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1. INTRODUCTION 

 

1.1. Structure of photosynthetic apparatus 

 

 The photosynthetic apparatus is located in the thylakoid membrane, the internal 

membranes of chloroplast and cyanobacteria. In algae and higher plants the thylakoid 

membrane is organized in grana and stroma regions which represent folded and outstretched 

regions of the membrane, respectively. In prokaryotes like cyanobacteria and prochlorophytes 

the thylakoid membrane is a closed membrane system located in the soluble cytosol which 

encloses an interior aqueous phase, the thylakoid lumen.  

 

Fig. 1.1. Photosynthetic apparatus in cyanobacteria (Donald A Bryant 1994) 

 

The thylakoid membrane - a unique assembly of protein, pigment and lipid molecules 

- accommodates the energy trapping and energy transduction functions. Four enzymatic 

complexes are involved in energy conversion (Fig.1.1): Photosystem II (PSII), cytochrome 

b6f complex (cyt b6f), Photosystem I (PSI) and ATP synthase.   

Both Photosystems I and II consist of a reaction center (RC) carrying redox cofactors 

of the electron transfer chain and surrounded by the light harvesting complexes. In the 

prokaryotic cyanobacteria and eukaryotic red algae, light harvesting is carried out primarily 

by a group of pigmented proteins, called phycobiliproteins, the constituents of a 

macromolecular complex called the phycobilisome (PBS). Although a PBS is composed of 
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hundreds of biliproteins and linker polypeptides, light energy absorbed anywhere within the 

particle is efficiently transferred towards a specific biliprotein, which functions as a terminal-

energy emitter and transfers the energy to a RC.  Reaction centers acting as “energy sinks” 

consist of several molecules of Chl a associated with a protein heterodimer, which bind most 

of the redox cofactors involved in the electron transport chain.  Chlorophyll molecules at the 

heart of reaction centers absorb light at different wavelengths, 680 and 700 nm and are 

referred to as P680 and P700, respectively. 

  In photosynthesis light is converted to chemical energy and this chemical energy is 

further used for the synthesis of glucose. These two phases are separated in time and in space: 

the conversion of light energy into redox energy takes place in the thylakoid membrane 

during the “light phase “, whereas the synthesis of glucose takes place in the stroma or in the 

cytosol, during the “dark reaction”.  

Once light hits the PSII, its energy is transferred to the pair of special chlorophyll 

molecules P680, which become excited. As a result, an electron is translocated from P680 

through an accessory chlorophyll and a pheophytin molecule to the tightly bound quinone 

electron acceptor, QA; this is followed by the reduction of a mobile quinone electron 

acceptor, QB. The oxidized P680 is reduced by an electron from water via the redox active 

tyrosine, Tyr-Z. Water oxidation is catalyzed by a cluster of four Mn ions, which undergo 

light-induced changes in their oxidation states, called S-states. The complex cycles through 

five S-states denoted as S0…S4 and oxygen is released during the S3→S4→S0 transition. 

After two photochemical cycles, the doubly reduced QB (QB
2-) takes up two protons from the 

stroma to form QBH2 and then it is released into the bilayer lipid to be replaced by an 

oxidized quinone (PQ) from the membrane quinone pool. PQH2 passes the electrons to the 

cyt b6f complex and then to plastocyanin (PC). PC transports the electron to PSI and reduces 

oxidized P700.  PSI, in turn, reduces NADP+ to NADPH via the action of ferredoxin and 

ferredoxin-NADP reductase. During the electron transfer reactions protons are transported 

from the stromal side of the membrane toward the lumenal side. At the same time, the 

process of water splitting also releases protons into the lumen. This creates a pH-gradient 

across the thylakoid membrane, which drives the synthesis of ATP via ATP-synthase.  

Through these processes, the light reactions of photosynthesis have trapped solar 

energy and used it to synthesize the highly energetic compounds NADPH and ATP. These 

are then transported to other parts of the cell, where they are used in the dark reactions of 

photosynthesis to reduce CO2 to carbohydrates.  
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While light is essential for photosynthesis, when absorbed in excess of the 

photosynthetic capacity it is harmful, creating high light (HL) stress that can lead to 

photodamage of the function and structure of PSII. The main mechanisms of PSII 

photoinhibition are the acceptor- and donor-side mechanisms; visible light can lead to both, 

but the main consequence of UV-B radiation is the donor-side inhibition. 

 

1.2. PSII damage 

1.2.1. Photodamage by UV-B radiation  

 

  UV-B light is an important contributor to the irradiation budget (8-9% of total solar 

radiation) but does not drive efficiently the photosynthetic process. However, due to its high 

energy content it has many negative effects on terrestrial and aquatic biosphere. Research on 

the effects of UV-B radiation is boosted by the increasing concern of the diminishing ozone 

layer and the consecutive increase in the UV flux at the Earth surface. The increase in the 

solar flux of UV-B combined with climatic changes due to the global warming are affecting 

terrestrial ecosystems of the temperate (Caldwell et al. 2007) and polar regions (Rozema et al. 

2005) and also the ecosystems of aquatic organisms (Häder et al. 2007). UV-B stress is a 

main issue for agriculture influencing the growth, yield and biomass of main crop species: 

wheat, rice, soybean (Teramura 1983; Teramura et al. 1994) and maize (Gao et al. 2004).  

  UV radiation covers the 200-400 nm region of the spectrum and is divided into three 

spectral regions: UV-C, UV-B and UV-A.  The UV-C band is defined between 200 and 280 

nm and has no biological relevance since is very efficiently filtered by the atmosphere. The 

UV-B band comprises the 280-320 nm regions and has been attributed to a large range of 

detrimental effects on biological systems. UV-A, with wavelengths between 320 and 400 nm, 

reaches the Earth surface without being absorbed by the ozone layer. The effects of UV-A 

irradiation are less damaging than those of UV-B, at the same energy dose, but new results 

point to an ameliorating effect of UV-A radiation over the UV-B induced damage through the 

activation of xanthophyl cycle and/or maintaining a constant level of β- carotene in the 

chloroplasts of irradiated plants (Joshi et al. 2007).    

  UV-B radiation is absorbed by the majority of essential biological compounds: 

nucleic acids, proteins, pigments and lipids (Stapleton 1992). High intensity UV-B radiation 

damages almost all components of the photosynthetic apparatus (reviewed by Vass et al. 

2001). Inhibition of photosynthetic activity following UV-B irradiation might be the result of 

the destruction of chloroplast ultrastructure (reviewed by Holzinger et al. 2006) or of direct 
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damage of key components of PSII such as D1 and D2 proteins (Vass 1996). Other effects of 

UV-B radiation include: loss of the photosynthetic pigments (Lutz et al. 2005), damage of the 

Rubisco enzyme (Bischof et al. 2002) and a general decrease of mRNA transcripts for 

photosynthetic complexes (Mackerness et al. 1999).  

The most UV-B susceptible parts of PSII are donor side components like the CaMn 

cluster of water oxidation (Vass et al. 1999), TyrZ and TyrD (Vass et al. 1996), but also 

quinones QA and QB from the acceptor side (Melis et al. 1992; Hideg et al. 1993). UV-B 

radiation damages the D1 and D2 proteins almost to the same extent and the repair process 

includes de novo synthesis of both subunits (Greenberg et al. 1989; Melis et al. 1992; Sass et 

al. 1997). In isolated preparations UV-B treatment promotes the degradation of D1 and D2 

proteins via non-enzymatic reactions (Friso et al. 1994a; Friso et al. 1994b; Friso et al. 1995).  

 

1.2.2. Photodamage by visible light 

 

Inactivation of electron transport by visible light can be located at the acceptor- or at 

the donor side of PSII and results in increased D1 protein turnover (Aro et al. 1993). In 

acceptor-side photoinhibition QB and the plastoquinone pool become fully reduced and it can 

produce relatively stable double-reduced QA
2- molecules. The presence of reduced QA species 

facilitates the formation of Chl triplets, which in the presence of oxygen readily react to 

produce singlet oxygen (Vass et al. 1992; Hideg et al. 1994a) that can damage the D1 protein. 

Triplet P680 can also be formed through recombination of QA
- or QB

- with the positively 

charged S2 or S3 states of the water oxidizing complex leading to singlet oxygen mediated 

damage of PSII (Keren et al. 1997; Szilárd et al. 2007). However, double reduction of QA has 

not been seen under aerobic conditions (Vass et al. 1993). Vass et al. (2007) have recently 

proposed a new form of acceptor-side hypothesis, which is based on the fact that singlet 

oxygen is produced during photoinhibition (Hideg et al. 1994a; Hideg et al. 1998; Hideg et al. 

2001; Vass et al. 2007). It is suggested that in the presence of oxygen, QA is stably reduced 

producing singlet oxygen via charge recombination reactions between Pheo- and P680+, 

which leads to the damage of PSII (Vass et al. 2007). 

In the donor-side type of photoinhibition impairment of the electron pathway between 

the CaMn cluster and P680 leads to stabilized P680+ and TyrZ+ cations, which in turn can 

oxidize the surrounding environment (Andersson et al. 2001). This type of inactivation does 

not lead to the production of singlet oxygen but hydroxyl radicals are formed (Hideg et al. 

1994b). Donor-side photoinhibition has been directly observed after chemical inactivation of 
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oxygen evolving complex (OEC) (Chen et al. 1995). Under natural conditions, where both 

visible and UV-B light occur, inhibition of PSII donor-side by UV-B radiation may trigger 

donor-side induced photoinhibition by visible light (Sicora et al. 2003). Recently it has also 

been proposed that the blue component of visible light can directly damage the CaMn cluster 

and induce donor-side type photoinhibition (Hakala et al. 2005; Ohnishi et al. 2005).  

As mentioned earlier, singlet oxygen is the main damaging species generated during 

different types of stresses and it targets especially the D1 protein. The damaged protein has to 

be removed and replaced by a newly synthesized copy. The removal of the D1 polypeptide is 

most likely triggered by a conformational change within PSII (Andersson et al. 2001).  

 

1.3. The D1 and D2 proteins 

 

The protein backbone of the PSII reaction center is consisted of a heterodimer of the 

homologous D1 and D2 subunits. D1 and D2 bind all the essential redox components of PSII 

required to transfer the electrons from manganese cluster of the water-oxidizing complex to 

the plastoquinone pool: P680 (the primary electron donor), pheophytin (the primary electron 

acceptor), the QA and QB quinone electron acceptors, as well as the redox-active Tyr-Z and 

Tyr-D amino-acid residues. It also harbors the CaMn cluster (Mn4Ca) and its cofactors (Ca2+, 

Cl-). 

D1 and D2 are integral membrane spanning proteins with five transmembrane helices. 

Their C-termini are oriented towards the lumen of the thylakoid membrane and the N-termini 

oriented toward the cytosol (Fig.1.2). The molecular mass of the D1 and D2 proteins, 

estimated from their mobility in SDS-polyacrylamide gels (Marder et al. 1987), is 32 and 34 

kDa, respectively.   

In cyanobacteria the D1 and D2 proteins are encoded by small multigene families of 

the psbA (1-5) and psbD (1-2) genes, respectively (Golden 1995). By contrast, in plants and 

eukaryotic algae, psbA exists as a single copy in the chloroplast genome. In Synechocystis  

PCC6803 there are 3 psbA genes (Williams 1988). While psbA1 is not expressed in this 

strain, psbA2 and psbA3 encode identical proteins but are differentially expressed in response 

to external stimuli like UV-B (Máté et al. 1998): the transcript from psbA2 accounts for 90% 

of the total psbA pool transcript under normal conditions (Mohamed et al. 1993) but UV-B 

exposure determines a 20-30-fold increase in the transcript pool of psbA3. 
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Figure 1.2. Crystal structure of PSII from Thermosynechococcus elongatus showing the N-

terminal region of the D1 subunit exposed at the periphery of the complex. The D1 

polypeptide chain is shown only in one of the PSII monomers in the dimer. The image is 

modeled from the coordinates determined by Ferreira et al. (2004). The first nine residues of 

D1 could not be resolved in the structure. Amino acid residues 11 to 20, forming the parallel 

helix protruding from the structure, are indicated by the arrow (Komenda et al. 2007). 

In Synechococcus sp. PCC7942 the three psbA genes encode two distinct D1 isoforms 

(Golden et al. 1986; Clarke et al. 1993a; Clarke et al. 1993b; Campbell et al. 1995). Under 

environmental stress conditions such as high light (Bustos et al. 1990; Clarke et al. 1993b), 

blue light (Tsinoremas et al. 1994), low temperature (Campbell et al. 1995; Sippola et al. 

1998), UVB (Campbell et al. 1998), or oxygen depletion (Campbell et al. 1999) psbA 

expression is altered to selectively exchange the D1:1 isoform encoded by psbA1 with the 

D1:2 isoform, encoded by psbA2 and psbA3. Mutant strains of Synechococcus PCC7942 in 

which the exchange of D1:1 to D1:2 is blocked suffer enhanced inhibition under UV-B 

(Campbell et al. 1998) showing that the two isoforms are functionally distinct. 

Further examples for light and UV dependent differential psbA regulation have been 

observed in Anabaena sp. PCC7120 (Sicora et al. 2006) and Gloeobacter violaceus PCC7421 

(Sicora et al. 2007), both having five psbA genes, which encode 3 different D1 protein 

isoforms, as well as in Thermosynechoccus elongatus, which has 3 psbA genes and 2 D1 

protein isoforms (Kós et al. 2006; Kόs et al. 2008).  
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There is a significant difference between cyanobacteria and higher plants concerning 

the regulation of the psbA genes. In plants, the D1 protein is encoded by the single copy 

plastid psbA gene and translated on thylakoid membrane-bound polysomes. Regulation of 

psbA gene is post-transcriptional at the level of translational elongation. Light, optimal 

electron transfer and availability of assembly partners are limiting factors in the translational 

elongation step of D1 protein synthesis (Zhang et al. 2002). By contrast, in cyanobacteria, the 

main regulation of D1 synthesis is at the transcriptional level, and the exchange of D1 protein 

isoforms is induced by environmental factors.  In Synechococcus PCC7942,  the involvement 

of regulatory levels other than transcription was suggested by data showing that almost no 

D1:1 proteins accumulated in thylakoid membranes after long high-light treatments or 

exposure of cells to UV-light (Campbell et al. 1998; Sippola et al. 2000), despite the presence 

of high amounts of psbA1 mRNA.  

Translation of psbA mRNAs proceeds similarly for both plants and cyanobacteria and 

begins on cytosolic ribosomes, followed by targeting of the ribosome-nascent D1 polypeptide 

chain complexes to the thylakoid membranes, where the D1 polypeptide is co-translationally 

inserted into the membrane and assembled into the PSII complex (Zhang et al. 1999). Recent 

results suggest that targeting, membrane export, and assembly of the D1 reaction center 

protein of photosystem II (PSII) might be performed by components of the cpSRP and cpSec  

pathways: cpSRP54, Alb3p, and cpSecY (components of import pathways of nuclear encoded 

proteins across the thylakoid membrane) (Nilsson et al. 1999; Zhang et al. 2001b; Ossenbuhl 

et al. 2004). Specifically, cpSRP54 was found to interact early with the nascent D1 protein 

(D1 fragments smaller than 17 kD) (Nilsson et al. 1999), whereas nascent D1 fragments 

between 17 and 25 kD were found in interaction with the translocase cpSecY (Zhang et al. 

2001a). In Synechocystis 6803 the Oxa1/Alb3p homolog is essential for membrane 

integration of the D1 precursor protein pD1 (Ossenbuhl et al. 2006). 

Although cyanobacteria usually contain only two different psbD genes, which encode 

identical D2 polypeptides their expression is also differentially regulated by light conditions. 

