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1. Introduction 

 

KYNA (kynurenic acid) is an endogenous product of the tryptophan (TRP) metabolism, a 

pathway known to be responsible for the production of nicotinamide adenine dinucleotide (NAD) 

and NAD phosphate.1,2 In this pathway, TRP is converted into various compounds, including 

L-kynurenine, which can be metabolized in two separate ways. One furnishes KYNA, whereas the 

other gives 3-hydroxykynurenine and quinolinic acid, the precursors of NAD.3,4 

Among the important features of KYNA, one is that it is one of the few known endogenous 

excitatory amino acid receptor blockers with a broad spectrum of antagonistic properties in 

supraphysiological concentrations. One of its confirmed sites of action is the α-7-nicotinic 

acetylcholine receptor and, interestingly, the other, identified recently, is a higher-affinity positive 

modulatory binding site at the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptor.5 

Since KYNA is a neuroprotective agent able to prevent neuronal loss following excitotoxic, 

ischemia-induced, and infectious neuronal injuries,6,7 there has recently been increasing interest in 

the synthesis and pharmacological studies of KYNA derivatives. The substitution of KYNA at 

positions 5–8 was achieved by starting from the corresponding aniline via the modified Conrad–

Limpach method.8-10 The hydroxy group at position 4 was transformed to ether10–12 or amine 

functions,13–15 while the carboxylic function at position 2 was mostly modified by synthesizing the 

corresponding esters10–12 or amides.16–21 

Formally, KYNA can be considered to be a nitrogen-containing 1-naphthol derivative. In 

our previous studies, 1-naphthol and its N-containing analogues were successfully applied in the 

modified Mannich reaction (mMr)22 leading to the corresponding aminonaphthols,23 

aminoquinolinols or aminoisoquinolinols.24,25 A similar transformation starting from xanthurenic 

acid has been described by Schmitt et al.26 They managed to perform regioselective 

aminoalkylation at position 3 on this substrate, by using benzyl protection of the C-8 hydroxyl 

group. 

Based on the evaluations of previous KYNA amides, a tertiary nitrogen is needed for 

biological activity towards the central nervous system.27–30 Derivatives bearing such functional 

groups can be synthesized by various methods, such as carboxyl amidation mentioned 

previously.16–21 An alternative route could be the transformation of the 4-hydroxy group into an 

amino function and its subsequent alkylation with an appropriate nitrogen-containing 

haloalkylamine.13 
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My PhD work has been planned to accomplish two major goals. The first aim was to 

investigate the reactivity of kynurenic acid in a modified Mannich-type reaction. In the original 

Mannich reaction a C–H acid, formaldehyde and a secondary amine forms a so-called Mannich 

base in a relatively easy, one-pot reaction. Recently, one of its special variations, the mMr has 

gained ground, in which the C–H acid is replaced by electron-rich aromatic compounds such as 1- 

and 2-naphthols as active hydrogen sources.31 As KYNA can be considered to be a nitrogen-

containing 1-naphthol derivative, its reaction in the mMr also emerges as a straightforward version 

of functionalization. Using an array of amines and aldehydes, the reaction can yield the 

corresponding targeted aminoalkylated derivatives with the desired cationic center. 

 

The second aim of my work was to investigate the scope and limitations of the mMr on 

KYNA by reacting a representative amine and aldehyde with different functionalized or amide 

derivatives of KYNA. Reactions of a few selected amides and derivatives hydroxy-substituted at 

the B ring were studied further either by comparing different synthetic routes or through 

systematic investigations supported by DFT calculations. 
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2. Literature background 

 

The modifications carried out on the 4-hydroxyquinoline-2-carboxylic acid skeleton can 

either be (i) additions of functional groups at different positions or (ii) modifications in the benzo-

fused 4-oxo-1,4-dihydropyridine-2-carboxylic acid skeleton itself, meaning the exchange of 

carbons to heteroatoms or the change of B ring size. While aspect (i) was already reviewed in 

2009,21 the modifications so far done on the B ring have not yet been collected. The aim of this 

section is to summarize the syntheses and use of KYNA derivatives modified at the B ring that are 

either containing a heteroatom in the B ring and/or have a different ring size (Figure 1). In the 

future, these compounds may provide a basis for the synthesis of new KYNA derivatives and thus 

a variety of candidates for medicinal use. 

 

Figure 1. 

 

The synthesis of modified quinoline structures has a wide variety of possible methods.32 

However, with the 2-carboxylic and 4-oxo functions taken into consideration, the possible routes 

are narrowed down to a small range of nucleophilic substitutions or additions followed by an 

intramolecular ring closure. Since the syntheses, from this aspect, differ only in a few cases, they 

have been categorized on the basis of the type and position of the heteroatom in the modified 

skeletons. 

 

2.1. Nitrogen-containing ring systems 

 

 

Figure 2. 
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2.1.1. Pyridine- and pyrimidine-fused ring systems 

A possible route for the preparation of functionalized quinoline structures is the Conrad–

Limpach synthesis. During the procedure described by Max Conrad and Leonhard Limpach, an 

aniline is reacted with β-keto esters to form an intermediate Schiff-base. In the second step, this 

intermediate undergoes a thermal intramolecular ring closure yielding the final quinolone 

derivative.33–35 As the synthesis of the intermediate can be achieved with several methods, 

variations of the reaction using different aniline derivatives or electrophiles to synthesize the 

intermediate have been disclosed. 

One of the first synthesis concerning the synthesis of KYNA derivatives bearing modified B 

rings has been published by Williamson et al. Presumably, since the described ethyl 

ethoxalylacetate would not yield the mentioned naphthyridine derivative, diethyl oxalacetate was 

used with aniline derivative 1a to carry out the synthesis of 2a. Then the product was stirred in 

boiling diphenyl ether (Ph2O) to achieve ring closure yielding 1,5-naphthyridine derivative 3a 

(Scheme 1, Table 1).36 

 

Scheme 1. Synthesis of 1,5-naphthyridine derivatives 3a,b 

Table 1. Reaction conditions for the preparation of 1,5-naphthyridine derivatives 

Reaction Reagent Solvent 
Temperature 

(°C) 

Reaction 

time 
Yield (%) 

i 

diethyl 

oxalacetate 

glacial acetic 

acid 
40-50 °C; r.t. 

4 h; over 

night 
2a 43%36 

neat 90 °C 7 h 2b 21%37 

sodium (Z)-1,4-

diethoxy-1,4-

dioxobut-2-en-2-

olate 

glacial acetic 

acid 
r.t. 2.5 days 2b 23%38 

ii - 

Ph2O reflux 10+10 min 3a 84%36 

Downtherm A 210 °C 5 h 3b 34%37 

Ph2O reflux 15+20 min 3b 29%38 

 

The same method was utilized 50 years later by Nakamoto et al.37 and Feng et al.38 in two 

distinct patents to synthesize the Schiff base intermediate of 3b by either using diethyl oxalacetate 
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or its alkali salt, sodium (Z)-1,4-diethoxy-1,4-dioxobut-2-en-2-olate, respectively. The synthesized 

compounds were later transformed to potential antifungal37 and antimalarial49 or potential 

farnesoid X receptor modulators (Scheme 1 and Table 1).38,40 

In the case of the synthesis of 1,6-naphthyridine derivatives, the method presented in the 

literature, involves a procedure different from the one described by Conrad and Limpach. Pyridine 

with an active α-methyl function (4), that can be regarded as a acetophenone derivative,41 is 

reacted with dimethyl oxalate in the presence of excess MeONa needed to shift the reaction 

toward the ring closure (Scheme 2).42 

 

Scheme 2. Synthesis of naphthyridine derivative 6 via acetophenone analogue 4 

 

Regarding the synthesis of 1,7-naphthyridine derivatives, the literature is scarce: only two 

patents mention these compounds. In both cases, the derivatives were used to broaden the 

4-hydroxyquinoline-2-carboxylic acid scaffold of the final bioactive compound with an additional 

heteroatom-containing skeleton (8, 10, 11, 13, Scheme 3 and 4).43,44 However, the patents neither 

described the synthesis of the naphthyridine skeleton nor cited an appropriate reference. 

