
Applying Code Analysis and
Machine Learning Techniques to

Improve Compatibility and
Security of Programs

Gábor Antal
Department of Software Engineering

University of Szeged

Szeged, 2021

Supervisor:

Dr. Rudolf Ferenc

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

OF THE UNIVERSITY OF SZEGED

University of Szeged
Ph.D. School in Computer Science

“If you can’t fly then run, if you can’t run then walk,
if you can’t walk then crawl, but whatever you do you
have to keep moving forward.”

— Martin Luther King Jr.

Preface

I clearly remember the first time I used a computer. I can say that it changed my
life. Soon after, we bought our first PC and my journey started. My first projects
were quite small, like a timetable generator for my classmates, as we took a variety
of language and elective classes. My first real project was a management system for
an association of junior firefighters; I was 16 years old at that time. As soon as I
received the requirements, I started to work on the system as I was very enthusiastic.
When I thought I finished the project, the software went live. Soon I got several bug
reports, and other feature requests. Of course, my code was a complete mess; it was
full of code duplications and security holes (an authorized user accidentally „hacked”
it once). Aside from the reported bugs, I discovered several bugs myself that I had to
fix (everywhere). Enhancing the software was almost as big of a challenge as writing it
from scratch. This was the time I realized that not only are the functional requirements
important, the quality and the security of the software are also crucial. I have been
working to advance this principle through my doctoral studies ever since. I hope my
work in this field helps developers in building better software.

Although the thesis emphasizes the author’s contribution, none of the presented
research works would have been possible without the help of others. First and foremost,
I would like to thank my supervisor, Dr. Rudolf Ferenc, for his guidance and his useful
advice that helped me throughout my studies. His positive and calm attitude helped
me a lot; without him, I would have probably never done any scientific research. My
special thanks go to Dr. Péter Hegedűs, whom I consider my second mentor. He taught
me a lot of indispensable things about research, and helped me many times over the
years. My sincere thanks go to Dr. Tibor Gyimóthy, the former head of the Department
of Software Engineering, for supporting my research work. I would like to express my
gratitude to Dr. Csaba Nagy and Dr. Gábor Szőke with whom I started my scientific
journey. My many thanks go to my colleagues and article co-authors, namely Dr.
Zoltán Tóth, Dávid Havas, Dr. István Siket, Dr. Árpád Beszédes, Dr. József Mihalicza,
Márton Keleti, Balázs Mosolygó, Norbert Vándor, Péter Gyimesi, and Dr. Dénes Bán.
I would like to thank NNG LLC for providing the interesting topic of backporting
C++ code. I wish to thank Edit Szűcs for reviewing and correcting my thesis from a
linguistic point of view.

Last, but not least, I wish to express my gratitude to my family for providing a
pleasant background conducive to my studies, and also for encouraging me to go on
with my research.

Gábor Antal, 2021

iii

Contents

Preface iii

1 Introduction 1
1.1 Structure of the dissertation . 3

2 Transforming C++11 Code to C++03 to Support Legacy Compila-
tion Environments 5
2.1 Overview . 5
2.2 Related Work . 6
2.3 Approach . 7
2.4 Source Code Transformation Framework 10

2.4.1 Source code transformation . 10
2.4.2 Incrementality . 11
2.4.3 Operation of the Transformation Framework 12
2.4.4 First analysis . 12
2.4.5 Tracing the transformed code back to the original one 13

2.5 Transformation Catalog . 13
2.5.1 In-class data member initialization 13
2.5.2 Auto type deduction . 14
2.5.3 Lambda functions . 15
2.5.4 Attributes . 16
2.5.5 Final and override modifiers . 16
2.5.6 Range-based for loop . 16
2.5.7 Constructor delegation . 17
2.5.8 Type aliases . 18

2.6 Evaluation . 18
2.6.1 Functional testing . 19
2.6.2 Performance testing . 20

2.7 Limitations . 23
2.8 Summary . 23

3 A Comparative Study on Static JavaScript Call Graph Algorithms 25
3.1 Overview . 25
3.2 Related Work . 26
3.3 Approach . 27

3.3.1 Overview of the study process 27
3.3.2 Call graph extraction tools . 28
3.3.3 Comparison subjects . 31
3.3.4 Output format . 33

v

3.3.5 Graph comparison . 33
3.3.6 Manual evaluation . 34
3.3.7 Performance measurement . 35

3.4 Results . 35
3.4.1 Quantitative analysis . 35
3.4.2 Qualitative analysis . 36
3.4.3 Performance analysis . 42
3.4.4 Discussion of the results. 43

3.5 Threats to Validity . 43
3.6 Summary . 44

4 Combining Static and Dynamic Code Analysis with Machine Learning
to Detect Software Issues in JavaScript Programs 45
4.1 Overview . 45
4.2 Related Work . 48

4.2.1 Issue prediction using software metrics 48
4.2.2 Issue prediction using call graphs 49

4.3 Vulnerability Prediction with Static Source Code Metrics Only 52
4.3.1 Approach . 52
4.3.2 Results . 58

4.4 Enhancing Bug Prediction with Hybrid Call-Graphs 61
4.4.1 Approach . 61
4.4.2 Results . 66

4.5 Threats to Validity . 73
4.6 Summary . 74

5 Studying Typical Security Issues and Their Mitigation in Open-Source
Projects 77
5.1 Overview . 77
5.2 Related Work . 79
5.3 Exploring the Security Awareness of the Python and JavaScript Open

Source Communities Using The Software Heritage Graph Dataset . . . 80
5.3.1 The Software Heritage Graph Dataset 81
5.3.2 Approach . 81
5.3.3 Results . 83

5.4 A Data-Mining Based Study of Security Vulnerability Types and their
Mitigation in Different Languages . 86
5.4.1 Approach . 87
5.4.2 Results . 89

5.5 Threats to Validity . 93
5.6 Summary . 95

6 Conclusions 97

Appendices 99

A Summary in English 101

vi

B Magyar nyelvű összefoglaló 107

Bibliography 115

vii

List of Tables

1.1 Mapping of thesis points and chapters 4

2.1 Possible transformation scenarios and their fitness (1 - bad, 5 - good)
from different angles. 9

2.2 Properties of the subject systems . 19
2.3 Code snippets for functional testing . 20
2.4 Detailed runtime data without parallelization (in seconds) 21

3.1 Comparison of the used tools (as of 16th July, 2018) 29
3.2 Selected Node.js modules for test . 32
3.3 Characteristics of the random generated JavaScript files 32
3.4 SunSpider results . 34
3.5 Basic statistics gathered from Node.js results 36
3.6 Precision and recall measures for tools and their combinations 41
3.7 Performance measurements (memory in megabytes, runtime in seconds) 42

4.1 Calculated static source code metrics 55
4.2 F-measures achieved by the machine learning algorithms 59
4.3 Descriptive statistics of the HNII and HNOI metrics calculated using

different thresholds . 66
4.4 Top 10 recall measures . 67
4.5 Top 10 precision measures . 68
4.6 Top 10 F-measures . 70
4.7 Wilcoxon signed-rank test results of F-measures between models using

different feature sets . 72
4.8 The best results of the nine ML models according to their F-measure . 72

5.1 Commit statistics per year . 84
5.2 Most referenced CWE categories and their description 85
5.3 Average total code changes . 92
5.4 Most common CWEs per languages . 93

A.1 Thesis contributions and supporting publications 106

B.1 A tézispontokhoz kapcsolódó publikációk 112

ix

List of Figures

2.1 General use case of the framework . 9
2.2 Flow chart of the transformation framework 11
2.3 In-class member initialization examples 14
2.4 Auto type deduction examples . 15
2.5 Lambda function example . 15
2.6 Attribute examples . 16
2.7 Final and override modifier examples 16
2.8 Range-based for loop example . 17
2.9 Constructor delegation example . 17
2.10 Type alias examples . 18
2.11 Results of parallel runs (runtime in seconds) 21
2.12 Average distribution of time spent in transformation phases 22

3.1 Methodology overview . 28
3.2 Venn diagram of the true/total number of edges found by the tools . . 37

4.1 Data processing overview . 52
4.2 Results on the imbalanced dataset . 58
4.3 Impact of re-sampling on the learning precision and recall 60
4.4 The schematic view of our approach . 62
4.5 Hybrid call graph framework architecture 63
4.6 Venn diagram of found edges . 64
4.7 The best Deep Neural Network (DNN) configurations for all three fea-

ture sets . 68
4.8 The best Deep Neural Network (DNN) configurations for all three fea-

ture sets . 68
4.9 The best Support Vector Machine (SVM) configurations for all three

feature sets . 69
4.10 The best Support Vector Machine (SVM) configurations for all three

feature sets . 69
4.11 The best Random Forest (Forest) configurations for all three feature sets 70
4.12 The best Random Forest (Forest) configurations for all three feature sets 71
4.13 The best K-Nearest Neighbors (KNN) configurations for all three feature

sets . 71
4.14 The best K-Nearest Neighbors (KNN) configurations for all three feature

sets . 72

5.1 The schematic view of our approach . 81
5.2 Vulnerability mitigation ratio per year 83

xi

5.3 Number of security issues found with the given CWE types 84
5.4 Average number of days between mitigation commit date and CVE pub-

lish date grouped by years . 85
5.5 Average number of days between commit date and issue publish date for

the most common CWEs . 86
5.6 A schematic representation of our mining process 87
5.7 The average time elapsed between finding and fixing a CVE (in days) . 89
5.8 The average time elapsed between the publication and fixing of a CVE

(in days) . 90
5.9 The correlation between the base score (severity) and time taken fixing

CVEs . 91
5.10 The average number of contributors between the finding and fixing commit 91
5.11 The average number of commits between the finding and fixing of a CVE 92
5.12 Most commons CWEs for Ruby, BitBake, Scheme 94

Listings

2.1 Content of a compile_commands.json file 10

3.1 Example of our unified JSON output 33
3.2 A false call edge found by npm-cg . 38
3.3 A true call edge found by ACG . 38
3.4 A true recursive call edge found by Closure 39
3.5 A confusing code part from string-unpack-code.js 39
3.6 A true call edge found by WALA and TAJS 40

4.1 Example diff file . 54
4.2 Example JavaScript function . 54
4.3 Sample output from the HNII, HNOI Counter 65

xiii

To my beloved family...