This has been demonstrated for Synechococcus PCC7942 as well as Synechocystis PCC6803. 

In both organisms the relative contribution of psbD1 represents the dominating transcript 

under low light conditions, which is decreased on the expense of psbD2 when the cells are 

exposed to high light (Bustos et al. 1992) or UV-B radiation (Viczián et al. 1999). The psbD 

operon of higher plant plastids is regulated transcriptionally through the activity of an 

upstream light promoter (Allison et al. 1995). In cyanobacteria the psbD gene is regulated, as 
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the psbA gene, mainly at the transcriptional level. In addition, it appears that D1 is co-

translationally assembled with other PSII polypeptides like D2 or CP47 (Zhang et al. 1999). 

In most oxygenic photoautotrophs the D1 polypeptide is synthesized with an 8 to 10 

amino acid C-terminal extension that is removed after the insertion of D1 into the PSII 

complex in order to form the mature D1 (Nixon et al. 1992). For cyanobacteria and red algae 

the extension is 16 amino acids long and is processed to the mature protein by CtpA protease 

(Anbudurai et al. 1994).  

One property unique to PSII, apart from water oxidation, is the rapid, light-induced 

turnover of D1 protein which takes place even under non-stress-light conditions with a half-

life of 20-60 minutes and speeds up with increasing light intensity. During active 

photosynthesis the D1 and, to a lesser extent, the D2 proteins are degraded and replaced by 

newly synthesized polypeptides in the PSII repair cycle. 

 

1.4. PSII repair 

 

Although PSII is damaged by visible and UV-B light, damaged PSII complexes do 

not usually accumulate due to a rapid and efficient repair mechanism that operates in the 

thylakoid membrane. Crucial steps of the repair process are (Fig.1.3.): 

- monomerization and partial disassembly of the PSII complex to allow access to the 

damaged subunits; 

- degradation of the damaged D1 and D2 proteins with the involvement of proteases; 

- signaling events leading to induction of the genes encoding the D1 and D2 proteins, 

and de novo synthesis of the proteins; 

- religation of various extrinsic proteins and the photoactivation of CaMn cluster; 

- reassembly and dimerisation of PSII complexes.  
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Fig.1.3. Model of the PSII repair cycle in Synechocystis PCC6803. A functional dimeric PSII 

complex undergoes a series of disassembly steps to allow the synchronized replacement of a 

damaged D1 subunit by a newly synthesized copy. The PSII complex is then reassembled and 

the water-oxidizing CaMn cluster photoactivated (Nixon et al. 2005). 

 

In the following section we provide  a brief description of the factors involved in the above-

mentioned steps of PSII repair.  

 

1.4.1. Proteolysis of D1 and D2 proteins  

    

  Regardless of the exact mechanism involved in photodamage of PSII, the process of 

D1 degradation is mediated by the action of specific or non-specific proteases. Identification 

of the proteases responsible for primary cleavage and secondary degradation of the D1 

protein is currently a main topic of research on photoinhibition and repair of PSII.  

  Based on studies conducted in vitro, a model has been proposed in which damaged 

D1 is removed through the action of two proteases (Adam et al. 2002). DegP2, a serine 

protease, is proposed to perform the primary cleavage within the QB-binding pocket 

(Haussuhl et al. 2001) in a GTP-dependent process (Spetea et al. 1999). After this primary 

cleavage, the breakdown products are removed by one or more members of the FtsH 

(Filamentation temperature-sensitive) protease family (Lindahl et al. 2000). However, in vivo 
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analysis of var2-2 Arabidopsis thaliana mutants which lack FtsH2 (a member of the FtsH 

family) has suggested that FtsH2 might be responsible for the primary cleavage of the D1 

protein under high-light treatment and that FtsH2 is required for the efficient turnover of the 

D1 protein and protection against photoinhibition (Bailey et al. 2002). As chloroplasts have a 

prokaryotic origin, the proteases found in higher plants have their homologues in 

cyanobacteria. In Synechocystis PCC6803, the inactivation of one FtsH2 homologue 

(Slr0228) increased the sensitivity to high-light treatment. Furthermore, FtsH/Slr0228 was 

shown to bind to PSII and to be involved in the early steps of D1 degradation (Silva et al. 

2003). FtsH2 is also involved in the heat-induced primary cleavage of the D1 protein of 

plants and cyanobacteria and the production of its corresponding fragments (Kamata et al. 

2005; Yoshioka et al. 2006). In Synechocystis PCC6803, the documented role of the FtsH2 

protease is not restricted to the selective turnover of only the D1 protein, but is also involved 

in the removal of unassembled PSII subunits and non-functional, partially assembled PSII 

complexes (Komenda et al. 2006).  

  FtsH proteases are ATP- and zinc-dependent metallo-type peptidases. Most avalaible 

information on this protease comes from the E. coli enzyme. Based on the X-ray 

crystallographic analysis, FtsH forms a homo-oligomeric hexameric ring (Krzywda et al. 

2002) and substrate proteins are translocated through a central cavity in an ATP-dependent 

manner. FtsH has two transmembrane domains towards the N-terminus that anchor it in the 

plasma membrane, while the protease domain and the C-terminus face to the cytoplasm. FtsH 

proteases can interact with both membrane and soluble substrates, and their activity can be 

divided into two main categories: protein quality control by degradation of unassembled, 

unfolded and damaged proteins and regulatory function by degradation of short-lived 

regulatory proteins (like σ32).  

  All prokaryotic genomes contain a single ftsH gene except photosynthetic 

cyanobacteria that contain 4 such genes (Mann et al. 2000). This number is further multiplied 

to different extent in higher plants: 12 ftsH genes in Arabidopsis (Sokolenko et al. 2002), 9 in 

rice (Yu et al. 2005), 18 in Populus (Garcia-Lorenzo et al. 2006). In Synechocystis PCC6803 

inactivation of 2 ftsH genes proved to be lethal (slr1390 and slr1604), one had no obvious 

phenotype (slr1463) (Mann et al. 2000) and the mutation of slr0228 showed light-sensitive 

growth, impaired PSII repair and a slower rate of D1 degradation in vivo (Silva et al. 2003). 

  Nine of the 12 Arabidopsis ftsH genes reside in chloroplast (ftsH1, 2,5,6,7,8,9,11,12) 

and the remaining three in mitochondria (ftsH3, 4, 10) (Sakamoto et al. 2003). Of these, ftsH2 

is by far the most abundant species, followed by ftsH5, ftsH8 and ftsH1 (Sinvany-Villalobo et 
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al. 2004). In terms of phylogenetic relations, ftsH1 and ftsH5 are duplicated genes, and so are 

ftsH2 and ftsH8. Each pair of duplicated genes constitutes a separate type of subunit and a 

functional FtsH complex is composed of subunits of type A (FtsH1 and FtsH5) and type B 

(FtsH2 and FtsH8). Within each type the subunits are interchangeable but in the absence of 

either type no active complex accumulates (Zaltsman et al. 2005b).  

  The variegated phenotype of ftsH mutants suggests that the FtsH protease is essential 

for chloroplast biogenesis. A knock-out strain of one of the four ftsH genes (slr0228) in 

Synechocystis PCC6803 resulted in impaired PSI activity and up to 60% reduction in 

abundance of functional PSI subunits, without affecting the cellular level of PSII or 

phycobilisomes (Mann et al. 2000). Based on genetic, biochemical and physiological 

analyses, the proposed functions of FtsH proteases in photosynthetic organisms are as 

follows: (i) major proteases involved in PSII repair (Bailey et al. 2002; Silva et al. 2003; 

Komenda et al. 2006); (ii) involved in thylakoid formation at an early step of chloroplast 

development (Zaltsman et al. 2005a). 

  Recent results of Komenda et al. (2007) suggest a new model of D1 degradation with 

emphasis on the interaction between N-terminus of the protein and the FtsH protease 

(Komenda et al. 2007). In E. coli, membrane protein degradation by FtsH protease is highly 

processive and it starts from either the N-or the C-terminus of the target molecule (Chiba et 

al. 2002). For N-terminal proteolysis, there is a structural requirement that the tail should be 

longer than 20 amino acid residues (Chiba 2000). In the case of D1 protein, the N-terminus is 

oriented toward the stromal side of the thylakoid membrane, on the same side with the 

proteolytic domain of FtsH protease (Fig.1.4). In recent crystal structures (Ferreira et al. 

2004; Loll et al. 2005) the N-terminus of D1 protrudes from the cyanobacterial PSII complex 

(Fig.1.2). Its length and localization are ideal to engage in a proteolytic process with FtsH 

protease. In Synechocystis PCC6803, removal of 5 or 10 residues from the N-terminus 

resulted in blocked D1-synthesis while removal of 20 residues inhibited PSII repair and 

selective D1 degradation (Komenda et al. 2007). In the case of chloroplast, it has been 

suggested that D1 degradation by FtsH might be facilitated by cleavage of D1 by Deg 

proteases on the opposite lumenal side of the membrane (Kapri-Pardes et al. 2007; Sun et al. 

2007). 

  Mutagenesis experiments have so far demonstrated the role of the FtsH/Slr0228 

protease in PSII repair in cyanobacteria at an early stage in D1 degradation: the primary 

cleavage. However, it remains unclear to what extent the Deg proteases are important for D1 

degradation 
in vivo. This is a crucial question to address since recent biochemical experiments  
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 Fig.1.4. Selective replacement of D1 protein during PSII repair following photoinhibition.  

For clarity, just one of the monomers in the PSII dimer is shown, and the extrinsic and small 

transmembrane subunits of PSII are omitted. (A) Intact PSII core complex with the functional 

and correctly folded D1 protein. (B) High light–induced inactivation of PSII is followed by 

the release of CP43 and extrinsic proteins. In the resulting core complex lacking CP43 

(RC47), the structure of damaged D1 protein (D1 dam) is destabilized, the protein is 

recognized by FtsH, and its released N terminus is caught by the protease. (C) The damaged 

D1 subunit is degraded (D1 deg) by FtsH processively from the N to the C terminus, 

releasing short oligopeptides but no distinct larger fragments. (D) Insertion of the new D1 

molecule and reassembly of the active dimeric PSII core complex (RCCII) (Komenda et al. 

2007).  
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have suggested that a homologue of Deg2 in Synechocystis PCC6803 extracts could be 

involved in cleaving D1 during PSII repair (Kanervo et al. 2003; Huesgen et al. 2005).  

The DEG/HTR family proteases are ATP-independent Ser endopeptidases, which are 

present in both prokaryotes and eukaryotes (Adam et al. 2002; Huesgen et al. 2005). 

DEG/HTR proteases were initially identified in E. coli and named DegP (for degradation of 

periplasmic proteins) or HtrA (for high temperature requirement), DegQ (HhoA) and DegS 

(HhoB) (Clausen et al. 2002). PDZ-like domains at their C-termini are interesting structural 

features of all these proteins (Ponting 1997). PDZ domains mediate protein-protein 

interactions and are important for substrate recognition and/or for the regulation of 

proteolytic activity (Wilken et al. 2004). Determination of its three-dimensional structure has 

revealed that it forms a hexamer made of two staggered trimers.  

In Synechocystis PCC6803 there are three homologues of the Deg peptidase family: 

HtrA (DegP), HhoA (DegQ) and HhoB (DegS) (Sokolenko et al. 2002). However, the 

number of deg genes can vary between two and five in various cyanobacterial species 

(Huesgen et al. 2005). 

HhoA has been found in the periplasm of Synechocystis PCC6803 and HtrA in the 

outer membrane (Huang et al. 2004). Analysis of the double or the triple Deg mutants has 

proven that the Deg proteases do not play an essential role in D1 turnover and repair in vivo, 

although they are required for photoprotection during heat and light stress (Barker et al. 

2006).  

  Like other chloroplast proteases, Deg in Arabidopsis are encoded by multiple genes 

(16 genes) of which 4 are targeted to chloroplast (Peltier et al. 2002). DEG1, DEG5 and 

DEG8 were found in the thylakoid lumen, and DEG2 was peripherally attached to the stromal 

side of the thylakoid membrane. The Deg1 protease from Arabidopsis has been expressed in 

E. coli; this in vitro assay demonstrated the proteolytic activity of Deg1 against the non-

physiological substrate β-casein and against thylakoid lumen proteins such as in vitro 

translated OE33 and plastocyanin. The proteolytic activity of recombinant Deg1 increased 

with temperature and had an optimum around pH~6 (Chassin et al. 2002). In a recent study, a 

mutant with reduced levels of Deg1 proved to be more sensitive to photoinhibition than the 

WT, accumulated higher levels of D1 protein and less of its C-terminal degradation products 

than in the WT (Kapri-Pardes et al. 2007). Moreover, it seems that the accumulation of Deg1 

and FtsH proteases might be coordinated: the mutant containing less Deg1 also contained less 

FtsH protease and FtsH mutants contained less Deg1 (Kapri-Pardes et al. 2007).  
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  Incubation of recombinant Deg2 with isolated plant thylakoid membranes pretreated 

with heat or high light intensity showed a selective degradation of the D1 protein (Haussuhl 

et al. 2001). The results of this in vitro study were not confirmed in vivo, since mutants 

lacking Deg2 protease showed the same rate of D1 degradation under the conditions of high 

light stress like the WT (Huesgen et al. 2007). The other two Deg proteases, Deg5 and Deg8, 

form together a protein complex which is not associated with PSII but it is localized in the 

thylakoid lumen. Individual inactivation of deg5 and deg8 genes resulted in increased 

sensitivity to photoinhibition. The double mutants deg5deg8 showed the same sensitive 

phenotype and also impaired turnover of newly synthesized D1 protein (Sun et al. 2007). It 

seems reasonable to speculate that DEG could cooperate with FtsH in efficiently cleaving the 

multiple transmembrane D1 proteins from both sides of the thylakoid membrane (Sun et al. 

2007). 

 

1.4.2. De novo protein synthesis  

 

  Although the effects and consequences of UV-B radiation are known in details the 

mechanisms for sensing and responding to UV-B radiation are largely unknown. In higher 

plants recent results point to the role of  Arabidopsis thaliana UV Resistance Locus8 (UVR8) 

protein as a UV-B–specific signaling component (Brown et al. 2005; Kaiserli et al. 2007).  

The signaling molecule NO has been shown recently to alleviate oxidative damage produced 

by UV-B irradiation by increasing the activity of SOD, CAT, peroxidase, the accumulation of 

GSH and elimination of O2
- (Xue et al. 2007).  

  Another category of signaling molecules, cyclic nucleotides, govern the adaptation of 

cell to its surroundings in primitive organisms like bacteria and fungi but also in algae, plants 

and animals. The discovery by Earl Sutherland of cyclic nucleotides as the intracellular 

receptors of extracellular hormones and hence named “second messengers” awarded him 

with a Nobel Prize. Accumulating evidence of research carried out over the last three decades 

proved that cyclic nucleotides AMP (3′, 5′-cyclic adenosine monophosphate) and GMP (3′, 

5′-cyclic guanosine monophosphate) represent the classic set of second messengers, effectors 

of extracellular signaling.  

