A gümőspecifikus ciszteinben gazdag NCR peptidek evolúciója és funkcionális analízise

PhD értekezés

Lima Rui Dániel

Témavezető: Prof. Dr. Kondorosi Éva

SZTE TTIK Biológia Doktori Iskola

Szegedi Biológiai Kutatóközpont

Növénybiológia Intézet

2023

Szeged

TARTALOMJEGYZÉK

RÖVIDÍTÉSEK JEGYZÉKE	4
1. BEVEZETÉS	7
1.1. A nitrogén az élet nélkülözhetetlen eleme	7
1.2. Az ammónia ipari előállítása	7
1.3. A biológiai nitrogénkötés (BNF)	9
1.4. A pillangósvirágúak	11
1.4.1. Az inverted repeat-lacking klád (IRLC) és a Medicago nemzetség	0
1.5. Molekuláris párbeszéd a baktérium és a növény között	1
1.6. Az infekció és a szimbiózis kialakulása	3
1.7. A nitrogénkötő gümők fejlődése és formái	4
1.7.1. A gümő kialakulása	4
1.7.2. Gümőtípusok	5
1.8. A bakteroid differenciáció	7
1.9. A bakteroid differenciációt kiváltó növényi faktorok	9
1.9.1. A gümőspecifikus ciszteinben gazdag peptidek (NCR-ek)	10
1.9.2. Az NCR-ek kialakulása	12
1.9.3. Az NCR peptidek fizikokémiai tulajdonsága és ismert funkcióik	13
1.9.4. Az NCR-ek in vitro antimikrobiális hatása	14
2. CÉLKITŰZÉSEK	15
3. ANYAGOK ÉS MÓDSZEREK	17
3.1. Molekuláris biológiai módszerek	17
3.1.1. Kvantitatív valós idejű polimeráz láncreakció (quantitative real-time PCR)	17
3.1.2. Az RNS-interferencia vektorok előállítása	17
3.1.3. Az NCR169 promótert tartalmazó vektorok előállítása	18
3.1.4. Transzkriptom-szekvenálás	18
3.2. Növényi munka	18
3.2.1. Magsterilizálás, csíráztatás, fertőzés	18
3.2.2. Tranziens transzgenikus vonalak előállítása	19
3.2.3. Stabil transzgenikus vonalak előállítása	19
3.3. Mikroszkópia	21
3.3.1. Mintaelőkészítés mikroszkópiához	21
3.3.2. Sztereo mikroszkópia	21
3.3.3. Konfokális mikroszkópia	22
3.3.4. Pásztázó elektronmikroszkópia (SEM)	22
3.3.5. Áramlási citometra (flow cytometry)	22
3.4. Biokémiai módszerek	22

	3.4.1. GUS-festés	. 22
	3.4.2. ER membrán-izolálás	. 23
	3.4.3. Szimbioszóma membrán-izolálás	. 24
	3.4.4. A szintetikus szignál peptidek és Western blot	. 25
	3.4.5. HA jelölt szintetikus peptidek és <i>M. truncatula</i> gümőfehérjék kötődésének vizsgálata affinitás kromatográfiával	. 26
3	.5. Antimikrobiális módszerek	. 26
	3.5.1. Mikroba törzsek és peptidszintézis	. 26
	3.5.2. A peptidek antimikrobiális aktivitásának vizsgálata	. 27
	3.5.3. A peptidek biofilm bontásának vizsgálata	. 27
	3.5.4. DNS-kötő vizsgálat	. 28
	3.5.5. Humán vörösvérsejtek hemolízisének vizsgálata	. 28
3	.6. Programok	. 28
4. E	REDMÉNYEK	. 30
4	.1. Az NCR-ek evolúciója	. 30
	4.1.1. Az NCR szignál peptidek konzerválódása	. 30
	4.1.2. Az érett NCR peptidek változatossága és strukturális jellemzői	. 32
	4.1.2.1. Az NCR és NCR-szerű peptidek aminosav szekvenciájának összehasonlítása	. 34
	4.1.3. Az NCR-ek ko-evolúciója a gümőspecifikus szignál peptid peptidázzal	. 35
4	.2. Az NCR247 hatásmechanizmusa	. 39
4	.3. Az NCR gének működésének szabályozása	. 41
4	.4 Az SPP szerepe a gümőfejlődésben	. 43
	4.4.1. A gümőspecifikus szignál peptid peptidáz gén elcsendesítésével a gümő Fix-á válik	. 43
	4.4.2. A rizs SPP (OsSPP) komplementálja a nodSPP hiányát	. 46
	4.4.3. nodSPP RNSi gümő transzkriptom analízise	. 47
	4.4.4. A gümőspecifikus szignál peptid peptidáz (nodSPP): összefoglalás	. 49
4	.5 Az NCR SP-k SPP szubsztrátok	. 49
	4.5.1. A szignál peptid peptidáz (SPP)	. 49
	4.5.2. Az izolált ER-ben lévő SPP hasítja a szubsztrát NCR SP-ket	. 51
	4.5.3. Az NCR szignál peptidek fehérje kölcsönhatásának vizsgálata: az SPP szubsztrát és nem szubsztrát SP-k más fehérjéket kötnek	ι- . 53
	4.5.4. Az NCR szignál peptidek: összefoglalás	. 55
4	.6. Az NCR-ek antimikrobiális hatása	. 56
	4.6.1 Az NCR-ek antimikrobiális hatása humán patogén baktériumokkal szemben	. 56
	4.6.2. Az NCR-ek antimikrobiális hatásmechanizmusát befolyásoló fizikokémiai tulajdonságol	60ء
	4.6.3. Az IRLC NCR peptidek képesek a C. albicans biofilm lebontására	. 62
	4.6.4. Az IRLC NCR-ek membrán átjárhatóságot, morfológiai változást és sejthalált okoznak <i>A baumannii</i> -nál és <i>C. albicans</i> -nál	۱. . 63
	4.6.5. Kationos NCR peptidek kötik és aggregálják a DNS-t	. 65

4.6.6. Az IRLC NCR peptidek és származékaik nem okozták a humán vörösvérsejte	ek hemolízisét 67
5. EREDMÉNYEK MEGVITATÁSA	68
KÖSZÖNETNYILVÁNÍTÁS	73
ÖSSZEFOGLALÁS	74
SUMMARY	77
IRODALOMJEGYZÉK	80
FÜGGELÉKEK	100

RÖVIDÍTÉSEK JEGYZÉKE

AMP	antimikrobiális peptid (antimicrobial peptide)
A17	Medicago truncatula Jemalong A17 ökotípus (vad típus)
BacA	bakteriális ABC-transzporter, szimbiotikus szerepe az NCR-ek felvétele a sejtbe
BclA	a BacA ortológja a Bradyrhizobium nemzetségben
BNF	biológiai nitrogénkötés (biological nitrogen-fixation)
BNM	buffered nod medium: alacsony nitrogéntartalmú növényi táp
bp	bázispár (basepair)
CaML	szimbiotikus kalmodulinszerű protein (calmodulin-like)
cDNS	komplementer DNS (complementer DNA, copy DNA, cDNA)
cds	kódoló DNS-szekvencia (coding DNA sequence)
ctrA	a sejtosztódást szabályozó bakteriális fehérje
DDM	Dodecyl β-D maltoside: detergens
DMSO	dimetil-szulfoxid (dimethyl sulfoxide)
dnaA	a bakteriális DNS-origóhoz kötődő és a replikációt megindító bakteriális
	fehérje, aktiválja a gcrA expresszióját
dnf	defective in nitrogen-fixation 1, nitrogénkötésre képtelen-mutáns 1
DNS	dezoxiribonukleinsav (deoxiribonucleic acid, DNA)
dpi	nappal a fertőzést követően (days post inoculation)
dsDNS	kettősszálú DNS (double stranded DNA)
DTT	1,4-dithiothreitol: redukálószer
EDTA	etilén-diamin-tetraecetsav (ethylenediaminetetraacetic acid)
EPS	exopoliszacharid
ER	endoplazmatikus retikulum (endoplasmic reticulum)
FtsZ	Filamenting temperature-sensitive mutant Z: szerepe a bakteriális sejtosztódás
	megindítása
genSPP	általános SPP (general SPP), Medtr3g109932
gcrA	a sejtosztódást szabályozó bakteriális fehérje, aktiválja a ctrA expresszióját
GroEL	bakteriális chaperon (dajkafehérje), chaperonin: szerepe a helyes
	fehérjetekeredés (folding) elősegítése és javítása
GRP	gümőspecifikus glicinben gazdag fehérje (nodule-specific glycine-rich protein)
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, puffer
Hrrp	host range restriction peptidase, bakteriális peptidáz, kompatibilitási faktor

ICS	infekciós csepp (infection droplet)
IF	infekciós fonál (infection thread, IT)
IR	inverted repeat
IRLC	inverted repeat-lacking klád (inverted repeat-lacking clade)
IZ	átmeneti zóna, interzóna (Zone II-III, interzone): a gümő átalakulási zónája
KPS	kapszuláris poliszacharid
Lj	Lotus japonicus, L. corniculatus subsp. japonicus, szarvaskerep (Robinioid)
Ljubq10	Lotus japonicus ubiquitin 10
LPS	lipopoliszacharid
MBC	minimális baktericid koncentráció (minimal bactericidal concentration)
MFC	minimális fungicid koncentráció (minimal fungicidal concentration)
mRNS	hírvivő RNS (messenger RNA, mRNA)
Ms	Medicago sativa, takarmánylucerna (IRLC)
Mt	Medicago truncatula (IRLC)
Ν	nitrogén (nitrogen)
N_2	dinitrogén (dinitrogen)
NC	nettó töltés (net charge)
NCBI	National Center for Biotechnology Information database
NCR	gümőspecifikus ciszteinben gazdag peptid (nodule-specific cysteine-rich
	peptide): az IRLC növényekben fejeződnek ki
NCR 4C	négy konzervált ciszteint tartalmazó NCR
NCR 6C	hat konzervált ciszteint tartalmazó NCR
NCRL	NCR-szerű (NCR-like): a nem IRLC növényekben fejeződnek ki
NCRL 6C	hat konzervált ciszteint tartalmazó NCRL
NCRL 8C	nyolc konzervált ciszteint tartalmazó NCRL
NH ₃	ammónia (ammonia)
$\mathrm{NH_4^+}$	ammóniumion (ammonium ion)
nodSPP	gümőspecifikus SPP (nodule-specific SPP), Medtr1g008280
PBM	peribakteroid membrán (peribacteroid membrane)
PBS	foszfáttal pufferelt sóoldat (phosphate-buffered saline)
PCR	polimeráz láncreakció (polymerase chainreaction)
pI	izoelektromos pont (isoelectric point)
PI	propídium-jodid fluoreszcens festék (élő-halott festés esetén: piros/halott)
PMSF	fenil-metil-szulfonil-fluorid (phenylmethylsulfonyl fluoride)

PR10	patogenezishez kapcsolható fehérje 10, Medtr2g035130
R gén	rezisztencia gén
Rm41	Rhizobium meliloti Rm41 rhizobium törzs (vad típus)
RNS	ribonukleinsav (ribonucleic acid, RNA)
RNSi	RNS-interferencia (RNA-interference, RNAi)
RSD	szimbiószóma kialakulásának szabályozója, regulator of symbiosome
	differentiation, Medtr7g063220
RT-qPCR	kvantitatív valós idejű polimeráz láncreakció (quantitative real-time PCR)
R108	Medicago truncatula R108 ökotípus (vad típus)
SEM	pásztázó elektronmikroszkóp (scanning electron microscope)
Smc03872	bakteriális peptidáz, kompatibilitási faktor
Sm1021	Sinorhizobium meliloti Sm1021 rhizobium törzs (vad típus)
SP	szignál peptid (signal peptide)
SPC	szignál peptidáz komplex (signal peptidase complex)
SPP	szignál peptid peptidáz (signal peptide peptidase)
SPPL	SPP-szerű (signal peptide peptidase-like, SPP-like)
SRP	signal recognition particle
symCRK	szimbiotikus ciszteinben gazdag receptorszerű kináz, Medtr3g079850
SYTO 9	SYTO 9 fluoreszcens festék (élő-halott festés esetén: zöld/élő)
TF	transzkripciós faktor (transcription factor)
Tg	megatonna, teragramm, 10 ¹² gramm
ТМ	transzmembrán (transmembrane)
TMD	transzmembrán domén (transmembrane domain)
UTR	nem transzlálódó régió (untranslated region)
VLCFA	nagyon hosszú láncú zsírsavak (very-long-chain fatty acids)
WSM419	Sinorhizobium medicae WSM419 rhizobium törzs (vad típus)
ZI	egyes zóna (Zone I, meristematic zone): a gümő merisztematikus zónája
ZII	kettes zóna (Zone II, infection zone): a gümő infekciós zónája
ZIId	kettes zóna disztális része (Zone II, distal): a ZII gümőcsúcs felé eső része
ZIIp	kettes zóna proximális része (Zone II, proxymal): a ZII gyökér felé eső része
ZIII	hármas zóna (Zone III, nitrogen-fixing zone): a gümő nitrogénkötő zónája
ZIV	négyes zóna (Zone IV, senescence zone): öregedési zóna
$(Z-LL)_2$	(Z-LL)2 keton: SPP gátló lipidszerű vegyület (SPP inhibítor)
2HA	Medicago truncatula Jemalong 2HA ökotípus (vad típus)

1. BEVEZETÉS

1.1. A nitrogén az élet nélkülözhetetlen eleme

A nitrogén (N) elsődleges biogén elem, mely minden élőlény számára nélkülözhetetlen, az aminosavak (fehérjék) és a nukleotidok (DNS, RNS) alkotórészeként. A Föld légkörének 78%a dinitrogén gáz (N₂), amit néhány baktérium és archea kivételével sem az eukarióta szervezetek, így a növények, az állatok és a gombák, de más prokarióták sem tudnak hasznosítani. A N-t a növények ammónia vagy nitrát formájában képesek a talajból felvenni, és beépíteni makromolekulákba, majd a nitrogén a növények elfogyasztásával jut az állatokba és végső soron az emberekbe. Ammónia és nitrát abiotikus úton elsősorban villámlás során keletkezik (az évente megkötött N 5%-a). A légköri nitrogént kizárólag egyes prokarióták (baktérium, archeae), az úgynevezett diazotrófok képesek redukálni és a táplálékláncba vinni (Lehnert és mtsai., 2018).

1.2. Az ammónia ipari előállítása

Az ammónia (NH₃) előállításának módszerét Fritz Haber (1868–1934) dolgozta ki 1909-ben, majd a BASF német vegyipari vállalat megbízásából Carl Bosch-sal (1874–1940) kifejlesztették annak ipari előállítását 1913-ra. A dinitrogén gáz hármas kötésének megbontása és ammóniává (NH₃) redukálása magas hőmérsékleten (500°C, manapság 350-550°C), nagy atmoszférikus nyomáson (eredetileg 200 atm, manapság 150-350 atm) és katalizátorok jelenlétében (kezdetben vasat használtak, manapság vasat, ruténiumot, kobaltot, nikkelt és fémnitrideket, gyakran egyéb ko-katalizátorokat is) történik egy térfogat N₂ és 3 térfogat H₂ felhasználásával (1. ábra) (Wang és mtsai., 2018; Humphreys és mtsai., 2021). Haber 1918-ban az "ammónia elemeiből történő szintéziséért", Bosch 1931-ben "a nagynyomású kémiai eljárások feltalálásért és kidolgozásáért" kapott kémiai Nobel-díjat.

1. ábra. Ammónia ipari előállítása Haber-Bosch kémiai reakcióval nagy nyomáson, magas hőmérsékleten, katalizátorok használatával. Eredeti ábra: Wang és mtsai., 2018.

Az ipari mennyiségben előállított és felhasználható ammónia és az ebből származó nitrogénműtrágyák mezőgazdasági forradalmat indítottak el, mely nagy mennyiségű élelmiszer előállítását tette lehetővé, így elsősorban ennek köszönhetően a világ népessége az azóta eltelt száz év alatt megnégyszereződött, az akkori 1,8 milliárd főről a jelenlegi 8 milliárd főre ugrott. Az elfogyasztott fehérje 40%-a a Haber–Bosch reakcióból keletkező ammóniából ered és a jelenleg élő emberek 48%-a a Haber–Bosch reakciónak köszönheti a létét (Erisman és mtsai., 2008). A Földön évente megkötött N 413 megatonnára (Tg, teragramm, 10¹² gramm) tehető, amiből 198 Tg-t a természetben élő nitrogénfixáló úgynevezett diazotróf mikroorganizmusok kötnek meg (140 Tg óceáni, 58 Tg szárazföldi), 5 Tg abiotikus, míg 210 Tg antropogén eredetű, azaz emberi tevékenységből származik. Ez utóbbiból 120 Tg-t a műtrágyagyártás tesz ki, 60 Tg-t az agráriumban növő, biológiai nitrogénkötésre (BNF) képes élőlények, elsősorban a hüvelyesek szimbiótái kötnek meg, 30 Tg közvetlenül a környezetszennyezésből ered (gyárak, közlekedés) (Chen és mtsai., 2021).

Az NH₃ előállítása a világ energiaszükségletének közel 2 %-át teszi ki, ezzel jelentősen terhelve a környezetet, hisz az energiaszektor 80%-a fosszilis üzemanyagok elégetésén alapul, így ez a folyamat az össz-CO₂-kibocsátás 3%-áért felelős (Milton és mtsai., 2017). A mezőgazdasági termelésből évente 48 Tg antropogén eredetű reaktív N jut a légkörbe NH₃, nitrogén-monoxid (NO) és dinitrogén-oxid (N₂O) formájában. Az N₂O a legveszélyesebb, ami száz évig is megmarad a légkörben, üvegházhatása 300-szor hatékonyabb a CO₂-nál, és az üvegházhatás 6%-áért teszik felelőssé, míg a többi reaktív N az egészségre káros aeroszolok formájában kerül a levegőbe. A mezőgazdasági területeken műtrágyaként használt N 41%-a a szennyezőanyag formájában kerül a környezetbe, míg további 21% emberi étkezésre és takarmányozásra nem használható hulladék. Ezek mellett még a raktározás és szállítás során

keletkező veszteségek, valamint az emberi pazarlás miatt a mezőgazdaságban felhasznált N 22-23%-át fogyasztja el valójában az ember (Erisman és mtsai., 2008; Fowler és mtsai., 2013; Liu és mtsai., 2016; Smil, 2002).

1.3. A biológiai nitrogénkötés (BNF)

A légköri dinitrogén biológiai megkötésére a nitrogenáz enzimkomplex képes, amely azonban csak a diazotróf szervezetekben, a Bacteria és az Archaea egyes doménjeiben találhatók meg. A nitrogenáz enzim valószínűleg egy a hidrogén-cianid redukálására képes detoxifikáló reduktázból alakult ki, majd az ebből kifejlődő nitrogenáz enzimkomplex terjedt el vertikálisan és horizontálisan, illetve veszett el számtalanszor az evolúció folyamán (Hartmann és Barnum, 2010). A dinitrogén hármas kötésének biológiai felbontása és ammóniává alakítása légköri nyomáson és a talajban előforduló hőmérsékleten történik 16 ATP molekula felhasználásával, mely folyamat során a nitrogenáz enzimkomplex a katalizátor szerepét tölti be (2A. ábra). A nitrogenáz két komponensből áll; a homodimerként működő Fe fehérjéből, amit a nifH gén kódol, és a heterotetramer MoFe fehérjéből, amelynek két alfa (α) alegységét a nifD, két béta (β) alegységét a nifK gén kódolja. Az Fe fehérje a vas-kén klaszterén [4Fe-4S] redukálószer jelenlétében (ami fajtól függően ferredoxin vagy flavodoxin) két MgATP-t két MgADP-re hidrolizál, majd az így felszabaduló elektron kerül át a MoFe fehérjére. A MoFe fehérje két katalikus egységből áll (két αβ-egység), melyek tartalmaznak egy-egy P és FeMo klasztert: az előbbi klaszter továbbítja a Fe fehérje által leadott elektront az utóbbinak. A FeMo klaszter és a hozzá kapcsolódó kofaktor együttese (FeMo-co) köti meg a szubsztrátot (N₂) és itt történik meg az N2 redukciója, ami ammóniát eredményez (Seefeldt és mtsai., 2009). A kofaktor a homocitrát, aminek az előállítására a legtöbb rhizobium baktérium képtelen a homocitrátszintáz gén (nifV) hiánya miatt, amelyet a szimbiotikus partner biztosít (Hakoyama és mtsai., 2009; Nouwen és mtsai., 2017).

A $N_2 + 8H^+ + 16MgATP + 8e^ \rightarrow 2NH_3 + H_2 + 16MgADP + 16P_i$

2. ábra. A nitrogenáz enzimkomplex felépítése és működése.

A. A nitrogenáz enzimkomplex által katalizált reakció. B. A nitrogenáz enzimkomplex két alegysége, a homodimer Fe fehérje (kék) és a tetramer MoFe fehérje (α alegység: rózsaszín, β alegység: zöld), amelynek FeMo-kofaktorán (FeMo-co) történik meg a légköri nitrogén ammóniává történő redukciója. (Seefeldt és mtsai., 2009 ábrái).

A legtöbb rhizobiummal ellentétben a nem szimbiotikus diazotróf baktériumok rendelkeznek a nitrogenáz enzimkomplex szintéziséhez szükséges összes génnel, és így szabadonélő formában kötik meg a N-t és juttatják azt a táplálékláncba, és sokuk, melyek endofitaként a növények szállítónyalábjaiban élnek, mindezt még hatékonyabban teszik meg (Kennedy és mtsai., 2004).

Nitrogénkötő szimbiózis legalább hatszor alakult ki a szárazföldi növényeknél (Delaux és mtsai., 2015). A nitrogénkötésre alkalmas szimbiotikus szerv, a gümő létrehozására csupán a Rosid kládon belüli monofiletikus nitrogénkötő klád négy rendjének (*Cucurbitales, Fabales, Fagales, Rosales*) huszonnyolc családja közül tíz képes, és azoknál sem mindegyik faj (Griesmann és mtsai., 2018; Soltis és mtsai., 1995). Az ősi szimbióta a Frankia (sugárgomba) lehetett, és még ma is az az aktinorhizás szimbiózisnál, de ezeket a Gram pozitív baktériumokat az ősi hüvelyesekben és a Parasponia nemzetségben (*Rosales*) egymástól függetlenül leváltották a Gram negatív rhizobiumok (Mergaert és mtsai., 2020; van Velzen és mtsai., 2019). A rhizobium parafiletikus csoportot szimbiózisra képes alfa-proteobaktériumok (*Rhizobiales*) és béta-proteobaktériumok (Burkholderiales) alkotják; jelentős nemzetségei az *Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium* és *Sinorhizobium* (*Ensifer*) (3. ábra) (Hassen és mtsai., 2020).

3. ábra. Nitrogénkötő baktériumok az α - és β -proteobaktériumok között. A proteobaktériumok filogenetikai fája 16S rRNS génszekvenciák alapján készült. α : alfa-proteobaktériumok, β : béta-proteobaktériumok, γ : gamma-proteobaktériumok. A vastag betűvel kiemelt nemzetségek fajai közt vannak nitrogénkötő rhizobiumok. (Hassen és mtsai., 2020 ábrája)

1.4. A pillangósvirágúak

A hüvelyesek (*Fabales*) rendje négy családot foglal magába (*Fabaceae*, *Polygalaceae*, *Quillajaceae*, *Surianaceae*), de ezek közül jelentőségükben messze kiemelkednek a pillangósvirágúak (*Fabaceae* vagy *Leguminosae*) (4. ábra), melyek a perjefélék (*Poaceae* vagy *Gramineae*) után a legfontosabb haszonnövényeink. A *Fabaceae* család 800 nemzetséget számlál 20000 fajjal, melyek 88%-a képes szimbiózist kialakítani talajlakó rhizobium baktériumokkal. Az emberiség fehérjeigényének 33%-át fedezik, de előállítanak belőlük feldolgozott növényi olajokat és állati takarmányként is rendkívül fontosak, továbbá egyes trópusi fás fajok az erdőgazdálkodásban hasznosíthatók. Ismert pillangósvirágúak a borsó, csicseriborsó, bab, lóbab, szójabab, lencse, földimogyoró, fehér here, lucerna, rooibos, fehér akác (*Papilionoideae*, bükkönyformák), valamint az akácia és a mimóza (*Caesalpinioideae*, lepényfaformák) (Graham és Vance, 2003; Stagnari és mtsai., 2017).

A bükkönyformák szimbiótái a Rhizobiales rendből (α-proteobaktériumok) kerülnek ki, míg a lepényfaformák (*Caesalpinioideae*) gümőiben a Burkholderiales fajok (βproteobaktériumok) találhatóak meg, de például az egymással közeli rokon bükkönyforma rooibos (*Aspalathus linearis*) és mézbokor (*Cyclopia* spp.) gümőiben mindkét csoport fajait sikerült azonosítani (Brink és mtsai., 2017; Hassen és mtsai., 2020).

1.4.1. Az inverted repeat-lacking klád (IRLC) és a Medicago nemzetség

A szárazföldi növények (kloro)plasztisza általában 115-118 egyedi gént tartalmaz, melyek közül körülbelül 17 (minimum 4 riboszómális RNS és 5 transzfer RNS gén) megduplázódott, majd az újonnan kialakult szakasz fordított orientációban beépült a plasztisz genomba egy hosszú inverted repeat (IR) formájában. Mivel az IR nem esszenciális és feltételezhetően csupán a plasztisz genom stabilitásához járul hozzá, ezért az evolúció során többször is részlegesen vagy teljesen elveszett. Elsőként ennek az IR-nek a hiányát a borsónál (*Pisum sativum*) írták le, majd a rokonságát feltérképezve alkották meg az IRLC (inverted repeat-lacking clade) monofiletikus kládot, ami további gazdaságilag jelentős növényeket tartalmaz,

úgymint a csicseriborsó (*Cicer arietinum*), a lencse (*Lens culinaris*), a lóbab (*Vicia faba*), valamint a here (*Trifolium* spp.) és a lucerna (*Medicago sativa*), amik fontos állati takarmánynövények. Az IRLC 37-38 millió évvel ezelőtt válhatott el a Robinioid testvércsoporttól, melynek ismertebb képviselői a fehér akác (*Robinia pseudoacacia*) és a modellnövény szarvaskerep (*Lotus japonicus* vagy *Lotus corniculatus subsp. japonicus*) (Wojciechowski és mtsai. 2000; I.-S. Choi, Jansen, és Ruhlman 2019).

A *Medicago* nemzetség 87 faja közül több polyploid, a lucerna maga is tetraploid (haploid kromoszómaszám, N=16), míg közeli rokona, az *M. truncatula* diploid (N=8) (Steele és mtsai., 2010) és a genomja is harmadakkora (500 millió bp), mint a lucernának (1600 millió bp) (Choi és mtsai., 2004). Emellett a *M. truncatula* gyorsan növő, igénytelen növény, mely önbeporzó, és alkalmas genetikai vizsgálatokra, agrobaktérium általi génbevitelre, valamint egyes ökotípusainál (R108, 2HA) stabil transzgénikus növények létrehozására (Hoffmann és mtsai., 1997; Crane és mtsai., 2006; Cosson és mtsai., 2015), így kiváló modellnövénye az IRLC-nek és a pillangósvirágúaknak.

1.5. Molekuláris párbeszéd a baktérium és a növény között

A szimbiózis gazdaspecifikus, amely csak adott pillangós gazdanövény és baktérium faj között alakul ki, és egymás felismerése, valamint a gümőfejlődés a növény és a baktériumok közti folyamatos "molekuláris párbeszéden" alapul. Az éhező, N-hiányos növény specifikus, az adott fajra vagy alfajra jellemző flavonodiokat, illetve izoflavonoidokat bocsát ki a rizoszférába, amelyek beindítják a kompatibilis rhizobium partnerben a gümőfejlődésért felelős nodulációs gének működését, melyek válaszul a szimbiózist és gümőfejlődést kiváltó specifikus Nodfaktorokat termelik. A Nod-faktorok lipo-kitooligoszacharidok, amelyek általában 4 vagy 5 N-acetil-D-glükózamin egységből állnak, és a terminális cukrokon található módosítások (különböző hosszúságú és telítetlenségű acil lánc a nem redukáló végen és változatos szubsztitúciók a redukáló végen, például acetil, szulfát, metil, fukozil) szabják meg a specifitásukat, vagyis, hogy melyik pillangós virágú növénnyel létesítenek szimbiózist (Geurts és Bisseling, 2002; Lerouge és mtsai., 1990; Schultze és mtsai., 1992) (5. ábra).

 $Ac = -C_{16:2}, -C_{16:3}$ n = 1, 2, 3

5. ábra. A Sinorhizobium meliloti 1021 Nod faktor család (Schultze és mtsai., 1992) Az Sm1021 Nod-faktor egy 6-*O*-szulfatált-*N*-(C_{16:2})acil-tri-*N*-acetil- β -1,4-D-glükózamin penta-, tetra- vagy triszacharid (n=1, 2, 3), aminek a *S. meliloti*-ra jellemző gazdaspecifitást eredményező módosításai a redukáló cukorhoz kapcsolódó szulfátcsoport, a nem redukáló cukorhoz kapcsolódó acetilcsoport (ritkábban csupán egy hidrogén) és a C16 hosszúságú telítetlen acil lánc.

A konzerválódott cukorváz felépítésért a közös nodABC gének felelősek, míg a gazdaspecificitásért felelős módosításokat a rhizobiumok további nod, noe és nol génjeinek géntermékei határozzák meg (Kondorosi és mtsai., 1984). A nod géneket a gazdanövényből származó flavonoid jelenlétében a NodD transzkripciós faktor aktiválja a nod operonok promóterében található nod-boxhoz kötődve (Rostas és mtsai., 1986; Kondorosi és mtsai., 1989). A NodD a prokariótákban leggyakrabban előforduló LysR-típusú transzkripciós regulátorok csoportjába tartozik. Az összes gümőzésre képes rhizobiumban megtalálhatók a nodABC gének, legtöbbször egy operonként, melyek géntermékei közül a NodC enzim szintetizálja a kitooligoszacharid vázat, aminek a nem-redukáló végét deacetilálja a NodB, majd ezt N-acilálja a NodA enzim. Szintén általános a nodIJ gének jelenléte, melyek a Nod-faktorok szekréciójában részt vevő ABC-transzportereket kódolják. A többi nod gén által kódolt enzimek fajspecifikus módosítások szintézisét és transzferét végzik: a nodH és a nodPQ Oszulfatál, a nodL O-acetilál, a nodS N-metilál, a nodZ, a noeKL és a nolK fukozilál, míg a nodEF többszörösen telítetlen zsírsavakkal módosítja a kitooligoszacharidot. Az összes gén esetében léteznek allélikus variációk, így az ortológok nem feltétlenül cserélhetők fel egymással (esetleg még a nodABC esetében sem), akár az egy fajba tartozó különböző törzsek között sem (Mergaert és mtsai., 1997).

Míg a legtöbb rhizobium csak egy vagy néhány növény-fajjal és ökotípussal képes szimbiózist kialakítani, vannak promiszkuus rhizobiumok is, amelyek többféle Nod-faktort termelnek, és így több hüvelyes növény szimbiotikus partnerei (Mergaert és mtsai., 2006; Teamtisong és mtsai., 2014). Az eddig ismert rhizobiumok közül a *Sinorhizobium fredii* NGR234 képes a legtöbb, legalább 136 növényen működőképes gümőt létrehozni, amit

valószínűleg a többféle általa termelt Nod-faktor mellett a szekréciós rendszereinek és transzportereinek is köszönhet (Pueppke és Broughton, 1999; Schmeisser és mtsai., 2009). A *nod* gének szimbiotikus plazmidokon vagy mobilis szimbiotikus szigeteken találhatók, amelyek átadása konjugáció során akár különböző rhizobium nemzetségek között is lehetséges (Keet és mtsai., 2017).

1.6. Az infekció és a szimbiózis kialakulása

A rhizobiumok a gazdanövény gyökerén a növekvő gyökérszőrökkel lépnek először kapcsolatba. A gyökérszőrökhöz tapadva megváltoztatják a gyökérszőr növekedésének irányát, amely "pásztorbotszerű" görbülésével magába zárja a baktériumokat. Innen, a gyökérszőrben a növény által kialakított tömlőn, az infekciós fonálon (IF) keresztül jutnak a baktériumok a gyökér belsejébe, ahol egyidejűleg a kéregsejtek osztódása indul meg és amelyből gümő primordium jön létre (Oldroyd és Downie, 2008). Az IF a gyökérszőr betüremkedésével jön létre, kívülről sejtfal határolja, míg belsejében a baktériumok a membránnal körülvett IF mátrix anyagába ágyazódva helyezkednek el és osztódnak (Dixon, 1967). A fiatal gümősejtekbe belépő IF sejtfala felbomlik, kiengedve a membránburkolta infekciós cseppet (ICS), benne a mátrixba ágyazott baktériumokkal. Az ICS elbomlása után a baktériumok a plazmamembránba burkolva jutnak be a növényi sejt citoplazmájába (Ivanov és mtsai., 2012). A folyamat során a rhizobium felhasználja a szabadon élő formájában felhalmozott polyhydroxybutyrátot, amely fontos tápanyag, habár nem nélkülözhetetlen eleme a sikeres infekció kialakításának (Muller és Denison, 2018). Az így kialakuló sejtszervecskeszerű képződmény a szimbioszóma, ahol a növényi eredetű szimbioszóma-membrán (más néven a peribakteroid membrán, PBM) burkolja a szimbiotikus baktériumot, a bakteroidot (Gavrin és mtsai., 2017). A PBM egy határfelület a baktérium és a növény között, elkülönítve a két szimbiotikus partnert, és megvédve a baktériumot a gazdaszervezet immunrendszerétől (Catalano és mtsai., 2004a). A PBM-on keresztül történik a metabolitok cseréje: a növény adja a malátot mint energiaforrást a nitrogén redukálásához, továbbá a nitrogenáz enzimkomplex működéséhez szükséges homocitrátot, valamint egyéb, a szimbióta számára fontos tápanyagokat, míg a bakteroid, kifejlett állapotában, szolgáltatja a sejten belül megkötött nitrogént ammóniumion (NH4⁺) formájában, amit a növény azonnal glutaminná (Gln, Q) alakít a citoplazmájában (Clarke és mtsai., 2014).

1.7. A nitrogénkötő gümők fejlődése és formái

1.7.1. A gümő kialakulása

A bakteriális Nod-faktorok a növény Nod-faktor receptoraihoz kötődve egy jelátviteli útvonalat aktiválnak a gyökérszőrökben, melynek hatására a M. truncatula gyökér belső-középső kérgében (kortexében) termelődő citokinin hormon beindítja a sejtek osztódását, és ezzel a gümő primordium formálódását, amelyből egy perzisztens, állandó méretű apikális merisztéma jön létre. A gümőmerisztémából folyamatosan kilépő sejtek lépcsőzetes differenciálódási folyamaton mennek át, ami eltérő funkciójú és morfológiájú gümő zónákat hoz létre. A merisztémából (egyes zóna, ZI) kilépő sejtek többet nem osztódnak, viszont miután megfertőződtek az IF-ból kiszabaduló szimbioszómákkal, egymást követő endoreduplikációs ciklusok révén genomméretük 2C DNS tartalomról (1C a haploid genom ploidiaszintje) 4C, 8C, 16C, 32C majd 64C-re növekszik, ami a sejtméret egyre nagyobb növekedését teszi lehetővé (Cebolla és mtsai., 1999). Medicago gümők esetében a 32C-64C ploidiaszint körülbelül 80-szoros sejtméret-növekedést eredményez a merisztematikus sejtekhez képest (Kondorosi és Kondorosi, 2004; Kondorosi és mtsai., 2013). A mitotikus sejtciklusból az endociklusba való átlépést a CCS52A fehérje, az anafázis-promótáló komplex, az APC E3 ubiquitin ligáz szubsztrát-specifikus aktivátora váltja ki a mitotikus ciklinek korai degradációjával. Ez gátolja a mitózist és a sejtosztódást, miközben a DNS-szintézis folytatódik, így a genom az endoreduplikáció minden ciklusa során megduplázódik (Cebolla és mtsai., 1999). Amennyiben a CCS52A hiányában az endociklus gátlódik, a gümő differenciálódása elmarad, ami igazolja az endoreduplikáció fontosságát a gümőfejlődésben (Vinardell és mtsai., 2003) (6. ábra). Ennek magyarázatát a gümőspecifikus gének expressziójához szükséges ploidiaszint-függő, jellegzetes epigenetikai változások adták (Nagymihály és mtsai., 2017).

6. ábra. A sejtciklus szabályozása a gümőfejlődés során.

A G1, S, G2 és M fázisú mitotikus ciklus biztosítja a sejtek proliferációját a merisztémábam (ZI). A mitotikus ciklusból való kilépést és az endoreduplikációs ciklusok létrejöttét a CCS52A fehérje biztosítja a mitotikus ciklinek azonnali lebontásával, ezzel gátolva a mitózist, miközben a DNS minden ciklusban megduplázódik, sejtméretnövekedést idézve elő.

1.7.2. Gümőtípusok

Alapvetően kétféle gümőtípust különböztetünk meg, a determináltat, ahol a gümőmerisztéma csak egy meghatározott ideig, a gümőprimordium kialakulásakor működik, így ezek a gümők gömb alakúak maradnak, és az indetermináltat, ahol az apikális merisztéma mindvégig aktív marad és a gümő hosszanti megnyúlását okozza. Mindkét gümőtípus esetében jellemző a szimbiotikus sejtek sorozatos endoreduplikációja és méretnövekedése. A determinált gümőkben a szimbioszómákat tartalmazó sejtek differenciálódása mindig azonos állapotban van, míg az indeterminált gümőkben, ahol a merisztéma állandóan termeli a differenciálódásba lépő sejteket, kialakul egy kor- és differenciálódási grádiens a gümő csúcsától a gümő aljáig, ami a gümők folyamatos hosszanti növekedését eredményezi (7. ábra).

7. ábra. A két fő gümőtípus.

A. A determinált gümő sematikus és mikroszkópos szerkezete: azonos fejlődési stádiumban lévő hatalmas szimbiotikus sejtek, bennük bakteroidok ezreivel. **B.** Az indeterminált gümő sematikus és mikroszkópos szerkezete: a sejtek lépcsőzetes növekedése egy hosszanti metszeten látható, kiemelve egy nitrogénkötő sejtet. I: egyes zóna, II: kettes zóna, II-III: átmeneti zóna, III: nitrogénkötő zóna, IV: öregedési zóna. Kék szín: a metszetek toluidin kék festése Eredeti ábra: Kondorosi és mtsai., 2013.

Az indeterminált gümő csúcsán lévő apikális merisztéma (egyes zóna: ZI) alatt elhelyezkedő fiatal sejtekbe kerülnek a szimbioszómák az infekciós fonálból, majd ezekben endoreduplikációs ciklusok révén sejtrétegenként ploidiaszint- és méretnövekedés következik be, egyre nagyobb számú szimbioszóma jelenlétével (kettes, infekciós zóna: ZII). A legfeltűnőbb változások a ZII alatti 2-3 sejtrétegben következnek be, ahol a baktériumok mérete drasztikusan megnő, és a növényi sejtek is nagyrészt elérik végső méretüket. Ezt a zónát átmeneti zónának vagy interzónának (IZ) nevezik, amelyre az amiloplasztok nagyszámú jelentéle is jellemző. Az IZ alatt a nitrogénkötő ZIII található a végső differenciálódási stádiumban. Az itt található bakteroidok képesek redukálni a légköri nitrogént ammóniává és azt átadni a növényi sejteknek (Xiao és mtsai., 2014). A zónára (determinált gümő esetében a teljes kifejlett gümőre) jellemző rózsaszín színt a leghemoglobin (Lb) adja, ami az oxigén megkötésével alkalmassá teszi a gümőt az oxigén jelenlétére érzékeny nitrogenáz enzimkomplex működésére. Az obligát aerob rhizobium légzési lánca a gümőben uralkodó mikroaerob környezetben sem áll le, így az ehhez szükséges oxigén adagolása is az Lb feladata (Udvardi és Poole, 2013). A sejtek öregedésével jön létre a 4. zóna (ZIV), ahol beindul a bakteroidok lebomlása.

1.8. A bakteroid differenciáció

A nitrogénkötő bakteroidok mérete és formája eltérő lehet a különböző gazdanövényekben. Bizonyos növényekben, mint amilyen a *L. japonicus* vagy a szója (*Glycine max*), a baktériumok mérete, formája, DNS-tartalma megegyezik a szabadonélő baktériumokéval. Ezzel szemben más növényekben, mint például a *Medicago* fajokban és a borsóban, a bakteroidok jelentős mértékben megnyúlnak (méretük akár 5-10-szerese is lehet a szabadon élő baktériumoknak), akár Y alakúak is lehetnek, a genom-méretük az endoreduplikációs ciklusok révén megsokszorozódik, a membránjuk átjárhatósága növekedik és elveszítik osztódási képességüket, vagyis a differenciálódásuk visszafordíthatatlan, terminális (8. ábra).

8. ábra. *S. meliloti* 1021 baktérium sejtek terminális differenciációja *Medicago truncatula* gümőben.

A. Sm1021 szabadonélő (baktérium) és szimbiotikus (bakteroid) formája differenciál-interferencia kontraszt mikroszkópiával nézve (Nomarski) és DNS-kötő fluoreszcens DAPI (4',6diamidino-2-phenylindole) festékkel megfestve. B. DAPI-val festett szabadonélő baktériumok és bakteroidok DNS-tartalma áramlási citométerrel mérve. C. Élő és hővel elölt (70°C, 10 perc) baktériumok és bakteroidok DAPI, propídium-jodid (PI)és CTC (5-ciano-2,3-di-(ptolil)tetrazólium klorid) fluoreszcens festékekkel festve. A PI nem jut be az élő Sm1021 baktériumba, míg az élő bakteroidba igen a megváltozott membrán-áteresztő képessége miatt. A CTC légzés útján kerül a sejtekbe, így jelenléte mutatja, hogy a PI-festett bakteroidok élnek. Méret: A, C: 10 μm. (Mergaert és mtsai., 2006).

A membrán nagyobb átjárhatósága nagy valószínűséggel megkönnyíti a nitrogénkötő baktérium és a gazdanövény közti kommunikációt, a különböző molekulák átadását. A baktériumok sorsát és differenciálódási típusát a gazdanövény határozza meg (Mergaert és mtsai., 2006). A szimbióta átalakításának képessége a *Papilionoideae* nemzetségen belül több ágon alakult ki egymástól függetlenül, ami azt sugallja, hogy a terminális differenciáció indukálása valamilyen előnnyel jár a növény számára (9. ábra).

9. ábra. Bükkönyforma (*Papilionoideae*) nemzetségek filogenetikai fája a *matK*, *rbcL*, részleges *trnL* és 5.8S rRNS génszekvenciák alapján.

A terminális bakteroid differenciáció legalább ötször jelent meg a Papilionoideae nemzetségben.

A bükkönyformák hat nagy kládja: Dalbergioidok, Milletioidok, Robinioidok, IRLC, Mirbelioidok, Genistoidok. Külcsoport: lepényfaformák (*Chamaecrista, Pentaclethra*).

Az elágazásoknál található jelek az ősi bakteroid formát jelölik (Oono és mtsai., 2010 ábrája, módosítva az újabb megfigyelések alapján).

A terminális differenciáció azonban nem minden növényben szükséges a nitrogénkötéshez, hisz nitrogénkötésre a nem differenciálódó, reverzibilis sorsú rhizobiumok is képesek, amelyek mérete, DNS-tartalma megegyezik a szabadon élő baktériumokéval, megőrzik osztódó-képességüket, és szimbiózisból képesek visszatérni a szabadon élő formává. Ez történik a másik gyakori pillangósvirágú modellnövény, a L. japonicus vagy a szója szimbiótái esetében. Bár nehéz összehasonlítani a különböző növényekben a szimbiotikus nitrogénkötés hatékonyságát az eltérő baktérium-partnerek és a növény morfológiai adottságai miatt, egyes becslések szerint a terminálisan átalakult bakteroidok hatékonyabban kötik meg a nitrogént, illetve nem képesek felhasználni a növény által nyújtott szénforrást anélkül, hogy ne viszonoznák azt az atmoszferikus nitrogén átalakításából származó ammóniával, illetve aminosavakkal (Oono és Denison, 2010). Mivel a szimbióta baktériumok sorsa a gazdanövénytől függ, és a családon belül több ágon is kialakult a terminális differenciáció, ez ugyancsak alátámasztja, hogy a növénynek ebből haszna származik. Ezt támasztja alá az a megfigyelés, hogy ha egy baktérium képes működőképes gümőt létrehozni két olyan gazdanövényen, melyek közül az egyik gümőjében reverzibilisen, a másikban terminálisan differenciálódik, a nitrogenáz enzimkomplex aktivitása jóval magasabb a terminálisan differenciálódott bakteroidok esetében (Oono és Denison, 2010; Chen és mtsai., 2023).

Az IRLC fajokban a nitrogénkötő bakteroidok terminálisan differenciálódnak, bár ennek mértéke eltérő a különböző fajokban: enyhén puffadttól (például a *Glycyrrhiza uralensis* esetében) a megnyúlt-elágazó fenotípusig, ahol a bakteroid mérete 1-1,5 μm-ről 6-8 μm-re növekszik, mint például az *M. truncatula* vagy a borsó esetében (Montiel és mtsai., 2017). A terminális bakteroid differenciáció egy másik, ritkább eseténél a bakteroid felpuffad és gömb alakú lesz, úgynevezett szférikus formát vesz fel, ami egymástól függetlenül alakult ki az IRLC *Ononis spinosa*-nál (Montiel és mtsai., 2017) és egyes *Aeschynomene* fajoknál (Czernic és mtsai., 2015; Oono és mtsai., 2010).

1.9. A bakteroid differenciációt kiváltó növényi faktorok

A növényi faktorok felfedezéséhez a *M. truncatula* és a *L. japonicus* gümőtranszkriptom összehasonlítása vezetett, ami több száz olyan kis gén expresszióját mutatta ki *M. truncatula* gümőben, ami hiányzott a *L. japonicus* gümőkből, ahol a bakteroidok revirzibilis differenciácón mennek át. Ezek valamennyien szekretált peptideket vagy kis fehérjéket kódolnak, melyek homológjai csak és kizárólag IRLC növényekben találhatók meg. A transzkriptom analízis

vezetett a 700 tagot magába foglaló NCR (nodule-specific cysteine-rich peptide) (Mergaert és mtsai., 2003), és a 28 tagú GRP (nodule-specific glycine-rich protein) (Kevei és mtsai., 2002) géncsaládok felfedezéséhez. Ezek a peptidek a szimbiotikus sejtekben termelődnek, és a szimbioszómákhoz a szekréciós útvonalon keresztül jutnak el. A peptidekről az endoplazmatikus retikulumban (ER) a szignál peptidáz komplex (SPC) vágja le a szignál peptidet (SP), és az éretté vált, aktív peptidek a Golgi-készüléken keresztül transz-Golgi vezikulumokban érkeznek a szimbioszómához, majd a két membrán fúziója után kerülnek kapcsolatba a bakteroiddal. A peptidek szerepét a bakteroid differenciálódásban a *dnf1* (defective in nitrogen-fixation 1, nitrogénkötésre képtelen-mutáns 1) mutáns vizsgálatával sikerült bizonyítani, ahol a SPC komplex egy gümőspecifikus elemének hiányában a SP levágása nem történt meg. Ekkor a teljes hosszúságú peptidek az ER-ben maradtak és így a bakteroidok differenciálódása nem következett be (Van de Velde és mtsai., 2010). A bakteroidok a terminális differenciáció jeleit mutatták akkor is, amikor az NCR peptideket *L. japonicus* gümőben termeltették.

1.9.1. A gümőspecifikus ciszteinben gazdag peptidek (NCR-ek)

Az NCR-eket, mint gümőspecifikus peptidcsaládot, 2003-ban a *M. truncatula*-ban fedezték fel (Mergaert és mtsai. 2003). Az NCR peptidek kizárólag a gümőben és azon belül is kizárólag a szimbiotikus sejtekben találhatók meg (az NCR122 kivételével) (Guefrachi és mtsai., 2014; Maunoury és mtsai., 2010). A *M. truncatula* nyolc kromoszómáján elszórva több mint 700 *NCR* gén található, melyek általában két, ritkábban három exonból állnak (Maróti és Kondorosi, 2014). Az első exon kódolja a meglehetősen jól konzervált szignál peptidet (SP), míg a második a sokkal változatosabb, általában 35-50 aminosav hosszúságú érett peptidet, ami azonban négy vagy hat cisztein aminosavat tartalmaz konzervált pozíciókban (Alunni és mtsai., 2007) (10A. ábra).

A			
	NCR 4C	$SP-X_n$ $-C-X_5-C-X_n$ $-C-X_4-C-X_n$	
	NCR 6C	$SP-X_n \qquad -C-X_5-C-X_n-C-X_n-C-X_4-C-X_1-C-X_n$	
в			
	NCR-szerű 6C	$SP-X_n \qquad -C-X_n-C-X_3-C-X_n-C-X_4-C-X_1-C-X_n$	
	NCR-szerű 8C	$SP-X_n-C-X_8 - C-X_n-C-X_3-C-X_n-C-X_4-C-X_1-C-X_3-C-X_1-C-X_3-C-X_1-C-X_3-C-X_1-C-X_3-C-X_1-C-X_1-C-X_3-C-X_1-C$	-Xr
	Defenzin 8C	$SP-X_n-C-X_{10}-C-X_5-C-X_3-C-X_n-C-X_n-C-X_1-C-X_3-C-X_1-C-X_3-C-X_1-C-X_1-C-X_3-C-X_1-$	-Xr

10. ábra. Az NCR és NCR-szerű peptidek szerkezeti jellemzői. A: Az IRLC NCR-ek sematikus ábrázolása.
B: A Dalbergioid növényekben kifejeződő NCR-szerű (NCR-like, NCRL) peptidek és a növényi defenzinek sematikus ábrázolása.

SP: szignál peptid. Piros C: konzervált cisztein. X: bármely aminosav. n: tetszőleges számú aminosav.

Ezek a konzervált ciszteinek nélkülözhetetlen szerepet töltenek be a szimbiózisban, már egyetlen cisztein mutációja működésképtelenné tette az NCR169 peptidet (Horváth és mtsai., 2015). A konzervált ciszteinek között létrejövő diszulfid-hidak feltételezhetően fontos strukturális és funkcionális elemei az NCR peptideknek. Ezek a kovalens kötések az endoplazmatikus retikulum (ER) lumenjének oxidáló közegében jönnek létre, ahol a protein diszulfid izomeráz (PDI) és az ER oxidoreduktin 1 oxidálja a ciszteinek szabad thiol csoportját (SH) diszulfid-híddá (S-S). A diszulfid-híd stabilizálja a fehérje szerkezetét. A *M. truncatula* szimbiotikus sejtjei egy gümőspecifikus thioredixont (Trx s1) termelnek, ami a thioredoxinokra nem jellemző SP-je révén a bakteroid citoszoljába lokalizálódik, ahol képes redukálni az NCR-eket, melyek így, a diszulfid-hidak hiányában még aktívabbakká válnak (Ribeiro és mtsai., 2017).

Az NCR-ek az ER-ból, majd a Golgi-készülékből a szimbioszómákba jutnak (Van de Velde és mtsai. 2010; Horváth és mtsai. 2015), ahol kapcsolatba léphetnek a bakteroidok membránjával és bejuthatnak a belsejükbe. A baktérium belső membránjában található BacA ABC-transzporter segítségével juthatnak be egyes NCR-ek a bakteroidba és ez a transzportfehérje nélkülözhetetlen a szimbiózishoz ott, ahol a növényi partner NCR-eket vagy NCR-szerű peptideket termel (diCenzo és mtsai., 2017; Guefrachi és mtsai., 2015a, 2015b). Bakteroidok proteomikai vizsgálatával 74 NCR peptidet (köztük a sokat tanulmányozott NCR001-et és NCR169-et) azonosítottak izolált bakteroidokból (Dürgő és mtsai., 2015). Érdekes módon a bakteroidokban a késői kifejeződésű NCR-ek mellett a koraiak is jelen voltak, ami alapján úgy tűnik, a bakteroidok proteolitikus enzimjei nem bontották le az NCR-eket. Több NCR estében poszt-transzlációs módosításokat is kimutattak, így például foszforilációt

(többek között az NCR001 esetében) vagy acetilációt (NCR169) (Marx és mtsai., 2016), de az nem ismert, hogy melyik partner hajtja végre ezeket a változtatásokat.

Az NCR gének, akárcsak a többi gümőspecifikus gén, két fejlődési hullámban fejeződnek ki: lehetnek korai gének, amelyek a fejlődő 4-10 napos gümőben aktiválódnak, és lehetnek késői gének, amelyek a 13-29 napos gümőben expresszálódnak (He és mtsai., 2009; Maunoury és mtsai., 2010; Guefrachi és mtsai., 2014). Az NCR-ek időbeli kifejeződése összhangban van a térbeli kifejeződésükkel és a kettő nem választható szét egymástól: a korai NCR-ek a fiatal gümőzónákban (ZII, IZ) működnek, melyek folyamatosan újratermelődnek a gümő növekedésével együtt és így végig jelen vannak a gümőben, míg a késői NCR-ek az érett gümőben jelennek meg a tizedik nap után, amikor kialakul a terminálisan differenciált bakteroidokat tartalmazó nitrogénkötő zóna (ZIII), ami onnantól kezdve szintén végig jelen van a gümőben. Az NCR transzkriptek 55%-a az IZ-ben található meg (Roux és mtsai., 2014 adatai alapján).

1.9.2. Az NCR-ek kialakulása

Az NCR géneknek nincsen homológjuk az IRLC kládon kívül (Mergaert, 2018). Az IRLC-én belül a legősibb csoportba tartozó Glycyrrhiza uralensis 7 NCR génnel rendelkezik (Montiel és mtsai., 2017), és az eddig megvizsgált összes IRLC faj kódol NCR-eket (Frühling és mtsai., 2000; Mergaert és mtsai., 2006; Istvánek és mtsai., 2014; Montiel és mtsai., 2016, 2017; Huang és mtsai., 2022), míg az IRLC testvércsoportja, a Robinioid klád fajai nem. A Dalbergioid klád eddig vizsgált fajaiban (Aeschynomene és Arachis fajok) az NCR-ekhez hasonló felépítésű és szintén gümőspecifikus NCR-szerű peptidek találhatók, melyek feltehetően konvergens evolúció eredményei (Czernic és mtsai., 2015; Bertioli és mtsai., 2016; Raul és mtsai., 2022). Az NCR-ek és az NCR-szerű peptidek felépítésükben a minden eukariótában megtalálható defenzinekre hasonlítanak, feltételezhetően azokból alakultak ki (10B. ábra), azonban a defenzinek nyolc vagy tíz ciszteint tartalmaznak, és konzerválódott térszerkezettel rendelkeznek a négy vagy öt diszulfid híd révén. Az NCR gének gyakran klaszterekbe rendeződve találhatók meg a M. truncatula kromoszómáin. A gének megsokszorozódásáért és elterjedéséért nagyban felelősek lehetnek a közelükben előforduló transzpozonok és retroelemek (Satgé és mtsai., 2016). Az NCR peptidek aminosav összetétele rendkívül variábilis, szekvenciahasonlóság leginkább csak a recens duplikációknál figyelhető meg (például a M. truncatula NCR178 és NCR211 között (Kim és mtsai., 2015), vagy azon IRLC fajok esetében, melyek kevés NCR-rel rendelkeznek (*G. uralensis, C. arietinum, Oxytropis lambertii*) (Montiel és mtsai., 2017). A szimbiotikus baktériumok átalakulásának mértéke nagyban összefügg az adott fajban található NCR-ek, illetve NCR-szerű peptidek számával, továbbá a peptidek fizikokémiai tulajdonságaival, például a megnyúlt, elágazó bakteroid morfológia a kationos peptidek megjelenésével párosul (Czernic és mtsai., 2015; Montiel és mtsai., 2017, 2016).

1.9.3. Az NCR peptidek fizikokémiai tulajdonsága és ismert funkcióik

A változatos aminosav-összetételük miatt az érett M. truncatula NCR-ek izoelektromos pontja (pI) 3,5-11,25 között változik: 35%-uk anionos (pI: 6 alatt), 23%-uk neutrális (pI: 6-8), míg 42%-uk kationos (pI: 8 fölött). A ZII-ben előforduló NCR-ek, nagyrészt anionosak vagy neutrálisak, míg az IZ-ben és ZIII-ban egyre nagyobb számban és arányban fejeződnek ki a kationos NCR-ek. A szimbiotikus sejtekben a baktériumfertőzéstől a nitrogénkötés létrejöttéig az NCR-ek különböző csoportjai fejeződnek ki, néhány tucat a kezdeti lépésekben, míg a legtöbb, néhány száz az IZ-ben és szintén sok a ZIII-ban. Az anionos, neutrális és kationos peptidek együttesen irányítják a bakteroid differenciáció különböző lépéseit. Több kationos, +2 és +9 közötti nettó töltésű (net charge, NC) peptidről beigazolódott, hogy képesek kapcsolatba lépni a negatív töltésű bakteriális membránnal, és bejutni a baktériumok citoszoljába in vitro. A neutrális és anionos peptidek nem léptek kapcsolatba a membránnal, ennek ellenére kimutathatók voltak a baktériumok citoszoljában (Dürgő és mtsai., 2015). Ennek a mechanizmusa még nem ismert, de lehetséges, hogy a kationos peptidek segítik ezeknek a peptideknek a bejutását a bakteroidokba. Affinitás kromatográfiás kölcsönhatási kísérletekben kimutatták, hogy az NCR-ek kötődnek egymáshoz. A 700 MtNCR peptid közül kettő nélkülözhetetlen a nitrogénkötő gümő fejlődéséhez. Az anionos NCR211 funkciója ismeretlen (Kim és mtsai., 2015), míg az NCR169 hiányában a bakteroidok nem érik el a rájuk jellemző végső méretet, és nem termelődnek további NCR-ek, amik feltehetően az utolsó differenciálódási lépésekhez szükségesek (Horváth és mtsai., 2015). A bakteroid differenciáció egyik alapvető lépése a sejtosztódási képesség elvesztése. Ebben a legnagyobb szerepe a kationos, IZ-ban termelődő peptideknek lehet. Míg ezeknek a peptideknek in vitro antimikrobiális aktivitása van, a szimbiózisban a rhizobium baktériumok megőrzik életképességüket, feltehetően a nem kationos peptidek védőhatása révén.

1.9.4. Az NCR-ek in vitro antimikrobiális hatása

Szintetikus NCR-ek hatását vizsgálva a szimbiotikus baktérium S. meliloti partneren kiderült, hogy a kationos peptidek membránkárosító hatásúak, és in vitro el tudják pusztítani a baktériumokat (Van de Velde és mtsai., 2010). Általában a kationos NCR-ek, elsősorban pI=9 felett, antimikrobiális hatással rendelkeznek, de az eddig ismert, főként a bakteriális membrán negatív töltését célzó kationos antimikrobiális peptidekkel (AMP) szemben, ezek egyszerre több célpontot is támadnak a baktériumokban, így ellenük jóval nehezebben alakul ki rezisztencia (Lima és mtsai., 2020b). A három legjobban tanulmányozott NCR, az NCR169, az NCR247 és az NCR335, valamint származékaik, gyorsan és hatékonyan pusztítottak el számos növényi, állati és emberi patogént (Balogh és mtsai., 2014; Farkas és mtsai., 2017; Mikuláss és mtsai., 2016; Nagy és mtsai., 2015; Tiricz és mtsai., 2013), köztük az antibiotikumokra nem reagáló, ESKAPE baktériumokat (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa, Enterobacter spp.), melyeknek egyes multirezisztens törzsei hajlamosak túlélni akár a legmodernebb antibiotikum-terápiákat (Jenei és mtsai., 2020). A baktériumokon kívül hatékonyak az oppurtunista patogén Candida albicans-sal és egyéb Candida-fajokkal szemben is (Ördögh és mtsai., 2014; Szerencsés és mtsai., 2021).

