
On subuniverses of lattices and semilattices

Abstract of Ph.D. thesis

Delbrin Ahmed

Supervisor:

Dr. Eszter K. Horváth

Doctoral School of Mathematics

University of Szeged, Bolyai Institute

Szeged, Hungary, 2022.



Introduction

A lattice is an abstract structure in mathematics. According to Ro-

man [12], the beginnings of lattice theory can be dated to the early

1890s, when the concept was developed by Richard Dedekind, during

investigating subgroups of abelian groups. By Grätzer [10], he carried

out related research on ideals of algebraic numbers and he introduced

the concept of modularity as well. According to Grätzer [10], George

Boole’s propositional logic independently led to the concept of Boolean

algebras in the first half of the nineteenth century. This was followed

at the end of the nineteenth century by Charles S. Pierce and Ernst

Schröder’s investigation on the axiomatics of Boolean algebras, when

they introduced the lattice concept.

The concept was developed further by Garrett Birkhoff in the mid-

thirties of the last century in a brilliant series of papers, in which

by Grätzer [10] he demonstrated the importance of lattice theory.

Birkhoff monograph [5] turned lattice theory into a major branch of

abstract algebra. With the papers mentioned above and work done by

Valère Glivenko, Karl Menger, John von Neumann and Oystein Ore,

lattice theory has become a standard branch of modern algebra. For

more details, see Grätzer [10], Roman [12] and Rota [13].

The role of von Neumann deserves a separate mention. From https:

//en.wikipedia.org/wiki/John_von_Neumann we see that John von

Neumann (1903-1957) was a Hungarian-American mathematician, physi-
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cist, computer scientist, engineer and polymath. Von Neumann is gen-

erally regarded as the foremost mathematician of his time and is said

to be the last representative of the great mathematicians (see [11]).

He integrated pure and applied sciences. Notions like von Neumann

algebra, prizes and https://njszt.hu/hu are named after him. His ex-

cellence also manifested itself in lattice theory, and his work substan-

tially contributed to the fact that lattice theory eventually became a

separate branch of mathematics. The founder of lattice theory and

Universal Algebra, Garrett Birkhoff himself wrote in [6] that

"‘John von Neumann’s brilliant mind blazed over lattice theory like

a meteor, during a brief period centering around 1935-1937."’

and

"‘One wonders what would have been the effect on lattice theory,

if von Neumann’s intense two-year preoccupation with lattice theory

had continued for twenty years!"’

Another milestone in the history of lattice theory was the year 1971,

when the first journal devoted to lattices was founded. This journal

called Algebra Universalis is still going strong. Well, it is also devoted

to universal algebra not just lattice theory, but these two branches

have a lot in common at the topical level and personal level. The

founder, George Grätzer, is famous for producing results, papers and

monographs on lattice theory; his 61-times coauthor, Elégius Tamás

Schmidt (1936-2016) also deserves a mention.
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Within a Ph.D. thesis, we cannot hope to give a reasonable survey of

what transpired in lattice theory after the progress made by Birkhoff

and John von Neumann. Instead of doing so, the reader is referred to

the paper Rota [13], and to introductory sections of the monographs

Grätzer [10] and Roman [12].

In addition to the above-mentioned lattice theorist Grätzer (Hungarian-

Canadian) and Schmidt (Hungarian), it is worth mentioning that Hun-

garian lattice theorists Gábor Szász, András Huhn, Gábor Czédli and

Sándor Radeleczki have made substantial contributions and have had

a huge impact on this branch of mathematics with their researches.

The topic of the dissertation is restricted to finite lattices and semi-

lattices. Next, we briefly summarise the main results upon which the

dissertation is built on.

Some large numbers of subuniverses of finite lattices

In Chapter 2 (which is based on a joint paper with Horváth [2]), we

proved that the fourth largest number of subuniverses of an n-element

lattice is 21.5 · 2n−5 for n ≥ 6, and the fifth largest number of sub-

universes of an n-element lattice is 21.25 · 2n−5 for n ≥ 7. Also, we

described the n-element lattices with exactly 21.5 · 2n−5 (for n ≥ 6)

and 21.25 · 2n−5 (for n ≥ 7) subuniverses. For a lattice L, Sub(L)

denote its sublattice lattice.

Lemma 1. If |L| = n for the lattice L, and S is a partial sublattice
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of L with |S| = k and with | Sub(S)| = m, then |Sub(L)| ≤ m · 2n−k.

The following lemma can be proved with a computer program. The

program for counting subuniverses is available on the webpage of G.

Czédli: http://www.math.u-szeged.hu/~czedli/, (subsize, a program

for counting subuniverses 2019). The dissertation contains the stan-

dard proof for each case.
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Figure 0.1: Lattices N5B4 and N6
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Figure 0.2: Lattice N ′
6 and partial lattice H1

Lemma 2. For the lattices and a partial lattice given in figures 0.1 to

0.3, the following five assertions hold.