 
Scheme 3. 1,7-Naphthyridine derivative with possible kinase-inhibiting effect 
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Scheme 4. 1,7-Naphthyridine derivatives (10, 11, 13) with possible acetyl coenzyme A inhibiting 

effect 

 

The synthesis of 1,8-naphthyridine, containing a carboxylic function at position C-2 and a 

hydroxy function at position C-4, was first carried out by Weiss et al. The reaction is a perfect 

example of Conrad–Limpach procedure using a substituted β-keto ester. For the formation of the 

Schiff base, α-ethoxalylpropionate (a β-keto ester) was applied yielding 16; however, its isolation 

in high purity was unsuccessful (Scheme 5).45 

 

 

Scheme 5. Synthesis of C-3 methyl-substituted 1,8-naphthyridine derivative 16 
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The modification used in the synthesis of many KYNA derivatives46 was also applied for the 

synthesis of 1,8-naphthyridine derivatives. This method involves the use of acetylene derivatives 

for the synthesis of enamine intermediates through a Michael addition. Tonetti et al. utilized this 

method to synthesize 19 by applying dimethylacetylene dicarboxylate (DMAD) as an electrophilic 

reagent. However, the precise conditions of the synthesis are unclear, as the original paper could 

not be found and the reaction scheme was put forward based on the information gathered from 

Chemical Abstracts (Scheme 6).47 

 

Scheme 6. Proposed synthesis of 1,8-naphthyridine derivative 19 

 

However, judging from the work of Huc et al., it is safe to conclude that the reaction 

depicted in Scheme 7 is correct, since the research group managed to synthesize the same 

compound from the same starting materials (Scheme 7).48 Derivative 19 was later used to create 

oligomers, that were investigated in the hope of finding foldamers with a chemical space as vast as 

their aliphatic counterparts (namely, α-peptides).49–52 

 

 

Scheme 7. Synthesis of 1,8-naphthyridine derivative 19 and its use as a foldamer building block 
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The same method was applied by Dohmori et al. during the synthesis of different potentially 

antimicrobial agents (against Trichomonas vaginalis). Pyrrolidine-substituted 1,8-naphthyridine 

23 was synthesized using functionalized aminopyridine 21 and DMAD, albeit, a with a low yield 

of 11%. Nevertheless, it further supports the idea that these compounds can be synthesized with 

this modified Conrad–Limpach procedure (Scheme 8).53 

 

Scheme 8. Synthesis of pyrrolidine substituted 1,8-naphthyridine 23 

 

The use of DMAD to carry out the Michael addition and subsequently the synthesis of 

different pyrimidine-containing skeletons has also been investigated. The first method published 

describes the synthesis of pyrido[3,2-d]pyrimidine skeleton.54 This method was later optimized by 

Rosowsky et al. by decreasing the reaction time of the intramolecular ring closure from 45 

minutes to a reaction time as short as 3 minutes (Scheme 9).55 The method was later cited by 

patents for the synthesis of compounds exhibiting PI3K inhibitory activities.56 

 

Scheme 9. Synthesis of pyrido[3,2-d]pyrimidine derivative 26 

 

The synthesis of pyrido[2,3-d]pyrimidine skeleton has also been described; however, in the 

first publication it was only mentioned as a desired product. The research group tried to apply the 

same Michael addition with DMAD. However, the reaction yielded the C-5 carbonylated 

derivative of 6-aminouracil (28, Scheme 10).57 Sakaguchi et al. tried to achieve the ring closure by 

changing N,N-dimethylformamide (DMF) to MeOH. Still, both at room temperature and under 

reflux conditions, the formation of the same maleate intermediate 29 was observed. Subsequently, 

it was transformed in either DMF or in MeOH under reflux to 2-oxo-4-carboxylic acid derivative 

30. However, in MeOH the formation of a minimal amount of the 4-oxo derivative 31 also took 

place. This observation, in combination with the fact that solvents used for other Conrad–Limpach 
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ring closure steps [Downtherm A, 1,2-dichlorobenzene (DCB)] were not investigated, indicates 

that the synthesis with a better yield may be possible (Scheme 10).58 

 

Scheme 10. Possible methods for the synthesis of pyrido[2,3-d]pyrimidine derivative 31 

 

Dorokhov et al. used their method described for the synthesis of 1,6-naphthyridine 642 to 

synthesize a wide variety of pyrimidine analogues (33a,b, 34a–g) as well (Scheme 11).59 

 

Scheme 11. Synthesis of pyrido[2,3-d]pyrimidine derivatives 33a–g, 34a,b via acetophenone 

derivatives 32a–g 

 

2.1.2. N-Bridgehead annulations 

For the synthesis of 4H-pyrido[1,2-a]-pyrimidin-4-one skeleton, several methods have been 

described. Earlier reports include the reaction of 2-aminpyridine with different reagents under 

varied conditions ranging from reactions at 250 °C using Meldrum’s acid60 through reactions in 

AcOH (under reflux conditions)61 or with the use of metal catalysts62 to milder reactions in 

ethanol at reflux temperature.63 However, the synthesis of quinoline compounds bearing both the 

same bridgehead nitrogen and the 4-oxo and 2-carboxylic functions required different conditions. 
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In this subsection, methods available for the synthesis of the specific skeleton until now are 

collected. 

As a straightforward approach, the Conrad–Limpach procedure can also be applied to 

synthesize the required derivatives. Diethyl 2-methyl-3-oxosuccinate, as a functionalized β-keto 

ester was used by Jaenicke et al. along with bismuth trichloride as catalyst to synthesize KYNA 

analogue 36, methyl-substituted at C-3 containing bridgehead nitrogen (Scheme 12). Regarding 

catalysts, the reaction showed high selectivity toward bismuth trichloride compared to other salts, 

such as zinc chloride or iridium chloride.64 

 

Scheme 12. Synthesis of C-3 functionalized N-bridgehead derivative 36 using metal catalyst 

 

It has been shown in two articles that the synthesis can also be carried out without the use of 

a toxic metal catalyst. Starting from the same β-keto ester, the synthesis of both 36 and the 6-

bromo-substituted derivative 38 could be achieved (Scheme 13).65,66 Though the inaccurate 

description of the methods (not given w/w% and mol% of TsOH-SiO2 catalyst) and the lower 

yields overshadow the results. 

 

Scheme 13. Metal-free synthesis of compound 36 and its bromo-substituted derivative 38 

 

Similar to the synthesis of pyridine-fused derivatives, the β-keto ester electrophile can be 

replaced by other electron-deficient reagents, such as DMAD. One of the reactions described used 

the acetylene derivative in water. The reaction carried out at room temperature yielded the 

unsubstituted N-bridgehead derivative 40 in 6 hours (Scheme 14).67 This procedure was later 
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applied in a patent to create derivatives inhibiting MeTTL3 activity, and in this way proliferative 

disorders, such as cancer, autoimmune, infectious or inflammatory diseases.68 

 

Scheme 14. Synthesis of unsubstituted N-bridgehead derivative 40 

 

A similar procedure was used by Summa et al.69,70 to synthesize 3-hydroxy-containing 

9aH-pyrido[1,2-a]pyrimidine derivatives (Scheme 15). Based on the Conrad–Limpach procedures 

using DMAD as described in previous paragraphs, it is expected that the first step would involve 

the enamine formation of the acetylene and the amino group. However, based on their previous 

experiences with the synthesis of hydroxypyrimidinones, the formation of an O-adduct 

intermediate was expected. This could possibly be a 2-aminopyridine-N-oxide regarded as the 

tautomer of amidoxime. These derivatives are known to react with DMAD to form O-adducts 

(vinylhydroxylamines).71,72 The subsequent rearrangement/cyclization of 42a,b took place in 

o-xylene under reflux. However, the isolation of the product was not described, since it was 

further transformed without isolation into its pivalate derivative (43a) in order to facilitate its 

purification. The procedure was successfully broadened to other aminopyridine derivatives as 

well, with N-oxidation of the aminopyridines. It is interesting to mention that in the case of 43c, 

the described final synthesis using p-toluenesulfonic acid (pTsOH) as catalyst, was performed in 

a single step, providing the lowest yield. 