1
Introduction

Nowadays, practically everything is powered by software. Years ago, we could not
imagine that there will be a day when even our toothbrushes are connected to our
phones, providing feedback on how well we brush our teeth. This day has already
come quite a few years ago. Everyone uses software, whether for daily work or leisure.
Because of this, the amount of software being built is increasing. In 2020, more than
60 million new repositories were created on only GitHub1 (for comparison, GitHub
reached 100 million repositories in November 20182). Building new software is hard
enough, but we cannot forget about the difficulties in maintaining existing ones either.
Moreover, cyber-crime activities are rising as well, since the possible attack surface is
also growing.

After the outbreak of the new coronavirus, the number of daily cyber-attacks grew
by 300%, causing more than 4,000 attacks a day [72]. Cyber-criminals are mercilessly
targeting the whole populace [82, 87]; they have struck hospitals, researchers, and
people working from home alike. The Brno University Hospital was hit by a cyber-
attack in March 2020 [118], so they had to cancel surgeries, shut down the whole IT
infrastructure, and suspend all of their coronavirus testing activities. Since the Brno
University Hospital was one of the biggest COVID-19 testing laboratories at that time
in the Czech Republic, this incident caused severe damage. Another example is the
Zoom bombing exploit [156]. Because of many people working from home, numerous
schools and companies use the video calling software Zoom on a daily basis to hold
classes, and meetings. The vulnerability allowed attackers to intercept authentication
and join any conversation they wanted. Since then, many companies banned Zoom
either temporarily or permanently [36].

These examples show that we must pay attention to software quality and safety.
However, as we are all human beings, we occasionally make mistakes in our code
that might go unnoticed for a long time. Ideally, we have enough time to develop
quality software. We have the freedom to choose what version of which programming

1Reported on https://octoverse.github.com/, a captured version is available on http://web.
archive.org/web/20210330122502/https://octoverse.github.com/

2According to GitHub’s blog: https://github.blog/2018-11-08-100m-repos/

1

https://octoverse.github.com/
http://web.archive.org/web/20210330122502/https://octoverse.github.com/
http://web.archive.org/web/20210330122502/https://octoverse.github.com/
https://github.blog/2018-11-08-100m-repos/

Chapter 1. Introduction

language we would like to use (of course, we would mostly choose the newest version
of a language), we can thoroughly review all frameworks and libraries, and choose the
perfect one (with the nicest developer community), and we have plenty of time to do
code reviews and cross-validation of each other’s code.

Unfortunately, this ideal state hardly exists in real life. The customer might already
have a list of constraints with the exact version of a programming language, the avail-
able libraries, and tools. However, developers like to learn new things, and they want
to stay up to date with the latest technologies. This is not only a natural need, using
newer language versions also helps with writing more effective, more expressive, and
less error-prone code (e.g. Java 1.7 introduced the AutoCloseable interface along with
the try-with-resource construct3, so that files left open accidentally can be avoided). In
order to help developers achieve more freedom in using newer language standards, we
studied this field and the current state-of-the-art solutions. We found that there are
not any tools that help developers use a newer standard of C++ in such a way that the
code becomes „almost” compatible with an older standard of the language automati-
cally. We designed and implemented a complete solution that enables developers to use
a large portion of the C++11 language standard in a legacy environment [164]. Our
tool is able to convert the source code so that it complies with the C++03 language
standard.

However, this is not the only problem developers have to face from time to time.
They often have strict deadlines by which time the software must work, meaning that
the software has to fulfill the functional requirements, sometimes at the expense of
quality and/or prudence. Therefore, developers often use quick solutions that seem to
work at first glance, but they do not consider all the possibilities that might happen at
some point; nevertheless, such a seemingly innocent line of code can later cause serious
(security) issues. Additionally, they often use third-party components from the open-
source world. Due to time pressure, they might select the first library/framework that
looks suitable, even though there might be a better component that is safer to use, has
better quality, has better test coverage, and so on. After the deadline, of course there
is another deadline, so developers do not have time to return to a previous (seemingly
fixed) issue and reconsider the choices they made. These kinds of problems are even
more strongly present in dynamically typed languages, like JavaScript and Python.
As there is no compiling phase, there are no static type checks. Additionally, the use
of reflection is common in these languages, so that even a human might not easily
understand what happens in the code. Thus using static and dynamic code analysis
techniques can be fruitful in this context. However, the results of static analyzers are
not precise due to the above-mentioned reasons. Many code analysis tools rely on the
call graph representation of the program: they produce a call graph to calculate metrics
on (for example, the number of outgoing invocations (NOI)). The call graph is the basis
for many other, more complex data structures (such as the control flow graph), which
is essential in order to detect issues in a given program. As call graphs are fundamental
data structures in many ways, the precision of call graphs is extremely important in
order to be reliable to the code analysis algorithms. However, there are several tools
and algorithms for call graph construction that can be used. Being able to determine
which one to use in a given situation is essential. We performed a comparative study on
the most popular state-of-the-art static JavaScript call graph construction algorithms,

3https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.
html

2

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

Chapter 1. Introduction

and presented our findings [165]. We found that there are tools that are somewhat
better than others, but we couldn’t declare an absolute winner. Based on this study,
we integrated ACG.js into the OpenStaticAnalyzer4 tool, which is developed by the
Department of Software Engineering of the University of Szeged.

Using source code metrics for predicting software issues is quite a mature tech-
nique [132, 135, 34, 119]. However, the field of prediction for dynamic languages is
rather new, and they mostly suggest files that might be vulnerable. If there was a pre-
diction model that works at method level (or on a more fine-grained level, such as line
level), developers could use it to prevent issues in their (modified) code. But the prac-
tical adoption of the prediction models depends on their real-world performance and
the level of false-positive hits they produce. First, we created a fine-grained JavaScript
vulnerability dataset that contains the static analysis results of 12,125 JavaScript func-
tions with indicators for whether they contain a vulnerability or not. We also presented
a comprehensive comparison of 8 well-known machine learning algorithms on predicting
vulnerable JavaScript functions [169]. Our preliminary results were fairly great using
only static source metrics, so we extended our prediction model with dynamic analysis
and widened our scope from vulnerability to generic bugs. Our model performances
improved by replacing static invocation metrics with their counterparts coming from
static and dynamic analysis (i.e. hybrid analysis) [168]. But keeping both static and
hybrid metrics yields the best results.

Using code analysis tools and prediction models are great automated ways to help
spot issues in the code before changes take effect in the software’s live version. Nev-
ertheless, the human factor is also not negligible. Bugs will most likely occur in the
code, to which we cannot be prepared enough, but we can take a deeper look at security
issues. Vulnerabilities in the codebase also happen from time to time; understanding
them helps us enhance our prediction models further. It also helps to emphasize how to
avoid these defects on the source code when we write educational materials. Knowing
the typical security issues might also help developers to know what to look for in a
source code when reviewing a change. We used the Software Heritage Graph Dataset
to mine data, in order to help JavaScript and Python developers learn their languages’
typical security issue types and their characteristics [166]. We also defined an approach
on how to mine data for this purpose (from any Git repository). We provided a toolset,
and we presented our findings on the typical security issues in several languages [167].

1.1 Structure of the dissertation
The thesis is structured as follows. First, Chapter 1 provides a short introduction
to the main work presented in this thesis. The following four chapters are the thesis
points, briefly summarized in Table 1.1. In Chapter 2, we present our findings on
supporting legacy compilation environments in C++11. We introduce our approach
to code transformation, what language features we support, how we transform the
source code, and how we support incremental, iterative analysis. We also present our
test suite on which we tested our framework, and how we made the tool’s performance
better. Chapter 3 presents a comparative study on static JavaScript call graph building
algorithms. We describe our approach, our testing methodology, as well as the call
graph building algorithms. We assess the tools both qualitatively and quantitatively,

4https://openstaticanalyzer.github.io/

3

https://openstaticanalyzer.github.io/

Chapter 1. Introduction

we calculate the tools’ precision and recall values, along with their F-Measure. We
conclude the chapter with our findings on which tool is the most advantageous in
certain situations. In Chapter 4, we present our prediction model on predicting issues
in JavaScript functions. We provide a new dataset (using static source code metrics)
on which we trained 8 well-known machine learning algorithms to predict vulnerable
functions. We used these algorithms to predict bugs in JavaScript functions. We
extended our feature set with two dynamic invocation metrics that helped our model
be more accurate. In Chapter 5, we present our findings on typical security issues and
their mitigation in several languages, based on the Software Heritage Graph Dataset,
and on our own dataset. We describe our data collecting process, we introduce our
open-source tools that can help anyone create studies like this. We present our findings
on several, widely used programming languages, we present the typical security issue
types, and how fast given communities react to them.

In Chapter 6, we sum up the thesis and suggest some directions for further research.
At the end, appendices A and B contain a brief summary of the presented thesis in
English and Hungarian. In addition, the appendices contain the thesis points, and the
contributions of the author, as well as the underlying publications.