(i) |Sub(N6)| = 43 = 21.5 · 26−5,

(ii) |Sub(N5B4)| = 69 = 17.25 · 27−5,
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Figure 0.3: Lattices B4 +glu B4 and N7

(iii) |Sub(N ′6)| = 37 = 18.5 · 26−5,

(iv) |Sub(H1)| = 79 = 19.75 · 27−5,

(v) |Sub(N7)| = 83 = 20.75 · 27−5,

The following theorem states the main result of the chapter:

For a natural number n ∈ N+, let

NS(n) := {|Sub(L)| : L is a lattice of size |L| = n}.

Theorem 3. The following two assertions hold.

(i) The fourth largest number in NS(n) is 21.5 · 2n−5 for n ≥ 6.

Furthermore, for n ≥ 6, an n-element lattice L has exactly 21.5 ·

2n−5 subuniverses if and only if L ∼= C0 +glu N6 +glu C1, where

C0 and C1 are chains.

(ii) The fifth largest number in NS(n) is 21.25 · 2n−5 for n ≥ 7. Fur-

thermore, for n ≥ 7, an n-element lattice L has exactly

21.25·2n−5 subuniverses if and only if L ∼= C0 +glu B4 +glu B4 +glu C1,

where C0 and C1 are chains.
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Several large numbers of subuniverses of finite

semilattices

In Chapter 3 (which is based on a joint paper with Horváth [3]), mo-

tivated by the results of Chapter 2, we proved that the first largest

number of subuniverses of an n-element semilattice is 2n = 32 · 2n−5,

the second largest number is 28 · 2n−5 and the third one is 26 · 2n−5,

where n ≥ 5. Also, we described the n-element semilattices with ex-

actly 32 ·2n−5, 28 ·2n−5, or 26 ·2n−5 subuniverses. Following Czédli [7]

and [8], we define the relative number of subuniverses of A as follows:

σk(A) := |Sub(A)| · 2k−n.

Similarly, if B = (B,FB), then

σk(B) := |Sub(B)| · 2k−n.

An element u of a semilattice L is called a narrow element, or nar-

rows , if u 6= 1L and L = ↑u ∪ ↓u. That is, if u 6= 1L and x‖u holds

for no x ∈ L.

Lemma 4. If (K,∨) is a subsemilattice and H is a subset of a finite

semilattice (L,∨), then the following three assertions hold.

(i) With the notation t := |H ∩ S : S ∈ Sub(L,∨)|, we have that

σk(L,∨) ≤ t · 2k−|H|.

(ii) σk(L,∨) ≤ σk(K,∨).
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(iii) Assume, in addition, that (K,∨) has no narrows. Then σk(L,∨) =

σk(K,∨) if and only if (L,∨) is (isomorphic to) C0 +ord(K,∨) +glu C1,

where C1 is a chain, and C0 is a chain or the emptyset.

The following lemma can be proved using a computer program. The

program for counting subuniverses is available on the webpage of G.

Czédli: http://www.math.u-szeged.hu/ czedli/ (subsize, a program for

counting subuniverses 2019). The dissertation also contains the stan-

dard proof for each case.
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Figure 0.4: Partial lattices H3 and H4
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Figure 0.5: Partial lattices K3, K and N

Lemma 5. For the join-semilattices given in figures 0.4 to 0.6, the

following seven assertions hold.

(i) σ5(H3) = 28,

(ii) σ5(H4) = 26,
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Figure 0.6: Partial lattices H5 and K0

(iii) σ5(H5) = 25,

(iv) σ5(K3) = 24,

(v) σ5(K) = 23,

(vi) σ5(N) = 19.5,

(vii) σ5(K0) = 15.25.

The following theorem summarizes the main result of the chapter:

Theorem 6. If 5 ≤ n ∈ N+, then the following three assertions hold.

(i) The first largest number in NS(n) is 2n = 32·2n−5. Furthermore,

an n-element semilattice (L,∨) has exactly 2n subuniverses if

and only if (L,∨) is a chain.

(ii) The second largest number in NS(n) is 28·2n−5. Furthermore, an

n-element semilattice (L,∨) has exactly 28 · 2n−5 subuniverses if

and only if (L,∨) ∼= H3 +glu C1 or (L,∨) ∼= C0 +ord H3 +glu C1,

where C0 and C1 are finite chains.
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(iii) The third largest number in NS(n) is 26 · 2n−5. Furthermore, an

n-element semilattice (L,∨) has exactly 26 · 2n−5 subuniverses if

and only if (L,∨) ∼= H4 +glu C1 or (L,∨) ∼= C0 +ord H4 +glu C1,

where C0 and C1 are finite chains.

The number of subuniverses, congruences, weak

congruences of semilattices defined by trees

In Chapter 4 (which is based on joint manuscript with Horváth and

Németh [4]), first we determined the number of subuniverses of semi-

lattices defined by arbitrary and special kinds of trees via combinato-

rial considerations, as follows:

B

B1 B2

Figure 0.7: The Left and right maximal subtrees

Lemma 7. If (T,∨) is a semilattice defined by a tree T , then

|Sub(T,∨)| =
n∏

i=1

(|Sub(Ti,∨)|) +
n∑

i=1

(|Sub(Ti,∨)|)− (n− 1),

where T1, . . . , Tn is a repetition free list of maximal subtrees of the tree

T.
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Corollary 7.1. If (B,∨) is a semilattice defined by a binary tree B,

then

|Sub(B,∨)| = |Sub(B1,∨)| · |Sub(B2,∨)|+ (|Sub(B1,∨)|

+ |Sub(B1,∨)|)− 1,

where B1, B2 are the left and right maximal subtrees of the tree, re-

spectively.