 

Scheme 15. Synthesis of C-3 aryl- and alkoxy-substituted derivatives 43a–c 

 

Furthermore, in addition to DMAD, the synthesis of the same C-3 hydroxy-functionalized 

compounds can be achieved through the use of a different electrophile, namely, dimethyl 

diacetoxyfumarate. Upon reacting with substituted 2-aminopyridines, it yields 
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2-hydroxy-pyrido[1,2-a]pyrimidin-4-on-2-carboxylic acid derivatives (45a,b, Scheme 16).73 The 

method was later applied for the synthesis of different HIV-1 integrase inhibitors.74–76 

 

Scheme 16. Synthesis of C-3 hydroxy-substituted N-bridgehead derivatives 45a,b 

 

In continuing the discussion of reactions utilizing acetylenes to yield the desired 

pyrido[1,2-a]pyrimidin skeleton, DMAD can also be reacted with nucleophiles derived from 

unique compounds. An interesting alternative method was investigated by Rees et al. using 

1,2,4-triazolo[4.3-a]pyridine as nucleophile (Scheme 17).77 Among other reaction routes yielding 

different products, DMAD can react with the N-1 atom of the triazole ring, yielding intermediate 

47a delivering 48 through a ring-opening and subsequent intramolecular ring-closure. 

 

Scheme 17. Synthesis of N-bridgehead KYNA derivative 48 via ring-member extension 

 

Even though previous methods described above give possibilities for the synthesis of C-3-

substituted derivatives, further functionalization can be achieved through the method reported by 

Ackermann et al.78 Starting from 2-pyridylhydrazone 49 and alkyne 50a,b, manganese-catalyzed 

carbonylative annulations yielding compounds 36 and 51 were carried out (Scheme 18). The 

method was mainly used for the synthesis non-carboxylic derivatives; however, judging from the 

number of available acetylene derivatives, this reaction may provide a useful approach to 

synthesize new, C-3 functionalized N-bridgehead KYNA derivatives. 
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Scheme 18. Synthesis of derivatives 36 and 51 via a manganese-catalyzed reaction 

 

One of the first publications regarding the synthesis of the pyrido[1,2-a]-pyrimidine skeleton 

was published in 1969 by Sturm et al.79 An azide derivative, a special nucleophile, was used as 

starting compound upon reacting with either dimethyl fumarate (64% product yield) or dimethyl 

maleate (59% yield). The following steps were proposed for a possible mechanism. First, tautomer 

52b reacts with one of the electrophiles through a Diels–Alder type forming a 5-membered ring. 

In subsequent ring opening and elimination of N2, enamine intermediate 39 is formed which, after 

a thermally driven ring closure, gives 40 as the final product (Scheme 19). The reaction between 

aminopyridine and acetylenedicarboxylic acid esters resulting in the same enamine (39) and 

giving the same product (40) after cyclization at 140 °C, was also mentioned. However, neither its 

synthesis was described nor a related literature reference was cited. 

 

Scheme 19. Synthesis of 40 from an azide starting compound 

 

The use of malonic acid derivatives was also applied to synthesize derivatives bearing C-3 

substitutions. However, this method requires further modifications, since ring closure yields only 

2-hydroxy derivative 54, that needs to be oxidized (Scheme 20).80 Even though the procedure 

itself is not as elegant as the previous ones, the use of functionalized anilines and malonic acids 

may yield a wide range of derivatives. 

 

Scheme 20. Further method for the synthesis of C-3 substituted N-bridgehead derivatives 
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It is worth mentioning that the formation of the pyridine-fused pyrimidine skeleton has also 

been observed during the pyrolysis of an isoxazoline-substituted isoquinoline (59). The research 

group investigated the photolysis of different isoxazoline-substituted derivatives. When the 

photolysis of 59 was changed to pyrolysis in a scale-up study, the formation of 61 was observed 

(Scheme 21).81 

 

Scheme 21. Pyrolytic decomposition of compound 59 yielding N-bridgehead derivative 61 of 

KYNA 

 

Six-membered heterocycles containing more heteroatoms have reduced reactivity toward 

electrophiles. As a consequence, during the synthesis of KYNA skeletons with pyridazine, 

pyrimidine or pyrazine moieties, aniline starting materials may require further modifications. One 

such modified method applied by Mátyus et al. uses DMAD and the accompanying 

aminopyridazine is substituted with electron-donating groups (EDG). However, beside electron 

donation, further factors may be present, as ring closure led to the formation of the desired 

pyrimido[1,2-b]pyridazin-2-one derivative only in the case of the hydroxy-substituted starting 

compound (64a). The morpholino group yielded 2-oxo-4-carboxylate analogues, similar to the 

chloro-substituted derivative (64b,c, Scheme 22).82,83  
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Scheme 22. Synthesis of pyrimido[1,2-b]pyridazine derivative (64a) of KYNA 

 

The research group also noted this difference as an anomaly, based on a previous work.84 

These pieces of information and results with electron-density calculations support the conclusion 

that the favored reaction would be a nucleophilic addition on C-3 of DMAD. 

Koomen et al.85 also used DMAD to synthesize adenosine derivatives bearing fluorescent 

attributes (Scheme 23). The starting 2’-deoxyadenosine compound 65 can be considered to be an 

imidazole-fused 6-aminopyrimidine. As previously mentioned, pyrimidine derivatives should be 

less reactive and thus unwilling to undergo the Michael addition; however, the imidazole ring may 

induce an excess of electron of the pyrimidine ring and promoting the reaction. 

 

Scheme 23. Synthesis of adenosine derivative 66 

 

The work of Kang-Chien et al.86 also seems to support the hypothesis that an electron-

donating substituent favors the Michael addition. The synthesis of a special tetracyclic quinoline 

derivative [4(1H)-oxopyrimido[1,2-a]perimidine-2-carboxylate, 68] was carried out starting form 

2-aminoperimidine that can be considered as a to be 2-aminopyrimidine fused with naphthalene. 

Compared to the imidazole ring discussed previously, the naphthalene ring has a of more 
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prominent electron-donating quality. Consequently, the reaction could be carried out in MeOH 

(Scheme 24). 

 

Scheme 24. Synthesis of perimidine derivative 68 

 

The work of Jain et al. can be regarded as a further development of the study by Sturm et al 

described in Scheme 19 except that it was implemented in the synthesis of bridgehead 

derivatives.87 Though via a different procedure, an azide intermediate was generated in both 

studies and then it was reacted further with a fumaric acid ester (in this case diethyl fumarate, 

DEF). Beside the hypothesized steps described by Sturm et al., an alternative route have also been 

proposed. First, the decomposition of the azide function takes place and then a subsequent DEF 

attack provides an aziridine ring that opens up to give the enamine intermediates 71a–c (Scheme 

25). 

 

Scheme 25. Synthesis of indole-fused N-bridgehead derivative 72a–e from azide starting 

compounds 

 

2.1.3. Five-membered B-ring derivatives 

Since five-membered heterocyclic compounds have an excess of electrons, the modified 

Conrad–Limpach procedure applying DMAD or DEAD (diethyl acetylenedicarboxylate) for 

intermediate formation and its subsequent ring closure can be easily carried out. Both pyrrolo[2,3-

b]pyridine and pyrrolo[3,2-b]pyridine ring systems have been synthesized in a similar way. Grinev 

et al. used the potassium salt of 3-aminoindole-2-carboxylic acid in glacial acetic acid yielding 3-

aminoindole in situ that subsequently reacted with DEAD (Scheme 26).88 The reaction yields δ-

carbolines 76a–c similar to the reactions described by Guyot et al. reporting the synthesis of α-

carboline derivatives 79 (Scheme 27).89 
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Scheme 26. Synthesis of δ-carboline KYNA derivatives 76a–c 

 

It is interesting to note that in both cases, probably as the consequence of the high 

nucleophility of indole, formation of side-products was also reported. In the synthesis of 

δ-carbolines, pentacyclic aromatic compounds appeared bearing an additional indole structure. In 

the case of α-carboline derivatives, in turn, Guyot et al. used N-methyl-2-aminoindole to 

presumably inhibit the formation of bridge-head nitrogen-containing derivatives. It was not 

directly specified by Guyot et al. whether it was for this reason. Nevertheless, in the following 

paragraphs, they described the synthesis of a derivatives, where the ring closure takes place at the 

unsubstituted N-1 atom. 