2. CÉLKITŰZÉSEK

- 1. Munkám során célul tűztük ki az NCR és NCR-szerű peptidcsaládok evolúciójának, strukturális jellemzőinek és szabályozásuknak feltárását.
- 2. Elemeztük az NCR szignál peptideket (NCR SP), konzerváltságukat, és ennek jelentőségét.
- 3. Vizsgáltuk a gümőspecifikus szignál peptid peptidáz, a nodSPP szerepét a szimbiózisban és kapcsolatát az NCR SP-ekkel.
- 4. Vizsgáltuk az NCR-ek antimikrobiális hatását különböző humán kórokozókkal szemben. Vajon a kationosság a legfőbb meghatározója az NCR peptidek antimikrobiális tulajdonságának?

A témában közölt cikkeim:

- <u>Rui M. Lima</u>, <u>Salome Kylarová</u>, Peter Mergaert, Éva Kondorosi: Unexplored arsenals of legume peptides with potential for their applications in medicine and agriculture (Frontiers in Microbiology, 2020, doi: 10.3389/fmicb.2020.01307) A review megírása során nagyban támaszkodtam a csoport által írt cikkekre, melyek egy részében társszerző vagyok.
- <u>Sándor Jenei</u>, <u>Hilda Tiricz</u>, János Szolomájer, Edit Tímár, Éva Klement, Mohamad Anas Al Bouni, <u>Rui M. Lima</u>, Diána Kata, Mária Harmati, Krisztina Buzás, Imre Földesi, Gábor K. Tóth, Gabriella Endre és Éva Kondorosi: Potent chimeric antimicrobial derivatives of the *Medicago truncatula* NCR247 symbiotic peptide (Frontiers in Microbiology, 2020, doi: 10.3389/fmicb.2020.00270) A szintetikus NCR247 peptiddel és NCR247 származékokkal végzett antimikrobiális tesztek kivitelezésében és a cikk megírásában vettem részt.
- <u>Attila Farkas</u>, <u>Gergely Maróti</u>, Hajnalka Dürgő, Zoltán Györgypál, <u>Rui M. Lima</u>, Katalin F. Medzihradszky, Attila Kereszt, Peter Mergaert, Éva Kondorosi: *Medicago truncatula* symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms (Proceedings of the National Academy of Sciences of the United States of America, 2014, doi: 10.1073/pnas.1404169111) Az NCR247 promóter aktivitását vizsgáltam *Medicago truncatula* gümőben.
- <u>Hilda Tiricz</u>, Attila Szűcs, Attila Farkas, Bernadett Pap, <u>Rui M. Lima</u>, Gergely Maróti, Éva Kondorosi, Attila Kereszt: Transcriptome analysis of bacteria challenged with antimicrobial peptides of plant origin (Applied and Environmental Microbiology, 2013, doi: 10.1128/AEM.01791-13)

A szintetikus NCR247-el és NCR335-al kezelt szabadonélő Sm1021-en végzett transzkriptom-analízist elemeztem.

- <u>Senlei Zhang</u>, Ting Wang, <u>Rui M. Lima</u>, Aladár Pettkó-Szandtner, Attila Kereszt, J. Allan Downie, Éva Kondorosi: Widely conserved AHL transcription factors are essential for NCR gene expression and nodule development in *Medicago* (Nature Plants, 2022: doi: 10.1038/s41477-022-01326-4)
 Pásztázó elektronmikroszkópos (SEM) és konfokális mikroszkópos képeket készítettem.
- <u>Rui M. Lima</u>, <u>Balaji Baburao Rathod</u>, Hilda Tiricz, Dian H. O. Howan, Mohamad Anas Al Bouni, Sándor Jenei, Edit Tímár, Gabriella Endre, Gábor K. Tóth, Éva Kondorosi: Legume Plant Peptides as Sources of Novel Antimicrobial Molecules Against Human Pathogens (Frontiers in Molecular Biosciences, 2022: doi: 10.3389/fmolb.2022.870460)

Az antimikrobiális tesztek egy része, a mikroszkópos képek (konfokális, SEM) nagy része és a DNS-kötő vizsgálat mellett én csináltam a grafikonokat, valamint részt vettem a cikk írásában.

3. ANYAGOK ÉS MÓDSZEREK

3.1. Molekuláris biológiai módszerek

3.1.1. Kvantitatív valós idejű polimeráz láncreakció (quantitative real-time PCR)

A két SPP paralóg illetve további gének expressziós szintjének meghatározásához RNS-t izoláltunk *Quick*-RNA Plant Miniprep kittel (Zymo Research), két *M. truncatula* ökotípus, A17 és R108, különböző szerveiből: gümőből, gyökérből, szárból és levélből. A DNáz (Thermo Scientific) kezelt RNS-ből cDNS-t High-Capacity cDNA Reverse Transcription Kit-tel (Applied Biosystems) szintetizáltunk, a RT-qPCR reakciót PowerUp SYBR Green Master Mixxel (Applied Biosystems) végeztük el. Belső kontrollnak a 40S riboszómális S19-szerű fehérje mRNS-ét (Medtr3g013640) használtuk. A RT-qPCR-hez használt primerek szekvenciája az 1. függelékben találhatók meg.

3.1.2. Az RNS-interferencia vektorok előállítása

A csendesíteni kívánt gének 200-300 bp hosszú szekvenciáját amplifikáltunk fel A17 cDNSről olyan primerpárral, melynek tagjai tartalmazták az adaptor szakaszokat (attB1 és attB2) a BP rekombinációhoz (Gateway BP Clonase II Enzyme Mix, Thermo Scientific) a pDONR207 vagy pDONR221 donor vektorba (Invitrogen). Az ezt követő LR rekombináció (Gateway LR Clonase II Enzyme Mix, Thermo Scientific) a pUB-GWS-GFP destination vektorba (Maekawa és mtsai., 2008) történt, illetve a módosított pKGW-RR és pCAMBIA3301 vektorokba, melyek tartalmazták az RNS-interferencia kazettát a pUB-GWS-GFP vektorból. Az RNS-interferencia egy ősi szabályozó, illetve védekező mechanizmus minden eukarióta sejtben, ami a mikroRNSekkel komplementer RNS és egyéb kettősszálú RNS lebontásáért felelős, mely molekula-típus gyakran RNS-vírusok replikációs intermediere. Az RNS-interferencia doboz két példányban tartalmazza a csendesíteni kívánt génszakaszt, melyek közül a második az elsőhöz képest fordított orientációban épült be, így a vektor a specifikus szakaszt kettősszálú formában fejezte ki a *L. japonicus ubiquitin 10* (Ljubq10) promóterrel. A *gümőspecifikus szignál peptid peptidáz* (*nodSPP*) esetében egy 285 bp hosszú kódoló génszakaszt használtunk csendesítéshez (2. függelék). A PCR-hez használt primerek szekvenciái az 1. függelékben találhatók meg.

3.1.3. Az NCR169 promótert tartalmazó vektorok előállítása

Az NCR169 promóter *M. truncatula* és szójagümőben történő vizsgálatához a promóter 1181 bp és 436 bp hosszú szakaszát illesztettük pCAMBIA3301 vektorba, a GUS riporter gén elé (upstream), a CaMV35S promóter helyére. Az NCR169 peptid szójagümőben történő termeltetéséhez a 1181 bp hosszú promótert és az NCR169 gén mindkét exonját és egyetlen intronját amplifikáltuk fel, majd BP reakcióval (Gateway BP Clonase II Enzyme Mix, Thermo Scientific) rekombináltuk a pENTR2B (Thermo Fisher Scientific) vektorba, majd innen LR reakcióval (Gateway LR Clonase II Enzyme Mix, Thermo Scientific) a pKGW-RR vektorba.

3.1.4. Transzkriptom-szekvenálás

Vermikulitban növesztett vad típusú R108 (kontroll) és R108-hátterű nodSPP RNSi növényeket fertőztünk kompatibilis *Sinorhizobium meliloti* Rm41 baktériummal, majd 15 napos (15 dpi) gümőkből 3-3 biológiai párhuzamos mintát gyűjtöttünk folyékony nitrogénbe. Növényi RNS-t a *Quick*-RNA Plant Miniprep kittel (Zymo Research) izoláltunk. Az RNS minták mennyiségét és minőségét Agilent 2200 TapeStation elektroforézis-rendszerrel (Agilent Technologies) ellenőriztük. Az RNS minták szekvenálása Solid 4 (Applied Biosystems) újgenerációs szekvenálási platformmal történt. Mind a mintaelőkészítést, mind a szekvenálást a gyártó által javasolt protokoll alapján végeztük el.

3.2. Növényi munka

3.2.1. Magsterilizálás, csíráztatás, fertőzés

A hüvelyből kibontott *M. truncatula* vagy szója magokat 8 percig 96%-os kénsavban (H₂SO₄) inkubáltuk, ami pórusokat nyit a maghéjon, majd legalább háromszor átöblögettük jéghideg desztillált vízben, elkerülve, hogy az exoterm reakció megégesse a magokat. Ezután 3 percig 0,1% higany(II)-kloridban (HgCl₂) sterilizáltuk a magokat, majd ötször mostuk desztillált vízben. A sterilizált magokat 1% agart tartalmazó desztillált vizes lemezen 4°C-on, sötétben inkubáltuk 1-3 éjszakán át, majd szobahőmérsékleten és sötétben további 1 éjszakán át. A növényeket ezután Buffered Nod Medium (BNM, összetevők 1 literben, pH 6.5: CaSO₄ x

2H₂O: 344 mg, MES x H₂O: 390 mg, NaFe-EDTA: 18,35 mg, ZnSO₄ x 7H₂O: 4,6 mg, H₃BO₃: 3,1 mg, MnSO₄ x H₂O: 8,45 mg, Na₂MoO₄ x 2H₂O: 250 mg, CuSO₄: 16 mg, CoCl₂ x 6H₂O: 25 mg, MgSO₄ x 7H₂O: 122 mg, KH₂PO₄: 68 mg, Kalys agar: 11,4 g) lemezre tettük vagy nitrogénés tápanyagmentes zeolitba, vermikulitba, esetleg magoztatás céljából földbe.

A rhizobiumokat TA táptalajon (összetevők 1 literben: 10 g tripton, 1 g élesztőkivonat, 5 g NaCl, 1 mM MgSO₄, 1 mM CaCl₂, 15 g agar) növesztettük 30°C-on. Két nap után a táptalajról felkapart rhizobiumokat nitrogénszegény Fahreus tápoldatban (0,7 mM KH₂PO₄, 0,8 mM Na₂HPO₄, 0,5 mM MgSO₄, 0,9 mM CaCl₂, 20 μM vas-citrát, pH 7.4, autokláv után: 1,6 μM H₃BO₃, 0,6 μM CuSO₄, 0,5 μM NaMoO₄, 0,6 μM ZnSO₄, 0,6 μM MnSO₄) szuszpendáltuk fel, majd az oldatot a növények gyökerére öntöttük.

3.2.2. Tranziens transzgenikus vonalak előállítása

A kicsírázott steril magok gyököcskéjének a végét levágtuk, körülbelül fél cm-t hagyva belőle. Ezután a sebzési pontot a transzformálni kívánt plazmidot (pUB-GWS-GFP, módosított pKGW-RR, pCAMBIA3301) hordozó, LB táptalajon (összetevők 1 literben, pH 7.5: 10 g tripton, 5 g élesztőkivonat, 5 g NaCl, 15 g agar) növő *Agrobacterium rhizogenes* Arqua1 pázsitba mártottuk, majd BNM lemezre tettük legalább két hétre. Vermikulitba vagy zeolitba ültetés előtt a GFP transzformációs markert ki nem fejező gyökereket levágtuk, majd a megfelelő rhizobium törzzsel gümőztettük.

3.2.3. Stabil transzgenikus vonalak előállítása

Az RNSi vektorokat (módosított pCAMBIA3301) R108 szövetkultúrába *A. tumefaciens* EHA-105 törzzsel, míg 2HA szövetkultúrába *A. tumefaciens* Agl1 törzzsel vittük be (Hoffmann és mtsai., 1997; Crane és mtsai., 2006; Cosson és mtsai., 2015) (11. ábra).

11. ábra. *Medicago truncatula* stabil transzformáns mövények előállításának lépései. A. A baktériumszuszpenzióval inokulált levéldarab elkezd kallusszá alakulni (kalluszosodá). B. Embriók (zöld) nőnek a kalluszon. C. A kalluszt teljesen beborítják az embriók. D. Az embriókból kialakuló levélszerű képződmények közül kalluszonként egy-három valódi növénnyé fejlődik. E. Gyökereztetéshez kiültetett növény. F. Teljesen kifejlett, virágzó, terméseket hozó stabil transzformáns növény (T0 nemzedék).

A sikeres transzformánsokat foszfinotricinnel (PPT) szelektáltuk, míg a transzgén jelenlétét PCR-el validáltuk *Ljubq10* promóter-specifikus primerekkel (1. függelék), mely promóter a nodSPP kódoló szekvenciájával homológ kettősszálú RNS kifejezéséért felelős, és melynek szekvenciája nem található meg *M. truncatula*-ban. Két transzformáns vonalat vizsgáltunk tovább, melyekben a nodSPP mRNS-szintje 2-10%-a a vad típusénak, amit RTqPCR-el határoztunk meg a T1 növények gümőiben. A további kísérletekhez T2-T5 generációs növényeket használtunk.

A nodSPP-n kívül nyolc NCR (NCR001, NCR025, NCR084, NCR164, NCR209, NCR235, NCR247, NCR335) és öt GRP (GRP1L, GRP2A, GRP3A, GRP3C, GRP4) gén csendesítéséhez állítottunk elő összesen ötvenöt stabil transzgenikus vonalat, melyeket még nem vizsgáltunk.

3.3. Mikroszkópia

3.3.1. Mintaelőkészítés mikroszkópiához

Bakteroid-izolálás során a folyékony nitrogénben vagy PBS pufferben előrölt gümőket felvettük PBS-ben, és 10 µm pórusátmérőjű CellTrics szűrőn (Sysmex) áteresztve nyertük ki a bakteroidokat.

Jó minőségű, nagy felbontású gümőmetszet készítéséhez a gümőket technovit műgyantába ágyaztuk a gyártó utasításai szerint (Technovit 7100), majd mikrotómmal 5-7 μm vastag szeleteket vágtunk.

Kevésbé jó minőségű, de még élő gümőmetszet készítéséhez a gümőket 5% low-melting agarózba ágyaztuk, majd vibrotómmal 25-75 µm vastag szeleteket vágtunk. Az ezen a módon készített gümőmetszetek alkalmasak a pásztázó elektronmikroszkópos (SEM) vizsgálatokhoz is.

A szabadon élő baktérium és bakteroid mintákat, illetve a gümőmetszeteket 50 µg/ml propídium-jodiddal (PI) és/vagy 50 µg/ml SYTO 9 festékkel festettük meg, melyek DNS-interkaláló képességük révén a DNS-hez kötődnek, de míg utóbbi áthatol az ép bakteriális membránokon is, addig a PI csak az elpusztult baktériumok vagy az átalakult bakteroidok membránján jut keresztül.

A SEM-hez a legalább egy órán át (egész gümő esetében javasolt egy teljes éjszakán át) fixált mintát (2,5% glutáraldehid PBS-ben vagy 50 mM nátrium-kakodilát pufferben) dehidratáltuk (1-1 óra 30%, 50%, 70%, 80%, 90%, 100% etanol, ez utóbbi még legalább kétszer cserélve a víz hatékonyabb eltávolításának céljából), majd a kritikus-pont szárítás (K850: Quorum Technologies Ltd) után 10-15 nm vastag arannyal vontuk be.

3.3.2. Sztereo mikroszkópia

Olympus SZX12 sztereo mikroszkópot használtunk 0.5x és 1x objektívvel. A fotókat Olympus Camedia C7070 digitális kamerával csináltuk, DScaler szoftvert (4.1.15 verzió, www.dscaler.org) használva.

3.3.3. Konfokális mikroszkópia

A konfokális lézer scanning mikroszkópiához Olympus Fluoview FV1000 mikroszkópot (Olympus Life Science Europa GmbH, Hamburg, Germany) és Leica TCS SP5 mikroszkópot (Leca Microsystems GmbH, Wetzlar, Germany) használtunk.

3.3.4. Pásztázó elektronmikroszkópia (SEM)

A SEM-hez JEOL JSM-7100F/LV korszerű pásztázó elektronmikroszkópot használtunk, ami termikusan segített téremisszió (T-FEG) alkalmazásával még magasabb felbontást eredményez és lehetővé tette a magas és alacsony vákuumban való munkát is.

3.3.5. Áramlási citometra (flow cytometry)

Az izolált bakteroidok DNS-ét SYTO 13-mal festettük, majd méretüket és mennyiségüket Moflo Astrio áramlási citométerrel (Beckman Coulter) mértük, a kapott adatokat Summit v6.1 szoftverrel (Beckman Coulter) elemeztük.

3.4. Biokémiai módszerek

3.4.1. GUS-festés

A mintákat jéghideg 90%-os acetonnal fixáltuk 1 órán át, majd egész éjszakán át inkubáltuk 37°C-on az X-Gluc festőoldatban (50 mM foszfát puffer (pH 7.2), 500 μ M K₃Fe(CN)₆ (kálium-ferricianid), 500 μ M K₄Fe(CN)₆ (kálium ferro-cianid), 2 mM X-Gluc (Thermo Fisher Scientific)).

3.4.2. ER membrán-izolálás

Az ER membrán-tisztítást William J. Simon és társai a 2D PAGE: Sample Preparation and Fractionation, volume 2 (Posch, 2008) című könyvben lévő protokollja alapján végeztük el, 4°C-on végezve minden centrifugálást.

A folyékony nitrogénben előrölt növényi mintát felvettük ugyanakkora térfogatú homogenizáló pufferben (500 mM szukróz, 10 mM KCl, 1 mM EDTA, 1 mM MgCl2 2 mM dithiothreitol (DTT), 100 µM fenil-metil-szulfonil-fluorid (PMSF)), majd 15 percig centrifugáltuk 1000 g-vel. A felülúszót óvatosan az előre elkészített szukróz grádiens tetejére mértük, ahol az alsó fázist 6,5 ml 30% szukróz alkotta, míg a felső fázist 3,5 ml 20% szukróz, mindkettő 1 mM EDTA-val és 100 µM PMSF-el. Ezt 2 óra centrifugálás követte 100000 g-vel (24200 rpm SW41 rotorral). Ezután a két fázis határán lévő opálos színű réteget ugyanakkora mennyiségű (~2 ml) 60%-os szukrózzal (+1 mM EDTA, 100 µM PMSF) kevertük el és erre rétegeztük az újabb grádienst: 3 ml 40%, 3 ml 30% és 2 ml 20% szukrózt (+1 mM EDTA, 100 µM PMSF), amit 22 óra centrifugálás követett 250000 g-vel (38200 rpm SW41 rotorral). A nagy tisztaságú ER-membrán frakció itt is a 20 és 30%-os szukróz határán volt található, amit ezután kiegészítettünk hideg desztillált vízzel 4 ml-re, ami a centrifugacső teljes térfogata, és centrifugáltuk 45 percig 250000 g-n (43000 rpm SW60 Ti rotorral). A pelletet ezután felvettük 100 μl pufferben (50 mM HEPES pH 7.4, 100 mM NaCl, 0,25% n-Dodecyl β-D maltoside (DDM), 1% (v/v) proteáz inhibitor koktél (cOmplete, EDTA-free Protease Inhibitor Cocktail Tablets, Roche).

Mivel csíra nagy mennyiségben áll rendelkezésünkre, ráadásul az éppen csírázó mag nagyon sok ER-t tartalmaz, ezért elsősorban ebből a forrásból nyertük ki az ER membránt. 1 g száraz tömegű mag csírázás után 3 g-ra dagadt és ebből 100 µg ER membránfehérjét tisztítottunk, tehát a kiindulási tömeg egy tízezredének megfelelő fehérjét nyertünk ki. 1 g érett R108 gümőből 350 µg ER membránfehérjét sikerült izolálnunk.

A kinyert ER membránt a benne található calnexin transzmembrán fehérjére specifikus elsődleges (CNX1/2: AS12 2365, Agrisera) és nyúl IgG-specifikus másodlagos ellenanyaggal végzett Western blot analízissel ellenőriztük.

A tisztított ER-membrán 4°C-on legalább két héten át megőrizte az általunk vizsgált aktivitását.
3.4.3. Szimbioszóma membrán-izolálás

A szimbioszóma izolálásához Catalano és munkatársai (Catalano és mtsai., 2004b) protokollját használtuk, 4°C-on végezve minden centrifugálást. Eredményeink alapján valóban tiszta szimbioszóma-membrán kinyeréséhez a protokollt az ER-izolálásból hátra maradt anyagból érdemes elvégezni, így szorítva minimálisra az ER-szennyeződést, hisz a két endomembrán rendszer összenőve található a növényi sejtekben.

A folyékony nitrogénben előrölt gümőket felvettük ugyanakkora térfogatú extrakciós puffer 1-ben (0,5 M szukróz, 50 mM HEPES pH 7.4, 10mM DTT, 1% (v/v) proteáz inhibítor koktél), majd miután átengedtük 10 µm pórusátmérőjű szűrőn, 1 percig centrifugáltuk 10000 g-n (az ER-izolálásból hátramaradt anyagon elegendő a centrifugálást elvégezni). A pelletet újra felvettük 0,5 ml extrakciós puffer 1-ben és 0,5 ml extrakciós puffer 2-re (1,5 M szukróz, 50 mM HEPES pH 7.4, 10mM DTT, 1% (v/v) proteáz inhibítor koktél) rétegeztük. Ezt 1 percig centrifugáltuk 5000 g-n, majd a grádiens határán elkülönülő és az afölött lévő réteget leülepítettük 2 perc centrifugálással 10000 g-n. A pelletet felvettük 0,5 ml extrakciós puffer 1ben és 0,5 ml extrakciós puffer 3-ra (1 M szukróz, 50 mM HEPES pH 7.4, 10mM DTT, 1% (v/v) proteáz inhibítor koktél) rétegeztük, és 5 percig centrifugáltuk 10000 g-n. A pelletet felvettük 0,5 ml extrakciós puffer 1-ben, és Pasteur pipettával óvatosan szuszpendálva széttörtük a szimbioszóma membránt, majd 10000 g-n centrifugáltuk 1 percig. A pelletet felvettük 0,5 ml extrakciós puffer 1-ben, és még kétszer megismételtük az előző lépést, így a végén ez lett a szimbioszóma-membrántól megszabadított bakteroid frakció (ami a mikroszkópos vizsgálatok alapján infekciós fonalakat és az abban található baktériumokat tartalmazza), míg a három lépésnél egybegyűjtött felülúszót 3 órán át centrifugáltuk 26000 gvel. A tiszta szimbioszóma membránt tartalmazó pelletet végül 100 µl pufferben (50 mM HEPES pH 7.4, 100 mM NaCl, 0,25% DDM) vettük fel.

1 g érett R108 gümőből 2350 µg szimbioszóma membrán-fehérjét sikerült izolálnunk.

A kinyert szimbioszóma membrán tisztaságát (ER-membrán mentességét) az ER membránban található kalnexin fehérjére specifikus ellenanyaggal végzett Western blot analízissel ellenőriztük.

3.4.4. A szintetikus szignál peptidek és Western blot

A szintetikus szignál peptideket vízben oldottuk fel. Habár az NCR SP-k is nehezen oldódtak nagyon magas hidrofobicitásuk miatt, az oldódás még nagyobb gond volt a nodulin 25 (Nod25, Medtr3g055440) SP és a kalmodulinszerű protein (CaML2, Medtr3g055585) SP esetében, ráadásul ez utóbbi egy általunk kipróbált oldószerben (víz, DMSO, izopropanol, ecetsav) sem maradt stabil, így vizsgálni sem tudtuk. Az SPP-specifikus inhibítor (Z-LL)₂ ketont DMSO-ban oldottuk fel 1 mM-os végkoncentrációban.

A reakciók összeállításánál különösen nagy figyelmet szenteltünk annak, hogy az emésztett és nem emésztett minták pontosan ugyanannyi szintetikus peptidet tartalmazzanak, így a kétszeres mennyiségben összerakott mintákhoz a kettéválasztás után tettük hozzá az ERmembránt, illetve az üres puffert. Az SPP-gátlás vizsgálatakor a kétszeres mennyiségben összerakott minta a szintetikus peptid mellett az ER-membránt is tartalmazta és a kettéválasztás után tettük hozzá a (Z-LL)₂ ketont, illetve az oldószerét, a DMSO-t.

1 ng szintetikus szignál peptideket egy éjszakán át, szobahőmérsékleten 1300 rpm-n rázatva kezeltük a membrán kivonatokkal. Az SPP-specifikus inhibítor, (Z-LL)₂ keton csak magas, 200 mM koncentráció mellett és rövidtávon fejtett ki védőhatást, így ennek vizsgálatakor 20 percenként vettünk mintát, és azokat azonnal inaktiváltuk az SDS tartalmú mintapufferrel.

A mintákat felvettük mintapufferben, 10 percig forraltuk 95°C-on, 5 percig centrifugáltuk 13300 rpm-el, majd felvittük 12%-os akrilamid gélre, ami méret szerint választja el a fehérjéket. A mintákat tartalmazó gélt egy éjszaka során PVDF membránra blottoltuk, amit másnap a HA antigén tagre specifikus, nyúlban termeltetett elsődleges ellenanyaggal, majd ezt követően a torma peroxidáz fehérjével fuzionált nyúl IgG-specifikus másodlagos ellenanyaggal hibridizáltuk. Az eljárás során a torma peroxidáz a hozzá adott kemilumineszcens szubsztráttal reagált, mely reakció során keletkező fotonok jelet égettek a ráhelyezett fényérzékeny filmre, ezzel mutatva az SP jelenlétét vagy hiányát, azaz az ER-membrán és a feltételezett SPP aktivitását.

Kis mennyiségben használtuk a SP-eket (1 ng) és az ER membránt (300 ng), ezért nem használtunk loading kontrollt, mivel ezek a minták túl kevés fehérjét tartalmaznak ahhoz, hogy a Ponceau megfesse azokat.

3.4.5. HA jelölt szintetikus peptidek és *M. truncatula* gümőfehérjék kötődésének vizsgálata affinitás kromatográfiával

A folyékony nitrogénben eldörzsölt gümőkhözt (7, 11, 14, 17 napos gümők) azonos térfogatú PBS puffert (pH 7.4) adtunk, majd felszuszpendálás után 10 percig centrifugáltuk 13300 rpmmel, 4°C-on. A felülúszót ismét 10 percig centrifugáltuk 13300 rpm-mel, 4°C-on, majd az újabb, nagyobb tisztaságú felülúszót öt egyenlő részre osztottuk, mindegyikhez 20 µg szintetikus peptidet adva (HA, NCR120 SP, NCR216 SP, NCR247 SP, NCR252 SP. Aminosavszekvenciák a 3. függelékben találhatók meg. A szignál peptidek C-terminális végén egy HAtag volt, míg az N-terminális részen lévő StrepII-tag hibás szintézis miatt nem működött). Ezt PBS-el ekviriblált mágneses gyöngyökre (Miltenyi Biotec) mértük, melyhez előzetesen hozzáadtunk 30 µl HA-epitóp specifikus egér G1 immunoglobulin tartalmú oldatot (µMACS Anti-HA MicroBeads, Miltenyi Biotec), és 20 percig inkubáltuk 4 fokon. A gyöngyöket háromszor mostuk 2 ml PBS-el, majd kétszer 1 ml 25 mM ammónium-bikarbonát pufferrel (NH₄HCO₃). Ezután a mágneses gyöngyökhöz kikötődött fehérjéket 20 percig inkubáltuk szobahőmérsékleten 20 µl 25 mM ammónium-bikarbonát pufferben, mely során a hozzáadott 12,5 ng/µl tripszin leemésztette a fehérjéket, és a 10 mM ditiotreitol (DTT) redukálta azokat, megszüntetve a stabilizáló diszulfid-hidakat. Ezután 50 µl 55 mM jódacetamid tartalmú 25 mM ammónium-bikarbonát puffer hozzáadásával egy éjszakán át szobahőmérsékleten alkileztük a mintát, blokkolva a redukálás során szabaddá vált SH-csoportokat. Másnap a fehérjeoldatot kétszer visszamértük a mágneses gyöngyökre megtisztítva azt és az elúciót 5 µl 10%-os hangyasavval kezeltük, leállítva a tripszines emésztést. A mintákon LC-MS/MS (folyadékkromatográfia-tömegspektrometria) analízist végeztek.

3.5. Antimikrobiális módszerek

3.5.1. Mikroba törzsek és peptidszintézis

A kísérletekhez a Gram pozitív Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (HNCMO112011), Listeria monocytogenes (ATCC 19111) és a Gram negatív Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 8739), Salmonella enterica (ATCC 13076), Klebsiella pneumoniae (NCTC 13440), Acinetobacter baumannii (ATCC 17978)

baktérium- (ATCC, USA és NCTC - National Collection of Type Cultures, Anglia), valamint a *Candida albicans* W01 (Ördögh és mtsai., 2014) törzseket használtuk.

Az NCR peptidek szintézisét (CaNCR13, CaNCR63, MsNCR443, PsNCR349, PsNCR352, mind C-terminális karboxil-csoporttal) a ProteoGenix (Franciaország), míg az NCR-származékok szintézisét (CaNCR63₁₋₂₀, CaNCR63₁₅₋₃₄, MsNCR463₁₆₋₃₅, MsNCR463₁₇₋ 30, PsNCR349₂₆₋₅₀, PsNCR349₃₁₋₅₀, mind C-terminális amid-csoporttal) a kooperációs partnerünk (SZTE, Szent-Györgyi Albert Orvostudományi Kar, Orvosi Vegytani Intézet) végezte.

3.5.2. A peptidek antimikrobiális aktivitásának vizsgálata

A friss baktérium- és élesztőkultúrát $OD_{600}=0,01$ -re kihígítva (~10⁷ sejt logaritmikus növekedési fázisban) 3 órán át kezeltük 0, 0,2, 0,4, 0,8, 1,6, 3,125, 6,25, 12,5, 25 µM NCR-el 20 mM kálium-foszfát pufferben (pH 7.4), majd ebből 5 µl-t csöppentettünk LB agarózra. Kontrollként 0,1-10240 µM ampicillin antibiotikumot (Merck) és mikonazol antifungális vegyszert (Duchefa Biochemie) alkalmaztunk. A legalacsonyabb peptidkoncentráció, mely teljes mértékben megakadályozta a mikrobatelep növekedését, a minimális gátló koncentráció (minimális baktericid koncentráció, MBC vagy minimális fungicid koncentráció, MFC).

3.5.3. A peptidek biofilm bontásának vizsgálata

Annak céljából, hogy az NCR-ek hatását a már kialakult biofilmeken teszteljük, OD₆₀₀=0,1-es *A. baumannii* és *C. albicans* sejteket inkubáltunk mintánként 200 µl LB-t vagy YPD-t tartalmzó 96-lyukú plate-ben, 37°C-on 48 órán át. Ezután 160 µl-t óvatosan eltávolítottunk, a lyukak falán hagyva a biofilmet, majd 200 µl-re egészítettük ki 0, 25, 50 vagy 10 µM NCR-t tartalmazó hatszor hígított LB-vel vagy YPDA-val. A hígítás az NCR aktivitásának megőrzése miatt szükséges, de így a mikrobák is képesek növekedni. 24 óra kezelés után a ki nem tapadt sejteket eltávolítottuk, majd a hátra maradt biofilmeket kétszer mostuk PBS-el (pH 7.4). A biofilmeket 35 µl 0,1% metanolban oldott kristályibolyával festettük egy órán át szobahőmérsékleten, majd a maradékot desztillált vízzel mostuk ki, kétszer öblítve át a lyukak falát. A megfestett biofilmeket egy éjszakán át szárítottuk szobahőmérsékleten, majd 200 µl 96%-os alkohollal szolubilizáltuk. A biofilm mennyiségét 570 nm-en mértük (Hidex Sense Microplate Reader,

Plate Reader Software, verziószám: 5064). A kezeletlen biofilmet vettük 100%-nak és ehhez viszonyítottuk a kezelések hatására lecsökkent biofilm mennyiséget. Az átlagot (mean) és szórást (SD, standard deviation) három kísérlet eredményei alapján számítottuk ki.

3.5.4. DNS-kötő vizsgálat

100 ng linearizált és HindIII restrikciós endonukleázzal emésztett Lambda fág DNS-t (Lambda DNA/HindIII marker, Thermo Scientific) inkubáltunk 0, 5 vagy 10 μ M vízben oldott szintetikus peptiddel, majd mindezt fél óra után megfuttattuk 1%-os agaróz gélen. Az elektroforézis során a szabad DNS fragmentek a gélbe futottak, míg a peptid által megkötött és aggregálódótt DNS a zsebben maradt.

3.5.5. Humán vörösvérsejtek hemolízisének vizsgálata

A kísérlethez szükséges vért a Szegedi Regionális Vérellátó Központ szolgáltatta. A 10 ml EDTA-tartalmú vért addig mostuk (1 perc centrifuga 1500 g-n és TBS – 10 mM Tris, pH 7.2, 150 mM NaCl), míg a felülúszó színtelenné nem vált, majd a sejteket felvettük 12 ml TBS-ben és ebből 100-100 μl szuszpenziót inkubáltunk 1 órán át 37°C-on 0, 0,2, 0,4, 0,8, 1,6, 3,125, 6,25, 12,5, 25, 50 és 100 μM NCR jelenlétében. Ezután a sejteket 1 percig centrifugáltuk 1500 g-n, majd a felülúszót steril 96-lyukú plate-be tettük, és a felszabadult hemoglobin szintjént OD₅₆₀-on mértük (Hidex Sense Microplate Reader, Plate Reader Software, verziószám: 5064). A csupán TBS-ben lévő sejtek értéke szolgált alapszintként, míg a 0,5% Triton X-100-al (Serva) kezelt minta 100% hemolízisnek.

3.6. Programok

Szekvenciaillesztéshez a Clustal W version 2.1 (Larkin és mtsai., 2007), a Jalview version 2.11.0 (Waterhouse és mtsai., 2009) és a Weblogo (Crooks és mtsai., 2004) programokat használtuk.

A filogenetikai fák elkészítéséhez a MEGA-X version 10.0.5 (Kumar és mtsai., 2018) programot használtuk.

Az SP-eket a SignalP 5.0 (Almagro Armenteros és mtsai., 2019), a *h*-régiókat és a TMDket a TMHMM (Krogh és mtsai., 2001) webprogramokkal határoztuk meg.

Az NCR peptidek izoelektromos pontját (pI) és nettó töltését (net charge, NC) a <u>https://pepcalc.com/</u> webprommal számoltuk ki, míg a többi fizikokémiai tulajdonságot a DBAASP v3 webprogrammal (Pirtskhalava és mtsai., 2021).

A diagramok elkészítéséhez a GraphPad Prism version 5.01 (San Diego, California USA, <u>www.graphpad.com</u>) programot használtuk.

A 11. ábra elkészítéséhez a biorender.com webprogramot használtuk.

A Venn diagram elkészítéséhez a Venny 2.1.0 webprogramot használtuk: bioinfogp.cnb.csic.es/tools/venny (Oliveros, 2007-2015).

4. EREDMÉNYEK

4.1. Az NCR-ek evolúciója

Az NCR gének általában 2 exonból állnak, amelyek közül az első exon a szignál peptidet (SP) kódolja, míg a második és esetenként a harmadik exon kódolja az érett peptidet, amelyik az SP nélküli, bakteroidba jutó aktív forma. A hírvivő RNS-ek (mRNS) transzlációja a citoplazmában lévő szabad riboszómákon keződik el és először a fehérje N-terminális része kezd el kialakulni. Amennyiben az N-terminális rész egy SP, ami egy nagy mértékben hidrofób peptid, úgy felismeri a szignál felsimerő részecske (SRP) és a mRNS-SP-riboszóma komplexet az endoplazmatikus retikulum (ER) membránhoz szállítja, ahol befejeződik a transzláció. A SPek evolúciója általában gyorsabb az érett fehérjéénél, hiszen nem csak a szinoním mutációk (amikor a nukleotid változása nem jár aminosav változással), hanem sok nem-szinoním mutáció (amikor a nukleotid változása aminosav változással jár) sem változtatja meg lényegesen a hidrofóbicitásukat, hiszen a húsz fehérjekódoló aminosavból tizenegy hidrofób vagy hidrofób oldallánccal rendelkezik (Williams és mtsai., 2000). Ellenben az NCR-ek esetében az érett peptidek diverzek, feltehetően a baktériumokkal való közvetlen kapcsolatuk miatt (az immunfehérjékhez hasonlóan (Williams és mtsai., 2000)) és a SP-ek konzerváltak. Az NCRekre nehezedő szelekciós nyomás hatására a génduplikációval kialakuló NCR-ek (paralógok) új funkciót vehetnek fel (szétválasztó vagy más néven diverzifikáló szelekció), míg az NCR SP-ek szekvenciája kevéssé változik (stabilizáló szelekció) (Alunni és mtsai., 2007), ami ellentétes a legtöbb SP-nél megfigyeltekkel (Williams és mtsai., 2000).

A munkám során az összes *M. truncatula*, valamint több IRLC faj NCR peptidjeinek, illetve más kládok NCR-szerű peptidjeinek evolúcióját vizsgáltam közel kétezer peptid bevonásával.

4.1.1. Az NCR szignál peptidek konzerválódása

A 753 rendelkezésünkre álló MtNCR peptid szekvenciából a SignalP webprogram alapján 722 rendelkezik prediktált SP-del, melyek közül 627 elég hidrofób (TMHMM webprogram alapján) ahhoz, hogy meg tudjuk állapítani a hidrofób *h*-régióját, azaz az ER membránba ágyazodó szakaszt. Erről a 627 NCR-ről joggal feltételezhetjük, hogy nem pszeudogének és a szimbioszómába lokalizálódnak, így ezek vettek részt az analízisünkben (12. ábra).

12. ábra. Az NCR szignál peptidek *h*-régiója, az aminosavak előfordulási gyakorisága és a hélix-törő szerin konzervált pozíciója.

Aminosavak előfordulási gyakorisága (frekvenciája) 627 *M. truncatula* (**A**) és 1034 IRLC (**B**) NCR szignál peptid (SP) esetében. Az oszlop magassága jelzi, hogy az adott pozíció mennyire konzervált (a skála maximuma 4 bit), míg ezen belül a szimbólum magassága jelzi a gyakoriságát az adott pozícióban. *h*-régió: Az SP-k ER membránba illeszkedő, elsősorban hidrofób aminosavak által alkotott szakasza. Piros: hidrofób aminosavak (A, C, F, G, I, L, M, P, V, W, Y), fekete: hidrofil aminosavak (D, E, H, K, N, Q, R, S, T). Az ábra a Weblogo webprogrammal készült: <u>https://weblogo.berkeley.edu/</u>

A legtöbb (159) NCR SP-je 26 aminosav (aa) hosszúságú, 112 db 24 aa és 103 db 23 aa hosszúságú, míg a többi NCR SP a 20 és 45 aa közötti tartományba esik. Az átlagosan 18 aa *h*-régió első 14 aminosava a legtöbb NCR SP-ben megegyezik (FVYV/AM/LII/LFLSLFLV), amit megelőz egy konzervált lizin (K). A *h*-régió előtt 6 aminosavval az NCR SP-ek közel 100%-ában található egy metionin (M), ami a legtöbb esetben a lánckezdő aminosav, habár ezt sok esetben megelőzheti még hat aminosav (12A. ábra). A nem-Mt IRLC NCR SP-k (12B. ábra) szinte teljesen megegyeznek a *M. truncatula* NCR SP-ekkel, elsősorban a *h*-régió és az azt megelőző tizenkét aminosav, beleértve a két fent említett metionint, de a nem-Mt IRLC NCR SP-k N-terminális része gyakrabban hosszabb és több metionint is tartalmaz konzervált pozíciókban.

Feltűnő, hogy az NCR SP-k nagy részében a tisztán hidrofób aminosavakból álló *h*régióban található egy hidrofil szerin (S), mégpedig konzervált pozícióban. A S és a cisztein (C) hélix-törő vagy destabilizáló aminosav, melyek megbontják az α -hélix szerkezetét és így lehetőség nyílik a szignál peptid peptidáz (SPP) számára, hogy itt elhasítsa a *h*-régiót és vele együtt a transzmembrán domént (TMD) (Lemberg és Martoglio, 2002; Voss és mtsai., 2013). A 627 MtNCR SP *h*-régió közül 533 (85%) tartalmazza a két aminosav egyikét, azaz SPP célpontnak tekinthető. Az 533-ból 304 esetben csak egy hélix törő vagy destabilizáló aminosav található a *h*-régióban (57%), 171 MtNCR SP-nél kettő (32%), 30-nál három (6%), míg nyolcnál négy ilyen aminosav is potenciális SPP célponttá teszi az SP-t (2%). C 112 darab SP *h*-régióban található (az 533 21%-a), míg S 499-ben (94%).

A S nem csak felülreprezentált az MtNCR SP *h*-régiókban, de jelentős részük konzerválódott: az átlagosan 18 aminosav hosszúságú NCR SP *h*-régiók 72%-ában a tizedik aminosav S. Kilenc további IRLC növény (*A. canadensis, C. arietinum, G. orientalis, G. uralensis, O. spinosa, O. viciifolia, O. lambertii, P. sativum, Trifolium pratense*) 1034 darab NCR SP *h*-régiójából 803-ban (78%) található meg legalább egy C vagy S, ami 752 esetben S (94%). A szekvenciaillesztés alapján a *M. truncatula* NCR SP *h*-régiók (17A. ábra) szinte teljesen egyeznek a kilenc IRLC NCR SP *h*-régióival (17B. ábra), ami rendkívül magas fokú konzerváltságra utal, és amelyben a hélix-törő S is nagymértékben konzerválódott.

4.1.2. Az érett NCR peptidek változatossága és strukturális jellemzői

Az *NCR* géneket először *M. truncatula*-ban írták le (Mergaert és mtsai., 2003), de azóta kiderült, hogy az IRLC minden fajában megtalálhatók, hisz eddig mind a 13 vizsgált nemzetség összesen 16 vizsgált fajában azonosítottak ilyena géneket, még a legősibb *G. uralensis*-ben is (Frühling és mtsai., 2000; Istvánek és mtsai., 2014; Montiel és mtsai., 2017; Durán és mtsai., 2021; Huang és mtsai., 2022). Meglepőbb felfedezés volt, hogy a távoli rokon Dalbergioid klád vizsgált fajai, *Aeschynomene afraspera*, *A. evenia*, *A. indica*, valamint a földimogyoró (*Arachis hypogaea*) és vad ősei (*A. duranensis* és *A. ipaensis*) (Czernic és mtsai., 2015; Bertioli és mtsai., 2016; Raul és mtsai., 2022) és eddig nem publikált eredmények alapján a Indigoferoid klád eddig elemzett tagja, az *Indigofera argentea* (Ren, disszertáció, 2018) is termelnek gümőspecifikus NCR-szerű peptideket.

Ezen fajok gümőiben a bakteroidok terminálisan differenciáltak, ahogy a bükkönyformák (*Faboideae*) alcsaládjának további három kládjának (Core Genistoid, Millettioid, Mirbelioid) vizsgált fajaiban is, így ezt a jelenséget összesen a hat klád esetében 30 nemzetség 39 fajánál írták már le (Bergersen, 1955; Dart és Mercer, 1966; Chandler, Date, és Roughley, 1982; Golinowski, Kopcińska, és Borucki, 1987; Higashi és mtsai., 1987; Loureiro és mtsai., 1994; Lavin és mtsai., 2001; Frühling és mtsai., 2000; Wojciechowski, Lavin és Sanderson, 2004; Lavin, Herendeen és Wojciechowski, 2005; Chou és mtsai., 2006; Mergaert és mtsai., 2006; Elliott és mtsai., 2007; Sprent, 2007; Oono és mtsai., 2010; Czernic és mtsai.,

2015; Istvánek és mtsai., 2014; Montiel és mtsai., 2016; 2017; Skawińska és mtsai., 2017; Karmakar és mtsai., 2018; Kalita és Małek, 2020) (13. ábra). A szimbióta irreverzibilis átalakításának képessége legalább öt alkalommal alakult ki egymástól függetlenül a bükkönyformáknál (Oono és mtsai., 2010), ebből kettő bizonyos és egy valószínűsíthető esetben ismertek a (részben) felelős faktorok: az NCR-ek és az NCR-szerű peptidek. A hat fent említett klád összesen 230 nemzetséget és több mint tíz ezer fajt számlál, melyek nagy részénél valószínű a terminális bakteroid differenciáció, és így feltételezhető az azt kiváltó NCR-ek vagy NCR-szerű peptidek jelenléte is.

13. ábra: Filogenetikai törzsfa *matK* génszekvenciák alapján azon bükkönyforma (*Faboideae*) nemzetségekből, melyek gümőiben terminális bakteroid differenciácó figyelhető meg.

Sorban: nemzetség; fajok száma; azon faj vagy fajok, melyben leírták a bakteroid differenciációt; *NCR* vagy *NCRL* gének száma, amennyiben ismert. A törzsfa elkészítéséhez az egyes fajok maturáz K (matK) génjének szekvenciáit hasonlítottuk össze, tízezer ismétléses bootstrap analízist alkalmazva. Az ághossz az evolúciós rokonsággal arányos, mutáció/nukleotid a közös őshöz képest.

4.1.2.1. Az NCR és NCR-szerű peptidek aminosav szekvenciájának összehasonlítása

Szemben a SP-ek konzerváltságával, az érett NCR peptidek nagymértékben különböznek egymástól. Ennek ellenére konzervált aminosavak találhatók a ciszteineken kívül is, amit a négy (NCR 4C), illetve a hat (NCR 6C) konzervált ciszteint tartalmazó *M. truncatula* NCR peptidek és a hat (NCR-szerű 6C), illetve a nyolc (NCR-szerű 8C) konzervált ciszteint tartalmazó *Aeschynomene* (Dalbergioid) NCR-szerű peptidek szekvenciaillesztése mutat (14. ábra).

14. ábra. Az NCR és NCR-szerű peptidek aminosav sorrendje.

Az aminosavak előfordulási gyakorisága az egyes pozíciókban (frekvenciája) és konzervált mintázatok érett *M. truncatula* NCR-ek és Dalbergioid NCR-szerű peptidek esetében. A betűk magassága az egyes oszlopokban az aminosavak relatív frekvenciája az adott pozíciókban. Az aminosavak színezettsége: kék a pozitívan töltött (K, R), piros a hidrofób (A, F, I, L, M, V) és amfipatikus (X, Y), míg a többi aminosav fekete. Az aláhúzott glicin (G) az NCR-szerű peptideknél jelzi a γ-mag motívumot (GXCX_nC).

Az aminosavak változatossága miatt az *M. truncatula* NCR-ek izoelektromos pontja (pI) széles skálán, 3,5 (erősen anionos) és 11,25 (erősen kationos) között mozog. Az *M. truncatula* NCR-ek 35%-a anionos, 23%-a neutrális és 42%-a kationos, valamint közel azonos az NCR 4C-t és NCR 6C-t kódoló gének száma.

A konzerváltság az NCR 4C esetében a legnyilvánvalóbb, ahol a C1 (első konzervált cisztein) és C2 között nagy arányban található egy treonin (T), két aszparaginsav (D) és közvetlenül C2 mögött egy prolin (P), ami valószínűleg a diszulfid-hidat és a peptid struktúráját módosítja (Kang és mtsai., 2007). A 9-nél magasabb izoelektromos pontú (pI>9), azaz erősen kationos NCR 4C peptidek esetében a pozitív töltésű arginin (R) és lizin (K) aminosavak is átlépik a 60%-os gyakoriságot, elsősorban a C-terminális végen, ami a kationosság elsődleges oka és ami az antimikrobiális peptidekre (AMP) jellemző motívum. A pI>9 NCR 4C-nél ezen

két aminosav közül egyre inkább dominál az R, aminek nagyobb a pozitív töltése fiziológiai pH-n, mint a K-nek, míg az erősen kationos NCR 6C-nél ez nem figyelhető meg.

NCR 6C-nél jóval kevésbé konzerváltak az aminosavak, habár az NCR 4C-nél 60%-os határt elérő aminosavak itt is gyakoriak, de a legtöbb esetben nem érik el ezt a szintet. A C5 és C6 között egyetlenegy esetben sincs P, sem *M. truncatula*-ban, sem az összes elérhető, közel 1400 IRLC NCR 6C esetében sem, aminek valószínűleg strukturális okai lehetnek (Kim és mtsai., 2015).

Az NCR-szerű peptidcsalád tagjaira is jellemző a változatos aminosav-szekvencia. Ezekre a peptidekre jellemző egy amfipatikus triptofán (W) megléte az N-terminális részen a C2 előtt öt hellyel. Hasonlóképpen a W megtalálható a növényi defenzineknél, de itt négy hellyel a C2 előtt. Az N-terminális végen itt is található egy D és az NCR-szerű 6C esetében egy P is, habár itt a C1, és nem a C2 környezetében. Az NCR-szerű 6C peptidek esetében egy erősen kationos régió is található C3 után, ami talán szükséges ezeknek a peptideknek az aktivitásához, annak ellenére, hogy az össztöltésük alapján neutrálisak vagy egyenesen anionosak. Az NCR-szerű peptideknél megfigyelhető több hidrofób vagy amfipatikus aminosav konzerváltsága (elsősorban az N-terminális W és a C-terminális tirozin (Y)), ami szintén AMP jelleg, habár a Gram negatív baktérium-ellenes AMP-kre kevésbé jellemző (Wang, 2020). A legtöbb NCR-szerű peptidnél megtalálható a γ-mag antifungális motívum (GXCX₃₋₉C, ahol a két C a defenzinek ötödik és hatodik konzervált ciszteinjére vonatkozik), ami az NCR-ek esetében ritka, de a növényi defenzineknél megtalálható (Cools és mtsai., 2017; Tarr, 2016). Ellenben a defenzinek α-mag motívuma (GXCX₃₋₅C, ahol a két C a defenzinek második és harmadik konzervált ciszteinjére vonatkozik), melynek funkciója kevéssé ismert (Kaewklom és mtsai., 2018) hiányzik az NCR-ek, és az NCR-szerű peptidekből.

4.1.3. Az NCR-ek ko-evolúciója a gümőspecifikus szignál peptid peptidázzal

A *M. truncatula* gümő átmeneti zónájában (IZ) kifejeződik egy gümőspecifikus szignál peptid peptidáz (nodSPP) (Mergaert és mtsai., 2003; Maunoury és mtsai., 2010), aminek szerepe lehet az SP-k további fragmentálásában, ami az ER SP-ktől való megtisztításában játszhat szerepet. Az SPP minden eukariótában jelen van, de a *M. truncatula*-nál két SPP-t azonosítottak. Az NCR-ek a teljes gümő transzkriptom 5%-át teszik ki (Guefrachi és mtsai., 2014), így az NCR SP-k is nagy mennyiségben jelen vannak, ami szükségessé teheti egy gümőspecifikus SPP funkcióját. Az NCR transzkriptumok 55%-a az IZ-ban mutatható ki (Roux és mtsai., 2014)

adatai alapján). Annak megállapítására, hogy a nodSPP valóban gümőspecifikusan fejeződik ki RT-qPCR analízist végeztünk (15. ábra).

15. ábra. Az általános genSPP és a gümőspecifikus nodSPP expressziója *M. truncatula* különböző szerveiben. Az mRNS-szintek a nodSPP gümőben mért szintjéhez lettek normalizálva, p érték<0,0001 (****, two-way ANOVA) minden esetben.

M. truncatula-ban a nodSPP mRNS szintje lényegesen magasabb a gümőben, míg a többi szervben ennek csupán 2-10%-a, ami alátámasztja a gén gümőspecifikus kifejeződését vagy legalábbis gümő-indukált jellegét. A többi szervben is működő általános SPP (genSPP) mRNS mennyisége a gümőben csak harmadakkora, mint a nodSPP-é, és hasonló szintű a gyökérben, szárban, levélben, míg valamivel alacsonyabb a csírában.

Az expressziós mintázat alapján feltételezhetjük, hogy a génduplikáció után az egyik SPP (genSPP) megőrizte az általános, az egész növényre kiterjedő funkcióját, míg a nodSPP feladata elsősorban a gümőre korlátozódik. Génduplikáció hiányában a gének szövetspecifitása általában konzervált, míg kis léptékű duplikáció után (amennyiben nem az egész genom kettőződik meg) az alacsonyabb expressziójú paralóg hamar szövetspecifikussá válhat (Kryuchkova-Mostacci és Robinson-Rechavi, 2016). Ezt tükrözi a nodSPP mRNS-szintje, ami jelentősen alacsonyabb a gyökérben, szárban és levélben, mint a genSPP esetében, de azt messze túlszárnyalja a gümőben, ami a gümőre történő specializálódás folyománya lehetett.

Mivel az NCR-ek IRLC-specifikusak, megvizsgáltuk, hogy más IRLC növényben, *M. truncatula*-hoz hasonlóan, jelen van-e *nodSPP*. Az elérhető IRLC gümő-transzkriptumok alapján (Montiel és mtsai., 2017) minden eddig vizsgált IRLC fajban két SPP paralóg található (16. ábra), még a legegyszerűbb *G. uralensis*-ben is, míg a legközelebbi rokon Robinioidokban (*L. japonicus*) csupán egy *SPP* gén van jelen, ami arra utal, hogy a génduplikáció a két csoport szétválása után, de az IRLC diverzifikációja előtt zajlott le.

IRLC: Ac: Astragalus canadensis, Ca: C. arietinum, Go: Galega orientalis, Mt: Medicago truncatula, Ol: Ononis spinosa. Dalbergioid: Ad: Arachis duranensis, Ai: A. ipaensis. Külcsoport: Os: Oryza sativa (egyszikű). A vizsgálathoz csak teljes vagy közel teljes SPP fehérjeszekvenciákat használtunk fel, ezért nem szerepel az összes tárgyalt faj.

Az analízis során mindegyik IRLC pillangós esetében az egyik SPP paralóg (Ac28117, Ca23910, Go34232, Ol29690) az Mt nodSPP-vel került egy csoportba, míg a másik IRLC SPP paralóg (Ac13842, Ca01881, Go28846, Ol16530) az Mt genSPP-vel. A vizsgálatba bevontuk

az allotetraploid földimogyorót (*Arachis hypogaea*), illetve a kétszeres kromoszómakészletük miatt jobban vizsgálható diploid őseit, az *A. duranensis-t* és az *A. ipaensis*-t, mivel az NCRL pepdiket termelő Dalbergioid növények közül ezeknek érhető el teljes genomja (Bertioli és mtsai., 2016) (a földimogyoró 55 NCRL-t kódol (Raul és mtsai., 2022)). Mindkét diploid *Arachis* faj két SPP paralóggal rendelkezik, melyek az IRLC SPP-duplikációtól függetlenül duplikálódtak, ráadásul ezekben a fajokban NCR-szerű peptidek is megjelentek az NCR-ektől függetlenül.

Ezek az expressziós eredmények nem alkalmasak különböző fajok összehasonlítására, hisz mindegyik egyed- és gümőfejlődése más-más ütemben zajlik le, de az látható hogy mind a hat IRLC faj esetében, ahol SPP szekvenciák és expressziós szintek elérhetők (Montiel és mtsai., 2017), a *Medicago* nodSPP ortológ mRNS-szintje jelentősebb magasabb a gümőben, mint a genSPP-é (17. ábra).

17. ábra. IRLC növényekben, hasonlóan *M. truncatula*-hoz, két SPP kópia van és a a nodSPP expressziós szintje a gümőkben bizonyos összefüggést mutat az adott fajban található *NCR* gének számával. nodSPP: Gu52107, Ol29690, Ac28117, Os15499, Go34232, Medtr1g008280. genSPP: Gu52104, Ol16529, Ac13842, Os15500, Go28846, Medtr3g109932.

4.2. Az NCR247 hatásmechanizmusa

Az NCR247 az NCR peptidcsalád legkisebb tagja. Az érett peptid 24 aminosav hosszúságú, 4 konzervált ciszteint tartalmaz, az izoelektromos pontja (pl) 10,15, a nettó töltése (net charge, NC) +6, a Boman-indexe 4,63 kcal/mol, ami magasabb az ismert fehérjék 99,86%-ánál (Farkas és mtsai., 2014). Az NCR247 (Medtr5g056815) a gümő ZIIp-jében kezd el kifejeződni, ahol elindul a bakteroidok differenciációja, majd IZ-ben éri el expressziója maximumát, ahol a terminális differenciáció jelentős része végbemegy, majd az expresszió lecseng a ZIII-ban (Farkas és mtsai., 2014). A ZIIp és az IZ határán abbamarad a bakteroidok osztódása és megkeződik a megnyúlásuk, és ezzel párhuzamosan aktiválódik az endoreduplikáció. Az NCR247 döntő szerepet játszik ezekben a folyamatokban. In vitro kísérletekben gátolta a szabadon élő rhizobium Sm1021 osztódását, és a baktérium megnyúlását idézte elő (Farkas és mtsai., 2014). Az NCR247 szubletális 1,5 µM koncentrációban pórus kialakítása nélkül jut be Sm1021 baktériumokba, anélkül, hogy károsítaná a membránt, és ezáltal átjárhatóvá tenné a propídium-jodid (PI) számára (Farkas és mtsai., 2014). Magasabb koncentráció (5 µM) már károsítja a bakteriális membránt és gátolja a baktérium növekedését (Farkas és mtsai., 2014; Mikuláss és mtsai., 2016), míg ennél magasabb koncentráció (8 µM) külső membrán vezikulák kialakulásához és sejtpusztuláshoz vezet (Montiel és mtsai., 2017) A ciszteinek szükségesek az NCR247 in vitro antimikrobiális hatásához, de nem a diszulfid-híd képzés miatt, hisz ennek hiányában a redukált peptid még aktívabbá vált (Haag és mtsai., 2012; Ribeiro és mtsai., 2017; Shabab és mtsai., 2016).

A gümőfejlődés során az NCR-ek ellenére nem letálisak a bakteroidokra, melynek az egyik oka az lehet, hogy a peptidek koncentrációja a szimbioszómákban feltételezhetően jóval alacsonyabb (szubletális), továbbá az IZ sejtjeiben egyszerre több száz NCR is termelődik, a kationos peptidek mellett anionos és neutrális peptidek is, melyek kompenzálhatják az NCR247 és más kationos peptid baktériumölő hatását. Az NCR247 hatásmechanizmusának megértéséhez leginkább az affinitás kromatográfiás kísérletek világítottak rá, melyeknél *M. truncatula* gümőből izolált bakteroidokat, valamint intakt és feltárt szabadonélő baktériumokat inkubáltunk együtt StrepII és FLAG-taget hordozó érett NCR247 peptiddel (Farkas és mtsai., 2014) (18. ábra).

Elektrosztatikus kapcsolat a negatívan töltött membránnal

18. ábra. Az NCR247 összetett hatásmechanizmusa érinti a bakteriális membránt és számos biológiai funkciót a citoszolban.

BacA: az NCR-ek felvételében szerepet játszó ABC-transzporter, Belső m.: belső membrán, EPS: exopoliszacharid, FtsZ: szerepe a bakteriális sejtosztódás megindítása, GroEL: chaperon (dajkafehérje), Hrrp: peptidáz, bakteriális kompatibilitási faktor, KPS: kapszuláris poliszacharid, Külső m.: külső membrán, LPS: lipopoliszacharid, PG: peptidoglikán, Smc03872: peptidáz, bakteriális kompatibilitási faktor, VLCFA: nagyon hosszú láncú zsírsavak (very-long-chain fatty acids), Z-gyűrű: meghatározza a szeptum és azzal együtt a sejtosztódás helyét. Eredeti ábra: Lima és mtsai., 2020.