Table 1.1. Mapping of thesis points and chapters

№ Thesis point Chapter
I. Transforming C++11 Code to C++03 to Support Legacy Compi-

lation Environments
Chapter 2

II. A Comparative Study on Static JavaScript Call Graph Algorithms Chapter 3
III. Combining Static and Dynamic Code Analysis with Machine Learn-

ing to Detect Software Issues in JavaScript Programs
Chapter 4

IV. Studying Typical Security Issues and Their Mitigation in Open-
Source Projects

Chapter 5

4

2
Transforming C++11 Code to C++03 to

Support Legacy Compilation Environments

2.1 Overview
Today, technologies used in software engineering practice, such as programming lan-
guages, environments, and libraries, are changing at an inexperienced pace. And,
naturally, developers would like to exploit the advantages of such developments in
order to increase their productivity, quality of code, and to reduce risks of error. How-
ever, there are often certain constraints in the projects that prohibit the use of the
newest technologies. This includes, for instance, interoperability with legacy systems,
compatibility with older hardware and software, and other limitations arising from the
context of the project. For instance, in a situation when the software vendor deliv-
ers software to a customer, it must conform to the customer’s requirements regarding
platform compatibility.

The work presented in this chapter was motivated exactly by such a situation. NNG
LLC, one of our industrial partners, is a company that develops navigation software,
and as such, it delivers software products to its clients who integrate the navigation
software component into the host system of the final product. These host systems
often raise strict technical constraints against the delivered software to be integrated.
Compatibility may be required with old operating systems, libraries, and existing com-
ponents. Consequently, the development company needs to enforce strict regulations
in-house regarding the usable platforms, language versions, and development environ-
ments. The net effect is that the developers are confronted with a situation in which
they are limited by older technologies, while they would be eager to use more advanced
ones. Often, this leads to lower productivity and even a lack of motivation because
their professional skill development is limited as well.

In this thesis point, we present work dealing with the above-mentioned problems
in the context of the C++ language, the primary technology used by the company.
For many years, the official language standard was not updated, until 2011, which
progressively resulted in the birth of a large codebase globally, which is now treated

5

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

already as legacy code. The C++11 standard [74] included so many new features
(such as in-class initializations, lambda functions, automatic types, attributes, and
many more) that almost made it a new language (even Bjarne Stroustrup, the creator
of C++ thinks it “feels like a new language1”). However, even several years after the
publication of the new standard, developers at NNG are still forced to use older versions
of the language, which is a significant drawback from both the subject systems and the
developers’ point of view.

Hence, the goal of our R&D collaboration project was to develop a solution to this
problem in a way that would be both beneficial for the developers and the system
itself. We created a source code transformation framework with which C++ source
code written according to the C++11 standard can be automatically “backported”
to C++ code conforming to earlier language versions (C++03, in particular [73]).
The framework is capable of automatically transform a large number of new language
constructs to their equivalent versions in the older language. This way, developers
are free to exploit the latest language features, while production code is still built by
using a restricted set of available language constructs. Even though various technical
limitations prevented us from making a complete transformation solution in terms of
supported language elements, our framework enables a very large subset of C++11,
making it usable in practice.

The transformation framework includes a number of additional features besides
transforming individual source code files, which make its integration into practical
build processes easier. These include, among others, source tree mirroring, incremen-
tal transformation, selective transformation, and traceability between the original and
the transformed code. The technology has been experimentally integrated into the
development process of the company (which was not trivial due to some unique prop-
erties of the build process), enabling them to benefit from using recent technology while
retaining compatibility with their partners using legacy systems.

This chapter reports on the technical details of the transformation engine, and
our experiences in applying it not only on NNG’s codebase, but on another industrial
application, and on four open source systems as well. Although the transformations
do not cover C++11 in 100%, our results and experiences with industrial systems
indicated that in its present state, the framework is definitely useful in practice. The
transformation engine is available open-source:
https://github.com/sed-szeged/cppbackport

The chapter is organized as follows. Section 2.3 presents more details on the prac-
tical scenario that lead to the development of the solution. Related work is briefly
presented in Section 2.2. Section 2.4 describes the framework and its usage scenarios
in detail, while the transformations themselves are listed in Section 2.5. Section 2.6
deals with the evaluation of the solution and our measurement results, together with
Section 2.7, which lists the most important limitations of the approach, before the
summary in Section 2.8.

2.2 Related Work
This chapter deals with static code analysis for the purpose of source-to-source code
transformation. The topic has a large literature, and there are many experimental

1http://www.stroustrup.com/C++11FAQ.html#think

6

https://github.com/sed-szeged/cppbackport
http://www.stroustrup.com/C++11FAQ.html#think

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

and production tools developed for various languages, both free and commercial. Also,
the application areas are diverse: language translation, (back)porting, modernization,
refactoring, etc. In this section, we overview the common solutions for source trans-
formation with a special focus on the C++ language, and not particularly on the
application of transformation.

Legacy systems written in languages like Cobol, Fortran, or even C and C++ are
often the subject of source transformation, turning them into more modern languages
like Java [31, 150, 114, 147].

Compiler infrastructures are often used for language translation, for instance the
EDG front end [48], GNU GCC [62], the ROSE compiler infrastructure [138], and
LLVM clang [95], which is the chosen platform for our tool as well.

There are solutions that not only offer a library for source transformation, but a
complete framework for this task. These frameworks often provide their own language
to define the transformation. They are easier to use because they are specific to a
particular field. Though they often bring higher overhead, are harder to learn and
provide less flexibility. For example, Lee et al. [90] created such an environment. It
is highly flexible, and can be extended with new languages as well. A similar system
was offered by Bagge et al. [22]. It provides support for source code instrumentation
and optimization transformations, but their system only supports C++. There are
additional experimental and commercial systems that could possibly be suitable for
similar tasks, such as SrcML [41], TXL [152], ASF+SDF [21], Stratego [148], DMS
toolkit [47], and several others.

We found that only LLVM provides a proper interface to its internal representation
that is suitable for our purposes, so we are using this environment. A few additional
applications based on the LLVM clang [95] front end are listed below. Clang Tools [40]
is a toolset that includes a code transformation module as well. An interesting tool is
modernizer, which transforms C++03 code to C++11; exactly the opposite of what
we developed. This tool is appropriate for other tasks as well, such as formatting and
code style checking. Another application of this library is Include What You Use [71],
with which the optimization of include files can be performed.

Transformation on C++ code for a different purpose was done by, for instance,
Aigner et al. [16]. Their software can be used to eliminate virtual function calls in
C++ in order to improve the performance of the programs. Marangoni et al. [100]
implemented a tool with which general C++ code can be automatically transformed
to CUDA source code, which enables parallel execution of general C++ on video cards.
Additional parallelization transformation tools have been implemented by Krzikalla et
al. [84] and Magni et al. [98].

An interesting tool based on LLVM is C Backend [94], which is able to transform
C++ code to C code. This could potentially have also been a solution to our problem
(as most compilers still support C), however, this system is still in a very experimental
phase. The generated code is much slower than the original, furthermore, it cannot
handle a number of code constructs at all.

2.3 Approach
iGO navigation software, the core product of NNG, is a white-label product, meaning
that clients can sell the final products under their own brand. Clients have significant
freedom in customizing the user interface and application behavior to their taste, which

7

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

produces high variability not only on the market, but on a technical level as well.
While customizations have a big impact on certain features and workflows, many core
functionalities remain practically the same in the majority of the products. As a typical
software product line [129], the iGO system has core assets that share a common
codebase, which has to compile in all supported environments.

In some segments, successful products have numerous new generations with newer
and newer versions of the iGO core in them, but without significant changes in the
hardware/OS layers. iGO core assets are required to support compilation environments
for these legacy platforms as long as business interest [26] and support periods sustain
the need. Two notable examples of such legacy target platforms are Windows CE and
QNX 6.5. Windows CE can only be targeted with C++03 compilers, while for QNX
6.5 the compilation toolchain is based on GCC 4.4.2.

On the one hand, we see a clearly articulated C++03 compatibility requirement
for several years. On the other hand, C++11 and the more recent versions of the
C++ language are not only minor refinements, but contain significant benefits over
the legacy language. There are multiple aspects here. One group of them relates to
product quality. Move semantics of C++11 allows faster code even without modifying
the source code [108]. Many features of the new language help to enhance code expres-
siveness. Self-explanatory code without boilerplates is less error-prone, which in turn
leads to better quality and faster production.

The other key factor is developer retention/attraction. Not having major changes
to C++98, in a few years, we can refer to C++03 as a 20-years technology. Continuous
learning is a vital part of the successful developer mindset [102]. Reliable extension and
maintenance of a multiplatform C++ software product line require skilled engineers,
for whom modern C++ is the norm. Being forced to use a 20-years technology with
millions of lines of code in a non-trivial domain easily becomes a business issue because
of this human factor.

The opposing business needs for the legacy and new C++ variants gave NNG the
idea of building a bridge between the two. The requirement is simple: the ability to
use as many of the modern C++ features in the common codebase as possible without
compromising compatibility with the still important legacy platforms.

Our first cooperation in this topic was a classic research project to come up with pos-
sible approaches and their detailed assessment for decision making. Table 2.1 contains
the identified scenarios and their fitness from different angles. The three possibilities
were: Columbus, a C++ analysis framework developed at the University of Szeged [55],
the open-source clang front end for the LLVM infrastructure [95], and the C backend
developed also for LLVM [94]. Each criterion was assessed on a scale of 1–5, as can
be seen in the table. Finally, NNG decided to choose the clang code transformation
approach, mostly because it is open-source while Columbus is not, and the C backend
turned out to be incomplete and unreliable.