 

Scheme 27. Synthesis of α-carboline KYNA derivative 79 

 

The same Conrad–Limpach procedure can also be used for the synthesis of the 

pyrrolo[3,4-b]pyridine skeleton. Silva et al. prepared a tetraphenylporphin (tPorphin) compound 

containing the pyridine-2-carboxylic acid moiety fused to one of the pyrrole rings of the porphin 

skeleton (82a,b, Scheme 28).90 

 

Scheme 28. Synthesis of tetraphenylporphin derivatives 82a,b 
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2.2. Sulfur-containing ring systems 

 

Figure 3. 

 

Both six- and five-membered derivatives have been synthesized. Kitao et al. used a modified 

Conrad–Limpach procedure, utilizing DMAD to form enamine intermediates (84a–c). Ring 

formation was carried out in Ph2O (Scheme 29).91 

 

Scheme 29. Synthesis of 4H-thiopyrano[3,2-b]pyridine derivatives 85a–c 

 

Baron et al. fabricated a wide variety of excitatory amino acid antagonists with the six-

membered B ring of KYNA changed to a five-membered sulfur-containing ring. The synthesis of 

these compounds is similar to that of the six-membered skeleton, utilizing DMAD or DEAD in the 

first step with the corresponding aminothiophenes (86,89). The subsequent intramolecular ring 

closure was carried out in Ph2O, nujol or polyphosphoric acid (Scheme 30).92 Unfortunately, no 

yields have been published for compounds 88a,b, 92a,b, 93a,b. 
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Scheme 30. Synthesis of thiophene derivatives 88a,b, 92a,b and 93a,b 

 

Though the method described in Scheme 30 has the most detailed description, it is not the 

only one. The synthesis of a thieno[3,2-b]pyridine system was already published earlier. Here, 

similar to the δ-carboline derivatives,88 DEAD was used yielding the thieno analogue (95) of δ-

carboline derivative 76b (Scheme 31).93 

 

Scheme 31. Synthesis of the thieno analogue of δ-carboline derivative 76b 

 

The thieno[3,4-b]pyridine skeleton was already mentioned earlier. However, in this work, 

the synthesis yield was not reported (Scheme 32).94 

 

Scheme 32. Synthesis of thieno[3,4-b]pyridine derivative 98 
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2.3. Oxygen-containing ring systems 

 

Figure 4. 

 

Regarding pyrano ring systems, it must be emphasized that in contrary to nitrogen-bearing 

systems, the aromaticity of the compounds is lost. Whereas the procedures described in the 

following paragraphs indicate that efficiency of the synthesis is not affected, the potential 

biological activity may vary substantially in comparison with KYNA. 

Kitao et al. based their procedure for the thiopyrano derivatives92 on the work of 

Strandtmann et al. who synthesized 1,5-dihydro-4,10-dioxobenzopyranopyridine-2-carboxylic 

acid derivatives 101a–c (Scheme 33).95 

 

Scheme 33. Synthesis of benzopyranopyridine derivatives 101a–c 

 

Dorokhov et al., beside synthesizing the pyridine- and pyrimidine-fused derivatives with the 

use of acetophenones,41,42 also achieved the synthesis of pyranone derivatives. Pyranones 102a–c 

bearing the crucial active α-methyl function, similar to the ones used for pyridine- and pyrimidine-

fused derivatives synthesized previously, were reacted with diethyl oxalate in the presence of 

sodium ethoxide (Scheme 34).96 

 

Scheme 34. Synthesis of pyrano[4,3-b]pyridine compounds 103a–c via acetophenone derivatives 
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The method used by Strandtmann et al. in the synthesis of benzopyrano[2,3-b]pyridine 

derivatives mentioned above was extended by the research group to synthesize 

benzopyrano[3,4-b]pyridine derivatives (106a–c, Scheme 35).95 The triazol derivatives of these 

compounds have been patented for their possible useful application in allergic manifestations such 

as bronchial asthma, hay fever, etc.97 

 
Scheme 35. Synthesis of pyrano[3,4-b]pyridine derivatives 106a–c 

 

Regarding the furan-fused 4-oxopyridine-2-carboxylic acid derivatives, the only synthesis 

mentioned describes a procedure similar to that applied in the synthesis of δ-carbolines reported 

earlier.89 Using a potassium salt of 3-aminobenzofuran-2-carboxylic acid (107) and DMAD, 

compound 108, the furan analogue of δ-carboline 76b could be synthesized (Scheme 36).98 

 
Scheme 36. Synthesis of 108 the furan analogue of δ-carboline 76b 
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3. Results and discussions 

 

3.1. Synthesis of substituted KYNA derivatives 

 

3.1.1. Preparation of KYNA esters via the optimized Conrad–Limpach 

procedure 

 

For the modified Mannich reactions to be carried out, KYNA and its derivatives were 

needed. In the case of KYNA, the synthesis of the required ethyl 4-hydroxyquinoline-2-

carboxylate (111a) derivative has already been published.99 In the described process, aniline was 

reacted with diethyl acetylenedicarboxylate forming the intermediate enamine. The second ring-

closing reaction in Ph2O at 250 °C led to the formation of the ethyl ester in an overall yield of 

58%. In our case, the following optimizations were applied: (i) after the formation of enamine 

110a, column chromatography was used to purify the intermediate; (ii) Ph2O was replaced by 

DCB that has lower boiling point (180 °C) allowing an easier work-up procedure. These modified 

conditions led to the formation of 111a in an overall yield of 67% (Scheme 37). The same 

procedure was used for the synthesis of KYNA derivatives, alkyl-, aryl-, and halogen-substituted 

at the B ring (111b–e) as well. It is interesting to mention that in the case of starting material 109b, 

two regioisomers formed with a ratio of 1:2 (111c:111d). 

 

Scheme 37. Synthesis of KYNA ethyl ester.  

 

3.1.2. Synthesis of hydroxy-functionalized KYNA derivatives 

 

Although the synthesis of the methyl esters of hydroxy derivatives are described in 

the literature,100,101 ethyl esters were chosen for several reasons. By carrying out their mMr, 

they provided a better basis for comparison with previous derivatives. Furthermore, by 

using DEAD, faster formation of the enamine intermediate was observed. The desired 
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derivatives (114a–c) were synthesized with the Conrad–Limpach method applying the 

optimizations refined in previous investigations (Scheme 38). 

 

 

Scheme 38. Synthesis of hydroxykynurenic acid derivatives 

 

As a last step, an additional column chromatographic purification of the esters was 

also required. The reason is that during the synthesis, even with the application of DEAD 

instead of the methyl derivative, maleimide side-products were formed in high yields. The 

literature describes the formation of these compounds as side-products during certain 

Conrad–Limpach reactions.102–104 However, in our case, probably due to the higher 

reactivity of hydroxyanilines, the synthesis were shifted toward the formation of the 

maleimides. After purification, the desired hydroxy esters were isolated in moderate yields. 

Note that the synthesis starting from m-aminophenol allowed the isolation of the two 

possible regioisomers with a final ratio of 1:2 (114b:114c) similar to that of derivatives 

111c:111d. 

Based on the work of Sutherland et al.,105 p-TsOH as catalyst was investigated in a 

one-pot version of the Conrad–Limpach procedure applying microwave irradiation 

(Scheme 38). The synthesis provided the appropriate hydroxy derivatives in increased 

yields with diminished maleimide formation and the work-up could be carried out without 

time-consuming chromatography. 

Compound 117a was synthesized by the esterification of 8-hydroxykynurenic acid 

(xanthurenic acid, 115) as it was commercially available (Scheme 39). This step was 

needed to avoid the direct use of poorly soluble xanthurenic acid and to obtain information 

for the mMr comparable to that of 111a–e and 114a–c. 
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Scheme 39. Esterification of xanthurenic acid (115) 

 

It is interesting to mention that the esterification was first carried out according to a 

literature method used for the synthesis of the methyl ester.106 The use of EtOH as solvent 

led to the isolation of 4-ethoxy-substituted ethyl ester 116a. Since methanol was used for 

the synthesis described in the literature cited above, the reaction was repeated in this 

solvent. In a similar manner, under these conditions, methoxy-substituted methyl ester 

116b could be isolated. As suggested also by the literature, 116a and 116b should have 

been formed during the esterification by thionyl chloride in EtOH or MeOH.107 In our 

hands, however, employing these conditions, both esters (117a,b) could be obtained in 

good yields, without being contaminated by the corresponding 4-alkoxyquinoline. 