Az NCR247 egyik kölcsönható partnere a bakteriális sejtosztódás egy konzervált fehérjéje, az FtsZ (Filamenting temperature-sensitive mutant Z), mely a sejtosztódást megelőzően polimerizálódik, és a sejtek középvonalán egy gyűrűt alakít ki, amelyre a szeptum fehérjék épülnek. Az NCR247 gátolja a szeptum-formálódást, feltehetően az FtsZ kötése által, megakadályozva annak polimerizálódását és végsősoron a sejtosztódást is. Másik kölcsönható partnere a GroEL chaperon, amely fontos eleme a szimbiotikus rendszereknek, beleértve a *M*.

truncatula-S. meliloti szimbiózist is. Az NCR247 a GroEL-en keresztül számos fehérje szerkezetét és működését befolyásolhatja. Az NCR247 további partnerei közt vannak még riboszomális és a transzlációhoz szükséges fehérjék is (Farkas és mtsai., 2014). Az NCR247 gátolja a *dnaA*, *gcrA* és a *ctrA* sejtciklust szabályozó gének kifejeződését is (Penterman és mtsai., 2014), ami DNS megsokszorozódáshoz vezet és magasabb DNS mennyiséget eredményez (Shabab és mtsai., 2016). Az affinitás kromatográfiás kísérletek azt is kimutatták, hogy az NCR247 más NCR-ekkel is képes komplexet alkotni. A NCR247 jelentősen gátolta a riboszomális gének kifejeződését megváltoztatva a riboszómák összetételét a szabadonélő baktériumnál, ami hozzájárulhat a bakteroidok megváltozott fiziológiájához. *In vitro* kísérletekben az NCR247 koncentrációtól függően gátolta a fehérjeszintézist, és globális transzkripciós változásokat idézett elő (Farkas és mtsai, 2014).

Több bakteriális fehérjének is van közvetlen vagy közvetett hatása az NCR247 aktivitására. A BacA egy ABC transzporter (Karunakaran és mtsai., 2010), amelynek egyik feladata az NCR-ek bejuttatása a szimbiótába, és melynek hiánya NCR-rezisztenciát okoz *in vitro* (Haag és mtsai., 2011; Shabab és mtsai., 2016), míg a szimbiózisban megakadályozza a bakteroidok differenciálódását, és előidézi azonnali pusztulásukat (Berrabah és mtsai., 2015; Haag és mtsai., 2011). BacA-nak egy másik funkciója a nagyon hosszú láncú zsírsavak (verylong-chain fatty acids, VLCFA) szintézise, ami hatással lehet a bakteriális membrán szerkezetére, aminek a megfelelő állapota szintén elengedhetetlen a szimbiózishoz (Arnold és mtsai., 2017; Marlow és mtsai., 2009). Bakteriális peptidázok, így a külső membránban található SMc03872 és a citoszolban lévő HrrP képesek az NCR-ek hasítására, így ezek hiánya vagy megléte képes befolyásolni a szimbiotikus kompatibilitást a két fél között (Arnold és mtsai., 2017; Price és mtsai., 2015; Shabab és mtsai., 2016).

4.3. Az NCR gének működésének szabályozása

Az egyes NCR-ek hatásmechanizmusának megértése mellett ugyancsak fontos kérdés, hogy mi szabályozza az NCR-ek szimbiózis-specifikus kifejeződését. Mivel az *NCR* gének jelenléte IRLC-specifikus, így azt feltételeztük, hogy a szabályzásukat is IRLC-specifikus, az NCR-ekkel együtt kifejlődött transzkripciós faktorok (TF) végzik. Annak vizsgálatára, hogy az *NCR* promóterek aktívak-e nem-IRLC hüvelyesekben, kiválasztottuk az *NCR169* promóterét, melyben megtalálható a 41 bp hosszú négyes motívum (Nallu és mtsai., 2013), ami 278 másik *NCR* promóterben is jelen van (4. függelék). Meglepő módon GUS aktivitást figyeltünk meg

az NCR169 promóterrel szabályozott GUS riporter génnel transzformált nem-IRLC szójában, ahol a bakteroid differenciáció reverzibilis, ami igazolja, hogy az *NCR169* promóter aktív, és megfelelő expressziót biztosít szójában is (19A. ábra).

19. ábra. Az NCR169 promóter aktív a szója gümőiben, ahol az NCR169 expressziója a bakteroidok megnyúlását és genomméret-növekedését okozza

A. Az NCR169 promóter által szabályozott GUS gén kifejeződése (kék szín) transzgenikus szójagümőben. B. Bradyrhizobium japonicum CB1809 bakteroidok SYTO 9/PI festett transzgenikus szójagümőben üres vektorral és a saját promóterével szabályozott NCR169 génnel transzformálva. C. Vad típusú B. japonicum CB1809, B. japonicum USDA110 és bclA deléciós mutáns USDA110 bakteroidok üres vektorral és a saját promóterével szabályozott NCR169 génnel transzformált szójagümőkből izolálva. Az USDA110 jelentősen rövidebb, mint a CB1809, így a megnyúlása is kevésbé látványos. D. 500-500 db CB1809 bakteroid hosszának gyakorisági eloszlása üres vektorral (kék vonal), illetve a saját promóterével szabályozott NCR169 génnel (narancssárga vonal) transzformált szójagümőből izolálva. E. 500-500 db CB1809 bakteroid DNS-tartalmának gyakorisági eloszlása üres vektorral (kék vonal), illetve a saját promóterével szabályozott NCR169 génnel (narancssárga vonal) transzformált szójagümőből izolálva, SYTO 13-mal festve és áramlási citométerrel mérve. F. 500-500 db vad típusú és bclA deléciós mutáns (*AbclaA*) USDA110 bakteroid hosszának gyakorisági eloszlása üres vektorral (kék vonal), illetve a saját promóterével szabályozott NCR169 génnel (narancssárga vonal) transzformált szójagümőből izolálva, SYTO 13-mal festve és áramlási citométerrel mérve. F. 500-500 db vad típusú és bclA deléciós mutáns (*AbclaA*) USDA110 bakteroid hosszának gyakorisági eloszlása üres vektorral (kék vonal), illetve a saját promóterével szabályozott NCR169 génnel (narancssárga vonal) transzformált szójagümőből izolálva, SYTO 13-mal festve és áramlási citométerrel mérve. F. 500-500 db vad típusú és bclA deléciós mutáns (*AbclaA*) USDA110 bakteroid hosszának gyakorisági eloszlása üres vektorral (kék vonal), illetve a saját promóterével szabályozott NCR169 génnel (narancssárga vonal) transzformált szójagümőből izolálva. Eredeti ábra: Zhang és mtsai., 2023.

A saját promóterével kifejeztetett NCR169 a terminális differenciáció jeleit okozta, legnyilvánvalóbban a bakteroidok megnyúlását a szójagümő-sejtekben (19B. ábra). Az NCR169-et kifejező szójagümőből izolált bakteroidok jól láthatóan megnyúltak, és a megnőtt DNS-tartalmuk is arra utal, hogy endoreduplikálódtak. Az átalakulás nem történik meg, amennyiben a szimbiótából hiányzik a *bacA* gén ortológja, a *bclA* (*AbclA*), hisz a BacA/BclA ABC-transzporter szükséges az NCR-ek bejutásához a baktériumba (19C-F. ábra). Affinitás kromatográfiával, élesztő-kettős-hibrid analízissel (Y2H) és elektroforetikus mobilitás eltolódás vizsgálattal (EMSA) azonosítottunk két AHL (AT-Hook Motif Nuclear Localized) TF-t, melyek jelen vannak más növényekben is, tehát az NCR-ek kifejeződéséhez már meglévő TF-ok rendelődtek hozzá. *Lotus japonicus* gümőkben, ahol a szójához hasonlóan nincsenek NCR gének, *NCR169 promóter::GUS* aktivitást csak a két AHL gén jelenlétében lehetett detektálni, miközben az AHL1 vagy AHL2 gén hiánya nem befolyásolta a nitrogénkötő gümők fejlődését. Ezzel szemben *M. truncatula* esetében mind az AHL1, mind az AHL2 lecsendesítése (RNSi) Fix⁻ gümőket eredményezett és teljes mértékben megakadályozta a bakteroidok differenciálódását (Zhang és mtsai., 2023).

4.4 Az SPP szerepe a gümőfejlődésben

4.4.1. A gümőspecifikus szignál peptid peptidáz gén elcsendesítésével a gümő Fix⁻-á válik

Egy gén által kódolt fehéje szerepének tisztására az egyik módszer az, ha az azt kódoló gént eltávolítjuk a rendszerből vagy működésképtelenné tesszük. Erre a gén kiütése a legbiztosabb módszer, de a CRISPR/Cas technológia még nem volt ismert, amikor az RNS-interferencia (RNSi) mellett döntöttünk. Az RNSi egy eukarióta, sejtszintű szabályozó és védekező mechanizmus, ami a kettősszálú RNS-molekulákat ismeri fel. Az egyik RNS-szál beépül a RISC-komplexbe (RNS-indukálta némítókomplex), ami elhasítja az ezzel komplementer RNS-eket. A transzformáns növényekbe juttatott gümőspecifikus szignál peptid peptidáz (*nodSPP*) génszakaszt tartalmazó kontsrukcióról duplaszálú RNS íródott, amit az RNSi mechanizmusa felismert és elhasított, ahogy a komplementer endogén nodSPP mRNS-t is, ezáltal csendesítve a gént. A hairy-root tranziens transzformálás során csupán a gyökér és így az azon növő gümők transzformációs esemény eredménye, azaz a konstrukciók a genom más-más pontjába épülnek be és máshogy fejeződnek ki, így a különböző gyökereken lévő gümők egymással nem

összevethetők. Az ezután létrehozott stabil transzformánsokból származó eredmények már sokkal megbízhatóbbak, hisz itt az egész növény egy transzformáns sejtből fejlődik ki és minden sejtje genetikailag azonos, ráadásul önbeporzás révén homozigóta növény esetében az összes utód is a transzgénre nézve azonos a szülőjével.

A BASTA (hatóanyaga a foszfinotricin, PPT) szelekción növő összes transzformáns növény (nulladik transzformáns generáció, T0) hordozta a transzgént, amit a kétszálú RNS kifejezésére használt Lj ubiquitin promóterre terveztünk. Mendel törvényének megfelelően a heterozigóta T0 szülők önbeporzásából származó T1 utódok az RNS-interferencia domináns jellege révén 25%-a vad típusú, míg 75%-a mutáns fenotípust mutatott, ami azt is jelenti, hogy ezekben az esetekben a transzgén egy kópiában épült be a genomba. RT-qPCR-el meghatároztuk a *nodSPP* és a *genSPP* szintjét tizenkét független transzformáns vonal gümőiben (20. ábra). A legtöbb esetben *a nodSPP* szintje a kontroll R108-énak 2-10%-ára esett, míg a *genSPP* szintje nem vagy alig változott, mutatva, hogy a tervezett konstrukció specifikus volt a *nodSPP*-re. További vizsgálatokhoz a hármas vonalat választottuk, mert itt az érintett növényeken az összes gümő Fix⁻ volt és a növények egészségesek voltak, a transzgén beépülése nem okozott a gümőn kívül más szervben megfigyelhető fenotipikus változásokat.

20. ábra. A nodSPP RNSi vonalakban a nodSPP mRNS szintje nagymértékben lecsökkent, míg a genSPP kifejeződése magas maradt.

Az mRNS szintek a nodSPP, illetve a genSPP mRNS-nek az R108 kontroll gümőben mért szintjéhez lettek normalizálva (R108-ban az érték 1). p érték<0,01 a nodSPP esetében (kivéve a kilencedik mintánál, ahol nem szignifikáns), nem szignifikáns (ns) a genSPP esetében (two-way ANOVA).

A nodSPP RNSi gümőkből izolált bakteroidok szignifikánsan rövidebbek voltak (2,91 μm), mint az R108 gümőkből izolált bakteroidok (8,61 μm), méretükben inkább a szabadon élő Rm41 baktériumokhoz álltak közelebb (1,25 μm), és sosem figyeltünk meg az esetükben Y-alakú formát. A nodSPP RNSi és a vad típusú R108 hosszanti gümőmetszeteket konfokális mikroszkóp alatt összehasonlítva nem látható különbség a ZI-ben és ZII-ben. A nodSPP RNSi IZ-ban elkezdődött a bakteroidok megnyúlása, de ez nem érte el a vad típusú gümők IZ-jában lévő bakteroidok hosszát (21. ábra). Az IZ 1-2 sejtsor vastagságú volt csak, és ebből nem fejlődött ki a ZIII, helyette egy bakteroidoktól mentes, korai szeneszcens zóna volt megfigyelhető.

21. ábra. A nodSPP RNSi gümőben nem alakul ki a nitrogénkötő ZIII, a bakteroidok alig nyúlnak meg, szemben társaikkal a vad típusú R108 gümőkben.

A. Vad típusú R108 és nodSPP RNSi gümő sztereó mikroszkópos felvétel. B. R108 és nodSPP RNSi gümő, konfokális mikroszkóp, SYTO 9 festés. C. R108 és nodSPP RNSi gümő ZII-IZ, konfokális mikroszkóp, SYTO 9 festés. D. R108 és nodSPP RNSi IZ sejtekben látható bakteroidok, SEM. E. Szabadonélő Rm41 baktériumok, R108 gümőkből, illetve nodSPP RNSi gümőkből izolált bakteroidok hosszának összehasonlítása. A kétféle bakteroid között szignifikáns a méretkülönbség (páros t-próba, p érték<0,0001).</p>

4.4.2. A rizs SPP (OsSPP) komplementálja a nodSPP hiányát

Annak bizonyítására, hogy valóban a nodSPP hiánya okozza a fenotípust, komplementáltuk a mutáns növényt, azaz a hiányzó gén bevitelével vizsgáltuk, hogy visszaállítja-e a vad típusú fenotípust. A transzgenikus növény genomjába beépült RNSi konstrukció egy domináns allél, hisz egy erős promóterrel folyamatosan termeli a kettősszálú RNS-t, így a komplementálás céljából bejuttatott újabb transzgént is csendesítené. RNSi-vel lecsendesített gént úgy lehet komplementálni, ha a komplementáló konstrukció nem tartalmazza az RNSi célszekvenciát, amit például a gén nem transzlálódó régiójából (UTR) hoznak létre, így kihagyható a komplementáló konstrukcióból. A nodSPP két UTR-e rövid és nem specifikus, így az RNSi konstrukciót a kódoló szakaszra terveztük, ezért nem volt lehetséges a komplementálás nodSPP-vel. A genSPP nukleotid szinten 82%-ban homológ a nodSPP-vel (5. függelék), ezért először úgy ítéltük meg, hogy nem alkalmas a komplementálásra, de felülvizsgáltuk a véleményünket és meg fogjuk próbálni. A rizs (Oryza sativa) SPP (OsSPP) fehérje szinten 80%-ban, míg nukleotid szinten 70%-ban homológ az MtnodSPP-vel, míg az ecetmuslica (Drosophila melanogaster) SPP (DmSPP) fehérje szinten 43%-ban, míg nukleotid szinten 48%-ban homológ az MtnodSPP-vel. Ezt a két SPP gént az MtnodSPP promóterrel meghajtva bejuttattuk a nodSPP RNSi növényekbe hairy-root transzformációval.

A nodSPP promóterrel meghajtott OsSPP sikeresen komplementálta a nodSPP RNSi gümőkben a natív nodSPP hiányát, a sikeresen transzformált, GFP-t kifejező gümők egy része rózsaszín lett, ami jelzi működőképességüket (22. ábra). A DmSPP jelenléte gátolta a gümő organogenezist, így a GFP-t kifejező sikeresen transzformált gyökereken nem nőttek gümők, csupán elvétve pár menekülő, GFP jelet nem mutató darab. Ez a hatás kisebb mértékben ugyan, de megfigyelhető volt az OsSPP esetében is, ami valószínűsíthetően a transzmembrán fehérjékkel való transzformálás technikai nehézségeinek a következménye.

22. ábra. A nodSPP RNSi növényeket komplementálta a nodSPP promóterrel szabályozott OsSPP. Zöld: GFP jel (a sikeres transzformációt jelzi). Sárga: autofluoreszcencia. Piros keret: sikeresen komplementált gümő. Kék karika: sikertelenül komplementált gümő.

4.4.3. nodSPP RNSi gümő transzkriptom analízise

Annak megállapítására, hogy nodSPP hiányában mely gének kifejeződése változik szignifikánsan és mi vezethet ahhoz, hogy a nodSPP RNSi növények gümői Fix⁻ fenotípust mutatnak, teljes gümő transzkriptom-analízist végeztünk. A három R108 kontroll és három nodSPP RNSi gümő minta transzkriptom-elemzése alapján azt találtuk, hogy a nodSPP RNSi gümőkben 6280 gén mRNS-szintje változott szignifikánsan (legalább kétszeresen, p érték<0,05) a kontroll, vad típusú R108 gümőhöz képest: a génexpresszió 3148 esetben nőtt (6. függelék), 3132 esetben csökkent (7. függelék). A csak gümőben, vagy a gümőben a gyökérhez képest legalább ezerszer erősebben kifejeződő (amit egy lézer mikrodisszekciós *M. truncatula* gümő-transzkriptom alapján (Roux és mtsai., 2014) állapítottunk meg) 517 gén közül 481 downregulálódik a nodSPP RNSi gümőben (93%), 20 gén upregulálódik (4%), míg 16 gén mRNS szintje nem változik szignifikánsan (3%). A szignifikánsan eltérő kifejeződést mutató gének közül számos nagy jelentőséggel bír a szimbiózis során (23. ábra).

23. ábra: A nodSPP hiányában a leghemoglobin, szinte minden NCR és GRP, valamint számos immuntolerancia-gén repressszált. A növény a baktériumpartnert idegenként ismeri fel és elpusztítja. Zárójelben az érintett gének száma látható. NCR: gümőspecifikus ciszteinben gazdag peptidek, GRP: gümőspecifikus glicinben gazdag fehérjék, dnf2: PI-PLC-XD-tartalmú fehérje, symCRK: szimbiotikus ciszteinben gazdag receptorszerű kináz, RSD: szimbiószóma kialakulásának szabályozója, PR-10: patogenezishez kapcsolható fehérje 10, R gén: rezisztencia gén. p<0,05.

Tizenegy leghemoglobin (Lb) génről átíródó mRNS-szintje csupán 0,7-5,7%-a volt a kontroll gümőben mért szintnek, és Lb hiányában az oxigén jelenléte működésképtelenné teszi a nitrogenáz enzimkomplexet.

Az elemzésünk során 618 NCR gén kifejeződését tudtuk detektálni (p érték<0,05), tehát a legtöbb NCR-t megtaláltuk. Ezek közül 608-nak az mRNS-szintje legalább felére esett vissza a nodSPP RNSi gümőkben a vad típusú R108 gümőkhöz képest, azaz szignifikánsan csökkent expressziót mutatnak. 498 NCR mRNS a vad típusban mérhető szint 10%-át sem érte el, és 187 NCR esetében az 1%-át sem. A csökkent expressziót mutató NCR-ek közül részletesebben karakterizált az NCR169 (*dnf7*, Medtr7g029760), melynek hiányában a bakteroidok differenciációja részleges, és így a gümő fejlődése sem fejeződik be (Horváth és mtsai., 2015). Az NCR211 (*dnf4*, Medtr4g035705) hiányában a ZIII sejtek üresek vagy csupán elpusztult bakteroidokat tartalmaznak (Kim és mtsai., 2015).

A másik IRLC-specifikus géncsalád, a gümőspecifikus glicinben gazdag fehérjék (GRP) 28 tagjából 23-nak a kifejeződése szignifikánsan csökkent, míg a GRP1F (Medtr5g084100) szintje a kétszeresére nőtt.

A *dnf2* (PI-PLC-XD-tartalmú fehérje, Medtr4g085800) gátolja a gümő védelmi reakcióit és a korai szeneszcenciát (Berrabah és mtsai., 2015, 2014b; Gourion és mtsai., 2015), valamint szükséges a bakteroid differenciációhoz (Bourcy és mtsai., 2013). A symCRK (szimbiotikus ciszteinben gazdag receptorszerű kináz, Medtr3g079850) gátolja a gümő védelmi reakcióit, hiányában korai szeneszcencia alakul ki (Berrabah és mtsai., 2015, 2014b; Gourion és mtsai., 2015). Az RSD (szimbiószóma kialakulásának szabályozója, regulator of symbiosome differentiation, Medtr7g063220) egy olyan TF, ami a gümő szekréciós útvonalának szabályzásával járul hozzá a szimbioszóma fejlődéséhez, gátolja a gümő védelmi reakcióit, és közvetve befolyásolja az NCR-ek kifejeződését is (Berrabah és mtsai., 2015, 2014b; Gourion és mtsai., 2015; Sinharoy és mtsai., 2013). Mindhárom gén szükséges ahhoz, hogy a gazdanövény ne kezelje patogénként a sejtjeibe jutott rhizobiumot.

Több, a gazdanövény védekezésében és lebontásban fontos szerepet játszó gén expressziója is megnőtt, így a PR10-nek (patogenezishez kapcsolható fehérje 10, Medtr2g035130) (van Loon és mtsai., 2006) és közel kétszáz rezisztencia génnek (R gének), valamint kitinázokat és papainokat kódoló géneknek.

4.4.4. A gümőspecifikus szignál peptid peptidáz (nodSPP): összefoglalás

Megállapítottuk, hogy a szignál peptid peptidáz gén azokban a pillangósvirágú növénycsoportokban duplikálódott és alakult ki egy gümőspecifikus paralóg (*nodSPP*), ahol a gümőkben NCR-ek, illetve NCR-szerű peptidek termelődnek (IRLC, Dalbergioid klád). A *nodSPP* csendesítésével a gümőfejlődés leáll, benne közel ezer, szimbiózisban fontos szerepet betöltő gén csökkent expressziót mutat (leghemoglobin, *NCR*, *GRP* gének) és a szimbiótái képtelenek a nitrogén megkötésére. A nodSPP hiányában a gazdanövény nem ismeri fel a rhizobiumot és elpusztítja azt.

4.5 Az NCR SP-k SPP szubsztrátok

4.5.1. A szignál peptid peptidáz (SPP)

Az SPP a GxGD aszpartil proteázok családjába tartozó enzim. A család tagjai két katalitikus aszparaginsavukkal (D) részlegesen deprotonálják és ezáltal aktiválják a vízmolekulákat,

melyek hidrolizálják a célfehérjéket. A presenilin molekulacsalád tagjai, ahová az SPP is tartozik, kilenc transzmembrán doménnel (TMD) rendelkeznek. Közülük az SPP/SPP-like (SPP/SPPL) alcsalád tagjainak az N-terminális vége a lumenben, míg a C-terminális vég a citoplazmában helyezkedik el, azaz ezek a fehérjék a névadó presenilinekkel ellentétes irányban fűződnek a membránba. Az SPP/SPPL alcsalád tagjai intramembrán proteázként a membrán kettősréteg hidrofób részében az SPP/SPPL hatodik és hetedik TMD-je közé ékelődő célfehérjéket hasítják el (Brown és mtsai., 2000) (24. ábra).

24. ábra. A szignál peptidek útja és a szignál peptid peptidáz szerepe az endoplazmatikus retikulumban. A transzláció befejeztével az érett peptid az endoplazmatikus retikulum (ER) lumenbe jut, míg a szignál peptidet (SP) levágja a szignál peptidáz komplex (SPC). Az SP ezek után vagy diffundál az ER membránból a citoszolba, ahol lebontja a proteaszóma vagy elhasítja az szignál peptidáz (SPP). Eredeti ábra: Mentrup és mtsai., 2017.

Az SPP/SPP-like (SPP/SPPL) család erősen konzervált, tagjai minden eukariótában megtalálhatóak, de különböző membránokba ékelődve: az SPP az ER-ban található (a *nodSPP* és a *genSPP* az *SPP* két paralógja *M. truncatula*-ban), míg az SPPL2a késői endoszómákban, az SPPL2b a korai endoszómákban, az SPPL2c szintén az ER-ban, míg az SPPL3 a Golgi-készülékben. A le nem vágódó N-terminális szignál szekvenciával rendelkező SPP a transzláció után az ER lumenből a Golgi-ba jut, majd az O-glikozidos kötéssel hozzákapcsolt cukorláncok

megszerzése után a C-terminális végen található KKXX retenciós szignál révén kerül vissza az ER membránba.

Az SPP-nek a nevével ellentétben nem csak SP-ek lehetnek a célpontjai (az SPPL fehérjék az SPPL2c kivételével nem is találkozhatnak SP-kkel *in vivo*), hanem olyan transzmembrán (TM) fehérjék is, melyek II-es típusú orientációban illeszkedik a membránba, azaz az N-terminális végük a citoplazmában található, míg a C-terminális végük az ER lumenben. Ilyen fehérjék a II-es, illetve a IV-es típusú TM fehérjék, melyek több TMD-je közül legalább egy II-es orientációjú. A célfehérjének egy előzetes proteolízisen is át kell esnie, hogy a TM régiója hozzáférhetővé váljon az SPP számára: ez az SP-k esetében az érett fehérje lehasítása az SPC által (Kühnle és mtsai., 2019; Voss és mtsai., 2013).

4.5.2. Az izolált ER-ben lévő SPP hasítja a szubsztrát NCR SP-ket

Az SPP aktivitás in vitro vizsgálatához szükségünk volt tisztított ER membránra. A tisztítást az ER membrán markerként használt, abba integrálódó kalnexin fehérje jelenlétével ellenőriztük (Neutzner és mtsai., 2011), ahogyan a szimbioszóma membrán tisztaságát is (25A. ábra), ugyanis a szimbioszóma membrán izolálás során ER membrán szennyezi a mintát, ha nem vonjuk ki előtte az ER membránt a gümő extraktumból. A két membrán egymással kapcsolatban áll, mert ugyan a szimbioszóma membrán a plazmamembránból fűződik le, de mérete folyamatosan nő a bakteroidok megnyúlásával párhuzamosan és ezt a méretnövekedést a poszt-Golgi vezikulák (amik az NCR-eket is szállítják) mellett az ER membrán is táplálja (Gavrin és mtsai., 2017). Az SPP szubsztrátnak vélt NCR120 SP-t a vad típusú gümőkből tisztított ER membrán koncentrációtól függően hasította, míg az ugyanabból a gümőkből kivont szimbioszóma membrán erre nem volt képes még ötször nagyobb koncentrációban sem (25B. ábra). Csírából tisztított ER is képes az NCR120 SP hasítására, ami alapján a genSPP és a nodSPP döntően a szövet- és sejtspecifikus kifejeződésében mutat különbséget, míg enzimaktivitásukban, szubsztrátspecifitásukban nem. Amikor húsz percenként vettünk mintát az emésztésből, akkor vált láthatóvá, hogy a csíra ER membrán már 120 perc után teljesen elbontja az NCR120 SP-t, míg az SPP-specifikus gátlószer (Z-LL)2 keton (a h-régiót utánzó kompetitív inhibítor) jelenlétében a peptid csak 160 perc kezelés után tűnik el, azaz az életideje közel 50%-al megnőtt. Ezen eredmények értelmében az ER membrán aktivitása, melyet az SPPnek tulajdonítunk, valóban csak az ER membránra jellemző, ahol az SPP található, míg a szimbioszóma membránra nem, ahol nincs SPP. Az ER membrán aktivitását gátolja az SPP-

specifikus gátlószer, így bizonyítva, hogy a szignál peptidet valóban az SPP bontja le (25C. ábra).

25. ábra: Az ER membrán SPP aktivitása szükséges a szignál peptidek hasításához

A: Az ER-specifikus kalnexin kimutatása *M. truncatula* gümőből tisztított ER membránban és szimbioszóma membránban Western blottal. **B:** SPP-célpontnak prediktált, HA-taggel jelölt NCR120 SP inkubálása különböző mennyiségű ER membránnal és szimbioszóma membránnal. **C:** SPP-célpontnak prediktált, HA-taggel jelölt NCR120 SP inkubálása ER membránnal és az SPP-specifikus inhibítor (Z-LL)₂ keton hiányában, illetve jelenlétében. **B, C:** A western blot HA-specifikus elsődleges ellenanyaggal történt.

Az *M. truncatula* csírából tisztított ER-ban lévő SPP szubsztrátként fogadta el az SPP szubsztrátnak vélt szignál peptideket, így az NCR120 SP-t, amely két szerint tartalmaz a *h*-régiójában, valamint az NCR216 SP-t és NCR252 SP-t, amelyek egy-egy ciszteint tartalmaznak a *h*-régiójukban, míg *h*-régiójában hélix-törő aminosavat nem tartalmazó, tehát nem SPP szubsztrát NCR247 SP érintetlen maradt (26. ábra).

26. ábra: Az ER membránban lévő SPP hasítja az SPP szubsztrátnak vélt SP-eket, míg az NCR247 SP-et, aminek *h*-régiójában nincsen hélix-törő aminosav, nem.

SPP szubsztrátok: NCR120 SP, NCR216 SP, NCR252 SP. Nem SPP szubsztrát: NCR247 SP. *h*-régió: Az ER membránba illeszkedő, nagyobbrészt hidrofób aminosavak. Piros: hidrofób aminosavak (A, C, F, G, I, L, M, P, V, W, Y), fekete: hidrofil aminosavak (D, E, H, K, N, Q, R, S, T). Aláhúzott: hélix-törő vagy destabilizáló aminosav. A szintetikus SP-k HA-taggel jelöltek, a western blot HA-specifikus elsődleges ellenanyaggal történt.

4.5.3. Az NCR szignál peptidek fehérje kölcsönhatásának vizsgálata: az SPP szubsztrát és nem-szubsztrát SP-k más fehérjéket kötnek

Bár az SP-ek szerepe a fehérjék ER-ba való irányítása, nem kizárt, hogy más szerepük is lehet. Például a preprolaktin SP N-terminális része SPP hasítás után a kalmodulin fehérjéhez kötődve visszacsatolási jelként működik a preprolaktin termelés számára (Martoglio és mtsai., 1997). Ehhez hasonlóan a HIV-1 vírus p-gp160 burokfehérje SP N-terminális része SPP hasítás után kötődik a gazdasejt kalmodulinjához (Martoglio és mtsai., 1997). Annak érdekében, hogy azonosítsuk az NCR SP-k lehetséges kölcsönható fehérjepartnereit, négy különböző szintetikus HA-tag-gel jelölt NCR SP-vel és *M. truncatula* A17 gümőkivonattal végeztünk affinitás kromatográfiát (pull-down analízist a HA-tag kötésével), majd a SP-ekhez kötött fehérjéket tömegspektrométerrel azonosítottuk. Miután eltávolítottuk azokat a találatokat, melyeket a HAtag önmagában is kifogott, 359 *M. truncatula* fehérjét azonosítottunk legalább 2 peptid találattal (peptide count) (8. függelék). A három SPP-célpont (NCR120 SP, NCR216 SP, NCR252 SP) pull-down analízisében összesen 187 fehérjét találtunk, melyek közül 37 fehérje (20%) mind a három NCR SP-el kölcsönhatott. Az NCR247 SP, amit pedig nem hasít az SPP, pull-down analízis során 172 olyan fehérjéhez kapcsolódott, ami a másik 3 NCR SP egyikénél sem bukkant fel, ami az összes NCR247 SP találat 86%-a (27. ábra).

27. ábra: A szintetikus NCR SP-k lehetséges kölcsönható partnereinek száma affinitás kromatográfia alapján. SPP szubsztrátok: NCR120 SP (sárga), NCR216 SP (zöld), NCR252 SP (kék). Nem SPP szubsztrát: NCR247 SP (piros).

A három SPP szubsztrát NCR SP esetében több sejtmagban kódolt, de a mitokondriumba lokalizálódó fehérjét azonosítottunk, így a malonil koenzim A-acil-karrier transzacilázt (malonyl CoA-acyl carrier transacylase: G7J0N6), ami koenzim A-t termel a zsírsav anyagcsere során, a piruvát dehidrogenáz E1 alegységét (PDH E1: G7K5M8, G7LEP9), a piruvát-dekarboxilázt, ami a piruvátot és a koenzim A-t alakítja acetil-koenzim A-vá a mitokondrium mátrixában, és a mitokondrionális fissziós fehérjét (Mitochondrial fission 1 protein: B7FH42), ami a mitokondriumok számának szabályzásában vesz részt (Arimura, 2018).

A legmagasabb peptid-számmal jellemezhető nem SPP szubsztrát NCR247 SPspecifikus találatok közül kiemelkedik két darab I-es típusú keményítő elágaztató enzim (starch branching enzyme I, SBE I: A0A072U332, A0A072V2Q9) és a plasztid transzketoláz (plastid transketolase: G7IF28), melyek az amiloplaszt és a benne tárolt keményítő felépítésében vesznek részt (Tetlow és Emes, 2014). Alacsony peptid-találattal a nodSPP (A0A072VCH8) is a kölcsönható partnerek közt volt.

Az NCR247 SP 172 specifikus partnere közt található a gümőspecifikus kalmodulinszerű CaML1 (Q8LKW8/Medtr3g055570) fehérje, ami SP-je révén a szimbioszómába lokalizálódik (Liu és mtsai., 2006), továbbá egy kalmodulin-domén kináz CDPK protein (G7JJ67) és két EF-kéz kalciumkötő fehérje (B7FNA2, G7L1W8), mely fehérjecsaládba a kalmodulin is tartozik.

Az érett peptidről levágott SP-eket az ER-ból való kikerülésük után a proteaszóma emészti fel (Martoglio és Dobberstein, 1998), de úgy tűnik- a kétfajta NCR SP más-más útvonalra terelődik. Az NCR120 SP, az NCR216 SP és az NCR252 SP partnerei közt a proteaszóma elemeit találtuk meg (G7IJ13, G7J5I9, G7L5K7), míg az NCR247 SP-nél a COP9 szignaloszóma komplex tagjait (A0A072TQ51, A0A072U145, G7JDJ7, I3T146).

4.5.4. Az NCR szignál peptidek: összefoglalás

Közel kétezer IRLC NCR SP aminosav-szekvencia összehasonlításával megállapítottuk, hogy az NCR SP-ek konzerváltak, annak ellenére, hogy nagy általánosságban a SP-ek evolúciója gyorsabb, mint az érett fehérjéé. Az NCR SP-ek jelentős részénél az ER membránba ágyazódó hidrofób h-régióban konzervált pozícióban található egy hélix-törő szerin, ami ezeket a SP-eket lehetséges szignál peptid az (SPP) szubsztráttá teszi. Az NCR120 SP, az NCR216 SP és az NCR252 SP h-régiója tartalmaz hélix-törő aminosavakat (szerint vagy ciszteint) és ennek megfelelően az SPP-t tartalmazó ER membrán in vitro elhasította őket. Az NCR247 SP hrégiója nem tartalmaz hélix törő aminosavat és az ER membránban lévő SPP nem hasította el. A négy SP-del és M. truncatula gümő extraktummal affinitás kromatográfiát végezve a kölcsönható fehérjepartnerek két csoportba rendeződtek aszerint, hogy az SP SPP szubsztrát-e vagy sem. Az SPP szubsztrát SP-ek esetében a kölcsönható partnerek mitokondrionális fehérjék és a proteaszóma komplex elemei voltak, míg a nem SPP szubsztrát NCR247 SP esetében amiloplasztisz-fehérjék, kalmodulinok, a COP9 szignaloszóma komplex elemei és a nodSPP. Az eredmények alapján lehetséges, hogy a nem SPP szubsztrát NCR SP-ek a nodSPP-hoz kötődve, annak nem proteolitikus funkciója révén jelátviteli útvonalakat befolyásolnak, visszacsatolási jelként szolgálva a megfelelő gümőfejlődéshez és szimbiózishoz.

4.6. Az NCR-ek antimikrobiális hatása

A kationos NCR-ek közül néhánynak, így például az NCR247-nek és az NCR335-nek ismert a baktérium- és gombaölő képessége, ezért feltételeztük, hogy más NCR-eknek is lehet antimikrobiális hatása. Ráadásul az NCR-ek nagyon különbözőek (aminosav-sorrend, fizikokémiai tulajdonságok), ami alapján a hatásuk és specifitásuk is eltérhet egymástól. Évente öt millió ember hal meg mikrobiális fertőzésekben, ezért az Egészségügyi Világszervezet (World Health Organization, WHO) rendkívüli módon sürgeti innovatív, új antimikrobiális ágensek kifejlesztését, különösen a WHO kiemelten fontos listján szereplő baktériumokkal és gombákkal szemben (Murray és mtsai., 2022). Ennek megfelelően kémiai szintézissel előállított NCR peptidek és NCR peptid származékok antimikrobiális aktivitását vizsgáltuk emberi kórokozó baktériumokon, köztük multirezisztens ESKAPE törzseken, és a *Candida albicans* gombán.

4.6.1 Az NCR-ek antimikrobiális hatása humán patogén baktériumokkal szemben

Az NCR peptidek emberi kórokozókra gyakorolt hatásának megismerése céljából 78 *M. truncatula* NCR-t (MtNCR), 12 nem-Mt IRLC (*Pisum sativum, Galega orientalis, Cicer arietinum, Medicago sativa*) NCR-t és ezek 8 származékát teszteltük ESKAPE patogéneken (*Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterococcus faecalis*), továbbá *Listeria monocytogenes*-en és Salmonella enteritidis fajokon (1. táblázat).

Az MtNCR peptidek kiválasztásánál figyelembe vettük több fizikokémiai tulajdonságukat is, úgymint az izoelektromos pontjukat (pI: 2,95 és 10,69 között) és a nettó töltést (NC: -10,2 és 7,8 között), amelyek közül 50 peptid hétnél nagyobb pI értékkel és pozitív nettó töltéssel, míg 28 peptid hétnél kisebb pI értékkel és negatív nettó töltéssel rendelkezett. A többi kiválasztott IRLC NCR és NCR-származék mind erősen kationos jellegű (pI > 9,5, pozitív nettó töltés) volt.

NCR neve	pl	nettó töltés	Ef	Sa	Lm	Ec	Кр	Se	Pa	Ab	NCR neve	pl	nettó töltés	Ef	Sa	Lm	Ec	Кр	Se	Pa	Ab
NCR011	8,48	2,7	-	-	-	-	-	-	-	-	NCR391	8,54	3,7	-	-	-	-	-	-	-	-
NCR024	3.65	-7.2	-	-	-	-	-	-	-	-	NCR401	4.16	-6.0	-	-	-	-	-	-	-	-
NCR025	4.25	-3.2	-	-	-	-	-	-	-	-	NCR410	4.59	-2.2	-	-	-	-	-	-	-	-
NCR030	10.69	6.7	-	-	-	-	-	-	-	3.1	NCR429	3.88	-3.2	-	-	-	-	-	-	-	-
NCR031	7.82	1.7	-	-	-	-	-	-	-	-	NCR443	4.80	-2.2	-	-	-	-	-	-	-	-
NCR032	10.13	6.7	-	-	-	-	-	-	-	3.1	NCR466	5.20	-2.2	-	-	-	-	-	-	-	-
NCR033	9.13	3.8	-	-	-	-	-	-	-	-	NCR471	9.98	5.7	-	13	-	25	-	25	3.1	-
NCR035	9.49	4.7	-	-	-	13	-	-	-	NT	NCR502	5.95	-0.3	-	-	-	-	-	-		-
NCR042	9.70	5.7	-	-	-	-	-	-	25	-	NCR505	8.11	2.9	-	-	-	-	-	-	-	-
NCR051	3.80	-10.2	-	-	-	-	-	-	-	-	NCR520	8.88	4.1	25	25	-	25	-	-	3.1	-
NCR055	8.76	4.7	13	-	3.1	6.3	-	6.3	6.3	3.1	NCR521	9.02	3.7	-	-	-	-	-	-		-
NCR068	8.12	1.8	-	-	-	-	-	-	-	-	NCR529	7.43	0.6	-	-	-	-	-	-	-	-
NCR073	8.54	2.8	6.3	6.3	6.3	3.1	6.3	6.3	6.3	1.6	NCR533	9.82	5.8	-	-	-	25	-	-	-	-
NCR084	6,71	-0.2	-	-	-	-	-	-	-	-	NCR549	4.54	-1.3	-	-	-	-	-	-	-	-
NCR086	8.47	2.7	-	-	25	-	-	-	-	-	NCR556	5.82	-0.4	-	-	-	-	-	-	-	-
NCR095	2.95	-7.3	-	-	-	-	-	-	-	-	NCR570	6.66	-0.3	-	-	-	-	-	-	-	-
NCR115	7.83	1.6	-	-	-	-	-	-	-	-	NCR587	7.82	1.7	-	-	-	-	-	-	-	-
NCR117	4.03	-4.3	-	-	-	-	-	-	-	-	NCR616	6.66	-0.3	-	-	-	-	-	-	-	-
NCR119	8,98	3.7	-	-	-	-	-	-	-	-	NCR617	9.62	4.7	-	-	-	-	-	-	-	-
NCR121	6.67	-0.3	-	-	-	-	-	-	-	-	NCR630	8.48	2.7	-	-	-	-	-	-	-	-
NCR129	4 07	-23	-								NCR645	7 99	25	-	13	63	63	13	13	13	6.3
NCR135	8.67	4.6	-	-	25	-	-	-	6.3	6.3	NCR649	8.96	3.7	-	-	13	-		-		25
NCR137	10 12	59					-			25	NCR671	7.82	17	-							
NCR147	6.93	-0.1		-	13	25		-	13	31	NCR678	7.46	0.8	-	-		-				
NCR148	9.42	4.8		-		25	-	-			NCR686	8.00	1.8	_		_	-		-		-
NCR162	3.03	-6.4									NCR700	9.80	4.8			1.6	3.1	13	13	63	16
NCR183	10 52	6.8	25	-	6.3	6.3	-	25	63	NT	NCR702	9.46	4,0	-	-						
NCR192	10.05	7.8			-	-					NCR730	5 99	-0.4								
NCR196	8 11	2.6	-		-		-	-			NCR737	3.92	-61	-					-		
NCR200	7.82	1.8	-		-		-	-	-		PsNCB349	9.92	97	-	13		3.1		13	16	31
NCR208	7 73	0.6									PsNCR351	10 27	77	13	63	63	3.1		25	31	31
NCR209	4 16	-33			-		-		-		PsNCR352	10.30	6.8		6.3	6.3	3.1	13	63	3.1	31
NCR210	4 11	-5.2									PsNCR353	10.27	5.9		-	-	25			3.1	
NCR211	5 23	-3,2	-	-	-		-	-			CaNCR13	9.93	76	-	6.3	13	20	25	6.3	1.6	3.1
NCR213	6.12	-0.3	-	-	-	-	-	-	-	-	CaNCR15	10.21	8.7	-	25	-	25	-	-	6.3	25
NCR235	4.17	-2.4	-	-	-	-	-	-	-	-	CaNCR62	9.98	8.8	-	13	-	13	-	13	6.3	13
NCR280	9.92	3.8	-	-	3.1	3.1	25	3.1	13	1.6	CaNCR63	10.48	11.6	-	0.8	13	3.1	25	3.1	1.6	3.1
NCR281	8,41	3,8	-	-	6,3	-	-	-	25	-	GoNCR308	10,72	8,8	13	13	3,1	3,1	-	13	3.1	3.1
NCR284	8,37	3,7	-	-	-	-	-	-	-	-	GoNCR308 (1-15)	10,68	4,0	-	-	-	-	-	-	-	-
NCR299	8,48	2,8	13	-	13	13	-	-	3,1	-	GoNCR308 (16-23)	10,98	3,9	-	-	-	25	-	-	25	-
NCR325	8,13	2,7	-	-	-	-	-	-	-	-	GoNCR308 (16-25)	10,41	3,9	-	-	13	25	-	-	13	-
NCR336	8,37	3,8	3,1	3,1	1,6	3,1	3,1	3,1	3,1	3,1	GoNCR308 (16-30)	10,74	5,9	-	50	-	3,1	25	3,1	3,1	3,1
NCR340	7,68	1,0	-	-	-	-	-	-	-	-	GoNCR308 (23-30)	10,80	3,9	-	-	-	50	-	-	-	
NCR350	8,71	4,6	-	-	-	-	-	-	25	13	GoNCR308 (8-15)	9,77	2,0	-	-	-	-			-	-
NCR358	10,00	5,8	6,3	3,1	3,1	1,6	25	3,1	3,1	3,1	GoNCR308, oxidált	10,72	8,8	-	-	-	13			6,3	-
NCR361	8,88	3,7	-			-	-	-	25	-	GoNCR313 (23-44)	11,90	7,0	-	-	-	3,1	13	6,3	3,1	-
NCR377	9,51	4,7	-	6,3	13	3,1	13	6,3	3,1	6,3	MsNCR443	9,68	4,7	-	13	13	1,6	13	25	6,3	1,6
NCR384	9,07	5,6	-	25	6,3	25	-	25	3,1	25	MsNCR463	10,30	5,7	-	-	-	-	-	-	25	-
NCR386	6,67	-0,3	-	-	-	-	-	-	-	-	MsNCR465	9,69	4,9	-	-	6,3	13		-	25	6,3

1. táblázat: Az antimikrobiális tesztekhez használt NCR peptidek listája és aktivitása.

Piros négyzet jelöli, ahol az NCR megölte az adott baktériumot, feltüntetve az MBC (minimális baktericid koncentráció) értéket µM-ban, míg a zöld négyzet jelöli az inaktiv NCR peptideket.

Ef: Enterococcus faecalis, Sa: Staphylococcus aureus, Lm: Listeria monocytogenes (Gram pozitív baktériumok), *Ec: Escherichia coli, Kp: Klebsiella pneumoniae, Se: Salmonella enteritidis, Pa: Pseudomonas aeruginosa, Ac: Acinetobacter baumannii* (Gram negatív baktériumok).

 10^7 log-fázisú baktériumot kezeltünk 3 óráig át a peptidekkel kétszeres higítási sorozatban, 25 µM-tól 0,8 µM-ig terjedő koncentrációkban, majd a baktériumtelepek életképességét agar lemezeken vizsgáltuk meg. Három NCR, az NCR073, az NCR336 és az NCR358 az összes általunk tesztelt baktériumot elpusztította. Meglepetésünkre a kevésbé kationos NCR073 és NCR336 még hatékonyabbnak is bizonyult, mint a magas pI értékű NCR358, és alacsonyabb koncentrációkban pusztította el a baktériumokat. Ugyancsak meglepő volt, hogy az NCR073-hoz és az NCR336-hoz hasonló nettó töltésű és pI értékű peptidek nem (NCR011 és NCR284), vagy csak részlegesen voltak aktívak (NCR086 és NCR281), kiemelve az aminosav-sorrend jelentőségét. Az NCR284 és az NCR336 ugyan magas homológiát

mutatnak egymással (~67% fehérje szinten, az első és utolsó konzervált cisztein között), valószínűsíthetően egy új keletű génduplikáció eredményeképpen, és hasonló tulajdonságok jellemzik őket (pI: 8,37, NC: 3,7 és 3,8), ennek ellenére az aktivitásuk teljesen eltérő. NCR377 és NCR645 az *E. faecalis* kivételével az összes kórokozót elpusztította, míg NCR280 és NCR700 az *E. faecalis* és *S. aureus* ellen, NCR055 a *K. pneumoniae* és *S. aureus* ellen, NCR384 az *E. faecalis* és *K. pneumoniae* ellen nem volt hatékony csupán. NCR183 öt patogén törzset pusztított el, míg NCR299, NCR471 és NCR520 négyet, NCR135 hármat, NCR281, NCR350 és NCR649 kettőt, NCR030, NCR032 és NCR035 egyet. Egy tesztelt anionos NCR sem volt hatékony 25 μM-os koncentráció mellett sem, míg a neutrálisak közül csupán egy, NCR147 mutatott aktivitást *A. baumannii, E. coli, L. monocytogenes* és *P. aeruginosa* ellen.

A teljes hosszúságú IRLC NCR-ek mindegyike (CaNCR13, CaNCR63, MsNCR443, MsNCR463, PsNCR349, PsNCR352) aktív volt egy vagy több kórokozó ellen az MsNCR463at leszámítva, ami csupán *P. aeruginosa* ellen mutatott gyenge aktivitást (MBC: 25 μM). Az MsNCR463 relatív hatástalanságát az N-terminális rész adhatja, elsősorban az itt található nagy mennyiségű negatív töltésű aminosav (D) miatt, míg a pozitívan töltött aminosavak (K, R) a molekula C-terminális részén találhatók meg, ezért két rövidebb, C-terminális eredetű származékot is szintetizáltattunk, az MsNCR463₁₆₋₃₅-öt és az MsNCR463₁₇₋₃₀-at. Ehhez hasonlóan, a PsNCR349 C-terminális részén található kilenc lizin (K) lehet legnagyobbrészt felelős az NCR antimikrobiális aktivitásáért, így ebben az esetben is teszteltünk két rövidebb darabot, a PsNCR349₂₆₋₅₀-őt és a PsNCR3493₃₁₋₅₀-et. CaNCR63 esetében a pozitívan töltött aminosavak egyenletesen oszlanak el a teljes molekula hosszábban, így itt nagyjából kettévágtuk az NCR-et egy N-terminális részt (CaNCR63₁₋₂₀) és egy C-terminális részt (CaNCR63₁₅₋₃₄) hozva létre.

A C. arietinum, M. sativa, P. sativum öt kationos NCR peptidjének (CaNCR13, CaNCR63, MsNCR443, PsNCR349, PsNCR352), valamint azok hat származékának (CaNCR63₁₋₂₀, CaNCR63₁₅₋₃₄, MsNCR463₁₆₋₃₅, MsNCR463₁₇₋₃₀, PsNCR349₂₆₋₅₀, PsNCR349₃₁₋₅₀) a hatását ellenőriztük az ESKAPE baktérium A. baumannii-n és az élesztőgomba C. albicans-on. (2. táblázat).

Név	Aminosav-szekvencia	pl	NC	MBC	MFC
CaNCR13	KPCQSDKDCKKFACRKPKVPKCINGFCKCVRIW-COOH	9,93	7,6	6,25	6,25
CaNCR63	KMICKTRVDCKKYRCPRSKIKDCVKGYCRCVRKK-COOH	10,48	11,6	6,25	3,125
CaNCR63 ₁₋₂₀	KMICKTRVDCKKYRCPRSKI-CONH ₂	10,85	7,8	6,25	25
CaNCR63 ₁₅₋₃₄	CPRSKIKDCVKGYCRCVRKK-CONH ₂	10,65	7,7	6,25	3,125
MsNCR443	ESIECRTVADCPKLISSKFVIKCIKKRCVAQFFK-COOH	9,68	4,7	6,25	6,25
MsNCR463 ₁₆₋₃₅	CKPKRGVNFRCRKGKCFPVR-CONH ₂	11,79	8,8	1,6	3,125
MsNCR463 ₁₇₋₃₀	KPKRGVNFRCRKGK-CONH ₂	12,45	7,9	3,125	3,125
PsNCR349	YNLKYCTNDKDCPTMMCFPPDVSKCVWKTCYCVQKHKKKLKKKKKLTFNM-COOH	9,93	9,7	3,125	3,125
PsNCR349 ₂₆₋₅₀	VWKTCYCVQKHKKKLKKKKKLTFNM-CONH ₂	11,06	11	3,125	3,125
PsNCR34931-50	YCVQKHKKKLKKKKKLTFNM-CONH ₂	11,24	10	6,25	1,6
PsNCR352	PSGLRCLNDSDCLRFRCSKIYKVLCIERRCRRIKMH-COOH	10,3	6,8	6,25	3,125
Ampicillin				10240	
Mikonazol					50580

2. táblázat: NCR-ek antimikrobiális aktivitása A. baumanni és C. albicans ellen.

pI: izoelektromos pont. NC: nettó töltés (net charge). MBC/MFC: minimális gátló koncentráció (minimális baktericid koncentráció vagy minimális fungicid koncentráció), µM-ban.

A karbapenem-rezisztens *A. baumannii* egyre jelentősebb egészségügyi problémát jelent, hisz ez a kórokozó még nagyobb sebességgel terjed, mint a többi ESKAPE baktérium, és ellenálló a karbapenem antibiotikumokkal szemben, melyeket toxicitásuk miatt "végső megoldás"-ként használnak olyan bakteriális fertőzések esetében, amelyek ellen más szer már nem használ (Harding és mtsai., 2018; Kyriakidis és mtsai., 2021). A baktériumokhoz hasonlóan a multidrog-rezisztens *Candida* törzsek is nagy mértékben elterjedtek, és forrásai a kórházi fertőzéseknek elsősorban császármetszés, szervtranszplantáció és rákkezelés esetében (Fernando és mtsai., 2017).

Mindegyik peptid hatékony volt mind *A. baumannii* (MBC: 1,6 – 6,25 μ M között), mind *C. albicans* (MFC: 1,6 –25 μ M között) ellen, de a legaktívabb az MsNCR463 két C-terminális származéka, az MsNCR463₁₆₋₃₅ és az MsNCR463₁₇₋₃₀ volt (MBC: 1,6 és 3,1 μ M, MFC: 3,1 μ M), melyeknek a legmagasabb a pI értékük a tesztelt molekulák között (11,79 és 12,44). A PsNCR349-nek és C-terminális származékának, PsNCR349₂₆₋₅₀-nek az MBC és MFC értéke is megegyezett (3,125 μ M), míg a még rövidebb fragment, a PsNCR349₃₁₋₅₀ aktivitása csökkent *A. baumannii* ellen (MBC: 6,25 μ M), de a *C. albicans* ellen ez volt a leghatékonyabb peptid (MFC: 1,6 μ M). A többi peptid (CaNCR13, CaNCR63, CaNCR63₁₋₂₀, CaNCR63₁₅₋₃₄, MsNCR443, PsNCR349₃₁₋₅₀, PsNCR352) MBC értéke egybehangzóan 6,25 μ M volt.

A kórokozók közül az *E. faecalis* volt a legellenállóbb az NCR-ekkel szemben, hisz csupán kilenc peptid (NCR055, NCR073, NCR183, NCR299, NCR336, NCR358, NCR520, GoNCR308, PsNCR351) volt képes elpusztítani ezt a Gram pozitív batériumot. *K. pneumoniae* érzékeny volt 13, *S. aureus* 18, *S. enterica* 21, *L. monocytogenes* 24, *A. baumannii* 27, *E. coli* 33, míg *P. aeruginosa* 36 NCR-rel szemben.
4.6.2. Az NCR-ek antimikrobiális hatásmechanizmusát befolyásoló fizikokémiai tulajdonságok

Az aktív és inaktív NCR-ek számos, a DBAASP v3 (Pirtskhalava és mtsai., 2021) predikciós program segítségével kiszámított fizikokémiai tulajdonsága közül a nettó töltés, a pI, a rendezetlen szerkezetre való hajlam, valamint az amfipatikussági index határozza meg az NCR-ek antimikrobiális hatását (28. és 29. ábra).

28. ábra: Az NCR peptidek antimikróbiális aktivitása pozitív nettó töltést és kationos pI-t igényel. A 104 NCR peptid eltérő antimikrobiális aktivitását különböző színek jelölik: zöld: nem aktív, piros: legalább egy baktériummal szemben aktív, fekete: mind a nyolc baktériummal szemben aktív (NCR073, NCR336, NCR358). pI: izoelektromos pont.

Az antimikrobiálisan aktív NCR-ek pozitívan töltöttek, kationosak és rendezetlen szerkezetűek, de kevésbé hidrofóbak és inkább amfipatikusak, mint az inaktív peptidek. A nettó töltés és a pI fontos meghatározói az NCR-ek antimikrobiális hatásának, de nem az egyedüliek, hisz több kifejezetten magas NC és pI értékkel rendelkező NCR is hatástalannak bizonyult mind a nyolc patogénnel szemben (például az NCR192). A legalább 2 nettó töltésű NCR-ek nagy része antimikrobiális, de 5 fölött mindegyik az, az egyetlen kivétel NCR192-őt leszámítva.

29. ábra: Az NCR peptidek antimikrobiális aktivitása összefüggést mutat az amfipatikussági indexszel és a rendezetlen alakváltozásra való hajlammal.

A 104 NCR peptid eltérő antimikrobiális aktivitását különböző színek jelölik: zöld: nem aktív, piros: legalább egy baktériummal szemben aktív, fekete: mind a nyolc baktériummal szemben aktív (NCR073, NCR336, NCR358). pI: izoelektromos pont.

A rendezetlen szerkezet és magasabb amfipatikusság révén (29. ábra) a peptidek nagyobb valószínűséggel vesznek fel másodlagos szerkezetet a membrán-víz határfelületen, ami szintén kedvez az antimikrobiális aktivitásnak (Pirtskhalava és mtsai., 2021; Vishnepolsky és Pirtskhalava, 2014).

Habár az aktív NCR336 és az inaktív NCR284 között magas a homológia, egyezik az NC értékük és szinte azonos a pI értékük (0,04 eltérés), az NCR336 szerkezete rendezetlenebb, erősebben amfipatikus és inkább hidrofób, ami magyarázhatja az aktivitásbeli különbséget. Az inaktív NCR011 kevésbé rendezetlen, mint a hozzá hasonló nettó töltésű és pI értékű, de nagyon aktív NCR073. A magas nettó töltésű és erősen kationos NCR192 hidrofilicitása eredményezheti a molekula inaktivitását. Hasonló pI, nettó töltés és fizikokémiai tulajdonságok ellenére egyes peptidek aktívak, míg mások inaktívak, mutatva, hogy az aminosav-sorrend szintén rendkívül fontos tényező.

4.6.3. Az IRLC NCR peptidek képesek a C. albicans biofilm lebontására

A biofilm védőhatásának köszönhetőan az abban található mikroorganizmusok kevésbé hozzáférhetőek az antimikrobiális peptidek (AMP) számára, ezzel fokozva a patogének ellenállóképességét. A hosszan tartó, illetve visszatérő fertőzéseknél kiemelkedően fontos a biofilm szerepe, a biofilm képződés a kórházi fertőzések kétharmadánál jelentkezik, ezért ellenőriztük, hogy az NCR-ek képesek-e lebontani már kialakult biofilmeket. *A. baumannii* és *C. albicans* 48 óra alatt kialakult biofilmjét inkubáltuk 24 órán keresztül 25, 50 vagy 100 μM szintetikus NCR jelenlétében, majd a biofilmek mennyiségét hasonlítottuk a kontrollhoz (0 μM NCR). Az *A. baumanni* tartósabb, ellenállóbb biofilmet hoz létre, mint a *C. albicans*, és ennek megfelelően a vizsgált NCR-ek csak kismértékben voltak képesek lebontani a baktérium által alkotott mátrixot, kivéve a legnagyobb, 100 μM-os koncentráció esetében (30A. ábra). Ellenben az összes IRLC NCR jelentős mértékben, akár 70%-al is csökkentette a *C. albicans* biofilm mennyiségét, habár sok esetben annyira szórt az eredmény, hogy nem mind lett szignifikáns az egyszempontos varianciaanalízis (one-way ANOVA) alapján (30B. ábra). Érdekes, hogy *C. albicans*-nál sok esetben az NCR-eknek a biofilmre gyakorolt hatása a peptid mennyiségével fordított arányban növekedett.

30. ábra: IRLC NCR peptid származékok hatása *A. baumannii és C. albicans* biofilmekre. - *A. baumannii* biofilmek bontása kevésbé volt hatékony, szemben a *C. albicans* biofilmek hatékony bontásával. Tizenegy IRLC NCR-t és NCR származékot teszteltünk 25, 50 és 100 μM koncentrációban már kialakult A. *A. baumannii* és **B.** *C. albicans* biofilm ellen. Az ábrák a tapasztalati szórást mutatják (standard deviation, SD). *, ha a p-érték < 0,05 és **, ha a p-érték < 0,01 az egyszempontos varianciaanalízis (one-way ANOVA) alapján.

4.6.4. Az IRLC NCR-ek membrán átjárhatóságot, morfológiai változást és sejthalált okoznak *A. baumannii*-nál és *C. albicans*-nál

Az NCR-ek által okozott lehetséges membrán-károsodást élő/halott festéssel (live/dead staining) vizsgáltuk (31A-L. és 32A-L. ábra). A membrán-permeábilis SYTO 9, ami kék fénnyel megvilágítva zölden fluoreszkál, minden sejtbe képes bejutni, míg a propídium-jodid (PI), ami zöld fénnyel megvilágítva piros színben fluoreszkál, csak a sérült membránon képes áthatolni, ezzel jelezve hogy az általa megfestett sejt elpusztult (Robertson és mtsai., 2019). Az NCR-kezelés után rögtön hozzáadtuk a festéket a mintákhoz és megvizsgáltuk őket konfokális mikroszkóppal, így elmondható, hogy legtöbb esetben pillanatokkal az NCR hozzáadása után elpusztultak a sejtek (a PI sejten belüli megjelenését figyelhettük meg, ami a gyorsaság és az MBC-közeli NCR-kezelés mellett a mikrobák pusztulására utal), amit a kezelt sejtek SEM-el megfigyelt morfológiája is alátámasztott (31M-X. és 32M-X. ábra).

