that the mean values became
significantly lower after the appearance of botleroital sensations compared to the control
condition, which is probably the sign of the pmestius processing. The consequences of
smell stimulation seemed to be short lasting buhédiate, and they appeared on both sides.
In contrast, the effect of taste stimulation wdatar reaction and it was found mainly on the

right i.e. subdominant side.

2. Our SL study presented significantly lower meeatues during the first 15s of both
chemical activations. The less complex neuron&@raonnections could mean that the brain
was preparing for the detailed data processing.ldtaisational features of mean SL could
confirm this statement, as some connections digapdein the first 15s activation, but
reappeared in the second 15s in the 7-14 Hz freyuamge. The real data processing was in
connection with an appreciable mean SL increaséngluthe second 15s in all bands,

especially in the faster ones.

3. Based on the spectral reactivity to sodium tactae AD patients’ brain could be divided
into three parts: seriously, moderately damaged regatly normal areas. In the seriously
affected areas (P3 and P4) no significant changae Wound after lactate infusion either in
relative power or in SL, which could be interpretedthe altered synaptic function. In the
moderately involved areas, the relative power @& ghow generators increased, and the
previous theta and delta frequency dominance wdtedho delta, and there was a joint
decrease in the alpha, betal and beta2 bandsisTpassibly the sign of a partial metabolic
and possibly non vascular ‘steal’ effect of thevated intact brain areas where this activation
is signed by the significant theta decrease anal inetease of the localized SL values e.g. in

the Fp2 region.

4. The above findings give the answers to the guesttaken in the Aims chapter are as

follows:

A) The local organization measured by mean PD2ingha can reflect the periods of

preprocessing and real data processing after otfaeind smell stimulation. These periods
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appeared in the global (inter-local) organizatisneell investigated by individual SL values

but they provided additional information on the-um bi-lateral nature of the data processing.

B) So we suggest to apply both or at least the &lyais for the proper collection of a

normative database for a later comparison with soeueodegenerative diseases.

C) The spectral analysis of the EEG has provenogpiate in the low metabolic level

detection of the differently altered Alzheimer'salms’ regions.

D) The combined inter-connectional SL analysis &hke to give important information on
the higher level activation of the different reggowhich showed otherwise similar spectral

reactions.

5. The main observation of my thesis is that lingawer spectrum’ analysis is the most
suitable for the analysis of the metabolic and hdynamic changes. SL and nonlinear PD2i

is more preferable during the analysis of the cipgmfunctions.
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