Cyclic nucleotides are derivatives of nucleic acids with three functional groups: an 

aromatic base (adenine or guanine), a sugar (ribose) and a phosphate. Cyclic nucleotides 

differ from other nucleotides in that the phosphate group is linked to 3′ and 5′ groups of the 
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ribose sugar and hence forms a cyclic ring. This cyclic conformation allows cAMP and 

cGMP to bind to proteins to which other nucleotides cannot.  

cAMP signalling is very diverse: in E.coli cAMP binds to a dimer of the catabolite 

receptor protein (CRP, also known as catabolite activator protein) which requires the 

allosteric effector cAMP in order to bind efficiently to DNA (Kolb et al. 1993). In E. coli 

CRP activates transcription at more than 100 promoters, by binding to a well-conserved 

palindromic binding motif (TGTGAN6TCACA). In Synechocystis PCC6803 inactivation of 

the adenylyl cyclase or of its receptor protein Sycrp1 (sll1371) resulted in an apparently 

nonmotile phenotype (Yoshimura et al. 2002). Also, a blue light-cAMP signal cascade 

stimulates the motility of Synechocystis PCC6803 (Terauchi et al. 2004). In Anabaena 

cylindrica the intracellular cAMP concentration depends on the light quality: red light 

determines a rapid decrease in cAMP content and far-red light causes a rapid increase in its 

content (Yoshimura et al. 2002; Ohmori et al. 2002). It is worth mentioning that in 

cyanobacteria light signals are mediated by cAMP whereas in vertebrate visual cells it is the 

cGMP that transduces the photosignals. The role of cAMP as a second messenger is not 

restricted to light initiated cascades: low pH-high pH, oxic-anoxic and nitrogen depleted-

repleted conditions change its cellular level. In marine diatoms the regulation of the cytosolic 

level of  cAMP is a general mechanism that operates in CO2 sensing and regulation of CCM 

(carbon concentrating mechanism) (Harada et al. 2006).  

The role of cGMP is well established in the literature: together with Ca2+ it is involved 

in the phytochrome mediated induction of chalcone synthase gene and the development of 

chloroplast (Bowler et al. 1994), it is a second messenger for NO signaling in animals and 

plants by inducing defence-related genes (Durner et al. 1999).  

Cyclic AMP and cyclic GMP are both present in eukaryotes, but prokaryotes possess 

only one class; the only exception is cyanobacteria. The cellular level of cyclic nucleotides is 

determined by the opposing activities of cyclases and phosphodiesterases :  

-Adenylyl cyclases (catalyse synthesis of cAMP from ATP). 

-Guanylyl cyclases (catalyse synthesis of cGMP from GTP). 

-cNMP phosphodiesterases (catalyse breakdown of cyclic nucleotides) 

  In Synechocystis PCC6803, the components of the cGMP and cAMP signaling 

pathways identified are as follows: the adenylyl and guanylyl cyclase (Terauchi et al. 1999; 

de Alda et al. 2000a), cAMP-phosphodiesterase (Sakamoto et al. 1991), 2 hypothetical cNMP 

phosphodiesterases (de Alda et al. 2000b) and 5 proteins- possible receptors of cyclic 

nucleotides (de Alda et al. 2000b).  



 21 

  Since light of different qualities: red, far-red and blue light affects the level of cNMP, 

other wavelengths could be transmitted through the same mechanism. The documented role 

of cNMP as transducers of light with various wavelengths makes them a potential candidate 

for transducing UV-B signals. When light with a damaging potential is perceived it is very 

important that the defense mechanisms are rapidly induced through gene induction and 

protein synthesis. In the case of photosynthetic process affected by UV-B, the defense 

mechanisms require the induction of the genes for the proteolysis of damaged proteins and of 

the genes coding for the replacing of damaged subunits.   

 

1.4.3. PSII reassembly  

 

  The striking features of the PSII complex are its susceptibility to damage and the 

consecutive repair and photoreactivation. Maintaining of PSII function requires the selective 

replacement of damaged subunits through degradation and resynthesis while the rest of the 

subunits in the complex are recycled. At the level of resynthesis and integration into the 

membrane of D1 protein there are few candidates: the D1 protein is synthesized as a 

precursor (pD1) with a 16 aminoacids carboxyl-terminal extension that is cleaved in two 

separate steps. The first cleavage is after Ala-352, resulting in formation of a processing 

intermediate termed iD1, which in Synechocystis PCC6803 is mainly associated with RC 

complexes (Komenda et al. 2004). The role of small subunits PsbI (Dobakova et al. 2007) and 

PsbH (Komenda et al. 2005) in D1 processing and integration into the membrane cannot be 

neglected. The Sec translocon (Zhang et al. 2001a) and the chaperone Hsp70  

(Yokthongwattana et al. 2001) seem to be important factors during PSII reassembly. Under 

normal conditions of light intensity, temperature and solutes concentration PSII repair is a 

coordinated series of these intermediary steps. Different stress conditions like cold, heat and 

salt stress affect the photosynthetic activity by impairing the PSII repair (reviewed by Murata 

et al. 2006). Lower (Gombos et al. 1994b; Nishida et al. 1996) and higher temperatures 

(Gombos et al. 1994a) than the physiological ones modify the fluidity of the thylakoid 

membrane with direct consequences on the PSII repair cycle (Allakhverdiev et al. 2004). 

Against the heat inactivation of PSII function photosynthetic organisms protect themselves 

by rapidly synthesizing heat shock proteins (HSP) (Heckathorn et al. 1998; Heckathorn et al. 

2002). Among these,  Hsp17 small heat shock proteins (sHSP) have dual role: stabilize heat-

stressed membranes and bind denatured proteins in the cytosol for subsequent chaperone-

mediated refolding (Török et al. 2001). 
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  The cyanobacterium Synechocystis PCC6803 has only one sHSP: Hsp17 (also known 

as Hsp16.6). Subtle changes in membrane physical order lead to the induction of hsp17 gene 

to the same extent as the heat treatment, suggesting a role of the Hsp17 protein in membrane 

quality control. In the same experiment it was demonstrated that the newly synthesized 

Hsp17s are associated with the thylakoid membrane (Horvath et al. 1998). In terms of oxygen 

evolution rates and viability, inactivation of this gene rendered the mutant more sensitive to 

heat stress compared with the wild type (Lee et al. 2000b). Constitutive expression of a small 

heat shock protein from Synechococcus vulcanus in Synechococcus sp. PCC 7942 increased 

the thermal resistance of PSII and protected light-harvesting phycocyanin from heat-light 

induced photobleaching (Nakamoto et al. 2000; Nakamoto et al. 2006).  

  The Hsp17 protein in Synechocystis PCC6803 can antagonize the heat-induced 

hyperfluidization of membrane domains and thereby preserves the structural and functional 

integrity of biomembranes (Török et al. 2001). 

  The chaperone function of sHSP is temperature dependent: the oligomers dissociate 

into dimers, bind the heat denatured proteins and form the sHSP-denatured protein complex, 

preventing protein aggregation and insolubilization (Van et al. 2001). The sHSP-bound 

proteins can be refolded into their native state by the cascade action of the ATP-dependent 

chaperones DnaK/DnaJ/GrpE (the DnaK system) or GroEL/GroES (Lee et al. 1997; Lee et al. 

2000a). Besides their documented role during heat stress, sHSPs can be induced by other 

stresses and can confer cross-tolerance, indicating a broader role for sHSPs (Fulda et al. 

1999).  

  The structure of sHSPs is defined by a conserved α-crystallin domain with high 

similarities to the α-crystallin of the vertebrate eye lens, flanked by an N-terminal region of 

variable length and sequence and by a short C-terminal extension (Kappe et al. 2002). sHSPs, 

with molecular masses of the monomers ranging from 16-42 kDa, are usually found in the 

cells as large oligomers of 12 to 32 subunits, depending on the type of sHSP (Stamler et al. 

2005). sHSPs are ubiquitous in terms of cellular localization; they can be found in the 

cytoplasm, nucleus, chloroplast, mitochondria and endoplasmic reticulum in higher plant 

cells (Boston et al. 1996).  
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2. AIMS OF THE STUDY 

 

 

In our experiments we tried to identify factors and their contribution to the repair of 

UV-B damaged PSII reaction center in the cyanobacterium Synechocystis PCC6803. The 

aims of our work were: 

 

1. To identify which protease is involved in the degradation of the UV-B 

damaged D1 and D2 proteins of the PSII reaction center complex. 

Therefore, we took advantage of a series of mutants for two different 

families of proteases: Deg and FtsH.  

2. The open reading frame slr2100 is a proposed cNMP phosphodiesterase 

because it carries a HD domain. The questions we addressed were: what is 

the in vivo function of this gene? Do cyclic nucleotides play a role in the 

signaling pathways of PSII repair? 

3. Due to the preferential and selective association of the mutated Q16R-

Hsp17 protein with the thylakoid membrane after heat shock our goal was 

to verify if this event confers increased resistance to PSII damage or 

facilitates the recovery/repair from UV-B damage.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 24 

3. MATERIALS AND METHODS 

 

3.1. Synechocystis PCC6803 growth conditions 

 

 The cyanobacterium Synechocystis PCC6803 was obtained from the Pasteur Culture 

Collection of axenic cyanobacterial strains. Cells were grown in liquid culture in an 

illuminated orbital shaking incubator (120 rpm) in BG11 medium (Rippka 1988) at 30º C, 

under a 5% CO2-enriched atmosphere and 40 µE·m-2·s-1 white light intensity. Cyanobacterial 

growth was followed by recording the optical density at 580 nm. Cell preservation was done 

at -80 ºC, in 5% methanol or 8% DMSO. 

  The glucose tolerant strain of Synechocystis PCC6803 was used to construct the 

studied mutants (Williams 1988), in the laboratory of Prof. Peter Nixon (Imperial College 

London). The ∆FtsH/slr0228 mutant was constructed by interrupting the slr0228 gene with a 

chloramphenicol-resistance cassette (Silva et al. 2003). The three deg genes were inactivated 

stepwise using the plasmids described by Silva et al. (2002): first hhoA, then hhoB to 

generate the hhoAhhoB double mutant and finally the htrA to give the triple ∆deg mutant 

(Barker et al. 2006). The genes were interrupted by chloramphenicol, erythromycin and 

kanamycin-resistance cassettes, respectively.  

 

3.2. Thylakoid isolation 

 

  Thylakoid membranes were prepared by breakage of the cells with glass beads (150-

212 µm in diameter, Sigma) at 4 ºC followed by differential centrifugations according to 

(Komenda et al. 2004). Usually, 10 ml of cells were spinned down at 7000xg at room 

temperature for 10 minutes. The resulting pellet was resuspended in 1 ml of grinding medium 

(GM), pH 6.5, containing 50 mM MES, 5 mM Na2EDTA, 1 mM benzamidine and 2 mM 

amino-caproic acid. The resuspended pellet was transferred to dark and centrifuged at 

6500xg, at 4 ºC for 5 minutes followed by resuspension in 0.5 ml GM and transfer to 

Eppendorf with 0.5 ml glass beads. The mixture of cells and glass beads was beaten in a bead 

beater (Biospec Products, USA) at 4 ºC, 3x 90 sec with 1 minute interruption for cooling on 

ice. Beads were washed three times with 0.5 ml GM, aliquots were pooled and centrifuged at 

6500xg at 4 ºC, 20 seconds, just to spin down the remaining glass beads and cell debris. 

Membranes were collected from the supernatant following 15 min centrifugation at 13000xg 
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at 4 ºC. The final sediment was resuspended in preparation medium, pH 7.5, containing 50 

mM Tris and 1 M sucrose and stored at -80 ºC.   

 

3.3. Chlorophyll content determination 

 

Chlorophyll content of the isolated thylakoid membranes was determined in 

methanol. Various volumes of thylakoids were diluted in 100% methanol. Absorption of each 

sample was determined at 650 nm and 665 nm. Chl (a) concentration was calculated as: 

Chl (a) = (16.5xA665- 8.3xA650) x dilution factor. The concentration was given in µg/ml units. 

 

3.4. Ultraviolet and visible light treatment 

 

 UV-B irradiation experiments were carried out using a VL-215M (Vilbert-Lourmat, 

France) lamp with maximal emission at 312 nm in combination with 0.1 mm cellulose acetate 

filter (Clarfoil, Courtalouds Chemicals, UK) to exclude radiation shorter than 290 nm (UV-

C). The UV-B intensity measured with a UV-B radiometer (9750300, Cole-Palmer) at the 

surface of the sample was ~4.5 W·m-2, corresponding to 12 µE·m-2·s-1. UV-B irradiation was 

performed in open-, square-shaped, glass-containers in which 100 ml cell culture of 6.5 µg 

Chla/ml formed 1 cm layer height, maintained in suspension by magnetic stirring. The 

temperature during the illumination was kept constant at 30 ºC. In some cases, a protein 

synthesis inhibitor, either lincomycin (300µg/ml) or spectinomycin (200µg/ml) was added to 

the cell culture.  

 Visible light illumination was performed during the recovery period after the UV-B 

irradiation and was produced by an array of halogen spot lamps in the 40-50 µE·m-2·s-1 

intensity ranges.  

 

3.5. Measurement of photosystem II electron transport activity 

 

PSII electron transport activity was assessed by measuring the light-saturated rates of 

oxygen evolution from whole cells, in the presence of 0.5 mM 2,5-dimethyl-p-benzoquinone 

as electron acceptor, using a Hansatech DW2 O2 electrode. In each measurement, 1 ml of 

cells at 6.5 µg Chla /ml were used. The standard oxygen evolution of the WT Synechocystis 

PCC6803 measured in the presence of 0.5 mM 2,5 DMBQ at 40 µE·m-2·s-1 light intensity and 

30˚C was ~200 µmol O2/mg Chl/h.  
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 Flash-induced increase and subsequent decay of chlorophyll fluorescence yield was 

measured by a double-modulation fluorometer (Photon System Instruments, Brno, Czech 

Republic) (Trtilek et al. 1997) in the 150 µs to 100 s time range, in samples which were dark 

adapted for 3 minutes prior to measurements, as described in (Vass et al. 1999). 

Multicomponent deconvolution of the measured curves was done by using a fitting function 

with three components, two exponentials and one hyperbolic as described earlier (Vass et al. 

1999): 

F(t)- F0 = A1exp(- t/T1)+A2exp(-t/T2)+ A3/(1+t/T3), 

where F(t) is the variable fluorescence yield, F0 is the basic fluorescence level before the 

flash, A1- A3 are the amplitudes, T1- T3 are the time constants. The non-linear correlation 

between the fluorescence yield and the redox state of QA was corrected for by using the Joliot 

model with a value of 0.5 for the energy-transfer parameter between PSII subunits (Joliot et 

al. 1964).  

 

3.6. Gel electrophoresis and immunoblotting 

  

Thylakoid membranes were isolated from the samples irradiated for various periods 

of time and with various treatments, as described above. The isolated thylakoid membranes 

were solubilized in  0.313 M Tris-HCl buffer (pH 6.8) containing 3% (w/v) SDS, 6% (w/v) 

glycerol, 10% (v/v) BME and bromophenol blue (~0.001% w/v) for 15 minutes at 45ºC.  

Protein composition of the solubilized thylakoids was assessed by SDS-PAGE (SDS-

polyacrylamide gel electrophoresis) in a Tris-glycine buffer system of discontinous pH 

(LAEMMLI 1970). Gels containing 6 % (stacking gel) and 12-17 % linear gradient 

(separation gel) acrylamide were prepared from a stock solution of 60 % (w/v) acrylamide 

and 1.6 % (w/v) bis-acrylamide. The buffers used for the separation and stacking gels are: 0.8 

M Tris-HCl (pH 8.83) containing 6 M urea and 0.1 M Tris-HCl (pH 6.8), respectively 

(Barbato et al. 1991). Chemical polymerization of the acrylamide/bis-acrylamide in the 

separation and stacking gels was achieved by the addition of 0.5 and 1 µl/ml TEMED, 

respectively, and 0.25 and 0.75 µl/ml APS, respectively. For electrophoresis, 0.02 M Tris, 0.2 

M glycine buffer (pH 8.3) containing 0.1% (w/v) SDS was used. Electrophoresis on 1x16x14 

cm slabs was performed with a constant current of 10 mA in the cold room for about 12-14 

hours, until the bromophenol blue marker reached the bottom of the separation gel. 

