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Introduction

Nowadays, practically everything is powered by software. Everyone uses them, whether for daily
work or leisure. Because of this, the amount of software being built is increasing. After the
outbreak of the new coronavirus, the number of daily cyber-attacks grew by 300%, causing more
than 4,000 attacks a day [5]. Cyber-criminals are mercilessly targeting everyone. A great example
is the Zoom bombing exploit [11]. The vulnerability allowed attackers to intercept authentication
and join any conversation they wanted in the Zoom video calling software. This example shows
that we must pay attention to software quality and safety. However, as we are human beings, we
occasionally make mistakes in our code that might go unnoticed for a long time. Ideally, we have
enough time and freedom to do our best in order to develop quality software. Unfortunately, this
state hardly exists in real life.

The customer might have a list of constraints with the exact version of a programming
language, the available libraries, and tools. However, developers like to learn new things, and
they want to stay up to date with the latest technologies. This is not only a natural need,
using newer language versions also helps with writing more effective, more expressive, and less
error-prone code.

In order to help developers achieve more freedom in using newer language standards, we
studied this field and found that there are not any tools that help developers use a newer standard
of C++ in such a way that the code becomes compatible with an older standard of the language
automatically. We designed and implemented a complete solution to aid this problem. Our tool
is able to convert the source code so that it complies with the C++03 language standard.

Of course, this is not the only problem developers have to face from time to time. With the
increasing use of dynamically typed languages (such as JavaScript and Python), the analysis of
them is more pressing than ever. As there is no compiling phase, there are no static type checks.
Additionally, the use of reflection is common in these languages, so that even a human might
not easily understand what happens in the code. Many code analysis tools rely on the call graph
representation of the program. The call graph is the basis for many other, more complex data
structures (such as the control flow graph), which are essential in order to detect issues in a given
program. Therefore, the precision of call graphs is extremely important. As there are several
tools and algorithms for call graph construction that can be used, being able to determine which
one to use in a given situation is essential. We performed a comparative study on the most
popular state-of-the-art static JavaScript call graph construction algorithms, and presented our
findings.

Using source code metrics for predicting software issues is quite a mature technique [9, 10, 3, 7].
However, the field of prediction for dynamic languages is rather new, and they mostly suggest
files that might be vulnerable. If there was a prediction model that works at method level (or
even on a more fine-grained level), developers could use it to prevent issues in their code. But the
practical adoption of prediction models depends on their real-world performance and the level of
false-positive hits they produce. First, we created a fine-grained JavaScript vulnerability dataset
that contains the static analysis results of 12,125 JavaScript functions with indicators for whether
they contain a vulnerability or not. We presented a comprehensive comparison of 8 well-known
machine learning algorithms on predicting vulnerable JavaScript functions. Our preliminary
results were fairly great using only static source metrics, so we extended our prediction model
with dynamic analysis and widened our scope from vulnerability to generic bugs. Our model
performances improved by replacing static function invocation metrics with their counterparts
coming from static and dynamic analysis (i.e. hybrid analysis).

Using code analysis tools and prediction models are great automated ways to help spot



issues in the code before changes take effect in the software’s live version. Nevertheless, the
human factor is also not negligible. Bugs will most likely occur in the code, to which we cannot
be prepared enough, but we can take a deeper look at security issues. Vulnerabilities in the
codebase also happen from time to time; understanding them helps us enhance our prediction
models further. It also helps to emphasize how to avoid these defects on the source code when we
write educational materials. We used the Software Heritage Graph Dataset [8] to mine data, in
order to help JavaScript and Python developers learn their languages’ typical security issue types
and their characteristics. We also defined an approach on how to mine data for this purpose.
We provided a toolset, and we presented our findings on the typical security issues and their
characteristics in several programming languages.

The thesis consists of four thesis points. In this booklet, we summarize the results of each
thesis point.
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Table 1: Thesis contributions and supporting publications

I Transforming C++11 Code to C++403 to Support Legacy
Compilation Environments

Newer technologies (e.g. programming languages, environments, libraries) change rapidly. How-
ever, various internal and external constraints often prevent projects (and teams) from quickly
adapting to these changes. Keeping up to date with the newer technologies makes the software
less error-prone and its performance better, as more and more useful functions and features are
being introduced in each and every change set. Despite this, customers may require specific
platform compatibility from a software vendor, for example. This thesis point deals with such an
issue in the context of the C++ programming language. An industrial partner of the Department
of Software Engineering of the University of Szeged is required to use Software Development Kits
(SDKs) that only support older C++ language editions. They, however, would like to allow their
developers to use newer language constructs in their code, and of course, developers are eager to
use elements defined in newer standards of C++.