31. ábra: *A. baumannii* sejtek életképessége és morfológiája NCR-kezelés után.

A-L. SYTO 9/PI festett baktériumok konfokális mikroszkóppal megfigyelve. **M-X.** Baktériumok morfológiája SEM-el megfigyelve. **A, M.** Kezeletlen kontroll. **B, N.** CaNCR13, 3.125 μM. **C, O.** CaNCR63, 3.125 μM. **D, P.** CaNCR63₁₋₂₀, 3.125 μM. **E, Q.** CaNCR63₁₅₋₃₄, 3.125 μM. **F, R.** MsNCR443, 3.125 μM. **G, S.** MsNCR463₁₆₋₃₅, 1.6 μM. **H, T.** MsNCR463₁₇₋₃₀, 3.125 μM. **I, U.** PsNCR349, 1.6 μM **J, V.** PsNCR349₂₆₋₅₀, 3.125 μM. **K, W.** PsNCR349₃₁₋₅₀, 3.125 μM. **L, X.** PsNCR352, 1.6 μM.

A kezeletlen A. *baumannii* sejtek zöld jelet adtak, csak SYTO 9-el festődtek (31A. ábra), míg NCR-kezelés hatására a legtöbb esetben a sejtek színe pirosra váltott, ami ilyen rövid idő alatt a sejtek pusztulására utal, nem csupán a membrán-áteresztőképesség változására. CaNCR13, MsNCR443, PsNCR349₂₆₋₅₀ és PsNCR349₃₁₋₅₀ kezelés hatására az összes sejt elpusztult (31B, F, J, K. ábra), míg CaNCR63, MsNCR463₁₆₋₃₅ MsNCR463₁₇₋₃₀ és PsNCR349 esetében zöld, élő sejtek is maradtak a kultúrában (31C, G, H, I. ábra), ami talán lassabb ölőhatásra utal, míg ez a jelenség PsNCR352 esetében volt a legerősebb, ahol a sejtek jelentős része sárga színben játszott, ami kettős festődést jelent (32L. ábra).

SEM alapján a kontroll *A. baumannii* sejtek egyforma méretűek és alakúak, sima felszínnel (31M. ábra). Ugyenezt láttuk a PsNCR352 kezelésnél is (31X. ábra), ami szintén lassabb ölőhatásra utalhat, akárcsak a konfokális mikroszkóppal megfigyelhető sárga szín (31L. ábra). MsNCR463₁₆₋₃₅ jelenlétében a sejtek vezikulákat termeltek (31S. ábra), míg a CaNCR63₁₋₂₀-szal és CaNCR63₁₅₋₃₄-gyel történő kezelés hatására a sejtek lizáltak és ellaposodtak (31P, Q. ábra). CaNCR63₁₅₋₃₄, MsNCR443, MsNCR463₁₆₋₃₅, MsNCR463₁₇₋₃₀ és PsNCR349₂₆₋₅₀ kezelés hatására a sejtek hosszúkás, filamentáris formát vettek fel, és összetapadtak a pólusaiknál (31Q, R, S, T, V. ábra), ahogy a konfokális mikroszkóppal is láthattuk (31E, F, G, H, J. ábra).

32. ábra: C. albicans sejtek életképessége és morfológiája NCR-kezelés után.

A-L. SYTO 9/PI festett baktériumok konfokális mikroszkóppal megfigyelve. **M-X.** Baktériumok morfológiája SEM-el megfigyelve. **A, M.** Kezeletlen kontroll. **B, N.** CaNCR13, 3.125 μM. **C, O.** CaNCR63, 3.125 μM. **D, P.** CaNCR63₁₋₂₀, 25 μM. **E, Q.** CaNCR63₁₅₋₃₄, 3.125 μM. **F, R.** MsNCR443, 3.125 μM. **G, S.** MsNCR463₁₆₋₃₅, 1.6 μM. **H, T.** MsNCR463₁₇₋₃₀, 1.6 μM. **I, U.** PsNCR349, 1.6 μM. **J, V.** PsNCR349₂₆₋₅₀, 3.125 μM. **K, W.** PsNCR349₃₁₋₅₀, 3.125 μM. **L, X.** PsNCR352, 1.6 μM.

Az A. baumannii-hoz hasonlóan a C. albicans sejtek nagy része PI-dal festődött az NCR kezelést követően, míg a kontroll sejtek SYTO 9-cel festődtek (32A. ábra). A kezelt mintáknál a legtöbb zöld sejt a CaNCR63₁₋₂₀ esetében volt látható (32D. ábra), mely peptidnek volt a legmagasabb MFC értéke (25 μM), azaz ez volt a legkevésbé hatásos a gomba ellen. A SEM alapján is ez a minta volt a leginkább hasonló a kontrollhoz: mindkét esetben megfigyelhető volt az élesztő- és hifa-forma egyaránt (32M, P. ábra). A sejtek kilapultak CaNCR63, MsNCR463₁₆₋₃₅, MsNCR463₁₇₋₃₀, PsNCR349, PsNCR349₂₆₋₅₀ és PsNCR352 kezelés hatására (32O, S, T, U, V, X. ábra), míg az összezsugorodott sejtek aggregációja és egyféle hálószerű mátrix volt megfigyelhető a CaNCR13-mal, CaNCR63-mal, MsNCR443-mal és PsNCR352-vel történő kezelés után (32N, O, R, X. ábra).

4.6.5. Kationos NCR peptidek kötik és aggregálják a DNS-t

Az *M. truncatula* gümő szimbiotikus-sejtekben az NCR-ek hatására a bakteroidokban leáll a sejtosztódás, de a DNS szintézis nem gátlódik és így a genom amplifikálódik endoreduplikációs ciklusok révén (Mergaert és mtsai., 2006). Kérdés volt azonban, hogy van-e közvetlen kapcsolat, kötődés a pozitív töltésű NCR peptidek és a negatív töltésű nukleinsavak között. Ezért megvizsgáltuk, hogy a peptidek képesek-e megkötni illetve aggregálni a DNS-t *in vitro*. 100 ng HindIII restrikciós endonukleázzal emésztett λ -fág DNS-t inkubáltunk 30 percen át 5 és 10 μ M NCR jelenlétében illetve peptid nélkül, majd agaróz gélelektroforézissal vizsgáltuk, hogy képződött-e peptid-DNS komplex (33. ábra).

33. ábra: Az NCR peptidek aggregálják a DNS-t.

100 ng linearizált, HindIII restrikciós endonukleázzal emésztett Lambda fág DNS 0, 5 vagy 10 μM NCR jelenlétében, gélelektroforézis után (1%-os agaróz gél). A gélbe futott DNS fragmentek méretük szerint váltak szét, míg az NCR-ek által aggregált DNS a zsebekben maradt. A DNS-hez kötődött etídium-bromid festék UV-világítás során válik láthatóvá.

Az NCR-nélküli kontroll mintában láthatók a HindIII restrikciós endonukleázzal emésztett λ -fág DNS fragmentek. 5 μ M peptid jelenlétében láthatók voltak a gélben a szabad DNS darabok, míg 10 μ M CaNCR63, CaNCR63₁₅₋₃₄, MsNCR463₁₆₋₃₅, PsNCR349, PsNCR349₂₆₋₅₀ és PsNCR349₃₁₋₅₀ aggregálta a DNS fragmenteket, és jelenlétükben a DNS összmennyisége vagy nagy része a zsebben maradt. A CaNCR63 N-terminális fragmentje, CaNCR63₁₋₂₀, jelentősen veszített a hatékonyságából, míg a C-terminális fragment, CaNCR63₁₅₋₃₄, alig. A két fragment pI értéke és nettó töltése nagyon hasonló, így feltehetően a tizenötödik aminosav utáni szakasz alkalmasabb a DNS-kötésre. A PsNCR349 esetében a pozitívan töltött lizinek (K) jelentős része a C-terminális részen található, és ennek megfelelően a hosszabb (PsNCR349₂₆₋₅₀) és rövidebb (PsNCR349₃₁₋₅₀) származéka is kötötte a DNS-t, még hatékonyabban is, mint az eredeti molekula. MsNCR463₁₇₋₃₀ kevésbé hatékonyan kötötte a DNS-t, mint a hosszabb fragment, MsNCR463₁₆₋₃₅, valószínűsítve, hogy az utolsó öt aminosav nagymértékben hozzájárul a DNS-kötő hatékonysághoz.

Az NCR247-hez hasonlóan más NCR-eknek is lehetnek fehérjepartnerei, illetve más célpontokat is támadhatnak.

4.6.6. Az IRLC NCR peptidek és származékaik nem okozták a humán vörösvérsejtek hemolízisét

Az AMP-k esetében az antimikrobiális hatékonyság mellett szintén fontos, hogy ne legyenek toxikusak az emberi sejtekre nézve. Ennek meghatározására alkalmas a hemolízis vizsgálat, mely során emberi vörösvértesteket inkubáltunk 0,4-100 μM NCR vagy kontrollként használt 0,5% Triton X detergens jelenlétében, és a felszabaduló hemoglobin abszorbanciáját mértük OD₅₆₀-on (34. ábra).

34. ábra: Az NCR peptidek hemolítikus aktivitásának vizsgálata humán a vörösvérsejteken NCR-ekkel kezelt emberi vörösvértestből felszabaduló hemoglobin szintjének meghatározása spektrofotometriás méréssel történt. 0,5% Triton X-szel kezelt minta jelenti a 100% hemolízist, amihez az NCR-ekkel kezelt mintákat viszonyítottuk.

Az MsNCR465 kivételével egyik IRLC NCR sem mutatott hemolitikus aktivitást, így alkalmasak lehetnek terápiás alkalmazásra.

Az NCR-ek mindezen tulajdonságok alapján ideális antimikrobiális gyógyszerjelöltek.

5. EREDMÉNYEK MEGVITATÁSA

Az 1900-as évek közepén nagy meglepetést okozott, hogy a baktériumok is képesek differenciálódni, méghozzá hasonló mechanizmusok révén, mint az eukarióta sejtek. Ugyancsak váratlan felfedezés volt, hogy ezt a *Medicago truncaluta-Sinorhizobium meliloti* szimbiózis esetében a növényi sejtekben termelődő több száz peptid irányítja, döntően az NCR-ek (Van de Velde és mtsai., 2010). Az NCR-ek csak a szimbiózisban szerepet játszó peptid-család, amely azonban hasonlóságot mutat a defenzinekkel, amelyek az eukarióták és így a növények immunitásának antimikrobiális peptidjei. Így nem kizárt, hogy az NCR-ek is a defenzinekből alakultak ki (Mergaert, 2018). Ennek megfelelően az elsődleges *in vitro* kísérletek a peptidek membránkárosító és baktériumölő hatását vizsgálták, amelyek egyszerűen és rutinszerűen kivitelezhetők. Az NCR géneknek 55 százaléka az átmeneti zónában fejeződik ki, ahol a baktériumokban bekövetkezik a sejtosztódás gátlása, és elkezdődik az endoreduplikáció, ezzel együtt a sejtek megnyúlása és a membrán átjárhatósága (permeabilitás) is megnövekszik. Ez utóbbi feltehetően a metabolitok és peptidek könnyebb szállítását biztosítja a szimbiotikus partnerek között a nitrogénkötő zónában.

Az érett NCR peptidek rendkívüli változatossága számtalan, még fel nem tárt biológiai aktivitás forrása lehet, amely a szimbiózison kívül feltehetően sokféle új felhasználási lehetőséget kínál. Egyes antimikrobiális peptidekről kimutatták, hogy képesek vírusok és ráksejtek elpusztítására is, így lehetséges – és ezt a laborunkban folyó kezdeti kísérletek is alátámasztják –, hogy az NCR-ek is rendelkeznek ilyen tulajdonsággal.

Az egyik nagy kérdés persze az, hogy hogyan működnek együtt a peptidek a szimbiotikus sejtekben, mi az egyes peptidek egyedi és együttes hozzájárulása a bakteroid differenciáció egyes lépéseihez. *M. truncatula*-ban elérhetők inszerciós és deléciós mutánsok (Pislariu és mtsai., 2012), de NCR mutánsokat, talán a gének kisebb mérete miatt, ritkán lehet találni. További probléma, hogy mivel új *NCR*-ek génduplikációk révén jönnek létre, és az újabb kópiák esetleg csak 1-2 aminosavban különböznek egymástól, így több NCR funkciója redundáns, és a paralógok közül egy hiánya nem okoz fenotipikus elváltozást.

Az NCR247 hatásmechanizmusának vizsgálata rámutatott az NCR-ek széles körű, több struktúrát és folyamatot érintő tevékenységére (Lima és mtsai., 2020). Az eddig vizsgált NCR-ek biológiai funkciója az eddigi publikációk alapján kimerül abban, hogy hiányukban nem alakul ki a nitrogénkötő zóna, és a bakteroidok megfelelő differenciációja elmarad, vagyis az egyetlen megállapítás az, hogy ezek a peptidek szükségesek a baktériumok túléléséhez (Horváth és mtsai., 2015; Kim és mtsai., 2015). Ez nyilvánvalóan a növény által érzékelt

általános reakció, amit az abnormális, abortív gümőfejlődés vált ki, és a baktériumok degradációját okozza, amivel a növények tápanyagot nyerhetnek vissza. A szimbiózis és a baktérium differenciáció megértésének feltétele az egyes, de legalábbis a nélkülözhetetlen peptidek funkciójának, molekuláris mechanizmusának feltárása és annak megismerése, hogyan idézhet elő mindez hatékonyabb nitrogénkötést.

A különböző hüvelyes növényekben a nitrogénkötés hatékonysága lényegesen eltér egymástól. A lucerna nitrogénkötési hatékonysága például több mint kétszerese a szójának és ötszöröse a babnak, melyek gümőiben nincs terminális differenciáció. Ha megismernénk, hogy mely NCR-ek szükségesek és elégségesek a terminális bakteriális differenciációhoz, akkor elvben a kevésbé hatékony növényekben is fokozni lehetne a nitrogénkötés hatékonyságát, és így termesztésük kevesebb műtrágyát igényelne és jóval környezetkímélőbb lenne. Ehhez ígéretes lehetőséget nyújt az a legújabb felfedezésünk, hogy az NCR gének minden növényben meglévő és a gümőkben is kifejeződő transzkripciós faktorokat használnak fel kifejeződésükhöz. Ezek, az NCR169 esetében, biztosították a gén expresszióját a szója szimbiotikus sejtjeiben, amely előidézte a terminális bakteroid differenciáció bizonyos kezdeti lépéseit (Zhang és mtsai., 2023). Természetesen egy gén kifejeződése a terminális differenciációhoz nem elégséges, és csak az NCR-ek megfelelő koktéljának (koktéljainak) a jelenlétében valósítható meg. Mindenesetre az általános, minden növényben előforduló AHL transzkripciós faktorok által biztosított kifejeződés megkönnyíti ezt a lehetőséget. A szója szimbiótái nem kötnek meg elégséges nitrogént a növény számára, de NCR-ek termeltetésével a szójagümőben és bakteroid differenciáció kiváltásával talán elérhető hatékonyabb nitrogénkötés és így a kiegészítőként adott műtrágya elhagyása.

Míg az érett NCR peptidek szimbiózisban betöltött szerepét több csoport is vizsgálja, addig az NCR szignál peptidek (SP) világa szinte egyáltalán nem kutatott terület, pedig a diverz szekvenciájú érett peptidekkel szemben ezek relatíve konzerváltak és így más evolúciós hajtóerő által formáltak (szétválasztó szelekció, illetve tisztító szelekció) (Alunni és mtsai., 2007). Az SP-k elsődleges feladata az érett peptid bejuttatása az endoplazmatikus retikulumba (ER), amihez az szükséges, hogy kellően hidrofób legyen és így felismerje a szignál felismerő részecske (SRP). Mivel a húsz fehérjeépítő aminosavból tizenegy hidrofób vagy hidrofób oldallánccal rendelkezik, így az SP-ek evolúciója gyorsabb, mint az érett peptideké, hisz több nem-szinoním mutáció mellett is meg tudják őrizni hidrofóbicitásukat és így elsődleges funkciójukat (Williams és mtsai., 2000). Azonban az NCR SP-ek konzerváltsága felveti a lehetőségét, hogy további funkciójuk is lehet, amit erősít az a tény, hogy *M. truncatula*-ban és

az IRLC fajokban az általános egy darab szignál peptid peptidáz (SPP) gén helyett kettő van, és az egyik kifejeződése gümőspecifikus (nodSPP).

Az *M. truncatula nodSPP* gén elcsendesítésével bebizonyítottuk, hogy a nodSPP nélkülözhetetlen a nitrogénkötő szimbiózis kialakításához és a gümő fejlődéséhez. A stabil transzgénikus nodSPP RNSi növények gümőiben a bakteroidok átalakulása megakad az IZ-ban a nodSPP hiányában, és nem alakul ki nitrogénkötő zóna. Számos, a sikeres szimbiózishoz elengedhetetlen növényi gén kifejeződése csökken a nodSPP RNSi gümőkben, köztük az NCRek túlnyomó része, továbbá olyan gének, melyek géntermékei szupresszálják a gazdanövény immunrendszerét, hogy elfogadja a szimbiótát mint idegen szervezetet, míg a növény védelmi folyamataiért, illetve a gümő öregedéséért felelős gének jelentősen túlműködnek. Ezek a génexpressziós változások arra utalnak, hogy a nodSPP hiányában a növény nem ismeri fel a rhizobiumot mint szimbiótát és elpusztítja azt, ezzel megakasztva a gümőfejlődést is. NodSPP promóterrel szabályozott rizs SPP bevitelével képesek voltunk komplementálni a fenotípust, ezzel bizonyítva, hogy azt valóban a nodSPP hiánya okozta.

627 darab *Medicago truncatula* NCR szignál peptid közül 533 (85%) hidrofób *h*régiójában található hélix-törő vagy destabilizáló cisztein vagy szerin, így ezeket SPPszubsztrátnak vettük. Mind a gümőből, mind a csírából tisztított endoplazmatikus retikulum (ER) rendelkezett SPP-nek tulajdonított aktivitással, mivel az SPP-inhibítor (Z-LL)₂ keton jelenlétében a szintetikus peptidek életideje közel 50%-al megnőtt. Az ER elbontotta azokat a szignál peptideket, melyeket SPP szubsztrátnak véltünk (NCR120 SP, NCR216 SP, NCR252 SP), míg az NCR247 SP-et, amit nem véltünk SPP szubsztrátnak, nem. Eddig nem volt ismert endogén célpontja egyetlen növényi SPP-nek sem.

A szintetikus NCR szignál peptidek *in vitro* kölcsönható partnereinek nagy része két különböző csoportba oszlanak aszerint, hogy az SPP-szenzitívek (NCR120 SP, NCR216 SP, NCR252 SP) vagy sem (NCR247 SP). Jelentős eltérés a két csoport között, hogy az SPP által elvágott NCR SP-ek a proteaszómával lépnek kapcsolatba, ami valószínűleg teljesen lebontja azokat, akár azért, hogy a molekula minél előbb eltűnjön, amint nincs rá szükség (Wang és mtsai., 2006), míg az SPP által érintetlenül hagyott NCR247 SP a COP9 szignaloszómával, aminek szerepe van többek között a sejtfejlődésben és a védelmi reakciók szabályzásában (Qin és mtsai., 2020), melyek nem működnek megfelelően a nodSPP RNSi gümőkben. Az NCR247 SP kapcsolatba léphet több kalmodulinnal, köztük egy szimbioszómába lokalizálódó gümőspecifikus kalmodulin-szerű molekulával is, mely fehérjecsalád tagjai a jelátviteli útvonalak fontos elemei, és ezen keresztül hathatnak a gümőfejlődésre és szimbiózisra. Az NCR247 SP interakciós partnerei közt található a nodSPP is, ami megerősíti azt a feltételezést,

hogy az SPP-knek nem-proteolitikus funkciója is van (Lu és mtsai., 2012). Hipotézisünk szerint az SPP válogat az NCR SP fragmentek között: a többséget elvágja, amik ezután degradálódnak, míg az el nem vágott NCR SP-ek különböző jelátviteli útvonalakat befolyásolhatnak, és jelként szolgálhatnak arról, hogy a szimbiózis és a gümőfejlődés megfelelően zajlik.

Az NCR-ek in vitro antibakteriális aktivitása új kutatási területként jelent meg a laborunkban, de egyre több más intézetben is a világon. Az NCR-ek antimikrobiális aktivitásának legátfogóbb vizsgálatát 104 peptid felhasználásával mi végeztük el, amelyhez teljes hosszúságú, valamint rövidebb és módosított peptideket használtunk fel M. truncatula és négy más hüvelyes növényből származó NCR peptidből kiindulva (Lima és mtsai., 2022). Általánosan megállapítható, hogy a pozitív nettó töltés (2, de inkább 5 fölött) és a kationos izoelektromos pont szükséges, de nem elégséges feltétele az antimikrobiális aktivitásnak, mivel ez függ a peptid aminosav sorrendjétől, de a rendezetlen struktúra és az amfipatikusság is elősegíti az aktivitást (Lima és mtsai., 2022). A kationos AMP-k használatának legnagyobb hátulütője az érzékenységük a kétértékű kationokra, így a Ca²⁺-mal és Mg²⁺-mal szemben, melyek megakadályozzák a negatívan töltött bakteriális membránhoz való kötődésüket. Így a nem-kationos NCR-ek, például a neutrális NCR147, melyek feltehetően más hatásmechanizmussal támadják a kórokozókat, akár terápiás céllal is hasznosíthatók lehetnének (Lima és mtsai., 2022). Az NCR-ek nagy része pillanatszerűen hat (Jenei és mtsai., 2020; Lima és mtsai., 2022), több intracelluláris célpontjuk lehet, fehérjék, de nukleinsavak is (Lima és mtsai., 2020, 2022), így kevésbé valószínű a rezisztencia kialakulása ellenük. Továbbá az is fontos, hogy az antimikrobiális aktivitás mellett egyesek a már kialakult biofilmet is képesek elbontani, vagy gátolni a biofilm kialakulását (Lima és mtsai., 2022), illetve nem rendelkeznek az emberi vörösvérsejtekre káros hemolitikus aktivitással (Jenei és mtsai., 2020; Lima és mtsai., 2022). A rövidebb peptidváltozatok vizsgálatával meg tudtuk állapítani egyes NCR-ek esetében a minimális, az aktivitáshoz szükséges aminosav szekvenciát (csupán 20, vagy akár 14 aminosav), ami által ezen peptidek szintézise is költséghatékonyabb (Lima és mtsai., 2022). Kiderült az is, hogy egyes szubsztitúciók, mint például cisztein cseréje szerinre (Howan és mtsai., 2023), vagy triptofán cseréje 6-fluoro-triptofánra (Howan és mtsai., 2023) vagy alaninra (Szerencsés és mtsai., 2021), hogyan befolyásolják az NCR-aktivitást. Az NCR169 esetében a teljes hosszúságú peptid minimális antimikrobiális aktivitással rendelkezik, de feltérképezve az aktivitásért felelős régiót rövidebb peptid-származékok használatával, majd ezen szubsztitúciókat és módosításokat végezve, olyan származékokat tudtunk előállítani, amelyeknek a minimális baktericid koncentrációja (MBC) 0,8-1,6 µM-ra csökkent, ami 2 illetve 4 nagyságrenddel alacsonyabb, mint más klasszikus antibiotikumoké (Howan és mtsai., 2023). Eredményeink alapján a pillangósvirágú növények gümőiben több százezer eddig fel nem fedezett, új hatású NCR termelődhet, melyek eredeti vagy módosított formájukban alkalmasak lehetnek az egyre kevésbé hatékony és egyre inkább fogyatkozó számú antibiotikum helyettesítésére. Mindezek a kísérleti eredmények nagy reményeket adnak arra, hogy a *Medicago truncatula*-ból és más IRLC fajokból származó NCR peptid származékokból hatékony, emberre és állatra veszélytelen, a gyógyászatban és a mezőgazdaságban alkalmazott antimikrobiális szerek legyenek. Míg a növényvédelemben való felhasználásuk akár rövid távon megvalósulhat, a gyógyászatban való alkalmazásuk további lépéseket igényel, hiszen meg kell felelniük a gyógyszerjelöltekkel szemben támasztott követelményeknek, és többéves, többfázisú klinikai vizsgálatokkal kell bizonyítani veszélytelen és hatékony alkalmazásukat. Mivel ezt kutatási pályázatból lehetetlen megvalósítani, ehhez nagy gyógyszergyárak érdeklődése és pénzügyi támogatása kell, ami sajnos az egész világon hiányzik jelenleg.

Az NCR peptidek rendkívüli sokfélesége alapján valószínűsíthető, hogy ezek további, eddig még feltáratlan funkciókat biztosítanak. A világ számos intézetében foglalkoznak a növényekből származó, speciális biológiai aktivitással rendelkező molekulákkal. Az NCR-ek minden bizonnyal értékes és esetleg hiánypótló tulajdonságokat tudnának biztosítani, ha részletes vizsgálatuk megindulna.

KÖSZÖNETNYILVÁNÍTÁS

A doktori disszertációm elkészítése több éves kutatómunka eredménye, melynek során sok embertől kaptam segítséget.

Külön köszönettel tartozom a munkacsoportunk témavezetőjének Prof. Dr. Kondorosi Évának. Neki köszönhetem a lehetőséget, hogy az ELTE-ről friss diplomásként Budapestről Szegedre kerülhettem a Szegedi Biológiai Kutatóközpontba és olyan izgalmas témában dolgozhatok, melynek tudományos, mezőgazdasági és egészségügyi vonatkozásai is vannak az NCR peptidek révén. Munkám során témavezetőmtől nem csak kimagasló szakmai segítséget kaptam, hanem minden lehetőséget is, hogy szakmailag fejlődjek és részt vehessek hazai és nemzetközi konferenciákon egyaránt. Fáradhatatlan munkabírásával és inspiráló egyéniségével nem csak motivált a kutatásaim során, hanem mindvégig példát is mutatott nekem.

Ezúton köszönöm Dr. Endre Gabriellának és Dr. Kereszt Attilának a szakmai segítségüket.

A disszertációmban közöltek csoportmunka eredményei, ezért köszönettel tartozom munka- és szerzőtársaimnak: Fehérné Juhász Erzsébetnek, Kiss Edinának és Dr. Nagy Olgának a segítségüket a stabil transzgenikus vonalak létrehozásában, Dr. Szűcs Attilának a transzkriptom adatainak elemzésében, Dr. Pettkó-Szandtner Aladárnak a proteomikai adatokat, Dr. Domonkos Ildikónak, hogy megtanított a SEM használatára, továbbá Dr. Senlei Zhang-nak, Dr. Ting Wang-nak, Jenei Sándornak, Farkas Attilának, Makra Máténak, Dr. Balaji Baburao Rathod-nak, Dr. Tímár Editnek a közös munkát, a jó együttműködést és a baráti légkört.

Végül köszönettel tartozom feleségemnek, Dr. Lima Hilda Anikónak a békés családi háttérért, és a motivációért, továbbá kisfiamnak és édesanyámnak is a szeretetteli támogatásukért.

ÖSSZEFOGLALÁS

Pillangósvirágú növények és rhizobium talajbaktériumok szimbiózisa gyökérgümők fejlődéséhez vezet, ahol a gümősejtekben a baktériumok képessé válnak a levegő nitrogénjének ammóniává történő redukciójára. Az IRLC növényekben a rhizobium baktériumok elveszítik osztódási képességüket, így differenciálódásuk véglegesnek mondható (terminális differenciáció). *Medicago* fajokban a nitrogénkötő baktériumok genomja sokszorosa (~20x) a szabadon élő formáknak, és 5-10-szer nagyobb mérettel, megnyúlt-elágazó morfológiával, valamint átjárhatóbb membránnal rendelkeznek. A terminális differenciáció hatékonyabb nitrogénkötést biztosít, amelyet a növény-partner irányít a gümőben kifejeződő szimbiotikus növényi peptidek segítségével. A *Medicago truncatula* szimbiotikus modellnövényben ~700 gén kódolja a gümőspecifikus ciszteinben gazdag NCR peptideket, amelyek a bakteroid differenciáció különböző lépéseit szabályozzák. A legtöbb NCR, több mint 300, abban a néhány sejtrétegben fejeződik ki, ahol a sejtosztódás gátlása és a baktériumok megnyúlása megy végbe.

Munkánk egyrészt a legkisebb peptid, az NCR247 funkciójának a megismerésére irányult, másrészt az *NCR* gének szabályozására. Vizsgáltuk az NCR szignál peptidek (NCR SP) konzerváltságát és az *NCR* génekkel együtt kifejeződő gümő-specifikus szignál peptid peptidázzal (nodSPP) való kapcsolatukat. A szimbózis mellett vizsgáltuk a kationos NCR peptidek *in vitro* antimikrobiális spektrumát, a peptidek fizikokémiai tulajdonságait és hatásmechanizmusukat.

Az NCR247 hatásmechanizmusa

Az NCR247 peptid: 24 aminosav hosszú, 4 konzervált ciszteinnel rendelkezik, kationos (izoelektromos pontja 10,15) és pozitív nettó töltésű (+6) molekula, melynek magas Boman indexe (4,63 kcal/mol) erős fehérjekötő képességet mutat. *In vitro* körülmények között magas koncentrációkban károsítja a membránt, vezikulák képződését és a baktériumok pusztulását idézi elő. Alacsony koncentrációban membránkárosítás nélkül képes a bakteriális citoszolba lépni, ahol transzkripciós változásokat idéz elő, befolyásolja a transzlációt és specifikusan kötődik a sejtosztódásban kulcs szerepet játszó FtsZ fehérjéhez, megakadályozva annak polimerizációját és így a sejtosztódáshoz szükséges szeptum képződésétt, valamint kötődik a szimbiózisokban fontos szerepet játszó GroEL chaperonhoz, valamint számos riboszómális fehérjéhez.

Az NCR gének regulációja

Az NCR gének szimbiózis-specifikus evolúciója alapján feltételeztük, hogy szabályozásukra velük együtt gümőspecifikus transzkripciós faktorok fejlődhettek ki. Az NCR169 gént használtuk modellként, mivel ennek a promótere olyan motívumokat tartalmaz, amelyek 288 NCR promóterében is jelen vannak és gümőspecifikus kifejeződést biztosítanak. Kimutattuk, hogy az NCR169 promóterrel meghajtott GUS riporter kifejeződik szója gümőben, ahol természetes állapotában nincsenek NCR gének és terminális bakteroid differenciáció sem figyelhető meg. NCR169 jelenlétében a szója szimbiótáin a differenciáció jeleit figyelhettük meg, így megnyúlt bakteroidokat, valamint a genomméretük kismértékű növekedését. *M. truncatula* gümőben a bakteriális BacA ABC-transzporter szükséges ahhoz, hogy az NCR peptidek a szimbiótába jussanak és hasonlóképpen a BacA ortológ, BcIA is nélkülözhetetlen volt az NCR169 működéséhez szójagümőkben. Kiderítettük, hogy az NCR169 expressziójához két AHL transzkripciós faktor szükséges, melyek nem gümőspecifikusak és általánosan előfordulnak növényekben.

Az NCR szignál peptidek (SP) evolúciója és kapcsolatuk a nodSPP-al

Az NCR-ek a teljes gümőtranszkriptom 5%-át teszik ki, így az NCR SP-ek is nagy mennyiségben jelen vannak, ami magyarázhatja a szignál peptidáz komplex SPC22 és a szignál peptid peptidáz (SPP) gümőspecifikus kópiájának (dnf1, nodSPP) a kialakulását és funkcióját. Az SPP az SP *h*-régió hidrofób aminosavai között található hélix destabilizáló cisztein vagy szerin mellett hasít és a szerin az NCR SP *h*-régiók 72%-ában konzervált helyen található meg. Az izolált, SPP-t tartalmazó endoplazmatikus retikulum membrán elvágja az SPP célpontnak prediktált NCR SP-eket (NCR120 SP, NCR216 SP, NCR252 SP), míg az SPP célpontnak nem prediktált NCR247 SP-t nem. Affinitás kromatográfia alapján az NCR SP-ek kölcsönható fehérjepartnereit két csoportba lehet sorolni aszerint, hogy az SPP vágja őket vagy sem. Míg az előbbi csoport tagjait a proteaszóma bonthatja le az SPP hasítása után, addig az utóbbi csoportban található érintetlen SP-ek a jelátviteli útvonalakat (COP9 szignaloszóma, kalmodulin) befolyásolhatják.

Az NCR peptidek antimikrobiális aktivitása

Az eddig legátfogóbb kísérletben, mely az NCR-ek antimikrobiális hatását vizsgálta, 78 db *M. truncatula* NCR-t, 12 db nem-Mt IRLC NCR-t és azok 14 rövidebb származékát teszteltük nyolc humán patogén baktérium ellen (multirezisztens ESKAPE patogének: *Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterococcus faecalis,* továbbá *Listeria monocytogenes* és *Salmonella enteritidis*). Nagy általánosságban elmondható, hogy a kationos izoelektromos pont és a pozitív nettó töltés szükséges, de nem elégséges feltétele az antimikrobiális hatásnak, hisz ezek mellett a rendezetlen szerkezet és az amfipatikus jelleg, valamint az aminosav sorrend is rendkívül fontos hatással vannak az NCR-ek hatékonyságára. Az NCR073, az NCR336 és az NCR358 alacsony koncentrációban eredményes volt mind a nyolc baktérium ellen, így érdemes ezeket a peptideket további vizsgálatoknak alávetni.

Az IRLC NCR-ek és származékaik antimikrobiális hatását részletesebben is megvizsgáltuk *A. baumannii* és *Candida albicans*, és a WHO kiemelt bakteriális és gomba kórokozókkal szemben. Ezek súlyos egészségügyi problémákat okoznak elsősorban a kórházi betegellátásban, biofilmek képzésével a hosszan tartó és visszatérő fertőzések esetében. A tesztelt peptidek jelentős mértékben elbontották a biofilmet *C. albicans* esetében, továbbá mindkét mikroorganizmust gyorsan és alacsony koncentrációban pusztították el, miközben nem váltottak ki hemolízist emberi vörösvérsejteknél. Azonosítottunk hatékony, rövidebb peptid származékokat is, ami szintézisüket jelentősen költséghatékonnyá teszi.

SUMMARY

The symbiosis of leguminous plants and Rhizobium soil bacteria leads to the development of root nodules, where the bacteria in the nodules are able to reduce the atmospheric nitrogen to ammonia. In IRLC plants, Rhizobium bacteria lose their ability to divide, so their differentiation is final (terminal differentiation). In *Medicago* species, the genome of nitrogen-fixing bacteria is many times larger (~20x) than in the free-living form, and they have 5-10 times larger size, elongated-branched morphology and more permeable membranes. Terminal differentiation provides more efficient nitrogen fixation, which is controlled by the plant partner through symbiotic plant peptides expressed in the nodule. In the symbiotic model plant *Medicago truncatula*, ~700 genes encode nodule-specific cysteine-rich NCR peptides that regulate different steps of bacterial differentiation. Most NCRs, more than 300, are expressed in the few cell layers where bacterial cell division inhibition and bacterial elongation occur.

Our work has focused bot hon understanding the function of the smallest peptide, NCR247, and on the regulation of *NCR* genes. We investigated the conservation of NCR signal peptides (NCR SPs) and their connection to the nodule-specific signal peptide peptidase (nodSPP), which is co-expressed with *NCR* genes. In addition to symbiosis, we investigated the *in vitro* antimicrobial spectrum of cationic NCR peptides, their physicochemical properties and their mechanism of action.

Mechanism of action of NCR247

NCR247 is the shortest natural *M. truncatula* NCR peptide: it is 24 amino acids long, has 4 conserved cysteines, it is cationic (isoelectric point 10.15), has positive net charge (+6), and high Boman index (4.63 kcal/mol), which marks a strong protein binding ability. Under *in vitro* conditions, it damages the membrane at high concentrations, induces vesicle formation and bacterial death. At low concentrations it can enter the bacterial cytosol without damaging the membrane, where it induces transcriptional changes, affects translation and binds specifically to the FtsZ protein, which plays a key role in cell division, preventing FtsZ polymerization and thus the formation of the septum necessary for cell division, and binds to the GroEL chaperone, which plays an important role in symbioses, as well as to several ribosomal proteins.

Regulation of NCR genes

Based on the symbiosis-specific evolution of *NCR* genes, we hypothesized that they may have evolved together with symbiosis-specific transcription factors. The *NCR169* gene was used as a model, as its promoter contains motifs that are also present in the promoter of 288 *NCRs* and confer nodule-specific expression. We have shown that the GUS reporter driven by the *NCR169* promoter is expressed in soybean nodules, where in its natural state no *NCR* genes are present and no terminal bacteroid differentiation is observed. In the presence of NCR169, we observed signs of differentiation were in soybean symbionts, such as elongated bacteroids and a small increase in their genome size. In *M. truncatula* nodules, the bacterial BacA ABC-transporter was required for the NCR peptides to enter into the symbiote and similarly the BacA ortholog, BclA, was also essential for NCR169 function in soybean nodules. We found that NCR169 expression requires two AHL transcription factors, which are not nodule-specific and are widely present in plants.

Evolution of NCR signal peptides (SP) and their relationship with nodSPP

NCRs account for 5% of the total nodule transcriptome and thus NCR SPs are abundant, which may explain the appearance and function of the nodule-specific copies of the signal peptidase complex SPC22 and the signal peptide peptidase (SPP) (dnf1, nodSPP). SPP cleaves adjacent to a helix destabilizing cysteine or serine located between the hydrophobic amino acids of the SP *h*-region and serine is conserved in 72% of NCR SP *h*-regions. The isolated SPP-containing endoplasmic reticulum membrane cleaves NCR SPs predicted to be SPP targets (NCR120 SP, NCR216 SP, NCR252 SP), whereas NCR247 SP which is not predicted as SPP target remains intact. Based on affinity chromatography, the interaction protein partners of NCR SPs can be sorted into two groups according to whether they cleaved by SPP or not. While members of the former group may be degraded by the proteasome after cleavage by SPP, intact SPs in the latter group may affect signalling pathways (COP9 signalosome, calmodulin).

Antimicrobial activity of NCR peptides

In the most comprehensive experiment to date investigating the antimicrobial activity of NCRs, 78 *M. truncatula* NCRs, 12 non-Mt IRLC NCRs and their 14 shorter derivatives were tested against eight human pathogenic bacteria (multi-resistant ESKAPE pathogens: *Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterococcus faecalis,* as well as *Listeria monocytogenes* and *Salmonella enteritidis*). In general, a cationic isoelectric point and a positive net charge are necessary but not sufficient properties for antimicrobial activity, since, in addition to these, disordered structure and amphipathicity, as well as amino acid sequence, have a very important influence on the efficacy of NCRs. NCR073, NCR336 and NCR358 were effective against all eight bacteria at low concentrations, so these peptides are worthy of further investigation.

The antimicrobial activity of the IRLC NCRs and their derivatives was investigated in more detail against *A. baumannii* and *Candida albicans*, and against WHO top priority bacterial and fungal pathogens. These cause serious health problems, especially in hospital care, by forming biofilms in cases of prolonged and recurrent infections. The tested peptides significantly degraded the biofilm of *C. albicans* and rapidly killed both microorganisms at low concentrations, while not causing haemolysis in human red blood cells. We also identified efficient shorter peptide derivatives, making their synthesis significantly cost-effective.

IRODALOMJEGYZÉK

- Almagro Armenteros, J.J., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther, O., Brunak, S., von Heijne, G., Nielsen, H., 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423. https://doi.org/10.1038/s41587-019-0036-z
- Alunni, B., Kevei, Z., Redondo-Nieto, M., Kondorosi, A., Mergaert, P., Kondorosi, E., 2007.
 Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in *Medicago truncatula*. Mol. Plant. Microbe Interact. 20, 1138–1148. https://doi.org/10.1094/MPMI-20-9-1138
- Arimura, S., 2018. Fission and fusion of plant mitochondria, and genome maintenance. Plant Physiol. 176, 152–161. https://doi.org/10.1104/pp.17.01025
- Arnold, M.F.F., Shabab, M., Penterman, J., Boehme, K.L., Griffitts, J.S., Walker, G.C., 2017. Genome-wide sensitivity analysis of the microsymbiont *Sinorhizobium meliloti* to symbiotically important, defensin-like host peptides. mBio 8. https://doi.org/10.1128/mBio.01060-17
- Azani, N., Babineau, M., Bailey, C.D., Banks, H., Barbosa, A.R., Pinto, R.B., Boatwright, J.S., Borges, L.M., Brown, G.K., Bruneau, A., Candido, E., Cardoso, D., Chung, K.-F., Clark, R.P., Conceição, A. de S., Crisp, M., Cubas, P., Delgado-Salinas, A., Dexter, K.G., Doyle, J.J., Duminil, J., Egan, A.N., Estrella, M. de la, Falcão, M.J., Filatov, D.A., Fortuna-Perez, A.P., Fortunato, R.H., Gagnon, E., Gasson, P., Rando, J.G., Tozzi, A.M.G. de A., Gunn, B., Harris, D., Haston, E., Hawkins, J.A., Herendeen, P.S., Hughes, C.E., Iganci, J.R.V., Javadi, F., Kanu, S.A., Kazempour-Osaloo, S., Kite, G.C., Klitgaard, B.B., Kochanovski, F.J., Koenen, E.J.M., Kovar, L., Lavin, M., Roux, M. le, Lewis, G.P., Lima, H.C. de, López-Roberts, M.C., Mackinder, B., Maia, V.H., Malécot, V., Mansano, V.F., Marazzi, B., Mattapha, S., Miller, J.T., Mitsuyuki, C., Moura, T., Murphy, D.J., Nageswara-Rao, M., Nevado, B., Neves, D., Ojeda, D.I., Pennington, R.T., Prado, D.E., Prenner, G., Queiroz, L.P. de, Ramos, G., Filardi, F.L.R., Ribeiro, P.G., Rico-Arce, M. de L., Sanderson, M.J., Santos-Silva, J., São-Mateus, W.M.B., Silva, M.J.S., Simon, M.F., Sinou, C., Snak, C., Souza, É.R. de, Sprent, J., Steele, K.P., Steier, J.E., Steeves, R., Stirton, C.H., Tagane, S., Torke, B.M., Toyama, H., Cruz, D.T. da, Vatanparast, M., Wieringa, J.J., Wink, M., Wojciechowski, M.F., Yahara, T., Yi, T., Zimmerman, E., 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive

phylogeny: The Legume Phylogeny Working Group (LPWG). TAXON 66, 44–77. https://doi.org/10.12705/661.3

- Balogh, E., Mosolygó, T., Tiricz, H., Szabó, Á., Karai, A., Kerekes, F., Virók, D., Kondorosi, É., Burián, K., 2014. Anti-chlamydial effect of plant peptides. Acta Microbiol.
 Immunol. Hung. 61, 229–239. https://doi.org/10.1556/AMicr.61.2014.2.12
- Bergersen, F.J., 1955. The cytology of bacteroids from root nodules of subterranean clover (*Trifolium subterraneum* L.). J. Gen. Microbiol. 13, 411–419. https://doi.org/10.1099/00221287-13-3-411
- Berrabah, F., Bourcy, M., Eschstruth, A., Cayrel, A., Guefrachi, I., Mergaert, P., Wen, J., Jean, V., Mysore, K.S., Gourion, B., Ratet, P., 2014. A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis. New Phytol. 203, 1305–1314. https://doi.org/10.1111/nph.12881
- Berrabah, F., Ratet, P., Gourion, B., 2015. Multiple steps control immunity during the intracellular accommodation of rhizobia. J. Exp. Bot. 66, 1977–1985. https://doi.org/10.1093/jxb/eru545
- Bertioli, D.J., Cannon, S.B., Froenicke, L., Huang, G., Farmer, A.D., Cannon, E.K.S., Liu, X., Gao, D., Clevenger, J., Dash, S., Ren, L., Moretzsohn, M.C., Shirasawa, K., Huang, W., Vidigal, B., Abernathy, B., Chu, Y., Niederhuth, C.E., Umale, P., Araújo, A.C.G., Kozik, A., Do Kim, K., Burow, M.D., Varshney, R.K., Wang, X., Zhang, X., Barkley, N., Guimarães, P.M., Isobe, S., Guo, B., Liao, B., Stalker, H.T., Schmitz, R.J., Scheffler, B.E., Leal-Bertioli, S.C.M., Xun, X., Jackson, S.A., Michelmore, R., Ozias-Akins, P., 2016b. The genome sequences of *Arachis duranensis* and *Arachis ipaensis*, the diploid ancestors of cultivated peanut. Nat. Genet. 48, 438–446. https://doi.org/10.1038/ng.3517
- Bourcy, M., Brocard, L., Pislariu, C.I., Cosson, V., Mergaert, P., Tadege, M., Mysore, K.S., Udvardi, M.K., Gourion, B., Ratet, P., 2013. *Medicago truncatula* DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. New Phytol. 197, 1250–1261. https://doi.org/10.1111/nph.12091
- Brink, C., Postma, A., Jacobs, K., 2017. Rhizobial diversity and function in rooibos (*Aspalathus linearis*) and honeybush (*Cyclopia* spp.) plants: A review. South Afr. J. Bot., Herbal Teas 110, 80–86. https://doi.org/10.1016/j.sajb.2016.10.025

- Brown, M.S., Ye, J., Rawson, R.B., Goldstein, J.L., 2000. Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans. Cell 100, 391– 398. https://doi.org/10.1016/S0092-8674(00)80675-3
- Catalano, C.M., Lane, W.S., Sherrier, D.J., 2004b. Biochemical characterization of symbiosome membrane proteins from *Medicago truncatula* root nodules. ELECTROPHORESIS 25, 519–531. https://doi.org/10.1002/elps.200305711
- Cebolla, A., Vinardell, J.M., Kiss, E., Oláh, B., Roudier, F., Kondorosi, A., Kondorosi, E., 1999. The mitotic inhibitor ccs52 is required for endoreduplication and ploidydependent cell enlargement in plants. EMBO J. 18, 4476–4484. https://doi.org/10.1093/emboj/18.16.4476
- CHANDLER, M.R., DATE, R.A., ROUGHLEY, R.J., 1982. Infection and root-nodule development in *Stylosanthes* species by rhizobium. J. Exp. Bot. 33, 47–57. https://doi.org/10.1093/jxb/33.1.47
- Chen, H., Yuan, D., Wu, A., Lin, X., Li, X., 2021. Review of low-temperature plasma nitrogen fixation technology. Waste Dispos. Sustain. Energy 3, 201–217. https://doi.org/10.1007/s42768-021-00074-z
- Chen, W.F., Meng, X.F., Jiao, Y.S., Tian, C.F., Sui, X.H., Jiao, J., Wang, E.T., Ma, S.J., 2023. Bacteroid development, transcriptome, and symbiotic nitrogen-fixing comparison of *Bradyrhizobium arachidis* in nodules of peanut (*Arachis hypogaea*) and medicinal legume *Sophora flavescens*. Microbiol. Spectr. 0, e01079-22. https://doi.org/10.1128/spectrum.01079-22
- Choi, H.-K., Mun, J.-H., Kim, D.-J., Zhu, H., Baek, J.-M., Mudge, J., Roe, B., Ellis, N., Doyle, J., Kiss, G.B., Young, N.D., Cook, D.R., 2004. Estimating genome conservation between crop and model legume species. Proc. Natl. Acad. Sci. U. S. A. 101, 15289–15294. https://doi.org/10.1073/pnas.0402251101
- Choi, I.-S., Jansen, R., Ruhlman, T., 2019. Lost and found: return of the inverted repeat in the legume clade defined by its absence. Genome Biol. Evol. 11, 1321–1333. https://doi.org/10.1093/gbe/evz076
- Chou, M.-X., Wei, X.-Y., Chen, D.-S., Zhou, J.-C., 2006. Thirteen nodule-specific or noduleenhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in *Astragalus sinicus* L. by suppressive subtractive hybridization. J. Exp. Bot. 57, 2673–2685. https://doi.org/10.1093/jxb/erl030

- Clarke, V.C., Loughlin, P.C., Day, D.A., Smith, P.M.C., 2014. Transport processes of the legume symbiosome membrane. Front. Plant Sci. 5. https://doi.org/10.3389/fpls.2014.00699
- Cools, T.L., Struyfs, C., Cammue, B.P., Thevissen, K., 2017. Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol. 12, 441–454. https://doi.org/10.2217/fmb-2016-0181
- Cosson, V., Eschstruth, A., Ratet, P., 2015. *Medicago truncatula* transformation using leaf explants, in: Wang, K. (Ed.), Agrobacterium Protocols: Volume 1, Methods in Molecular Biology. Springer, New York, NY, pp. 43–56. https://doi.org/10.1007/978-1-4939-1695-5_4
- Crane, C., Wright, E., Dixon, R.A., Wang, Z.-Y., 2006. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223, 1344–1354. https://doi.org/10.1007/s00425-006-0268-2
- Crooks, G.E., Hon, G., Chandonia, J.-M., Brenner, S.E., 2004. WebLogo: A Sequence logo generator. Genome Res. 14, 1188–1190. https://doi.org/10.1101/gr.849004
- Czernic, P., Gully, D., Cartieaux, F., Moulin, L., Guefrachi, I., Patrel, D., Pierre, O., Fardoux, J., Chaintreuil, C., Nguyen, P., Gressent, F., Silva, C.D., Poulain, J., Wincker, P., Rofidal, V., Hem, S., Barrière, Q., Arrighi, J.-F., Mergaert, P., Giraud, E., 2015.
 Convergent evolution of endosymbiont differentiation in Dalbergioid and inverted repeat-lacking cade legumes mediated by nodule-specific cysteine-rich peptides. Plant Physiol. 169, 1254–1265. https://doi.org/10.1104/pp.15.00584
- Dart, P.J., Mercer, F.V., 1966. Fine structure of bacteroids in root nodules of *Vigna sinensis*, *Acacia longifolia*, *Viminaria juncea*, and *Lupinus angustifolius*. J. Bacteriol. 91, 1314– 1319.
- Delaux, P.-M., Radhakrishnan, G., Oldroyd, G., 2015. Tracing the evolutionary path to nitrogen-fixing crops. Curr. Opin. Plant Biol. 26, 95–99. https://doi.org/10.1016/j.pbi.2015.06.003
- diCenzo, G.C., Zamani, M., Ludwig, H.N., Finan, T.M., 2017. Heterologous complementation reveals a specialized activity for BacA in the *Medicago– Sinorhizobium meliloti* symbiosis. Mol. Plant-Microbe Interactions® 30, 312–324. https://doi.org/10.1094/MPMI-02-17-0030-R

- Dixon, R.O.D., 1967. The origin of the membrane envelope surrounding the bacteria and bacteroids and the presence of glycogen in clover root nodules. Arch. Für Mikrobiol. 56, 156–166. https://doi.org/10.1007/BF00408766
- Doyle, J.J., Luckow, M.A., 2003. The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol. 131, 900–910. https://doi.org/10.1104/pp.102.018150
- Durán, D., Albareda, M., García, C., Marina, A.-I., Ruiz-Argüeso, T., Palacios, J.-M., 2021.
 Proteome analysis reveals a significant host-specific response in *Rhizobium leguminosarum* bv. *viciae* endosymbiotic cells. Mol. Cell. Proteomics MCP 20, 100009. https://doi.org/10.1074/mcp.RA120.002276
- Dürgő, H., Klement, É., Hunyadi-Gulyás, E., Szűcs, A., Kereszt, A., Medzihradszky, K.F., Kondorosi, É., 2015a. Identification of nodule-specific cysteine-rich plant peptides in endosymbiotic bacteria. PROTEOMICS 15, 2291–2295. https://doi.org/10.1002/pmic.201400385
- Elliott, G.N., Chen, W.-M., Chou, J.-H., Wang, H.-C., Sheu, S.-Y., Perin, L., Reis, V.M., Moulin, L., Simon, M.F., Bontemps, C., Sutherland, J.M., Bessi, R., de Faria, S.M., Trinick, M.J., Prescott, A.R., Sprent, J.I., James, E.K., 2007. *Burkholderia phymatum* is a highly effective nitrogen-fixing symbiont of *Mimosa* spp. and fixes nitrogen *ex planta*. New Phytol. 173, 168–180. https://doi.org/10.1111/j.1469-8137.2006.01894.x
- Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z., Winiwarter, W., 2008. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639. https://doi.org/10.1038/ngeo325
- Farkas, A., Maróti, G., Dürgő, H., Györgypál, Z., Lima, R.M., Medzihradszky, K.F., Kereszt, A., Mergaert, P., Kondorosi, É., 2014. *Medicago truncatula* symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proc. Natl. Acad. Sci. 111, 5183–5188. https://doi.org/10.1073/pnas.1404169111
- Farkas, A., Maróti, G., Kereszt, A., Kondorosi, É., 2017. Comparative analysis of the bacterial membrane disruption effect of two natural plant antimicrobial peptides. Front. Microbiol. 8. https://doi.org/10.3389/fmicb.2017.00051
- Fernando, S.A., Gray, T.J., Gottlieb, T., 2017. Healthcare-acquired infections: prevention strategies. Intern. Med. J. 47, 1341–1351. https://doi.org/10.1111/imj.13642
- Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., Sheppard, L.J., Jenkins, A., Grizzetti, B., Galloway, J.N., Vitousek, P., Leach, A., Bouwman, A.F., Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M., Voss, M., 2013. The

global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130164. https://doi.org/10.1098/rstb.2013.0164

- Frühling, M., Albus, U., Hohnjec, N., Geise, G., Pühler, A., Perlick, A.M., 2000. A small gene family of broad bean codes for late nodulins containing conserved cysteine clusters. Plant Sci. 152, 67–77. https://doi.org/10.1016/S0168-9452(99)00219-8
- Gavrin, A., Kulikova, O., Bisseling, T., Fedorova, E.E., 2017. Interface symbiotic membrane formation in root nodules of *Medicago truncatula*: the role of synaptotagmins MtSyt1, MtSyt2 and MtSyt3. Front. Plant Sci. 8.
- Geurts, R., Bisseling, T., 2002. Rhizobium nod factor perception and signalling. Plant Cell 14, s239–s249. https://doi.org/10.1105/tpc.002451
- Golinowski, W., Kopcińska, J., Borucki, W., 1987. The morphogenesis of lupine root nodules during infection by *Rhizobium lupini*. Acta Soc. Bot. Pol. 56, 687–703. https://doi.org/10.5586/asbp.1987.058
- Gourion, B., Berrabah, F., Ratet, P., Stacey, G., 2015. Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci. 20, 186–194. https://doi.org/10.1016/j.tplants.2014.11.008
- Graham, P.H., Vance, C.P., 2003. Legumes: importance and constraints to greater use. Plant Physiol. 131, 872–877. https://doi.org/10.1104/pp.017004
- Griesmann, M., Chang, Y., Liu, X., Song, Y., Haberer, G., Crook, M.B., Billault-Penneteau,
 B., Lauressergues, D., Keller, J., Imanishi, L., Roswanjaya, Y.P., Kohlen, W., Pujic,
 P., Battenberg, K., Alloisio, N., Liang, Y., Hilhorst, H., Salgado, M.G., Hocher, V.,
 Gherbi, H., Svistoonoff, S., Doyle, J.J., He, S., Xu, Y., Xu, S., Qu, J., Gao, Q., Fang,
 X., Fu, Y., Normand, P., Berry, A.M., Wall, L.G., Ané, J.-M., Pawlowski, K., Xu, X.,
 Yang, H., Spannagl, M., Mayer, K.F.X., Wong, G.K.-S., Parniske, M., Delaux, P.-M.,
 Cheng, S., 2018. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule
 symbiosis. Science 361. https://doi.org/10.1126/science.aat1743
- Guefrachi, I., Nagymihaly, M., Pislariu, C.I., Van de Velde, W., Ratet, P., Mars, M., Udvardi, M.K., Kondorosi, E., Mergaert, P., Alunni, B., 2014. Extreme specificity of NCR gene expression in *Medicago truncatula*. BMC Genomics 15, 712. https://doi.org/10.1186/1471-2164-15-712
- Guefrachi, I., Pierre, O., Timchenko, T., Alunni, B., Barrière, Q., Czernic, P., Villaécija-Aguilar, J.-A., Verly, C., Bourge, M., Fardoux, J., Mars, M., Kondorosi, E., Giraud, E., Mergaert, P., 2015a. *Bradyrhizobium* BclA is a peptide transporter required for

bacterial differentiation in symbiosis with *Aeschynomene* legumes. Mol. Plant-Microbe Interactions® 28, 1155–1166. https://doi.org/10.1094/MPMI-04-15-0094-R

- Guefrachi, I., Verly, C., Kondorosi, É., Alunni, B., Mergaert, P., 2015b. Role of the bacterial BacA ABC-transporter in chronic infection of nodule cells by rhizobium bacteria, in: biological nitrogen fixation. John Wiley & Sons, Ltd, pp. 315–324. https://doi.org/10.1002/9781119053095.ch31
- Haag, A.F., Baloban, M., Sani, M., Kerscher, B., Pierre, O., Farkas, A., Longhi, R.,
 Boncompagni, E., Hérouart, D., Dall'Angelo, S., Kondorosi, E., Zanda, M., Mergaert,
 P., Ferguson, G.P., 2011. Protection of *Sinorhizobium* against host cysteine-rich antimicrobial peptides is critical for symbiosis. PLOS Biol. 9, e1001169. https://doi.org/10.1371/journal.pbio.1001169
- Haag, A.F., Kerscher, B., Dall'Angelo, S., Sani, M., Longhi, R., Baloban, M., Wilson, H.M., Mergaert, P., Zanda, M., Ferguson, G.P., 2012. Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide. J. Biol. Chem. 287, 10791–10798. https://doi.org/10.1074/jbc.M111.311316
- Hakoyama, T., Niimi, K., Watanabe, H., Tabata, R., Matsubara, J., Sato, S., Nakamura, Y.,
 Tabata, S., Jichun, L., Matsumoto, T., Tatsumi, K., Nomura, M., Tajima, S., Ishizaka,
 M., Yano, K., Imaizumi-Anraku, H., Kawaguchi, M., Kouchi, H., Suganuma, N.,
 2009. Host plant genome overcomes the lack of a bacterial gene for symbiotic
 nitrogen fixation. Nature 462, 514–517. https://doi.org/10.1038/nature08594
- Harding, C.M., Hennon, S.W., Feldman, M.F., 2018. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 16, 91–102. https://doi.org/10.1038/nrmicro.2017.148
- Hartmann, L.S., Barnum, S.R., 2010. Inferring the evolutionary history of Mo-dependent nitrogen fixation from phylogenetic studies of nifK and nifDK. J. Mol. Evol. 71, 70– 85. https://doi.org/10.1007/s00239-010-9365-8
- Hassen, A.I., Lamprecht, S.C., Bopape, F.L., 2020. Emergence of β-rhizobia as new root nodulating bacteria in legumes and current status of the legume-rhizobium host specificity dogma. World J. Microbiol. Biotechnol. 36, 40.
 https://doi.org/10.1007/s11274-020-2811-x
- He, J., Benedito, V.A., Wang, M., Murray, J.D., Zhao, P.X., Tang, Y., Udvardi, M.K., 2009.
 The *Medicago truncatula* gene expression atlas web server. BMC Bioinformatics 10, 441. https://doi.org/10.1186/1471-2105-10-441