The thylakoid extracts, adjusted to 0.7-1 µg Chla per lane, were loaded and the gel 

was runned in the above described conditions. For the purpose of individual protein 
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recognition with the immunoblotting technique, the gels were soaked for 30 minutes in 

transfer buffer consisting of 3 mM Na2CO3, 10 mM NaHCO3 and 10% (v/v) methanol (Dunn 

1986). The resolved proteins were electroblotted onto nitrocellulose membranes (0.45 µm, 

Schleicher& Schuell, Germany) at a constant voltage of 25 V for 2 hours. For the blocking of 

the membrane we used 10% (w/v) skimmed milk in 0.01 M Tris-HCl buffer (pH 7.6) 

containing 0.15 M NaCl (TBS buffer) for 30 minutes at room temperature. To detect the D1 

and D2 proteins, the membranes were incubated with the corresponding antibodies: D1 

polyclonal antibody (from Agrisera) and D2 polyclonal antibody (from Peter Nixon) for 120 

minutes at room temperature. The antibody dilution was 1:4000 for anti-D1 and 1:7500 for 

anti-D2. Immunoreacted bands were further immunodecorated with secondary antibody- 

alkaline phosphatase conjugate at a dilution ratio of 1:5000 in TBS buffer, for 60 minutes at 

37ºC. The antigen-antibody complexes were visualized by colorimetric reaction using the 

BCIP-NBT system -0.165 mg/ml BCIP and 0.3 mg/ml NBT in 0.1 M Tris-HCl buffer (pH 

9.8) containing 0.15 M NaCl and 0.5 M MgCl2. The enzymatic reaction was stopped by 

washing the membrane with distillated water. The linearity of the immuno-response was 

checked by loading dilution series. The bands from the scanned blotts were quantified using a 

NIH program, ImageJ. Data are averages of at least three independent experiments.  
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4. RESULTS AND DISCUSSION 

 

4.1. The role of FtsH and Deg proteases in the degradation of UV-B damaged D1 and D2 

proteins 

4.1.1. Effects of inactivating the deg and ftsH genes on PSII activity in UV-irradiated 

cells 

 

The consequences of UV-B induced damage to the function and structure of PSII are 

known in details. In what concerns the protein damage, the D1 and D2 proteins of the PSII 

reaction centre are the most sensitive components. The PSII repair cycle proceeds in a 

stepwise fashion to remove the damaged protein components and ensure their replacement 

with newly synthesized, functional copies. Proteolytic removal of the damaged D1 and D2 

subunits is the first step of the repair process and the details are under careful scrutiny in 

many laboratories working on the topic. FtsH and Deg proteases are the main candidates for 

this role, due to their conserved role in nature in the degradation of damaged or unassembled 

proteins.  

The role of proteases in protein turnover can be examined in vivo through the analysis 

of defined knockout mutants. In this work we used a ∆FtsH/slr0228 mutant (Mann et al. 

2000) and a triple ∆deg mutant (Barker et al. 2006), with inactivated slr1204, sll1679 and 

sll1427 genes. To determine whether the loss of FtsH or Deg proteases impaired the ability of 

cells to repair damaged PSII, light-saturated rates of oxygen evolution were monitored in 

cells during and following exposure to UV-B light either in the absence or in the presence of 

lincomycin.  

In intact Synechocystis PCC6803 cells 120 min of UV-B irradiation results in a 

gradual inhibition of oxygen evolution which decreases to about 50% of the original activity 

in the WT and ∆deg and to about 80% in the ∆FtsH/slr0228 mutant. In order to check the 

ability of UV-B inhibited cells to restore their photosynthetic activity, the cell suspension was 

transferred to visible light and the oxygen evolution rate was measured. Fig. 4.1 A and B 

shows that in the WT and ∆deg the original activity is completely restored within the 

recovery period (2h). In the ∆FtsH/slr0228 cells the recovery is substantially retarded as 

compared with the WT and ∆deg cells (Fig. 4.1 C). Restoration of PSII activity following 

UV-B exposure is also affected differentially in the two mutants: in the absence of all three 

Deg proteases, recovery proceeds like in the WT; however, the lack of the FtsH/Slr0228 

protease suppresses the recovery although does not block it completely (Fig. 4.1 C). 
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In the presence of a protein synthesis inhibitor (lincomycin), the WT and ∆deg cells 

showed an accelerated loss of oxygen evolution under UV-B exposure resulting in about ~ 

70% activity decrease after 120 min, and almost complete loss of activity after 240 min 

exposure (Fig. 4.1 A and B). However, in the ∆FtsH/slr0228 strain, inhibition of protein 

synthesis did not accelerate further the loss of oxygen evolution (Fig. 4.1 C), so that the 

Fig.4.1. The effect of UV-B illumination 

on PSII activity in the ∆deg and 

∆ftsH/slr0228 mutants. WT (A), ∆Deg (B) 

and ∆FtsH/slr0228 (C) cells were 

exposed to UV-B light. The experiments 

were performed either in the presence 

(full symbols) of a protein synthesis 

inhibitor (lincomycin for WT and 

∆FtsH/slr0228, and spectinomycin for 

∆Deg), or in the absence (empty symbols) 

of it. In the presence of protein synthesis 

inhibitors cells were exposed only to UV-

B light, whereas in the absence of protein 

synthesis inhibitors 120 min UV-B 

exposure was followed by a  recovery 

period under visible light of 40 µEm−2s−1 

as indicated on the horizontal arrows. 

PSII activity was followed by oxygen 

evolution measurements in the presence 

of 0.5 mM DMBQ as an artificial 

electron acceptor. The data represent the 

average of three independent experiments 

and shown after normalization to the 

oxygen evolution rates measured in the 

non-irradiated control cells. 
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kinetic was similar to that seen in the WT and ∆deg cells in the presence of a protein 

synthesis inhibitor. The fast rates of damage obtained in the presence of lincomycin represent 

the true rate of PS II inactivation in the absence of any repair process. The slower rates of 

PSII inactivation observed in the absence of lincomycin represent the balance between UV-B 

induced inactivation and its continuous repair. The kinetics of UV-B induced inhibition in the 

presence of protein synthesis inhibitor is the same for all three cultures, revealing that the 

WT, ∆Deg and ∆FtsH are equally susceptible to UV-B. The same pattern of oxygen 

evolution inhibition in the ∆FtsH/slr0228 mutant, with or without lincomycin, demonstrates 

that the loss of FtsH protease interrupts the PSII repair cycle. It is known that the UV-B 

radiation damages the D1 protein and enhances the turnover of this subunit in vivo. If the 

removal of damaged D1 is impaired the repair process is blocked and the PSII function 

cannot be rehabilitated as shown by the loss of oxygen activity. Inactivation of the FtsH 

protease prevents the replacement of UV-B damaged PSII subunits with newly synthesized 

copies. Previous results with a slr0228 insertion mutant have revealed that this protein is 

needed for the photoprotection of PSII activity during high light stress (Silva et al. 2003). In 

Arabidopsis, mutation of the var2-2 gene, a close homologue of slr0228 in Synechocystis 

PCC6803 renders PSII more susceptible to photoinhibition (Bailey et al. 2002). It seems that 

even though high light and UV-B light damage PSII through different mechanisms, the point 

of convergence is the damage of D1 protein and the participation of the same protease in the 

repair process. Moreover, the function of FtsH protease in PSII repair appears to be 

conserved in both cyanobacteria and in higher plants.    

The effect of UV radiation on the function of PSII can also be followed by measuring 

the kinetics of flash-induced chlorophyll fluorescence relaxation (Sicora et al. 2003). In dark- 

adapted samples illumination with a single saturating flash forms QA
-, which results in a rapid 

rise of variable fluorescence. The initial amplitude of the fluorescence signal is proportional 

to the number of PSII centers capable of reducing QA (Vass et al. 1999). The relaxation 

kinetics reflects the reoxidation of QA
- via various pathways in the dark and exhibits three 

main decay phases (not shown). The fast (few hundred µs) phase reflects electron transfer 

from QA
-
 to a PQ molecule bound to QB quinone binding site. The middle (few ms) phase also 

arises from electron transfer from QA
- to QB, but in such PSII centers which bind PQ 

molecules after the light pulse, i.e. the time constant of this phase shows the rate constant of 

PQ binding to the QB site. Finally the slow (few s) phase arises from back reaction of QB
- 

with the oxidized S2 state of the water-oxidizing complex.  
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Since it is known that the main target of UV-B radiation is the CaMn cluster of water 

oxidation, we have chosen to measure the flash induced fluorescence in the conditions which 

give us information about this component of PSII. In the presence of DCMU, which occupies 

the QB
- binding site and inhibits QA

- to QB electron transfer, the fluorescence relaxation 

reflects the recombination of QA
- with positively charged donor components of PSII. In non-

irradiated cells the relaxation follows hyperbolic kinetics with about 1 s time constant, which 

arises from the recombination of QA
- with the S2 state of the water-oxidizing complex (Vass 

et al. 1999) (Fig. 4.2 A–C, squares). As a consequence of UV-B irradiation a faster 

component (with a 5–10 ms time constant) appears (Fig. 4.2 A–C, circles), reflecting the 

recombination of QA
- with Tyr-Zox in PSII centers in which the electron transport between the 

CaMn cluster and Tyr-Z has been inactivated (Vass et al. 1999). The fraction of PSII centers 

showing the fast decaying component was about the same in the WT and ∆deg cells, and 

substantially higher in the ∆FtsH/slr0228 cells. In the WT and ∆deg cells the fast phase 

completely disappeared during recovery under visible light (Fig. 4.2 A and B, triangles) 

demonstrating the restoration of normal electron transfer in the PSII complex. However, in 

the ∆FtsH/slr0228 cells there was only a partial restoration and the relaxation kinetics were 

dominated by the fast component even after 120 min recovery. The fast decaying phases in 

the chlorophyll induced fluorescence in the presence of DCMU demonstrates the 

accumulation of PSII centers in which the CaMn cluster is inactivated (Vass et al. 1999). 

Low- intensity-visible light has been shown to alleviate the damaging effects of UV-B 

irradiation when applied both during and after an UV-B treatment (Sicora et al. 2003). 

In our experiments, low-light treatment following UV-B irradiation restored the 

integrity of the electron transport chain (Fig. 4.2 A and B) and also the number of PSII active 

centers (not shown) in the WT and ∆deg cells. In these cells the ongoing PSII repair driven 

by visible light replaced the nonfunctional CaMn clusters and this is obvious in the 

disappearance of the fast phase of flash induced chlorophyll fluorescence. On the contrary, in 

the ∆FtsH/slr0228 mutant the fast phase was persistent during the recovery period (Fig. 4.2, 

C) and also contained less PSII active centers than at the beginning of the treatment (not 

shown). In case of the ∆FtsH/slr0228 mutant light was ineffective in repairing UV-B 

damaged PSII centers and this could be linked with the missing protease and the failure to 

remove the damaged centers. Furthermore, the simultaneous measurements of oxygen 

evolution and chlorophyll fluorescence relaxation demonstrate that FtsH/slr0228 is required 

for restoring electron transfer between the CaMn cluster and the acceptor side of PSII via 

Tyr-Z (Fig. 4.1 and 4.2). 
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Fig. 4.2. Damage and recovery of flash-

induced chlorophyll fluorescence in UV-B 

illuminated cells of ∆Deg and ∆FtsH. Cells 

were exposed to UV-B light followed by 

recovery under visible light of 40 µEm−2 

s−1. PSII function was followed by 

measuring flash-induced chlorophyll 

fluorescence in the presence of DCMU. 

The kinetics of fluorescence relaxation are 

shown for WT (A), ∆Deg (B) and 

∆FtsH/slr0228 (C) cells before (squares) 

and after 120 min UV-B treatment 

(circles), as well as after 60 min recovery 

(triangles) after normalization to the same 

initial value 
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Overall, these data indicated that PSII repair was functioning almost equally well in 

the ∆deg mutant as in WT, but was severely inhibited in the ∆FtsH/slr0228 mutant. The lack 

of significant effect of deleting the three Deg homologues shows that in contrast to 

FtsH/Slr0228 the Deg protease family is not essentially required for repair of UV-damaged 

PSII. 

 

 

4.1.2. UV-induced degradation of the D1 and D2 proteins in the ∆∆∆∆-Deg and ∆∆∆∆-FtsH 

mutants 

 

In the case of visible-light damage the FtsH and Deg proteases have both been 

implicated in PSII repair in vivo. The persistence of full-length D1 protein in the 

FtsH/slr0228 mutant, the co-purification of Slr0228 with His-tagged PSII (Silva et al. 2003), 

and the exclusion of the functional role of other cyanobacterial proteases in the cleavage of 

damaged D1 protein has led to a general model for PSII repair in which FtsH complexes 

alone are able to degrade visible-light damaged D1 (Nixon et al. 2005). FtsH protease activity 

has also been associated with the degradation of oxidatively damaged D1 protein in vivo in 

higher plants (Bailey et al. 2002; Sakamoto et al. 2003). In contrast, an alternative view 

emphasizes the involvement of the DegP/HtrA or Deg proteases in PSII repair and D1 

degradation following visible light stress, both in chloroplasts (Haussuhl et al. 2001) and 

cyanobacteria (Huesgen et al. 2005). In the model of Huesgen et al. (2005), which is partially 

supported by in vitro data (Kanervo et al. 2003), D1 is proposed to be cleaved in periplasmic-

exposed loops by the HhoA protease. However, it has been recently reported that although 

the Deg proteases are required for photo-tolerance, they are not involved in D1 turnover 

following visible-light stress (Nixon et al. 2005; Barker et al. 2006).  

Whether FtsH and Deg proteases have a role in the response to UV-B damage was 

unclear before our studies. 

Recent microarray data have indicated that UV-B radiation strongly induces the 

transcript levels of the ftsH/slr0228 gene in Synechocystis PCC6803 (Huang et al. 2002; 

Cadoret et al. 2005). This observation points to the possibility that the FtsH/Slr0228 protease 

could be involved in the repair of UV-damaged PSII complex similarly to its previously 

documented role in visible light stress (Silva et al. 2003; Komenda et al. 2006). 
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In order to clarify the role of the Deg and FtsH proteases in D1 protein degradation 

we followed the time course of D1 protein levels during UV-B light treatment and subsequent 

recovery in visible light. In WT and ∆deg cells, the amount of D1 decreased during the UV-B 

illumination to about 65% of the initial value, but its amount was restored to the original level 

in visible light. In contrast, in the ∆FtsH/slr0228 cells the amount of D1 was practically 

unchanged (Fig. 4.3.) despite the severe inhibition of PSII activity shown in Fig. 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3. D1 protein content in the absence of protein synthesis inhibitor in UV-B illuminated 

WT and mutant Synechocystis PCC6803 cells. Cells were exposed to UV-B radiation 

followed by recovery under visible light of 40 µEm
−2

s
−1

. Thylakoids were isolated at the 

indicated time points and D1 protein amount was determined by immunoblotting. (A and C) 

Immunoblots of D1 obtained in WT (W0,..,W4), ∆Deg (D0, …, D4) and ∆FtsH/slr0228 

(F0,…,F4) cells after 0 h (W0, D0, F0), 1 h (W1, D1, F1) and 2 h (W2, D2, F2) UV-B 

exposure followed by 1 h (W3, D3, F3) and 2 h (W4, D4, F4) of recovery. (B and D) Changes 

in the D1 protein amount obtained from densitograms of blots of WT (circles), ∆Deg 

(squares) and ∆FtsH/slr0228 (triangles) thylakoids. The data are shown after normalization 

to the value at the 0 time point. 
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Fig. 4.4. D1 protein content in the presence of a protein synthesis inhibitor in UV-B 

illuminated WT and mutant Synechocystis PCC6803 cells. Cells were exposed to UV-B 

irradiation in the presence of protein synthesis inhibitors (spectinomycin for ∆Deg and its 

WT control, or lincomycin for ∆FtsH/slr0228 and its WT control). Thylakoids were isolated 

at the indicated time points and D1 protein amount was determined by immunoblotting. (A 

and C) Immunoblots obtained in WT (W0,..,W4), ∆Deg (D0, …, D4) and ∆FtsH/slr0228 

(F0,…,F4) cells after 0 h (W0, D0, F0), 1 h (W1, D1, F1),…,4 h (W4, D4, F4). On the left 

side of panel A, a dilution series is shown with 0.5, 0.75 and 1.0 µg Chl/lane loading, 

whereas, the other samples contained 1,5 µg Chl. (B and D) Changes in the D1 protein 

amount obtained from densitograms of blots of WT (circles), ∆Deg (squares) and 

∆FtsH/slr0228 (triangles) thylakoids. The data are shown after normalization to the value at 

the 0 time point. 