To address this problem, we designed and implemented a source code transformation frame-
work to automatically backport source code written according to the C++11 standard to its
functionally equivalent C++03 variant, using LLVM and clang infrastructure. With our frame-
work, developers are free to exploit a large portion of the latest language features, while the
production code (which is transformed with our framework) is still built by using a restricted set
of available language constructs, thus making it compilable with a standard C+4-03 compiler.
The transformation framework consists of two main parts: the first one is the engine providing in-
crementality, while the second one is responsible for performing the actual transformations. The
incrementality engine monitors the code changes at file level and determines which files of the
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project need to be transformed. Based on this list, the transformation engine performs the nec-
essary changes. We had to take into consideration that there are numerous new C++11 features
that cannot be transformed in one step (e.g. lambda expressions nested into other lambdas),
and some transformations depend on each other and have to be performed in more iterations in
a predefined sequence. The basic operation of the framework is as follows:

o The transformation tool expects the compile commands. json file containing the project’s
compilation information as input.

o We maintain a database, which supports the incremental operation by storing the latest
modification times and the dependencies between the source elements. During preprocess-
ing, the transformation framework analyzes the dependencies between compilation units
and selects those files which have to be transformed based on the database.

o It then iterates over the list of transformations.

o After a transformation is done on all affected files, the framework saves the changes, and
the incrementality engine updates the database with the file modification dates.

The transformations we implemented in our frameworks are: In-class data member initializa-
tion; Auto type deduction; Lambda functions; Attributes; Final and override modifiers; Range-
based for loop; Constructor delegation; Type aliases; Other transformations with limited func-
tionality. An example of transforming a lambda function is shown in Figure 1.

std::vector<int> v (6); 1 |std::vector<int> v (6);
int inc = 7; 2 |int inc = 7;
3 |class LambdaFunctor__12_ 1
4 int& inc;
5 |public:
6 LambdaFunctor__12_1¢(
7 int& inc) : inc(inc) {3}
= 8 void operator () (int & n){
9 n += inc;
std::for_each( 10 }
v.begin (), 11 | F;
v.end (), 12 | std::for_each ()
[inc] (int &n) { 13 v.begin (),
n += inc; 14 v.end (),
} 15 (LambdaFunctor__12_1(inc))
) 16 )

Figure 1: Lambda function example

We evaluated our transformation framework from two aspects: correctness of the transformed
code and performance (runtime). During development and the early stages of the evaluation, we
used a set of code snippets with the language features of interest. Later we relied on a benchmark
of systems, which use some of the C++11 features, and are non-trivial in size. We included two
kinds of systems: four open-source systems and two proprietary ones.

In order to improve the applicability of our framework on big systems, we implemented
different speedup techniques to reduce the overall processing time: Transformation is running
on multiple threads in parallel; Incremental transformation only performs the necessary steps
based on what has changed since the last transformation; Feature finder identifies what language
features are used in the different compilation units to eliminate their superfluous processing in



the unrelated transformation rounds; The Multiple Transforms phase performs transformations
of certain independent language features in a single round.

Our solution is open-source, and available on GitHub: https://github.com/sed-szeged/
cppbackport.

The Author’s Contributions

The author performed the literature review in the field of code transforming. He took part in
defining the possible transformation scenarios, as well as taking part in their evaluation. The
author designed and implemented the incremental framework. He designed the database scheme.
He took part in implementing the transformations. The author also took part in the design and
implementation of the test suite. He designed, implemented, and tested the methodology on how
to use the framework as a pre-build step in developers’ environment.

¢ Gabor Antal, David Havas, Istvan Siket, Arpid Beszédes, Rudolf Ferenc, and Jézsef
Mihalicza. Transforming C++11 Code to C++03 to Support Legacy Compilation Envi-
ronments In Proceedings of the IEEE 16th International Working Conference on Source
Code Analysis and Manipulation (SCAM 2016), Raleigh, NC, USA. Pages 177-186, IEEE,
October, 2016.