- Higashi, S., Abe, M., Reyes, G.D., Manguiat, I.J., 1987. Electron microscopic studies of the root nodule of *Pterocarpus indicus*. J. Gen. Appl. Microbiol. 33, 241–245. https://doi.org/10.2323/jgam.33.241
- Hoffmann, B., Trinh, T.H., Leung, J., Kondorosi, A., Kondorosi, E., 1997. A new *Medicago truncatula* line with superior *in vitro* regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol. Plant-Microbe Interactions® 10, 307–315. https://doi.org/10.1094/MPMI.1997.10.3.307
- Horváth, B., Domonkos, Á., Kereszt, A., Szűcs, A., Ábrahám, E., Ayaydin, F., Bóka, K., Chen, Y., Chen, R., Murray, J.D., Udvardi, M.K., Kondorosi, É., Kaló, P., 2015. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the *Medicago truncatula* dnf7 mutant. Proc. Natl. Acad. Sci. U. S. A. 112, 15232–15237. https://doi.org/10.1073/pnas.1500777112
- Howan, D.H.O., Jenei, S., Szolomajer, J., Endre, G., Kondorosi, É., Tóth, G.K., 2023.
 Enhanced antibacterial activity of substituted derivatives of NCR169C peptide. Int. J.
 Mol. Sci. 24, 2694. https://doi.org/10.3390/ijms24032694
- Huang, R., Snedden, W.A., diCenzo, G.C., 2022. Reference nodule transcriptomes for *Melilotus officinalis* and *Medicago sativa* cv. Algonquin. https://doi.org/10.1101/2022.02.08.479627
- Humphreys, J., Lan, R., Tao, S., 2021. Development and recent progress on ammonia synthesis catalysts for Haber–Bosch process. Adv. Energy Sustain. Res. 2, 2000043. https://doi.org/10.1002/aesr.202000043
- Istvánek, J., Jaros, M., Krenek, A., Řepková, J., 2014a. Genome assembly and annotation for red clover (*Trifolium pratense*; *Fabaceae*). Am. J. Bot. 101, 327–337. https://doi.org/10.3732/ajb.1300340
- Ivanov, S., Fedorova, E.E., Limpens, E., Mita, S.D., Genre, A., Bonfante, P., Bisseling, T., 2012. Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc. Natl. Acad. Sci. 109, 8316–8321. https://doi.org/10.1073/pnas.1200407109
- Jenei, S., Tiricz, H., Szolomájer, J., Tímár, E., Klement, É., Al Bouni, M.A., Lima, R.M.,
 Kata, D., Harmati, M., Buzás, K., Földesi, I., Tóth, G.K., Endre, G., Kondorosi, É.,
 2020a. Potent chimeric antimicrobial derivatives of the *Medicago truncatula* NCR247
 symbiotic peptide. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.00270

- Kaewklom, S., Wongchai, M., Petvises, S., Hanpithakphong, W., Aunpad, R., 2018. Structural and biological features of a novel plant defensin from *Brugmansia* x *candida*. PLoS ONE 13. https://doi.org/10.1371/journal.pone.0201668
- Kalita, M., Małek, W., 2020. Root nodules of *Genista germanica* harbor *Bradyrhizobium* and *Rhizobium* bacteria exchanging nodC and nodZ genes. Syst. Appl. Microbiol. 43, 126026. https://doi.org/10.1016/j.syapm.2019.126026
- Kang, T.S., Radić, Z., Talley, T.T., Jois, S.D.S., Taylor, P., Kini, R.M., 2007. Protein folding determinants: structural features determining alternative disulfide pairing in alpha- and chi/lambda-conotoxins. Biochemistry 46, 3338–3355. https://doi.org/10.1021/bi0619690
- Karmakar, K., Kundu, A., Rizvi, A.Z., Dubois, E., Severac, D., Czernic, P., Cartieaux, F., DasGupta, M., 2018. Transcriptomic analysis with the progress of symbiosis in 'crackentry' legume *Arachis hypogaea* highlights its contrast with 'infection thread' adapted legumes. Mol. Plant-Microbe Interactions® 32, 271–285. https://doi.org/10.1094/MPMI-06-18-0174-R
- Karunakaran, R., Haag, A.F., East, A.K., Ramachandran, V.K., Prell, J., James, E.K., Scocchi, M., Ferguson, G.P., Poole, P.S., 2010. BacA is essential for bacteroid development in nodules of galegoid, but not phaseoloid, legumes. J. Bacteriol. 192, 2920–2928. https://doi.org/10.1128/JB.00020-10
- Keet, J.-H., Ellis, A.G., Hui, C., Le Roux, J.J., 2017. Legume–rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness. Ann. Bot. 119, 1319– 1331. https://doi.org/10.1093/aob/mcx028
- Kennedy, I.R., Choudhury, A.T.M.A., Kecskés, M.L., 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol. Biochem., Nitrogen Fixation in Australian Agricultural Systems: 13th Australian Nitrogen Fixation Conference 36, 1229–1244. https://doi.org/10.1016/j.soilbio.2004.04.006
- Kevei, Z., Vinardell, J.M., Kiss, G.B., Kondorosi, A., Kondorosi, E., 2002. Glycine-rich proteins encoded by a nodule-specific gene family are implicated in different stages of symbiotic nodule development in *Medicago* spp. Mol. Plant-Microbe Interactions® 15, 922–931. https://doi.org/10.1094/MPMI.2002.15.9.922
- Kim, M., Chen, Y., Xi, J., Waters, C., Chen, R., Wang, D., 2015a. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc. Natl. Acad. Sci. 112, 15238–15243. https://doi.org/10.1073/pnas.1500123112

- Kondorosi, E., Banfalvi, Z., Kondorosi, A., 1984. Physical and genetic analysis of a symbiotic region of *Rhizobium meliloti*: Identification of nodulation genes. Mol. Gen. Genet. MGG 193, 445–452. https://doi.org/10.1007/BF00382082
- Kondorosi, E., Gyuris, J., Schmidt, J., John, M., Duda, E., Hoffmann, B., Schell, J., Kondorosi, A., 1989. Positive and negative control of nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO J. 8, 1331–1340. https://doi.org/10.1002/j.1460-2075.1989.tb03513.x
- Kondorosi, E., Kondorosi, A., 2004. Endoreduplication and activation of the anaphasepromoting complex during symbiotic cell development. FEBS Lett. 567, 152–157. https://doi.org/10.1016/j.febslet.2004.04.075
- Kondorosi, E., Mergaert, P., Kereszt, A., 2013. A Paradigm for Endosymbiotic Life: Cell differentiation of rhizobium bacteria provoked by host plant factors. Annu. Rev. Microbiol. 67, 611–628. https://doi.org/10.1146/annurev-micro-092412-155630
- Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L., 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580. https://doi.org/10.1006/jmbi.2000.4315
- Kryuchkova-Mostacci, N., Robinson-Rechavi, M., 2016. Tissue-specificity of gene expression diverges slowly between orthologs, and rapidly between paralogs. PLOS Comput. Biol. 12, e1005274. https://doi.org/10.1371/journal.pcbi.1005274
- Kühnle, N., Dederer, V., Lemberg, M.K., 2019. Intramembrane proteolysis at a glance: from signalling to protein degradation. J. Cell Sci. 132. https://doi.org/10.1242/jcs.217745
- Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547– 1549. https://doi.org/10.1093/molbev/msy096
- Kyriakidis, I., Vasileiou, E., Pana, Z.D., Tragiannidis, A., 2021. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 10, 373. https://doi.org/10.3390/pathogens10030373
- Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., 2007. Clustal W and Clustal X version 2.0. Bioinforma. Oxf. Engl. 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
- Lavin, M., Herendeen, P.S., Wojciechowski, M.F., 2005. Evolutionary rates analysis of *Leguminosae* implicates a rapid diversification of lineages during the Tertiary. Syst. Biol. 54, 575–594. https://doi.org/10.1080/10635150590947131

- Lavin, M., Pennington, R.T., Klitgaard, B.B., Sprent, J.I., de Lima, H.C., Gasson, P.E., 2001.
 The Dalbergioid legumes (*Fabaceae*): delimitation of a pantropical monophyletic clade. Am. J. Bot. 88, 503–533.
- Lehnert, N., Dong, H.T., Harland, J.B., Hunt, A.P., White, C.J., 2018. Reversing nitrogen fixation. Nat. Rev. Chem. 2, 278–289. https://doi.org/10.1038/s41570-018-0041-7
- Lemberg, M.K., Martoglio, B., 2002. Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Molecular Cell 10, 735–744. https://doi.org/10.1016/S1097-2765(02)00655-X
- Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Promé, J.C., Dénarié, J., 1990. Symbiotic host-specificity of *Rhizobium meliloti* is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344, 781–784. https://doi.org/10.1038/344781a0
- Lima, R.M., Kylarová, S., Mergaert, P., Kondorosi, É., 2020b. Unexplored arsenals of legume peptides with potential for their applications in medicine and agriculture. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.01307
- Lima, R.M., Rathod, B.B., Tiricz, H., Howan, D.H.O., Al Bouni, M.A., Jenei, S., Tímár, E., Endre, G., Tóth, G.K., Kondorosi, É., 2022. Legume plant peptides as sources of novel antimicrobial molecules against human pathogens. Front. Mol. Biosci. 9.
- Liu, J., Ma, K., Ciais, P., Polasky, S., 2016. Reducing human nitrogen use for food production. Sci. Rep. 6, 30104. https://doi.org/10.1038/srep30104
- Liu, J., Miller, S.S., Graham, M., Bucciarelli, B., Catalano, C.M., Sherrier, D.J., Samac, D.A., Ivashuta, S., Fedorova, M., Matsumoto, P., Gantt, J.S., Vance, C.P., 2006.
 Recruitment of novel calcium-binding proteins for root nodule symbiosis in *Medicago truncatula*. Plant Physiol. 141, 167–177. https://doi.org/10.1104/pp.106.076711
- Loureiro, M.F., Faria, S.M.D., James, E.K., Pott, A., Franco, A.A., 1994. Nitrogen-fixing stem nodules of the legume, *Discolobium pulchellum* Benth. New Phytol. 128, 283– 295. https://doi.org/10.1111/j.1469-8137.1994.tb04012.x
- Lu, S.H.-J., Jeon, A.H.W., Schmitt-Ulms, G., Qamar, S., Dodd, R., McDonald, B., Li, Y., Meadows, W., Cox, K., Bohm, C., Chen, F., Fraser, P., George-Hyslop, P.S., 2012.
 Vigilin interacts with signal peptide peptidase. Proteome Sci. 10, 33. https://doi.org/10.1186/1477-5956-10-33
- Maekawa, T., Kusakabe, M., Shimoda, Y., Sato, S., Tabata, S., Murooka, Y., Hayashi, M., 2008. Polyubiquitin promoter-based binary vectors for overexpression and gene

silencing in *Lotus japonicus*. Mol. Plant-Microbe Interact. MPMI 21, 375–382. https://doi.org/10.1094/MPMI-21-4-0375

- Marlow, V.L., Haag, A.F., Kobayashi, H., Fletcher, V., Scocchi, M., Walker, G.C., Ferguson, G.P., 2009. Essential role for the BacA protein in the uptake of a truncated eukaryotic peptide in *Sinorhizobium meliloti*. J. Bacteriol. 191, 1519–1527. https://doi.org/10.1128/JB.01661-08
- Maróti, G., Kondorosi, É., 2014. Nitrogen-fixing rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Front. Microbiol. 5. https://doi.org/10.3389/fmicb.2014.00326
- Martoglio, B., Dobberstein, B., 1998. Signal sequences: more than just greasy peptides. Trends Cell Biol. 8, 410–415. https://doi.org/10.1016/s0962-8924(98)01360-9
- Martoglio, B., Graf, R., Dobberstein, B., 1997. Signal peptide fragments of preprolactin and HIV-1 p-gp160 interact with calmodulin. EMBO J. 16, 6636–6645. https://doi.org/10.1093/emboj/16.22.6636
- Marx, H., Minogue, C.E., Jayaraman, D., Richards, A.L., Kwiecien, N.W., Siahpirani, A.F., Rajasekar, S., Maeda, J., Garcia, K., Del Valle-Echevarria, A.R., Volkening, J.D., Westphall, M.S., Roy, S., Sussman, M.R., Ané, J.-M., Coon, J.J., 2016. A proteomic atlas of the legume *Medicago truncatula* and its nitrogen-fixing endosymbiont *Sinorhizobium meliloti*. Nat. Biotechnol. 34, 1198–1205. https://doi.org/10.1038/nbt.3681
- Maunoury, N., Redondo-Nieto, M., Bourcy, M., Velde, W.V. de, Alunni, B., Laporte, P., Durand, P., Agier, N., Marisa, L., Vaubert, D., Delacroix, H., Duc, G., Ratet, P., Aggerbeck, L., Kondorosi, E., Mergaert, P., 2010a. Differentiation of symbiotic cells and endosymbionts in *Medicago truncatula* nodulation are coupled to two transcriptome-switches. PLOS ONE 5, e9519. https://doi.org/10.1371/journal.pone.0009519
- Mentrup, T., Loock, A.-C., Fluhrer, R., Schröder, B., 2017. Signal peptide peptidase and SPPlike proteases - Possible therapeutic targets? Biochim. Biophys. Acta BBA - Mol. Cell Res., Proteolysis as a Regulatory Event in Pathophysiology 1864, 2169–2182. https://doi.org/10.1016/j.bbamcr.2017.06.007
- Mergaert, P., 2018. Role of antimicrobial peptides in controlling symbiotic bacterial populations. Nat. Prod. Rep. 35, 336–356. https://doi.org/10.1039/C7NP00056A

- Mergaert, P., Kereszt, A., Kondorosi, E., 2020. Gene Expression in Nitrogen-Fixing Symbiotic nodule cells in *Medicago truncatula* and other nodulating plants. Plant Cell 32, 42–68. https://doi.org/10.1105/tpc.19.00494
- Mergaert, P., Nikovics, K., Kelemen, Z., Maunoury, N., Vaubert, D., Kondorosi, A., Kondorosi, E., 2003a. A novel family in *Medicago truncatula* consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol. 132, 161–173. https://doi.org/10.1104/pp.102.018192
- Mergaert, P., Uchiumi, T., Alunni, B., Evanno, G., Cheron, A., Catrice, O., Mausset, A.-E., Barloy-Hubler, F., Galibert, F., Kondorosi, A., Kondorosi, E., 2006. Eukaryotic control on bacterial cell cycle and differentiation in the rhizobium–legume symbiosis. Proc. Natl. Acad. Sci. 103, 5230–5235. https://doi.org/10.1073/pnas.0600912103
- Mergaert, P., Van Montagu, M., Holsters, M., 1997. Molecular mechanisms of Nod factor diversity. Mol. Microbiol. 25, 811–817. https://doi.org/10.1111/j.1365-2958.1997.mmi526.x
- Mikuláss, K.R., Nagy, K., Bogos, B., Szegletes, Z., Kovács, E., Farkas, A., Váró, G., Kondorosi, É., Kereszt, A., 2016. Antimicrobial nodule-specific cysteine-rich peptides disturb the integrity of bacterial outer and inner membranes and cause loss of membrane potential. Ann. Clin. Microbiol. Antimicrob. 15. https://doi.org/10.1186/s12941-016-0159-8
- Milton, R.D., Cai, R., Abdellaoui, S., Leech, D., De Lacey, A.L., Pita, M., Minteer, S.D., 2017. Bioelectrochemical Haber–Bosch Process: An ammonia-producing H2/N2 fuel cell. Angew. Chem. Int. Ed. 56, 2680–2683. https://doi.org/10.1002/anie.201612500
- Montiel, J., Downie, J.A., Farkas, A., Bihari, P., Herczeg, R., Bálint, B., Mergaert, P., Kereszt, A., Kondorosi, É., 2017b. Morphotype of bacteroids in different legumes correlates with the number and type of symbiotic NCR peptides. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1704217114
- Montiel, J., Szűcs, A., Boboescu, I.Z., Gherman, V.D., Kondorosi, É., Kereszt, A., 2016. Terminal bacteroid differentiation is associated with variable morphological changes in legume species belonging to the inverted repeat-lacking clade. Mol. Plant. Microbe Interact. 29, 210–219. https://doi.org/10.1094/MPMI-09-15-0213-R
- Murray, C.J., Ikuta, K.S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C.,
 Bisignano, C., Rao, P., Wool, E., Johnson, S.C., Browne, A.J., Chipeta, M.G., Fell, F.,
 Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B.H., Kumaran, E.A.P.,
 McManigal, B., Agarwal, R., Akech, S., Albertson, S., Amuasi, J., Andrews, J.,

Aravkin, A., Ashley, E., Bailey, F., Baker, S., Basnyat, B., Bekker, A., Bender, R., Bethou, A., Bielicki, J., Boonkasidecha, S., Bukosia, J., Carvalheiro, C., Castañeda-Orjuela, C., Chansamouth, V., Chaurasia, S., Chiurchiù, S., Chowdhury, F., Cook, A.J., Cooper, B., Cressey, T.R., Criollo-Mora, E., Cunningham, M., Darboe, S., Day, N.P.J., De Luca, M., Dokova, K., Dramowski, A., Dunachie, S.J., Eckmanns, T., Eibach, D., Emami, A., Feasey, N., Fisher-Pearson, N., Forrest, K., Garrett, D., Gastmeier, P., Giref, A.Z., Greer, R.C., Gupta, V., Haller, S., Haselbeck, A., Hay, S.I., Holm, M., Hopkins, S., Iregbu, K.C., Jacobs, J., Jarovsky, D., Javanmardi, F., Khorana, M., Kissoon, N., Kobeissi, E., Kostyanev, T., Krapp, F., Krumkamp, R., Kumar, A., Kyu, H.H., Lim, C., Limmathurotsakul, D., Loftus, M.J., Lunn, M., Ma, J., Mturi, N., Munera-Huertas, T., Musicha, P., Mussi-Pinhata, M.M., Nakamura, T., Nanavati, R., Nangia, S., Newton, P., Ngoun, C., Novotney, A., Nwakanma, D., Obiero, C.W., Olivas-Martinez, A., Olliaro, P., Ooko, E., Ortiz-Brizuela, E., Peleg, A.Y., Perrone, C., Plakkal, N., Ponce-de-Leon, A., Raad, M., Ramdin, T., Riddell, A., Roberts, T., Robotham, J.V., Roca, A., Rudd, K.E., Russell, N., Schnall, J., Scott, J.A.G., Shivamallappa, M., Sifuentes-Osornio, J., Steenkeste, N., Stewardson, A.J., Stoeva, T., Tasak, N., Thaiprakong, A., Thwaites, G., Turner, C., Turner, P., van Doorn, H.R., Velaphi, S., Vongpradith, A., Vu, H., Walsh, T., Waner, S., Wangrangsimakul, T., Wozniak, T., Zheng, P., Sartorius, B., Lopez, A.D., Stergachis, A., Moore, C., Dolecek, C., Naghavi, M., 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399, 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0

- Nagy, K., Mikuláss, K.R., Végh, A.G., Kereszt, A., Kondorosi, É., Váró, G., Szegletes, Z., 2015. Interaction of cysteine-rich cationic antimicrobial peptides with intact bacteria and model membranes. Gen. Physiol. Biophys. 34, 135–144. https://doi.org/10.4149/gpb_2015002
- Nagymihály, M., 2017. Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression. https://doi.org/10.14232/phd.4084
- Nallu, S., Silverstein, K.A.T., Samac, D.A., Bucciarelli, B., Vance, C.P., VandenBosch, K.A., 2013. Regulatory patterns of a large family of defensin-like genes expressed in nodules of *Medicago truncatula*. PLOS ONE 8, e60355. https://doi.org/10.1371/journal.pone.0060355
- Neutzner, A., Neutzner, M., Benischke, A.-S., Ryu, S.-W., Frank, S., Youle, R.J., Karbowski, M., 2011. A systematic search for endoplasmic reticulum (ER) membrane-associated

RING finger proteins identifies Nixin/ZNRF4 as a regulator of calnexin stability and ER homeostasis*. Journal of Biological Chemistry 286, 8633–8643. https://doi.org/10.1074/jbc.M110.197459

- Nouwen, N., Arrighi, J.-F., Cartieaux, F., Chaintreuil, C., Gully, D., Klopp, C., Giraud, E., 2017. The role of rhizobial (NifV) and plant (FEN1) homocitrate synthases in *Aeschynomene* /photosynthetic *Bradyrhizobium* symbiosis. Sci. Rep. 7, 448. https://doi.org/10.1038/s41598-017-00559-0
- Oldroyd, G.E.D., Downie, J.A., 2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59, 519–546. https://doi.org/10.1146/annurev.arplant.59.032607.092839
- Oldroyd, G.E.D., Murray, J.D., Poole, P.S., Downie, J.A., 2011. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45, 119–144. https://doi.org/10.1146/annurev-genet-110410-132549
- Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn's diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html
- Oono, R., Denison, R.F., 2010b. Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids1[C][W][OA]. Plant Physiol. 154, 1541–1548. https://doi.org/10.1104/pp.110.163436
- Oono, R., Schmitt, I., Sprent, J.I., Denison, R.F., 2010. Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytol. 187, 508–520. https://doi.org/10.1111/j.1469-8137.2010.03261.x
- Ördögh, L., Vörös, A., Nagy, I., Kondorosi, É., Kereszt, A., 2014. Symbiotic plant peptides eliminate *Candida albicans* both *in vitro* and in an epithelial infection model and inhibit the proliferation of immortalized human cells. BioMed Res. Int. 2014. https://doi.org/10.1155/2014/320796
- Penterman, J., Abo, R.P., De Nisco, N.J., Arnold, M.F.F., Longhi, R., Zanda, M., Walker, G.C., 2014. Host plant peptides elicit a transcriptional response to control the *Sinorhizobium meliloti* cell cycle during symbiosis. Proc. Natl. Acad. Sci. 111, 3561– 3566. https://doi.org/10.1073/pnas.1400450111
- Pirtskhalava, M., Amstrong, A.A., Grigolava, M., Chubinidze, M., Alimbarashvili, E.,
 Vishnepolsky, B., Gabrielian, A., Rosenthal, A., Hurt, D.E., Tartakovsky, M., 2021.
 DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res. 49, D288–D297.
 https://doi.org/10.1093/nar/gkaa991

- Pislariu, C.I., D. Murray, J., Wen, J., Cosson, V., Muni, R.R.D., Wang, M., A. Benedito, V., Andriankaja, A., Cheng, X., Jerez, I.T., Mondy, S., Zhang, S., Taylor, M.E., Tadege, M., Ratet, P., Mysore, K.S., Chen, R., Udvardi, M.K., 2012. A *Medicago truncatula* tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation1[W][OA]. Plant Physiol. 159, 1686– 1699. https://doi.org/10.1104/pp.112.197061
- Posch, A. (Ed.), 2008. 2D PAGE: Sample Preparation and Fractionation: Volume 2, Methods in Molecular Biology, 2D PAGE. Humana Press. https://doi.org/10.1007/978-1-60327-210-0
- Price, P.A., Tanner, H.R., Dillon, B.A., Shabab, M., Walker, G.C., Griffitts, J.S., 2015. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility. Proc. Natl. Acad. Sci. 112, 15244–15249. https://doi.org/10.1073/pnas.1417797112
- Pueppke, S.G., Broughton, W.J., 1999. *Rhizobium* sp. Strain NGR234 and *R. fredii* USDA257 share exceptionally broad, nested host ranges. Mol. Plant-Microbe Interactions® 12, 293–318. https://doi.org/10.1094/MPMI.1999.12.4.293
- Qin, N., Xu, D., Li, J., Deng, X.W., 2020. COP9 signalosome: Discovery, conservation, activity, and function. J. Integr. Plant Biol. 62, 90–103. https://doi.org/10.1111/jipb.12903
- Raul, B., Bhattacharjee, O., Ghosh, A., Upadhyay, P., Tembhare, K., Singh, A., Shaheen, T., Ghosh, A.K., Torres-Jerez, I., Krom, N., Clevenger, J., Udvardi, M., Scheffler, B.E., Ozias-Akins, P., Sharma, R.D., Bandyopadhyay, K., Gaur, V., Kumar, S., Sinharoy, S., 2022. Microscopic and transcriptomic analyses of *Dalbergoid* legume peanut reveal a divergent evolution leading to Nod-factor-dependent epidermal crack-entry and terminal bacteroid differentiation. Mol. Plant-Microbe Interact. MPMI 35, 131–145. https://doi.org/10.1094/MPMI-05-21-0122-R
- Ren, G., 2018. The evolution of determinate and indeterminate nodules within the *Papilionoideae* subfamily. Wageningen University. https://doi.org/10.18174/429101
- Ribeiro, C.W., Baldacci-Cresp, F., Pierre, O., Larousse, M., Benyamina, S., Lambert, A.,
 Hopkins, J., Castella, C., Cazareth, J., Alloing, G., Boncompagni, E., Couturier, J.,
 Mergaert, P., Gamas, P., Rouhier, N., Montrichard, F., Frendo, P., 2017. Regulation of
 differentiation of nitrogen-fixing bacteria by microsymbiont targeting of plant
 thioredoxin s1. Curr. Biol. 27, 250–256. https://doi.org/10.1016/j.cub.2016.11.013
- Robertson, J., McGoverin, C., Vanholsbeeck, F., Swift, S., 2019. Optimisation of the protocol for the LIVE/DEAD® BacLightTM bacterial viability kit for rapid determination of bacterial load. Front. Microbiol. 10.
- Rostas, K., Kondorosi, E., Horvath, B., Simoncsits, A., Kondorosi, A., 1986. Conservation of extended promoter regions of nodulation genes in *Rhizobium*. Proc. Natl. Acad. Sci. 83, 1757–1761. https://doi.org/10.1073/pnas.83.6.1757
- Roux, B., Rodde, N., Jardinaud, M.-F., Timmers, T., Sauviac, L., Cottret, L., Carrère, S., Sallet, E., Courcelle, E., Moreau, S., Debellé, F., Capela, D., Carvalho-Niebel, F. de, Gouzy, J., Bruand, C., Gamas, P., 2014. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J. 77, 817–837. https://doi.org/10.1111/tpj.12442
- Satgé, C., Moreau, S., Sallet, E., Lefort, G., Auriac, M.-C., Remblière, C., Cottret, L., Gallardo, K., Noirot, C., Jardinaud, M.-F., Gamas, P., 2016. Reprogramming of DNA methylation is critical for nodule development in *Medicago truncatula*. Nat. Plants 2, 1–10. https://doi.org/10.1038/nplants.2016.166
- Schmeisser, C., Liesegang, H., Krysciak, D., Bakkou, N., Le Quéré, A., Wollherr, A.,
 Heinemeyer, I., Morgenstern, B., Pommerening-Röser, A., Flores, M., Palacios, R.,
 Brenner, S., Gottschalk, G., Schmitz, R.A., Broughton, W.J., Perret, X., Strittmatter,
 A.W., Streit, W.R., 2009. *Rhizobium* sp. Strain NGR234 possesses a remarkable
 number of secretion systems. Appl. Environ. Microbiol. 75, 4035–4045.
 https://doi.org/10.1128/AEM.00515-09
- Schultze, M., Quiclet-Sire, B., Kondorosi, E., Virelizer, H., Glushka, J.N., Endre, G., Géro,
 S.D., Kondorosi, A., 1992. *Rhizobium meliloti* produces a family of sulfated
 lipooligosaccharides exhibiting different degrees of plant host specificity. Proc. Natl.
 Acad. Sci. 89, 192–196. https://doi.org/10.1073/pnas.89.1.192
- Seefeldt, L.C., Hoffman, B.M., Dean, D.R., 2009. Mechanism of Mo-dependent nitrogenase. Annu. Rev. Biochem. 78, 701–722. https://doi.org/10.1146/annurev.biochem.78.070907.103812
- Shabab, M., Arnold, M.F.F., Penterman, J., Wommack, A.J., Bocker, H.T., Price, P.A., Griffitts, J.S., Nolan, E.M., Walker, G.C., 2016. Disulfide cross-linking influences symbiotic activities of nodule peptide NCR247. Proc. Natl. Acad. Sci. 113, 10157– 10162. https://doi.org/10.1073/pnas.1610724113
- Sinharoy, S., Torres-Jerez, I., Bandyopadhyay, K., Kereszt, A., Pislariu, C.I., Nakashima, J., Benedito, V.A., Kondorosi, E., Udvardi, M.K., 2013. The C2H2 transcription factor

REGULATOR OF SYMBIOSOME DIFFERENTIATION represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in *Medicago truncatula*. Plant Cell 25, 3584–3601. https://doi.org/10.1105/tpc.113.114017

- Skawińska, M., Łotocka, B., Ruszkowski, T., Banaszczak, P., Znojek, E., 2017. Root nodule structure in *Chamaecytisus podolicus*. Acta Agrobot. 70. https://doi.org/10.5586/aa.1716
- Smil, V., 2002. Eating meat: evolution, patterns, and consequences. Popul. Dev. Rev. 28, 599–639. https://doi.org/10.1111/j.1728-4457.2002.00599.x
- Soltis, D.E., Soltis, P.S., Morgan, D.R., Swensen, S.M., Mullin, B.C., Dowd, J.M., Martin, P.G., 1995. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl. Acad. Sci. 92, 2647–2651. https://doi.org/10.1073/pnas.92.7.2647
- Sprent, J.I., 2007. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol. 174, 11–25. https://doi.org/10.1111/j.1469-8137.2007.02015.x
- Stagnari, F., Maggio, A., Galieni, A., Pisante, M., 2017. Multiple benefits of legumes for agriculture sustainability: an overview. Chem. Biol. Technol. Agric. 4, 2. https://doi.org/10.1186/s40538-016-0085-1
- Steele, K.P., Ickert-Bond, S.M., Zarre, S., Wojciechowski, M.F., 2010. Phylogeny and character evolution in *Medicago (Leguminosae)*: Evidence from analyses of plastid trnK/matK and nuclear GA3ox1 sequences. Am. J. Bot. 97, 1142–1155. https://doi.org/10.3732/ajb.1000009
- Szerencsés, B., Gácser, A., Endre, G., Domonkos, I., Tiricz, H., Vágvölgyi, C., Szolomajer, J., Howan, D.H.O., Tóth, G.K., Pfeiffer, I., Kondorosi, É., 2021. Symbiotic NCR peptide fragments affect the viability, morphology and biofilm formation of *Candida* species. Int. J. Mol. Sci. 22, 3666. https://doi.org/10.3390/ijms22073666
- Tarr, D.E.K., 2016. Establishing a reference array for the CS-αβ superfamily of defensive peptides. BMC Res. Notes 9. https://doi.org/10.1186/s13104-016-2291-0
- Teamtisong, K., Songwattana, P., Noisangiam, R., Piromyou, P., Boonkerd, N., Tittabutr, P., Minamisawa, K., Nantagij, A., Okazaki, S., Abe, M., Uchiumi, T., Teaumroong, N., 2014. Divergent nod-containing *Bradyrhizobium* sp. DOA9 with a megaplasmid and its host range. Microbes Environ. 29, 370–376. https://doi.org/10.1264/jsme2.ME14065

- Tetlow, I.J., Emes, M.J., 2014. A review of starch-branching enzymes and their role in amylopectin biosynthesis. IUBMB Life 66, 546–558. https://doi.org/10.1002/iub.1297
- Tiricz, H., Szűcs, A., Farkas, A., Pap, B., Lima, R.M., Maróti, G., Kondorosi, É., Kereszt, A., 2013. Antimicrobial nodule-specific cysteine-rich peptides induce membrane depolarization-associated changes in the transcriptome of *Sinorhizobium meliloti*. Appl. Environ. Microbiol. 79, 6737–6746. https://doi.org/10.1128/AEM.01791-13
- Udvardi, M., Poole, P.S., 2013. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 64, 781–805. https://doi.org/10.1146/annurev-arplant-050312-120235
- Van de Velde, W., Zehirov, G., Szatmari, A., Debreczeny, M., Ishihara, H., Kevei, Z., Farkas, A., Mikulass, K., Nagy, A., Tiricz, H., Satiat-Jeunemaître, B., Alunni, B., Bourge, M., Kucho, K., Abe, M., Kereszt, A., Maroti, G., Uchiumi, T., Kondorosi, E., Mergaert, P., 2010. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122–1126. https://doi.org/10.1126/science.1184057
- van Loon, L.C., Rep, M., Pieterse, C.M.J., 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
- van Velzen, R., Doyle, J.J., Geurts, R., 2019. A resurrected scenario: single gain and massive loss of nitrogen-fixing nodulation. Trends Plant Sci. 24, 49–57. https://doi.org/10.1016/j.tplants.2018.10.005
- Vinardell, J.M., Fedorova, E., Cebolla, A., Kevei, Z., Horvath, G., Kelemen, Z., Tarayre, S., Roudier, F., Mergaert, P., Kondorosi, A., Kondorosi, E., 2003. Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in *Medicago truncatula* nodules. Plant Cell 15, 2093– 2105. https://doi.org/10.1105/tpc.014373
- Vishnepolsky, B., Pirtskhalava, M., 2014. Prediction of linear cationic antimicrobial peptides based on characteristics responsible for their interaction with the membranes. J. Chem. Inf. Model. 54, 1512–1523. https://doi.org/10.1021/ci4007003
- Voss, M., Schröder, B., Fluhrer, R., 2013. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim. Biophys. Acta BBA -Biomembr., Intramembrane Proteases 1828, 2828–2839. https://doi.org/10.1016/j.bbamem.2013.03.033

- Wang, G., 2020. The antimicrobial peptide database provides a platform for decoding the design principles of naturally occurring antimicrobial peptides. Protein Sci. 29, 8–18. https://doi.org/10.1002/pro.3702
- Wang, K., Smith, D., és Zheng, Y., 2018. "Electron-driven heterogeneous catalytic synthesis of ammonia: current states and perspective". Carbon Resources Conversion 1. https://doi.org/10.1016/j.crcon.2018.06.004.
- Wang, X., Ni, W., Ge, X., Zhang, J., Ma, H., Cao, K., 2006. Proteomic identification of potential target proteins regulated by an ASK1-mediated proteolysis pathway. Cell Res. 16, 489–498. https://doi.org/10.1038/sj.cr.7310060
- Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M., Barton, G.J., 2009. Jalview
 Version 2--a multiple sequence alignment editor and analysis workbench. Bioinforma.
 Oxf. Engl. 25, 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
- Williams, E.J.B., Pal, C., Hurst, L.D., 2000. The molecular evolution of signal peptides. Gene 253, 313–322. https://doi.org/10.1016/S0378-1119(00)00233-X
- Wojciechowski, M.F., Lavin, M., Sanderson, M.J., 2004. A phylogeny of legumes (*Leguminosae*) based on analysis of the plastid matK gene resolves many wellsupported subclades within the family. Am. J. Bot. 91, 1846–1862. https://doi.org/10.3732/ajb.91.11.1846
- Wojciechowski, M.F., Sanderson, M.J., Steele, K.P., Liston, A., n.d. MOLECULAR PHYLOGENY OF THE "TEMPERATE HERBACEOUS TRIBES" OF PAPILIONOID LEGUMES: A SUPERTREE APPROACH. Adv. Legume Syst. 22.
- Xiao, T.T., Schilderink, S., Moling, S., Deinum, E.E., Kondorosi, E., Franssen, H., Kulikova, O., Niebel, A., Bisseling, T., 2014. Fate map of *Medicago truncatula* root nodules. Development 141, 3517–3528. https://doi.org/10.1242/dev.110775
- Zhang, S., Wang, T., Lima, R.M., Pettkó-Szandtner, A., Kereszt, A., Downie, J.A., Kondorosi, E., 2023. Widely conserved AHL transcription factors are essential for NCR gene expression and nodule development in *Medicago*. Nat. Plants 1–9. https://doi.org/10.1038/s41477-022-01326-4

FÜGGELÉKEK

1. függelék. Primerlista.

40S: RT-qPCR belső kontroll, Ljubq10prom: a *L. japonicus ubiquitin 10* promóter, nodSPP: gümőspecifikus szignál peptid peptidáz, genSPP: általános szignál peptid peptidáz, nodSPP_GW_RNSi: a nodSPP RNSi konstrukció létrehozásához szükséges nodSPP-specifikus gateway primerek.

Primer neve	Primer szekvenciája
40S_qPCR_F	CCGCAAGGACTGTTCAAGAT
40S_qPCR_R	TATCGGTCCATTCTGGAAGC
Ljubq10prom_F	CGTCACTAGTTGCGTGTGGT
Ljubq10prom_R	GAAATTAACAAACCGCCAACA
nodSPP_qPCR_F	TTTGGCTGCTCACTGTATCTGG
nodSPP_qPCR_R	TCAGATGATTTGGCCGTCTTCG
genSPP_qPCR_F	CCGATGCTTCTGATTCACTG
genSPP_qPCR_R	TTACAGAGGTGTGCTGCTGAA
nodSPP_GW_RNSi_F	GGGGACAAGTTTGTACAAAAAAGCAGGCTTTTAACCTTAGCACCTCTTGTT
nodSPP_GW_RNSi_R	GGGGACCACTTTGTACAAGAAAGCTGGGTTATGGTAGTAATGTTGCCGATA

2. függelék. A csendesítéshez használt nodSPP szekvencia (285 bp).

3. függelék. Szintetikus szignál peptidek szekvenciája

A szignál peptidek (SP-k) egy N-terminális, hibásan szintetizált StrepII-taget és egy C-terminális HA-taget tartalmaznak. Az SP szekvenciája ki van emelve.

Peptid neve	Peptid szekvenciája
HA	YPYDVPDYA
NCR120 SP	WSHPQFEK MAKFVNFVYSMIIFLSLLVVA YPYDVPDYA
NCR216 SP	WSHPQFEK MTTILKFAYVMIICLFLLQVAA YPYDVPDYA
NCR247 SP	WSHPQFEK MDKIHKFIYALIFFLALFLVVNA YPYDVPDY
NCR252 SP	WSHPQFEK MNIIFKCVYHMIVILLLLLVATEA YPYDVPDYA
Nod25 SP	WSHPQFEK MVYSNSYMFLGLGVFVLLSSHVLA YPYDVPDYA
CaML2 SP	WSHPQFEK MAYSKSYLFLGLNLFVFLSFEVLA YPYDVPDYA
StrepII	WSHPQFEK

4. függelék. A 278 NCR promóterben jelen lévő négyes motívum és az NCR169 promóterben AT gazdag, az AHL fehérjék kötésére szolgáló motívum szekvenciája.

A: adenin, C: citozin, G: guanin, T: timin, D: A vagy G vagy T, R: A vagy G, Y: C vagy T, W: A vagy T.

Promóter-motívum	Promóter-motívum szekvenciája
Négyes motívum	TWARAGAYATTTAAYAATDATTYTAATTTTADRAADRDTTT
NCR169 promóterben lévő négyes motívum	AAAGAGACATTTAATAATTATTTTAATTTTCAAAAAGTATT

5. függelék. A nodSPP és a genSPP szekvenciaillesztése, nukleotid- (A) és fehérjeszekvenciák (B) alapján. A homológ nukleotidok (A), illetve aminosavak (B) színessel vannak jelölve. Illesztőprogram: MEGA-X.

6. függelék. A nodSPP RNSi gümőben legalább kétszeresen upregulált gének listája. 3148 darab gén, p érték<0,05.

Medtr1g006695	Medtr2g006870	Medtr3g005420	Medtr4g005160	Medtr5g005230	Medtr6g004230	Medtr7g005390	Medtr8g005410	Medtr0001s0510
Medtr1g007157	Medtr2g006910	Medtr3g005530	Medtr4g005730	Medtr5g005330	Medtr6g004340	Medtr7g006400	Medtr8g005750	Medtr0002s0820
Medtr1g007700	Medtr2g007960	Medtr3g005740	Medtr4g005750	Medtr5g005520	Medtr6g004430	Medtr7g007260	Medtr8g006010	Medtr0002s1060
Medtr1g007800	Medtr2g008030	Medtr3g006080	Medtr4g006460	Medtr5g005530	Medtr6g004600	Medtr7g007440	Medtr8g006090	Medtr0002s1250
Medtr1g007840	Medtr2g008240	Medtr3g006570	Medtr4g006650	Medtr5g005550	Medtr6g004880	Medtr7g007560	Medtr8g006585	Medtr0003s0470
Medtr1g007905	Medtr2g008290	Medtr3g006700	Medtr4g006790	Medtr5g005850	Medtr6g005630	Medtr7g007620	Medtr8g006695	Medtr0003s0480
Medtr1g009180	Medtr2g008360	Medtr3g006820	Medtr4g006940	Medtr5g005920	Medtr6g006930	Medtr7g007630	Medtr8g006815	Medtr0003s0500
Medtr1g009190	Medtr2g008380	Medtr3g007510	Medtr4g006970	Medtr5g006070	Medtr6g006950	Medtr7g009450	Medtr8g006825	Medtr0003s0580
Medtr1g009570	Medtr2g008390	Medtr3g007600	Medtr4g007580	Medtr5g006160	Medtr6g007743	Medtr7g009580	Medtr8g006840	Medtr0004s0210
Medtr1g009660	Medtr2g008400	Medtr3g007630	Medtr4g007710	Medtr5g006940	Medtr6g007763	Medtr7g009780	Medtr8g006930	Medtr0005s0110
Medtr1g010150	Medtr2g008430	Medtr3g007650	Medtr4g007910	Medtr5g006950	Medtr6g007780	Medtr7g010000	Medtr8g007035	Medtr0005s0200
Medtr1g010170	Medtr2g008520	Medtr3g008100	Medtr4g008770	Medtr5g007040	Medtr6g007980	Medtr7g010010	Medtr8g007350	Medtr0006s0140
Medtr1g010230	Medtr2g008960	Medtr3g008160	Medtr4g009110	Medtr5g007370	Medtr6g008530	Medtr7g010090	Medtr8g007355	Medtr0006s0240
Medtr1g010250	Medtr2g009070	Medtr3g008170	Medtr4g009340	Medtr5g007450	Medtr6g008620	Medtr7g010760	Medtr8g007660	Medtr0007s0020
Medtr1g010260	Medtr2g009670	Medtr3g008280	Medtr4g009590	Medtr5g007460	Medtr6g009170	Medtr7g010790	Medtr8g007675	Medtr0007s0330
Medtr1g011580	Medtr2g010410	Medtr3g008500	Medtr4g009620	Medtr5g007550	Medtr6g009370	Medtr7g010825	Medtr8g008500	Medtr0007s0380
Medtr1g011640	Medtr2g010470	Medtr3g008525	Medtr4g009850	Medtr5g007640	Medtr6g009570	Medtr7g011170	Medtr8g008505	Medtr0007s0390
Medtr1g012180	Medtr2g010580	Medtr3g008640	Medtr4g009930	Medtr5g007723	Medtr6g011670	Medtr7g011465	Medtr8g008640	Medtr0008c0280
Medtr1g012180	Medtr2g010580	Medtr3g008040	Medtr4g0000020	Medtr5g007820	Medtr6g012140	Medtr7g011405	Medtr8g008640	Medtr0008s0280
Medtr1c012520	Medtr2c010600	Medtr3c008840	Medtr4c010210	Medtr5g007840	Medtr6r012140	Medtr7c011850	Medtr&c008030	Medtr0009:0120
Medtr1a012520	Medtr2a010610	Medtr2000100	Medtr/a010650	Medtr5a009120	Medtr6a012170	Medtr7a011000	Medtran000063	Medtr0000-0220
Medtr1a012230	Medtr2g010010	Medtr34000320	Medtr4g010000	MedtrEc009210	Medtr6a012670	Medte 7a011000	Medtree000000	Medtr0015-0020
Moder1c012760	Moder2c010710	Moder2c000450	Moder4c011540	ModerEc009270	Moder Contactor	Moder7c012040	Moder@c000130	Modtr0015c00c0
Medtr1c014240	Medtr2g010710	Medtr2c010110	Medtr4g011540	MedtrEc008280	Medtr6a014170	Medtr7c012040	Medtr@c000510	Medtr0015-0000
Medtr1g014240	Medir2g010730	Medir3g010110	Medtr4g011630	Medtr5g008380	Medtrog014170	Medtr7g012070	Nedtr8g009510	Medtr001550090
Medtr1g015140	Medtr2g010860	Medtr3g010850	Medtr4g011660	MedtrSg009160	Medtr6g014186	Medtr7g012290	Medtr8g009820	Medtr0016s0170
Medtr1g015650	Medtr2g010960	Medtr3g011360	Medtr4g011670	Medtr5g009290	Medtr6g014270	Medtr7g012340	Medtr8g010180	Medtr0018s0310
Medtrig015710	Medtr2g011160	Wedtr3g011480	Medtr4g011900	MedtrSg009310	Medtrog015350	Medtr/g012860	Medtr8g010220	Medtr0022s0200
Medtr1g015810	Medtr2g011170	Medtr3g011620	Medtr4g012850	Medtr5g009460	Medtr6g015405	Medtr/g013220	Medtr8g010530	Medtr0024s0020
Medtrig015860	Medtr2g011180	Medtr3g011910	Medtr4g013210	MedtrSg009490	Medtrog015505	Medtr7g013240	Medtr8g011430	Medtr0024s0260
Medtr1g015910	Medtr2g011210	Medtr3g012050	Medtr4g013365	Medtr5g009500	Medtr6g015590	Medtr/g013260	Medtr8g011550	Medtr0024s0300
Medtr1g015970	Medtr2g011270	Medtr3g012240	Medtr4g013730	Medtr5g009670	Medtr6g015665	Medtr/g013680	Medtr8g011850	Medtr002/s0230
Medtr1g015980	Medtr2g011280	Medtr3g012440	Medtr4g014130	MedtrSg009990	Medtr6g015720	Medtr7g013710	Medtr8g012200	Medtr0028s0290
Medtr1g016210	Medtr2g011340	Medtr3g012450	Medtr4g014550	MedtrSg010070	Medtr6g015755	Medtr7g013770	Medtr8g012400	Medtr0029s0090
Medtrig016780	Medtr2g011600	Medtr3g012470	Medtr4g014770	MedtrSg010420	Medtr6g015765	Medtr7g014160	Medtr8g012460	Medtr0031s0060
Medtrig017500	Medtr2g011660	Medtr3g013690	Medtr4g015030	WedtrSg010640	Medtrog015775	Medtr7g014200	Medtr8g012470	Medtr0031s0130
Medtr1g017590	Medtr2g012320	Medtr3g013790	Medtr4g015060	MedtrSg010680	Medtr6g015795	Medtr7g014410	Medtr8g012620	Medtr0035s0150
Medtrig017820	Medtr2g012370	Wedtr3g013890	Medtr4g015180	WedtrSg010830	Medtrog015950	Medtr7g014510	Medtr8g012655	Medtr0036s0240
Medtr1g017840	Medtr2g012480	Medtr3g013980	Medtr4g015290	Medtr5g010840	Medtr6g016245	Medtr/g014950	Medtr8g012775	Medtr0043s0080
Medtr1g017990	Medtr2g012510	Medtr3g014040	Medtr4g015420	Medtr5g010860	Medtr6g016635	Medtr/g0151/0	Medtr8g012795	Medtr0056s0160
Medtr1g019110	Medtr2g012940	Medtr3g014080	Medtr4g015450	Medtr5g010870	Medtr6g016640	Medtr7g015180	Medtr8g012900	Medtr0057s0100
Medtr1g019270	Medtr2g013110	Medtr3g014820	Medtr4g015460	Medtr5g011050	Medtr6g016650	Medtr7g015220	Medtr8g012960	Medtr0057s0170
Medtr1g019360	Medtr2g013140	Medtr3g014870	Medtr4g015500	Medtr5g011060	Medtr6g016820	Medtr7g015240	Medtr8g013560	Medtr0062s0020
Medtr1g019480	Medtr2g013210	Medtr3g014880	Medtr4g015650	Medtr5g011070	Medtr6g016840	Medtr7g015250	Medtr8g013580	Medtr0062s0060
Medtr1g019510	Medtr2g013720	Medtr3g015080	Medtr4g015680	Medtr5g011520	Medtr6g021830	Medtr7g015300	Medtr8g013600	Medtr0064s0160
Medtr1g019640	Medtr2g014060	Medtr3g015430	Medtr4g016720	Medtr5g011580	Medtr6g021850	Medtr7g015390	Medtr8g013610	Medtr0066s0050
Medtr1g019670	Medtr2g014300	Medtr3g015830	Medtr4g016790	Medtr5g011800	Medtr6g021860	Medtr7g015420	Medtr8g013780	Medtr0069s0040
Medtr1g019720	Medtr2g014720	Medtr3g016255	Medtr4g017030	Medtr5g011820	Medtr6g021870	Medtr7g015550	Medtr8g013810	Medtr0075s0030
Medtr1g021100	Medtr2g014740	Medtr3g017490	Medtr4g017040	Medtr5g012000	Medtr6g021900	Medtr7g015620	Medtr8g013860	Medtr0077s0090
Medtr1g021110	Medtr2g014760	Medtr3g018680	Medtr4g017050	Medtr5g012680	Medtr6g022210	Medtr7g015670	Medtr8g014520	Medtr0083s0100
Medtr1g021610	Medtr2g014920	Medtr3g019040	Medtr4g017640	Medtr5g012920	Medtr6g022790	Medtr7g015710	Medtr8g014690	Medtr0088s0100
Medtr1g021630	Medtr2g014960	Medtr3g019490	Medtr4g017820	Medtr5g013030	Medtr6g023340	Medtr7g015790	Medtr8g014700	Medtr0090s0020
Medtr1g021635	Medtr2g015040	Medtr3g019650	Medtr4g018790	Medtr5g013070	Medtr6g023460	Medtr7g021120	Medtr8g014760	Medtr0101s0030
Medtr1g021642	Medtr2g015445	Medtr3g019680	Medtr4g018880	Medtr5g013230	Medtr6g023600	Medtr7g023340	Medtr8g014790	Medtr0116s0090
Medtr1g021652	Medtr2g015540	Medtr3g020350	Medtr4g019450	Medtr5g013515	Medtr6g023990	Medtr7g023560	Medtr8g014880	Medtr0118s0070
Medtr1g022040	Medtr2g015740	Medtr3g020420	Medtr4g019540	Medtr5g013620	Medtr6g024220	Medtr7g023910	Medtr8g015040	Medtr0121s0060
Medtr1g022070	Medtr2g016030	Medtr3g020510	Medtr4g019640	Medtr5g013940	Medtr6g025610	Medtr7g024280	Medtr8g015100	Medtr0137s0070
Medtr1g022135	Medtr2g016200	Medtr3g021100	Medtr4g019690	Medtr5g014910	Medtr6g028100	Medtr7g024500	Medtr8g015150	Medtr0140s0100
Medtr1g022245	Medtr2g016210	Medtr3g021340	Medtr4g019720	Medtr5g014990	Medtr6g028110	Medtr7g024760	Medtr8g015560	Medtr0147s0030
Medtr1g022265	Medtr2g016220	Medtr3g021430	Medtr4g019750	Medtr5g015020	Medtr6g028140	Medtr7g025000	Medtr8g016070	Medtr0152s0100
Medtr1g022305	Medtr2g016400	Medtr3g022060	Medtr4g020700	Medtr5g016320	Medtr6g029250	Medtr7g025130	Medtr8g016440	Medtr0154s0040
Medtr1g022325	Medtr2g016650	Medtr3g023010	Medtr4g020850	Medtr5g016570	Medtr6g029460	Medtr7g025250	Medtr8g016580	Medtr0160s0040
Medtr1g022350	Medtr2g016760	Medtr3g024520	Medtr4g020890	Medtr5g016640	Medtr6g032820	Medtr7g026030	Medtr8g017030	Medtr0171s0020
Medtr1g022420	Medtr2g016770	Medtr3g025230	Medtr4g021023	Medtr5g016810	Medtr6g033255	Medtr7g027960	Medtr8g017160	Medtr0171s0030

Medtr1g023700	Medtr2g017420	Medtr3g025900	Medtr4g021027	Medtr5g017260	Medtr6g033330	Medtr7g028415	Medtr8g017280	Medtr0181s0030
Medtr1g025340	Medtr2g017570	Medtr3g026160	Medtr4g021030	Medtr5g017420	Medtr6g033580	Medtr7g028432	Medtr8g018040	Medtr0216s0030
Medtr1g025490	Medtr2g017610	Medtr3g026230	Medtr4g021037	Medtr5g017455	Medtr6g033760	Medtr7g032240	Medtr8g018110	Medtr0219s0040
Medtr1g025950	Medtr2g017815	Medtr3g026290	Medtr4g021057	Medtr5g017470	Medtr6g034450	Medtr7g033165	Medtr8g018130	Medtr0219s0070
Medtr1g026310	Medtr2g017875	Medtr3g026330	Medtr4g021095	Medtr5g017650	Medtr6g034880	Medtr7g033625	Medtr8g018260	Medtr0238s0050
Medtr1g026430	Medtr2g017915	Medtr3g026650	Medtr4g021170	Medtr5g017670	Medtr6g034905	Medtr7g037680	Medtr8g018320	Medtr0256s0050
Medtr1g026470	Medtr2g017965	Medtr3g026660	Medtr4g021510	Medtr5g017680	Medtr6g034920	Medtr7g038730	Medtr8g018350	Medtr0264s0030
Medtr1g020470	Medtr2g017303	Medtr3g020000	Medtr4g021510	Medtr5g017080	Medtr6g034920	Medtr7g038010	Medtr8g018350	Medtr020430030
Medtr1g026930	Medtr2g018175	Medtr3g028460	Medtr4g022570	Medtr5g017950	Medtreg034930	Medtr 7g038910	Neutrog018360	Medtr028050040
Medtr1g026970	Wiedtr2g018670	Wedtr3g028630	Wedtr4g022800	Wiedtr5g018060	Wiedtrog035065	Wedtr7g039330	Wedtr8g018450	Medtr0294s0010
Medtr1g027030	Medtr2g018890	Medtr3g028640	Medtr4g023040	Medtr5g018210	Medtr6g035315	Medtr7g045510	Medtr8g018520	Medtr0314s0030
Medtr1g027040	Medtr2g019190	Medtr3g028700	Medtr4g023260	Medtr5g018520	Medtr6g036490	Medtr7g045860	Medtr8g019730	Medtr0320s0040
Medtr1g027050	Medtr2g019250	Medtr3g029620	Medtr4g023550	Medtr5g018570	Medtr6g036500	Medtr7g046490	Medtr8g020230	Medtr0334s0010
Medtr1g027060	Medtr2g019370	Medtr3g031220	Medtr4g023730	Medtr5g018670	Medtr6g036790	Medtr7g047540	Medtr8g020350	Medtr0339s0030
Medtr1g027070	Medtr2g020450	Medtr3g031470	Medtr4g024370	Medtr5g018980	Medtr6g036840	Medtr7g050345	Medtr8g020430	Medtr0365s0020
Medtr1g027140	Medtr2g020710	Medtr3g031490	Medtr4g025720	Medtr5g019010	Medtr6g036870	Medtr7g050405	Medtr8g020780	Medtr0398s0030
Medtr1g027150	Medtr2g021620	Medtr3g031500	Medtr4g025730	Medtr5g019350	Medtr6g036890	Medtr7g050425	Medtr8g020790	Medtr0440s0020
Medtr1g027160	Medtr2g022350	Medtr3g031580	Medtr4g025780	Medtr5g019370	Medtr6g037220	Medtr7g050980	Medtr8g020880	Medtr0451s0010
Medtr1g027310	Medtr2g022370	Medtr3g032960	Medtr4g025830	Medtr5g019590	Medtr6g037610	Medtr7g053580	Medtr8g020920	Medtr0474s0020
Medtr1g027370	Medtr2g022380	Medtr3g033000	Medtr4g025980	Medtr5g019650	Medtr6g038090	Medtr7g055780	Medtr8g020950	Medtr0536s0010
Medtr1g027380	Medtr2g022430	Medtr3g033080	Medtr4g027195	Medtr5g019680	Medtr6g038170	Medtr7g055857	Medtr8g020960	Medtr0552s0040
Medtr1g027420	Medtr2g022450	Medtr3g033130	Medtr4g028130	Medtr5g020570	Medtr6g038200	Medtr7g056147	Medtr8g020990	Medtr0570s0040
Medtr1g027440	Medtr2g022480	Medtr3g033810	Medtr4g028250	Medtr5g021020	Medtr6g038670	Medtr7g056450	Medtr8g021020	Medtr0583s0010
Medtr1g027460	Medtr2g022760	Medtr3a024120	Medtr4g028230	Medtr5g021020	Medtr6g038720	Medtr7a056510	Medtr8g021120	Medtr0638:0020
Moder1c027580	Modtr2c022000	Moder2c024220	Moder/c020010	ModtrEc021480	Moder Concernation	Modtr7c056650	Moder@c021100	Modtr060020
Medtr1g027580	Medtr2g023000	Medtr3g034370	Medtr4g028910	Wedtr5g021480	Medtr6g038940	Medtr/g056650	Medtr8g021190	Medtru690s0010
Medtr1g027680	Medtr2g023860	Medtr3g034610	Medtr4g028960	Medtr5g021820	Medtr6g039820	Medtr/g056663	Medtr8g021380	Medtr0691s0020
Medtr1g027720	Medtr2g023930	Medtr3g034670	Medtr4g029180	Medtr5g022020	Medtr6g043460	Medtr7g056670	Medtr8g022130	Medtr0722s0020
Medtr1g027890	Medtr2g024010	Medtr3g035685	Medtr4g029530	Medtr5g022130	Medtr6g043510	Medtr7g056680	Medtr8g022300	Medtr0794s0020
Medtr1g027930	Medtr2g024030	Medtr3g035820	Medtr4g029550	Medtr5g022270	Medtr6g043640	Medtr7g056710	Medtr8g022310	Medtr0807s0020
Medtr1g027970	Medtr2g024050	Medtr3g036455	Medtr4g029600	Medtr5g022380	Medtr6g044830	Medtr7g057330	Medtr8g022790	Medtr0879s0010
Medtr1g027990	Medtr2g026080	Medtr3g037110	Medtr4g029620	Medtr5g022560	Medtr6g044970	Medtr7g058510	Medtr8g022810	Medtr0912s0010
Medtr1g028060	Medtr2g027410	Medtr3g037690	Medtr4g030040	Medtr5g022810	Medtr6g045077	Medtr7g058640	Medtr8g022950	Medtr0927s0010
Medtr1g028080	Medtr2g027600	Medtr3g039990	Medtr4g032865	Medtr5g022920	Medtr6g045467	Medtr7g058860	Medtr8g022990	Medtr1064s0010
Medtr1g028090	Medtr2g028580	Medtr3g040800	Medtr4g032885	Medtr5g023120	Medtr6g045633	Medtr7g059037	Medtr8g023310	Medtr1099s0010
Medtr1g028100	Medtr2g028590	Medtr3g041560	Medtr4g032995	Medtr5g023170	Medtr6g046760	Medtr7g060540	Medtr8g023390	Medtr1439s0010
Medtr1g028130	Medtr2g028830	Medtr3g043900	Medtr4g033015	Medtr5g023260	Medtr6g046900	Medtr7g060770	Medtr8g023400	Medtr1678s0010
Medtr1g028150	Medtr2g028980	Medtr3g045230	Medtr4g033085	Medtr5g024020	Medtr6g046930	Medtr7g061018	Medtr8g023720	Medtr1996s0010
Medtr1g028170	Medtr2g029740	Medtr3g045760	Medtr4g033150	Medtr5g024090	Medtr6g048090	Medtr7g062100	Medtr8g023760	
Medtr1g028300	Medtr2g029860	Medtr3g046330	Medtr4g033200	Medtr5g024300	Medtr6g048440	Medtr7g062150	Medtr8g023770	
Medtr1g028890	Medtr2g029010	Medtr3g047930	Medtr/g033330	Medtr5g024350	Medtr6g048620	Medtr7g062320	Medtr8g023790	
Modtr1g028850	Modtr2g020460	Modtr2g049795	Modtr4g022285	ModtrEg024350	Modtr6g0400E0	Modtr7g062420	Modtr8g023730	
Medti 1g028900	Medti 2g030400	Medti 3g048783	Medti4g033383	Medti 3g024430	Medil 0g049030	Mada 72002430	Madta 920200	
Wedtr1g029420	Wedtr2g030480	Wedtrsg049550	Wedtr4g035395	Wiedtr5g024615	Wiedtr6g049260	Wedtr 7g062550	Wiedtrag023860	
Medtr1g029440	Medtr2g030530	Medtr3g049970	Medtr4g033435	Medtr5g024650	Medtr6g053000	Medtr/g062600	Medtr8g023900	
Medtr1g029600	Medtr2g031350	Medtr3g051770	Medtr4g035855	Medtr5g024970	Medtr6g053230	Medtr7g062750	Medtr8g024770	
Medtr1g030220	Medtr2g031520	Medtr3g052068	Medtr4g035880	Medtr5g025010	Medtr6g053290	Medtr7g062770	Medtr8g024790	
Medtr1g030740	Medtr2g031530	Medtr3g052480	Medtr4g035980	Medtr5g025270	Medtr6g055250	Medtr7g062920	Medtr8g026960	
Medtr1g031460	Medtr2g033170	Medtr3g052490	Medtr4g036040	Medtr5g025330	Medtr6g055395	Medtr7g062940	Medtr8g027140	
Medtr1g031470	Medtr2g033390	Medtr3g052790	Medtr4g036150	Medtr5g025370	Medtr6g055960	Medtr7g062950	Medtr8g027160	
Medtr1g031500	Medtr2g033550	Medtr3g053200	Medtr4g036170	Medtr5g025690	Medtr6g057440	Medtr7g062990	Medtr8g027180	
Medtr1g031520	Medtr2g033820	Medtr3g053780	Medtr4g036290	Medtr5g025825	Medtr6g057750	Medtr7g063030	Medtr8g027395	
Medtr1g031530	Medtr2g034090	Medtr3g055380	Medtr4g036300	Medtr5g025860	Medtr6g059410	Medtr7g063540	Medtr8g027465	
Medtr1g031535	Medtr2g034340	Medtr3g055400	Medtr4g036310	Medtr5g026000	Medtr6g059530	Medtr7g063570	Medtr8g027540	
Medtr1g031540	Medtr2g034350	Medtr3g055420	Medtr4g036410	Medtr5g026010	Medtr6g060390	Medtr7g064050	Medtr8g027745	
Medtr1g031930	Medtr2g034360	Medtr3g055610	Medtr4g036795	Medtr5g026290	Medtr6g060440	Medtr7g065260	Medtr8g027955	
Medtr1g032220	Medtr2g034470	Medtr3g055750	Medtr4g036880	Medtr5g026320	Medtr6g061710	Medtr7g065265	Medtr8g027970	
Medtr1g032580	Medtr2g034480	Medtr3g056310	Medtr4g036945	Medtr5g026430	Medtr6g065370	Medtr7g065270	Medtr8g028425	
Medtr1g032930	Medtr2g035080	Medtr3g056585	Medtr4g036950	Medtr5g026450	Medtr6g065400	Medtr7g065290	Medtr8g028435	
Medtr1g033080	Medtr2g035430	Medtr3g057800	Medtr/g036990	Medtr5g026460	Medtr6g065430	Medtr7g065590	Medtr8g028500	
Medtr1c022100	Medtr2r025500	Medtr3r057860	Medtr4g03700E	Medtr5r026480	Medtr6c065020	Medtr7g065600	Medtr&c028565	
Moder1c022620	Moder2c025610	Moder2c057000	Moder/c027015	ModtrEc026500	ModerConcerton	Modtr7c065600	Moder@c030600	
Made 1 -000000	Madt=2=025050	Medt=2-057070	Mode 1-007055	Modt=5=020010	Made: C-000100	Medt:7-005700	Made 0-022705	
Meatr1g033660	Meatr2g035850	Meatr3g057970	Meatr4g037655	Weatr5g026640	Meatr6g066190	iviedtr7g065720	ivieatr8g028720	
Medtr1g033670	Medtr2g036380	Medtr3g058160	Medtr4g037720	Medtr5g026720	Medtr6g066280	Medtr7g066590	Medtr8g028800	
Medtr1g033810	Medtr2g036460	Medtr3g058320	Medtr4g039540	Medtr5g026730	Medtr6g068970	Medtr7g066600	Medtr8g028905	
Medtr1g033900	Medtr2g036480	Medtr3g058670	Medtr4g039720	Medtr5g027780	Medtr6g070890	Medtr7g066620	Medtr8g030733	
Medtr1g034300	Medtr2g036780	Medtr3g060280	Medtr4g043630	Medtr5g027860	Medtr6g070900	Medtr7g066640	Medtr8g030737	
Medtr1g034320	Medtr2g037250	Medtr3g061170	Medtr4g044110	Medtr5g027900	Medtr6g071280	Medtr7g066780	Medtr8g030750	
Medtr1g036460	Medtr2g037330	Medtr3g061630	Medtr4g044297	Medtr5g028070	Medtr6g071415	Medtr7g066880	Medtr8g030920	
Medtr1g036490	Medtr2g037345	Medtr3g061780	Medtr4g044393	Medtr5g028930	Medtr6g071895	Medtr7g067380	Medtr8g031290	