 

To study the rate of D1 degradation without the compensating effect of de novo 

protein synthesis the experiments were also performed in the presence of a protein synthesis 
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accelerated in the WT and ∆Deg cells, but their kinetics were practically identical (Fig. 

4.4A,B). However, in the ∆FtsH/slr0228 cells the rate of D1 loss was significantly slower 

than in the WT or ∆Deg (Fig. 4.4C,D). 

The major consequence of deleting the slr0228 gene was a reduced ability to repair 

UV-B damaged PSII centers in vivo (Fig. 4.1 C). In accordance with the PSII repair cycle, 

this effect could be attributed to one of the following steps: monomerization of PSII, removal 

of the damaged subunits, synthesis and integration into the membrane of a new D1 protein. 

During PSII repair in vivo, it is hard to discriminate between D1 degradation and D1 

synthesis due to the high coordination of the two processes: impaired synthesis might block 

degradation and vice versa (Komenda 2000). Protein synthesis inhibitors like lincomycin and 

spectinomycin enable the study of protein degradation independently of protein synthesis and 

are a good tool for examining the kinetics of proteolysis. Clear difference between the ∆Deg 

and ∆FstH mutants was found in the rate of D1 degradation in the presence of protein 

synthesis inhibitors, which reflects different roles of the proteases in this process.  Summing 

up the results of the PSII activity and D1 degradation a new model of PSII repair under UV-B 

radiation is contouring in which FtsH protease plays the main role.  

The involvement of specific proteases in the degradation of the reaction center 

proteins during PSII repair has so far been studied in detail only for D1, although the D2 

subunit can also be degraded under extreme conditions (Sass et al. 1997; Jansen et al. 1998). 

UV-B irradiation provides a convenient tool to study the role of proteases in D2 degradation 

since UV-B light induces D2 protein loss to an extent comparable with that of D1 protein. To 

this end we followed the kinetics of D2 abundance under the same conditions as was done for 

D1. The data in Fig. 4.5 show that in the absence of protein synthesis inhibitors the D2 

protein was lost to the same extent as seen for D1 and was restored during the recovery 

period. The kinetics of D2 loss and recovery were almost identical for the WT and ∆Deg cells 

(Fig. 4.5 B). However, loss of D2 during UV-B irradiation was retarded in ∆FtsH/slr0228 as 

compared to the WT, and its recovery in visible light was severely inhibited (Fig. 4.5 D). 

Experiments performed in the presence of protein synthesis inhibitors confirmed the 

differential effect of inactivating the Deg proteases and FtsH/Slr0228 on D2 protein 

degradation, since the kinetics of D2 loss were similar for the WT and ∆Deg cells in the 

presence of spectinomycin (Fig. 4.6 A, B), whereas, the loss of D2 was much slower in 

∆FtsH/slr0228 than in WT in the presence of lincomycin (Fig. 4.6 C, D). 

In contrast to visible light, which induces preferential damage and repair of D1, UV-B 

light leads to a similar extent of damage of both D1 and D2 (Sass et al. 1997). Acceleration of 
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D1 and D2 degradation under UV-B exposure and retardation of their resynthesis both under 

UV-B and visible light in the ∆FtsH/slr0228 mutant, as compared to the WT, show that 

FtsH/Slr0228 is involved in the degradation of not only the D1 but also of the D2 protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5. D2 protein content in the absence of protein synthesis inhibitor in UV-B illuminated 

WT and mutant Synechocystis PCC6803 cells. Cells were exposed to UV-B irradiation 

followed by recovery under visible light of 40 µEm−2s−1. Thylakoids were isolated at the 

indicated time points and levels of D2 were determined by immunoblotting (A and C). 

Immunoblots of D2 obtained in WT (W0,..,W4), ∆Deg (D0, …, D4) and ∆FtsH/slr0228 

(F0,…,F4) cells after 0 h (W0, D0, F0), 1 h (W1, D1, F1) and 2 h (W2, D2, F2) UV-B 

exposure followed by 1 h (W3, D3, F3) and 2 h (W4, D4, F4) of recovery. On the left side of 

panel A, a dilution series is shown with 0.5, 0.75 and 1.0 µg Chl/lane loading, whereas, the 

other samples contained 1,5 µg Chl. (B and D) Changes in D2 levels obtained from 

densitograms of blots of WT (circles), ∆Deg (squares) and ∆FtsH/slr0228 (triangles) 

thylakoids. The data are shown after normalization to the value at the 0 time point. 
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Our present results demonstrate that FtsH/Slr0228 is involved in the removal of light 

damaged D2 subunit embedded in the PSII complex providing example for the more general 

role of this protease besides the selective degradation of D1. In contrast, the lack of a 

significant effect upon inactivating the three Deg homologues shows that the Deg proteases 

are not absolutely required for degradation of UV-B damaged D1 and D2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6. D2 protein content in the presence of a protein synthesis inhibitor in UV-B 

illuminated WT and mutant Synechocystis PCC6803 cells. Cells were exposed to UV-B 

irradiation in the presence of protein synthesis inhibitors (spectinomycin for ∆Deg and its 

WT control, or lincomycin for ∆FtsH/slr0228 and its WT control). Thylakoids were isolated 

at the indicated time points and D2 levels were determined by immunoblotting. (A and C) 

Immunoblots obtained in WT (W0,..,W4), ∆Deg (D0, …, D4) and ∆FtsH/slr0228 (F0,…,F4) 

cells after 0 h (W0, D0, F0), 1 h (W1, D1, F1),…,4 h (W4, D4, F4). (B and D) Changes in D2 

levels were obtained from densitograms of blots of WT (circles), ∆Deg (squares) and 

∆FtsH/slr0228 (triangles) thylakoids. The data are shown after normalization to the value at 

the zero time point. 
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Detection of D1 protein fragments with a molecular mass smaller than that of the 

original protein have led to the conclusion that the degradation process occurs in a multi-step 

proteolytic reaction. In plants, D1 degradation following the acceptor-side photoinhibition 

produced 2 fragments: a 10-kDa C-terminal fragment and a 23-kDa N-terminal fragment 

(Greenberg et al. 1987). In the donor-side photoinhibition of isolated PSII complexes from 

plants a C-terminal 24-kDa fragment has been detected (De Las Rivas et al. 1992). In vitro 

studies showed the formation of a 20-kDa C-terminal D1 fragment via a non-enzymatic 

mechanism when isolated thylakoid membrane particles were treated with UV-B light 

suggesting that this particular cleavage site of D1 is located in the middle of the 2nd 

transmembrane helix of D1 (Friso et al. 1994b). In case of the D2 protein a 22-kDa N-

terminal D2 fragment was observed when isolated D1/D2 reaction center complexes were 

exposed to UV-B light in the presence of the quinone analogue DBMIB (Friso et al. 1994a). 

However, these D1 and D2 fragments were formed only in a minor amount in the isolated 

membrane particles, and were not observed in the present study at all when whole 

Synechocystis PCC6803 cells were irradiated with UV-B light. In addition, fragments did not 

accumulate in the absence of FtsH or Deg proteases either (Figs. 4.4A,C and 4.6A,C). 

Therefore, we must conclude that the degradation pathways involving non-proteolytic D1 and 

D2 fragment formation are not significant in intact Synechocystis PCC6803 cells. 

According to a recent model of Nixon et al. (2005), in cyanobacteria and chloroplasts 

FtsH is proposed to form a hexameric ring in the membrane, and the damaged protein is 

translocated through a central pore in an ATP-driven process and subsequently degraded at a 

Zn2+-activated center in a highly processive reaction (Nixon et al. 2005). Based on what is 

known about the orientation of FtsH in chloroplasts (Lindahl et al. 1996), the protease 

domain of FtsH/Slr0228 is likely to be located on the cytoplasmic side of the thylakoid 

membrane rather than the lumenal side (Komenda et al. 2006). The N-termini of both D1 and 

D2 are located at the periphery of the PSII complex (Ferreira et al. 2004) and so ideally 

placed for engaging with FtsH. This would mean that removal and degradation of UV-B 

damaged D1 and D2 also proceeds from the cytoplasmic side of the PSII complex. This 

hypothesis has been indeed demonstrated by Komenda et al. providing a clear support for the 

FtsH-mediated degradation of damaged D1 via its N-terminus (Komenda et al. 2007).  

Although our results demonstrate that the Deg homologues of Synechocystis 

PCC6803 are not required for the degradation of UV damaged D1 and D2, the approximately 

2-fold UV-B induction of the sll1679 gene encoding HhoA (Cheregi et al. 2007) indicates 

some role for this protein as well in the UV-B stress response other than the involvement in 



 40 

D1 and D2 turnover. A recent study by Barker et al. (2006) using double and triple mutants 

of the same deg genes demonstrated that these proteases show overlap in function and are 

involved in a number of key physiological responses ranging from protection against light 

and heat stresses to phototaxis. As it was previously shown, the Deg proteases are needed for 

photoprotection of 
Synechocystis PCC6803, but they do not play an essential role in D1 

turnover and PSII repair in vivo (Barker et al. 2006). Homology studies show that the three 

Deg proteases in Synechocystis PCC6803 are closely related to the lumenal Deg1, Deg5, 

Deg8 and Deg14 in Arabidopsis. Since the transcript levels of deg1, deg2 and deg8 were 

increased following exposure of Arabidopsis seedlings to high light (Sinvany-Villalobo et al. 

2004) it was of interest to verify the role of these genes. Recently it was demonstrated that the 

double mutant deg5deg8 showed increased sensitivity to photoinhibition and reduced rates of 

D1 degradation in high light compared with the single mutants of deg5 and deg8 (Sun et al. 

2007). A simultaneously conducted study by Kapri-Pardes et al. (2007) investigated the role 

of Deg1 in Arabidopsis. Taking advantage of the RNA interference method, they created a 

mutant which had reduced levels of Deg1 and followed the levels of D1 and FtsH proteins in 

this mutant. The D1 protein is stabilized in Deg1 mutants and the level of a 5.2 kDa C-

terminal fragment seems to be lower than in the WT (Kapri-Pardes et al. 2007). The results of 

this last study lead to an interesting model of D1 degradation in plants: a transmembrane 

multiproteolytic complex in which Deg proteases from both sides of thylakoid membrane 

make single cleavages and FtsH protease makes complete proteolysis of these fragments.  

Whether the other FtsH homologues besides Slr0228 are involved in PSII repair in 

Synechocystis PCC6803 is unclear. Recent work has demonstrated that two different types of 

FtsH subunit participate in PSII repair in Arabidopsis thaliana. These so called type-A and 

type-B subunits are suggested to form a hetero-hexameric complex (Zaltsman et al. 2005b). 

Both types of subunit are made of a pair of redundant copies (type-A: FtsH1 and FtsH5, type-

B: FtsH2 and FtsH8) and the complete absence of either the A- or B-types is lethal. Based on 

a recent phylogenetic analysis, FtsH/slr0228 and FtsH/slr1390 in Synechocystis PCC6803 

would correspond to type-B subunits, and FtsH/slr1604 to a type-A subunit (Yu et al. 2005). 

Thus, by analogy to chloroplasts, FtsH complexes in Synechocystis PCC6803 might also be 

composed of various heterocomplexes including an FtsH/slr1604-FtsH/slr0228 complex, 

which would fit well with the observed UV-B induction of these two genes (Cheregi et al. 

2007). Our data also show that some PSII repair (Fig. 4.1C, D) and D1 and D2 degradation 

persists in the ∆FtsH/slr0228 mutant (Fig.4.4 and 4.6). This residual repair activity might be 

because FtsH/slr1390 can operate as a type-B subunit or that other types of proteases are able 
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to catalyze PSII subunit degradation, albeit with reduced effectiveness. Clarification of 

interplay of the different FtsH copies in the turnover of the D1 and D2 subunits of PSII will 

be an important challenge of research in the near future. 

 

 

4.2. The role of Slr2100 cGMP phosphodiesterase in acclimation to UV-B  

4.2.1. PSII activity in the ∆Slr2100 mutant 

 

  The cyclic nucleotides signaling pathway is known to play an important role in the 

regulation of various biological activities by controlling gene expression level.  While cAMP 

and cGMP are modulating the function of molecular switches in the cell (cAMP binds to 

CRP, cGMP interacts with the phytochrome) (Kolb et al. 1993; Bowler et al. 1994), the 

cNMP phosphodiesterases are controlling the duration and the intensity of these cellular 

responses by reducing the levels of cAMP and cGMP .  

  In Synechocystis PCC6803 the open reading frames slr2100 and slr1614 are proposed 

to be putative cNMP phosphodiesterases because they each carry a HD domain (de Alda et al. 

2000b). The phosphodiesterases carrying a HD domain (named after the conserved doublet of 

predicted catalytic residues) catalyze the degradation of cNMP to inorganic phosphate and 

AMP/GMP. To get information about the possible implication of slr2100 gene in the 

metabolism of cGMP, the gene was inactivated and the corresponding mutant was 

characterized in terms of growth, cyclic nucleotide content under control, high light and UV-

B stressed conditions (Cadoret et al. 2005). The ∆slr2100 mutant and the WT exhibited 

similar growth rates but the mutant had higher steady-state level of cGMP (Cadoret et al. 

2005).  UV-B stress affects specifically the level of cGMP: following 10 min of UV-B 

exposure, in the WT the cGMP concentration drops to ~60% of original concentration. In the 

∆slr2100 mutant the level of cGMP does not vary after UV-B exposure. This is also the case 

when the WT is exposed to UV-B in the presence of dipyridamole, an inhibitor of 

phosphodiesterase activity. There is also a notable difference in the transcription profiles of 

400 genes following 30 minutes UV-B exposure of WT and ∆slr2100 mutant cells. These 

series of experiments brought physiological evidence that the Synechocystis open reading 

frame slr2100 could be a cGMP phosphodiesterase (Cadoret et al. 2005). The consequences 

of high light treatment on the PSII activity, measured as oxygen evolution, were the same in 

the WT and ∆Srl2100 mutant. In contrast, differences were observed in the response to a UV-
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B stress. Following these results, our aim was to see if Slr2100 is involved in the UV-B 

signal transduction pathway that affects the repair process of PSII.  

Figure 4.7 shows that when exposed to UV-B for 2 hours, the extent of the damage is 

higher in the ∆Slr2100 mutant (~40%) than in the WT (~29%). Following one hour recovery 

in visible light both cultures recover with the same rate showing that the PSII inactivation is 

fully reversible for the two strains.  