IT A Comparative Study on Static JavaScript Call Graph
Algorithms

The popularity and wide adoption of JavaScript both at the client- and server-side makes its
code analysis more important than ever before. Many of the code analysis tools rely on the call
graph representation of the program. A call graph contains nodes that represent the functions
of the program and the edges between nodes if there exists at least one function call between
the corresponding functions. With the help of this program representation, various quality and
security issues can be detected. We can use call graphs as a basis for further analysis, for example,
a full interprocedural control flow graph (ICFG) can be built upon the call graph. Being such
fundamental data structures, the precision of call graphs determines the precision of the code
analysis algorithms that rely on them. Creating precise call graphs for JavaScript, which is
an inherently dynamic, type-free, and asynchronous language, is quite a big challenge. Static
approaches have the obvious disadvantage of missing dynamic call edges coming from the non-
trivial usages of eval(), bind(), or apply() (i.e. reflection). Despite some obvious advantages of
dynamic analysis, static algorithms should also be considered for call graph construction, as they
do not require extensive test beds for programs; or their costly execution and tracing. In this
thesis point, we systematically compared five widely adopted static algorithms — implemented by
the npm call graph, IBM WALA, Google Closure Compiler, Approximate Call Graph (ACG), and
Type Analyzer for JavaScript tools (TAJS) — for building JavaScript call graphs on 26 WebKit
SunSpider benchmark programs and on 6 real-world Node.js modules in order to have a deeper
understanding about the state-of-the-art static call graph construction algorithms for JavaScript.

We had to modify some of the tools, mainly to extract and dump the call graphs built into
the memory of the programs. Next, we collected the produced outputs of the tools and converted
them into a unified, JSON-based format. We created a merged JSON with the same structure
using our graph comparison tool. This merged JSON contains all the nodes and edges found by
any of the tools, with an added attribute listing all the tool identifiers that found that particular
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node or edge. We ran our analysis and calculated statistics on these individual and merged
JSON files. To perform a deep comparison of the tools, we identified three test input groups:
real-world, single file examples (the SunSpider benchmark of the WebKit browser engine [2]);
real-world, multi-file Node.js modules (6 real-world, widely used Node.js modules that use new
language features); and generated large examples (they contain numerous functions and calls
between them).

For the qualitative analysis — inspired by the work of Lhotdk et. al [6] —, we created a
call graph comparison script written in Python. Besides comparing the results, we evaluated
all the 348 call edges found by the five tools on the 26 SunSpider benchmark programs. As
for the Node.js modules, the large number of edges made it impossible to validate all of them.
We selected a statistically significant representative random sample of edges to achieve a 95%
confidence level with a 5% margin of error.

Out of 348 call edges found by any of the tools, 257 were true edges. In total, 93 edges were
found by all the five subject tools, all of them being true positive calls. However, four of the tools
found edges that the others missed. As we systematically evaluated all 348 found call edges, we
could also calculate precision and recall values for each tool and their arbitrary combinations.

Table 2: Precision and recall measures for tools

Tool(s) TP All TP* Prec. Rec.” F

npm-cg 174 192 257  91%  68% 7%
ACG 233 235 257 99% 91% 95%
WALA 127 146 257 7% 49% 63%
Closure 230 284 257 81%  89% 85%
TAJS 182 186 257 98% 1% 82%

Table 2 contains the detailed statistics of the tools, while Table 3 contains the top combi-
nations of the tools, ordered by their F-measure. The first column is the name of the tool or
combination of tools. The second column (TP) shows the total number of true positive instances
found by the appropriate tool or tool combination. In the third column (All), we display the
total number of edges found by the appropriate tool or tool combination. The fourth column
(TP*) shows the total number of true edges as per our manual evaluation. The fifth (Prec.),
sixth (Rec.*), and seventh (F) columns contain the precision (TP / All), recall (TP* / TP) and
F-measure values, respectively.

From the individual tools, ACG stands out with its almost perfect precision and quite high
recall values. While TAJS and npm-cg maintain similarly high precision, their recalls are far be-
low ACG’s. Closure’s recall is very close to that of ACG, but it has significantly lower precision.
WALA has moderate precision, but the worst recall in our benchmark test. Looking at the two
tool combinations, ACG+TAJS stand out based on F-measure; together they perform almost
perfectly (98% precision and 99% recall). There are no other three-, four-, or five-tool combina-
tions that would even come close to this F-measure score. Taking all the tools into consideration,
the combined precision decreases to 74% with a perfect recall.