 

3.2. Application of synthesized KYNA derivatives in mMr 

 

3.2.1. Transformations of unsubstituted KYNA ethyl ester 

 

The ethyl ester of 4-oxo-1,4-dihydroquinoline-2-carboxylate (111) was first reacted with 2-

morpholinoethylamine in the presence of aqueous formaldehyde (22% solution). The reaction was 

conducted in different solvents [acetonitrile (MeCN), DMF, EtOH, and 1,4-dioxane] at different 

temperatures (60 °C, 80 °C, and 110 °C). The optimized reaction conditions were found to be 

reflux temperature, using 1,4-dioxane as solvent, and 5 h reaction time. All reaction conditions led 

to the formation of 118 as the single product. It is interesting to note that the medium was basic 

enough to lead to the hydrolysis of the ester function (Scheme 40). 

To explore the scope and limitation of the transformation, 111 was reacted with N,N-

dimethylethane-1,2-diamine in the presence of benzaldehyde. The desired amino acid derivative 

119 was isolated in a yield of 74%. Next, starting from dimethylamine or N-benzylmethylamine in 

the mMr, the insertion of cationic centers in one-carbon distance at position 3 could be achieved. 
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Scheme 40. Synthesis of kynurenic acid (KYNA) Mannich derivatives. 

 

The extension possibility of the reaction was further tested by starting from cyclic secondary 

amines such as morpholine, piperidine, and N-methylpiperazine leading to 121a, 121b, and 121c, 

respectively. As the last representative amines 1,2,3,4-tetrahydroisoquinoline and its dimethoxy 

analogue were chosen as aromatic fused cyclic secondary amines. In these cases, relatively long 

reactions (8 h and 10 h) led to the formation of 122a and 122b. 

 

3.2.2. Substituted KYNA ethyl esters applied in mMr 

 

To test the effect of substituents at positions 5, 6, 7 or 8 on the mMr, derivatives 111b–e 

were reacted with morpholine, as a representative secondary cyclic amine, in the presence of 

formaldehyde. Reactions were carried out in 1,4-dioxane at reflux, yielding 123–126 (Scheme 41). 

Based on the yields, it can be concluded that aryl/alkyl substituents at position 6 or 8 and the 

halogen at position 5 or 7 have no significant influence on the aminoalkylation at position C-3. 
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Scheme 41. Synthesis of 5-, 6-, 7-, and 8-substituted KYNA Mannich derivatives. 

 

3.2.3. Diverse aminoalkylations of the hydroxylated KYNA derivatives 

 

3.2.3.1. 6-Hydroxykynurenic acid ethyl ester 

Based on preceding works, 1,4-dioxane seemed to be the optimal media for the 

substitution reactions of 114a. However, after achieving only moderate conversion (Table 

2, Entry 4) during the mMr of 114a (Scheme 42), the reaction was conducted in other 

solvents including MeCN as aprotic polar solvent, EtOH as protic polar solvent, and 

toluene as aprotic apolar solvent at 80 °C, using 1 equivalent of morpholine and 3 

equivalents of paraformaldehyde (Table 2). 

 

 

Scheme 42. mMr of 114a using morpholine and paraformaldehyde. 
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Table 2. Screening of solvents in the case of 114a 

Entry Amine 

equiv. 

Solvent T (°C) t 

 

conv.a 127a:127ba 

1 1.0 EtOH 80 30’ 10% 127a 
2 1.0 EtOH 80 1 h 50% 127a 

3 1.0 EtOH 80 2 h 85% 4:1 

4 1.0 1,4-dioxane 80 2 h 70% 1:1 

5 1.0 toluene 80 2 h ~1% – 

6 1.0 MeCN 80 2 h 70% 1:2 
a: determined from the crude NMR spectra 

 

We aimed to investigate the selectivity of the synthesis in ethanol, since this solvent 

enabled the formation of the most homogeneous reaction mixture presumably facilitating 

the highest yield. Although the higher temperature accelerated the reactions, conversions 

were maximized at around 85% (Table 3, Entries 3 and 6). While higher temperature and 

longer reaction promoted the formation of 127b, its share in the isolated products remained 

low this showing high selectivity towards C-3 substitution. 

To further investigate the reactivity of compound 114a, reactions using 2 and 3 

equivalents of morpholine were carried out in EtOH. Faster reactions were observed in 

both cases, reaching a final ratio of 1:1 between 127a and 127b (Table 3, Entries 12 and 

15) further suggesting that the substitution at C-5 is much less preferred relative to that 

taking place at C-3. 
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Table 3. Screening of temperature and reagent equivalents in the case of 114a 

Entry Amine 

equiv. 

Solvent T (°C) t 

 

conv.a 127a:127ba 

1 1.0 EtOH 100 30’ 45% 4:1 
2 1.0 EtOH 100 1 h 55% 4:1 

3 1.0 EtOH 100 2 h 85% 7:2 

4 1.0 EtOH 150 30’ 60% 4:1 

5 1.0 EtOH 150 1 h 65% 7:2 

6 1.0 EtOH 150 2 h 85% 13:2 

7 1.5 EtOH 80 30’ 60% 4:1 

8 1.5 EtOH 80 1 h 65% 3:1 

9 1.5 EtOH 80 2 h 90% 2:1 

10 2.0 EtOH 80 30’ 60% 15:8 

11 2.0 EtOH 80 1 h 70% 10:9 

12 2.0 EtOH 80 2 h 90% 1:1 

13b 3.0 EtOH 80 30’ 99% 128a 

14 3.0 EtOH 80 1 h 99% 10:1 

15c 3.0 EtOH 80 2 h 99% 1:1 
a: determined from the crude NMR spectra 

b: work-up performed to isolate 127a 
c: work-up performed to isolate 127b 

 

It is worth mentioning that even though the reactions stopped after reaching a ratio of 

1:1 after 2 hours, using increased amounts of amine halted the formation of 127b. This 

indicates a possible basic inhibition of the reaction preventing the formation of the reactive 

iminium ion. This view is in accord with the mechanism proposed for the Mannich-type 

condensation studied in this contribution. On the basis of solvent screening, the selectivity 

towards the formation of the disubstituted derivative can be increased by using aprotic 

solvents. Comparing the effect of MeCN to that of toluene and 1,4-dioxane suggests that 

an increased polarity might also increase this selectivity indicating the involvement of 

ionic species in the crucial regioselective coupling as discussed below. 

 

3.2.3.2. 5-Hydroxykynurenic acid ethyl ester 

On the basis of the results of the reactions performed with compound 114a, the first 

mMr starting from 114b was carried out in EtOH (Scheme 43). Since the reaction featured 

moderate conversion (Table 4, Entry 3), the mMr was repeated using the other three 

solvents, showing lower conversion rates. Considering similarity in selectivity with 114a, a 

detailed investigation with EtOH as protic polar solvent was performed. During the 

reactions, C-6 aminoalkylated derivative 128a appeared to be the primary product with the 
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C-3, C-6 disubstituted derivative formed only upon using prolonged reactions. It is 

interesting to note that in the case of 128a, the hydrolysis of the ester function did not take 

place, while in the case of compound 128b the free acid was isolated. 

 

Scheme 43. mMr of compound 114b using morpholine and paraformaldehyde 

 

Table 4. Screening for solvent in the reaction of 114b 

Entry Amine 

equiv. 

Solvent T (°C) t 

 

conv.a 128a:128ba 

1 1.0 EtOH 80 30’ 50% 3:1 
2 1.0 EtOH 80 1 h 70% 2:1 

3 1.0 EtOH 80 2 h 70% 2:1 

4 1.0 1,4-dioxane 80 2 h 60% 1:1 

5 1.0 toluene 80 2 h 55% 5:3 

6 1.0 MeCN 80 2 h 65% 2:1 
a: determined from the crude NMR spectra 

 

Formation of 128a can be promoted by using higher temperature and shorter reaction, 

as a prolonged reaction led to the appearance of 128b, even using equivalent amount of 

reagents. With 3 equivalents of amine reagent, full conversion of 114b was achieved after 

30 minutes with a 128a:128b distribution of 4:1 (Table 5, Entry 13), that could be 

increased to 1:4 in a 2-hour reaction (Table 5, Entry 15). Concluding the outcome of the 

reactions, 114b features higher reactivity at position C-6 than at position C-3. However, 

similar to 114a, disubstitution of 114b can also be promoted by using longer reactions 

regardless of the polarity of the solvent. 
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Table 5. Screening of temperature and reagent equivalents in the case of 114b 

Entry Amine 

equiv. 