 

 

 

Fig. 4.7. PSII inactivation during UV-B stress. Synechocystis PCC6803 wild type (filled 

symbols) and ∆slr2100 mutant (open symbols) cells were exposed to UV-B (6 µmol m
-2

s
-1

) at 

time 0 for 2h, and then transferred back to white light (50 µmol m
-2

s
-1

). Experiments were 

performed in the absence (squares and circles) or presence (triangles) of lincomycin 

(translation inhibitor). Plotted values represent mean of 3 independent measurements 

performed with cell suspensions at 6.5 µg Chla ml-1. 

 

To determine the origin of the increased sensitivity of the ∆Slr2100 mutant to UV-B 

radiation, the same experiment was repeated in the presence of lincomycin. The impairment 

of oxygen evolution under these conditions (UV-B +lincomycin) is similar in the WT and the 

∆Slr2100 mutant, an evidence of the equal sensitivity of the two strains to UV-B induced 

damage in the absence of any repair process. A straightforward explanation of the increased 

UV-B sensitivity of the ∆Slr2100 mutant is that the mutation has an effect on the cascade of 

events required for the repair of the damaged PSII centers, which is known to require de novo 

protein synthesis (Aro et al. 1993). UV-B damage of PSII electron transport is revealed by 
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the changes in the shape of the relaxation of flash fluorescence curve when measured in the 

presence of DCMU. Such measurements give information on the functional integrity of the 

redox components on the donor side of PSII. Samples of the WT and ∆Slr2100 mutant were 

measured in untreated cells, after 2 hours of UV-B treatment, and subsequent 1 hour recovery 

in visible light. 

 

 

Figure 4.8. Relaxation of the variable fluorescence induced by a single saturating flash 

applied to Synechocystis PCC6803 cells: wild type strain (squares), ∆slr2100 mutant 

(triangles). A, cells before the UV-B treatment. B, after 2h of UV-B irradiation. C, after a 1h 

recovery under 50 µmol.m
-2

.s
-1 

white light. Cells at 6.5µg Chla/ml
 

were dark-adapted for 10 

min before exposure to the saturating flash and recording of the variable fluorescence. 

Experiments were performed in the presence of 10µM DCMU, and repeated three times. The 

curves were normalised to the same amplitude. 
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When plotted on a logarithmic time scale, the fluorescence relaxation curve has a 

sigmoid shape and it reflects the recombination of QA
- with the S2 states of the water-

oxidation complex. The half-lifetime for relaxation is 0.6 s for the two strains when grown 

under standard conditions (Fig. 4.8 A). After 2h of  UV-B treatment, the overall decay was 

faster for the wild type (half-lifetime 0.4 s) and a fast phase also appeared (Fig. 4.8 B). This 

indicates that QA

- 
cannot recombine with the S2 state in part of the centers, instead less stable 

donor components like the redox-active tyrosine (Tyr-Z) act as recombination partner for QA
- 

(Vass et al. 1999; Tichy et al. 2003). The acceleration of fluorescence relaxation was even 

more pronounced for the ∆Slr2100 mutant (half-lifetime 0.3 s). This result indicates that the 

Mn-cluster of the PSII centres was more damaged by the UV-B treatment in the mutant than 

in the wild type. After the recovery phase, the fluorescence relaxation profiles are similar for 

both strains (Fig. 4.8 C) confirming that the mutation likely affects the PSII repair process 

that takes place during the UV-B exposure.  

  

4.2.2. D1 protein degradation in the ∆∆∆∆ slr2100 mutant 

 

After clarifying that the absence of the Slr2100 protein affects the PSII repair cycle 

we wanted to identify at which level the PSII repair cycle is impaired.  We took advantage of 

our SDS-Page and Western Blot set-up and followed the levels of D1 protein in the WT and 

∆slr2100 strains, in control and UV-B treated samples. As shown in Figure 4.9, there is a 

significant difference between the two strains, showing faster loss of the D1 protein in the 

mutant, which confirms an impairment of D1 turnover in ∆slr2100 mutant. The decreased 

amount of D1 protein in the thylakoids of the mutant strain exposed to UV-B compared to 

that of the wild type (Fig. 4.9) demonstrates that the degradation part of the repair cycle is not 

affected by the lack of the slr2100 gene.  

A correlation between cyclic nucleotides, UV-B stress and D1 degradation cannot be 

made without taking into consideration the effects of the ∆Slr2100 mutation on the gene 

expression level. As found by our collaborators (Cadoret et al. 2005), the induction patterns 

of slr0228 (coding for the FtsH protease) and psbA3 (coding for D1 protein) support our 

hypothesis that cGMP participates in UV-B signaling during PSII repair. The level of slr0228 

and psbA3 is twofold lower in ∆slr2100 than in the wild type under standard conditions. The 

mutant cells are thus partly deprived of essential components for the PSII repair when 

exposed to UV-B radiation. 
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Fig. 4.9. D1 content of thylakoid membranes. Membranes were prepared at the given time 

points and the D1 protein content was determined by immunodetection using an anti-D1 

antiserum. Wild type, squares;∆slr2100, circles. Data are means of 3 experiments.  

 

However, the transcription of ftsH increases more in the mutant than in the wild type 

so that the ftsH mRNA level in ∆slr2100 mutant reaches that of the wild type after fifteen 

minutes of UV-B treatment, ensuring efficient D1 degradation (Cadoret et al. 2005).  

The replacement of UV-damaged and degraded D1 by new copies requires an 

enhanced transcription of psbA genes, especially of psbA3 (Máté et al. 1998), followed by 

translation and incorporation of new D1 copies into the PSII reaction centre complex. 
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Although the psbA mRNA levels are lower in the mutant than in the wild type under standard 

conditions, the higher extent of UV-B induction compensates for this effect in the slr2100 

mutant under UV-B exposure. The similar and higher mRNA amounts in UV-B stressed wild 

type and mutant cells show that it is not the abundance of psbA transcripts that limits D1 

synthesis. Therefore, the unregulated cGMP concentration observed in the mutant under the 

conditions of UV-B exposure should affect either the translation of psbA mRNA or the 

incorporation of newly synthesized D1 into the PSII reaction centre.  

Altogether our data are consistent with the observation that the repair of damaged 

PSII differs depending on whether the inhibition was induced by UV-B or high intensity 

visible light (Giacometti et al. 1996), since the difference in the repair efficiency between the 

∆slr2100  mutant and wild type strains only exists when cells are exposed to UV-B and not 

during photoinhibition by visible light.  

 

4.3. Small heat shock proteins and their role in PSII repair 

4.3.1. Effect of the Q16R-Hsp17 mutation on the UV-B sensitivity of oxygen evolving 

activity 

 

  In search for features of Hsp17 that are essential for its in vivo function, a screening 

for random mutation that cause a loss of thermotolerance was performed in Synechocystis 

PCC6803 (Giese et al. 2005). The majority of mutations studied was in the conserved α-

crystalline domain and were found to disrupt Hsp17 oligomerization and to reduce both in 

vitro chaperone activity and in vivo thermotolerance. Single residue mutations on the N-

terminus like L9P (change of leucine 9 to proline) and Q16R (change of glutamine 16 to 

arginine) were found to have only minor effects on the oligomeric state of Hsp17, with L9P 

oligomers being somewhat less stable than WT and Q16R more stable than WT.  Although 

these mutant sHSPs retain the ability to protect a model substrate they did not support in vivo 

thermotolerance when compared with the WT. It is possible that in L9P and Q16R mutations 

a crucial site for binding cellular substrates in vivo has been affected. Another possible 

explanation for the failure of the N-terminal mutants to provide thermotolerance in vivo is 

that L9P and Q16R could have altered lipid interaction properties (Giese et al. 2005). This 

hypothesis was further investigated and it was demonstrated that mutant L9P protein showed 

reduced association with the thylakoid membrane, while Q16R protein was almost 

exclusively associated with the thylakoid fraction (Balogi et al. unpublished). 
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Lipid interaction of L9P-Hsp17 and Q16R-Hsp17 proteins was studied with the 

monolayer technique and the results of it were striking: of the three sHsp species tested, 

Q16R-Hsp17 displayed the highest interaction with monolayers formed both from TPL (total 

polar lipids) and each individual lipid classes. Moreover, the highest degree of insertion was 

recorded with a negatively charged lipid, SQDG (Balogi et al, unpublished). In the structure 

of PSII from Thermosynechococcus elongatus SQDG has contacts with proteins from both 

monomers and is very close to the QB site, localization with potential impact on the processes 

that involve D1 protein and QB site: the monomerization/dimerization of PSII during PSII 

repair and electron transport chain. 

Due to the preferential and selective association of the Q16R-Hsp17 protein with the 

thylakoid membrane after heat shock our goal was to verify if this event confers increased 

resistance to PSII damage or facilitates the recovery/repair from UV-B damage.  

  The consequences of photodamage by UV-B radiation are the irreversible inactivation 

of the electron transport chain and the degradation of the D1 and D2 proteins of the PSII 

reactions center. One way to follow the UV-B induced inhibition of PSII complex is to 

measure the rate of oxygen production with the help of a Clark-type electrode. Heat hardened 

cells (42˚C, 3h) of the WT and the two mutant strains, Q16R-Hsp17 and L9P-Hsp17, were 

exposed to UV-B radiation for two hours at 30˚C and then shifted to one hour recovery in 

visible light. As a consequence of UV-B exposure, the oxygen evolving activity in the WT 

and L9P-Hsp17 mutant decreased continuously during the treatment and after 2 hours 

reached 60% of original activity. Astonishingly, the rate of oxygen evolution in the Q16R-

Hsp17 mutant showed no significant inhibition during the 2 hours of UV-B treatment 

(Fig.4.10). During the consequent recovery in visible light and normal growth temperature 

(30˚C), all three strains recovered with the same rate and reestablished the initial activities. 

The rate of the oxygen evolution reflects the interplay of the damage and repair processes; 

when the rates of the repair processes match the rate of the damaging processes, there is no 

loss of the oxygen producing activity. If the oxygen activity is decreasing, it might come 

either from an enhanced sensitivity to the damaging factor or from an impaired repair 

process. The next step in elucidating which of the two processes are predominant when 

oxygen activity is decreasing is to block one of them.  

  To this end, we exposed heat hardened cells of the WT and Q16R-Hsp17 mutant to 

UV-B radiation, in the presence of lincomycin. Under these conditions both the WT and the 

Q16R-Hsp17 mutant showed an accelerated and similar loss of oxygen evolution, which 

reached 30-40% of the original activity after 2 hours of irradiation (Fig. 4.10 B).  
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Fig. 4.10. Effect of Hsp17 mutations on oxygen evolving activity. Heat preconditioned (42 ºC, 

3 hours) WT (squares), Q16R-Hsp17 (circle) and L9P-Hsp17 (up triangle) strains were 

exposed to UV-B radiation for 2 h followed by a recovery period in visible light for 1 h. 

Oxygen evolving activities were measured at the indicated time points. Results are expressed 

as a percentage of the oxygen evolution rate measured at time zero. Error bars represent 

standard error obtained from three repetitions. Experiments were performed (A) in the 

absence or (B) presence of the protein synthesis inhibitor lincomycin. 
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Since the WT and the Q16R-Hsp17 mutant exhibit the same UV-B sensitivity, the 

remarkable difference between their oxygen activities (Fig. 4.10 A) comes from different 

repair rates. It seems that the Q16R mutation in the Hsp17 protein not only modifies the QB 

site but also protects PSII activity against the UV-B photodamaging radiation by facilitating 

the repair process. 

 

4.3.2. Effect of the Q16R-Hsp17 mutation on PSII electron transport 

 

In order to explore the possible consequence of the exclusive thylakoid association 

and enhanced lipid binding properties of Q16R-Hsp17 protein on PSII electron transport 

characteristics, we measured the kinetics of flash-induced chlorophyll fluorescence, which 

monitors forward and backward electron transfer processes at the reducing side of PS II. In 

the Q16R-Hsp17 mutant the fast and middle phases, which reflect forward electron transport 

between QA
- and QB in PSII centers with and without bound QB, respectively were faster than 

in the WT (Fig. 4.11 B and Table 1) indicating faster oxidation of QA
- by bound QB, and 

faster binding of PQ to QB in the Q16R mutant. 

Together these findings demonstrate a modification of the QB site in the mutant, 

which could be a consequence of a structural change induced by the association (or the 

different mode of association) of mutated Hsp17 with the PSII complex. In addition, the slow 

phase of fluorescence decay became slower in the mutant than in the WT (Table 1) showing 

an enhanced stability of electrons on bound QB
-. 

When the QA to QB electron transfer step is blocked by DCMU, the reoxidation of QA
- 

proceeds via charge recombination with the S2 state of the water oxidizing complex. The 

Q16R-Hsp17 mutation had practically no effect on fluorescence relaxation in the presence of 

DCMU, showing that characteristics of the S2 state and of the QA acceptor are left unaffected 

in the Q16R mutant. This indicates that association of Q16R-Hsp17 protein with PSII has no 

effect on QA and the water-oxidizing complex, which are shielded by the protein matrix in 

contrast to the more exposed QB acceptor. The free energy (redox) gap, which determines the 

rate of electron transfer between the QA and QB acceptors, can be calculated from the ratio of 

the time constants of the slow phases of fluorescence in the absence and presence of DCMU 

(Allahverdiyeva et al. 2004). This calculation resulted in 52 ±4 and 69 ±5 meV in the WT and 

Q16R strains, respectively, in agreement with the observed acceleration of electron transfer 

between QA and QB in the Q16R-Hsp17 mutant strain. Taken together, the above data 
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demonstrate a specific modification of the QB binding site in cells which have the Hsp17 

protein with the Q16R mutation. 

 

Fig.4.11. Relaxation of flash induced chlorophyll fluorescence in non-heat and heat 

preconditioned (42˚C, 3 hours) in WT (squares) and Q16R-Hsp17 (circles) cells. 

Fluorescence excitation was achieved with a single turnover saturating flash at t= 1 ms. 

Subsequent fluorescence relaxation was measured in the absence (A, B) of electron transport 

inhibitors and in the presence (C) of 10 µM DCMU. Curves shown were normalized to the 

same initial amplitude.  
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Photosynthetic electron transport between the thylakoid embedded PSII and cytb6f 

complexes is mediated by plastoquinone (PQ) molecules via diffusion in the lipid phase. The 

chlorophyll fluorescence relaxation measurements in this study show that the rate of PQ 

binding to the QB site of PSII, where exchange of these mobile electron carrier molecules 

with bulk PQ occurs, is accelerated in the Q16R-Hsp17 mutant. This finding indicates that 

the mutated sHsp interacts not only with the thylakoid membrane in general, but specifically 

with the PSII complex.  

 

Strain 
Fast phase: T1(ms) 

(Amplitude, %) 

Middle phase: T2(ms) 

(Amplitude, %) 

Slow phase: T3(ms) 

(Amplitude, %) 

No additiona    

WT 0.67±0.04 (52±2) 5.67±0.4 (28±2) 8.8±1 (19±2) 

Q16R 0.43±0.04 (53±3) 3.46±0.2 (30±3) 17±2 (16±0.6) 

With DCMUb    

WT - (0) - (0) 
1.15±0.05 

(100±0.004) 

Q16R - (0) - (0) 
1.14±0.03 

(100±0.004) 

a The curves were analyzed in terms of two exponential components (fast and middle phases) 

and one hyperbolic component (slow phase). b The curves were analyzed in term of one 

hyperbolic component (slow phase). 