As we already described, only ACG and Closure were able to analyze the state-of-the-art
Node.js modules. From the 2281 edges found together by the two tools in the six modules, 1304
are common, which is almost 60%. It is quite a high number considering the complexity of Node
modules coming from structures like event callbacks, module exports, requires, etc. There were
336 edges (14.7%) found only by ACG and 641 (28.1%) found only by Closure.



Table 3: Top precision and recall measures for the combinations of the tools

Tool(s) TP All TP* Prec. Rec.” F
ACG+TAJS 254 260 257 98%  99% 98%
npm-cg+ACG+TAJS 255 279 257 91%  99% 95%
ACG+WALA+TAJS 254 279 257 91%  99% 95%
ACG+WALA 241 262 257 92%  94% 93%
npm-cg+ACG 239 259 257 92%  93% 93%
npm-cg+WALA+TAJS 238 258 257 92%  93% 92%
npm-cg+ACG+WALA+TAJS 255 298 257 86%  99% 92%
npm-cg+TAJS 233 255 257  91%  91% 91%
ACG+Closure 255 309 257 83%  99% 90%
npm-cg -+ ACG+WALA 242 281 257  86%  94% 90%
ACG+Closure+TAJS 257 311 257 8% 100% 90%

Each tool had its strengths and weaknesses. Our purpose was not to declare a winner, rather
to gain empirical insights into the capabilities and effectiveness of the state-of-the-art static call
graph extractors.

The Author’s Contributions

The author did the research work in order to find the candidate tools and algorithms. He
participated in designing the methodology. The author modified the tools in order to extract call
graphs. He was also the developer of the format converter tool. Selecting the Node.js modules,
and creating artificial large examples to stress test the tools were also his work. He took part
in evaluating the results, and in their manual validation. He devised the methodology for the
performance measurement, as well as conducting the performance analysis.

¢ Gabor Antal, Péter Hegediis, Zoltan Téth, Rudolf Ferenc, and Tibor Gyimoéthy. Static
JavaScript Call Graphs: A Comparative Study. In Proceedings of the 2018 IEEE 18th
International Working Conference on Source Code Analysis and Manipulation (SCAM),
pages 177-186, IEEE, Sep. 2018

— Distinguished Research Paper Award

IITI Combining Static and Dynamic Code Analysis with
Machine Learning to Detect Software Issues in Java-
Script Programs

Issue prediction aims at finding source code elements in a software system that are likely to
contain defects. Being aware of the most error-prone parts of the program, one can efficiently
allocate the limited amount of testing and code review resources. Therefore, both vulnerability
and bug prediction can support software maintenance and evolution to a great extent.

In this thesis point, we proposed two prediction models using different datasets and different
features to predict software issues. We investigated whether or not predicting defects in functions
is feasible based on various software metrics. We compared the performances of the most widely
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used machine learning algorithms on this prediction task, including two deep neural network
variants (DNNg, DNN,), the K-Nearest Neighbors algorithm (KNN), a decision tree classifier
(Tree), the C-Support Vector Classification variant of the Support Vector Machine algorithm
(SVM), Random Forest (Forest), Logistic regression (Logistic), Linear regression (Linear), and
the Gaussian Naive Bayes algorithm (Bayes). We applied various re-sampling strategies to handle
the imbalanced nature of the dataset.

First, we investigated how the machine learning techniques perform in predicting functions
with possible security vulnerabilities in JavaScript programs. To the best of our knowledge, there
were no existing vulnerability datasets for JavaScript programs specifically, so we created a fine-
grained, public JavaScript vulnerability dataset with data extracted from several vulnerability
databases automatically matched with information available on GitHub (i.e fixing commits and
patches). The new function level vulnerability dataset contains 12,125 functions from which
1,496 are vulnerable.