Corollary 7.2. If (B,∨) is a semilattice defined by a prickly-snake B

of height h, then

|Sub(B,∨)| = 3 |Sub(B1,∨)|+ 1 = 5 · 3h − 1
2 ,

where B1 is the left maximal subtree of the tree.

Second, using a result of Freese and Nation [9], we gave a formula

for the number of congruences of semilattices defined by arbitrary and

special kinds of trees, as follows:

Lemma 8. If (T,∨) is a semilattice defined by a tree T , then

|Con(T,∨)| = 2|T |−1 = 2
∑n

i=1
|Ti| = 2n ·

n∏
i=1

|Con(Ti,∨)| ,

where T1, . . . , Tn is a repetition free list of maximal subtrees of the tree

T.

Corollary 8.1. If (B,∨) is a semilattice defined by a binary tree B,

then

|Con(B,∨)| = 2|B1|+|B2| = 4 · |Con(B1,∨)| · |Con(B2,∨)| ,
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where B1, B2 are the left and right maximal subtrees of the tree, re-

spectively.

Corollary 8.2. If (B,∨) is a semilattice defined by a prickly-snake B

of height h, then

|Con(B,∨)| = 4 · |Con(B1,∨)| = 4h,

where B1 is the left maximal subtree of the tree.

Corollary 8.3. If (B,∨) is a semilattice defined by a perfect binary

tree B of height h, then

|Con(B,∨)| = 4 · |Con(B1,∨)|2 = 22h+1−2,

where B1 is the left maximal subtree of the tree.

Third, using both results, we proved a formula for the number of

weak congruences of semilattices defined by a binary tree, like so:

Lemma 9. If (B,∨) is a semilattice defined by a binary tree B and

1′ 6∈ B, then ∣∣∣Cw
(

(B,∨) +ord{1′}
)∣∣∣ = 3 · |Cw(B,∨)| − 1.

Theorem 10. If (B,∨) is a semilattice defined by a binary tree B,

then

|Cw(B,∨)| = 4(|Cw(B1,∨)|·|Cw(B2,∨)|)−(|Cw(B1,∨)|+|Cw(B2,∨)|),

where B1, B2 are the left and right maximal subtrees of the tree, re-

spectively.
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Corollary 10.1. If (B,∨) is a semilattice defined by a prickly-snake

B of height h, then

|Cw(B,∨)| = 7 · |Cw(B1,∨)| − 2 = 5 · 7h + 1
3 ,

where B1 is the left maximal subtree of the tree.

Finally, we solved two related nontrivial recurrences by applying the

method of Aho and Sloane, as in the following theorems:

Theorem 11. If (B,∨) is a semilattice defined by a perfect binary

tree B of height h, then

|Sub(B,∨)| = |Sub(B1,∨)|2 + 2 |Sub(B1,∨)| − 1,

where B1 is the left maximal subtree of the tree.

Moreover,

|Sub(B,∨)| =
⌈
C2h+1⌉

− 1, C = 1.6784589651254 . . .

where dxe denotes the least integer greater than or equal to x.

Theorem 12. If (B,∨) is a semilattice defined by a perfect binary

tree B of height h, then

|Cw(B,∨)| = 4 · |Cw(B1,∨)|2 − 2 · |Cw(B1,∨)| ,

where B1 is the left maximal subtree of the tree.

Moreover,

|Cw(B,∨)| =
⌈

1
4 C

2h+1⌉
, C = 2.61803398874989 . . .

where dxe denotes the least integer greater than or equal to x.
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(1+ 1+2)-generated lattices of quasiorders

In Chapter 5 (which is based on a joint paper with Czédli [1]), we

proved that the lattice Quo(n) of all quasiorders (also known as pre-

orders) of an n-element set is (1 + 1 + 2)-generated for n = 3, n = 6

(when Quo(6) consists of 209 527 elements), as follows:

Let A = {a, b, c, d, f, g}. We define the following quasiorders of A:

α := e(d, f) ∨ e(f, g), β := α ∨ e(b, c) ∨ q(b, a)

γ := e(a, b) ∨ e(a, d) ∨ e(c, f), δ := e(b, c) ∨ e(c, g) ∨ e(a, f).
(0.1)

Figure 0.8: α, β, γ, and δ

Theorem 13. With the quasiorders defined in (0.1), {α, β, γ, δ} is a

(1+1+2)-generating set of the quasiorder lattice Quo(6) = Quo({a, b, c, d, f, g}).

Hence, Quo(6) is (1 + 1 + 2)-generated.

Corollary 13.1. Quo(3) is (1 + 1 + 2)-generated.
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