 

Table 1. Characteristics of chlorophyll fluorescence yield relaxation in Synechocystis 

PCC6803 cells. Heat treated samples were dark adapted for 3 min, excited with a single 

turnover flash and fluorescence relaxation was measured. T1-T3 and A1-A3 refer to the time 

constants and relative amplitudes of the decay phases, respectively. Standard errors show the 

reliability of the obtained kinetic parameters. 

 

The QB site is partly constituted by a large cytosol exposed loop of the D1 protein 

(Loll et al. 2005). Thus Q16R Hsp17, which is expected to bind at the cytosolic side of the 
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thylakoid membrane, may affect this region. This idea is supported by recent structural data, 

which show the presence of protein-associated lipids, including negatively charged SQDG, at 

the cytosolic side of the PSII complex around the QB binding site (Loll et al. 2005; Loll et al. 

2007). Since a preferential interaction of the Q16R-Hsp17 protein with SQDG has been 

demonstrated in vitro (Balogi et al. submitted), similar interaction in the PSII complex is a 

possible explanation for the specific effect of the mutated protein on the QB electron acceptor 

observed in the mutant cells.  Although this hypothesis sounds reasonable, we cannot exclude 

an interaction between Q16R-Hsp17protein and other lipid classes. PG has been shown to be 

specifically associated with the D1 protein (Kruse et al. 1995) and is essential for maintaining 

the structure of QB site (Gombos et al. 2002; Sakurai et al. 2007). PSII complexes that were 

treated with phospholipase A2 were converted from dimers to monomers suggesting that PG 

might be involved in the dimerization of PSII complex (Kruse et al. 2000). Experiments with 

a pgsA mutant of the Synechocystis PCC6803 defective in the synthesis of PG suggest that 

PG plays an important role in the maintenance of the photosynthetic machinery through the 

dimerization and reactivation of the PSII core complex (Sakurai et al. 2003). 

SQDG, with a negative sulfo-group and PG, with a negative phosphate-group, exert 

their role in the structure and functionality of PSII complex through their particular 

interaction with the subunits and cofactors of PSII complex (Sato 2004). 

 

4.3.3. PSII activity measured in the presence of different quinones 

 

The modification on the QB was further investigated by measuring the PSII activities 

in the presence of various quinones: 2,5 DCBQ (2,5 dichlorobenzoquionone), 2,5 DMBQ 

(2,5 dimethylbenzoquinone) and p-Benzoquinone. PSII activities in the WT and Q16R-Hsp17 

mutant were almost the same when measured in the presence of the three different acceptors 

before the heat shock (Fig 4.12 A). The highest activity (~ 400 µM O2/mg Chla/h) was 

measured in the presence of DMBQ and about half of this activity was measured with p-BQ. 

A three hours treatment at 42˚C, required for the induction of sHSP, had no effect on the 

activity of PSII in the WT in the presence of DMBQ and DCBQ. In contrast, in the Q16R-

Hsp17 mutant the recorded activities decreased to 55 and 71%, respectively of the activities 

before the heat shock (Fig. 4.12 B). In the presence of p-BQ, the heat shock caused a 25% 

reduction in the activity, both in the WT and Q16R-Hsp17 mutant.  

The benzoquinone electron acceptors can take electrons via direct binding to the QB 

site, and/or via interacting with the PQ molecules dissolved in the lipid phase of the thylakoid 
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membrane. The three acceptors used in our measurements have different affinities for the QB 

site, in the DCBQ > DMBQ >> pBQ order (Satoh et al. 1995). The decreased oxygen 

evolution rates in the heat treated Q16R-Hsp17 mutant cells relative to the WT, when 

measured in the presence of DCBQ and DMBQ, indicate altered accessibility of these 

acceptors to the QB site after association of the Q16R-Hsp17 protein to the PSII complex. The 

lack of this effect in the presence of pBQ can be explained by the low affinity of pBQ to the 

QB site and preferential uptake of electrons via interaction with the PQ molecules in the lipid 

phase of the membrane (Satoh et al. 1995). Taken together the fluorescence and oxygen 

evolution data demonstrate that the accessibility of the QB site to plastoquinone and 

benzoquinone molecules is altered due to a specific interaction of the Q16R-Hsp17 protein 

with the PSII complex.     

The amplitude of the fluorescence signal, which reflects the number of active PSII 

centers, showed insignificant variation when measured in the WT and Q16R-Hsp17 mutant, 

before and after heat shock (Fig. 4.12 C, insert). This confirms that the heat shock does not 

decrease the amount of functional PSII centers in the WT or the mutant cells, thus the 

decreased oxygen yield in the presence of DCBQ affects the efficiency in transferring the 

electrons from QA to the artificial acceptor bound to the QB site. In the WT, where we do not 

observe the strong association of Q16R-Hsp17 proteins to the thylakoid membrane following 

the heat shock, the number of PSII active centers and their activity remained unchanged.  

 

4.3.4. Effect of the Q16R- Hsp17 mutation on the repair of UV-B damaged D1 protein 

 

D1 protein quantification during UV-B exposure revealed a higher steady state level 

of the protein in the Q16R-Hsp17 mutant compared with the WT (Fig. 4.13 A). This finding, 

in parallel with the oxygen evolution results, points to an involvement of the Q16R-Hsp17 

protein in PSII repair. If the experiments are performed in the presence of a protein synthesis 

inhibitor (lincomycin), the degradation kinetics of D1 protein is the same in the WT and 

Q16R-Hsp17 mutant (Fig. 4.13 B), indicating that the Q16R mutation in Hsp17 does not 

affect the rate of D1 protein damage, but could enhance the rate of D1 repair. 

  Our data demonstrate that association of Q16R-Hsp17 with the thylakoid membrane 

does not prevent the UV induced damage of the already existing PSII complex; therefore, the 

protective effect of the Q16R-Hsp17 protein must be exerted at the level of PSII repair. The 

functional PSII unit is a dimeric complex of two monomeric reaction centers (Rhee et al. 

1997).  
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Fig. 4.12. PSII activity measured as the rate of oxygen evolution in the WT (empty columns) 

and Q16R-Hsp17 (hatched columns) mutant before (A) and after 3 hours at 42˚C (B). The 

activity was measured in the presence of different electron acceptors: 2,5 DMBQ, 2,5 DCBQ 

and p-BQ (0.5 mM). Error bars represent standard error obtained from three repetitions. C, 

the relative amplitude of the flash fluorescence signal, measured before and after 3 hours at 

42˚C.  
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Fig. 4.13. Change in the total D1 protein content in heat preconditioned WT (squares) and 

Q16R-Hsp17 (circle) mutant cells challenged by UV-B stress. D1 content in samples was 

followed during UV-B stress and subsequent recovery (A) or tested upon prolonged UV-B 

treatment in the presence of lincomycin (B). Data are obtained by densitometry of the 

Western blots and are means of three parallel experiments. Results are expressed as a 

percentage of the initial D1 protein level. 
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At the interface between the two monomeric PSII there are four SQDG and two 

MGDG molecules, which are expected to have an important role in the monomer–monomer 

interaction (Loll et al. 2007). The dynamic process of D1 replacement was shown to involve 

the monomerization of the PSII dimer structure, and likewise, the dimerization of repaired 

PSII monomers to form fully functional PSII (Barbato et al. 1992).  

The preferential in vitro interaction of the Q16R-Hsp17 protein with SQDG lipids – 

besides altering the binding of PQ to the QB site – indicates that the Q16R-Hsp17 may 

facilitate the dimer to monomer and/or the monomer to dimer reorganization of PSII during 

the repair cycle. However, we can not exclude that the beneficial effect of the Q16R-Hsp17 is 

related to other factors, such as chaperoning the insertion of newly synthesized D1 copies 

into the PSII complex or otherwise modulating overall protein synthesis. 
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5. CONCLUSIONS 

 

1. Our work demonstrates the participation of the FtsH/Slr0228 protease in the repair of 

UV-B damaged PSII reaction center. The FtsH protease is involved in the in vivo 

proteolytic removal of both D1 and D2 proteins of the PSII complex. Deg proteases 

do not seem to have a role in PSII repair following UV-B induced damage either in 

D1 and D2 proteins proteolysis (Cheregi et al. 2007).  

 

2. We have demonstrated that when the slr2100 gene is inactivated, the repair of UV-B 

damaged PSII is retarded. In the ∆Slr2100 mutant the level of cGMP is unregulated 

and this affects the adaptation of PSII apparatus to UV-B stress. This work points to 

the participation of the Slr2100 in the regulatory network by which Synechocystis 

senses UV-B light (Cadoret et al. 2005). 

 

3. We have found that the Q16R-Hsp17 mutant, with an enhanced lipid-mediated 

thylakoid membrane interaction, is able to protect PSII functions under UV-B 

photoinhibitory conditions. The protection of PSII function is exerted at the level of 

PSII repair through a facilitated D1 repair cycle. Besides this effect, the Q16R 

mutation in the Hsp17 modifies the acceptor side of the PSII complex at the level of 

QB (Balogi et al. submitted).  
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BEVEZETÉS 

 

 

A cianobaktériumok, mint a legelterjedtebb és a legnagyobb számban fellelhető 

fotoszintetikus prokarióták, számos környezeti stresszhatásnak vannak kitéve. Az 

elvékonyodó ózonréteg miatt a napfény UV-B komponensének fotoszintézisre gyakorolt 

hatása is egyre nagyobb. A második fotokémiai rendszerben (PSII) az UV-B sugárzás által 

okozott károsítás fő következményei: az elektrontranszportlánc inaktivációja (Vass, 1999), és 

a D1, D2 reakcióközpont-fehérjék lebomlása (Friso és mtsai, 1994; Friso és mtsai, 1995). A 

fotoszintetizáló szervezetek a PSII hatékony helyreállítási ciklusa révén tudják kompenzálni 

az UV-B okozta károsodást a sérült alegységek kicserélésével. A helyreállítási ciklus 

szorosan összehangolt lépései a következők: a PSII dimerek monomerizációja, a károsodott 

alegységek lebomlása, a riboszomális fehérje szintézis, az újonnan szintetizált fehérjék 

beillesztése a tilakoid membránba, a PSII monomerek összeállása és fotoaktivációja, és végül 

a monomerek összekapcsolódása PSII dimerekké (Aro és mtsai 1993; Nixon és mtsai 2005). 

A jelen dolgozatban az UV-B károsítást követő PSII helyreállítási ciklus néhány lényeges 

kérdését vizsgáltuk meg. 
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Ismert tény, hogy a D1 és a D2 fehérjék lebomlása egy proteolitikus folyamat, de a 

folyamatban résztvevő proteázok azonosítása érdekében jelenleg is intenzív kutatás folyik. 

Az FtsH-proteázok a PSII komplexekben helyezkednek el, a katalitikus alegységükkel a 

tilakoid membrán citoplazmatikus oldala felé mutatva (Silva és mtsai 2003).  A négy ftsH gén 

közül kettő inaktiválása letális a cianobaktérium számára, egynek nincs jellemző fenotípusa, 

míg az slr0228 gén mutációja megnövekedett fényérzékenységet és sérült PSII helyreállítást 

okozott (Silva és mtsai 2003). A Synechocystis PCC6803 slr0228 génje közeli homológja az 

Arabidobsis var2 génjének, ez utóbbinak a PSII helyreállításában és a kloroplasztisz 

biogenézisében van szerepe (Bailey és mtsai 2002). A Deg-proteázok családjának három 

tagja lelhető fel a Synechocystis PCC6803-ban (Sokolenko és mtsai 2002), melyek 

mindegyikét a magasabb rendű növények deg génjeinek homológjai kódolják. Az utóbbiak 

szerepe a PSII helyreállításában intenzív kutatások tárgyát képezte, részben ellentmondó 

adatokat eredményezve (Lindahl és mtsai 2000; Kanervo és mtsai 2003; Huesgen és mtsai 

2005; Barker és mtsai 2006). Jelen kutatásunk során az slr0228, valamint a három deg gén 

inaktivációjának hatását vizsgáltuk UV-B károsítás alatt és után. 

Annak ellenére, hogy az UV-B sugárzás hatásai és következményei részletekbe 

menően ismertek, a sugárzást érzékelő mechanizmusok és válaszreakciók többnyire 

ismeretlenek. A ciklikus nukleotidok, cAMP (3’,5’- cyclic adenosine monophosphate) és 

cGMP (3’,5’- cyclic guanosine monophosphate), jellemzően másodlagos jelátvivők; a sejten 

belül, a külső környezetből érkező jelek felfogására képesek és a felfedezésüket Nobel-díjjal 

jutalmazták. A ciklikus nukleotidok sejten belüli szintjét az adenilil- és guanilil-ciklázok (a 

cAMP és a cGMP ATP-ből történő szintézisét katalizálják) valamint a ciklikus nukleotid-

foszfodiészterázok (a két ciklikus nukleotid lebontását katalizálják) tartják egyensúlyban.  

Az slr2100 és az slr1614 génszakaszok feltehetően cNMP-foszfodiészterázokat 

kódolnak, mivel mindegyikük hordozza a HD domént (de Alda és mtsai 2000b). Kutatásunk 

célja az UV-B sugárzást érzékelő szabályozó hálózat vizsgálata volt az slr2100 ciklikus 

nukleotid mutáns felhasználásával. 

A Hsp17 kis hősokk fehérje a PSII hőstresszel szembeni ellenállását növeli 

(Nakamoto és mtsai 2000). A Synechocystis PCC6803 cianobaktérium csak egy hősokk 

fehérjével rendelkezik, amelynek szintézisét számos stressz indukálja, és az újonnan 

szintetizált fehérjék a tilakoid membránnal lépnek kapcsolatba (Horvath és mtsai 1998). A 

Hsp17 szerkezetében a 16-os pozíciójú glutamin aminósav argininnal való kicserélése erős 

kapcsolódást hoz létre a tilakoid membrán és a mutáns Hsp17 fehérje között. Munkánk során 
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szerettük volna megvizsgálni, hogy ez a kölcsönhatás hogyan befolyásolja a PSII aktivitását 

UV-B sugárzás folyamán. 

 

CÉLKITŰZÉSEK 

 

A kísérleteinkben célul tűztük az UV-B sugárzás által károsított PSII helyreállításában 

résztvevő faktorok azonosítását és szerepük jellemzését. A Synechocystis PCC6803 

cianobaktérium mutánsok felhasználásával végzett munkánk pontos céljai a következők 

voltak: 

1. A PSII reakciócentrum komplex UV-B sugárzás által károsított, D1 és D2 fehérje 

komponenseinek lebontásában résztvevő proteáz(ok) azonosítása. Ennek érdekében a 

Deg és FtsH proteáz családok mutánsait vizsgáltuk. 

2. Az slr2100 gén egy feltételezett cNMP-foszfodiészteráz, mivel magában hordozza a 

HD domént. A kérdések, amelyek ezzel kapcsolatban felmerültek, a következők: mi 

az in vivo szerepe ennek a génnek, illetve, hogy van-e szerepük a ciklikus 

nukleotidoknak a PSII helyreállításához kapcsolódó jelátviteli utakban? 

3. Mivel a mutáns Q16R-Hsp17 hősokk fehérje szelektíven és elsődlegesen a tilakoid 

membránnal lép kapcsolatba, célunk volt annak tisztázása, hogy ez a folyamat 

hatással van-e az UV-B által károsított PSII komplex helyreállítási folyamataira. 