Medtr1g036510	Medtr2g037380	Medtr3g062570	Medtr4g045617	Medtr5g029100	Medtr6g072590	Medtr7g067510	Medtr8g031390	
Medtr1g036580	Medtr2g038030	Medtr3g062590	Medtr4g045807	Medtr5g029230	Medtr6g073000	Medtr7g067600	Medtr8g031400	
Medtr1g036800	Medtr2g038040	Medtr3g062610	Medtr4g046713	Medtr5g029370	Medtr6g074835	Medtr7g067750	Medtr8g031420	
Medtr1g037130	Medtr2g038380	Medtr3g062950	Medtr4g046737	Medtr5g029950	Medtr6g075290	Medtr7g068020	Medtr8g031430	[]
Medtr1g037310	Medtr2g038510	Medtr3g063030	Medtr4g046920	Medtr5g030420	Medtr6g075440	Medtr7g068050	Medtr8g031450	
Medtr1g037520	Medtr2g038580	Medtr3g063120	Medtr4g047610	Medtr5g030620	Medtr6g075870	Medtr7g068160	Medtr8g031520	
Medtr1g038885	Medtr2g039120	Medtr3g063160	Medtr4g049410	Medtr5g030910	Medtr6g076210	Medtr7g068220	Medtr8g031910	
Modtr1g020240	Modtr2g030120	Modtr2g062170	Modtr4g040720	ModtrEg021E80	Modtr6g076220	Modtr7g068220	Modtr8g021000	
Modtr1g039240	Medtr2g039320	Modtr2g062210	Modtr4g050130	ModtrEg021930	Modtr6g077000	Modtr7g068470	Modtr8g032010	
Medtr1g040133	Medtr2g040300	Medtr2g064110	Medtr4g050120	Medtr 20031850	Medtr6g078070	Medtr7g068500	Medtr8g032010	<u> </u>
Medtrig040175	Medtr2g040375	Medtr3g064110	Medtr4g050190	Wiedtr5g031860	Medtr6g078070	Medtr/g068500	Medtr8g032030	
Medtr1g040195	Medtr2g040500	Medtr3g064310	Medtr4g050990	Medtr5g032870	Medtr6g078100	Medtr/g068520	Medtr8g032040	
Medtr1g040320	Medtr2g040510	Medtr3g064420	Medtr4g051375	Medtr5g032880	Medtr6g078140	Medtr/g068650	Medtr8g032050	
Medtr1g040750	Medtr2g040530	Medtr3g064460	Medtr4g051532	Medtr5g032910	Medtr6g078770	Medtr7g068770	Medtr8g032055	
Medtr1g041020	Medtr2g040570	Medtr3g064740	Medtr4g051880	Medtr5g033590	Medtr6g078780	Medtr7g068780	Medtr8g032320	
Medtr1g041285	Medtr2g040850	Medtr3g064750	Medtr4g052460	Medtr5g034660	Medtr6g078940	Medtr7g068900	Medtr8g032950	
Medtr1g041410	Medtr2g041180	Medtr3g067685	Medtr4g052620	Medtr5g034770	Medtr6g078950	Medtr7g069640	Medtr8g033400	
Medtr1g041475	Medtr2g041960	Medtr3g067715	Medtr4g052840	Medtr5g034910	Medtr6g078980	Medtr7g069740	Medtr8g035680	
Medtr1g041690	Medtr2g042340	Medtr3g067770	Medtr4g052850	Medtr5g034920	Medtr6g079090	Medtr7g070250	Medtr8g035820	
Medtr1g041830	Medtr2g042610	Medtr3g067775	Medtr4g054970	Medtr5g034930	Medtr6g079630	Medtr7g071110	Medtr8g036050	
Medtr1g041870	Medtr2g042900	Medtr3g067780	Medtr4g057340	Medtr5g035230	Medtr6g080440	Medtr7g072170	Medtr8g036055	
Medtr1g042800	Medtr2g043010	Medtr3g067795	Medtr4g057450	Medtr5g035560	Medtr6g082180	Medtr7g072250	Medtr8g036105	
Medtr1g042820	Medtr2g044070	Medtr3g068155	Medtr4g057500	Medtr5g035580	Medtr6g082190	Medtr7g072270	Medtr8g036195	
Medtr1g043350	Medtr2g044140	Medtr3g069050	Medtr4g057585	Medtr5g035690	Medtr6g082500	Medtr7g072710	Medtr8g037235	
Medtr1g043690	Medtr2g044830	Medtr3g069190	Medtr4g057595	Medtr5g035760	Medtr6g082810	Medtr7g073380	Medtr8g037310	[]
Medtr1g043770	Medtr2g045050	Medtr3g069280	Medtr4g058820	Medtr5g036080	Medtr6g082890	Medtr7g073430	Medtr8g037780	
Medtr1g044135	Medtr2g045100	Medtr3g069290	Medtr4g059540	Medtr5g036230	Medtr6g082920	Medtr7g074010	Medtr8g038370	
Medtr1g044470	Medtr2g045135	Medtr3g069310	Medtr4g059680	Medtr5g036240	Medtr6g082940	Medtr7g074730	Medtr8g038570	
Medtr1g04EEE0	Medtr2g045135	Modtr2g0605310	Modtr4g0505080	ModtrEg026410	Modtr6g082940	Modtr7g074730	Modtr8g030370	
Medtr1g045550	Medtr2g045140	Medtr2g070220	Medtr4g059730	Medtr 5g030410	Medtr6g082980	Medtr7g075120	Medtr8g039200	
Medtr1g045663	Medtr2g045280	Medtr3g070220	Medtr4g060480	Medtr5g036460	Medtr6g083020	Medtr7g075120	Medtr8g039620	
Wedtr1g046580	Wedtr2g045360	Wedtr3g070290	Wiedtr4g061320	Wiedtr5g037270	Wiedtrog083730	Wedtr/g0/5220	Wiedtr8g039790	
Medtr1g047910	Medtr2g045410	Medtr3g070560	Medtr4g062450	Medtr5g037390	Medtr6g083740	Medtr/g0/5390	Medtr8g039990	
Medtr1g047960	Medtr2g045420	Medtr3g070710	Medtr4g063070	Medtr5g037570	Medtr6g083780	Medtr7g075540	Medtr8g040080	
Medtr1g048200	Medtr2g045490	Medtr3g070800	Medtr4g063130	Medtr5g037610	Medtr6g083980	Medtr7g075580	Medtr8g040170	
Medtr1g048940	Medtr2g046000	Medtr3g070810	Medtr4g063885	Medtr5g037710	Medtr6g084250	Medtr7g075600	Medtr8g040250	
Medtr1g049140	Medtr2g046150	Medtr3g070860	Medtr4g063905	Medtr5g038180	Medtr6g084260	Medtr7g075610	Medtr8g040430	
Medtr1g050220	Medtr2g046750	Medtr3g071650	Medtr4g063940	Medtr5g038380	Medtr6g084320	Medtr7g076310	Medtr8g040490	
Medtr1g050382	Medtr2g048720	Medtr3g071750	Medtr4g064120	Medtr5g038940	Medtr6g084360	Medtr7g076320	Medtr8g040620	
Medtr1g050458	Medtr2g048860	Medtr3g072110	Medtr4g064150	Medtr5g038960	Medtr6g084370	Medtr7g076890	Medtr8g040850	
Medtr1g051420	Medtr2g054870	Medtr3g072500	Medtr4g064180	Medtr5g039390	Medtr6g084430	Medtr7g076900	Medtr8g040925	
Medtr1g051810	Medtr2g055670	Medtr3g072800	Medtr4g064380	Medtr5g040430	Medtr6g084590	Medtr7g076920	Medtr8g040930	
Medtr1g052275	Medtr2g055790	Medtr3g073150	Medtr4g064520	Medtr5g040440	Medtr6g084640	Medtr7g076950	Medtr8g041240	
Medtr1g052640	Medtr2g055940	Medtr3g073330	Medtr4g064730	Medtr5g040755	Medtr6g084710	Medtr7g076960	Medtr8g041650	
Medtr1g052925	Medtr2g058470	Medtr3g073590	Medtr4g064887	Medtr5g040770	Medtr6g084750	Medtr7g076970	Medtr8g041710	
Medtr1g053705	Medtr2g059890	Medtr3g073820	Medtr4g064987	Medtr5g040780	Medtr6g084770	Medtr7g076990	Medtr8g041820	
Medtr1g053900	Medtr2g061620	Medtr3g073860	Medtr4g065040	Medtr5g040970	Medtr6g084900	Medtr7g077150	Medtr8g041870	
Medtr1g054055	Medtr2g061720	Medtr3g074000	Medtr4g065060	Medtr5g041780	Medtr6g084910	Medtr7g077160	Medtr8g041880	
Medtr1g054150	Medtr2g062350	Medtr3g074070	Medtr4g065093	Medtr5g041940	Medtr6g087150	Medtr7g078540	Medtr8g041890	
Medtr1g054185	Medtr2g062360	Medtr3g074380	Medtr4g065107	Medtr5g042100	Medtr6g087770	Medtr7g078690	Medtr8g041910	
Medtr1g056350	Medtr2g062560	Medtr3g074390	Medtr4g065112	Medtr5g042560	Medtr6g088280	Medtr7g079010	Medtr8g042440	
Medtr1g056470	Medtr2g063923	Medtr3g074410	Medtr4g066010	Medtr5g043280	Medtr6g088450	Medtr7g079320	Medtr8g042630	
Modtr1g056640	Modtr2g064405	Modtr2g074950	Modtr4g066030	ModtrEg042285	Modtr6g088436	Modtr7g0703E0	Modtr8g04E070	
Moder1c056940	Modtr2c064030	Moder2c075060	Moder/c066130	ModerEc044110	Moder Consect	Modtr7c090220	Moder@c047222	┟────┥
Medtr1g056840	Medtr2g064930	Medtr3g075060	Medtr4g066130	MedtrSg044110	Medtreg088665	Medtr 7g080230	Medtr8g047230	
Medtr1g056870	Medtr2g064950	Medtr3g077000	Medtr4g066240	Medtr5g044680	Medtr6g088670	Medtr/g080370	Medtr8g051540	
Meatr1g056880	Meatr2g065360	iviedtr3g077940	ivieatr4g066580	Weatr5g044710	Meatr6g088785	ivleatr7g080765	ivieatr8g051640	
Medtr1g057640	Medtr2g066010	Medtr3g078320	Medtr4g066630	Medtr5g045200	Medtr6g088790	Medtr7g080780	Medtr8g055900	
Medtr1g058230	Medtr2g066760	Medtr3g078380	Medtr4g067330	Medtr5g045710	Medtr6g090405	Medtr7g080900	Medtr8g058250	ļ
Medtr1g059890	Medtr2g067420	Medtr3g078410	Medtr4g068200	Medtr5g045960	Medtr6g090460	Medtr7g080960	Medtr8g058930	ļ
Medtr1g059930	Medtr2g067640	Medtr3g078420	Medtr4g068457	Medtr5g045970	Medtr6g090605	Medtr7g081015	Medtr8g058965	ļ!
Medtr1g060030	Medtr2g067980	Medtr3g078550	Medtr4g068520	Medtr5g046110	Medtr6g090615	Medtr7g081020	Medtr8g059170	ļ!
Medtr1g060060	Medtr2g068760	Medtr3g078633	Medtr4g068550	Medtr5g046410	Medtr6g091710	Medtr7g081050	Medtr8g059345	
Medtr1g060100	Medtr2g068880	Medtr3g078730	Medtr4g068560	Medtr5g046430	Medtr6g091720	Medtr7g081150	Medtr8g061110	
Medtr1g060240	Medtr2g068920	Medtr3g079390	Medtr4g068850	Medtr5g047530	Medtr6g091760	Medtr7g081160	Medtr8g061120	
Medtr1g060490	Medtr2g069320	Medtr3g079450	Medtr4g069160	Medtr5g047770	Medtr6g091800	Medtr7g081380	Medtr8g061360	
Medtr1g060590	Medtr2g069430	Medtr3g080050	Medtr4g069680	Medtr5g047930	Medtr6g092210	Medtr7g081410	Medtr8g062130	
Medtr1g060700	Medtr2g070110	Medtr3g080090	Medtr4g069770	Medtr5g047980	Medtr6g406250	Medtr7g081420	Medtr8g062140	
Medtr1g060890	Medtr2g070550	Medtr3g080170	Medtr4g069810	Medtr5g048160	Medtr6g444930	Medtr7g081480	Medtr8g062410	l
Medtr1g060910	Medtr2g070870	Medtr3g080580	Medtr4g069940	Medtr5g048313	Medtr6g452730	Medtr7g081580	Medtr8g062770	

Medtr1g061280	Medtr2g071820	Medtr3g080850	Medtr4g070340	Medtr5g048470	Medtr6g460620	Medtr7g081720	Medtr8g062790	
Medtr1g062970	Medtr2g071890	Medtr3g081500	Medtr4g070370	Medtr5g048550	Medtr6g463390	Medtr7g081780	Medtr8g063280	
 Medtr1g063110				 Medtr5g048750	Medtr6g463400		Medtr8g063840	
Medtr1g063170	Medtr2g072110	Medtr3g082210	Medtr4g071020	Medtr5g049240	Medtr6g463840	Medtr7g082110	Medtr8g063930	
Meder 1g0000170	Mcdt/2g072110	Mcdt/5g002210	Medel 4g07 1020	Medti5g045240	Medel 0g+030+0	Mcdti 7g002110	Medtrog003550	
Wedtrig063310	Wiedtr2g072180	Wedtr3g082250	Wedtr4g071060	Wedtr5g049280	Wedtr6g464050	Wedtr7g082290	Wedtr8g064310	
Medtr1g063910	Medtr2g072250	Medtr3g082260	Medtr4g071200	Medtr5g053920	Medtr6g464320	Medtr7g082300	Medtr8g064320	
Medtr1g064090	Medtr2g072260	Medtr3g083570	Medtr4g071390	Medtr5g053950	Medtr6g464330	Medtr7g082390	Medtr8g064660	
Medtr1g066380	Medtr2g072310	Medtr3g083620	Medtr4g072030	Medtr5g055020	Medtr6g464510	Medtr7g082460	Medtr8g064820	
Medtr1g066390	Medtr2g072330	Medtr3g084270	Medtr4g072350	Medtr5g055070	Medtr6g465030	Medtr7g082490	Medtr8g064850	
Medtr1g066530	Medtr2g072340	Medtr3g084520	Medtr4g072360	Medtr5g055310	Medtr6g466310	Medtr7g082510	Medtr8g064870	
Medtr1g066640	Medtr2g072380	Medtr3g085570	Medtr4g072370	Medtr5g056395	Medtr6g471080	Medtr7g082530	Medtr8g064880	
Medtr1g066680	Medtr2g072400	Medtr3g086170	Medtr4g072910	Medtr5g056550	Medtr6g471090	Medtr7g082537	Medtr8g066630	
Medtr1g066710	Medtr2g072820	Medtr3g086230	Medtr4g073040	Medtr5g056640	Medtr6g471100	Medtr7g082540	Medtr8g066690	
Medtr1g066720	Medtr2g072020	Medtr3g086520	Medtr/g073070	Medtr5g056990	Medtr6g471740	Medtr7g082570	Medtr8g066710	
Moder1g000720	Medtr2g072010	Modtr3g086540	Modtr4g073000	MedtrEg0E7660	Modtr6g472250	Medtr7g082800	Moder@g067000	
Wedtrig087010	wiedtr 2g073040	Wedtr 3g086540	Wedtr4g075090	wiedtrsg057660	Wedtrog472250	Wedtr 7g082800	Wedtrag067090	
Medtr1g067170	Medtr2g073050	Medtr3g086580	Medtr4g073140	Medtr5g057690	Medtr6g488090	Medtr7g083070	Medtr8g067275	
Medtr1g067320	Medtr2g073250	Medtr3g086590	Medtr4g073220	Medtr5g059140	Medtr6g488190	Medtr7g083200	Medtr8g067690	
Medtr1g067410	Medtr2g073370	Medtr3g086650	Medtr4g073230	Medtr5g059890		Medtr7g084030	Medtr8g067720	
Medtr1g067640	Medtr2g073420	Medtr3g086670	Medtr4g073530	Medtr5g059900		Medtr7g084040	Medtr8g067735	
Medtr1g067650	Medtr2g073470	Medtr3g086740	Medtr4g073690	Medtr5g060450		Medtr7g084380	Medtr8g067930	
Medtr1g068945	Medtr2g073520	Medtr3g086830	Medtr4g074280	Medtr5g062240		Medtr7g084670	Medtr8g068110	
Medtr1g069070	Medtr2g073540	Medtr3g086880	Medtr4g075150	Medtr5g062290		Medtr7g084760	Medtr8g068840	
Medtr1g069110	Medtr2g073560	Medtr3g086890	Medtr4g075610	Medtr5g063080		Medtr7ø085200	Medtr8g068890	
Modt=1=000110	Modt-2-072020	Moder2c08C040	Modt=4=075750	Modt=5-00 40 40		Modt=7=0052200	Modt-9-000000	
Weutrigu69155	ivieutr2g0/3630	Neutragu86910	Neutragu/5/50	ivieutr5g064840		ivieutr/gu85220	ivieutr8g068990	
ivieatr1g069805	ivieatr2g073660	ivieatr3g087360	ivleatr4g075980	weatr5g065130		ivieatr/g085630	ivieatr8g069160	
Medtr1g069945	Medtr2g075140	Medtr3g088110	Medtr4g076030	Medtr5g066020		Medtr7g085790	Medtr8g069330	
Medtr1g070035	Medtr2g075250	Medtr3g088435	Medtr4g076255	Medtr5g066060		Medtr7g085840	Medtr8g069510	
Medtr1g070070	Medtr2g075480	Medtr3g088465	Medtr4g076640	Medtr5g066410		Medtr7g086340	Medtr8g069800	
Medtr1g070205	Medtr2g075550	Medtr3g088565	Medtr4g077100	Medtr5g067460		Medtr7g086520	Medtr8g069910	
Medtr1g070220	Medtr2g075600	Medtr3g088590	Medtr4g077130	Medtr5g067470		Medtr7g086690	Medtr8g069915	
Medtr1g071610	Medtr2g075610	Medtr3g088600	Medtr4g077570	Medtr5g067680		Medtr7g086710	Medtr8g069950	
Medtr1g072110	Medtr2g075640	Medtr3g088705	Medtr4g077777	Medtr5g068060		Medtr7g086960	Medtr8g070085	
Medtr1g072420	Medtr2g075680	Medtr3g088750	Medtr4g077960	Medtr5g068580		Medtr7g087400	Medtr8g070520	
Modtr1g0724E0	Modtr2g075600	Modtr2g088760	Modtr4g078110	ModtrEg068660		Modtr7g089570	Modtreg070520	
Medtr1g072430	Medtr2g075090	Medtr2g088810	Medtr4g078110	Medtr 5g008000		Medtr7c088890	Medtr8g070380	
Wedtrig072490	wiedtrzg075700	Wiedti Sgu88815	Wedtr4g078550	Wiedti Sg069230		Wedtr 7g088880	Wedtrag070890	
Medtr1g0/2/20	Medtr2g075740	Medtr3g088880	Medtr4g078460	Medtr5g069600		Medtr/g089140	Medtr8g071900	
Medtr1g073200	Medtr2g075750	Medtr3g088890	Medtr4g078840	Medtr5g069680		Medtr7g089190	Medtr8g072220	
Medtr1g073700	Medtr2g075770	Medtr3g088920	Medtr4g079110	Medtr5g070330		Medtr7g089670	Medtr8g072540	
Medtr1g073730	Medtr2g075830	Medtr3g088930	Medtr4g079140	Medtr5g070870		Medtr7g090420	Medtr8g072610	
Medtr1g073770	Medtr2g076470	Medtr3g088970	Medtr4g079350	Medtr5g071070		Medtr7g090470	Medtr8g073120	
Medtr1g073780	Medtr2g076590	Medtr3g089045	Medtr4g080160	Medtr5g071610		Medtr7g090500	Medtr8g073210	
Medtr1g073890	Medtr2g076610	Medtr3g090530	Medtr4g080730	Medtr5g071817		Medtr7g090680	Medtr8g073260	
Medtr1g074230	Medtr2g076970	Medtr3g090900	Medtr4g081110	Medtr5g071823		Medtr7g091370	Medtr8g073730	
Medtr1g074950	Medtr2g076990	Medtr3g091010	Medtr4g081380	Medtr5g071840		Medtr7g091510	Medtr8g073770	
Medtr1g074990	Medtr2g078070	Medtr3g092060	Medtr/g081390	Medtr5g072780		Medtr7g091660	Medtr8g073850	
Medtr1:075350	Medtr20079240	Medtr2c002150	Medtr4g001530	MedtrEg072820		Medtr7c002170	Medtrea072050	
Mark 1 075250	wieuurzgu/8340	Weut Sg092150	Weutraguo1500	ivieutrogu/2820		wieuu /gu921/U	wieutiogu/3950	
Meatr1g075410	ivieatr2g078970	weatr3g092220	weatr4g081530	Weatr5g072860		iviedtr7g092700	ivieatr8g073960	
Medtr1g075440	Medtr2g078990	Medtr3g092230	Medtr4g081610	Medtr5g072930		Medtr7g092750	Medtr8g074070	
Medtr1g075480	Medtr2g079300	Medtr3g092320	Medtr4g081665	Medtr5g072980		Medtr7g093040	Medtr8g074210	
Medtr1g075850	Medtr2g079430	Medtr3g092330	Medtr4g081675	Medtr5g073260		Medtr7g093490	Medtr8g074335	
Medtr1g076940	Medtr2g079950	Medtr3g092390	Medtr4g081730	Medtr5g073340		Medtr7g093790	Medtr8g074610	
Medtr1g077030	Medtr2g079990	Medtr3g092420	Medtr4g081870	Medtr5g073460		Medtr7g093870	Medtr8g075890	
Medtr1g077460	Medtr2g080090	Medtr3g092435	Medtr4g082235	Medtr5g073470		Medtr7g093950	Medtr8g076160	
Medtr1g077870	Medtr2g080280	Medtr3g092500	Medtr4g082290	Medtr5g073480		Medtr7g094100	Medtr8g076290	
Medtr1g077880	Medtr2g080300	Medtr3g092635	Medtr4g082330	Medtr5g073620		Medtr7g094260	Medtr8g076372	
Medtr1g077890	Medtr2g080980	Medtr3g092840	Medtr4g082355	Medtr5g073650		Medtr7g095170	Medtr8g076680	
Medtr1a079160	Medtr20081500	Medtranoo2000	Medtranessen	Medtr5a072790		Medtr7c00E410	Medtr8a076000	
Made 1 -070255	Medt-2-001500	Medt=2-002005	Made 1-002505	Modt=5=072015		Medt:7-005505	Medt-0-07000	
ivieatrig0/9250	ivieatr2g081520	ivieatr3g092990	ivieatr4g082580	ivientr5g073810		ivieatr/g095500	ivieatr8g076990	
Medtr1g079490	Medtr2g082590	Medtr3g093730	Medtr4g082830	Medtr5g073820		Medtr7g095710	Medtr8g077105	
Medtr1g080080	Medtr2g083210	Medtr3g093780	Medtr4g082860	Medtr5g073840		Medtr7g095960	Medtr8g077135	
Medtr1g080370	Medtr2g083620	Medtr3g093830	Medtr4g082883	Medtr5g073860		Medtr7g096120	Medtr8g077770	
Medtr1g080700	Medtr2g083870	Medtr3g094120	Medtr4g082900	Medtr5g073920		Medtr7g096140	Medtr8g077780	
Medtr1g080720	Medtr2g083910	Medtr3g094320	Medtr4g082930	Medtr5g074090		Medtr7g096750	Medtr8g078240	
Medtr1g080910	Medtr2g083930	Medtr3g095040	Medtr4g082970	Medtr5g074190		Medtr7g096830	Medtr8g078770	
Medtr1g080990	Medtr2g084230	Medtr3g095730	Medtr4g083000	Medtr5g074200		Medtr7g097150	Medtr8g078870	
Medtr1g081180	Medtr2g086040	Medtr3g096310	Medtr4g083080	Medtr5g074400		Medtr7g097200	Medtr8g078940	
Medtr1g081610	Medtr2g086283	Medtr3g096390	Medtr4g083140	Medtr5g074540	1	Medtr7g098300	Medtr8g079200	
30	3	30	3	351 15 10		30	30	

Medtr1g081620	Medtr2g086350	Medtr3g096520	Medtr4g083620	Medtr5g074580		Medtr7g098760	Medtr8g079250	
Medtr1g081850	Medtr2g086420	Medtr3g096760	Medtr4g084180	Medtr5g074600		Medtr7g098780	Medtr8g079450	
Medtr1g082310	Medtr2g086590	Medtr3g096830	Medtr4g084270	Medtr5g075020		Medtr7g099200	Medtr8g079475	
Medtr1g082480	Medtr2g086730	Medtr3g096840	Medtr4g084280	Medtr5g075340		Medtr7g099800	Medtr8g079520	
Medtr1g083440	Medtr2g086790	Medtr3g097080	Medtr4g084480	Medtr5g075450		Medtr7g100070	Medtr8g079550	
Medtr1g083580	Medtr2g086870	Medtr3g097450	Medtr4g085100	Medtr5g075640		Medtr7g100240	Medtr8g079710	
Medtr1g083690	Medtr2g086890	Medtr3g098140	Medtr4g085750	Medtr5g075650		Medtr7g100420	Medtr8g079760	
Medtr1g083030	Medtr2g080830	Medtr3g098140	Medtr4g085730	Medtr5g075050		Medtr7g100420	Medtr8g070700	
Medtr1g084160	Medtr2g086910	Neutr3g098330	Medtr4g085990	Medtr5g075955		Medtr 7g101395	Medil 8g079930	
Wedtr1g084220	Wiedtr2g087810	Wedtr3g098370	Wedtr4g086320	Wedtr5g076240		Medtr/g101425	iviedtr8g080370	
Medtr1g084660	Medtr2g088000	Medtr3g098840	Medtr4g086330	Medtr5g077290		Medtr7g101740	Medtr8g080680	
Medtr1g084670	Medtr2g088020	Medtr3g099150	Medtr4g086410	Medtr5g077760		Medtr7g102110	Medtr8g080770	
Medtr1g085240	Medtr2g088170	Medtr3g099300	Medtr4g086540	Medtr5g077850		Medtr7g102520	Medtr8g083150	
Medtr1g086080	Medtr2g088470	Medtr3g099700	Medtr4g086620	Medtr5g078250		Medtr7g102550	Medtr8g083220	
Medtr1g086150	Medtr2g089160	Medtr3g099990	Medtr4g086710	Medtr5g079550		Medtr7g102560	Medtr8g085580	
Medtr1g086170	Medtr2g089440	Medtr3g100150	Medtr4g086730	Medtr5g079610		Medtr7g102820	Medtr8g085590	
Medtr1g086320	Medtr2g089510	Medtr3g100650	Medtr4g086740	Medtr5g079840		Medtr7g102960	Medtr8g085630	
Medtr1g086370	Medtr2g089520	Medtr3g100950	Medtr4g086750	Medtr5g079980		Medtr7g103520	Medtr8g085900	
Medtr1g086450	Medtr2g089620	Medtr3g100980	Medtr4g086835	Medtr5g080360		Medtr7g103900	Medtr8g086010	
Medtr1g086510	Medtr2g089650	Medtr3g101210	Medtr4g087080	Medtr5g081290		Medtr7g104190	Medtr8g086270	
Medtr1g086530	Medtr2g089735	Medtr3g101260	Medtr4g087100	Medtr5g081410		Medtr7g104940	Medtr8g086410	
Medtr1g086600	Medtr2g089815	Medtr3g101320	Medtr4g087320	Medtr5g081530		Medtr7g104950	Medtr8g086770	
Medtr1g086790	Medtr2g090110	Medtr3g101490	Medtr4g087460	Medtr5g081550		Medtr7g105070	Medtr8g087000	
Medtr1c086050	Medtr2c000150	Medtr3g101600	Medtr4g087400	Medtr5g081950		Medtr7g105220	Medtr8c087120	
Modt-1-002020	Modt-2-000100	Moder2a101000	Modt-1-007010	Modt=5-002440		Modtr7=105700	Modt=9~007275	
Wedt=1=007000	Madt=2=000000	Neutrag101810	Nedt 1-007020	Nedt=5=002155		Wedtr7=105016	Wedt-0-007100	
ivieatr1g087990	ivieatr2g090230	weatr3g102020	ivieatr4g087830	ivieatr5g082150		ivieatr/g105810	ivieatr8g087400	
Medtr1g088400	Medtr2g090235	Medtr3g102100	Medtr4g088005	Medtr5g082460		Medtr7g105870	Medtr8g087410	
Medtr1g088470	Medtr2g090360	Medtr3g102120	Medtr4g088355	Medtr5g082580		Medtr7g106640	Medtr8g087555	
Medtr1g088630	Medtr2g090405	Medtr3g102370	Medtr4g088400	Medtr5g082880		Medtr7g107040	Medtr8g087700	
Medtr1g088660	Medtr2g090520	Medtr3g102390	Medtr4g088405	Medtr5g082910		Medtr7g107560	Medtr8g088590	
Medtr1g088680	Medtr2g090525	Medtr3g102400	Medtr4g088425	Medtr5g082940		Medtr7g107570	Medtr8g088720	
Medtr1g088730	Medtr2g090770	Medtr3g102730	Medtr4g088445	Medtr5g082950		Medtr7g108080	Medtr8g089560	
Medtr1g088825	Medtr2g090775	Medtr3g102770	Medtr4g088900	Medtr5g083360		Medtr7g108770	Medtr8g089670	
Medtr1g088840	Medtr2g090950	Medtr3g103150	Medtr4g088955	Medtr5g083530		Medtr7g108890	Medtr8g089805	
Medtr1g088845	Medtr2g091175	Medtr3g103190	Medtr4g089020	Medtr5g083860		Medtr7g109410	Medtr8g089820	
Medtr1g088910	Medtr2g091190	Medtr3g103290	Medtr4g090525	Medtr5g083910		Medtr7g109460	Medtr8g089830	
Medtr1g089000	Medtr2g093060	Medtr3g103320	Medtr4g090580	Medtr5g084100		Medtr7g109580	Medtr8g089920	
Medtr1g089310	Medtr2g093310	Medtr3g103580	Medtr4g090600	Medtr5g084660		Medtr7g110720	Medtr8g090280	
Medtr1g089570	Medtr2g094093	Medtr3g103970	Medtr4g091100	Medtr5g084850		Medtr7g110880	Medtr8g090305	
Modtr1g080600	Modtr2g004120	Modtr2g104E00	Modtr4g001270	ModtrEg09E400		Modtr7g110000	Modtr8g000210	
Modtr1g089000	Modtr2g094130	Modtr2g104500	Modtr4g091370	ModtrEg085400		Modtr7g111010	Modtr8g090310	
Medti 1g083830	Medil 2g095520	Medil 3g104000	Nedtr4g091380	Mada the solution		Medii 7g111010	Madue 2002010	
Medtr1g090020	Wiedtr2g095800	Wedtr3g104640	Wedtr4g091450	Wiedtr5g085910		Medtr/g111030	Wedtr8g092010	
Medtr1g090070	Medtr2g096330	Medtr3g104660	Medtr4g091490	Medtr5g085970		Medtr7g111240	Medtr8g092460	
Medtr1g090150	Medtr2g096540	Medtr3g104740	Medtr4g091570	Medtr5g085990		Medtr7g111380	Medtr8g092650	
Medtr1g090190	Medtr2g096550	Medtr3g104750	Medtr4g091610	Medtr5g086230		Medtr7g111450	Medtr8g092760	
Medtr1g090430	Medtr2g096850	Medtr3g105595	Medtr4g091730	Medtr5g086810		Medtr7g111460	Medtr8g093620	
Medtr1g090520	Medtr2g097000	Medtr3g105610	Medtr4g091780	Medtr5g086945		Medtr7g111850	Medtr8g094040	
Medtr1g090903	Medtr2g097010	Medtr3g105650	Medtr4g091820	Medtr5g087070		Medtr7g112000	Medtr8g094740	
Medtr1g091003	Medtr2g097463	Medtr3g105710	Medtr4g091840	Medtr5g087080		Medtr7g112800	Medtr8g095040	
Medtr1g091040	Medtr2g097467	Medtr3g105730	Medtr4g091850	Medtr5g087090		Medtr7g113640	Medtr8g095080	
Medtr1g091930	Medtr2g097473	Medtr3g106060	Medtr4g091860	Medtr5g087360		Medtr7g113650	Medtr8g095090	
Medtr1g093120	Medtr2g097530	Medtr3g106280	Medtr4g092020	Medtr5g087510		Medtr7g113660	Medtr8g095110	
Medtr1g093130	Medtr2g097540	Medtr3g106480	Medtr4g092110	Medtr5g087800		Medtr7g113860	Medtr8g095130	
Medtr1g093140	Medtr2g097980	Medtr3g106550	Medtr4g092360	Medtr5g088010		Medtr7g114020	Medtr8g095470	
Medtr1g093350	Medtr2g098430	Medtr3g107730	Medtr4g092520	Medtr5g088270		Medtr7g114130	Medtr8g095560	
Medtr1g093600	Medtr2g099095	Medtr3g107770	Medtr4g092530	Medtr5g088770		Medtr7g114410	Medtr8g095600	
Medtr1a002620	Medtr2g0000450	Medtr3g107800	Medtr/a002550	Medtr5g080110		Medtr7a114680	Medtr&a006440	
Medtr1@002020	Medtr2c0004cc	Medtr2a109240	Medtr/2002500	MedtrEa00020		Medtr7a114700	Medtrea000000	
Moder1c004185	Moder2c000520	Moder2c109220	Moder4c002070	ModerEc000070		Modtr7c115040	Moder 2006260	
Madted =00 1255	Medt-2-100255	Modt=2=102220	Medter - 000110	Medt=5=000100		Moder7=115040	Wieuci oguadood	
Meatr1g094255	ivieatr2g100260	Meatr3g108800	ivieatr4g093110	Weatr5g090130		ivleatr7g115050	ivieatr8g096900	
Medtr1g094730	Medtr2g100270	Medtr3g108808	Medtr4g093140	Medtr5g090250		Medtr7g115120	Medtr8g096910	
Medtr1g094830	Medtr2g100440	Medtr3g108860	Medtr4g093510	Medtr5g090440		Medtr7g115220	Medtr8g096920	
Medtr1g095730	Medtr2g100450	Medtr3g108910	Medtr4g093580	Medtr5g090560		Medtr7g115650	Medtr8g097040	
Medtr1g096200	Medtr2g100550	Medtr3g109030	Medtr4g093840	Medtr5g090570		Medtr7g117310	Medtr8g097400	
Medtr1g096260	Medtr2g100560	Medtr3g109280	Medtr4g093910	Medtr5g090590		Medtr7g117350	Medtr8g098275	
Medtr1g096310	Medtr2g100570	Medtr3g109430	Medtr4g093950	Medtr5g090600		Medtr7g117415	Medtr8g098310	
Medtr1g096910	Medtr2g100930	Medtr3g109700	Medtr4g094010	Medtr5g090620		Medtr7g117500	Medtr8g098770	
Medtr1g097240	Medtr2g101090	Medtr3g109930	Medtr4g094060	Medtr5g090770		Medtr7g117695	Medtr8g098880	

Medtr1g097270	Medtr2g101320	Medtr3g109950	Medtr4g094202	Medtr5g090790	Medtr7g117705	Medtr8g098945	
Medtr1g097720	Medtr2g101380	Medtr3g110155	Medtr4g094215	Medtr5g090970	Medtr7g117890	Medtr8g099035	
Medtr1g097840	Medtr2g101560	Medtr3g110180	Medtr4g094412	Medtr5g090980	Medtr7g118170	Medtr8g099065	
Medtr1g097850	Medtr2g101590	Medtr3g110190	Medtr4g094428	Medtr5g090990	 Medtr7g405740	Medtr8g099495	
Medtr1g097910	Medtr2g101610	Medtr3g110200	Medtr4g094488	Medtr5g091050	Medtr7g405830	Medtr8g099515	
Medtr1g097935	Medtr2g101640	Medtr3g110450	Medtr4g094492	Medtr5g091060	Medtr7g407130	Medtr8g099715	
Medtr1g098460	Medtr2g101660	Medtr3g110530	Medtr4g094495	Medtr5g091090	Medtr7g417750	Medtr8g100005	
Modtr1g000020	Modtr2g101720	Modtr2g110330	Modtr4g004E18	ModtrEg001270	Modtr7g4E1730	Modtr8g1013E0	
Medir 1g099020	Medtr2g101720	Medtr3g110/10	Nedtr4g094518	Medtr5g091370	 Medur 7g451740	Medtrag101250	
Wedtr1g099260	Wiedtr2g101850	Wedtr3g11150	Wedtr4g094548	Wiedtr5g091390	Weatr7g481600	Wedtr8g101260	
Medtr1g099320	Medtr2g101910	Medtr3g111190	Medtr4g094555	Medtr5g091640		Medtr8g101930	
Medtr1g099400	Medtr2g102060	Medtr3g111530	Medtr4g094562	Medtr5g092190		Medtr8g102350	
Medtr1g099600	Medtr2g102267	Medtr3g111800	Medtr4g094565	Medtr5g092350		Medtr8g102620	
Medtr1g099815	Medtr2g102370	Medtr3g112120	Medtr4g094570	Medtr5g092410		Medtr8g102660	
Medtr1g099825	Medtr2g102510	Medtr3g112150	Medtr4g094610	Medtr5g092440		Medtr8g102755	
Medtr1g100050	Medtr2g102660	Medtr3g113160	Medtr4g094630	Medtr5g092520		Medtr8g102860	
Medtr1g100130	Medtr2g102670	Medtr3g113210	Medtr4g094698	Medtr5g092630		Medtr8g102890	
Medtr1g100335	Medtr2g103070	Medtr3g113670	Medtr4g094730	Medtr5g092910		Medtr8g103750	
Medtr1g100395	Medtr2g103440	Medtr3g113710	Medtr4g094762	Medtr5g093050		Medtr8g103850	
Medtr1g100623	Medtr2g103490	Medtr3g114090	Medtr4g094772	Medtr5g094380		Medtr8g104080	
Medtr1g100643	Medtr2g103730	Medtr3g114460	Medtr4g094775	Medtr5g094450		Medtr8g104100	
Medtr1g100647	Medtr2g103795	Medtr3g114850	Medtr4g094812	Medtr5g094520		Medtr8g104200	
Medtr1g100713	Medtr2g103850	Medtr3g114870	Medtr4g094832	Medtr5g094530		Medtr8g104290	
Medtr1g100733	Medtr2g103870	Medtr3g115090	 Medtr4g094835	Medtr5g094540		Medtr8g104300	
Medtr1g101250	Medtr2g105000	Medtr3g115170	Medtr4g094858	Medtr5g094570		Medtr8g104870	
Medtr1g101680	Medtr2g105670	Medtr3g115490	Medtr4g094868	Medtr5g094620		Medtr8g105190	
Modtr1g101750	Modtr2g105690	Modtr2g115620	Modtr4g004805	ModtrEg004720		Modtr8g105E90	
Moder1c101700	Moder2c425740	Moder2c116020	ModerAc005042	ModerEc004920		Moder@c105390	
Medirig101790	Neutr2g435740	Wedtr3g110830	Nedtr4g095042	Medtr5g094820	 	Medtrag105700	
Medtr1g102860	Medtr2g435780	Medtr3g116870	Medtr4g095310	Medtr5g095120		Medtr8g106560	
Medtr1g103080	Medtr2g436020	Medtr3g117320	Medtr4g095500	Medtr5g095200		Medtr8g106710	
Medtr1g103090	Medtr2g437380	Medtr3g117420	Medtr4g096840	Medtr5g095220		Medtr8g106800	
Medtr1g103420	Medtr2g437530	Medtr3g117850	Medtr4g097570	Medtr5g095230	 	Medtr8g107343	
Medtr1g103490	Medtr2g437910	Medtr3g118020	Medtr4g098530	Medtr5g096410		Medtr8g432350	
Medtr1g103550	Medtr2g438140	Medtr3g408340	Medtr4g098900	Medtr5g096530		Medtr8g432420	
Medtr1g104520	Medtr2g438150	Medtr3g415580	Medtr4g098910	Medtr5g096650		Medtr8g432440	
Medtr1g104590	Medtr2g438230	Medtr3g435000	Medtr4g099180	Medtr5g096780		Medtr8g442270	
Medtr1g104750	Medtr2g438260	Medtr3g435370	Medtr4g099260	Medtr5g098170		Medtr8g442300	
Medtr1g105040	Medtr2g438310	Medtr3g436860	Medtr4g099400	Medtr5g098580		Medtr8g442310	
Medtr1g105555	Medtr2g438320	Medtr3g437630	Medtr4g100380	Medtr5g098610		Medtr8g442340	
Medtr1g105615	Medtr2g438330	Medtr3g437870	Medtr4g100640	Medtr5g098670		Medtr8g442370	
Medtr1g105630	Medtr2g438540	Medtr3g448370	Medtr4g100650	Medtr5g098720		Medtr8g445800	
Medtr1g105640	Medtr2g438560	Medtr3g448380	Medtr4g100975	Medtr5g098960		Medtr8g446010	
Medtr1g105650	Medtr2g438630	Medtr3g449520	Medtr4g101050	Medtr5g099130		Medtr8g447230	
Medtr1g105655	Medtr2g438640	Medtr3g449530	Medtr4g101450	Medtr5g430430		Medtr8g447290	
Medtr1g105710	Medtr2g438720	Medtr3g449540	Medtr4g101630	Medtr5g430490		Medtr8g447340	
Medtr1g105755	Medtr2g438740	Medtr3g451730	Medtr4g101760	Medtr5g430730		Medtr8g461110	
Medtr1g105755	Modtr2g438740	Medtr3g451730	Medtr4g101700	MedtrEg450730		Madtr@g401110	
Medirig105990	Nedtr2g438760	Wedtr3g452660	Nedtr4g102220	Wedt15g459540		Madta 2461330	
Moder1 =100720	ivieatr2g438800	ivientr3g452870	ivieatr4g102840			ivieatr8g461360	
Neutrig106/30	ivieutr2g450040	ivieutr3g452880	ivieutr4g103400			ivieutr8g462020	
Meatr1g106770	ivieatr2g450830	Meatr3g455790	ivieatr4g103430			ivieatr8g464870	
Medtr1g106785	Medtr2g450870	Medtr3g456110	Medtr4g104140		 	Medtr8g465150	
Medtr1g107215	Medtr2g451100	Medtr3g461440	Medtr4g104540		 	Medtr8g465160	
Medtr1g107380	Medtr2g451110	Medtr3g462480	Medtr4g104550			Medtr8g465340	
Medtr1g107565	Medtr2g451260	Medtr3g463000	Medtr4g104570			Medtr8g465470	
Medtr1g108330	Medtr2g461450	Medtr3g463010	Medtr4g104640			Medtr8g465510	
Medtr1g108770	Medtr2g461920	Medtr3g463200	Medtr4g104900			Medtr8g465570	
Medtr1g108910	Medtr2g461970	Medtr3g463830	Medtr4g104960			Medtr8g465990	
Medtr1g109310		Medtr3g465090	Medtr4g105070			Medtr8g467380	
Medtr1g109380		Medtr3g465870	Medtr4g105110			Medtr8g467450	
Medtr1g109430		Medtr3g466180	Medtr4g105130			Medtr8g467490	
Medtr1g109600		Medtr3g466240	Medtr4g106515			Medtr8g467650	
Medtr1g110090		Medtr3g466400	Medtr4g107270			Medtr8g468340	
Medtr1g110110		Medtr3g466420	Medtr4g107400			Medtr8g468620	
Medtr1g110120		Medtr3g467100	Medtr4g107490			Medtr8g469300	
Medtr1g110120		Medtr3a467340	Medtr/a107520			Medtr񰜸	
Medtr1c110140		Medtr2c467420	Medtr/c107650			Medtr8c4606E0	
Medtr1c110160		Medtr2c467420	Medtr/c107070			Medtr8c460670	
Moder1c110100		Moder2c4C7C0C	Medted 00200			Madtr9c409070	
iviedtrig110180		ivieatr3g467680	ivieatr4g108260			ivieatr8g469830	

Medtr1g110220	Medtr3g479460	Medtr4g108680		Medtr8g469860	
Medtr1g110230		Medtr4g108760		Medtr8g469980	
Medtr1g110270		Medtr4g108880		Medtr8g470080	
Medtr1g110550		Medtr4g109150		Medtr8g479260	
Medtr1g110790		Medtr4g109170		Medtr8g479360	
Medtr1g110820		Medtr4g109360		 Medtr8g479430	
Medtr1g111280		Medtr4g109830		Medtr8g479450	
Medtr1g111330		Medtr4g109880			
Medtr1g111510		Medtr4g109900			
Medtr1g111530		Medtr4g112360			
Medtr1g111540		Medtr4g112430			
Medtr1g111550		Medtr4g112440			
Medtr1g112630		Medtr4g113620			
Medtr1g112660		Medtr4g113710			
Medtr1g112780		Medtr4g114240	 	 	
Medtr1g112830		Medtr4g114340	 	 	
Medtr1g112940	 	Medtr4g114640	 	 	
Medtr1g113960	 	Medtr4g115330	 	 	
Medtr1g114340	 	Medtr4g115970	 	 	
Medtr1g114510		Medtr4g116040			
Medtr1g114540	 	Medtr4g116420	 	 	
Medtr1g115170		Medtr4g116440			
Medtr1g115345		Medtr4g116540			
Medtr1g115390		Medtr4g117020			
Medtr1g115400		ivieatr4g117090	 	 	
Medtr1g115485		Medtr4g117120			
Medtr1g115840		Medtr4g117250			
Medtr1g115850	 	Medtr4g117390	 	 	
Medtr1g115980		Medtr4g117400			
Medtr1g116290	 	Medtr4g117450	 	 	
Medtrig116790		Medtr4g117720	 	 	
Medtr1g116970	 	Medtr4g117960	 	 	
Medtr1g117030	 	Medtr4g118020	 	 	
Medtr1g471070		Medtr4g118570			
Modtr1g475250		Modtr/g118900			
Medtr1g484830		Medtr/g118885			
Medtr1g492640		Medtr/g119885			
Wedti 1g452000		Medtr/g119410			
		Medtr4g119422			
		Medtr4g119930	 	 	
		Medtr4g120270	 	 	
	 	Medtr4g120270	 	 	
		Medtr4g121570			
		Medtr4g122260			
		Medtr4g122640			
		Medtr4g122800			
		Medtr4g123040			
		Medtr4g123850	 		
		Medtr4g123870	 		
		Medtr4g123990			
		Medtr4g124000			
		Medtr4g124040			
		Medtr4g124190			
		Medtr4g124220			
		Medtr4g124470			
		Medtr4g124520	 	 	
		Medtr4g124800	 	 	
	 	Medtr4g124855	 	 	
	 	Medtr4g125700	 	 	
	 	Medtr4g125930	 	 	
	 	Medtr4g126000	 	 	
		Medtr4g126160	 	 	
		Medtr4g126210			
		Medtr4g126900			
	 	Medtr4g126970			<u> </u>
		Medtr4g127530			

	Medtr4g127680			
	Medtr4g127900			
	Medtr4g128310			
	Medtr4g128750			
	Medtr4g129270			
	Medtr4g129690			
	Medtr4g130270			
	Medtr4g130907			
	Medtr4g130920			
	Medtr4g130970			
	Medtr4g132110			
	Medtr4g132430			
	Medtr4g133440			
	Medtr4g133620			
	Medtr4g133932			
	Medtr4g134130			
	Medtr4g134140			
	Medtr4g134280			
	Medtr4g134320			
	Medtr4g134370			
	Medtr4g415070			
	Medtr4g415390			
	Medtr4g478130			
	 Medtr4g478180			
 	 Medtr4g485550	 	 	
	Medtr4g485640			

7. függelék. A nodSPP RNSi gümőben legalább kétszeresen downregulált gének listája. 3130 darab gén, p érték<0,05.