Table 4: F-measures achieved by the machine learning algorithms

Alg. None 125% 150% 175% 1100% 125% |50% |75% [100% Rand

DNN; 0.71 0.71* 0.71 0.65 0.68 0.70 0.71 0.69 0.59 0.05
DNN., 0.71 0.70 0.71 0.68 0.65 0.71" 0.71 0.68 0.66 0.01
Forest 0.71 0.74* | 0.74 0.73 0.72 0.72 0.72 0.72 0.65 0.05
KNN 0.76* 0.75 0.72 0.6935 0.6817 | 0.76 0.75 0.74 0.64 0.14
Linear 0.26 0.48 0.55" 0.49 0.45 0.30 0.37 0.51 0.44 0.02
Logistic 0.33 0.50 0.57* 0.55 0.49 0.38 0.45 0.53 0.49 0.01

SVM 0.67 0.70 0.72* 0.70 0.68 0.67 0.67 0.67 0.65 0.16
Tree 0.72" 0.71 0.71 0.71 0.70 0.70 0.69 0.67 0.59 0.15
Bayes 0.15 0.16 0.16 0.21" 0.20 0.16 0.16 0.18 0.17 0.07

Median 0.71 0.70 0.71* 0.68 0.68 0.70 0.69 0.67 0.59 0.05

We used static source code metrics as predictors and an extensive grid-search algorithm to
find the best performing models. The overall results are surprisingly good given the fact that
JavaScript is a highly dynamic language and we only used static source code metrics as predictors.
Five out of the 9 models achieved an F-measure of over 0.70 and SVM was also very close with
0.67. It is interesting to note that for all algorithms, precision values were significantly higher
than recall, except for the decision tree classifier, which had a precision of 0.74, a recall of 0.7, and
an F-measure of 0.72. A simple baseline algorithm (which predicts all instances to be vulnerable)
achieved a precision of 0.12 and a perfect recall of 1, which adds up to an F-measure of 0.21. The
results are summarized in Table 4. The best performing algorithm was KNN, with an F-measure
of 0.76. Moreover, deep learning, tree, and forest-based classifiers, and SVM were competitive,
with F-measures over 0.70.

We also proposed a function level JavaScript bug prediction model based on static source
code metrics with the addition of hybrid (static and dynamic) code analysis based metrics of
the number of incoming and outgoing function calls (HNII and HNOI). Our motivation for this
is that JavaScript is a highly dynamic scripting language for which static code analysis might
be very imprecise (as we have already seen in the case of call graphs), therefore, using purely
static source code features for a prediction task might not be enough. We extracted 824 buggy
and 1,943 non-buggy functions from the publicly available BugsJS dataset [4] for the ESLint
JavaScript project. We created a hybrid call graph analysis framework that uses the source code



of the project as input. Then we analyzed the source code with various static and dynamic tools
(which might require running the source code itself, and processing the obtained execution logs).
Following the analyses, the framework converts all the tool-specific outputs to a unified JSON
format. We used the unified JSON to calculate hybrid invocation metrics (i.e., HNIT and HNOI).
Besides computing the hybrid metrics, a standard set of metrics is provided by a static source
code analyzer named OpenStaticAnalyzer [1]. Based on our results, we can confirm the positive
impact of hybrid code metrics on the prediction performance of the ML models.

Table 5: The best results of the nine ML models according to their F-measure

ML algorithm Feature set Accuracy Precision Recall F-measure MCC

Forest S+H 0.816 0.753 0.569 0.648 0.54
KNN S+H 0.788 0.646 0.635 0.641 0.49
DNN. S+H 0.784 0.649 0.601 0.624 0.47
Tree S+H 0.781 0.649 0.58 0.612 0.46
DNN; H 0.774 0.634 0.569 0.6 0.44
Logistic S+H 0.787 0.682 0.533 0.598 0.46
SVM S+H 0.789 0.699 0.515 0.593 0.47
Linear S+H 0.769 0.67  0.443 0.533 0.4
Bayes S+H 0.772 0.713 0.394 0.508 0.4

Table 5 shows the best prediction performances (i.e., models with best performing hyper-
parameters and feature set) of nine machine learning algorithms according to their F-measures.
Depending on the ML algorithm, applied hyper-parameters, and target measure we consider,
hybrid invocation metrics bring a 2-10% increase in model performances (i.e., precision, recall,
F-measure). Interestingly, replacing static NOI and NII metrics with their hybrid counterparts
HNOI and HNII in itself improve model performances, however, using them all together yields
the best results.

The created vulnerability dataset is publicly available online: https://inf.u-szeged.hu/
~ferenc/papers/JSVulnerabilityDataSet, while the proposed framework can be found on
GitHub: https://github.com/sed-szeged/hcg-js-framework.

The Author’s Contributions

The author participated in designing the methodology of this study. The literature review of
the field was also done by the author. He took a major part in implementing the data collecting
and merging tools. He also took part in the manual evaluation process. The design and the
implementation of the hybrid call graph analysis framework were mainly the author’s work. He
also took part in creating the different feature sets, as well as taking part in the evaluation of
the machine learning models’ results.