A high-level overview of the transformation process is depicted in Figure 2.1. De-
velopers use a modern C++ IDE (e.g. Microsoft Visual Studio2 2015) in their daily
work. Our tool generates the backported equivalent of the source tree, so when a legacy
build or debugging is needed, legacy tools/IDEs (e.g. Microsoft Visual Studio 2005 or
GCC 4.4.2) can be used naturally.

Apart from the transformation itself, our framework provides support for various
every day software engineering activities, such as testing and debugging. Since run-

2https://www.visualstudio.com

8

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

Table 2.1. Possible transformation scenarios and their fitness (1 - bad, 5 - good) from
different angles.

Criterion LLVM Columbus LLVM
clang C backend

Cost of development 2 2 1
Cost of integration into NNG processes 4 4 3
Learning curve 5 5 3
Degradation of work efficiency 3 3 1
Diagnostics 4 4 1
Performance: compilation 2 1 1
Performance: speed 4 4 1
Performance: memory 4 4 3
Performance: executable size 4 4 3
New language elements 1 1 4
Robustness 3 3 5
Future proof 1 1 3
Automation 5 5 5
Impact on iGO code 5 5 5
Support 3 4 1
Legacy compatibility 5 5 5

Figure 2.1. General use case of the framework

time issues (either from testing or operation phases) arise at the legacy production
environment, while the developers should use their native development environment,
the necessary traceability needs to be established on the source code level.

For instance, bug reports of native systems may contain location references to the
compiled executable. In case of a crash, for example, call stacks of different threads are
dumped. This information together with a corresponding map file that matches the

9

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

raw addresses to the source code are invaluable for finding the root cause of the bug.
On legacy targets call stacks refer to the backported source code. For more seamless
integration into the development processes, we have created a convenience tool that
enables developers to look up the source code location in the modern C++ source code
even for addresses referring to the backported executable.

2.4 Source Code Transformation Framework
The alteration of the source code is controlled by the transformation framework. It
consists of two main parts: the first one is the engine providing incrementality, while the
second one is responsible for performing the actual transformations. The incrementality
engine monitors the code changes at file level and determines which files of the project
need to be transformed (discussed in more detail in Section 2.4.2). Based on this
list, the transformation engine performs the necessary changes, which is the topic of
Section 2.4.1.

During the design of the framework, it was an important requirement that the
tool could be easily integrated into the build processes; either as a pre-build step in
traditional build systems or as a subtask in continuous integration (CI) environments.

2.4.1 Source code transformation
For using the transformation framework, we have to know how the compilation units
are compiled in their original build environment. We use the compile_commands.json
file [79] for this purpose (this file is also used by clang). This text file contains the
necessary information, which is the following:

• directory: the working directory used during the build process. The following
fields (command, file) are relative to this path.

• command: the command line used to compile the compilation unit.
• file: path of the compilation unit file.

This data has to be provided for each compilation unit. In Figure 2.1 we show an
example compile_commands.json file content. If the project does not contain this file
yet, then the user has to create it. The compile_commands.json file can be created
automatically (with an external tool like CMake) or manually.

We did not prepare such a tool on our own, because the industrial partner did not
require it and there are several working tools.

Listing 2.1. Content of a compile_commands.json file
1 [{
2 " directory ": "c:/ work/ projectDir ",
3 " command ": " cl.exe -c Source1.cpp -o2",
4 "file": "c:/ work/ projectDir / Source1.cpp "
5 }]

Before the transformation starts, the framework copies the full project hierarchy
into a work directory, which has to be provided by the user. The transformed code
will be saved into this directory as well, so this code will be compilable with a C++03
compiler.

10

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

During designing the process it was important to take into consideration that there
are also new C++11 features that cannot be transformed in one step (e.g. lambda
expressions nested into other lambdas), and some transformations depend on each
other and have to be performed in more iterations in a predefined sequence.

Figure 2.2. Flow chart of the transformation framework

The transformation process and its phases are shown in Figure 2.2. These phases
are the following:

• The transformation tool expects the compile_commands.json file containing the
project’s compilation information as input.

• We maintain a database, which supports the incremental operation by storing
the latest modification times and the dependencies between the source elements.
During preprocessing, the transformation framework analyzes the dependencies
between compilation units and selects those files which have to be transformed
based on the database (see Section 2.4.2).

• It then iterates over the list of transformations. (We will describe these in Sec-
tion 2.5).

• After a transformation is done on all affected files, the framework saves the
changes, and the incrementality engine updates the database with the file modi-
fication dates.

2.4.2 Incrementality
It would take a lot of resources to transform every file during each build of the project.
This would be superfluous in most cases, because usually only a small fraction of the

11

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

code gets changed during a development iteration. To eliminate this overhead, for each
compilation unit file the framework records which version of it was already transformed,
and it performs the transformation only if the file was modified in the intervening time.
A file is considered to be modified if its last modification time changed. This is not a
perfect solution, as the time attribute of a file can change even if its content does not,
but this happens quite rarely and the side effect is not harmful.

Because we need to preserve the information between consecutive runs of the frame-
work, we store the data in a persistent storage. We chose the SQLite 3 SQL-engine,
because it does not need a database server and can be used easily without any config-
uration. However, the framework can be quickly adapted to other SQL engines (e.g.
PostgreSQL, MySQL), if needed.

The database stores information about the compilation units (which are defined in
the compile_commands.json file) and associated files for each unit. For each compi-
lation unit, it stores the last modification date, the file dependencies (such as due to
inclusion or given in command line arguments), and the timestamp of the dependency
addition. If a translation unit includes a header file, which also contains includes, these
dependencies will be added directly to the compilation unit, rather than to a depen-
dency. (Dependent files cannot have dependencies this way.) Taking this into account,
we developed the following simple database schema:

COMPILATION_UNIT(id, timestamp, cmd_args)
FILES(id, path)
RELATIONS(file_id, dep_id, dependency_timestamp)

2.4.3 Operation of the Transformation Framework
The framework collects the compilation units from the compile_commands.json file
and by iterating over this list it also collects their dependencies (direct and indirect ones
as well). After this step, the framework compares this information with the contents
of the database. If a compilation unit

• changed,
• its command line arguments changed,
• its dependencies changed,
• new dependency appeared, or
• existing dependency disappeared,

then the compilation unit gets inserted into the list of files to be transformed together
with its dependencies.

This list contains all files which might have gotten modified since the last trans-
formation, thus the framework will perform the transformation of these files. If all
transformations finish successfully, the framework updates the database by saving the
new modification dates, adding possible new dependencies, or deleting the disappear-
ing ones. Furthermore, if new compilation units were added, these will also be inserted
into the database together with their dependencies.

2.4.4 First analysis
Before starting the first analysis, the framework creates the database. If it already
exists, it will not be overwritten. Next, the data tables will be created (if needed).

3https://www.sqlite.org/

12

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

During the first run, the framework will transform all files, which can be time-
consuming in the case of a larger project. Later, however, because of the incrementality,
only the changed files will be transformed.

2.4.5 Tracing the transformed code back to the original one
The traceability tool is a complementary tool for the transformation framework, which
aims to create a mapping between the transformed and the original project that is
able to trace the lines between the original and the converted files. This is useful in
cases where the transformed code contains an error, which, of course, has to be fixed
in the original code. If it receives a transformed file and the line number in question,
it returns the corresponding line in the original file. The tool has been developed in
such a way that it can be also called from C code.

Using the tool is limited in the sense that the back tracing can only be performed
if it does not fall into a transformed region of code. If a line inside a transformed code
part has been selected, it returns the back trace of the starting line of the outermost
transformation. The reason for this restriction is that in case of some transformations
the body of the transformed functions has to be written out with a procedure provided
by clang. The problem is that while this code will be functionally the same as the
original, it will differ in formatting. Perhaps the simplest example is that comments
and blank lines are not printed out.

2.5 Transformation Catalog
In this section, we present the transformation details of the actual language elements
supported by the framework. There are some other transformations available as well,
which are in an experimental phase and are mentioned in Section 2.7.

NNG’s selection of which language elements to transform was based on their sub-
jective usefulness/benefit judgement and the required efforts and complexity.

2.5.1 In-class data member initialization
The possibility to initialize class (union, struct) data members directly within their
declaration in the class body has been introduced in C++11. This has the benefit that
a data member which has a default value need not be initialized in each constructor,
except only once, directly after its declaration. Earlier, this was only possible for data
members with the const static modifiers. The syntax for this construct is to use the
assignment operator or the brace initializer of the form { value }. The construct has
a restriction which is that only one member of unions can be initialized this way.

The listing in Figure 2.3 shows examples for in-class member initialization. The
left-hand side of the figure lists the original C++11 code, and the other is the trans-
formed version (C++03). The mechanism used for the transformation is practically
the same as the one used by the compiler. Namely, we move data initializers into the
constructors, provided they are not already present in the constructor initialization
lists. Automatically generated constructors need special consideration. If they are
not already generated by the front end, then our transformation framework will create
them with public access specification (placed after the last existing member declaration
in order not to accidentally modify the visibility of other members).

13

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

1 struct A {
2 int a { 3 };
3 std :: string s = "s";
4
5
6 };
7
8 union B {
9 double a = 3.5;
10 int b;
11
12 };
13
14 class C {
15 public :
16 C(int _b) : b(_b) {
17 }
18 private :
19 int a = 1;
20 int b = 2;
21 };

⇒

1 struct A {
2 int a;
3 std :: string s;
4 public : A() : a(3),
5 s("s") {}
6 };
7
8 union B {
9 double a;

10 int b;
11 public : B() : a(3.5) {}
12 };
13
14 class C {
15 public :
16 C(int _b) : b(_b), a(1) {
17 }
18 private :
19 int a;
20 int b;
21 };

Figure 2.3. In-class member initialization examples

Some member types are not handled by the framework because they cannot be
transformed into their equivalent (or it is not practical). This includes C-style arrays,
because their members cannot be directly initialized in the constructor initializer lists,
only in the constructor bodies by individual value assignments. Also, declarations in
which multiple declarators are provided for the same type are not handled. Finally, code
is not transformed for template classes, because in this case there might be constructors
which are not instantiated by the front end, so consequently, they could not be used
to hold the generated code.