 

ANYAGOK ÉS MÓDSZEREK 

 

• Synechocystis cianobaktérium nevelése 

• Tilakoid membránok izolálása 

• Klorofill-tartalom meghatározása 

• Látható- és UV-B fénnyel való kezelés 

• A PSII elektrontranszport aktivitásának mérése 

• Gélelektroforézis és immunoblotting 

 

 

 

 

 



 74 

EREDMÉNYEK ÉS MEGVITATÁSUK 

 

Az FtsH és a Deg proteáz-családok szerepét vizsgáltuk az UV-B sugárzás károsította 

D1 és D2 fehérjék lebontásában Synechocystis PCC6803 cianobaktériumban. A 

∆FtsH/slr0228 mutánsban megnövekedett UV-B érzékenységet tapasztaltunk, valamint a 

károsítást követő gyenge intenzitású fehér fényben történő helyreállítás is gyengébb volt. 

Ezzel ellentétben a ∆Deg sejtekben, melyekben mindhárom deg gén inaktivált, mind a 

károsodás, mind az aktivitás visszaállása a vad típuséval megegyező kinetikát mutatott. Az 

immunoblot vizsgálatokkal megállapítottuk, hogy UV-B sugárzás hatására mind a D1, mind a 

D2 fehérje lebomlása kisebb mértékű volt a ∆FtsH/slr0228 esetében, mint a vad típusban. 

Ugyanezen fehérjék helyreállítódása is lassabbnak bizonyult a mutánsban, mint a vad 

típusban. A ∆Deg sejtekben azonban, a D1 és D2 fehérjék helyreállításának kinetikája 

megegyezett a vad típuséval. Mindezek mellett, semmilyen D1 vagy D2 fehérje 

fragmentumok nem voltak kimutathatóak a FtsH és Deg proteázoktól mentes sejtekben, ami 

arra enged következtetni, hogy a nem proteolítikus fehérjehasító folyamatok, amelyek D1 és 

D2 fragmentumok keletkezéséhez vezethetnének, nem számottevőek a Synechocystis 

PCC6803 sejtekben. 

Annak érdekében, hogy adatokat gyűjtsünk a feltételezett foszfodiészteráz, az slr2100 

gén UV-B sugárzás jelátviteli útjában betöltött szerepéről, lemértük a mutáns sejtek 

aktivitását nagy intenzitású fehér fény és UV-B stressz alatt. A nagy intenzitású fehér fény 

hatása a PSII aktivitására, amit a termelt oxigén értékeiből állapítottunk meg, ugyanaz volt a 

vad típusnál és a Srl2100 mutánsnál egyaránt. Ezzel ellentétben, az slr2100 mutáns nagyobb 

mértékben károsodott UV-B stressz alatt és aktivitása kevésbe állt helyre, mint a vad típusú 

sejteké. Egy lehetséges magyarázat az slr2100 mutáns megemelkedett UV-B érzékenységére 

az lehet, hogy a mutáció befolyásolja a PSII helyreállítást szabályzó jelátviteli folyamatokat, 

amelynek elengedhetetlen része a de novo fehérje szintézis. A tilakoid membránok UV-B 

kezelés alatt és után mért D1 fehérjeszintjének összehasonlítása is ezt támasztja alá. Az 

slr2100 mutáns sejtekben kapott alacsony D1 mennyiség azt mutatja, hogy az slr2100 gén 

hiánya gátolja a D1 fehérje helyreállítását.  

Mivel a mutáns Q16R-Hsp17 hősokk fehérje szelektíven és elsődlegesen a tilakoid 

membránnal lép kapcsolatba, a célunk az volt, hogy kiderítsük, ez a kapcsolat okoz-e 

emelkedett szintű hőrezisztenciát a PSII számára, illetve elősegíti-e az UV-B által okozott 

károsodások kijavítását. Fényimpulzusok által indukált klorofill-fluoreszcencia mérések 

során kiderült, hogy a PSII elektrontranszportja sajátos módon megváltozik, ami a 
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plasztokinon molekuláknak az ún. QB kötőhelyre való gyorsított kötődését jelenti. Ezen hatás 

további viszgálata érdekében lemértük a PSII aktivitást különböző kinonok jelenlétében 

hősokk előtt és után, a vad típusban és a Q16R-Hsp17 mutánsban egyaránt. Három órányi 

42˚C-os kezelés nem befolyásolta az aktív PSII komplexek számát, az elektrontranszport 

sebessége azonban különbséget mutat a vad típus és a Q16R-Hsp17 mutáns esetében 

különböző kinon akceptorok jelenlétében mérve. A Hsp17 fehérjék kapcsolata a tilakoid 

membránnal és ugyanezen fehérjék preferenciális kölcsönhatása a tilakoid membrán SQDG 

lipidjeivel UV-B védelmet biztosíthat azáltal, hogy több szinten is segíti a PSII repair 

ciklusát: a D1 fehérje hasításánál, a fehérje szintézisénél és a membránba való 

beillesztésénél, a PSII monomerizációjánál illetve dimerizációjánál. 

 

KÖVETKEZTETÉSEK 

 

1. A kutatásaink kimutatták, hogy az FtsH/Slr0228 proteáz részt vesz az UV-B által 

károsított PSII komplexek helyreállításában, a D1 és D2 fehérjék PSII komplexekből 

való in vivo, proteolítikus eltávolításában. A Deg proteázok nem játszanak szerepet az 

UV-B által károsított PSII helyreállítási folyamatában, sem a D1 fehérje, sem a D2 

fehérje proteolízisében (Cheregi és mtsai 2007). 

2. Kimutattuk, hogy az slr2100-as gén inaktiválása esetén, az UV-B által károsított PSII 

helyreállítás csökkent mértékű. A ∆Slr2100 mutánsban a cGMP szint szabályozatlan 

és ez befolyásolja a PSII UV-B stresszhez való alkalmazkodását. Ezek az eredmények 

arra engednek következtetni, hogy a Slr2100 részt vesz abban a szabályozó 

hálózatban, amely által a Synechocystis 6803 érzékeli az UV-B sugárzást (Cadoret és 

mtsai 2005). 

3. Kimutattuk, hogy a Q16R-Hsp17 mutánsoknál fellelhető erős, lipid által közvetített 

tilakoid membrán kölcsönhatás képes megvédeni a PSII funkcióit az UV-B sugárzás 

fénykárosító hatásaival szemben. A PSII működésének védelme a helyreállítás 

szintjén valósul meg azáltal, hogy hatékonyabbá válik a D1 fehérje kicserélődése. 

Ezen hatása mellett a Hsp17 fehérjében lévő Q16R mutáció módosítja a PSII akceptor 

oldalát is a QB szintjén (Balogi és mtsai, beküldve).  
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INTRODUCTION 

 

 

Cyanobacteria, the most widespread and abundant oxygenic photosynthetic 

prokaryotes, are exposed to various types of environmental stresses. With the recent thinning 

of the ozon layer, the UV-B component of solar radiation is of particular importance. The 

main consequences of UV-B induced damages are the inactivation of electron transport chain 

(Vass, 1999) and the degradation of the D1 and D2 reaction center proteins (Friso et al. 1994; 

Friso et al. 1995). Photosynthetic organisms can cope with the UV-B induced damages 

because of an efficient PSII repair cycle that replaces the damaged subunits. The events of 

the repair cycle are highly coordinated are require monomerization of PSII dimers, 

proteolytic degradation of damaged subunits, the ribosomal protein synthesizing machinery, 

reinsertion of newly synthesized proteins into the thylakoid membrane, reassembly of PSII 

monomers and photoactivation, and finally dimerization of monomers into oxygen-evolving 

PSII centers (Aro et al. 1993;Nixon et al. 2005).  

In this thesis, several aspects concerning the PSII repair cycle following UV-B 

induced damage have been studied.  
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The degradation of D1 and D2 proteins is known to be a proteolytic process but the 

identity of proteases involved is a field of intense research. FtsH (Filamentation temperature-

sensitive) proteases are localized in PSII complexes, with the protease domain oriented 

toward the cytoplasmic side of the thylakoid membrane (Silva et al. 2003). Inactivation of 

two of the four ftsH genes in Synechocystis PCC6803 proved to be lethal, one had no obvious 

phenotype and the mutation of slr0228 caused an increased sensitivity to light and impaired 

PSII repair (Silva et al. 2003). The slr0228 gene in Synechocystis PCC6803 is a very close 

homologue of the var2 of Arabidopsis which is involved in PSII repair and chloroplast 

biogenesis (Bailey et al. 2002). The Deg family of proteases has three members in 

Synechocystis PCC6803 (Sokolenko et al. 2002), which are encoded by homologues of deg 

genes of higher plants. Their role in PSII repair has been a subject of intense research leading 

to partly contradictory data (Lindahl et al. 2000; Kanervo et al. 2003; Huesgen et al. 2005; 

Barker et al. 2006). Here we have studied the effect of inactivating the slr0228 gene and the 

three deg genes of Synechocystis PCC6803 on PSII repair during and after UV-B damage.  

Although the effects and consequences of UV-B radiation are known in detail the 

mechanisms for sensing and responding to UV-B are largely unknown. The cyclic 

nucleotides cAMP (3’,5’- cyclic adenosine monophosphate) and cGMP (3’,5’- cyclic 

guanosine monophosphate) are typical second messengers, intracellular receptors of 

extracellular signals and their discovery was awarded with a Nobel prize. The cellular level 

of cyclic nucleotides is an equilibrium between the activities of adenylyl-, guanylyl-cyclases 

(which catalyze the synthesis of cAMP and cGMP from ATP, respectively) and cyclic 

nucleotide phosphodiesterases (which catalyze the degradation of the two cyclic nucleotides). 

The open reading frames slr2100 and slr1614 are proposed putative cNMP 

phosphodiesterases because they each carry a HD domain (de Alda et al. 2000b). Our work 

aimed to investigate the regulatory network by which Synechocystis PCC6803 senses UV-B, 

through the analysis of a cyclic nucleotide phosphodiesterase mutant, ∆slr2100. 

The heat shock protein 17 (Hsp17) confers thermal resistance to PSII apparatus 

during heat shock (Nakamoto et al. 2000). Synechocystis PCC6803 has only one small heat 

shock protein (sHSP) which is induced by many stress conditions; the newly synthesized 

proteins are associated with the thylakoid membrane (Horvath et al. 1998). A glutamine to 

arginine residue change in the structure of Hsp17 induces a strong association of mutant 

protein with the lipids of the thylakoid membrane. We wanted to verify if this interaction 

modifies the activity of PSII under UV-B stress conditions.  
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AIMS OF THE STUDY 

 

In our experiments we were aiming to identify factors and their contribution to the repair 

of UV-B damaged PSII reaction center in the cyanobacterium Synechocystis PCC6803. The 

particular goals of our work were: 

 

1. To find which protease is involved in the degradation of the UV-B damaged D1 and 

D2 proteins of the PSII reaction center complex. Therefore, we took advantage of a 

series of mutants for two families of proteases: Deg and FtsH.  

2. The open reading frame slr2100 is a proposed cNMP phosphodiesterase because it 

carries a HD domain. The questions we addressed were: what is the in vivo function 

of this gene? Do cyclic nucleotides play a role in the signaling pathways of PSII 

repair? 

3. Due to the preferential and selective association of the Q16R-Hsp17 protein with the 

thylakoid membrane after heat shock our goal was to verify if this event confers 

increased resistance to PSII damage or facilitates the recovery/repair from UV-B 

damage.  

 

 

 

MATERIALS AND METHODS 

 

• Synechocystis growth conditions 

• Thylakoid isolation 

• Chlorophyll content determination 

• Visible and ultraviolet light treatment 

• Measurement of photosystem II electron transport activity 

• Gel electrophoresis and immunoblotting 
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RESULTS AND DISCUSSION 

 
We have investigated the involvement of the FtsH and Deg protease families in the 

degradation of UV-B-damaged PSII reaction center subunits, D1 and D2, in the 

cyanobacterium Synechocystis PCC6803. PSII activity in a ∆FtsH/slr0228 strain, measured 

as the rate of oxygen evolution, showed increased sensitivity to UV-B radiation and impaired 

recovery of activity in visible light after UV-B exposure. In contrast, in ∆deg cells, in which 

all the three deg genes were inactivated, the damage and recovery kinetics were the same as 

in WT. Immunoblotting showed that the loss of both the D1 and D2 protein was retarded in 

∆FtsH/slr0228 during UV-B exposure, and the extent of their restoration during the recovery 

period was decreased relative to the WT. However, in the ∆Deg cells the damage and 

recovery kinetics of D1 and D2 were the same as in the WT. Moreover, we have not detected 

any fragments of the D1 or D2 proteins in the absence of FtsH or Deg proteases which 

indicates that degradation pathways involving non-proteolytic D1 and D2 fragment formation 

are not significant in intact Synechocystis PCC6803 cells.  

To get information about the possible implication of slr2100 gene, a putative 

phosphodiesterase, in the UV-B transduction pathway we measured the activity of the mutant 

cells in the conditions of high light and UV-B stress. The consequences of high light 

treatment on the PSII activity, measured as oxygen evolution, were the same in the WT and 

∆slr2100 mutant. In contrast, differences were observed in the response to a UV-B stress. A 

possible explanation of the increased UV-B sensitivity of the ∆slr2100 mutant is that the 

mutation has an effect on the cascade of events required for the repair of the UV-B damaged 

PSII centers, which is known to require de novo protein synthesis. Indeed, the decreased 

amount of D1 protein in the thylakoids of the mutant strain exposed to UV-B compared to 

that of the wild type demonstrates that the degradation part of the repair cycle is not affected 

by the lack of the slr2100 gene.  

Due to the preferential and selective association of the Q16R-Hsp17 protein with the 

thylakoid membrane after heat shock our goal was to verify if this event confers increased 

resistance to PSII damage or facilitates the recovery/repair from UV-B damage. 

Measurements of flash-induced chlorophyll fluorescence in the mutant cells revealed a 

specific modification of the thylakoid embedded PSII: acceleration of plastoquinone binding 

to the QB site. The modification on the QB binding site was further investigated by measuring 

the PSII activities in the presence of various quinones, in the WT and Q16R-Hsp17 mutant, 

before and after the heat shock. The number of PSII active centers is not affected by the 3 
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hours treatment at 42˚C but the electron transfer efficiencies of these centers, measured with 

three different quinones acceptors, are different for the WT and Q16R-Hsp17 mutant. The 

Q16R-Hsp17 mutant shows reduced UV-B damage of PSII activity in comparison with the 

WT. The association of Q16R-Hsp17 protein with the thylakoid membrane and the 

preferential interaction with the SQDG lipids could confer UV-B protection by facilitating 

the PSII repair cycle at one or more levels: D1 degradation, resynthesis/reinsertion into the 

membrane, PSII monomerization/dimerization.  

 

 

CONCLUSIONS 

 

1. Our work demonstrates the participation of the FtsH/Slr0228 protease in the repair of 

UV-B damaged PSII reaction center. The FtsH protease is involved in the in vivo 

proteolytic removal of both D1 and D2 proteins of the PSII complex. Deg proteases 

do not seem to have a role in PSII repair following UV-B induced damage either in 

D1 and D2 proteins proteolysis (Cheregi et al. 2007).  

 

2. We have demonstrated that when the slr2100 gene is inactivated, the repair of UV-B 

damaged PSII is retarded. In the ∆Slr2100 mutant the level of cGMP is unregulated 

and this affects the adaptation of PSII apparatus to UV-B stress. This work points to 

the participation of the Slr2100 in the regulatory network by which Synechocystis 

PCC6803 senses UV-B light (Cadoret et al. 2005) 

 

3. We have shown that the Q16R-Hsp17 mutant, with an enhanced lipid-mediated 

thylakoid membrane interaction, is able to protect PSII functions under UV-B 

photoinhibitory conditions. The protection of PSII function is exerted at the level of 

PSII repair through a facilitated D1 repair cycle. Besides this effect, the Q16R 

mutation in the HSP17 modifies the acceptor side of the PSII complex at the level of 

QB (Balogi et al. submitted).  
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