¢ Rudolf Ferenc, Péter Hegediis, Péter Gyimesi, GaAbor Antal, Dénes Ban, and Tibor Gy-
im6thy. Challenging machine learning algorithms in predicting vulnerable JavaScript func-
tions. In Proceedings of the 2019 IEEE/ACM T7th International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering (RAISE 2019), pages. 8-14, IEEE,
May 28, 2019
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¢ Gabor Antal, Zoltan Téth, Péter Hegediis and Rudolf Ferenc. Enhanced Bug Prediction
in JavaScript Programs with Hybrid Call-Graph Based Invocation Metrics. In Technologies
9, no. 1: 3, MDPL

IV Studying Typical Security Issues and Their Mitigation
in Open-Source Projects

Software security is undoubtedly a major concern in today’s software engineering. Although
the level of awareness of security issues is often high, practical experiences show that neither
preventive actions nor reactions to possible issues are always addressed properly in reality. By
analyzing large quantities of commits in the open-source communities, we can categorize the
vulnerabilities mitigated by the developers and study their distribution, resolution time, and other
characteristics to learn and improve security management processes and practices. Moreover,
understanding the typical vulnerabilities in programming languages can help researchers fine-
tune their machine learning models in predicting vulnerable software components. In this thesis
point, we used two different databases to mine and analyze vulnerability data. We used the CVE
catalog to identify vulnerabilities. CVEs (short for Common Vulnerabilities and Exposures) are
publicly disclosed cyber-security vulnerabilities and exposures that are stored online and are freely
browsable. These can be categorized into CWEs (short for Common Weakness Enumeration),
which is a widely adopted categorization for vulnerabilities.

With the help of the Software Heritage Graph Dataset, we investigated the commits of two of
the most popular script languages, Python and JavaScript. We identified commits that mitigate
a certain vulnerability in the code (i.e. vulnerability resolution commits). We examined how
quickly the JavaScript and Python communities mitigate a newly published security vulnerability.
We distinguished the types of vulnerabilities (in terms of CWE groups) referred to in commit
messages and compared their numbers within the two communities. We found that the JavaScript
projects refer to security vulnerabilities falling into 87 different categories, the Python projects
to 71, out of which 55 categories are common. Despite the large intersection in the security
vulnerability types, the number of mitigated vulnerabilities differs significantly depending on the
language of the projects. For example, Cross-Site Scripting (CWE-79), Path Traversal (CWE-22),
Improper Input Validation (CWE-20), and Uncontrolled Resource Consumption (CWE-400) type
of vulnerabilities are mitigated mostly in JavaScript projects, while Resource Management Errors
(CWE-399) and Permissions, Privileges, and Access Controls (CWE-264) are mitigated mostly in
Python. The growing number of vulnerability mitigating commits is a common tendency in both
languages, but it is proportionate to the growth of the total number of commits. The vulnerability
mitigation per total commit ratio increases only slowly, however, there was a significant increase
in the amount of vulnerability mitigation in the year 2018 for both JavaScript and Python
projects (see Figure 2).

While the Python vulnerability mitigation ratio is quite stable, the same ratio for JavaScript
projects grows consistently from 2015, with a large peak in 2018, but is still lower than that of
Python projects. Regarding the number of days elapsing between the publish date of a particular
security vulnerability and the date of the first commit with its mitigation varies to a large extent.
Typically, Python commits mitigate vulnerabilities no older than 100 days, while some JavaScript
commits mitigate vulnerabilities older than a year.

We also created several tools to help mine data needed for this and similar studies. We used
these tools and showcased their capability of collecting data; we mined the most popular GitHub
repositories (according to GHTorrent) for several programming languages and created our own
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Figure 2: Vulnerability mitigation ratio per year

database, which is publicly available. Our goal was to find out if there are common patterns
within the most widely used programming languages in terms of security issues and fixes.