Medtr1g004980	Medtr2g005410	Medtr3g005710	Medtr4g005070	Medtr5g004620	Medtr6g004000	Medtr7g005400	Medtr8g005325	Medtr0003s0130
Medtr1g004990	Medtr2g005810	Medtr3g005790	Medtr4g005320	Medtr5g004650	Medtr6g004280	Medtr7g005930	Medtr8g006735	Medtr0003s0190
Medtr1g006490	Medtr2g005870	Medtr3g006370	Medtr4g006080	Medtr5g004830	Medtr6g004520	Medtr7g006900	Medtr8g006745	Medtr0003s0210
Medtr1g007540	Medtr2g006280	Medtr3g006380	Medtr4g007070	Medtr5g004980	Medtr6g004670	Medtr7g007340	Medtr8g006765	Medtr0003s0560
Medtr1g007580	Medtr2g006360	Medtr3g006650	Medtr4g007080	Medtr5g005290	Medtr6g005250	Medtr7g007490	Medtr8g006775	Medtr0004s0300
Medtr1g008140	Medtr2g007210	Medtr3g008445	Medtr4g007090	Medtr5g005430	Medtr6g005480	Medtr7g007770	Medtr8g006780	Medtr0009s0390
Medtr1g008280	Medtr2g008160	Medtr3g008760	Medtr4g007095	Medtr5g005570	Medtr6g006220	Medtr7g007810	Medtr8g006935	Medtr0009s0400
Medtr1g008380	Medtr2g008170	Medtr3g008800	Medtr4g007220	Medtr5g005770	Medtr6g006240	Medtr7g007940	Medtr8g007235	Medtr0011s0280
Medtr1g009030	Medtr2g008560	Medtr3g008960	Medtr4g007240	Medtr5g006360	Medtr6g006250	Medtr7g008020	Medtr8g007300	Medtr0014s0490
Medtr1g009260	Medtr2g008610	Medtr3g009180	Medtr4g007740	Medtr5g006370	Medtr6g006275	Medtr7g008070	Medtr8g007380	Medtr0015s0130
Medtr1g009310	Medtr2g008770	Medtr3g010490	Medtr4g008050	Medtr5g006400	Medtr6g006500	Medtr7g008970	Medtr8g008840	Medtr0015s0230
Medtr1g009740	Medtr2g008880	Medtr3g010820	Medtr4g008820	Medtr5g006430	Medtr6g007470	Medtr7g008985	Medtr8g009535	Medtr0017s0100
Medtr1g009750	Medtr2g008910	Medtr3g010870	Medtr4g009710	Medtr5g006795	Medtr6g007687	Medtr7g009040	Medtr8g009640	Medtr0019s0020
Medtr1g009760	Medtr2g009220	Medtr3g010970	Medtr4g009810	Medtr5g008040	Medtr6g007697	Medtr7g009060	Medtr8g009840	Medtr0024s0310
Medtr1g009900	Medtr2g009340	Medtr3g011830	Medtr4g009960	Medtr5g010390	Medtr6g008170	Medtr7g009270	Medtr8g009880	Medtr0025s0110
Medtr1g010140	Medtr2g009720	Medtr3g011890	Medtr4g010340	Medtr5g010440	Medtr6g008480	Medtr7g009395	Medtr8g009980	Medtr0027s0010
Medtr1g010270	Medtr2g009770	Medtr3g012140	Medtr4g010920	Medtr5g010750	Medtr6g008630	Medtr7g010020	Medtr8g010040	Medtr0027s0180
Medtr1g010310	Medtr2g009910	Medtr3g012160	Medtr4g010980	Medtr5g011750	Medtr6g008690	Medtr7g010200	Medtr8g010230	Medtr0027s0200
Medtr1g011340	Medtr2g010200	Medtr3g012370	Medtr4g011120	Medtr5g011770	Medtr6g008800	Medtr7g010440	Medtr8g011180	Medtr0032s0080
Medtr1g011415	Medtr2g010520	Medtr3g013660	Medtr4g011190	Medtr5g011950	Medtr6g008820	Medtr7g010950	Medtr8g011210	Medtr0032s0170
Medtr1g011540	Medtr2g010815	Medtr3g013700	Medtr4g011330	Medtr5g012130	Medtr6g009070	Medtr7g011060	Medtr8g011440	Medtr0034s0170
Medtr1g012620	Medtr2g010820	Medtr3g014250	Medtr4g011500	Medtr5g012140	Medtr6g009110	Medtr7g011480	Medtr8g011470	Medtr0036s0110
Medtr1g012960	Medtr2g011590	Medtr3g014260	Medtr4g011510	Medtr5g012210	Medtr6g009440	Medtr7g011663	Medtr8g011730	Medtr0036s0320
Medtr1g013050	Medtr2g011690	Medtr3g014290	Medtr4g011690	Medtr5g012270	Medtr6g009553	Medtr7g011770	Medtr8g012290	Medtr0040s0030
Medtr1g013320	Medtr2g011760	Medtr3g014660	Medtr4g012430	Medtr5g013320	Medtr6g009720	Medtr7g012260	Medtr8g012585	Medtr0042s0040
Medtr1g013410	Medtr2g012990	Medtr3g014695	Medtr4g012610	Medtr5g013910	Medtr6g009770	Medtr7g013300	Medtr8g012590	Medtr0045s0060
Medtr1g014420	Medtr2g013070	Medtr3g014705	Medtr4g013090	Medtr5g014085	Medtr6g011200	Medtr7g014230	Medtr8g012595	Medtr0045s0110
Medtr1g015000	Medtr2g013080	Medtr3g014770	Medtr4g013245	Medtr5g014100	Medtr6g011290	Medtr7g014250	Medtr8g012635	Medtr0048s0180
Medtr1g015275	Medtr2g013370	Medtr3g015665	Medtr4g013270	Medtr5g014150	Medtr6g011410	Medtr7g014330	Medtr8g012660	Medtr0050s0240
Medtr1g015300	Medtr2g013970	Medtr3g015845	Medtr4g013330	Medtr5g014600	Medtr6g011490	Medtr7g014360	Medtr8g012675	Medtr0063s0100
Medtr1g015410	Medtr2g014460	Medtr3g015870	Medtr4g014160	Medtr5g014840	Medtr6g011530	Medtr7g015880	Medtr8g012680	Medtr0077s0010
Medtr1g016620	Medtr2g015470	Medtr3g015877	Medtr4g014470	Medtr5g015090	Medtr6g011610	Medtr7g015970	Medtr8g012700	Medtr0086s0010
Medtr1g016850	Medtr2g015480	Medtr3g016020	Medtr4g014790	Medtr5g015290	Medtr6g011810	Medtr7g016060	Medtr8g012730	Medtr0093s0090
Medtr1g017170	Medtr2g015760	Medtr3g016090	Medtr4g015700	Medtr5g015530	Medtr6g012980	Medtr7g016440	Medtr8g012735	Medtr0094s0020

Medtr1g017270	Medtr2g015870	Medtr3g018780	Medtr4g015740	Medtr5g015690	Medtr6g013170	Medtr7g016630	Medtr8g013075	Medtr0107s0100
Medtr1g018200	Medtr2g015887	Medtr3g019320	Medtr4g015750	Medtr5g015720	Medtr6g013270	Medtr7g016640	Medtr8g013090	Medtr0110s0010
Medtr1g018470	Medtr2g015890	Medtr3g020340	Medtr4g015980	Medtr5g015810	Medtr6g013450	Medtr7g016980	Medtr8g013640	Medtr0112s0050
Medtr1g018640	Medtr2g016230	Medtr3g020780	Medtr4g016500	Medtr5g015880	Medtr6g015865	Medtr7g017630	Medtr8g013900	Medtr0113s0060
Medtr1g018940	Medtr2g016360	Medtr3g020800	Medtr4g016780	Medtr5g016220	Medtr6g015995	Medtr7g017665	Medtr8g014160	Medtr0126s0070
Medtr1g019040	Medtr2g016370	Medtr3g020880	Medtr4g017830	Medtr5g016480	Medtr6g016160	Medtr7g017790	Medtr8g014590	Medtr0140s0030
Medtr1g019240	Medtr2g017885	Medtr3g020980	Medtr4g017920	Medtr5g016660	Medtr6g016325	Medtr7g017880	Medtr8g015170	Medtr0146s0070
Medtr1g019280	Medtr2g017895	Medtr3g021040	Medtr4g017940	Medtr5g016880	Medtr6g016375	Medtr7g018200	Medtr8g015190	Medtr0148s0080
Medtr1g019990	Medtr2g018125	Medtr3g021010	Medtr4g018750	Medtr5g017050	Medtr6g016880	Medtr7g020860	Medtr8g015250	Medtr0148s0110
Modtr1g021220	Modtr2g018125	Modtr2g021030	Modtr4g010010	ModtrEg017160	Modtr6g017165	Modtr7g020880	Modtr8g015230	Modtr0160c0020
Medtr1g021530	Medtr2g018133	Medtr3g021440	Medtr4g010010	Medtr5g017100	Medtr6g018540	Medtr7g020870	Medtr8g015510	Medtr010030050
Medtr1g021590	Medtr2g018380	Medtr3g022733	Medtr4g019080	Medtr5g017510	Medtr6g018340	Medtr7g021130	Medtr8g015950	Medtr0174c0000
Wedtrig021955	Wedtrzg018430	Wedtrsg022830	Wedt14g019870	Wiedtrsg017560	Wedtrog018770	Wedtr 7g022050	Wiedti 8g015960	Medtr017450090
Medtr1g022185	Medtr2g019100	Medtr3g023740	Medtr4g021265	Medtr5g017600	Medtr6g021615	Medtr/g022160	Medtr8g015970	Medtr0189s0030
Medtr1g022250	Medtr2g019450	Medtr3g025260	Medtr4g021465	Medtr5g017860	Medtr6g021970	Medtr/g022420	Medtr8g015980	Medtr0189s0040
Medtr1g022495	Medtr2g019830	Medtr3g025295	Medtr4g021670	Medtr5g017980	Medtr6g022180	Medtr7g022430	Medtr8g016180	Medtr0192s0050
Medtr1g023020	Medtr2g020370	Medtr3g025420	Medtr4g021725	Medtr5g018320	Medtr6g022570	Medtr7g024480	Medtr8g016370	Medtr0197s0090
Medtr1g023030	Medtr2g020750	Medtr3g026030	Medtr4g021810	Medtr5g018610	Medtr6g022580	Medtr7g024730	Medtr8g018620	Medtr0200s0050
Medtr1g023120	Medtr2g020770	Medtr3g026070	Medtr4g022290	Medtr5g019870	Medtr6g022590	Medtr7g026320	Medtr8g018650	Medtr0204s0020
Medtr1g023180	Medtr2g020810	Medtr3g026400	Medtr4g022400	Medtr5g019920	Medtr6g024000	Medtr7g026780	Medtr8g020610	Medtr0205s0040
Medtr1g023790	Medtr2g020990	Medtr3g026775	Medtr4g022670	Medtr5g020020	Medtr6g025330	Medtr7g027020	Medtr8g021230	Medtr0211s0060
Medtr1g024005	Medtr2g022110	Medtr3g026780	Medtr4g022850	Medtr5g020230	Medtr6g025480	Medtr7g027050	Medtr8g022440	Medtr0219s0050
Medtr1g024085	Medtr2g022140	Medtr3g027175	Medtr4g023570	Medtr5g020250	Medtr6g026830	Medtr7g027075	Medtr8g023830	Medtr0220s0080
Medtr1g025250	Medtr2g022320	Medtr3g027180	Medtr4g023900	Medtr5g020270	Medtr6g027155	Medtr7g027120	Medtr8g024260	Medtr0240s0020
Medtr1g026070	Medtr2g022700	Medtr3g028210	Medtr4g025670	Medtr5g020710	Medtr6g027310	Medtr7g027170	Medtr8g024340	Medtr0240s0040
Medtr1g026140	Medtr2g022740	Medtr3g028380	Medtr4g026570	Medtr5g020810	Medtr6g027320	Medtr7g027180	Medtr8g026680	Medtr0240s0070
Medtr1g026160	Medtr2g022780	Medtr3g028550	Medtr4g026680	Medtr5g020820	Medtr6g027730	Medtr7g028260	Medtr8g027000	Medtr0257s0060
Medtr1g026170	Medtr2g023070	Medtr3g029510	Medtr4g026815	Medtr5g020980	Medtr6g027740	Medtr7g028310	Medtr8g027040	Medtr0262s0060
Medtr1g026410	Medtr2g023150	Medtr3g030060	Medtr4g026965	Medtr5g021050	Medtr6g027840	Medtr7g028350	Medtr8g027755	Medtr0268s0040
Medtr1g026740	Medtr2g023880	Medtr3g030420	Medtr/g026905	Medtr5g021180	Medtr6g028030	Medtr7g028540	Medtr8g027765	Medtr0271c0070
Medtr1g026770	Medtr2g023880	Medtr3g031100	Medtr4g020000	Medtr5g021580	Medtr6g028030	Medtr7g028540	Medtr8g027705	Medtr0276:0040
Medtr1g026770	Medtr2g023890	Medtr3g031100	Medtr4g027000	Medtr 5g021580	Medtr6g02020	Medtr7g028530	Medtr8g027820	Medtr0288:0040
Medtr1g026860	Medtr2g024060	Medtr3g031320	Medtr4g027410	Medtr5g021670	Medil 6g029330	Mada 72020225	Madta 2027870	Medtr028850040
Medtr1g027740	Medtr2g025040	Medtr3g031335	Medtr4g028060	Medtr5g022220	Medtr6g029390	Medtr/g028/35	Medtr8g027885	Medtr0291s0020
Medtr1g027750	Medtr2g025050	Medtr3g031340	Medtr4g028090	Medtr5g022390	Medtr6g029500	Medtr7g028740	Medtr8g027975	Medtr0291s0040
Medtr1g028560	Medtr2g025140	Medtr3g031650	Medtr4g028510	Medtr5g022460	Medtr6g032830	Medtr7g028800	Medtr8g027980	Medtr0305s0020
Medtr1g028980	Medtr2g025170	Medtr3g031750	Medtr4g029190	Medtr5g022470	Medtr6g032990	Medtr7g029165	Medtr8g028065	Medtr0330s0020
Medtr1g029230	Medtr2g025190	Medtr3g031770	Medtr4g029270	Medtr5g022670	Medtr6g032995	Medtr7g029280	Medtr8g028215	Medtr0330s0030
Medtr1g029340	Medtr2g025240	Medtr3g031830	Medtr4g029490	Medtr5g022750	Medtr6g033000	Medtr7g029400	Medtr8g028225	Medtr0330s0050
Medtr1g029510	Medtr2g025540	Medtr3g032440	Medtr4g030210	Medtr5g022760	Medtr6g033465	Medtr7g029760	Medtr8g028250	Medtr0337s0030
Medtr1g029620	Medtr2g025580	Medtr3g033260	Medtr4g031775	Medtr5g023290	Medtr6g033740	Medtr7g031810	Medtr8g028265	Medtr0337s0040
Medtr1g029990	Medtr2g025780	Medtr3g033530	Medtr4g031795	Medtr5g023530	Medtr6g033980	Medtr7g031915	Medtr8g028430	Medtr0340s0030
Medtr1g030580	Medtr2g026575	Medtr3g034430	Medtr4g031900	Medtr5g023680	Medtr6g033985	Medtr7g032425	Medtr8g028450	Medtr0362s0020
Medtr1g030600	Medtr2g026685	Medtr3g034830	Medtr4g032270	Medtr5g023760	Medtr6g034005	Medtr7g032900	Medtr8g028460	Medtr0365s0010
Medtr1g031150	Medtr2g026760	Medtr3g040410	Medtr4g032290	Medtr5g023775	Medtr6g034030	Medtr7g032920	Medtr8g028465	Medtr0370s0010
Medtr1g031620	Medtr2g027700	Medtr3g040450	Medtr4g032360	Medtr5g024983	Medtr6g034070	Medtr7g033110	Medtr8g028545	Medtr0386s0010
Medtr1g031880	Medtr2g028440	Medtr3g043760	Medtr4g033215	Medtr5g025100	Medtr6g034090	Medtr7g033125	Medtr8g028615	Medtr0392s0020
Medtr1g032520	Medtr2g028460	Medtr3g045180	Medtr4g033230	Medtr5g025170	Medtr6g034975	Medtr7g033325	Medtr8g028695	Medtr0428s0030
Medtr1g032760	Medtr2g028470	Medtr3g045210	Medtr4g033265	Medtr5g025610	Medtr6g035010	Medtr7g033410	Medtr8g028780	Medtr0444s0020
Medtr1g033000	Medtr2g030380	Medtr3g046760	Medtr4g033290	Medtr5g026070	Medtr6g035295	Medtr7g033690	Medtr8g028795	Medtr0457s0020
Medtr1g033310	Medtr2g030420	Medtr3g047380	Medtr4g033325	Medtr5g026080	Medtr6g036740	Medtr7g033720	Medtr8g030510	Medtr0475s0040
Medtr1g034140	Medtr2g031310	Medtr3g049400	Medtr4g033830	Medtr5g026350	Medtr6g037900	Medtr7g033740	Medtr8g031120	Medtr0512s0030
Medtr1g034450	Medtr2g031370	Medtr3g049410	Medtr4g033895	Medtr5g026620	Medtr6g038010	Medtr7g034060	Medtr8g031550	Medtr0538s0010
Medtr1g035200	Medtr2g031750	Medtr3g049795	Medtr4g035268	Medtr5g026850	Medtr6g038290	Medtr7g034210	Medtr8g031580	Medtr0538c0020
Medtr1c025200	Medtr2r021020	Medtr3c0/0200	Medtr4c025220	Medtr5g026030	Medtr6g038230	Medtr7c027600	Medtr&r021000	Medtr0542c0020
Medtr1g035550	Medtr2a021000	Medtr2c040020	Medtr4g02520	MedtrEc027220	Medtree020220	Medtr70027770	Medtren022225	Medtr054250020
Made 1 -00 CT1C	Madt=2=022715	Medt=2-052025	Made 1-005005	Moder = 027100	Madt-C-00010C	Madt:7-022202	Made 0-000055	Mader 05 49 50020
ivieatr1g036710	weatr2g032710	ivieatr3g052090	weatr4g035835	ivieatr5g027460	ivieatr6g038480	ivieatr/g038690	ivieatr8g032350	ivieatr0549s0030
ivieatr1g037370	wieatr2g032750	ivieatr3g052100	weatr4g035940	ivieatr5g027510	ivieatr6g038530	ivieatr/g045410	ivieatr8g032450	ivieatr0554s0020
Meatr1g037650	Meatr2g033370	Meatr3g052450	Meatr4g035950	Weatr5g027950	ivieatr6g038570	iviedtr7g045520	ivieatr8g032690	ivieatr0683s0010
Medtr1g037670	Medtr2g033380	Medtr3g052520	Medtr4g036050	Medtr5g028190	Medtr6g038600	Medtr7g045910	Medtr8g032700	Wedtr0693s0050
Medtr1g038960	Medtr2g033485	Medtr3g052760	Medtr4g036105	Medtr5g029310	Medtr6g038620	Medtr7g046115	Medtr8g032820	Medtr0703s0020
Medtr1g039350	Medtr2g033630	Medtr3g053510	Medtr4g036475	Medtr5g029620	Medtr6g038640	Medtr7g047570	Medtr8g033010	Medtr0716s0020
Medtr1g039435	Medtr2g034250	Medtr3g053570	Medtr4g037660	Medtr5g030070	Medtr6g038650	Medtr7g047620	Medtr8g033030	Medtr0716s0040
Medtr1g040087	Medtr2g034870	Medtr3g054080	Medtr4g037725	Medtr5g030150	Medtr6g042010	Medtr7g050445	Medtr8g035860	Medtr0795s0020
Medtr1g040370	Medtr2g034880	Medtr3g054330	Medtr4g038665	Medtr5g030640	Medtr6g042030	Medtr7g050990	Medtr8g036030	Medtr0874s0020
Medtr1g040500	Medtr2g034890	Medtr3g054370	Medtr4g039680	Medtr5g030770	Medtr6g043230	Medtr7g051065	Medtr8g036035	Medtr0888s0020
Medtr1g040555	Medtr2g035740	Medtr3g055440	Medtr4g040360	Medtr5g030800	Medtr6g043280	Medtr7g051290	Medtr8g036075	Medtr0959s0010
Medtr1g040730	Medtr2g035755	Medtr3g055460	Medtr4g044463	Medtr5g030860	Medtr6g043300	Medtr7g051340	Medtr8g036660	Medtr0991s0010
Medtr1g040875	Medtr2g036450	Medtr3g055480	Medtr4g045633	Medtr5g030950	Medtr6g043380	Medtr7g051350	Medtr8g036830	Medtr1149s0010

Medtr1g041345	Medtr2g036650	Medtr3g055490	Medtr4g045667	Medtr5g031000	Medtr6g043430	Medtr7g051910	Medtr8g036850	Medtr1242s0010
Medtr1g041430	Medtr2g038410	Medtr3g055510	Medtr4g045673	Medtr5g031210	Medtr6g043440	Medtr7g052020	Medtr8g036920	Medtr1281s0010
Medtr1g041695	Medtr2g038675	Medtr3g055520	Medtr4g045800	Medtr5g031290	Medtr6g043450	Medtr7g052230	Medtr8g037170	Medtr1291s0010
Medtr1g041915	Medtr2g038760	Medtr3g055570	Medtr4g046037	Medtr5g031870	Medtr6g043650	Medtr7g055710	Medtr8g037260	Medtr1557s0010
Medtr1g042200	Medtr2g038900	Medtr3g055575	Medtr/r0/6083	Medtr5g032030	Medtr6g0/3810	Medtr7g055763	Medtr8g037800	Medtr1588c0010
Medti 1g042200	Medil 2g038500	Medil 3g055575	Medtr4g040085	Medil 5g032050	Medil 0g043810	Medil 7g055705	Medilog037800	Medii 158830010
Wedtrig042310	Medtr2g039160	Wedtr3g055585	iviedtr4g046087	Wedtr5g032060	Wedtrog044562	Wedtr/g055/83	iviedtr8g038470	Wedtr1721s0010
Medtr1g042850	Medtr2g039220	Medtr3g056160	Medtr4g046807	Medtr5g032465	Medtr6g044700	Medtr7g055933	Medtr8g038650	Medtr1826s0010
Medtr1g042895	Medtr2g039235	Medtr3g056260	Medtr4g046850	Medtr5g032490	Medtr6g045200	Medtr7g056030	Medtr8g038715	Medtr1999s0010
Medtr1g042910	Medtr2g039280	Medtr3g056715	Medtr4g048000	Medtr5g032660	Medtr6g045257	Medtr7g056047	Medtr8g038775	Medtr2125s0010
Medtr1g042940	Medtr2g039870	Medtr3g058110	Medtr4g048040	Medtr5g033680	Medtr6g045273	Medtr7g056103	Medtr8g038890	Mt0003_00669
Medtr1g043040	Medtr2g040000	Medtr3g058400	Medtr4g049340	Medtr5g033700	Medtr6g045310	Medtr7g056140	Medtr8g039100	Mt0003 10408
Medtr1g043240	Medtr2g041100	Medtr3g058410	Medtr4g049390	Medtr5g033790	Medtr6g045643	Medtr7g056170	Medtr8g039110	
Modtr1g044210	Modtr2g041280	Modtr2g058600	Modtr/g040640	ModtrEg024000	Modtr6g047640	Modtr7g056277	Modtr8g020120	Mt0021_00180
Wedtrig044210	Wedtr 2g041380	Wedtr 5g058600	Wedtr4g049640	Wedtrog034000	Wedtrog047640	Wedtr/g056277	Wedtrog039130	WIL0021_00189
Medtr1g044580	Medtr2g041430	Medtr3g060230	Medtr4g050000	Medtr5g034090	Medtr6g047900	Medtr/g056290	Medtr8g039410	Mt0021_10156
Medtr1g045415	Medtr2g041480	Medtr3g060880	Medtr4g050270	Medtr5g034100	Medtr6g048050	Medtr7g056413	Medtr8g039540	Mt0021_10165
Medtr1g046020	Medtr2g041540	Medtr3g060900	Medtr4g050400	Medtr5g034320	Medtr6g048260	Medtr7g056460	Medtr8g039720	Mt0021_10167
Medtr1g046070	Medtr2g042470	Medtr3g061110	Medtr4g050590	Medtr5g034420	Medtr6g048860	Medtr7g056467	Medtr8g040130	Mt0021_10171
Medtr1g046250	Medtr2g042480	Medtr3g061750	Medtr4g051575	Medtr5g034500	Medtr6g052300	Medtr7g056473	Medtr8g040640	Mt0021_10178
Medtr1g046440	Medtr2g042510	Medtr3g062775	Medtr4g052040	Medtr5g034590	Medtr6g055030	Medtr7g056493	Medtr8g041390	Mt0021 10181
Medtr1g047550	Medtr2g042520	Medtr3g062785	Medtr4g052380	Medtr5g034750	Medtr6g057520	Medtr7g056500	Medtr8g042780	Mt0044_00074
Moder1-0400CC	Madtr2=042320	Moder2c0C2010	Moder/c05200	Moder COSC 42	Madtr6c050470	Moder7c050507	Moder0c042000	Mt0040_00014
Ivieutrig048060	ivieutr2g043200	ivieutr3g062810	ivieutr4g052650	ivieutr5g035610	ivieutrogu59470	ivieut/g05652/	ivieutrogu42820	IVILUU49_UU216
Medtr1g048710	Medtr2g043560	Medtr3g062820	Medtr4g052770	Medtr5g035640	Medtr6g060175	Medtr7g056543	Medtr8g042910	Mt0063_10070
Medtr1g048720	Medtr2g043880	Medtr3g062840	Medtr4g052780	Medtr5g036260	Medtr6g060320	Medtr7g056700	Medtr8g043480	Mt0089_00041
Medtr1g048750	Medtr2g043890	Medtr3g062865	Medtr4g052970	Medtr5g036270	Medtr6g060570	Medtr7g056803	Medtr8g044120	Mt0106_00070
Medtr1g048960	Medtr2g044020	Medtr3g062880	Medtr4g053180	Medtr5g036570	Medtr6g061820	Medtr7g057560	Medtr8g044140	Mt0121_00035
Medtr1g049330	Medtr2g044100	Medtr3g062960	Medtr4g053210	Medtr5g036640	Medtr6g061940	Medtr7g057870	Medtr8g044160	Mt0304 00001
Medtr1g050130	Medtr2g044330	Medtr3g063080	Medtr4g053250	Medtr5g037400	Medtr6g065510	Medtr7g058380	Medtr8g045490	
Modtr1g050130	Modtr2g044530	Modtr2g062270	Modtr4g053230	ModtrEg027620	Modtr6g066040	Modtr7g058980	Modtr8g0E177E	NCR002
Medil 1g050570	Wedti 2g044370	Neuti Sg003370	Wedti 4g033380	Neuti 5g037030	Neuti og000040			INCROUS
Medtr1g050385	Medtr2g044720	Medtr3g063420	Medtr4g054240	Medtr5g037650	Medtreg066090	Medtr/g059080	Medtr8g051835	NCR018
Medtr1g051025	Medtr2g044740	Medtr3g063450	Medtr4g054820	Medtr5g037780	Medtr6g066240	Medtr7g059285	Medtr8g051900	NCR028
Medtr1g051180	Medtr2g044880	Medtr3g064510	Medtr4g055095	Medtr5g037795	Medtr6g069030	Medtr7g059290	Medtr8g052050	NCR030
Medtr1g051195	Medtr2g046590	Medtr3g064600	Medtr4g055290	Medtr5g037950	Medtr6g069140	Medtr7g059360	Medtr8g055950	NCR035
Medtr1g051360	Medtr2g046630	Medtr3g064687	Medtr4g055420	Medtr5g038860	Medtr6g069420	Medtr7g059400	Medtr8g055970	NCR044
Medtr1g051365	Medtr2g046660	Medtr3g064745	Medtr4g055510	Medtr5g040600	Medtr6g071070	Medtr7g061840	Medtr8g056020	NCR047
Medtr1g051760	Medtr2g046780	Medtr3g064800	Medtr4g055680	Medtr5g041330	Medtr6g071695	Medtr7g061940	Medtr8g056870	NCR049
Modtr1g0E1840	Modtr2g047080	Modtr2g06E0E0	Modtr4g0E6220	ModtrEg041240	Modtr6g072710	Modtr7g062540	Modtreg056870	NCR086
Medti 1g051840	Medti 2g047080	Mada 2005030	Medit4g030320	Ne dt=5 =041340	Medil 0g072710	Mada 72002340	Mada 14-0-050450	NCR080
Weatrigu52005	Weatr2g047848	Wedtr3g065130	Wedtr4g056580	Wedtr5g041380	Medtrog0/3/9/	Wedtr7g063220	Wedtr8g059150	NCR093
Medtr1g052770	Medtr2g047968	Medtr3g065160	Medtr4g056600	Medtr5g041400	Medtr6g074865	Medtr7g063400	Medtr8g059435	NCR096
Medtr1g052840	Medtr2g047975	Medtr3g065330	Medtr4g057095	Medtr5g041420	Medtr6g077430	Medtr7g063450	Medtr8g061150	NCR105
Medtr1g053035	Medtr2g048175	Medtr3g065370	Medtr4g057100	Medtr5g041530	Medtr6g079320	Medtr7g063650	Medtr8g062440	NCR108
Medtr1g053625	Medtr2g048203	Medtr3g065460	Medtr4g057110	Medtr5g041610	Medtr6g079770	Medtr7g063970	Medtr8g063080	NCR109
Medtr1g053835	Medtr2g048415	Medtr3g065480	Medtr4g057120	Medtr5g041650	Medtr6g081390	Medtr7g063990	Medtr8g063950	NCR141
Medtr1g053970	Medtr2g048885	Medtr3g065690	Medtr4g057160	Medtr5g041700	Medtr6g081930	Medtr7g064080	Medtr8g064010	NCR142
Moder1g053570	Modtr2g040000	Medtr2g065700	Medtr4g057100	ModtrEg042280	Medtr6g0824E0	Modtr7g064740	Medtr8g064010	NCR142
Wedti 1g033973	Wedti 2g049020	Wedti 3g003700	Wedt14g037237	Wedti 3g042280	Wedti og082430	Wedti 7g004740	Wedti 8g004080	NCR143
ivieatr1g054165	ivieatr2g049575	ivieatr3g065705	ivieatr4g057270	ivieatr5g042320	ivieatr6g082480	ivieatr/g064965	ivieatr8g064100	INCR153
Medtr1g054370	Medtr2g049770	Medtr3g065710	Medtr4g057470	Medtr5g042910	Medtr6g082620	Medtr7g064970	Medtr8g064150	NCR154
Medtr1g054450	Medtr2g050060	Medtr3g065750	Medtr4g057600	Medtr5g043190	Medtr6g083080	Medtr7g065015	Medtr8g064180	NCR156
Medtr1g054565	Medtr2g050260	Medtr3g065950	Medtr4g057665	Medtr5g043260	Medtr6g083260	Medtr7g065025	Medtr8g064610	NCR174
Medtr1g054635	Medtr2g054220	Medtr3g065960	Medtr4g057670	Medtr5g043645	Medtr6g083830	Medtr7g065130	Medtr8g065010	NCR224
Medtr1g054935	Medtr2g054250	Medtr3g065970	Medtr4g057865	Medtr5g043650	Medtr6g084020	Medtr7g065160	Medtr8g066093	NCR225
Medtr1g054960	Medtr2g054370	Medtr3g066060	Medtr4g057890	Medtr5g043750	Medtr6g084035	Medtr7g065210	Medtr8g066100	NCR233
Medtr1g0E4090	Medtr2g0E4400	Medtr2g067500	Medtr/m059570	Medtr5a042000	Medtr6a094720	Medtr7g065625	Medtr8g066103	NCP234
Mader1-055025	Madtr2c054330	Medtracocaca	Moder4c050000	Moder CO 12070	Madtr6c004000	Moder7c005770	Moder9c000103	NCD234
ivieatrig055035	ivieatr2g054770	ivieatr3g067625	ivieatr4g058890	ivieatr5g043970	ivieatrog084960	ivieatr/g065770	ivieatr8g066107	NCK243
Medtr1g055115	Medtr2g054830	Medtr3g067630	Medtr4g059630	Medtr5g044135	Medtr6g086020	Medtr7g065780	Medtr8g066210	NCR253
Medtr1g055120	Medtr2g054840	Medtr3g067745	Medtr4g059670	Medtr5g044200	Medtr6g086060	Medtr7g065880	Medtr8g066280	NCR254
Medtr1g055240	Medtr2g055250	Medtr3g067750	Medtr4g059720	Medtr5g044530	Medtr6g086170	Medtr7g066070	Medtr8g066295	NCR255
Medtr1g056455	Medtr2g055290	Medtr3g067980	Medtr4g059755	Medtr5g044540	Medtr6g086870	Medtr7g066110	Medtr8g066860	NCR258
Medtr1g057460	Medtr2g055740	Medtr3g067985	Medtr4g059833	Medtr5g045000	Medtr6g087290	Medtr7g066720	Medtr8g067020	NCR259
Medtr1g057600	Medtr2g056090	Medtr3g068070	Medtr4g059837	Medtr5g045250	Medtr6g087680	Medtr7g067080	Medtr8g067030	NCR260
Medtr1a0E0070	Medtr2g0E962E	Medtranceano	Medtr/m050070	Medtr5a0/E22F	Medtr6a097760	Medtr7a067265	Medtr8g067400	NCP261
Modt=1=050000	Modt=2=050025	Modt-2-0600200	Modt-1-050000	Modt=5-045220	Modt=C=000245	Modt=7=000200	Modt-9-000120	NCD267
ivieu(F1g058880	ivieutr2g059035	ivieutr3g069030	ivieutr4g059890	ivieutr5g045370	ivieutrogu88245	ivieutr/g068290	ivieutroguo8120	INCK20/
Medtr1g059670	Medtr2g059240	Medtr3g069400	Medtr4g059900	Medtr5g045470	Medtr6g088700	Medtr7g068360	Medtr8g068690	NCR268
Medtr1g059900	Medtr2g060950	Medtr3g069410	Medtr4g060000	Medtr5g045530	Medtr6g088805	Medtr7g069970	Medtr8g068740	NCR270
1	Medtr2g060960	Medtr3g069420	Medtr4g060370	Medtr5g045560	Medtr6g088885	Medtr7g069980	Medtr8g069130	NCR277
Medtr1g059940	0	•						
Medtr1g059940 Medtr1g059960	Medtr2g061510	Medtr3g069440	Medtr4g060437	Medtr5g047050	Medtr6g089060	Medtr7g070090	Medtr8g069277	NCR282
Medtr1g059940 Medtr1g059960 Medtr1g060310	Medtr2g061510 Medtr2g062220	Medtr3g069440 Medtr3g069830	Medtr4g060437 Medtr4g060590	Medtr5g047050 Medtr5g047070	Medtr6g089060 Medtr6g089320	Medtr7g070090 Medtr7g070200	Medtr8g069277 Medtr8g069310	NCR282 NCR288

Medtr1g061080	Medtr2g062300	Medtr3g069885	Medtr4g060610	Medtr5g047670	Medtr6g090080	Medtr7g070593	Medtr8g069770	NCR360
Medtr1g061100	Medtr2g062410	Medtr3g070170	Medtr4g060650	Medtr5g048090	Medtr6g090435	Medtr7g070610	Medtr8g069785	NCR366
Medtr1g061910	Medtr2g062470	Medtr3g070210	Medtr4g060790	Medtr5g048310	Medtr6g090445	Medtr7g070645	Medtr8g069790	NCR383
Medtr1g062160	Medtr2g062610	Medtr3g070300	Medtr4g060990	Medtr5g048335	Medtr6g090485	Medtr7g070660	Medtr8g069925	NCR426
Modtr1g002100	Medtr2g062010	Moder2g070300	Medtr4g061000	ModerEg048340	Medtr6g000400	Medtr7g070700	Medtr8g060055	NCR420
Wedtrig062870	Wiedtr2g062900	Wedtr3g070330	Wedtr4g061090	Wedtr5g048740	Wiedtrog091590	Wedtr/g0/0/80	Wiedtr8g069955	NCR428
Medtr1g062890	Medtr2g063470	Medtr3g070380	Medtr4g061490	Medtr5g053510	Medtr6g091600	Medtr7g070800	Medtr8g070115	NCR432
Medtr1g063020	Medtr2g063843	Medtr3g070850	Medtr4g061610	Medtr5g054730	Medtr6g091605	Medtr7g070860	Medtr8g070540	NCR453
Medtr1g064320	Medtr2g064310	Medtr3g071320	Medtr4g062550	Medtr5g054780	Medtr6g092020	Medtr7g070870	Medtr8g070650	NCR464
Medtr1g064350	Medtr2g064650	Medtr3g071360	Medtr4g062570	Medtr5g054900	Medtr6g092190	Medtr7g070930	Medtr8g070770	NewNCR1
Medtr1g064480	Medtr2g065470	Medtr3g071880	Medtr4g063190	Medtr5g055190	Medtr6g092500	Medtr7g071040	Medtr8g071000	NewNCR3
Medtr1g064560	Medtr2g065985	Medtr3g072300	Medtr4g063560	Medtr5g055370	Medtr6g092520	Medtr7g071220	Medtr8g071330	NewNCR4
Medtr1g064650	Medtr2g066110	Medtr3g072390	Medtr4g063600	Medtr5g055470	Medtr6g092540	Medtr7g071310	Medtr8g072440	
Modtr1g004030	Medtr2g000110	Modtr2g072410	Medtr4g063635	Medtr5g055470	Medtr6g002540	Medtr7g071510	Modtr0g072740	
Wedtr 1g064680	Wiedtr 2g066120	Wedtr3g072410	Wiedtr4g063625	Wiedtr5g055820	Wiedtrog092580	Wedtr 7g071585	Wiedtrag072740	
Medtr1g066870	Medtr2g066123	Medtr3g072520	Medtr4g063645	Medtr5g056185	Medtr6g092660	Medtr/g0/1690	Medtr8g073335	
Medtr1g067000	Medtr2g066130	Medtr3g072560	Medtr4g063690	Medtr5g056230	Medtr6g093210	Medtr7g071720	Medtr8g073380	
Medtr1g067150	Medtr2g066235	Medtr3g072870	Medtr4g063735	Medtr5g056360	Medtr6g406210	Medtr7g071790	Medtr8g074510	
Medtr1g067210	Medtr2g068655	Medtr3g072920	Medtr4g063740	Medtr5g056710	Medtr6g406390	Medtr7g071830	Medtr8g074530	
Medtr1g067220	Medtr2g069030	Medtr3g073160	Medtr4g063770	Medtr5g056735	Medtr6g445020	Medtr7g071840	Medtr8g074750	
Medtr1g067260	Medtr2g069190	Medtr3g073730	Medtr4g063975	Medtr5g056760	Medtr6g445080	Medtr7g072420	Medtr8g074760	
Medtr1g068690	Medtr2g069273	Medtr3g074050	Medtr4g064530	Medtr5g057460	Medtr6g452900	Medtr7g072470	Medtr8g074810	
Medtr1g060085	Medtr2g060282	Medtr3g074180	Medtr4g064550	Medtr5r057010	Medtr6g453200	Medtr7c072540	Medtr8g074880	
Mode-1-0000405	Modt-2-0603203	Modt=2=074100	Modt=1=004550	Modt=5-05037910	Modt-Catrona	Modt=7=072005	Modt-9-074000	
ivieatrig069465	ivieatr2g069750	ivieatr3g0/4/20	ivieatr4g064560	ivientr5g058225	ivieatrog453220	ivieatr/g0/2605	ivieatr8g074890	
Medtr1g069825	Medtr2g070030	Medtr3g075260	Medtr4g064803	Medtr5g058510	Medtr6g461820	Medtr7g072630	Medtr8g075000	
Medtr1g069915	Medtr2g070070	Medtr3g075320	Medtr4g064830	Medtr5g058530	Medtr6g461840	Medtr7g072635	Medtr8g075330	
Medtr1g070120	Medtr2g070130	Medtr3g075540	Medtr4g065007	Medtr5g059130	Medtr6g461980	Medtr7g072820	Medtr8g075340	
Medtr1g070180	Medtr2g070670	Medtr3g076610	Medtr4g065050	Medtr5g059260	Medtr6g463200	Medtr7g073200	Medtr8g075620	
Medtr1g070345	Medtr2g070770	Medtr3g076630	Medtr4g065085	Medtr5g059740	Medtr6g463250	Medtr7g073290	Medtr8g075755	
Medtr1g070350	Medtr2g070820	Medtr3g076950	Medtr4g065150	Medtr5g060880	Medtr6g463780	Medtr7g073370	Medtr8g075980	
Medtr1g070360	Medtr2g071740	Medtr3g076960	Medtr/r065220	Medtr5g061060	Medtr6g464010	Medtr7g073620	Medtr8g076190	
Medtr1g070300	Medtr2g071740	Medtr2g070300	Medtr4g005220	Medtr 5g001000	Medtr6g464010	Medtr7g073020	Medtr8g076190	
Medil 1g070595	Wedtrzg0/1/50	Wedtr Sg076970	Wedtr4g065590	wiedtrsg061120	Wedtrog464250	Wedtr/g0/3/10	Wedtrog076500	
Medtr1g070495	Medtr2g072130	Medtr3g077240	Medtr4g065455	Medtr5g061160	Medtr6g464360	Medtr7g074050	Medtr8g076340	
Medtr1g071360	Medtr2g072190	Medtr3g077590	Medtr4g065720	Medtr5g061275	Medtr6g464450	Medtr7g074120	Medtr8g076800	
Medtr1g071450	Medtr2g072650	Medtr3g079320	Medtr4g065820	Medtr5g061290	Medtr6g464620	Medtr7g074180	Medtr8g079840	
Medtr1g071680	Medtr2g072660	Medtr3g079600	Medtr4g065840	Medtr5g061400	Medtr6g464720	Medtr7g074220	Medtr8g079940	
Medtr1g071870	Medtr2g072670	Medtr3g079680	Medtr4g065850	Medtr5g061520	Medtr6g464750	Medtr7g074250	Medtr8g080060	
Medtr1g071880	Medtr2g072690	Medtr3g079700	Medtr4g065960	Medtr5g061640	Medtr6g464840	Medtr7g074570	Medtr8g080180	
Medtr1g072090	Medtr2g072780	Medtr3g079850	Medtr4g066270	Medtr5g061690	Medtr6g464870	Medtr7g074610	Medtr8g080230	
Medtr1g072095	Medtr2g073070	Medtr3g079860	Medtr/g066280	Medtr5g061763	Medtr6g465420	Medtr7g075453	Medtr8g080570	
Medil 1g072035	Medt 2g073070	Made 2 = 070000	Medti4g000280	Medti 5g001705	Medtrog405420	Made 72075400	Mada 200000	
Medtrig072096	Wedtr2g073100	Wedtr3g079980	Wedtr4g066290	Wedtr5g061860	Medtrog465430	Wedtr/g0/5463	Wedtr8g080980	
Medtr1g072260	Medtr2g073260	Medtr3g080000	Medtr4g067110	Medtr5g061880	Medtr6g465460	Medtr7g075900	Medtr8g081510	
Medtr1g072530	Medtr2g073300	Medtr3g080010	Medtr4g067130	Medtr5g062190	Medtr6g466390	Medtr7g076620	Medtr8g083170	
Medtr1g072540	Medtr2g073340	Medtr3g080020	Medtr4g067320	Medtr5g062510	Medtr6g466410	Medtr7g076650	Medtr8g085650	
Medtr1g072545	Medtr2g073650	Medtr3g080130	Medtr4g068000	Medtr5g063460	Medtr6g477860	Medtr7g076655	Medtr8g085960	
Medtr1g073380	Medtr2g074980	Medtr3g080180	Medtr4g068110	Medtr5g063580	Medtr6g478100	Medtr7g076660	Medtr8g085980	
Medtr1g073510	Medtr2g074990	Medtr3g080500	Medtr4g068340	Medtr5g063670	Medtr6g478110	Medtr7g077830	Medtr8g086080	
Medtr1g073540	Medtr2g075010	Medtr3g080530	Medtr4g070320	Medtr5g063780	Medtr6g488050	Medtr7g078010	Medtr8g087470	
Medtr1:073500	Medtr2g075010	Medtranogor	Medtr/2070420	MedtrEc0C4120		Medtr7a0780c0	Medtr0a007710	
Medt=1=070010	Medt=2=075705	Medt-2-001025	Mode: 1-070000	Moder		Medt:7-070700	Medt-0-007700	
wieutf1g0/3610	ivieutr2g0/5/90	ivieut/3g081030	ivieutr4g070930	ivieutr5g064580		ivieu(1/g0/8/30	ivieutr8g087720	
Medtr1g073990	Medtr2g075910	Medtr3g081140	Medtr4g070950	Medtr5g064860		Medtr7g079110	Medtr8g087770	
Medtr1g074070	Medtr2g076010	Medtr3g081640	Medtr4g071110	Medtr5g064915		Medtr7g079295	Medtr8g087940	
Medtr1g074120	Medtr2g076070	Medtr3g082100	Medtr4g071210	Medtr5g064943		Medtr7g079300	Medtr8g088230	
Medtr1g074160	Medtr2g076400	Medtr3g082150	Medtr4g071465	Medtr5g064980		Medtr7g079310	Medtr8g088740	
Medtr1g074410	Medtr2g076670	Medtr3g082180	Medtr4g071710	Medtr5g064990		Medtr7g079430	Medtr8g088745	
Medtr1g074860	Medtr2g078470	Medtr3g083760	Medtr4g071860	Medtr5g066070		Medtr7g079510	Medtr8g089180	
Medtr1g075230	Medtr2g078730	Medtr3g084110	Medtr4g071890	Medtr5g066127		Medtr7g079720		
Medtr1g075430	Medtr2g070190	Medtr3a084620	Medtr/a072100	Medtr5g066440		Medtr7a080250	Medtr&a080330	
Modtr1c075500	Modtr2c070470	Modtr2c004020	Modtr4c072790	ModtrEc066750		Modtr7c080575	Modtr@c000250	
Modest -075500	Modt-2-070025	Medt=2-001005	Mode 1-072025	Modt=5=000750	<u> </u>	Medter 2-0000575	Madt=0-0002250	
wiedtrig075640	ivieatr2g079830	ivieatr3g084890	iviedtr4g072920	weatr5g066770	ļ	ivieatr/g080850	ivieatr8g089320	
Medtr1g075730	Medtr2g080180	Medtr3g084910	Medtr4g072980	Medtr5g067160		Medtr7g080935	Medtr8g089360	
Medtr1g075990	Medtr2g081820	Medtr3g084980	Medtr4g073770	Medtr5g067240		Medtr7g080940	Medtr8g089400	
Medtr1g076130	Medtr2g081860	Medtr3g085020	Medtr4g074080	Medtr5g067320		Medtr7g080950	Medtr8g089800	
Medtr1g076180	Medtr2g083000	Medtr3g085100	Medtr4g074200	Medtr5g068585		Medtr7g081130	Medtr8g089840	
Medtr1g076500	Medtr2g083280	Medtr3g085120	Medtr4g074550	Medtr5g068640		Medtr7g081200	Medtr8g089975	
Medtr1g076830	Medtr2g083300	Medtr3g085180	Medtr4g074950	Medtr5g068670		Medtr7g081300	Medtr8g090130	
Medtr1g076000	Medtr2g083300	Medtr3g085270	Medtr4g075510	Medtr5g068770		Medtr7g08181E	Medtr8g000165	
Modtr1c077000	Modtr2c002420	Modtr2c005270	Moder/c075720	ModtrEc0(9700		Modtr7c002640	Modtr@c000340	
	March 2, 05 15 15	Media Sg065570	Medu 4g0/5/50	Medit Sg008/90		Medu 7g082040	Weuti og 090210	
Medtr1g077010	Medtr2g084245	Medtr3g086000	Medtr4g076120	Medtr5g069000		Medtr7g082660	Medtr8g090225	

Medtr1g077480	Medtr2g084520	Medtr3g086100	Medtr4g076140	Medtr5g069040		Medtr7g082810	Medtr8g090350	
Medtr1g077600	Medtr2g084565	Medtr3g086120	Medtr4g076600	Medtr5g069100		Medtr7g082820	Medtr8g090375	
Medtr1g077640	Medtr2g084725	Medtr3g086750	Medtr4g076620	Medtr5g069180		Medtr7g082830	Medtr8g091420	
Medtr1g077750	Medtr2g084745	Medtr3g087150	Medtr4g076630	Medtr5g069205		Medtr7g083000	Medtr8g092410	
 Medtr1g078000	Medtr2g084825	Medtr3g087275	Medtr4g076810	Medtr5g069465		Medtr7g083330	Medtr8g092960	
Medtr1g079190	Medtr2g084895	Medtr3g087325	Medtr4g077000	Medtr5g069490		Medtr7g084220	Medtr8g092985	
Medtr1g079375	Medtr2g084915	Medtr3g087480	Medtr4g077370	Medtr5g069500		Medtr7g084330	Medtr8g092990	
Modtr1g070460	Modtr2g084915	Modtr2g087400	Modtr4g078660	ModtrEg060800		Modtr7g084630	Modtr8g002000	
Medtr1g079460	Medtr2g084985	Medtr3g087490	Nedtr4g078660	Medtr5g069890		Medtr7g084620	Medirag093000	
Medtrig079730	Wiedtr2g085065	Wedtr3g087510	Wedtr4g078690	Wedtr5g070295		Wedtr/g084720	Wedtr8g093010	<u> </u>
Medtr1g079760	Medtr2g086290	Medtr3g087540	Medtr4g079580	Medtr5g070410		Medtr7g084820	Medtr8g093540	
Medtr1g080020	Medtr2g086580	Medtr3g087590	Medtr4g079590	Medtr5g070685		Medtr7g085120	Medtr8g093840	ļ
Medtr1g081270	Medtr2g087285	Medtr3g087740	Medtr4g079600	Medtr5g070700		Medtr7g085140	Medtr8g096640	ļ
Medtr1g081640	Medtr2g087292	Medtr3g087870	Medtr4g079610	Medtr5g071360		Medtr7g085150	Medtr8g096850	
Medtr1g082600	Medtr2g087370	Medtr3g087890	Medtr4g079630	Medtr5g071380		Medtr7g085490	Medtr8g097320	
Medtr1g083570	Medtr2g087390	Medtr3g087930	Medtr4g079830	Medtr5g071590		Medtr7g085600	Medtr8g098280	
Medtr1g083870	Medtr2g087430	Medtr3g088405	Medtr4g080083	Medtr5g071780		Medtr7g085780	Medtr8g098515	
Medtr1g084050	Medtr2g087460	Medtr3g088460	Medtr4g080750	Medtr5g071880		Medtr7g085800	Medtr8g098725	
Medtr1g084230	Medtr2g087470	Medtr3g088645	Medtr4g080803	Medtr5g071930		Medtr7g085810	Medtr8g098840	
Medtr1g084240	Medtr2g087950	Medtr3g088745	Medtr4g081130	Medtr5g071960		Medtr7g086380	Medtr8g098910	
Medtr1g084790	Medtr2g088100	Medtr3g088985	Medtr4g081710	Medtr5g071990		Medtr7g086420	Medtr8g098915	
Medtr1g084000	Medtr20088102	Medtr3g080005	Medtr4g081880	Medtr5g072070		Medtr7a086720	Medtr&a000055	
Medtr1a09EE70	Medtr2a020103	Medtr2002001	Medtr/a0220E0	Medtr5a072210		Medtr7a084020	Medtran000115	
Modt=1=005570	Modt-2-000107	Modt=2=0000015	Modt-1-002050	Modt=5-072420		Moder7~0074.20	Modt-9-000100	
ivieatr1g085680	ivieatr2g088590	weatr3g089025	ivieatr4g082365	ivieatr5g072420		ivieatr/gu87130	ivieatr8g099190	
Medtr1g085730	Medtr2g088750	Medtr3g089035	Medtr4g082980	Medtr5g072455		Medtr7g088330	Medtr8g099245	
Medtr1g086390	Medtr2g089050	Medtr3g089125	Medtr4g082990	Medtr5g072456		Medtr7g088340	Medtr8g099385	
Medtr1g086840	Medtr2g089070	Medtr3g089950	Medtr4g083230	Medtr5g072457		Medtr7g088350	Medtr8g099595	
Medtr1g087150	Medtr2g089140	Medtr3g090760	Medtr4g083570	Medtr5g072990		Medtr7g088470	Medtr8g099615	
Medtr1g087270	Medtr2g089190	Medtr3g090940	Medtr4g084110	Medtr5g073020		Medtr7g088790	Medtr8g099655	
Medtr1g088150	Medtr2g089310	Medtr3g091140	Medtr4g084620	Medtr5g073530		Medtr7g089120	Medtr8g099665	
Medtr1g088160	Medtr2g089340	Medtr3g091570	Medtr4g084790	Medtr5g073675		Medtr7g089210	Medtr8g099730	
Medtr1g088230	Medtr2g089530	Medtr3g092080	Medtr4g084800	Medtr5g074500		Medtr7g089620	Medtr8g099750	
Medtr1g088885	Medtr2g090015	Medtr3g092090	Medtr4g084870	Medtr5g074770		Medtr7g089950	Medtr8g099920	
Medtr1g088965	Medtr2g090080	Medtr3g092310	Medtr4g085880	Medtr5g075180		Medtr7g090035	Medtr8g099930	
Medtr1g088970	Medtr2g090210	Medtr3g092540	Medtr4g086020	Medtr5g075210		Medtr7g090230	Medtr8g101490	
Medtr1g088990	Medtr2g090215	Medtr3g093290	Medtr4g086450	Medtr5g075300		Medtr7g090350	Medtr8g101550	
Modtr1g080005	Modtr2g0002E5	Modtr2g002220	Modtr4g086490	ModtrEg07E070		Modtr7g000270	Modtr8g102140	
Medtr1g089005	Medtr2g090233	Medtr3g093330	Medtr4g080480	Medtr 2076110		Medtr7g090370	Medtr8g102140	
Medtr1g089865	Wiedtr2g090340	Wedtr3g093430	Wedtr4g087300	WedtrSg076110		Medtr/g090410	Wedtr8g102380	
Medtr1g089920	Medtr2g090580	Medtr3g094730	Medtr4g087730	Medtr5g076255		Medtr /g090530	Medtr8g102400	<u> </u>
Medtr1g090170	Medtr2g090675	Medtr3g094810	Medtr4g087850	Medtr5g076383		Medtr7g090550	Medtr8g102610	ļ
Medtr1g090370	Medtr2g090745	Medtr3g094830	Medtr4g087890	Medtr5g076600		Medtr7g090560	Medtr8g103227	<u> </u>
Medtr1g090450	Medtr2g090870	Medtr3g094840	Medtr4g087965	Medtr5g076720		Medtr7g090570	Medtr8g103700	
Medtr1g090680	Medtr2g090875	Medtr3g095120	Medtr4g088030	Medtr5g076820		Medtr7g090590	Medtr8g103730	
Medtr1g090730	Medtr2g091005	Medtr3g095440	Medtr4g088255	Medtr5g077000		Medtr7g090920	Medtr8g103740	
Medtr1g090753	Medtr2g091010	Medtr3g095450	Medtr4g088350	Medtr5g077430		Medtr7g090950	Medtr8g103820	
Medtr1g090807	Medtr2g091120	Medtr3g095800	Medtr4g088390	Medtr5g077580		Medtr7g091040	Medtr8g104410	
Medtr1g090810	Medtr2g091125	Medtr3g095940	Medtr4g088450	Medtr5g077640		Medtr7g091520	Medtr8g104460	
Medtr1g090820	Medtr2g091215	Medtr3g096050	Medtr4g088510	Medtr5g077770		Medtr7g091680	Medtr8g104540	
Medtr1g090867	Medtr2g091240	Medtr3g096160	Medtr4g088835	Medtr5g078030		- Medtr7g091770	Medtr8g104765	
Medtr1g092970	Medtr2g091290	Medtr3g096500	Medtr4g089025	Medtr5g078200		Medtr7g091780	Medtr8g105350	
Medtr1g093650	Medtr2g091370	Medtr3g097000	Medtr4g089055	Medtr5g078340		Medtr7g092230	Medtr8g106150	
Medtr1c003850	Medtr2c002050	Medtr3c007010	Medtr4g080060	Medtr5r078700		Medtr7g002250	Medtr8g106100	
Medil 1g093830	Medti 2g092930	Medti 3g097010	Nedtr4g089000	Medti 3g078700		Medti 7g092230	Medilag100130	
Medtr1g093900	Medtr2g093750	Medtr3g097120	Medtr4g089155	Wedtrsg079600		Medtr /g092460	Wedtr8g106870	
Medtr1g093995	Medtr2g093760	Medtr3g097380	Medtr4g090520	Medtr5g079730		Medtr/g092970	Medtr8g107220	ļ
Medtr1g094075	Medtr2g093990	Medtr3g097460	Medtr4g091170	Medtr5g080400		Medtr7g093010	Medtr8g107250	ļ
Medtr1g094085	Medtr2g094170	Medtr3g097480	Medtr4g092515	Medtr5g080440		Medtr7g093030	Medtr8g107370	<u> </u>
Medtr1g095070	Medtr2g094620	Medtr3g097560	Medtr4g092570	Medtr5g080800		Medtr7g093217	Medtr8g107380	
Medtr1g095110	Medtr2g094640	Medtr3g098480	Medtr4g092780	Medtr5g081000		Medtr7g093720	Medtr8g107420	
Medtr1g095390	Medtr2g094790	Medtr3g098520	Medtr4g093250	Medtr5g081030		Medtr7g093735	Medtr8g107620	
Medtr1g095875	Medtr2g094930	Medtr3g098700	Medtr4g094288	Medtr5g081237		Medtr7g094410	Medtr8g432670	
Medtr1g096580	Medtr2g094940	Medtr3g098810	Medtr4g094290	Medtr5g081555		Medtr7g094710	Medtr8g442510	
Medtr1g098840	Medtr2g095510	Medtr3g098960	Medtr4g094328	Medtr5g081560		Medtr7g094760	Medtr8g442760	
Medtr1g099350	Medtr2g095980	Medtr3g099120	Medtr4g094330	Medtr5g081590		Medtr7g094830	Medtr8g445860	
Medtr1g099570	Medtr2g096010	Medtr3g099620	Medtr4g094332	Medtr5g081630		Medtr7g094970	Medtr8g446550	
Medtr1g099840	Medtr2g096370	Medtr3g100400	Medtr4g094335	Medtr5g081790		Medtr7g095630	Medtr8g447270	
Medtr1g100040	Medtr20006670	Medtr3g100500	Medtr4a004339	Medtr5g081810		Medtr7a005640	Medtr8g461120	
Medtr1a100205	Medtr2000000	Medtr2a100500	Medtr/a004240	Medtr5a091920		Medtr7a005700	Medtr@a/62140	
Made 1 = 100505	Mode-2-007010	Mode:2-100000	Mode: 1-00 10 10	Moder		Madtr7-005076	Medt-0-403140	
Weatr1g100587	wieatr2g097210	iviedtr3g100890	ivieatr4g094342	ivieatr5g082135		iviedtr7g095970	ivieatr8g463190	

Medtr1g100667	Medtr2g097520	Medtr3g101470	Medtr4g094352	Medtr5g082480	Medtr7g096090	Medtr8g463760	
Medtr1g100783	Medtr2g097580	Medtr3g102180	Medtr4g094360	Medtr5g082570	Medtr7g096440	Medtr8g464260	
Medtr1g100787	Medtr2g097700	Medtr3g102530	Medtr4g094450	Medtr5g082760	Medtr7g096610	Medtr8g465040	
Medtr1g101950	Medtr2g098310	Medtr3g102600	Medtr4g094595	Medtr5g082850	Medtr7g096870	Medtr8g465280	
Medtr1g101970	Medtr2g098490	Medtr3g102650	Medtr4g094715	Medtr5g083030	Medtr7g097030	Medtr8g466180	
Medtr1g102010	Medtr2g098600	Medtr3g102670	Medtr4g094882	Medtr5g083110	 Medtr7g098160	Medtr8g466800	
Medtr1g102010	Medtr2g099010	Medtr3g102810	Medtr/g09/885	Medtr5g083250	 Medtr7g098180	Medtr8g467170	
Medtr1g102070	Medtr2g0000175	Medtr2g102210	Medtr4g004035	Medtr5g083250	Medtr7g008100	Medtr8g407170	
Medtr1g102250	Medtr2g099173	Medtr2g103330	Medtr4g094923	MedtrEg083233	 Medii 7g098190	Madtr8g408000	
Wedtrig102350	Wedtr 2g099790	Wedtr Sg103400	Wedt14g094938	Wiedtr5g085810	 Medil 7g098220	Wedtrag468070	
Wedtr1g102750	Wiedtr2g099810	Wedtr3g103440	Wedtr4g095075	Wiedtr5g084000	 Medtr7g098230	Wedtr8g468790	
Medtr1g102820	Medtr2g100290	Medtr3g103570	Medtr4g095280	Medtr5g084020	 Medtr7g098610	Medtr8g468940	
Medtr1g103050	Medtr2g100340	Medtr3g103590	Medtr4g095440	Medtr5g084260	 Medtr7g098680	Medtr8g469310	
Medtr1g103060	Medtr2g100350	Medtr3g104400	Medtr4g095600	Medtr5g084680	Medtr7g098880	Medtr8g470010	
Medtr1g103070	Medtr2g100710	Medtr3g104880	Medtr4g097080	Medtr5g084770	Medtr7g098890	Medtr8g471060	
Medtr1g103500	Medtr2g101130	Medtr3g104930	Medtr4g097380	Medtr5g084950	 Medtr7g099160	Medtr8g479390	
Medtr1g103540	Medtr2g101410	Medtr3g104990	Medtr4g097440	Medtr5g085200	Medtr7g099220		
Medtr1g103640	Medtr2g101840	Medtr3g105210	Medtr4g097470	Medtr5g085730	Medtr7g099260		
Medtr1g103690	Medtr2g102030	Medtr3g105550	Medtr4g097650	Medtr5g086360	Medtr7g099265		
Medtr1g103850	Medtr2g102140	Medtr3g105590	Medtr4g097670	Medtr5g087340	Medtr7g099270		
Medtr1g104500	Medtr2g102340	Medtr3g105690	Medtr4g097700	Medtr5g087740	Medtr7g099330		
Medtr1g104650	Medtr2g102730	Medtr3g106000	Medtr4g098035	Medtr5g087820	Medtr7g099570		
Medtr1g104780	Medtr2g103140	Medtr3g106030	Medtr4g098490	Medtr5g088350	Medtr7g099820		
Medtr1g105010	Medtr2g103303	Medtr3g106140	Medtr4g098500	Medtr5g089100	- Medtr7g099850		
Medtr1g105075	Medtr2g103307	Medtr3g106290	Medtr4g098800	Medtr5g089160	Medtr7g099870		
Medtr1g105360	Medtr2g103330	Medtr3g106520	Medtr4g098850	Medtr5g089170	Medtr7g100050		
Medtr1g105480	Medtr2g103330	Medtr3g107100	Medtr4g008870	Medtr5g080310	Medtr7g100225		
Modtr1g105480	Modtr2g103340	Modtr2g107620	Medtr4g098870	ModtrEg0803310	Modtr7g100535		
Medtr1g105495	Medtr2g103560	Medtr3g107630	Medtr4g099130	Medtr5g089380	 Medtr7g100530		
Wedtrig106080	Wiedtr 2g103590	Wiedtr Sg108190	Wedt14g099270	Wiedti 5g089450	 Medur /g100340		
Medtr1g106420	Medtr2g103670	Medtr3g108730	Medtr4g099310	Medtr5g089870	 Medtr/g100860		
Medtr1g106735	Medtr2g103750	Medtr3g108990	Medtr4g099430	Medtr5g090100	Medtr/g1011/0		
Medtr1g106860	Medtr2g104100	Medtr3g109160	Medtr4g100530	Medtr5g090280	 Medtr7g101310		
Medtr1g107055	Medtr2g104220	Medtr3g109250	Medtr4g100550	Medtr5g090340	 Medtr7g102155		
Medtr1g107285	Medtr2g104490	Medtr3g109520	Medtr4g100590	Medtr5g090550	Medtr7g102160		
Medtr1g109410	Medtr2g104570	Medtr3g109820	Medtr4g100690	Medtr5g090630	Medtr7g102260		
Medtr1g110280	Medtr2g105390	Medtr3g109932	Medtr4g100880	Medtr5g091180	 Medtr7g102450		
Medtr1g110590	Medtr2g105720	Medtr3g109972	Medtr4g101245	Medtr5g091650	Medtr7g102465		
Medtr1g110880	Medtr2g426070	Medtr3g110088	Medtr4g101330	Medtr5g091690	Medtr7g102805		
Medtr1g111850	Medtr2g435560	Medtr3g110138	Medtr4g101600	Medtr5g093090	Medtr7g102806		
Medtr1g112300	Medtr2g435900	Medtr3g110175	Medtr4g101870	Medtr5g093180	Medtr7g103340		
Medtr1g112350	Medtr2g436310	Medtr3g110182	Medtr4g102400	Medtr5g095400	Medtr7g103390		
Medtr1g112700	Medtr2g436530	Medtr3g110195	Medtr4g102470	Medtr5g095460	Medtr7g103440		
Medtr1g112750	Medtr2g437370	Medtr3g110205	Medtr4g103450	Medtr5g095490	Medtr7g103610		
Medtr1g112850	Medtr2g437480	Medtr3g110395	Medtr4g103480	Medtr5g095580	Medtr7g103620		
Medtr1g114150	Medtr2g437700	Medtr3g110720	Medtr4g103490	Medtr5g095590	Medtr7g104080		
Medtr1g114640	Medtr2g437730	Medtr3g110840	Medtr4g103495	Medtr5g095595	Medtr7g105260		
Medtr1g115130	Medtr2g437780	Medtr3g110900	Medtr4g103565	Medtr5g095620	Medtr7g105460		
Medtr1g115140	Medtr2g437800	Medtr3g111020	Medtr4g103800	Medtr5g096760	 Medtr7g105550		
Medtr1g115175	Medtr2g437880	Medtr3g111260	Medtr4g103850	Medtr5g097010	Medtr7g105560		
Medtr1g115210	Medtr2g430000	Medtr3g111270	Medtr4g103010	Medtr5g007150	Medtr7g105570		
Medtr1g115210	Medtr2g439240	Medtr3g111270	Medtr/g103910	Medtr5g097220	 Medtr7g105790		
Medtr1a115400	Medtr24440000	Modtr2a111000	Medtr4a102020	MedtrEc007200	Medtr7a105950		
Moder1c115522	Moder2c450450	Medtr2c111010	Medera 102070	Medter c007222	Madte7c105000		
Moder1a115520	Modt=2=450150	Modt-2a111050	Moder4a104440	Modt=5 = 007420	Modtr7c100220		
weutrigi15590	ivieutr2g450280	wieutrag111950	weutrag104410	wieutrsgu9/420	 weutr/g106320		
weatrig116000	ivieatr2g450630	ivieatr3g112060	weatr4g104530	ivieatr5g098020	 ivieatr/g106500		
Medtr1g116070	Medtr2g450690	Medtr3g112070	Medtr4g104680	Medtr5g098060	 Medtr7g106600		
Medtr1g116550	Medtr2g450710	Medtr3g112100	Medtr4g104760	Medtr5g098800	Medtr7g106620		
Medtr1g116580	Medtr2g450720	Medtr3g112130	Medtr4g104770	Medtr5g099030	 Medtr7g106750		
Medtr1g116930	Medtr2g451510	Medtr3g112140	Medtr4g104860	Medtr5g459510	Medtr7g107100		
Medtr1g418505	Medtr2g460960	Medtr3g112170	Medtr4g105310		Medtr7g107160		
Medtr1g492760	Medtr2g461020	Medtr3g112180	Medtr4g105430		Medtr7g107210		
Medtr1g492790	Medtr2g461270	Medtr3g112210	Medtr4g105690		Medtr7g107670		
Medtr1g492930	Medtr2g461290	Medtr3g112290	Medtr4g106630		Medtr7g107680		
	Medtr2g461570	Medtr3g112350	Medtr4g106790		Medtr7g108290		
	Medtr2g481150	Medtr3g112460	Medtr4g106800		Medtr7g108560		
	Medtr2g481160	Medtr3g112480	Medtr4g106930		 Medtr7g108620		
		Medtr3g113040	Medtr4g107040		Medtr7g109210		
		Medtr3g113270	Medtr4g107230		Medtr7g109230		

	Medtr3g113310	Medtr4g107370		Medtr7g109360	
	Medtr3g113788	Medtr4g107460		Medtr7g109440	
	Medtr3g114300	Medtr4g107620		Medtr7g109490	
	Medtr3g114500	Medtr4g107630		Medtr7g109540	
	Medtr3g115120	Medtr4g108170		Medtr7g109920	
	Medtr3g115340	Medtr4g108180		Medtr7g110180	
	Medtr3g115450	Medtr4g108230		Medtr7g110310	
	Medtr3g115540	Medtr4g108330		Medtr7g110370	
	Medtr3g115940	Medtr4g109090		Medtr7g110900	
	Medtr3g116410	Medtr4g109340		Medtr7g111110	
	Medtr3g116430	Medtr4g109600		Medtr7g111260	
	Medtr3g116770	Medtr4g109920		Medtr7g112120	
	Medtr3g116990	Medtr4g109980		Medtr7g112330	
	Medtr3g117050	Medtr4g110040		Medtr7g112750	
	Medtr3g117120	Medtr4g110130		Medtr7g113250	
	Medtr3g117160	Medtr4g111770		Medtr7g113280	
	Medtr3g117280	Medtr4g112025		Medtr7g113320	
	Medtr3g117500	Medtr4g112350		Medtr7g113490	
	Medtr3g117590	Medtr4g113100		Medtr7g113830	
	Medtr3g117680	Medtr4g113530		Medtr7g113930	
	Medtr3g117750	Medtr4g113630		Medtr7g114090	
	Medtr3g117800	Medtr4g113680		Medtr7g114220	
	Medtr3g118530	Medtr4g114120		Medtr7g114550	
	Medtr3g415600	Medtr4g114210		Medtr7g114870	
	Medtr3g435430	Medtr4g114960		Medtr7g114890	
	Medtr3g435480	Medtr4g115360		Medtr7g114895	
	Medtr3g436100	Medtr4g115620		Medtr7g114960	
	Medtr3g436500	Medtr4g115820		Medtr7g115410	
	Medtr3g436830	Medtr4g116360		Medtr7g115700	
	Medtr3g436990	Medtr4g116500		Medtr7g116520	
	Medtr3g437580	Medtr4g117050		Medtr7g116710	
	Medtr3g438070	Medtr4g117060		Medtr7g116795	
	Medtr3g438210	Medtr4g117660		Medtr7g117355	
	Medtr3g450800	Medtr4g117800		Medtr7g117430	
	Medtr3g451370	Medtr4g117890		Medtr7g117505	
	Medtr3g451530	Medtr4g117950		 Medtr7g117700	
	Medtr3g451540	Medtr4g118350		Medtr7g117750	
	Medtr3g452730	Medtr4g118355		Medtr7g118130	
	Medtr3g460810	Medtr4g118770		Medtr7g118330	
	Medtr3g460850	Medtr4g118840		Medtr7g405770	
	Medtr3g462870	Medtr4g119030		Medtr7g406830	
	Medtr3g462950	Medtr4g119270		Medtr7g406840	
	Medtr3g462970	Medtr4g119860		Medtr7g406940	
	Medtr3g463270	Medtr4g119910		Medtr7g445340	
	Medtr3g463450	Medtr4g120050		Medtr7g445930	
	Medtr3g463700	Medtr4g120420		Medtr7g451010	
	Medtr3g464330	Medtr4g120460		Medtr7g451710	
 	Medtr3g464570	Medtr4g120750	 	Medtr7g451770	
	Medtr3g464580	Medtr4g120800	 	Medtr7g451800	
	Medtr3g464720	Medtr4g120830	 	Medtr7g458880	
	Medtr3g465410	Medtr4g121090	 	Medtr7g470610	
	Medtr3g465420	Medtr4g122740			
	Medtr3g465550	Medtr4g122750			
	Medtr3g465930	Medtr4g122760	 		
	Medtr3g466410	Medtr4g122930			
	Medtr3g466460	Medtr4g123790			
	Medtr3g467460	Medtr4g123940			
	Medtr3g467470	Medtr4g123950			
	Medtr3g467490	Medtr4g124400			
	Medtr3g467550	Medtr4g124790			
	Medtr3g467600	Medtr4g124820			
		Medtr4g124850			
		Medtr4g124930			
		Medtr4g125015			
		Medtr4g125180			
		Medtr4g125670			
		Medtr4g125940	 		

	 Medtr4g126270			
	Medtr4g126770			
	Medtr4g126950			
	Medtr4g127140			
	Medtr4g127290			
	Medtr4g127310			
	Medtr4g127360			
	Medtr4g127610			
	Medtr4g127620			
	Medtr4g128160			
	Medtr4g128320			
	Medtr4g128540			
	Medtr4g128770			
	Medtr4g128930			
	Medtr4g129020			
	Medtr4g129420			
	Medtr4g129760			
	Medtr4g129920			
	Medtr4g130220			
	Medtr4g130300			
	Medtr4g130780			
	Medtr4g131180			
	Medtr4g131580			
	Medtr4g131840			
	Medtr4g131870			
	Medtr4g131940			
	Medtr4g132020			
	Medtr4g132090			
	Medtr4g132400			
	Medtr4g132840			
	Medtr4g132980			
	Medtr4g133110			
	Medtr4g133450			
	Medtr4g133600			
	Medtr4g133690			
	Medtr4g133750			
	Medtr4g133760			
	Medtr4g133890			
	Medtr4g133900			
	Medtr4g133970			
	Medtr4g134190			
	Medtr4g134780			
	Medtr4g415300			
	Medtr4g435277			
	Medtr4g435298			

8. függelék. A szintetikus NCR szignál peptidekkel és *Medicago truncatula* A17 gümőkivonattal végzett affinitás kromatográfia eredménye.