Solvent T (°C) t 

 

conv.a 128a:128ba 

1 1.0 EtOH 100 30’ 40% 128a 
2 1.0 EtOH 100 1 h 70% 12:1 

3 1.0 EtOH 100 2 h 70% 6:1 

4 1.0 EtOH 150 30’ 90% 128a 

5b 1.0 EtOH 150 1 h 95% 128a 

6 1.0 EtOH 150 2 h 99% 10:1 

7 1.5 EtOH 80 30’ 40% 10:3 

8 1.5 EtOH 80 1 h 80% 7:1 

9 1.5 EtOH 80 2 h 90% 2:1 

10 2.0 EtOH 80 30’ 90% 4:1 

11 2.0 EtOH 80 1 h 95% 2:1 

12 2.0 EtOH 80 2 h 99% 1:1 

13 3.0 EtOH 80 30’ 99% 4:1 

14 3.0 EtOH 80 1 h 99% 1:1 

15c 3.0 EtOH 80 2 h 99% 1:4 
a: determined from the crude NMR spectra 

b: work-up performed to isolate 128a 
c: work-up performed to isolate 128b 

 

3.2.3.3. 7-Hydroxykynurenic acid ethyl ester 

The modified Mannich reactions of 114c carried out in EtOH at 80 °C proved to be 

highly facile as indicated by the 80% conversion achieved even in 30 minutes (Scheme 44, 

Table 6, Entry 1). In this acidic phenol derivative, the reactivity of C-8 was found to be 

substantially higher than that of C-3 as indicated by the exclusive formation of 129a 

observed in all experiments using one equivalent of morpholine. It is of note that the 

hydrolysis of the ester function in 129a did not take place similar to that of 128a. 

 

Scheme 44. mMr of compound 114c using morpholine and paraformaldehyde 

 

During reactions carried out employing higher equivalents of reagents, the formation 

of 129b was also observed. However, the formation of this product was slow, becoming 
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detectable only after approximately 1.5–2 hours at 80 °C. As the formation of the products 

seemed to proceed under kinetic control, we attempted to perform a reaction using 

conventional heating for 56 hours that afforded 129b in sufficient amount (Table 6, Entry 

16). 

As the formation of 129b was low even upon using higher temperature or increased 

amount of reagents, solvents tested previously were also investigated. In the case of 

1,4-dioxane (as an aprotic solvent with moderate polarity), a selectivity towards the 

formation of disubstituted derivative 129b was observed (Table 7, Entry 1), while in 

MeCN both 129a and 129b were formed with selectivity slightly shifted towards 129a 

(Table 7, Entry 3). 

 

Table 6. Screening of temperature and reagent equivalents in the case of 114c 

Entry Amine 

equiv. 

Solvent T (°C) t 

 

conv.a 129a:129ba 

1 1.0 EtOH 80 30’ 80% 129a 
2 1.0 EtOH 80 1 h 95% 129a 

3b 1.0 EtOH 80 1.5 h 99% 129a 

4 1.0 EtOH 100 30’ 75% 129a 

5 1.0 EtOH 100 1 h 80% 129a 

6 1.0 EtOH 100 1.5 h 90% 129a 

7 1.0 EtOH 150 30’ –* – 

10 1.5 EtOH 80 30’ 85% 129a 

11 1.5 EtOH 80 1 h 95% 129a 

12 1.5 EtOH 80 1.5 h 99% 129a 

13 2.0 EtOH 80 30’ 85% 129a 

14 2.0 EtOH 80 1 h 90% 129a 

15 2.0 EtOH 80 1.5 h 99% 18:1 

16c 2.0 EtOH 80 56 h 99% 3:10 

17 3.0 EtOH 80 15’ 99% 129a 

18 3.0 EtOH 80 1 h 99% 129a 

19 3.0 EtOH 80 1.5 h 99% 18:1 
a: determined from the crude NMR spectra 

–*: multicomponent reaction, conversion could not be determined 
b: work-up performed to isolate 129a 
c: work-up performed to isolate 129b 



 

 
 

 

 

32 

 

Table 7. Screening for solvent in the case for 114c 

Entry Amine 

equiv. 

Solvent T (°C) t 

 

conv.a 129a:129ba 

1 1.0 1,4-dioxane 80 2 h 45% 1:5 
2 1.0 toluene 80 2 h 0% – 

3 1.0 MeCN 80 2 h 70% 2:1 
a: determined from the crude NMR spectra 

 

3.2.3.4. 8-Hydroxykynurenic acid ethyl ester 

Compound 134a has already been described in the literature, synthesized by 

employing benzyl protection of the 8-hydroxy function.108 As a preliminary experiment, 

this reaction has also been carried out, implementing the following optimizations: (i) the 

enamine formation required longer reaction time; (ii) Ph2O as solvent was changed to 

1,2-dichlorobenzene for easier work-up; (iii) the aminoalkylation reaction required much 

higher reaction temperature; (iv) during the reduction step with platinum/carbon catalyst, if 

the reaction was kept under H2 gas as long as described, a decrease in yield was observed. 

This might have been due to the adsorption of the product on the carbon surface that could 

be eluded with shorter reaction time and an immediate work-up (Scheme 45). 

 

Scheme 45. Synthesis of morpholinomethylated xanthurenic acid 130a 
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Without having any further information about the reactivity of the 8-hydroxy 

derivative, we decided to explore the effect of the unprotected function on the course of the 

reaction. 

Based on our experiences on the synthesis of hydroxy derivatives discussed 

previously, aminoalkylations were first carried out in EtOH (Scheme 46). In all attempts at 

different temperatures complex mixtures were detected but without the formation of 134a. 

Reactions, conducted in the presence of increased equivalents of reagents, also provided 

complex mixtures with only traces of 134b detected in the crude product by 1H-NMR 

(Table 8). 

 

Scheme 46. Synthesis of aminoalkylated xanthurenic acid derivatives 

Table 8. Screening of temperature and reagent equivalents in the case of 117a 

Entry Amine 

equiv. 

Solvent T (°C) t 

 

conv.a 134a:134ba 

1 1.0 EtOH 80 1 h –* –b 

2 1.0 EtOH 100 1 h –* – b 

3 1.0 EtOH 150 1 h –* – b 

4 1.5 EtOH 80 1 h –* 134bc 

5 2.0 EtOH 80 1 h –* 134bc 

6 3.0 EtOH 80 1 h –* 134bc 
a: determined from the crude NMR spectra 

–*: conversion could not be determined 
b: no traces of 134a or 134b was detected 
c: minimal amounts, could not be isolated 

 

After these unsuccessful experiments carried out in EtOH, solvents tested previously 

were investigated as well. In toluene and MeCN the sole formation of 134b was observed, 

while in 1,4-dioxane the reaction yielded the C-3 substituted derivative (134a) as the single 

product (Table 9). 
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Table 9. Screening for solvent in the case for 117a 

Entry Amine 

equiv. 

Solvent T (°C) t 

 

conv.a 134a:134ba 

1 1.0 1,4-dioxane 80 2 h 80% 134a 
2 1.0 1,4-dioxane 100 2 h 90% 134a 

3b 1.0 1,4-dioxane 150 2 h 99% 134a 

4 2.0 1,4-dioxane 150 2 h 99% 134a 

5c 2.0 toluene 80 1 h 99% 134b 

6 2.0 MeCN 80 2 h 99% 134b 
a: determined from the crude NMR spectra 

b: work-up performed to isolate 134a 
c: work-up performed to isolate 134b 

 

3.2.3.5. DFT calculations on the reactivity of HO-KYNA derivatives 

In order to rationalize the marked regioselectivity patterns observed in the modified 

Mannich reactions of a systematic selection of kynurenic acid esters, we undertook a series 

of comparative DFT calculations carried out with B3LYP functional109–111 using 6–31 

+G(d,p) basis set.112 Computations were supported by the IEFPCM solvent model113 with 

dielectric constant ε=24.5 to represent the polarity of ethanol employed as solvent in most 

experiments. The possible sequences of the competitive Mannich condensations 

accompanied by the hydrolysis of the ester residue are exemplified by the transformations 

of 6-hydroxykynurenic acid ethyl ester 114a (Figure 5). 

