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Introduction

Most stars are formed in clusters (Lada & Lada 2003). The processes re-

sponsible for cluster formation are important to include in any consideration

of the mechanisms of star formation. Understanding how stars like our Sun

were born is particularly significant if we are to shed light to our own ori-

gins, i.e. the formation of Earth and the Solar System. With more than 200

extrasolar planets known to date it has become obvious that formation of

other, extrasolar planetary systems are common. The first step, though, to

comprehend the formation of alien worlds, is to develop an understanding of

the star formation process itself.

Today, stellar clusters are used as laboratories of stellar evolution re-

search, and with the aid of modern (especially infrared and multiobject) ob-

servation facilities our models of cluster and star formation has become very

detailed. The increasing sensitivity of infrared studies with both ground-

based instruments and the Spitzer Space Telescope has made it more feasible

to find and explore very young stellar populations, still embedded in their

molecular cloud cradles. Searching for substructure in such cosmic nurseries

can provide insight into the earliest phase of stellar evolution and thus help

to understand what kind of initial conditions are required to form stars which

can host planetary systems.

Building blocks of large scale star forming regions have been identified

as spatial structures in the young cluster NGC 2264 (e.g. Lada, Young &

Greene 1993, Teixeira 2006). Recent X-ray studies using the Chandra space

telescope also found that stars of the well known Orion Nebula Cluster close

to its center show a strong spatial asymmetry (Feigelson et al., 2005). It

has been also demonstrated in several other cases that the more embedded

(youngest) populations exhibit a different, structured spatial distribution,

when compared to less obscured sources (e.g the findings of Broos et al.

(2007) on the structure of M17).
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These studies only provide snapshots at selected epochs of million year

long processes. Investigating numerous examples in various evolutionary

stages will allow us to see the whole a mosaic at once, but to assemble the

overall picture requires to extract and collect all the information available.

High resolution optical spectroscopy is a powerful tool of astrophysics, and

so its application has been relevant to probe star formation. Most of the

known extrasolar planets also had been discovered by echelle spectrographs,

through the Doppler effect, i.e. measuring the radial velocity changes of a

host star as it orbits around the star–planet barycenter.

Undoubtedly conducting an observation and analyzing the data is the best

way to understand the capabilities of a given instrument deliver and what

improvements are needed (or can be done) to push the sensitivity limits as

new technologies are incorporated into instrumental designs. One of the most

recent examples is the HARPS spectrograph (Pepe et al., 2000), routinely

delivering < 1 ms
−1 accuracy (Rupprecht et al., 2004), measured on stars

several hundred light years away. Such amazing precision, however, still lim-

its us to discover planets much more massive than the Earth. But advances

in metrology and development of astronomical laser combs (Li et al., 2008)

promises cm s
−1 scale measurements, enabling detection of Earth-like plan-

ets. In the investigation of star-forming regions the multi-object capabilities

are more beneficial than the very high precision. Still, internal consistency

of multi-object data sets, proper calibration and removal of any systematic

instrumental effects are crucial to derive valuable new information.

Aim of the Thesis

In my MSc thesis I presented the design, construction and application of a

moderate resolution, low budget spectrograph, suitable for university prac-

tice and teaching. Becoming a predoctoral fellow at the Harvard-Smithsonian

Center for Astrophysics (CfA), I had the opportunity to deepen my under-

standing of instrument design through application and construction of state-
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of-the-art instruments. The unique and supportive environment offered con-

venient interaction and collaboration with groups specialized in high preci-

sion radial velocity (RV) measurements and spectral analysis (Dave Latham,

Guillermo Torres and others) and in star forming regions (Spitzer/IRAC and

star formation scientists including Lori Allen, Charles Lada, Tom Megeath

and many others).

Therefore the goal of this thesis is twofold:

• provide a detailed overview of spectrograph design through the con-

struction of an echelle spectrograph, with the perspective of the end

user and in the light of scientific needs,

• and to study the internal dynamics of star forming regions, through

application of high resolution multiobject spectroscopy.

The former is rather a technical aspect of astronomy, and thus might be

considered as engineering science than basic astronomical research. The phi-

losophy of my work was that the use of an instrument is the best way to learn

its capabilities and thus the best way to provide feedback for development.

Therefore instrument building is an essential part of astronomical research.

The second goal is meant to add a so far missing piece to the star forma-

tion puzzle. Although several examples of clear spatial substructure has been

published lately, the kinematical structure of young stellar clusters have, to

date, remained relatively unexplored. Although high resolution multi object

spectrographs have been in service for years, fully exploiting the capabil-

ities of these marvelous instruments has just begun recently on this field.

The reason might be partly the unfortunate fact that young systems, which

might still show some imprint of the primordial kinematical structure, are

highly obscured at optical wavelengths and only a small number of nearby

star forming regions can be observed efficiently.