2.5.2 Auto type deduction
Prior to C++11, each variable (and other, entity like a function return value) had to
be explicitly declared for its static type. In many cases, this led to overly complex
and unreadable code. The auto keyword used in place of a concrete type instructs the
compiler to deduce the type of the entity automatically. However, in this case, the
variable needs to be initialized at the declaration in order for the type to be deducible.

Our transformation framework uses the same deduction rules as the compiler, but
in our case, the source code (with the deduced types) is generated as well. In our
implementation, various categories of auto types are distinguished, which is necessary
because different treatments are required for the different cases:

• simple declarations
• multiple variables in one declaration
• function pointers
• template functions with such variables
• functions with trailing return types

14

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

1 auto a = 32;
2 auto *b = new auto (&a);
3 auto xp = &a, yp = xp;
4 auto *y = &a, **z = &y;
5 auto foo(int a)
6 -> decltype (a) {
7 return a;
8 }
9 auto x = foo (0);
10 const auto & y = foo (1);
11 auto fp = foo;

⇒

1 int a = 32;
2 int **b = new int *(&a);
3 int * xp = &a, * yp = xp;
4 int * y = &a, ** z = &y;
5 int foo(int a) {
6
7 return a;
8 }
9 int x = foo (0);
10 const int & y = foo (1);
11 int (*fp)(int) = foo;

Figure 2.4. Auto type deduction examples

The listing in Figure 2.4 shows examples for auto type deductions with original and
transformed code versions. This transformation has some limitations too. Namely,
multiple variables for a declaration in global scope, template functions, and certain
variable declarations combined with preprocessor macros are not fully handled.

2.5.3 Lambda functions

One of the most advanced new features in C++11 is the lambda function. With them,
special functionalities may be written inline in a very compact way, without actually
creating new functions each time, which was only possible using function pointers or
function objects in previous editions of C++. Our transformation engine translates
lambda functions to function objects, as shown in the example in Figure 2.5.

1 std :: vector <int > v(6);
2 int inc = 7;
3
4
5
6
7
8
9
10 std :: for_each (
11 v.begin (),
12 v.end (),
13 [& inc](int &n) {
14 n += inc;
15 }
16);

⇒

1 std :: vector <int > v(6);
2 int inc = 7;
3 class LambdaFunctor__12_1 {
4 int& inc;
5 public :
6 LambdaFunctor__12_1 (
7 int& inc) : inc(inc) {}
8 void operator ()(int & n){
9 n += inc;
10 }
11 };
12 std :: for_each ()
13 v.begin (),
14 v.end (),
15 (LambdaFunctor__12_1 (inc))
16);

Figure 2.5. Lambda function example

15

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

2.5.4 Attributes
The reason for the introduction of attributes in C++11 was to unify the creation of
various compiler directives. Most compilers already implemented their dialect-specific
ways for such directives, but this was not standard in any way (for example, con-
struct like __attribute__((...)) for GNU GCC and __declspec() for Microsoft’s
compiler). The use of attributes makes these kinds of extensions more portable, fur-
thermore, they are very general and might be placed virtually at any syntactic position
in the code; they might be placed in namespaces, can get parameters, etc.

1 [[attr1 , attr2 , attr3(args)]]
2 [[namespace :: attr(args)]]

Figure 2.6. Attribute examples

Figure 2.6 shows what kind of attributes are accepted by our transformation frame-
work. Since in the previous language versions there are no equivalent or similar code
structures, we simply discard any occurrence of attributes from the code.

2.5.5 Final and override modifiers
The final and override modifiers were introduced to give developers compile-time con-
trol over class specialization and function overriding. These modifiers are not keywords
in the language, and depending on the environment they can also appear as e.g. vari-
able names. The override modifier indicates that the virtual function of the base
class is being overridden. The final modifier can be used with both virtual functions
and classes. In case of a function, it prohibits its overriding, while in case of a class,
it disables subclassing. The framework simply deletes these modifiers, similarly as in
the case of attributes. The listing in Figure 2.7 shows examples and their transformed
versions.

1 class A {
2 virtual void b();
3 virtual void c() final;
4 };
5 class B final : public A {
6 void b() override final;
7 };

⇒

1 class A {
2 virtual void b();
3 virtual void c();
4 };
5 class B: public A {
6 void b();
7 };

Figure 2.7. Final and override modifier examples

2.5.6 Range-based for loop
In order to use the for loop easier in cases where an operation has to be performed
on a whole range of elements, a more compact way of writing code was introduced. If
the given container object has all the required special functions, it can be used in this
simplified form. These special functions are called begin and end. An exception from

16

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

this requirement are simple arrays, because in this case the range can be determined
by calculating memory address offset. The special functions can be global or local.
They are local if the two methods are defined in the class declaration and have no
parameters, and global if they are defined outside the class in its enclosing namespace
and have a parameter of the required class type.

1 int array [4]={1 ,2 ,3 ,0};
2
3
4 for (auto &k : array) {
5
6
7 k = 1;
8 }

⇒

1 int array [4]={1 ,2 ,3 ,0};
2 int * __begin1 = (array);
3 int * __end1 = (array)+4;
4 for (; __begin1 != __end1 ;
5 ++ __begin1) {
6 int &k = * __begin1 ;
7 k = 1;
8 }

Figure 2.8. Range-based for loop example

During the transformation, the new compact syntax is converted to the old form
with three arguments, as shown in the listings in Figure 2.8. We would like to note
that the introduced local variables are suffixed with a number to avoid name collision
with further transformations in the same scope.

2.5.7 Constructor delegation
C++11 allows the delegation of constructors. This means that in the constructor
initialization list another constructor can be called. In this case, the constructor ini-
tialization list can only contain this single element. By using constructor delegation a
great amount of copied code can be avoided when several constructors would perform
similar initializations.

1 class A {
2 A() {}
3 A(string str) : s(str)
4 {
5 t = "hello";
6 }
7 A(string str , int dbl)
8 : A(str) {
9
10 a = dbl;
11 }
12 int a = 1;
13 string s;
14 string t;
15 };

⇒

1 class A {
2 A() : a(1) {}
3 A(string str) : s(str),
4 a(1) {
5 t = "hello";
6 }
7 A(string str , int dbl)
8 : a(1), s(str) {
9 { t = "hello"; }
10 a = dbl;
11 }
12 int a;
13 string s;
14 string t;
15 };

Figure 2.9. Constructor delegation example

The framework transforms the code in such a way that it copies the initialization list
of the target constructor into the initialization list or body of the caller constructors,

17

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

as can be seen in Figure 2.9. If the constructor delegation is used in template classes
then the framework can transform only the instantiated constructors.

2.5.8 Type aliases
Supporting typedef-names is a long-standing feature of C and C++ to create aliases
for existing types, but it does not support aliases that can receive template parameters.
C++11 introduced a new syntax to support this feature with the using keyword. Using
template parameters can come in handy in the case of creating aliases for template
classes. The listing in Figure 2.10 shows an example.

The framework converts the new syntax into the old format in simple non-template
cases in a straightforward way. When there are template parameters, it creates a struct
carrying the alias name and it inserts a typedef with the name ‘type’ into it. Also, all
references to the alias are replaced by this construct. The listing in Figure 2.10 shows
the transformed example code. Occurrences of the alias name in symbol import state-
ments (using from base class, for example), and dependent names as alias parameters
(requiring typename prefix for the nested type) are currently not supported.

1 using ul = unsigned long;
2 ul foo(ul p) { return p;}
3
4 template <class T>
5 using mapVec =std :: map
6 <T, Vec <T> >;
7
8
9

10 mapVec <int >
11 bar(mapVec <int > p) {
12 return p;
13 }

⇒

1 typedef unsigned long ul;
2 ul foo(ul p) { return p;}
3
4 template <class T>
5 struct mapVec {
6 typedef std :: map
7 <T, Vec <T> > type;
8 };
9
10 mapVec <int >:: type
11 bar(mapVec <int >:: type p) {
12 return p;
13 }

Figure 2.10. Type alias examples

2.6 Evaluation
We evaluated our transformation framework from two aspects: correctness of the trans-
formed code and performance (runtime). The first aspect is clearly important since we
want the transformed code to be functionally equivalent to the original. However, we
note that there are language constructs that are not handled by the framework, so these
were excluded from our measurements. We discuss functional testing in Section 2.6.1.

The second aspect of the evaluation, performance testing, is important since the
framework is planned to be used in production by our industrial partner, integrated
into the build process. Since the company employs frequent builds, which is resource
intensive due to the large and complex codebase, the time it takes to perform the
transformation is also critical. Associated measurements are provided in Section 2.6.2.

During development and the early stages of the evaluation, we used a set of code
snippets with the language features of interest. Later we relied on a benchmark of

18

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

systems, which use some of the C++11 features, and are non-trivial in size. We included
two kinds of systems: four open-source systems and two proprietary ones. Some basic
properties of the subject systems are provided in Table 2.2. All subjects belong to
different domains, and the sizes of the open-source systems range from small to medium,
while the industrial ones can be treated as large systems. The first industrial system
is Columbus, our own source code analysis framework [55]. The other system is iGO,
the product of our industrial partner, which was the initial motivation for this work.