The mechanistic picture, accounting for the experimentally observed regioselectivity 

and ester hydrolysis, represented by the reaction pathways applied for the modified 

Mannich reactions of 114a, can be extended to analogous multistep transformations of 

other kynurenic esters investigated in this work. However, searching for a reliable 

interpretation of the characteristic dependence of the regioselectivity on the substitution 

pattern, besides the relative thermodynamic stability, the HOMO delocalization and the 

local NBO charges114 were also disclosed for the corresponding anion pairs type 

114/I-114/II as outlined on Figure 5. Since the crucial coupling between iminium ion 135 

and the appropriate anion presumably takes places under simultaneous controls of orbital 

overlap and the electrostatic interaction between the ionic coupling partners, it can be 

established that – in excellent correlation with the structures of the major products of 

primary Mannich-type coupling – the most nucleophilic regions in the optimized structures 

of the more stable anions (framed structures) can be considered as reliably identified 

reactive sites on the basis of NBO charge and HOMO distribution, if they are taken 

together into account. It must also be noted here that the positions of the OH group on the 
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fused benzene ring in 128a and 129a do not allow the ester hydrolysis taking place through 

the corresponding quinoidal ketene intermediates. However, regardless of the position of 

the OH group, the neighboring group assistance from the 3-morpholinomethyl substituent 

obviously promotes this hydrolysis. 

Comparative DFT calculations were also performed for two sets of alternative 

chelate-stabilized rotamers of Mannich products with the morpholinomethyl group 

attached on the fused benzene ring (128a/128a_I/128a_II and 129a/129a_I: Figure 6) that 

identified 128a and 129a, respectively, as the preferred isomers in ethanolic solution. 

 

Figure 5. The possible sequences of the competitive Mannich condensations. 
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Figure 6. Rationalization of the feasibility and regioselectivity observed in the Mannich 

reactions of 114a–c in terms of the relative thermodynamics, HOMO energy, HOMO 

delocalization, and the local NBO charges of the possible alternative anions generated by 

morpholine and formaldehyde along with the relative thermodynamics of the chelate-

stabilized rotamer products. 
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The sluggish reactivity of 117a experienced in EtOH can be associated with the 

HOMO energy level of 117a/III found to be the lowest one in the series of the modelled 

nucleophilic anions and with the electron density in position 3 (ρNBO= –0.382) decreased 

relative to that identified in position 8 for anion 114c/II, the model with somewhat lowered 

HOMO energy level that presented an increased reactivity in EtOH (Figure 7). 

Finally, we assume that the spectacular solvent dependence observed in the 

transformations of 117a can be rationalized by the polarity-controlled feasibility of the ion 

pairs 117a/III-135 and 134a/III-135, the active coupling components of the first and 

second Mannich-like reactions, respectively. Accordingly, the changes in free energy 

associated with the primary ion pair generating equilibrium condensation steps that involve 

117a and 134a, were assessed (Figure 7). In accord with the general expectations, the 

results (Figure 7) indicate that in the relatively polar ethanol and acetonitrile the formation 

of reactive ion pairs 117a/III-135 and 134a/III-135 is substantially more favorable than in 

the much less polar dioxane and toluene. Although this view is in accord with the failure of 

the second coupling step of the sequential Mannich reactions, attempted in dioxane 

affording 134a and with the ready formation of 134b via 134a in acetonitrile, the ΔG 

values calculated for the ion-pair-forming condensations taking place in ethanol and 

toluene apparently contradict to the experimental results referring to a definite inhibitory 

effect of the more polar solvent and to the facilitating effect of the less polar one. This 

apparent contradiction can partly be resolved by taking donor–acceptor interactions of 

iminium cation 135 with the solvent molecules into account (Figure 7). Thus, among the 

solvents tested, toluene seems to be the one with the most decreased capability to 

deactivate iminium ion 135 allowing a relatively facile Mannich-like couplings of the ion 

pairs. It is also noteworthy that in both anions the HOMO delocalization and the local 

NBO charges are practically invariant to the polarity of the environment, while the HOMO 

energy level is substantially higher in the less polar solvents than in the more polar ones 

suggesting that these species, present even in low concentration in dioxane and toluene, 

display significant nucleophilicity enhanced relative to that predictable in ethanol and 

acetonitrile. These conclusions highlight the significance of HOMO level influencing anion 

reactivity and consequent chemoselectivity.(Figure 7) 
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Figure 7. Rationalization of the marked solvent effect observed for the regioselective 

sequential Mannich reactions of 134a in terms of: (i) the solvent-dependent changes in free 

energy accompanying the conversions leading active ion pairs 117a/III-135 and 134a/III-

135, respectively; (ii) HOMO energy of the anions; (iii) interactions of the iminium ion 

135 with the solvent molecules. 

 

3.2.4. Extending the mMr to amide derivatives 

 

It has been suspected that multiple cationic centers together will contribute to the biological 

effect with a greater magnitude. Thus, the synthesis of 149c and 150c containing two such 

functional groups were planned. As amidation and the mMr could be carried out in exchanged 
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orders, the synthesis can be achieved by applying two different synthetic pathways: 

aminoalkylation followed by amidation (route A) and a reverse reaction sequence (route B). 

During route A, for the aminoalkylation of 111a, morpholine as a representative secondary 

cyclic amine with formaldehyde was used to form the iminium salt that would attack the C-3 

position on the KYNA skeleton. Afterward, the amidations of 121a were achieved in 

dimethylformamide through the activation of the free carboxylic group with N,N′-

diisopropylcarbodiimide (DIC). During the reactions, 1-hydroxybenzotriazole hydrate (HOBt) was 

also used to generate an active ester intermediate and further improve the yield (Scheme 47). 

 

Scheme 47. Synthesis of aminoalkylated KYNA amide derivatives. 

 

For route B, the starting amides 151 and 152 were synthesized by direct amidation of the 

ethyl ester of KYNA (111a) with N,N-dimethylethane-1,2-diamine (to achieve 151) or with 2-

(pyrrolidin-1-yl)ethanamine (to achieve 152, Scheme 48). Furthermore, to suffice a wider 

evaluation of structure-effect connections, the synthesis of compound 153 was also carried out in a 

similar fashion using N,N-dimethylpropane-1,3-diamine. 
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Scheme 48. Synthesis of KYNA amide derivatives. 

 

During the mMr, beside morpholine, the use of pyrrolidine and piperidine as secondary 

amines provided derivatives that could later be investigated in vitro for a deeper understanding of 

structure–activity relationships. Compounds 151 and 152 were aminoalkylated with 154a–c in the 

presence of formaldehyde, resulting in aminoalkylated KYNA derivatives 149a–c and 150a–c, 

respectively (Scheme 49). 

 

Scheme 49. Synthesis of C-3 aminoalkylated KYNA amides. 

 

For further investigation, the synthesis of 156, with an alternative amidation via the 

synthesis of ester 157 from 121a and its further direct amidation, was carried out (Scheme 50). 
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Scheme 50. Synthetic pathways to obtain aminoalkylated KYNA amide 156. i) morpholine, 

CH2O, 1,4-dioxane, reflux (87%); ii) NH3/MeOH, r.t. (88%). 

 

A comparison of the overall yields obtained for 156 and those found for 149c and 150c by 

using the two approaches shows that amidation followed by aminoalkylation (route B) resulted in 

the formation of the desired compounds in higher yield. 
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3.3. Biological evaluations on synthesized amides and aminoalkylated 

derivatives 

 

The biological evaluations described in this section were carried out by our co-operating and 

co-author partners. The acquired results show the importance of the synthetic transformations 

carried out and were deemed worthy of mentioning in a separate paragraph. 

As KYNA has poor central nervous system penetration, novel strategies are needed to take 

advantage of its important neuroprotective effects. Among several possible approaches115 the 

synthetic method, i.e., chemical modification of KYNA to obtain compounds with similar 

biological effects, but significantly improved ability to cross the cerebral endothelial cells forming 

the blood–brain barrier, has been carried-out in cooperation with Vécsei et al. During an in vitro 

model system mimicking the in vivo anatomical structure of the blood–brain barrier (BBB) that is 

suitable for drug testing,116,117 the permeability of selected, newly synthesized derivatives (149a–c, 

150a–c) have been assessed beside sodium fluorescein as a control compound. 