In particular I was aiming to test one of the recent star formation theories,

and find observational evidence to the predictions of the model by Burkert

& Hartmann (2004). Their work suggests that gravity acting on the edges
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of simple, isothermal, finite sheets can produce a wide variety of structures

that are likely to have some relevance to observed star-forming structures

in molecular clouds. In particular, Burkert & Hartmann (2004) have shown

that a likely general result of the collapse of a sheet formed by flows in the

interstellar medium is a filament with higher mass concentrations at the ends

of the filament. The simulated properties suggest that the kinematical struc-

ture of the filament develops accordingly: the end clumps contain the largest

portion of kinematical energy as well and thus exhibit higher radial velocity

dispersion than the rest of the cloud. With access to Hectochelle I had the

possibility to first look for then find observational evidence supporting the

results of these numerical simulations.

Research Methods

To collect hundreds of spectra suitable for radial velocity measurement and

spectral typing, I used the Hectochelle (Szentgyorgyi et al., 1998) high reso-

lution multi object spectrograph at the MMT telescope. The MMT Obser-

vatory, a joint venture of the Smithsonian Institution and the University of

Arizona. The MMT is an alt-azimuth mounted 6.5m Cassegrain telescope

located on the summit of Mt. Hopkins, the second highest peak in the Santa

Rita Range of the Coronado National Forest, approximately 55 kilometers

(30 miles) south of Tucson, Arizona. The MMT is on the grounds of the

Smithsonian Institution’s Fred Lawrence Whipple Observatory, also the site

of the 1.5m Tillinghast reflector for which I have designed and built in collab-

oration with the CfA Optical and Infrared Division instrumental group a high

resolution, fully cross dispersed echelle spectrograph, the TRES (Tillinghast

Reflector Echelle Spectrograph) instrument.

Stellar and calibration data (using the ThAr technique) were collected at

the resolution of R ≃ 34 000 in spectral orders including the Hα, Mg (5150–

5300 Å) and Li (6708 Å) regions. For the characterization of TRES, spectra

were recorded covering the entire visible range (3800–9200 Å) at a resolution
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of R ≃ 55 000, using simultaneous ThAr calibration.

For the spectral data reduction and calibration I wrote an automated

pipeline, which is in general a Linux shell script calling image reduction and

database handling tools. It relies on an instrument specific calibration data

base I have built, to enable the entire process being non-interactive. The

script runs in Linux/UNIX bash environment and mostly invokes IRAF1

tasks for the image processing, and STARBASE2 programs to handle the

input and output catalogs/databases. This pipeline was adopted by the CfA

Telescope Data Center as the official Hectochelle data reduction procedure.

The radial velocities and stellar parameters were obtained by the cross-

correlation technique, using the CfA-developed rvsao.xcsao task within the

IRAF environment. During this analysis each observed spectrum was com-

pared to a set of synthetic templates in order to find the best matching

artificial counterpart for the correlation. This multi-template method was

proven to enhance the precision of radial velocity determination. The ar-

tificial template libraries used are all based on the atmosphere models of

Kurucz (1992), and were calculated by Jon Morse (unpublished), Munari et

al. (2005) and Coelho et al. (2005).

For the TRES optical and mechanical design the ZEMAX3 commercial

optical ray tracing code and the I-DEAS4 CAD software package had been

used, along with self-developed scripts to perform system analysis (e.g. tol-

erancing) and to evaluate optical performance, aid system integration.

1IRAF (Image Reduction and Analysis Facility) is distributed by the National Opti-
cal Astronomy Observatories, which are operated by the Association of Universities for
Research in Astronomy, Inc., under contract with the National Science Foundation.

2http://cfa-www.harvard.edu/∼john/starbase/starbase.html
3www.zemax.com
4Integrated Design and Engineering Analysis Software, currently owned by Siemens

PLM Software
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New Scientific Results

1. I have designed and constructed a high resolution, fully cross dispersed,

state of the art echelle spectrograph (TRES – Tillinghast Reflector

Echelle Spectrograph), which has been commissioned in 2007 at the

1.5m Tillinghast reflector of the Fred Lawrence Whipple Observatory,

AZ, USA. According to initial performance tests the instrument is ca-

pable of measuring radial velocities with a ∼5 m s
−1 accuracy using

the simultaneous ThAr calibration method. TRES has been gradually

taking over the work of the CfA Digital Speedometer (Latham, 1992),

and will be serving as the main instrument in the CfA reconnaissance

spectroscopic observations of extrasolar planets, and play a key role in

the ground follow up work of NASA’s Kepler mission5 [1]

2. I have made significant contribution to the commissioning of the Hec-

tochelle high resolution multi-object spectrograph, by aligning its opti-

cal system, developing an optimal calibration system and a data reduc-

tion pipeline – essential for productive observations. As a result of ap-

plication of novel data analysis method I have recognized/determined

general rules useful/beneficial in the calibration of these unique in-

struments, which can improve the internal precision of radial velocity

measurements and so far had been missing from the literature. I have

demonstrated that sub-optimal wavelength calibration can lead to sys-

tematic errors which can be determined and corrected for, significantly

improving the self-consistency of large volume radial velocity data sets.