Table 2.2. Properties of the subject systems

Name LOC Translation units Transformations
SoDA4 18,849 126 193
log4cplus5 37,543 67 172
GridDB6 113,270 68 13
aria27 118,063 385 3,388
Columbus 889,725 1,462 343
iGO millions8 121 0

Lines of Code (LOC), given in the second column is counted as logical lines (not
including empty and comment lines), while the number of translation units is essen-
tially the number of source files with the extension .cpp, that are compiled by the
compiler during build. The last column of the table shows the number of transfor-
mations performed by the system during the whole process. It can be observed from
the statistics that the actual number of transformed language elements varied from
program to program and it did neither really correlate with program size nor with the
number of translation units.

The reason behind the surprisingly low number of compilation units in the iGO
system is a build time optimization technique called unity build. It works by process-
ing a set of compilation units together so that the multiple redundant processing of
header files is radically reduced [109]. For iGO, there were no actual transformations
performed, which is discussed in the following section.

2.6.1 Functional testing
The correctness of the transformed code was checked in two steps. First, the transfor-
mation framework is capable of checking if the code is syntactically correct, so after
each successful transformation this check was performed. Second, the code has to pro-
duce the same behavior as the original one, and this property was verified at multiple
levels:

1. We wrote a set of code snippets containing examples of the implemented trans-
formations (see Table 2.3 for their amount). These pieces of test code have
been transformed, syntactically checked, and compiled in the legacy environment.

4https://github.com/sed-szeged/soda
5https://github.com/log4cplus/log4cplus
6https://github.com/griddb/griddb_nosql
7https://github.com/aria2/aria2
8the exact figure is confidential

19

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

Then, each example was manually verified, and finally executed on one or two
test cases for functional equivalence. These tests are part of the transformation
framework, available open-source.

2. On the four open-source systems and Columbus we also performed the transfor-
mation, syntax check, and legacy compilation. Finally, we manually verified a
limited number of transformations performed in these systems (due to their large
number we could not check all).

3. In the case of iGO, there were no actual transformations performed, as can be
observed from Table 2.2 as well. This is because at the time of the experiments
the codebase did not include any C++11 features. However, the other parts of the
process – analysis, compilation, integration into the build process, incrementality,
etc. – were verified. To check the actual working of the transformation engine,
the code was temporarily modified at a few places to include C++11 code.

Despite the fact that no actual transformation has been done on iGO yet, the above
functional testing process ensures future usability of the framework on this system as
well. The transformed code needed to be platform independent, so additionally we
performed the tests on both Windows and Linux environments with different compiler
versions.

Table 2.3. Code snippets for functional testing

Transformation Code snippets
In-class data member initialization 3
Auto type deduction 37
Lambda functions 31
Attributes 3
Final and override modifiers 3
Range-based for loop 9
Constructor delegation 2
Type aliases 3
All 91

2.6.2 Performance testing
In order to improve the applicability of our framework on big systems we implemented
different speedup techniques to reduce the overall processing time:

• Transformation is running on multiple threads in parallel.
• Incremental transformation only performs the necessary steps based on what has

changed since the last transformation.
• Feature finder identifies what language features are used in the different compi-

lation units to eliminate their superfluous processing in the unrelated transfor-
mation rounds.

• The MultipleTransforms phase performs transformations of certain independent
language features in a single round.

20

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

The following discussion presents measured processing times and other empirical
results on our reference codebases.

Figure 2.11. Results of parallel runs (runtime in seconds)

Figure 2.11 shows the total processing times on the codebases of the four open-
source systems in seconds.9 The same performance test was performed with different
parallelization settings (how many threads to use) to determine the scalability of the
framework. Note that GridDB has a big advantage in terms of translation time com-
pared to SoDA, even though the LOC measure of the former is 6 times that of the latter.
The big difference is caused by not including 3rd party code when counting LOC, while
the transformation framework has to analyze 3rd party code as well. Systems may have
certain large 3rd party codes embedded into their own codebase, resulting in numer-
ous extra instructions that need to be processed by the transformation framework.
Currently, the last phase, when syntax check is performed, does not support parallel
execution, which reduces scalability to multiple cores.

Table 2.4. Detailed runtime data without parallelization (in seconds)

Name Dependency Feature Replace Multiple Remove Auto Syntax TotalAnalysis Finder Lambda Transforms Delegation Check
SoDA 47 853 3 281 35 239 1,458
log4cplus 3 136 3 69 12 48 271
GridDB 4 285 0 57 0 103 449
aria2 20 860 16 508 222 333 1,959
Columbus 142 4,631 73 2,672 617 1,345 9,480
iGO 202 2,319 N/A N/A N/A 905 3,426

9Source code was accessed via a mapped network drive, presumably resulting in slower than usual
file access times, somewhat distorting the measurements.

21

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

Table 2.4 presents processing times by phases without parallelization.10 The trans-
formation starts with Dependency analysis, which checks each compilation unit and its
dependencies, and decides whether the compilation unit has to be transformed or not.
The most time-consuming phase is clearly shown to be FeatureFinder, being responsible
for identifying language feature usages, because it has to examine all compilation units.
The transformation phases (ReplaceLambda, MultipleTransform, and RemoveAutoDel-
egation) and Syntax check phase (which verifies the transformed code) only deal with
units containing code fragments relevant to the actual transformation phase. The big
differences between the times of FeatureFinder and the certain transformation phases
reveal how much time is saved by the feature finder optimization. Though transforma-
tion phases do not only parse source code, but also transform it, time spent in actual
code transformations was measured to be negligible compared to parsing time.

Figure 2.12. Average distribution of time spent in transformation phases

The distribution of the four open-source systems’ processing time among the dif-
ferent transformation phases is shown in Figure 2.12. The numbers were determined
by averaging the values of Table 2.4. Most of the time (71% on average) is spent in
the FeatureFinder and MultipleTransforms phases. Without FeatureFinder the distri-
bution would probably be more equalized, since each phase would contain very similar
parsing and negligible code transformation steps for the same complete set of compila-
tion units. MultipleTransforms eliminates entire transformation phases by uniting the
processing of independent language features.

10Although iGO did not contain any C++11 features to transform, the other phases of the process
were executed.

22

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

2.7 Limitations
Apart from the ones listed in Section 2.5, our framework implements several other trans-
formations, though with limited functionality. This includes the following language
features: variadic templates, rvalue references, move constructors, and decltype spec-
ifiers used for type deduction. These features can be used provided some constraints
are met by the developers, but since the most typical usage scenarios are handled, this
does not mean serious limitations in practice.

In Section 2.5, we already listed some concrete limitations for the transformations
(e.g., unused template methods, deletion of attributes). Apart from these, if the frame-
work encounters some specific variants of language features that are not fully handled,
it tries to skip those parts and continue the analysis, before eventually terminating
with an error. If the system contains code that is generated during compilation, the
framework will not consider these files.

Fully automatic generation of the compile_commands.json file required for building
with the clang infrastructure is not supported. In Linux, the CMake11 system provides
functionality for generating this file, while on other systems Bear12 might be used.
However, some additional modifications are needed to be made on the generated file in
order for it to be compatible with the transformation framework. As far as we know,
for Windows systems, there is no universal solution for producing the build file, so in
this case, the user has to provide it. A particular issue on Windows is related to older
Visual Studio versions,13 in which case the project file has to be prepared (or updated)
in multiple versions, one for each Visual Studio edition.

Finally, each subject system to be transformed needs to be compilable by the clang
compiler, because this is what our framework is built on. Systems not satisfying this
property might require significant porting effort before being capable of transforma-
tion.

2.8 Summary
There are many reasons why companies are facing problems when they need to produce
C++03 code but their developers are eager to use the new features of C++11. This
motivated our work to construct a system for automatically transforming C++11 code
to C++03. The system allows, under certain restrictions, for developers to use various
C++11 language elements, while after the transformation the software will neverthe-
less be compatible with the older C++03 standard. We drew a parallel between our
framework and other similar systems. We designed the system in a way that it can
be easily integrated into a wide range of development processes. In addition, it pro-
vides several other services, such as incremental transformation, source code structure
cloning, and traceability between the original and the transformed source code.

We detailed the features and capabilities of our source to source transformation
system, which includes the basic structure and operation of the framework, the imple-
mented transformations with examples, and information on how we tested them. We
evaluated the system’s performance on different open-source applications and on two

11https://cmake.org
12https://github.com/rizsotto/Bear
13https://msdn.microsoft.com/en-us/library/ms950416.aspx

23

Chapter 2. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments

large industrial systems, highlighting the scalability and some limitations we encoun-
tered. We know that the testing methodology we used for validation could be enhanced
further, but current experience shows that the method is already usable in practice.

The developed framework is open-source and it can be used freely. There are many
opportunities for further development, however. For instance, handling new language
elements, correcting current transformation errors, and improving error recovery mech-
anisms.

24

3
A Comparative Study on Static JavaScript

Call Graph Algorithms

3.1 Overview
According to GitHub statistics [6] JavaScript is one of the fastest rising languages in
years, and it seems that it will continue to dominate in the following years. It had the
most pull requests in 2017 and 2016 (according to GitHub’s public projects). Each year,
the TIOBE Index selects the fastest growing programming language and distinguishes
it with the “Language of the Year” award. In 2014, JavaScript was the winner of this
award.

Due to its increasing popularity, a lot of projects use JavaScript as their core pro-
gramming language for both server and client-side modules. Therefore, static code
analysis of JavaScript programs became a very important topic as well. Many of the
code analysis tools rely on the call graph representation of the program. A call graph
contains nodes that represent the functions of the program and the edges between nodes
if there exists at least one function call between the corresponding functions. With the
help of this program representation various quality and security issues can be detected
in JavaScript programs, for example, it can be used to detect functions that are never
called or as a visual representation which makes understanding the code easier. We
can use call graphs to examine whether the correct number of arguments is passed to
function calls or as a basis for further analysis, for example, a full interprocedural con-
trol flow graph (ICFG) can be built upon the call graph. With the help of the control
flow graphs, various type analysis algorithms can be performed [76, 54, 97, 130]. What
is more, this program representation is useful in other areas of research as well, for ex-
ample, in mutation testing [110], automated refactoring [53], or defect prediction [28].

