Mechanisms of diabetes mellitus-associated depletion of interstitial cells of Cajal in the murine stomach

Viktor J. Horváth, M.D.

1st Department of Internal Medicine
University of Szeged

Ph.D. Thesis

2008
This thesis is based on the following publications:

Abbreviations:

ICC: interstitial cells of Cajal
SCF: stem cell factor
IGF-I: insulin-like growth factor-I
igf1r: insulin-like growth factor-I receptor
insr: insulin receptor
FACS: fluorescence-activated cell sorting
FCM: flow cytometry
NOD: non-obese diabetic
Contents

1. Introduction

1.1. Interstitial cells of Cajal: historical overview and recognition of their functional significance

1.2. Morphology and function of the interstitial cells of Cajal

1.3. Diabetes-induced changes in gastrointestinal motor functions is associated with an impairment of the Cajal cells

1.4. The aims of the study

2. Materials and Methods

2.1. Preparation of organotypic cultures

2.2. Immunohistochemistry

2.3. Qualitative and quantitative PCR for the analysis of gene expression

2.4. Analysis of gene expression by hybridization

2.5. Purification of Cajal cells by fluorescence-activated cell sorting (FACS)

2.6. Electrophysiological methods

2.7. Solutions

2.8. Statistics

3. Results

3.1. Changes of the network of interstitial cells of Cajal in organotypic cultures

3.2. Changes of electrical rhythmcity in cultured organotypic tissues

3.3. Gene expression of FACS purified Cajal cells

3.4. Localization of insulin-, insulin-like growth factor-receptor and stem cell factor in gastric tunica muscularis

3.5. Investigation of stem cell factor expression and loss of interstitial cells of Cajal in the stomach of diabetic NOD mice
3.6. Smooth muscle atrophy and consequent loss of stem cell factor lead to depletion of interstitial cells of Cajal in long term organotypic gastric tunica muscularis cultures

3.7. Relationship between loss of interstitial cells of Cajal and stem cell factor producing cells

3.8. Immunoneutralization of stem cell factor accelerate the loss of gastric interstitial cells of Cajal

4. Discussion

4.1. Role of hyperglycaemia, insulin and IGF-I in the maintenance of Cajal cell morphology and function

4.2. Role of insulin and IGF-I in the maintenance of Cajal cell morphology and its impairment by diabetes mellitus

5. References
Acknowledgement:

I would express my special thanks to Dr. Tamás Ördög for his kind invitation and support to perform these experiments in the Department of Physiology and Cell Biology, Cellular Imaging Laboratory, University of Nevada, Reno, Nevada.

I would also express my special thanks to Professor Gábor Jancsó for his generous efforts to help me from the beginning of my scientific career.

I am grateful to Professor János Lonovics and Professor Tibor Wittmann, the previous and present head of the 1st Department of Internal Medicine of the University of Szeged to support me during my studies.

I also have to express my thanks to the members of the laboratories where the experiments were completed, particularly to Doug Redelman, Ph.D., Dr. Andrea Lőrincz, and Michael R. Bardsley for their help and to my colleagues in the Department of Physiology, Faculty of Medicine, University of Szeged, especially Dr. Péter Sántha and Dr. Mária Dux for their support.

The excellent technical assistance of Nancy Horowitz and Lisa Miller is also appreciated.

I also thank the patience and help of my family and friends that provided me a safe background.

This work was supported in part by NIH grant DK58185.