 

Figure 9. Penetration of KYNA analogues through the BBB. (A) Permeability of KYNA derivates 

after 60 min compared to sodium fluorescein. N = 2, average ± SD (ANOVA and Bonferroni's 

post hoc test). * p  < 0.05 (149c and 150c: significant difference compared to all other groups; 

significant difference between 149a and 150b or 150a). (B) Permeability coefficients of KYNA 

analogues after 60 min compared to sodium fluorescein. 
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All of the above-mentioned analogues crossed the BBB more efficiently than sodium 

fluorescein. Furthermore, the permeability of 149c and 150c was significantly higher than the 

permeability of other analogues (Figure 9). 

Next 149c, a promising biologically active compound, was further investigated. Its 

permeability was compared with that of KYNA, xanthurenic acid, and 134a its analogue, which is 

under patent protection.118 149c had a significantly higher permeability through the in vitro BBB 

model than KYNA, xanthurenic acid or 134a both at 30 min and 60 min time points. Differences 

among permeability of KYNA, xanthurenic acid, and 134a were not statistically significant 

(Figure 10). 

In line with this comparison, we hypothesize that aminoalkylation at C-3 facilitates BBB 

penetration with the morpholinomethyl functional group showing the best results. These results 

are in line with in vivo data showing that peripherally administered 149c can reach sufficient 

concentration in the brain, since it is able to inhibit epileptiform activity.119 

 

Figure 10. Penetration of 149c through the BBB. (A) Permeability of 149c after 30 and 60 

min compared to KYNA, xanthurenic acid, and its analogue, 134a. N = 3, average ± SD. * p < 

0.01 (149c: significant difference compared to all other groups, in both time-points). (B) 

Permeability coefficients of 149c, xanthurenic acid and 134a after 30 and 60 min compared to 

KYNA. 

 

Besides investigating their BBB penetration, several compounds have also been used in 

different biological studies. Compounds 151 and 149c have played a major role in our 
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investigations aiming toward the study of their electrophysiological effects or their effects on 

tumor necrosis factor alpha (TNF-α) production. 

In the case of compounds 149c, 150c, 152, and 153 compared to KYNA, 151 showed 

similar effect on a model system of orthodromic stimulation of the Schaffer 

collateral/commissural pathway. The effect of 153 was fundamentally different. Its administration 

in higher concentration resulted in the facilitation of the amplitudes, while in lower concentration, 

its effect was slightly inhibitory. Aminoalkylation also resulted in different electrophysiological 

characteristics. In the case of 149c, only a slight increase could be observed in higher 

concentration and a weak inhibition in low concentration, none of which was significant. In the 

case of compound 150c, the results were not consistent, but in high concentration most of the 

results showed serious decrease in the amplitudes while in other cases the inhibition was smaller. 

In low concentration there was hardly any effect (Figure 11). 

 

Figure 11. Effects of KYNA and its derivatives (138, 140, 136c, 137c), respectively on the field 

excitatory postsynaptic potentials (fEPSPs) recorded in CA1 region of hippocampus. 

 

In another study, the anti-inflammatory effect of KYNA and derivatives 149c, 150c and 

151–153 was investigated. First the TNF-α production of U-937 cells stimulated with heat-

inactivated Staphylococcus aureus was assessed showing inhibition in all cases (Figure 12). The 

effect of the analogues was also compared in equimolar concentration on the TNF-α production, 

when the inducer was Chlamydia pneumoniae. In these experiments, KYNA, 151, and 152 

increased TNF-α production by U-937 monocytic cells, while compounds 149c, 150c, and 153 
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decreased it (Figure 13). The different behavior in the case of infection with C. pneumonia might 

be due to structural differences. Namely, the morpholinomethyl function at C-3 resulting in 

subgroups of (i) compounds with one cationic center (151–153) and (ii) compounds with two 

cationic centers (149c, 150c) correlating with the difference in effect. 

 

 

 

Figure 12. TNF-α levels attenuated by 

KYNA and KYNA analogues in SA1 

stimulated U-937 cells. 

Figure 13. Effect of KYNA and KYNA 

analogues on TNF-α production in U-937 

human monocytic cells stimulated by 

Chlamydia pneumoniae. 

 

Finally, it has also been investigated by patch-clamp technique, how KYNA and derivatives 

121a and 149c have any adjustments on different ionic currents in pituitary GH3 cells and 

hippocampal mHippoE-14 neurons. KYNA and 149c increased the amplitude of M-type K+ 

current [IK(M)] and concomitantly enhanced the activation time course of the current. In cell-

attached current recordings, addition of KYNA raised the open probability of M-type K+ 

channels, along with increased mean open time of the channel. In hippocampal mHippoE-14 

neurons, the addition of KYNA also increased the IK(M) amplitude effectively. Taken together, 

the actions observed would be one of the noticeable mechanisms through which they modulate 

functional activities of excitable cells occurring in vivo. 

Taking in consideration that, as mentioned above, compound 149c achieved the highest 

permeability on a BBB model, it is reasonable to propose that these derivatives through their 

stimulation of IK(M) could be beneficial for the treatment of different psychiatric or neurological 

disorders.120–123 This, however, requires further investigations. 
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TSG-6 expression following activation with bacterial components could participate in the 

suppression of inflammatory cytokines, such as TNF-α. As KYNA and, in particularly, KYNA 

analogues are able to enhance this effect, their further investigation in this direction may also yield 

interesting results. 
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4. Summary 

 

1. The Conrad–Limpach procedure used in the synthesis of the ethyl ester of KYNA and its alkyl-, 

aryl-, and halogen-substituted derivatives has been optimized using two steps: (i) column-

chromatographic purification of the intermediate enamines and (ii) using 1,2-dichlorobenzene for 

the ring-closure reaction resulting in an easier work-up. For the synthesis of hydroxylated KYNA 

derivatives, beyond extending the reaction and using the optimized Conrad–Limpach procedure, a 

microwave-assisted alternative procedure catalyzed by p-TsOH was also applied. 

 

2. Based on the structural similarities between 1-naphthol and kynurenic acid, the reactivity of KYNA 

was investigated in a modified Mannich-type reaction. Aminoalkylations at the C-3 position have 

been achieved applying benzaldehyde and formaldehyde with different primary, secondary, cyclic 

and acyclic amines. This synthesis method was then extended by using the alkyl-, aryl-, and 

halogen-substituted KYNA derivatives in mMr with morpholine and formaldehyde as representative 

amine and aldehyde, respectively. The reactions resulted in the formation of C-3-substituted 

derivatives. It was also concluded that the substituents at the B ring do not influence significantly the 

reactivity of KYNA ester precursors. 

 

3. The scope and limitations of mMr were also studied starting from hydroxy-functionalized 

derivatives. Through a systematic investigation of substitutions applying morpholine and 

paraformaldehyde as representative reagents,  mono- and disubstituted derivatives were synthesized. 

Product selectivity and regioselectivity were rationalized by DFT calculations disclosing HOMO 

distribution and NBO charges on the potential nucleophilic centers in the anion of the appropriate 

KYNA ester assumed to be active components towards the iminium ion intermediate. 

 

4. Amines bearing tertiary nitrogen needed for biological activity towards the central nervous 

system were used to synthesize amide derivatives of KYNA. These amides were then used to 

further extend C-3 aminoalkylations using cyclic and acyclic secondary amines and 

formaldehyde. The synthesized amides and aminoalkylated derivatives have been investigated 

in studies concerning their blood-brain-barrier penetration, their electrophysiological effects 

on different hippocampal cultures, and their effect on TNF-α production in the case of S. 

aureus and C. pneumonia induced U-937 monocytic cells. During these studies, the 
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morpholine-methylated N-2-(dimethyamino)ethylamide analogue 149c showed the most 

promising properties for further investigations. 

 

5. The two different synthetic pathways leading to aminoalkylated amides, namely 

aminoalkylation followed by amidation (route A) and a reverse reaction sequence (route B), 

have been investigated. A comparison of the overall yields to obtain three representative 

aminoalkylated amide derivatives showed that amidation followed by aminoalkylation (route 

B) resulted in the formation of the desired compounds in higher yields. 
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