Being such fundamental data structures, the precision of call graphs determines
the precision of the code analysis algorithms that rely on them. Creating precise call
graphs for JavaScript, which is an inherently dynamic, type-free, and asynchronous
language, is quite a big challenge. Static approaches have the obvious disadvantage
of missing dynamic call edges coming from the non-trivial usages of eval(), bind(), or

25

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

apply() (i.e. reflection). Moreover, they might be too conservative, meaning that they
can recognize statically valid edges, which are never realized for any inputs in practice.
However, they are fast and efficient compared to dynamic analysis techniques and do
not require any testbed for the program under analysis.

Therefore, the state-of-the-art static call graph construction algorithms for Java-
Script should not be neglected and we need a deeper understanding of their perfor-
mance, capabilities, and limitations. In this chapter we present and compare some
well-known and widely used static analysis based call graph building approaches. We
compare five different tools – npm call graph, IBM WALA, Google Closure Compiler,
ACG (Approximate Call Graph), and TAJS (Type Analyzer for JavaScript) – quanti-
tatively, to find out how many different calls are detected by the individual tools. We
also compare the results qualitatively, meaning that we match and validate the found
call edges and analyze the differences. Lastly, we report runtime and memory usage
data to be able to assess the usability of the tools on real-world programs.

We found that there are variances in the number, precision, and type of call edges
that individual tools report. However, there were considerably large intersections of
the reported edges. Based on a manual evaluation of 348 call edges, we found that
ACG had the highest precision, above 99% of the found edges were true calls. At the
same time, ACG had the highest recall on the union of all true edges found by the five
tools; it found more than 90% of the edges. Nonetheless, three other tools (WALA,
Closure, npm call graph) found true positive edges that were missed by all the other
tools. TAJS did not find any unique edges, however, it achieved a precision of 98%
(i.e. comparable to ACG). We also examined the tools in combination and saw that
ACG, Closure, and TAJS together found all the true edges, but they also introduced
a lot of false ones; their combined precision was only slightly above 83%.

In terms of running time performances, results heavily depend on the size and
complexity of the inputs, but Closure and TAJS excel in this respect. From the per-
spective of memory consumption, for realistic input sizes ACG and Closure overtopped
all the other tools. For very large inputs (i.e. in the range of a million lines of code),
only Closure Compiler, TAJS, and ACG were able to perform practically efficient code
analysis.

The rest of the chapter is organized as follows. In Section 3.2, we list the related
literature and compare our work to them. Section 3.3 describes the tool selection and
comparison methodology we applied. In Section 3.4, we present the results of our
quantitative, qualitative, and performance analysis of the tools. We list the possible
threats to the analysis in Section 3.5 and summarize the chapter in Section 3.6.

3.2 Related Work
Using call graphs for program analysis is a well-established and mature technique. The
first papers dealing with call graphs date back to the 1970s [52, 65]. The literature is
full of different studies built upon the use of call graphs. Clustering call graphs can have
advantages in malware classification [83], they can help localize software faults [49], not
to mention their usefulness in debugging [136].

Call graphs can be divided into two subgroups based on the method used to con-
struct them: dynamic [158] and static [116]. Dynamic call graphs are obtained by
running the program and collecting runtime information about the interprocedural
flow [50]. Techniques such as instrumenting the source code can be used for dynamic

26

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

call graph creation [46]. In contrast, in the case of static call graphs, there is no need to
run the program, it is produced as a result of the program’s static analysis. Different
analysis techniques are often combined to obtain a hybrid solution that guarantees a
more precise call graph, thus a more precise analysis [51].

With the spread of scripting languages such as Python and JavaScript, the need for
analyzing programs written in these languages also increased [54]. However, construct-
ing precise static call graphs for dynamic scripting languages is a very hard task that is
not fully solved yet. The eval(), apply(), and bind() constructions of the language make
it especially hard to analyze the code statically. However, there are several approaches
to construct such static call graphs for JavaScript with varying success [54, 32, 58].
Constructed call graphs are often limited, and none of the studies deal fully with Ec-
maScript 6 since the standard was released in 2015.

Feldthaus et al. presented an approximation method to construct a call graph [54]
through which a scalable JavaScript IDE support could be guaranteed. Madsen et
al. focused on the problems induced by libraries used in the project [97]. They used
pointer analysis and a novel use analysis to enhance scalability and precision. In our
study, we only deal with static call graphs for JavaScript and do not propose a new
algorithm, but rather evaluate and compare existing approaches.

In his thesis [45], Dijkstra evaluates various static JavaScript call graph building
algorithms. This work is very similar to our comparative study, however, it was pub-
lished in 2014 and a lot has happened since then in this research area. Moreover,
while Dijkstra focused on the evaluation of the various conceptual algorithms imple-
mented by himself in Rascal, our focus is on comparing mature and state-of-the-art
tool implementations on these algorithms ready to be applied in practice.

There are also works with the goal to create a framework for comparing call graph
construction algorithms [91, 17]. However, these are done for algorithms written in
Java and C. Call graphs are often used for preliminary analysis to determine whether
an optimization can be done on the code or not. Unfortunately, as they are specific to
Java and C languages, we could not use these frameworks as is for comparing JavaScript
call graphs.

3.3 Approach

3.3.1 Overview of the study process
Figure 3.1 displays the high-level overview of the external and self-developed software
components we used in our comparative study. We run each of the selected tools
(Section 3.3.2) on the test input files (Section 3.3.3). As can be seen, we needed to
patch some of the tools (marked with \) for various reasons (see Section 3.3.2), but
mainly to extract and dump the call graphs built into the memory of the programs
(all the modification patches are available in the online appendix package1). Next,
we collected the produced outputs of the tools and ran our data conversion scripts to
transform each call graph to a unified, JSON-based format we defined (Section 3.3.4).
The only exception was Closure, where we implemented the call graph extraction to the
JSON format right into the patch extracting the inner-built call graph, because there
was no public option for outputting it, thus it was easier to dump the data right into

1http://www.inf.u-szeged.hu/~ferenc/papers/StaticJSCallGraphs/

27

http://www.inf.u-szeged.hu/~ferenc/papers/StaticJSCallGraphs/

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

npm callgraph WALA ACG.js Closure compiler

Input file

DOT format DOT-like format DOT-like format

Converter (stjscg_convert2json.py)

Graph comparator (stjscg_compare_json.py)

Unified JSON
format

Unified JSON
format

Compared JSON

Unified JSON
format

Unified JSON
format

TAJS

DOT format

Unified JSON
format

Figure 3.1. Methodology overview

the unified JSON format. In all other cases, we built a custom data parser script that
was able to read the output of the tools and produce an equivalent of it in our JSON
format. From the individual JSON outputs of the tool results, we created a merged
JSON with the same structure using our graph comparison tool (Section 3.3.5). This
merged JSON contains all the nodes and edges found by any of the tools, with an
added attribute listing all the tool identifiers that found that particular node or edge.
We ran our analysis and calculated all the statistics on these individual and merged
JSON files (all the produced JSON outputs are part of the online appendix package).

3.3.2 Call graph extraction tools
In this section, we present the tools we took into account in our comparative study.
We examined tools that: i) are able to create a function call graph from a JavaScript
program, ii) are free and open-source, and iii) are adopted in practice.

It is important to note that in this study we work with call graphs, where:

• Each node represents a function in the program (identified by the file name, line
and column number of the function declaration),

• An edge between two nodes is directed and represents a statically possible call
from one function to another (i.e. function f() may call function g()),

• There might only be zero or one edge between two nodes, so we only track if a
call is possible from one function to another, but omit its multiplicity (i.e. we
do not count at how many call site calls may happen). This is because not all of

28

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

the tools are able to find multiple calls and we wanted to stick to the most basic
definition of the static call graph anyway.

Based on these criteria, we selected the following five tools for our comparative
study (see Table 3.1 for an overview).

Table 3.1. Comparison of the used tools (as of 16th July, 2018)

Tool name Language Size Commits Last Contri- Issues ECMAScript
(SLOC) commit butors (open/closed) compatibility

WALA Java 232,594 5,845 06/11/2018 25 151 (74/77) ES5
Closure compiler Java 398,959 12,525 06/16/2018 373 2163 (796/1367) ES6 (partial)
ACG JavaScript 120,531 193 10/28/2014 3 7 (1/6) ES5
npm callgraph JavaScript 207 30 03/14/2017 2 16 (6/10) ES6 (partial)
TAJS Java 53,228 16 01/04/2018 1 10 (6/4) ES5 (partial)

WALA

WALA [58] is a complete framework for both static and dynamic program analysis for
Java. It also has a JavaScript front-end, which is built on Mozilla’s Rhino [137] parser.
In this study, we only used one of its main features, which is static analysis, call graph
construction in particular.

In order to have the output that suits our needs, we had to create a driver which
serializes the built call graph. For this, we used an already existing version of the
call graph serializer found in the official WALA repository (CallGraph2JSON.java).
As a first step, we converted the actual call graph to a simple DOT format then we
used our converter script to transform this into the final JSON file. WALA produced
multiple edges between two functions if there were multiple call sites within the caller
function. Since our definition of call graph allows for one edge between two functions
in one direction at most, we modified the serializer to filter the edges and merge them
if necessary. We had to handle the special case where the call site was in the global
scope, as in this case there was no explicit caller method. In such cases, we applied the
common practice followed by other tools as well and introduced an artificial “toplevel”
node as the source of these edges.