Our findings include that the same security issues might appear differently in different lan-
guages, and as such the provided solutions may vary just as much. We also found that projects
with similar sizes can produce extremely different results, and have different common weaknesses,
even if they provide a solution to the same task. These statistics may not be entirely indicative
of the projects’ standards when it comes to security, but they provide a good reference point
of what one should expect. Most of the time a CVE entry is mentioned in the context where
it is claimed to be fixed, which is not surprising since one does not want to disclose an actual
vulnerability in their program before fixing it. Based on this fact, most of the CVEs should only
be mentioned once, when they are getting fixed. However, this is not the case in most large scale
projects. We assume that this happens because later changes may reintroduce a previously fixed
vulnerability, which is likely because in larger systems it is a lot harder to foresee every possible
outcome a change might cause. During our manual inspection, we experienced that projects with
a longer code history usually have more reoccurring issues than others. We also found that the
correlation between the severity of CVEs and the time it took to fix them shows how prepared
developers were when it came to fixing these vulnerabilities. As we experienced, there is no strong
correlation between the severity and the vulnerability fixing time, however, smaller correlations
exist. For example, in the case of Python, the more severe problems were solved quicker than
the other, less severe issues. This might imply that they put a larger emphasis on getting rid of
the more severe issues.

The created tools and the dataset is available on GitHub: https://cveminer.github.io.

The Author’s Contributions

The author devised the basic concepts of the study. He created and implemented the approach
of mining data from the Software Heritage Graph Dataset and merging the results with the
CVE/CWE data. Moreover, he laid the foundations for the implementation of the published,
open-source tools. He also lead the further development of the tools. Merging and evaluating
the results were done by the author. He took part in the manual validation of the results.

¢ Gabor Antal, Marton Keleti, and Péter Hegediis. Exploring the Security Awareness of
the Python and JavaScript Open Source Communities. In Proceedings of the 17th Interna-
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tional Conference on Mining Software Repositories (MSR ’20). Association for Computing
Machinery (ACM), New York, NY, USA, 16-20.

¢ Gabor Antal, Baldzs Mosolygd, Norbert Vandor and Péter Hegediis. A Data-Mining
Based Study of Security Vulnerability Types and Their Mitigation in Different Languages.
In Proceedings of the International Conference on Computational Science and Its Applica-
tions (ICCSA 2020), Published in Lecture Notes in Computer Science (LNCS), vol 12252.
Springer, Cham, page 1019-1034, Cagliari, Italy, July 1-4, 2020.

Summary

In this thesis, we covered four topics and more than 6 years of research work. The covered topics
include supporting C++ legacy compilation environments while enabling developers to use newer
language standards, revealing the differences between static JavaScript call graph algorithms,
building bug prediction models to predict software issues in JavaScript functions, and last, but
not least, studying the typical security issue types in several programming languages.

First, we created a solution for supporting legacy compilation environments in C++ projects,
meaning that our tool transforms the code that contains a subset of the new language features
defined in C++11, to a functionally equivalent code that can be compiled with any standard
C++03 compiler. We also created a test suite, and tested our tool on 6 real-world applica-
tions. Our results showed that the transformation framework is capable of transforming projects
containing millions of lines of code.

In the field of static JavaScript call graph algorithms, we presented a systematic comparison
of 5 state-of-the-art tools, using both a JavaScript benchmark and several real-world Node.js
modules. We revealed both the similarities and the differences among the tools, and found that
we cannot declare an absolute winner, as each tool has its strengths and weaknesses. We also
showed that the combination of various tools yields the best results.

In software issue prediction, we presented a comparison of 8 well-known machine learning
algorithms on predicting vulnerable JavaScript functions, using a newly created dataset that
contains several static source code metrics on function level. As the results were encouraging, we
widened our scope, and extended the feature set with two hybrid call graph based metrics, Hybrid
Number of Outgoing Invocations (HNOI), and Hybrid Number of Incoming Invocations (HNII),
which besides static call edges also use dynamic (run-time) function invocation information. We
also created a hybrid call graph framework to ease future researches with hybrid analysis. We
did a comparison of 8 well-known machine learning algorithms on predicting software bugs in
JavaScript functions. We revealed that hybrid invocation-based metrics consistently improve
the performance of the prediction models; depending on the machine learning algorithms, 2-10%
increase in model performances (i.e., precision, recall, F-measure) can be achieved.

Finally, in the field of studying typical security issue types, we presented our approach on how
to collect the required data from the Software Heritage Graph Dataset, how one can mine data
from any Git repository effectively. We created tools and a database to help researchers in this
field. Our results revealed that there are typical vulnerability types in programming languages,
and the mitigation process takes a lot more time than we would think. However, as time goes
by, the vulnerability fixing process is getting faster and faster, which is reassuring.
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