[2,3,4]

3. I have demonstrated that young open clusters yielding an age less than

a few million years, like NGC 2264, still exhibit substructure not just

in their spatial but also in their kinematical structure. I have found

significant radial velocity texture in this star forming region previously

known to have hierarchical appearance. I have shown that this must be

5http://kepler.nasa.gov/
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a remaining imprint of the primordial structure of a parental molecular

cloud forming the cluster members, as dynamical relaxation processes

could have not erased it due to the immature age of the protoclus-

ter. My results are in good agreement with distributional analysis of

infrared excess sources, also suggesting that younger sources still ex-

hibiting accretions disks are tracing the original stellar birthing sites.

The different radial velocity distribution for these and older, diskless

sources may indicate distinct, primordial structural elements of the

cloud. My results provide evidence that the stellar radial velocities

show a high correlation with the velocity of the molecular gas in the

cluster, traced by 13CO radio observations. Therefore it can be con-

cluded that any substructure of the parental gas cloud will strongly

influence the spatial and kinematical structure of protoclusters. I have

interpreted this texture as the result of gravitational collapse of initial

clumps of star-forming gas from a more extended structure to a roughly

filamentary distribution, according to the prediction of Burkert & Hart-

mann (2004). [5]

4. I have conducted an extensive radial velocity survey in the Orion Neb-

ula Cluster (ONC) and in the surrounding areas. I have found high

degree agreement between the structure of the gaseous and stellar com-

ponent, suggesting the region is very young, only ∼ 1 crossing time old,

otherwise gravitational interaction should have been smoothed the fine

structure still clearly visible in the data. This is an independent age es-

timate of this key star cluster, yielding a ∼1 Myr value, derived from the

physical size and the measured radial velocity dispersion of 3.1 km s−1.

Comparing the observational results to the numerical simulations of

Hartmann & Burkert (2007) I have found high level of similarity, re-

sulting the following picture of the ONC region:

on large scales the gas (and stars) exhibit a velocity gradient in the

elongated filament, due to rotation or shear running north-south. The

curvature seen the position-velocity diagrams suggests gravitational ac-
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celeration towards the cluster center. The concentration of gas (and

stars) north of the Trapezium region is somewhat in front and is also

falling in towards the center, explaining its higher radial velocities. The

southern part of the filament may also be falling in, although the mo-

tions are much less organized than is apparent in the northern arm.

It might be possible that the process of blowing out the near side of

the cloud, in the south, resulted in accelerating and compressing gas

which triggered the formation of a small population of stars exhibiting

blueshifted velocities. I have also found other signs of triggered star

formation in form of a sub-group of stars, which exhibits a strong spatial

concentration, yet yields radial velocity values and dispersion notably

different from the gaseous component of the same region. This part

of the nebula harbors a large number of Herbig-Haro objects shaped

like bow-shocks, pointing back toward the Trapezium region. This is

consistent with the idea that outflows from the ONC central region

(most current star formation) is blowing out material and triggering

star formation. [6]

5. I have provided observational evidence, the second known example in

our Galaxy, that cluster–cluster interactions take place and can scatter

cluster members into unbound, individual stars like our Sun. Most stars

are likely to be formed in the high star forming rate protoclusters, but

only a few bound associations survive for hundreds of millions of years.

This implies that dispersal of members is very efficient, especially in

the early evolutionary stages. Nevertheless, aged systems are subject

to tidal disruption, but not exclusively by giant molecular clouds or due

to passage through the dense galactic disk. As I have shown through

the example of NGC 1907 & 1912, cluster–cluster interactions are also

responsible for scattering stars into the galactic population. Such tidal

disturbance is apparent in the spatial–RV distribution: the observations

suggest the presence of a tidal bridge and a hint of a tidal tail. [7,8]

8



Publications

Papers Regarding the Listed New Scientific Results

[1] “Precision Radial Velocities for the Kepler Era”
Szentgyorgyi, A.H, & Fűrész, G.
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Pepe, F., Mayor, M., Delabre, B., Kohler, D., Lacroix, D., Queloz, D., Udry, S.,
Benz, W., Bertaux, J.L., & Sivan, J.P. 2000, SPIE, 4008, 582

Rupprecht, G. et al. 2004, SPIE, 5492, 148

Szentgyorgyi, A.H., Cheimets, P., Eng, R., Fabricant, D.G., Geary, J.C., Hart-
mann, L., Pieri, M.R., & Roll, J.B. 1998, Proc. SPIE, 3355, 242

Teixeira, P. S., et al. 2006, ApJ, 636, L45

11



.