A táblázatban a legalább két peptidszámmal megtalált fehérjék találhatók. A táblázatból el lettek távolítva azok a fehérjék, melyek a HA-tag kölcsönható partnerei is. Mind a négy NCR SP esetében elsősorban a StrepII peptid lett azonosítva, de az NCR120 SP, az NCR247 SP és az NCR252 esetében kijöttek egyedi, NCR SP-specifikus peptidtalálatok is.

		NCR120 S	P, teljes p	peptidszám	: 753	NCR216 9	SP, teljes	peptidszám	527	NCR 247 9	6P, teljes	peptidszám	1184	NCR252 S	P, teljes j	peptidszám	: 562		l l
UniProt	Echéria nova	Egyedi	Peptid-	Relatív	% lofad	Egyedi	Peptid-	Relatív	% lofod	Egyedi	Peptid-	Relatív	% Lofod	Egyedi	Peptid-	Relatív	% lofod	Fehérje	Eni
azonosító		peptid	szám	peptidsz	/s bereu.	peptid	szám	peptidsz.	/a tereu.	peptid	szám	peptidsz	/ Lereu.	peptid	szám	peptidsz	/a Lereu.	MW	raj
NCR120 SP	StrepII-NCR120 SP-HA	2	19	0,00134	28,9	1	10	0,0008	21,1	2	65	0,00343	21,1	1	11	0,00085	21,1	4530	
NCR216 SP	StrepII-NCR216 SP-HA	1	18	0,00127	20,5	1	10	0,0008	20,5	2	65	0,00343	20,5	1	11	0,00085	20,5	4628	
NCR247 SP	StrepII-NCR247 SP-HA	1	18	0,00127	20	1	10	0,0008	20	3	70	0,0037	27,5	1	11	0,00085	20	4852	
NCR252 SP	Strepil-NCR252 SP-HA	1	18	0,00127	19,5	1	10	0,0008	19,5	2	65	0,00343	19,5	2	18	0,00139	34,1	4886	<u> </u>
G7LEP9	Pyruvate dehydrogenase E1 component subunit alpha	14	58	0,00409	30,1	11	34	0,00273	29,6	4	7	0,00037	18	11	42	0,00324	29,9	43552	MEDTR
B7FGG4	Uncharacterized protein	6	20	0,00141	58,3	5	12	0,00096	51,4	3	4	0,00021	23,6		1/	0,00131	65,3	16209	MEDTR
B/FH86	Putative ribosomal protein S1/e	6	20	0,00141	58,3	5		0,00088	51,4	3	4	0,00021	23,6	6	16	0,00123	58,3	16203	MEDIR
G/LF61	A hydroxy totrahydrodinicolinato synthaso	2	3	0,00085	12 12 8	1	2	0,00048	6.7	3	9	0,00018	4,5	4	5	0,00034	22.3	205.92	MEDTR
G7/57/	Sorino hydroxymethyltransforaro	5	7	0,00021	16.8	2	2	0,00010	6.1	10	14	0,00048	39.3	3	4	0,00033	11 2	56211	MEDTR
671024	ATP-dependent (In proteose proteolytic subunit	2	4	0.00028	9.2	2	4	0.00032	9.2	3	4	0.00021	13.2	2	3	0.00023	9.2	33192	MEDTR
A0A072VAP6	60S ribosomal protein L17A	2	4	0.00028	9	3	3	0.00024	13	3	7	0.00037	13	2	3	0.00023	9	20404	MEDTR
135WZ2	Aldo/keto reductase family oxidoreductase			0				0		4	5	0,00026	18,7	2	3	0,00023	7,6	34920	MEDTR
G7JXC3	Agenet domain protein			0		2	3	0,00024	1,7	1	3	0,00016	0,7	2	2	0,00015	1,7	240088	MEDTR
G7IQ36	Farnesyl pyrophosphate synthase 2	2	2	0,00014	9,9	2	2	0,00016	9,9	9	20	0,00106	41,8	2	2	0,00015	8,5	39324	MEDTR
A0A072TGU9	Activator of 90 kDa heat shock ATPase-like protein	1	2	0,00014	4,1	1	1	8E-05	4,1	3	4	0,00021	16,6	1	2	0,00015	4,1	39197	MEDTR
B7FHN6	Uncharacterized protein			0		1	1	8E-05	2,5	5	6	0,00032	21,1	2	2	0,00015	5,7	47754	MEDTR
A0A072UH83	Aldo/keto reductase family oxidoreductase			0				0		2	4	0,00021	8,8	1	2	0,00015	4,4	25803	MEDTR
B7FHL7	Aldo/keto reductase family oxidoreductase			0				0		2	4	0,00021	6,6	1	2	0,00015	3,3	33966	MEDTR
G7JTF1	Aldo/keto reductase family oxidoreductase			0				0		2	4	0,00021	7,5	1	2	0,00015	3,7	30287	MEDTR
13S0Z2	Uncharacterized protein			0				0		2	4	0,00021	11,6	1	2	0,00015	5,8	19110	MEDTR
1355J7	Uncharacterized protein			0				0		2	4	0,00021	10,9	1	2	0,00015	5,4	21011	MEDTR
	Aldo/keto reductase family oxidoreductase			0				0		2	4	0.00021	6.6	1	2	0.00015	3.3	23603	MEDTR
G7ITE1	Aldo/keto reductase family oxidoreductase			0				0		2	4	0.00021	7.5	1	2	0.00015	3.7	30287	MEDTR
135072	Uncharacterized protein			0				0		2	4	0,00021	11,6	1	2	0,00015	5,8	19110	MEDTR
1355J7	Uncharacterized protein			0				ō		2	4	0,00021	10,9	1	2	0,00015	5,4	21011	MEDTR
G7JJF7	D-glycerate dehydrogenase/hydroxypyruvate reductase	1	1	7E-05	12,4	1	2	0,00016	12,4	2	4	0,00021	20,4	1	1	7,7E-05	12,4	34342	MEDTR
A0A072TMU3	Mitogen-activated protein kinase			0		1	1	8E-05	5,9	2	4	0,00021	9,4	1	1	7,7E-05	5,9	42855	MEDTR
A0A072TJ20	Succinate dehydrogenase (ubiquinone) iron-sulfur subunit, mitochondrial			0				0		4	5	0,00026	16,2	1	1	7,7E-05	4,3	31338	MEDTR
A0A072U2W1	Putative triose-phosphate isomerase	1	1	7E-05	8,3			0		10	24	0,00127	40,1			0		33437	MEDTR
13SN66	Uncharacterized protein	1	1	7E-05	8,3			0		8	19	0,001	34			0		33451	MEDTR
G719Z0	Glycine cleavage system P protein	1	1	7E-05	2,7			0		4	5	0,00026	6,9			0		114704	MEDTR
G7K162	Branched-chain-amino-acid aminot ransferase	1	1	7E-05	5,9			0		3	3	0,00016	14,7			0		44223	MEDTR
A0A072VLP9	Hop-interacting protein THI002	1	1	7E-05	5,6			0		2	3	0,00016	11,3			0		57434	MEDTR
G7ILW0	Serine hydroxymethyltransferase	1	1	7E-05	2,8			0		2	3	0,00016	6,4			0		57664	MEDTR
A0A072VCL6	Putative SI14 phosphatase-associated protein family	1	1	72-05	1,9			0		12	24	0,00010	3,3 25 A			0		93999	MEDIR
AUAU72U332	Starch branching enzyme i			0				0		7	12	0,00127	25,4			0		99742	MEDIR
A0A072V826	Plastic transcetorase Putative transcription factor WD40-like family			0				0		6	12	0.00063	29,9			0		38219	MEDTR
A0A072UGE8	Formate dehydrogenase. mitochondrial			0				0		6	12	0,00063	25,6			0		42251	MEDTR
A0A072UWA7	Proteasome activator complex subunit-like protein			0				0		8	10	0,00053	6,3			0		202992	MEDTR
A0A396J047	Putative proteasome endopeptidase complex			0				0		5	9	0,00048	22,5			0		43479	MEDTR
A0A072V2Q9	Starch branching enzyme I			0				0		7	9	0,00048	15,1			0		85230	MEDTR
A8TVR1	Beta-glucosidase			0				0		6	8	0,00042	17,8			0		56280	MEDTR
A0A072TUU6	Phosphoribosylformylglycinamidine synthase			0				0		6	7	0,00037	6,8			0		154362	MEDTR
A0A072TWS3	Cofactor-independent phosphoglycerate mutase			0				0		5	7	0,00037	15,3			0		53116	MEDTR
A0A072U1V8	Indole-3-acetic acid-amido synthetase			0				0		5	7	0,00037	15,2			0		54107	MEDTR
A0A072UXY7	DegP protease-like protein			0				0		6	/	0,00037	6,7			0		121962	MEDTR
B/FNA2	EF hand calcium-binding family protein			0				0		3 c	6	0,00037	25,2			0		16590	MEDIR
G7/5A2	Phosphogrycerate mutase raminy protein			0				0		5	6	0,00032	14.7			0		51011	MEDTR
404072113D8	Adenvlosurrinate lyace			0				o		5	6	0.00032	17.2			0		54101	MEDTR
G8A2B2	3-oxo-delta(4,5)-steroid 5-beta-reductase-like protein			0				ō		3	6	0,00032	11,8			0		44212	MEDTR
135WK6	Epoxide hydrolase			0				0		3	6	0,00032	14,1			0		34898	MEDTR
A0A072VCC4	Epoxide hydrolase-like protein			0				0		3	6	0,00032	11,5			0		35111	MEDTR
A0A072UAH3	3,4-dihydroxy-2-butanone kinase, putative			0				0		5	5	0,00026	21,9			0		61870	MEDTR
A0A072UWD1	Alpha-1,4 glucan phosphorylase			0				0		4	5	0,00026	7,5			0		95491	MEDTR
G7J5E0	Anthranilate phosphoribosyltransferase			0				0		4	5	0,00026	16,8			0		41794	MEDTR
A0A072V887	Putative tubulin-tyrosine ligase/Tubulin polyglutamylase, leucine-rich repeat	domain, L	-	0				0		5	5	0,00026	10,3			0		99978	MEDTR
G7JUZ2	Acyl-coenzyme A oxidase			0				0		4	5	0,00026	6,5			0		75905	MEDTR
A0A0720145	COP9 signalosome complex subunit-like protein			0				0		2	5	0,00026	25,7			0		28869	MEDIR
A0A3961VT2	Dura signardsome complex suburnit 1 Putative START-like domain.containing arctain			n				n		3	5	0.00026	24.8			0		17020	MEDTR
67IDI7	NEDD&activating enzyme E1 regulatory subunit			0				ő		4	4	0.00020	14.5			0		58141	MEDTR
671154	Putative Zinc finger. ZPR1-type			0				0		4	4	0,00021	13,4			0		53798	MEDTR
G7IPG7	Putative glycosyl transferase, family 8, nucleotide-diphospho-sugar transfera	se		0				ō		3	4	0,00021	4,4			0		185092	MEDTR
Q1RSH9	Glutathione S-transferase, amino-terminal domain protein			0				0		3	4	0,00021	13,8			0		26542	MEDTR
Q1RSI2	Glutathione S-transferase, amino-terminal domain protein			0				0		3	4	0,00021	13,8			0		26436	MEDTR
B7FMR2	Uncharacterized protein			0				0		3	4	0,00021	13,8			0		26464	MEDTR
13T545	Uncharacterized protein			0				0		3	4	0,00021	13,8			0		26470	MEDTR
A0A072UGS6	Ubiquitin carboxyl-terminal hydrolase-like protein			0				0		3	4	0,00021	3,9			0		131638	MEDTR
A0A072UZV5	Enhanced disease susceptibility protein			0				0		4	4	0,00021	11,9			0		63082	MEDTR
AUA072UNZ9	Epoxide hydrolase-like protein			0				0		2	4	0,00021	8,7			0		34965	MEDTR
AUAU/2UZ18	Epoxide nydrolase-like protein			0				0		2	4	0.00021	6 87			0		38239	MEDTR
131017	Uncharacterized protein			n				n		2	4	0.00021	8.7			0		34981	MEDTR
G7LEN1	Serine/threonine-orotein phosphatase			0				ō		3	4	0,00021	21.2			ō		34946	MEDTR
G7K710	Serine/threonine-protein phosphatase			0				0		2	4	0,00021	13,1			0		34905	MEDTR
I3T146	COP9 signalosome complex subunit 6a			0				0		2	4	0,00021	16,4			0		35456	MEDTR
Q1RSH9	Glutathione S-transferase, amino-terminal domain protein			0				0		3	4	0,00021	13,8			0		26542	MEDTR
Q1RSI2	Glutathione S-transferase, amino-terminal domain protein			0				0		3	4	0,00021	13,8			0		26436	MEDTR
B7FMR2	Uncharacterized protein			0				0		3	4	0,00021	13,8			0		26464	MEDTR
13T545	Uncharacterized protein			0				0		3	4	0,00021	13,8			0		26470	MEDTR
A0A2060000	Putativo sovaranonin III shamposultransforaso			0				0			4	0.00021	6.2			0		52576	MACOTO

		NCR120 S	P, teljes	peptidszám	: 753	NCR216 S	SP, teljes	peptidszám	: 527	NCR 247	6P, teljes	peptidszám:	1184	NCR252 S	P, teljes j	peptidszám	: 562		
UniProt	Fehérie neve	Egyedi	Peptid-	Relatív	% Lefed.	Egyedi	Peptid-	Relatív	% Lefed.	Egyedi	Peptid-	Relatív	% Lefed.	Egyedi	Peptid-	Relatív	% Lefed.	Fehérje	Fai
azonosító		peptid	szám	peptidsz		peptid	szám	peptidsz.		peptid	szám	peptidsz		peptid	szám	peptidsz		MW	-
G7JQX3	Putative soyasapogenol B glucuronide galactosyltransferase			0				0		3	4	0,00021	9			0		56857	MEDTR
Q8LKW8	Calmodulin-like protein 1			0				0		1	4	0,00021	6,1 7.4			0		20122	MEDTR
G718F9	Metnyitnioribose kinase Pathogenesis-related protein bet V I family protein			0				0		2	3	0.00016	18.4			0		4/62/	MEDTR
G71712	Branched-chain-amino-acid aminot ransferase-like protein			0				0		3	3	0,00016	8,1			0		68007	MEDTR
G7JKH0	Acyl-protein thioesterase, putative			0				0		3	3	0,00016	27,4			0		23266	MEDTR
A0A072UBU6	Phosphoglucan, water dikinase			0				0		3	3	0,00016	6,2			0		132673	MEDTR
A0A396H865	Putative EF-hand domain pair protein			0				0		3	3	0,00016	8,5			0		62296	MEDTR
A0A396I820	Putative NUDIX hydrolase domain-containing protein			0				0		3	3	0,00016	13,5			0		33586	MEDTR
A0A396JXH1	Glycosyltransferase			0				0		2	3	0,00016	5,5			0		56853	MEDTR
A0A072VPY3	Glycosyltransterase			0				0		2	3	0,00016	6,3			0		53336	MEDTR
A0A396II 41	Putative transcription factor interactor and regulator CCHC/Zn) family			ō				0		2	3	0.00016	1.5			0		237369	MEDTR
A0A072VEC7	Cytosolic Fe-S cluster assembly factor NUBP1-like protein			0				0		2	3	0,00016	12,3			0		33264	MEDTR
G7IWS3	Actin-related protein ARP4			0				0		3	3	0,00016	13,5			0		39792	MEDTR
B7FKX2	Putative UDP-glucuronate decarboxylase	5	7	0,00049	22,5	3	5	0,0004	10,8	1	2	0,00011	3,1	5	7	0,00054	15,1	39606	MEDTR
G7JXJ7	Papain family cysteine protease	2	6	0,00042	13,4	2	4	0,00032	13,4	2	2	0,00011	13,4	2	4	0,00031	13,4	37933	MEDTR
A0A072TFU7	60S ribosomal protein L37a-2	1	2	0,00014	9,2	1	2	0,00016	9,2	1	2	0,00011	9,2	1	3	0,00023	9,2	19746	MEDTR
A0A072U7F9	Histidinol-phosphate aminotransferase	2	2	0,00014	10,2	1	1	8E-05	5,7	1	2	0,00011	5	2	2	0,00015	11,/	42873	MEDTR
	mkna-decapping enzyme-like protein	1	1	72-05	4,9			0		1	2	0.00011	48	1	2	0.00015	48	38960	MEDTR
G7K6I0	ADP-ribosylation factor-like protein A1B	2	2	0,00014	12,6	2	2	0,00016	16,8	1	2	0,00011	3,2	1	1	7,7E-05	9,5	21421	MEDTR
A0A072VC41	NAD(P)H-hydrate epimerase	2	2	0,00014	5,7	1	1	8E-05	3,2	2	2	0,00011	6,8	1	1	7,7E-05	3,2	59293	MEDTR
A0A396H4H8	Putative acetateCoA ligase	1	1	7E-05	4,1	1	1	8E-05	4,1	2	2	0,00011	4,5	1	1	7,7E-05	4,1	84055	MEDTR
B7FLH3	Defective in cullin neddylation protein			0				0		2	2	0,00011	7,5	1	1	7,7E-05	6,6	26288	MEDTR
A0A396GQ06	Putative transcription factor WD40-like family	1	2	0,00014	2,7	1	1	8E-05	3,7	2	2	0,00011	6,4			0		81826	MEDTR
A0A072UZ07	Amine oxidase	2	2	0,00014	3,8	1	1	8E-05	1,7	2	2	0,00011	4,4			0		79003	MEDTR
B/FJDU	Uncharacterized protein	1	1	75.05	4,2	1	1	8E-05	4,2	2	2	0,00011	7,5 5 7			0		29073	MEDTR
1351 K9	Incharacterized protein	1	1	7E-05	3.9	1	1	8E-05	3.9	2	2	0.00011	6.8			0		30935	MEDTR
G7L4U0	Transcription elongation factor spt6			0		1	1	8E-05	0,8	2	2	0,00011	1,7			0		186335	MEDTR
G7ZYG6	Putative sec1-like protein	1	1	7E-05	3,4	1		0		2	2	0,00011	4,3			0		69411	MEDTR
G7JP72	Putative transcription factor interactor and regulator LisH family	1	1	7E-05	4,3	1		0		2	2	0,00011	6,4			0		52622	MEDTR
Q1RSI1	Intracellular chloride channel			0		1		0		3	3	0,00016	13,9			0		26301	MEDTR
A0A072U6I0	Putative Band 7 domain-containing protein			0				0		2	3	0,00016	10,5			0		31349	MEDTR
G7J833	Transmembrane 9 superfamily member			0				0		2	3	0,00016	3,6			0		74861	MEDTR
G/IB84	Myo28B1, putative			0				0		2	3	0,00016	10,8			0		33837	MEDIR
A0A072T101	Importin 9			ō				0		3	3	0.00016	5.1			0		113374	MEDTR
G7IK46	NAD(P)H:quinone oxidoreductase. type IV protein			0				0		2	3	0,00016	30,3			0		16373	MEDTR
A2Q3W4	Dihydroflavonol 4-reductase-like protein			0				0		3	3	0,00016	10,1			0		36002	MEDTR
A0A396H006	Putative soyasapogenol B glucuronide galactosyltransferase			Ō				0		2	3	0,00016	5,9			0		51938	MEDTR
A0A396H5Y4	Putative soyasapogenol B glucuronide galactosyltransferase			0				0		2	3	0,00016	5,5			0		55625	MEDTR
A0A396H6H3	Putative soyasapogenol B glucuronide galactosyltransferase			0				0		2	3	0,00016	8,2			0		37226	MEDTR
A0A396H6J4	Putative soyasapogenol B glucuronide galactosyltransferase			0				0		2	3	0,00016	5,4			0		57585	MEDTR
D2D581	GT1			0				0		2	3	0,00016	5,4			0		56344	MEDTR
G7KU58	Putative soyasapogenol B glucuronide galactosyltransferase			0				0		2	3	0,00016	5,4			0		56254	MEDIR
G7KU80	UDP-glucosyltransferase family protein			0				0		2	3	0,00016	5,6			0		53944	MEDTR
G7KV02	UDP-glucosyltransferase family protein			0				0		2	3	0,00016	5,4			0		56805	MEDTR
G7KV03	Putative soyasapogenol B glucuronide galactosyltransferase			Ō				0		2	3	0,00016	5,4			0		57014	MEDTR
G7KV11	UDP-glucosyltransferase family protein			0				0		2	3	0,00016	5,4			0		57612	MEDTR
G7LGJ8	Calnexin 2			0				0		1	3	0,00016	5,6			0		61835	MEDTR
G7ZYS7	AMMECR 1 family protein			0				0		3	3	0,00016	16,1			0		23799	MEDTR
A0A072VK55	Condensation domain protein			0				0		2	3	0,00016	5,3			0		51960	MEDTR
G7IS81	Cinnamyl alcohol debydrogenaseJike protein			ō				0		3	3	0.00016	14.5			0		44321	MEDTR
135RI9	DNA-directed RNA polymerase I, II			0				0		3	3	0,00016	21,4			0		16813	MEDTR
B7FKG7	Putative HAD-like domain-containing protein			0				0		2	3	0,00016	6			0		30219	MEDTR
G7KBW0	Adenylosuccinate lyase			0				0		2	2	0,00011	9,2			0		53970	MEDTR
G7LBU3	Malic enzyme			0				0		2	2	0,00011	7,8			0		66664	MEDTR
B7FM23	Glycosyltransferase			0				0		2	2	0,00011	4,3			0		53599	MEDTR
G7L424	Glycosyltransferase			0				0		2	2	0,00011	4,3			0		53643	MEDTR
A0A07211FH7	Brefeldin A-inhibited guanine nucleotide-exchange protein			0		1		0		2	2	0,00011	1,7			0		133678	MEDTR
G7KFH4	Brefeldin A-inhibited guanine nucleotide-exchange protein			0		1		0		2	2	0,00011	1,2			0		188777	MEDTR
A0A072VLQ3	Hyoscyamine 6-dioxygenase-like protein			0		1		0		2	2	0,00011	12,6			0		39058	MEDTR
A0A072UM06	4-hydroxy-3-methylbut-2-enyl diphosphate reductase			0		1		0		2	2	0,00011	8,7			0		50944	MEDTR
D2D583	Glycosyltransferase			0		1		0		2	2	0,00011	8,7			0		55221	MEDTR
A0A072U2F7	Putative alpha, alpha-trehalose-phosphate synthase (UDP-forming), Trehalose	-phosphat	ase	0		1		0		2	2	0,00011	3			0		96661	MEDTR
G7L1W8	Calcium-binding EF hand protein, putative			0		1		0		2	2	0,00011	15,6			0		36895	MEDTR
G7K9F3	Anonomete synthise Methylesterase			0		1		0		2	2	0.00011	9,2 11 8			0		4/522	MEDTR
G7L0L8	AP complex subunit sigma			0		1		0		2	2	0,00011	30,8			0		16890	MEDTR
A0A072VDE0	Mitogen-activated protein kinase			0		1		0		2	2	0,00011	5,9			0		42668	MEDTR
Q0GXX6	Auxin conjugate hydrolase			Ō		1		0		2	2	0,00011	10,5			0		49044	MEDTR
Q0GXX4	Auxin conjugate hydrolase			0		1		0		1	2	0,00011	6,7			0		49141	MEDTR
A0A396H0E8	Putative hexosyltransferase			0				0		2	2	0,00011	6			0		51387	MEDTR
A0A072U4P0	Exportin-T-like protein			0		1		0		2	2	0,00011	5,1			0		112570	MEDTR
AUA396G535	Putative C2 domain-containing protein			0				0		2	2	0,00011	2,5			0		234873	MEDTR
A0A072VCH8	Signal peptide peptidase-like protein			0		1		0		2	2	0,00011	8,5			0		34292	MEDTR
A0A072UMS4	UPF0533 C5orf44-like protein			0		1		0		1	2	0,00011	4,5			0		46697	MEDTR
A0A072UG57	Coiled-coil vesicle tethering-like protein, putative			Ō				0		2	2	0,00011	3,2			0		104823	MEDTR
A0A072VGX0	Fe-S metabolism associated protein SufE			0		1		0		2	2	0,00011	11,6			0		38984	MEDTR
G7IE27	2-hydroxyisoflavanone dehydratase			0		1		0		2	2	0,00011	8			0		35940	MEDTR
B7FJ37	Uncharacterized protein (Fragment)			0		1		0		2	2	0,00011	11,9			0		23846	MEDTR
AUA396IGM6	Putative acid-thiol ligase			U N		1		U N		2	2	0,00011	6,1 5 7			U N		60706	MEDTR
A0A072VDQ/	Putative transcription factor WD40-like family			0		1		n		2	2	0.00011	5,7 6,4			n		42020	MEDTR
A0A072UDT4	Serine/threonine-protein phosphatase			ō		1		0		1	2	0,00011	8,8			0		25094	MEDTR
A0A072V5N7	20G-Fe(II) oxygenase family oxidoreductase			0		1		0		2	2	0,00011	11,3			0		29079	MEDTR
A0A072U1Q0	Insulin-degrading enzyme			0		1		0		2	2	0,00011	3,5			0		110888	MEDTR
A0A072TNF5	NAD(P)-binding rossmann-fold protein			0		1		0		2	2	0,00011	12,4			0		32415	MEDTR
A0A072UYD8	Prephenate dehydrogenase			0		1		0		2	2	0,00011	11,7			0		22871	MEDTR
A0A072VNX4	AcyI-CoA-binding domain protein			0		1		0		2	2	0,00011	7,7 6 °			0		55827	MEDTR
AUAU/2UH04 G71483	unyurupyrimidinase Pyriivate dehydrogenase E1 component subunit beta			0		1		n		1	2	0.00011	4,2			n		54/37 43870	MEDTR
A0A072UGM4	PHD finger alfin-like protein			ō		1		0		2	2	0,00011	12,5			0		27177	MEDTR
G7JVM7	Glutamyl-tRNA reductase-binding protein			0		1		0		2	2	0,00011	14,9			0		36034	MEDTR

		NCR120 SI	P, teljes	peptidszám	: 753	NCR216 S	P, teljes	peptidszám	: 527	NCR 247 S	SP, teljes	peptidszám	: 1184	NCR252 S	P, teljes	peptidszám	562		
UniProt	Fehérie neve	Egyedi	Peptid-	Relatív	% Lefed.	Egyedi	Peptid-	Relatív	% Lefed.	Egyedi	Peptid-	Relatív	% Lefed.	Egyedi	Peptid-	Relatív	% Lefed.	Fehérje	Fai
azonosító		peptid	szám	peptidsz		peptid	szám	peptidsz.		peptid	szám	peptidsz		peptid	szám	peptidsz		MW	<u> </u>
G7IE87	E3 ubiquitin-protein ligase RING1-like protein			0				0		1	2	0,00011	4,8			0		34492	MEDTR
Q2HTB3	Caffeic acid O-methyltransferase			0				0		1	2	0,00011	4,1			0		40316	MEDTR
A2Q1K4 A0A072V279	HEAT			0				0		1	2	0.00011	6.9			0		188348	MEDTR
B7FHX7	Uncharacterized protein			0				0		2	2	0,00011	11,3			0		23366	MEDTR
G7JJ67	Calmodulin-domain kinase CDPK protein			Ö				0		2	2	0,00011	6,5			Ö		60559	MEDTR
A0A072U5G1	Indole-3-acetic acid-amido synthetase			0				0		1	2	0,00011	4,1			0		47301	MEDTR
G7JYR7	DNA-directed RNA polymerase subunit			0				0		2	2	0,00011	2,3			0		204700	MEDTR
G7JU02	Peptide-methionine (R)-S-oxide reductase			0				0		2	2	0,00011	13,8			0		20496	MEDTR
I3T2Q3	60S ribosomal L35-like protein			0				0		1	2	0,00011	10,7			0		14077	MEDTR
G7KYN7	MAP kinase kinase kinase			0				0		2	2	0,00011	5,6			0		72152	MEDTR
G7J061	ATB synthese subunit d, mitochondrial			0				0		2	2	0.00011	14.7			0		42390	MEDTR
A0A072TMX8	Putative aminoacyltransferase. E1 ubiquitin-activating enzyme			o				0		2	2	0,00011	6,5			0		20385	MEDTR
Q705X4	Putative Rho protein GDP-dissociation inhibitor			0				0		2	2	0,00011	11			0		24721	MEDTR
G7K5M8	Pyruvate dehydrogenase E1 component subunit alpha	6	32	0,00226	16,7	4	13	0,00104	12,2			0		4	23	0,00177	8,9	43397	MEDTR
I3T9D4	Pyruvate dehydrogenase E1 component subunit alpha	5	30	0,00211	12,4	4	13	0,00104	12,2			0		4	23	0,00177	8,9	43352	MEDTR
G7JWW6	Alpha-1,4-glucan-protein synthase [UDP-forming]	12	18	0,00127	57,5	7	9	0,00072	31,5			0		9	14	0,00108	45	41198	MEDTR
B7FH42	Mitochondrial fission 1 protein	3	5	0,00035	22,2	6	7	0,00056	38,6			0		5	8	0,00062	23,4	18521	MEDTR
A0A072TYW9	Acyl-(acyl-carrier-protein) hydrolase			0	0.4	7		0	20.0			0	26	1	8	0,00062	3,3	41777	MEDTR
A0A072TPZ0	ARF GTPase activator	3	4	0,00028	9,4	6	8	0,00064	20,8	1	1	5,3E-U5	2,6	5	7	0,00054	13,9	50849	MEDTR
671824	Plant/E15D2-27 protein	4	7	0.00049	11	4	9	0.00072	11			0		4	6	0.00034	11	97985	MEDTR
G713K1	Putative hydro-lyase	2	5	0,00035	20	2	4	0,00032	20			0		3	6	0,00046	29,6	13670	MEDTR
G7U13	Proteasome subunit alpha type	6	9	0,00063	31,3	2	3	0,00024	14,2			0		4	6	0,00046	26,4	27252	MEDTR
G7K8J9	Perchloric acid soluble translation inhibitor-like protein	4	8	0,00056	26,2	4	6	0,00048	26,2			0		4	5	0,00039	26,2	20404	MEDTR
G7J5I9	Proteasome subunit beta	4	6	0,00042	30,3	4	6	0,00048	30,3			0		4	5	0,00039	30,3	29111	MEDTR
A0A072UDK2	RNA-binding (RRM/RBD/RNP motif) family protein	3	5	0,00035	13,1	2	4	0,00032	6,2	1	1	5,3E-05	7	3	5	0,00039	13,1	41780	MEDTR
B7FLC2	Uncharacterized protein	3	3	0,00021	9,8	3	4	0,00032	7,1			0		4	5	0,00039	9,8	35815	MEDTR
B7FK83	Uncharacterized protein	3	5	0,00035	21,5	2	2	0,00016	17,4			0		3	5	0,00039	21,5	18498	MEDTR
G/LDG5	Malic enzyme Putative cmall best check protein UCD20	2	2	0,00014	5,9 21 =	1	2	0,00016	4 29.7			0		3	5	0.00039	8 21 5	70023	MEDTR
AUAU/21L89 G7ITV4	Pularive small neat snock protein HSP20	5	47	0,00028	21,5	3	3	0,0004	9.4			0		4	4	0,00031	17.6	23377	MEDTP
G7INC4	Haloacid debalogenase like hydrolase domain protein	4	5	0.00035	29.2	3	4	0.00032	15			0		3	4	0.00031	16.2	28732	MEDTR
A0A072TM16	Nuclear RNA-binding-like protein	3	5	0,00035	20,1	2	3	0,00024	11,8			0		2	4	0,00031	11,8	39386	MEDTR
G7JLW1	Aspartate aminotransferase	2	4	0,00028	30,9	1	2	0,00016	30,9			0		3	4	0,00031	49,4	9315	MEDTR
G7J7T5	NADH ubiquinone oxidoreductase B22-like subunit	2	3	0,00021	25,6	2	2	0,00016	25,6			0		2	4	0,00031	25,6	13729	MEDTR
A0A396IB23	Ubiquinone biosynthesis monooxygenase COQ6, mitochondrial	2	2	0,00014	3,8	1	1	8E-05	1,9			0		4	4	0,00031	7,1	114868	MEDTR
G7LHF7	Putative chaperonin Cpn60/TCP-1 family, groEL-like apical domain, groEL-like	4	7	0,00049	11,8	5	5	0,0004	14,4			0		3	3	0,00023	7,8	61669	MEDTR
A0A396H9G1	Uncharacterized protein	2	4	0,00028	4,9	2	4	0,00032	4,9			0		2	3	0,00023	4,9	21632	MEDTR
G7J2E7	Biotin/lipoyl attachment domain protein	2	3	0,00021	15	3	4	0,00032	19			0		2	3	0,00023	15	29268	MEDTR
G7I348	Copper chaperone	2	2	0,00014	24,1	3	4	0,00032	35,4			0		3	3	0,00023	35,4 9.3	8429	MEDIR
G717H0	Cytosol aminopeptidase family protein Malic enzyme	2	2	0.00014	4.4	2	3	0.00024	4.4			0		2	3	0.00023	4.4	65337	MEDTR
A0A072VPE6	20G-Fe(II) oxygenase family oxidoreductase	3	4	0.00028	8.6	2	2	0.00016	5.9			0		2	3	0.00023	5.9	58229	MEDTR
B7FID7	Polyadenylate-binding protein II	2	2	0,00014	23,6	2	2	0,00016	23,6			0		2	3	0,00023	23,6	24759	MEDTR
G7KEK0	DUF1296 family protein	1	2	0,00014	1,9	1	2	0,00016	1,9			0		2	3	0,00023	4	81288	MEDTR
G7IBA6	Putative K domain-containing protein	2	2	0,00014	4,5	1	1	8E-05	2,6			0		2	3	0,00023	4,5	65468	MEDTR
A2Q2Y7	Pyrroline-5-carboxylate reductase	2	2	0,00014	19,5	3	4	0,00032	25,7			0		2	2	0,00015	19,5	31700	MEDTR
B7FJE0	Uncharacterized protein (Fragment)			0		3	4	0,00032	14,9			0		2	2	0,00015	14	26762	MEDTR
G7IA30	Putative transcription factor C3H family	2	,	0 00021	5.6	3	4	0,00032	12,2			0		2	2	0,00015	11,5	33067	MEDTR
B7FNC7	Histidinol dehydrogenase, chloroplastic	2	3	0,00021	5,6	2	3	0,00024	5,6			0		1	2	0,00015	2,7	52045	MEDTR
A0A072VIVISS	Putative aretyltransferase A auxiliary subunit	2	2	0.00014	4,5	2	3	0.00024	5.8			0		2	2	0.00015	4,3 7.7	47916	MEDTR
G7K3J9	DNA-binding bromodomain protein			0	.,.	2	3	0,00024	2,6			0		2	2	0,00015	2,6	106227	MEDTR
G7KE04	MLP3.11 protein			0		2	3	0,00024	4,6			0		2	2	0,00015	4,6	91818	MEDTR
G7L3G3	Endomembrane-like protein	2	4	0,00028	3,1	2	2	0,00016	3,1	1	1	5,3E-05	3,1	1	2	0,00015	3,1	44215	MEDTR
A0A072VFS3	ENTH/VHS/GAT family protein	3	3	0,00021	8,2	2	2	0,00016	6,1			0		2	2	0,00015	4,3	72832	MEDTR
A0A072V220	ENTH/VHS/GAT family protein	2	2	0,00014	8,9	2	2	0,00016	8,9			0		1	2	0,00015	3,7	55442	MEDTR
G7L7L2	Microtubule-associated protein 70-1	2	2	0,00014	4,4	2	2	0,00016	4,1			0		2	2	0,00015	2,8	68628	MEDTR
G7K0X2	Mitotic checkpoint protein BUB3	1	1	75-05	3,2	2	2	0,00016	7,3	1	1	5,3E-U5	3,2	2	2	0,00015	7,3	38063	MEDTR
G7IPE4	Complex 1 protein, LYR family protein	1	1	7E-05	24,7	2	2	0,00016	41 5			0		1	2	0,00015	50,0	12769	MEDTR
A0A072U5V1	Nucleoside diphosphate kinase	-	-	0	55	2	2	0.00016	18.4	1	1	5.3E-05	3.8	2	2	0.00015	18.4	25401	MEDTR
G7J530	Argininosuccinate lyase	4	4	0,00028	16,1	1	1	8E-05	3,7			0		2	2	0,00015	7,9	57462	MEDTR
A0A396JTP5	Pectin acetylesterase	3	4	0,00028	12,3	1	1	8E-05	5,5			0		2	2	0,00015	8,7	46217	MEDTR
G7J268	RuvB-like helicase	3	3	0,00021	8,8	1	1	8E-05	2,8			0		2	2	0,00015	5,6	51181	MEDTR
A0A072V8K4	Topoisomerase II-associated protein PAT1, putative	2	3	0,00021	3,5	1	1	8E-05	2,7			0		2	2	0,00015	5	91644	MEDTR
A0A396J390	Putative glucose-1-phosphate adenylyltransferase	2	2	0,00014	15,5	1	1	8E-05	9,9	1	1	5,3E-05	9,9	2	2	0,00015	15,5	17823	MEDTR
G7ITU5	N-carbamoylputrescine amidohydrolase, putative	1	2	0,00014	9,3	1	1	8E-05	9,3			0		1	2	0,00015	9,3	33815	MEDTR
G/1/63	Putative orotate phosphoribosyltransferase, Orotidine-5'-phosphate decarbo	2	3	0,00021	o,3			0		1	1	5,3E-05	4,4	2	2	0,00015	ь,3 °	51450	MEDTR
B/FIG5	Uncharacterized protein	3	3	0 00021	8.1	2	3	0 00024	6.2	1	1	5,3E-U5	3,1	2	1	7 75-05	8	46536	MEDTR
A0A072TKI 2	Eukarvotic translation initiation factor 4G-like protein	3	5	0,00035	3.9	2	2	0,00016	3			0		1	1	7,7E-05	1,1	164307	MEDTR
G7J0N6	Malonyl CoA-acyl carrier transacylase	2	3	0,00021	9,5	2	2	0,00016	9,5			0		1	1	7,7E-05	6,1	40595	MEDTR
B7FKG0	Putative 50S ribosomal protein L30e	2	2	0,00014	40,6	2	2	0,00016	48,4			0		1	1	7,7E-05	18,8	13850	MEDTR
A0A072U3E2	Zinc finger C-x8-C-x5-C-x3-H type family protein	1	2	0,00014	7,4	2	2	0,00016	15,6			0		1	1	7,7E-05	7,4	24581	MEDTR
G7IEE2	Small nuclear ribonucleoprotein Sm D1	1	2	0,00014	17,5	1	2	0,00016	17,5			0		1	1	7,7E-05	17,5	12636	MEDTR
A0A072U3I7	Heterogeneous nuclear ribonucleoprotein	1	2	0,00014	5,3	1	2	0,00016	5,3			0		1	1	7,7E-05	5,3	27438	MEDTR
A0A396H5E4	Uncharacterized protein	1	2	0,00014	9,9	1	2	0,00016	9,9			0		1	1	7,7E-05	9,9	22936	MEDTR
B/FGN8	Putative zinc-binding ribosomal protein	2	3	0,00021	9	2	5	0,0004	9			0				0		17710	MEDTR
67K090	Ununanacter ized protein	2	3	0,00021	9	2	5	0,0004	9			0				0		17669	MEDTO
I3STH0	Uncharacterized protein	2	3	0,00021	9	2	5	0,0004	9			0				0		17696	MEDTR
B7FMB4	40S ribosomal protein S11-1	2	5	0,00035	15	2	4	0,00032	15	1	1	- 5,3E-05	6,9			0		17815	MEDTR
G7IMF7	FBD protein	1	3	0,00021	7,5	1	3	0,00024	7,5			0				0		15330	MEDTR
A0A396K2V7	Putative ribosomal protein L22e	2	2	0,00014	31,6	2	3	0,00024	31,6			0				Ö		8859	MEDTR
G7JWB3	Putative K domain-containing protein	2	2	0,00014	6,5	3	3	0,00024	8,9			0				0		63863	MEDTR
G7JFL4	ATP phosphoribosyltransferase catalytic subunit	3	4	0,00028	18	2	2	0,00016	8,8			0				0		40969	MEDTR
G7IR44	ARF GTPase activator	2	3	0,00021	3,2	2	2	0,00016	4,4	1	1	5,3E-05	2,5			0		51615	MEDTR
I3SFE3	Proteasome subunit alpha type	2	3	0,00021	17	1	2	0,00016	8,1			0				0		25578	MEDTR
AUA396IQW2	Putative chromatin target of PRM11 protein	2	3	0,00021	77 2 70,9	1	2	0,00016	10,9 24 7			0				0		22817	MEDTR
A0A39611N4	Putative phosphonyruvate bydratase	2	2	0.00014	14.6	2	2	0.00016	14.6	1	1	5.3F-05	7.1			n		30469	MEDTR
G7J956	Lariat debranching enzyme	1	2	0,00014	3,4	1	1	8E-05	3,4	1	1	5,3E-05	3,4			0		47335	MEDTR
G7JPU7	Peptide/nitrate transporter	1	6	0,00042	3,2	1 ⁻	-	0	-, '	1	-	0	-, •			-		67151	MEDTR
A0A072UFA0	Uncharacterized protein	1	5	0,00035	8,5			0				0				0		9705	MEDTR
A0A396HDC9	Putative cullin	2	3	0,00021	8,7			0		1	1	5,3E-05	6,4			Ō		40788	MEDTR
A0A396IGS6	UDP-glucose 6-dehydrogenase	2	2	0,00014	4			0		1	1	5,3E-05	2,1			0		52860	MEDTR
G7JHH3	UDP-glucose 6-dehydrogenase	2	2	0,00014	4			0		1	1	5,3E-05	2,1	l		0		52846	MEDTR

		NCR120 SP, teljes peptidszám: 753 NCR2		NCR216 S	P, teljes	peptidszám:	: 527	NCR 247 S	P, teljes	peptidszám	: 1184	NCR252 S	P, teljes	peptidszám	: 562				
UniProt	Fehérje neve	Egyedi	Peptid-	Relatív	% Lefed.	Egyedi	Peptid-	Relatív	% Lefed.	Egyedi	Peptid-	Relatív	% Lefed.	Egyedi	Peptid-	Relatív	% Lefed.	Fehérje	Faj
azonosito		peptid	szam	peptidsz		peptid	szam	peptidsz.		peptid	szam	peptidsz	2.5	peptid	szam	peptidsz		MW	
A0A072UZG5	Methyltransferase/nucleic acid-binding protein	2	2	0,00014	6,6			0		1	1	5,3E-05	2,5			0		54843	MEDTR
1314L2	Putative PH domain-containing protein			0				0		1	2	0,00011	5,3			0		24514	MEDIR
A0A0720RK4	Phosphomosicide phosphalase SAC4			0				0		1	2	0.00011	2,4			0		92162	MEDTR
A0A3961767	Putative aligometric Golgi complex subunit 1 protein			0				0		2	2	0,00011	2,7			0		117895	MEDTR
A0A072U1Y7	Acyl-CoA dehydrogenase			0				0		2	2	0,00011	6			0		47623	MEDTR
A0A072VJT3	Calcineurin-like metallo-phosphoesterase superfamily protein			0				0		1	2	0,00011	9,3			0		34846	MEDTR
A0A072ULU5	Uncharacterized protein			0				0		1	2	0,00011	14,3			0		11097	MEDTR
Q2HUL4	Putative xanthoxin dehydrogenase			0				0		1	2	0,00011	8,3			0		31778	MEDTR
A0A072UKP4	NADH-ubiquinone oxidoreductase, putative			0				0		2	2	0,00011	17,8			0		30755	MEDTR
A0A072UGD4	Fatty acyl-CoA synthetase family protein			0				0		2	2	0,00011	5,4			0		49232	MEDTR
AUAU/2UWH4	Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16			0				0		2	2	0,00011	1,9			0		12143/	MEDIR
G/JV66	S-oxoprolinase			0				0		2	2	0,00011	3,6			0		158087	MEDIR
A0A0720AN0	IRR and NB-ARC domain disease resistance protein			0				0		1	2	0.00011	3.2			0		42561	MEDTR
G8A207	Carboxy-terminal region remorin	1	1	7E-05	14,4			0				0	.,	2	3	0,00023	21,1	23075	MEDTR
A0A396H101	Uncharacterized protein	1	1	7E-05	1,2	1	2	0,00016	1,2			0		1	2	0,00015	1,2	115789	MEDTR
G7L6Q5	Coiled-coil vesicle tethering-like protein, putative			0		2	2	0,00016	3,4			0		2	2	0,00015	2,8	84943	MEDTR
I3SWQ0	ADP-ribosylation factor-like protein A1D			0		2	2	0,00016	18,2			0		2	2	0,00015	18,2	20257	MEDTR
A0A396J467	Peroxidase	1	1	7E-05	2,8	1	1	8E-05	2,8			0		2	2	0,00015	5,2	39121	MEDTR
A4UN78	Peroxidase	1	1	7E-05	2,8	1	1	8E-05	2,8			0		2	2	0,00015	5,3	39035	MEDTR
G7IJU0	Peroxidase	1	1	7E-05	2,8	1	1	8E-05	2,8			0		2	2	0,00015	5,4	38057	MEDTR
G7IJU2	Peroxidase	1	1	75-05	2,8	1	1	8E-05	2,8			0		2	2	0,00015	5,4	38222	MEDTR
135KZ1	Peroxidase	1	1	76-05	2,0	1	1	85-05	2,0			0		2	2	0,00015	3,4 4.5	38085	MEDTR
R7FHS3	Dnal beat shork family protein	1	1	7E-05	5.8	1	1	8E-05	5.8			0		1	2	0.00015	5.8	38054	MEDTR
A0A072UUE3	DEAD-box ATP-dependent RNA helicase			0	.,.	1	1	8E-05	1,7			0		2	2	0,00015	4	81819	MEDTR
A0A072U6Y0	Alpha-1,4-glucan-protein synthase [UDP-forming]-like protein	2	2	0,00014	4,6			0				0		1	2	0,00015	2,6	39623	MEDTR
A0A072VAN8	Hydroxyacylglutathione hydrolase	2	2	0,00014	8,8			0				0		2	2	0,00015	10,9	31435	MEDTR
G7KXA6	Cytochrome b-c1 complex subunit Rieske, mitochondrial	1	1	7E-05	7			0				0		2	2	0,00015	12,8	30228	MEDTR
G7J7J7	RuvB-like helicase			0				0				0		2	2	0,00015	6,1	50193	MEDTR
A0A396GLP6	Putative alpha/Beta hydrolase			0				0				0		2	2	0,00015	4,6	75916	MEDTR
G7I4A8	Nuclear movement family protein			0				0				0		2	2	0,00015	8,5	32971	MEDTR
G7KGC8	Putative alpha/Beta hydrolase			0				0				0		2	2	0,00015	4,9	72912	MEDTR
G7JCA9	N-acetyigiutamate kinase			0				0				0		1	2	0,00015	5.7	10221	MEDTR
G71U73	DEAD-box ATP-dependent RNA belicase 29			0				0				0		1	2	0.00015	2.4	88224	MEDTR
G7JRR7	ADP-ribosylation factor-like protein A1D	1	1	7E-05	9,2	2	2	0,00016	16,4			0		1	1	7,7E-05	9,2	21926	MEDTR
A0A396IA52	Putative shikimate dehydrogenase, 3-dehydroquinate dehydratase	1	1	7E-05	4	1	2	0,00016	4			0		1	1	7,7E-05	4	54616	MEDTR
G7IKZ8	Complex 1 protein, LYR family protein	1	1	7E-05	12,6	1	2	0,00016	12,6			0		1	1	7,7E-05	12,6	11093	MEDTR
A0A072TMN9	Plant/MDC16-11 protein			0		2	2	0,00016	6,7			0		1	1	7,7E-05	2,3	108928	MEDTR
B7FI75	Uncharacterized protein			0		2	2	0,00016	19,5			0		1	1	7,7E-05	5,2	23314	MEDTR
G7K9K8	Putative transcription regulator IWS1 family			0		1	2	0,00016	5,6			0		1	1	7,7E-05	5,6	56047	MEDTR
A0A072UK01	CCR4-NOT transcription complex subunit 2			0		2	2	0,00016	5,3			0		1	1	7,7E-05	2,4	70090	MEDTR
G7JUB2	OSBP(Oxysterol-binding protein)-related protein 4C			0		2	2	0,00016	10.4			0		1	1	7,7E-U5	4,8	44050	MEDTR
Q2H1M1 G7I7US	Histone-told/IFIID-IAF/NF-Y			0		2	2	0.00016	6.2			0		1	1	7,7E-05	3,5	2//48	MEDTR
G715K7	Proteasome inhibitor-like protein, putative	2	2	0.00014	14.2	1	1	8E-05	5.2			0		1	1	7.7E-05	9.1	32718	MEDTR
G7JW33	405 ribosomal protein S30	2	2	0,00014	17,7	1	1	8E-05	16,1			0		1	1	7,7E-05	16,1	6931	MEDTR
G7JQG4	Proteasome subunit beta	2	2	0,00014	15,1			0				0		1	1	7,7E-05	6	26287	MEDTR
G7ZWF3	Putative signal recognition particle, SRP14 subunit, signal recognition partic	2	2	0,00014	25			0				0		1	1	7,7E-05	9,2	13695	MEDTR
A0A072VQ91	Branched-chain-amino-acid aminotransferase-like protein	2	2	0,00014	8,9			0				0		1	1	7,7E-05	6,3	42472	MEDTR
G7JNS2	NAD-dependent aldehyde dehydrogenase family protein	2	2	0,00014	4,8			0				0		1	1	7,7E-05	2,4	54369	MEDTR
A0A396IDA7	Putative nucleotide-binding alpha-beta plait domain-containing protein			0		3	3	0,00024	8,6			0				0		50091	MEDTR
AUAU72U5H4	Cold acclimation specific protein			0		1	3	0.00024	9.9			0				0		12072	MEDTR
A0A072UD14	Chaperone Dnal domain protein			0		1	3	0.00024	3			0				0		61080	MEDTR
A0A072W0W5	Thiamine thiazole synthase, chloroplastic	2	2	0,00014	8,3	2	2	0,00016	8,3			0				0		37140	MEDTR
G7JF12	Thiamine thiazole synthase, chloroplastic	2	2	0,00014	8,3	2	2	0,00016	8,3			0				0		37034	MEDTR
I3T0Z3	Thiamine thiazole synthase, chloroplastic	2	2	0,00014	8,3	2	2	0,00016	8,3			0				0		37006	MEDTR
G7JT65	Cupin family protein	2	2	0,00014	17,9	2	2	0,00016	17,9			0				0		21236	MEDTR
A0A072TUT4	Phosphoribosylformylglycinamidine cyclo-ligase	1	1	7E-05	7	2	2	0,00016	15,2			0				0		37452	MEDTR
G7IHV8	BZIP transcription factor	1	1	7E-05	3	2	2	0,00016	5,4			0				0		46630	MEDTR
B/FJP8	Uncharacterized protein	1	1	/E-05	9,2	2	2	0,00016	13,2			0				0		30668	MEDTR
AUA396JEY3	ATP-dependent belicase family protein			0		1	2	0.00016	1.6			0				0		21035	MEDTR
G7IFT9	ATP-dependent filo protease proteolytic subunit	2	2	0.00014	9.7	1	1	8E-05	4			0				0		41362	MEDTR
A0A072VAC9	LRR receptor-like kinase	2	2	0,00014	3,9	1	1	8E-05	1,9			0				0		64010	MEDTR
A0A072U5I5	Eukaryotic aspartyl protease family protein	2	4	0,00028	8,5			0				0				0		52384	MEDTR
A0A072U120	2-dehydro-3-deoxyphosphooctonate aldolase	3	4	0,00028	14,1			0				0				0		31578	MEDTR
A0A072UAD3	Eukaryotic translation initiation factor 2c, putative	2	3	0,00021	2,1			0				0				0		102303	MEDTR
A0A396HDA6	Putative post-transcriptional gene silencing PAZ-Argonaute family protein	2	3	0,00021	2,1			0				0				0		101908	MEDTR
G7JZX7	Clathrin-adaptor medium chain AP-2	3	3	0,00021	10			0				0				0		49285	MEDTR
Q1RU62	Histone H4	1	3	0,00021	11,7			0				0				0		11410	MEDTR
AUAU/2UJF8	KINA recognition motif	2	3	0,00021	8,5 5 2			0				0				0		40477	MEDTR
G718H6	carboxypepcidase Small nuclear ribonucleonrotein Sm D2	2	2	0,00014	36.1			0				n				n		17/67	MEDTP
G7L4R3	Histone-lysine N-methyltransferase	2	2	0,00014	5,5			0				0				0		76980	MEDTR
A0A072U7V2	Glucose-6-phosphate 1-dehydrogenase	2	2	0,00014	4,8			0				0				0		59351	MEDTR
A0A072TW25	Ras GTPase-activating binding-like protein	2	2	0,00014	13			0				0				0		51733	MEDTR
Q40372	Peroxidase	1	2	0,00014	4,9			0				0				0		35682	MEDTR
A0A072U0Q0	Fasciclin-like arabinogalactan protein	1	2	0,00014	4,1			0				0				0		42947	MEDTR
G7K2P1	Gibberellin 2-beta-dioxygenase	1	2	0,00014	5,7			0				0				0		33256	MEDTR
G7KV99	Protein-lysine N-methyltransferase MTR_7g082910	2	2	0,00014	7,1			0				0				0		37309	MEDTR
A0A072TEN7	Putative nucleoid-associated protein YbaB/EbfC family	1	2	0,00014	5,9			0				U				U		20612	MEDTR
404072V/404	ATP-dependent (SLNAD/P)H-bydrate debydrataro	2	2	0.00014	-,0 7.5			0				0				0		2043/	MEDTR
r.unu/2V4Q4	An acpendent (prinko)(r/miyurate utilyuratese		4	0,00014	در ،			9				v				U		42212	PRICE/IR