WALA itself is written entirely in Java, its main repository is under active devel-
opment, mostly by the IBM T.J. Watson Research Center. WALA was used in over 60
publications [13] since 2003.

Closure Compiler

The Closure Compiler [32] is a real JavaScript compiler, which works similarly to other
compilers. But in the case of Closure Compiler, it compiles JavaScript into a better
JavaScript: it parses and analyzes JavaScript programs, removes dead code, rewrites,
and compresses the code. It also checks common JavaScript mistakes.

It builds a call graph data structure for internal use only, which other algorithms
(in Closure Compiler) can take advantage of. Therefore, we had to modify the available
source code and provide a call graph JSON dump function. Closure Compiler contains
the inclusion of the artificial root node by default to represent calls realized from
the global scope. The JSON writer filters any duplicate edges (Closure keeps track

29

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

of various call sites) to provide an appropriate JSON output that can be used for
comparison (see Section 3.3.4).

The Closure Compiler itself is written entirely in Java and is actively developed by
Google.

ACG

ACG (Approximate Call Graph) implements a field-based call graph construction al-
gorithm [54] for JavaScript. The call graph constructor algorithm can be run in two
basic modes, pessimistic and optimistic, which differ in how interprocedural flows are
handled. In our study, we used the default ONESHOT pessimistic strategy for call graph
construction.

For ACG, we had to implement the introduction of an artificial root edge (i.e.
“toplevel”) and filtering of multiple edges, as ACG also tracks and reports edges con-
nected to individual call sites. Moreover, ACG only reported the line numbers of
functions in its output, which we had to extend with the column information. All
these modifications are available in one single patch.

As there are several forks of the original repository available currently, we had to
check all of them and select the one which is the most mature among these forks. The
selected one was created by the CWI group from Amsterdam.

The npm callgraph module

Npm callgraph is a small npm module that creates call graphs from JavaScript code
developed by Gunar C. Gessner. It uses UglifyJS2 [25] to parse JavaScript code.
Despite its small size and few commits, quite a lot of people use it; it has more than
1300 downloads.

TAJS

Type Analyzer for JavaScript [77] is a data flow analysis tool for JavaScript that infers
type information and call graphs. It is copyrighted to Aarhus University.

The proposed algorithm is implemented as a Java system that is actively maintained
since the publication of the original concept. However, we suspect that this is only an
external mirror of an internal repository that is synchronized periodically. It was not
necessary to modify the source code of TAJS, as it provides a command line option for
dumping call graphs into a DOT format that we were able to parse and convert into
our unified JSON format.

Other considered tools

There are of course other candidate tools that could have been involved in this study.
We found numerous commercial and/or closed-source programs, like SAP HANA. How-
ever, we focused on open-source programs, which are easy to access and can be modified
or customized easily to fit our needs.

In our evaluation study, we only dealt with tools directly supporting call graph
building either internally or as a public feature. Thus, we were forced to left out some
great JavaScript static analysis tools that do not support call graph extraction directly.
One such tool was the open-source Flow [5] developed by Facebook, a very popular

30

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

static code analysis tool for type checking JavaScript. Unfortunately, Flow does not
provide a public API for obtaining the built call graph or a control flow graph. As
such, we would have been required to implement our own algorithms above the internal
control flow data structure, which would introduce a threat to the validity of this study.
Our primary goal in this work was to empirically compare existing call graph extraction
algorithms, not to upgrade all tools to achieve call graph extraction.

Other relevant tools we examined were JSAI (JavaScript Abstract Interpreter) [81]
and SAFE (Scalable Analysis Framework for EcmaScript) [88], both build an interme-
diate abstract representation from JavaScript to further perform an analysis on. It is
true that they calculate control and data flow structures, but they specifically utilize
them for type inference. None of them support the extraction/export of call graphs,
hence we were unable to include them in our evaluation study.

The tool code2flow [2] also looked like a great choice, but since it is officially
abandoned without any follow-up forks, we excluded it from our list. We note that the
original repository of ACG was also abandoned, however, it has several active forks on
GitHub.

Another reason we dropped possible tools from comparison was immaturity, which
means that the given project had one contributor and there was only a very short
development period before the project was left abandoned. These tools also lacked
documentation, thus their usability was poor. We did not take into account JavaScript
Explorer Callgraph [10] due to this reason. Furthermore, we also left out callgraphjs [1]
since this project only contains supporting material for ACG.

3.3.3 Comparison subjects
To perform a deep comparison of the tools, we identified three test input groups.

Real-world, single-file examples

The first group consists of real-world, single-file, “bare” JavaScript examples. For
this, we chose the SunSpider benchmark of the WebKit browser engine [9], which is
extensively used in other works as well. The benchmark programs are created to test
the JavaScript engine built into WebKit. Therefore, these programs contain varying
complexity code with many different types of functions and calls, but all in one single
JavaScript source file. These properties make them an excellent choice for our real-
world, single-file test subjects. Moreover, all the programs are of manageable size, thus
we could easily check and analyze the calls manually.

Real-world, multi-file Node.js examples

To test the handling of modern, ECMAScript 6 and Node.js features (like module
exports or external dependencies, i.e. the require keyword) and inter-file dependencies,
we collected six popular Node.js modules from GitHub. Our selection criteria included
the following: the module should contain multiple JavaScript source files, it should have
an extensive test suite with at least 75% code coverage and be used by at least 100
other Node.js modules. The requirements for test coverage comes from our mid-term
research goal. We would like to repeat the presented comparative study extended with
dynamic call graph extraction algorithms that typically require an existing test suite for

31

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

programs under analysis. The details of the chosen Node.js modules are summarized
in Table 3.2.

Table 3.2. Selected Node.js modules for test

Program Repository Size (SLOC)
debug https://github.com/visionmedia/debug 442
doctrine https://github.com/eslint/doctrine 5,109
express https://github.com/expressjs/express 11,673
jshint https://github.com/jshint/jshint 68,411
passport https://github.com/jaredhanson/passport 6,173
request https://github.com/request/request 9,469

Generated large examples

In order to stress test the selected tools and measure their performances, we needed
some really large programs. However, we were unable to find large enough open-source
programs that only use those language features that all of the tools recognize. There-
fore, we decided to generate JavaScript programs that conform to the ECMAScript 5
standard, as it is the highest standard all the selected tools support.

We defined two categories of such generated inputs. The programs in the simple
category contain simple function calls with some random statements (variable decla-
rations, object creation, and object property access, for loops, while loops and return
statements). They are pretty straightforward without any complex control flows, but
their sizes range from moderate to very large. The programs in the complex category
also contain numerous function calls, but are extended with functions with parameters,
callback functions, function expressions, loops, and simple logging statements. These
programs are meant to test the performances of tools when parsing complex control
flows. The code generation was performed automatically, with custom-made Python
scripts.

We generated three files in the simple and two in the complex category (the exact
properties of these programs are shown in Table 3.3). After the generation, we used the
Esprima Syntax Validator2 to validate our files, to make sure they are valid JavaScript
programs and can be parsed with any ECMAScript 5 compatible JavaScript front-end.

Table 3.3. Characteristics of the random generated JavaScript files

Type File Lines of code Nodes Edges

Simple
s_small.js 68,741 1,000 49,286
s_medium.js 382,536 2,600 331,267
s_large.js 1,321,088 5,000 1,224,251

Complex c_medium.js 28,544 400 3,000
c_large.js 413,099 1,000 50,000

2http://esprima.org/demo/validate.html

32

https://github.com/visionmedia/debug
https://github.com/eslint/doctrine
https://github.com/expressjs/express
https://github.com/jshint/jshint
https://github.com/jaredhanson/passport
https://github.com/request/request
http://esprima.org/demo/validate.html

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

3.3.4 Output format
The different selected tools produce their outputs in different formats by default. To
solve this problem, we had to process their outputs and convert them into a unified
format that can be used for further analysis. We chose a simple JSON format that
contains the list of nodes and edges of a call graph demonstrated in Listing 3.1.

Listing 3.1. Example of our unified JSON output
1 {
2 "nodes": [
3 {
4 "id": 1,
5 "label": "[simple.js] function1 ()",
6 "pos": " simple.js :10:1"
7 },
8 {
9 "id": 2,

10 "label": "[simple.js] function2 ()",
11 "pos": " simple.js :18:1"
12 }
13],
14 "links": [
15 {
16 " target ": 2,
17 " source ": 1,
18 "label": "[simple.js] function1 () -> [simple.js] function2 ()"
19 }
20]
21 }

Each node has a unique identifier (id), a label, and source code position information
(we call it pos). The position information clearly identifies a function (i.e. node). Each
edge connects exactly two of the nodes by their unique ids.

3.3.5 Graph comparison
The quantitative analysis of the call graphs focuses on the comparison of the number
of nodes and edges. For the qualitative analysis – inspired by the work of Lhoták et.
al [91] –, we created a call graph comparison script written in Python. The script
is available in our online appendix package. The aim of the script is to detect the
common edges found by different tools. The inputs of the script are the converted
unified format JSON outputs (see Figure 3.1 and Listing 3.1) of the tools, and its
output is a similar JSON file that contains the union of the found nodes and edges of
all tools for each program. The script decorates each node and edge JSON entry with
a list of tool identifiers that found the particular node or edge. The identification of
nodes and edges is done by precise path, line, and column information, as JavaScript
functions have no names, and it would be cumbersome to rely on a unified unique
naming scheme anyway. Moreover, the Chrome V8 [11] JavaScript engine follows the
same strategy.

To ensure the proper comparison, we manually checked the produced path and line
information of the evaluated tools. TAJS reported precise line and column information

33

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

in its standard DOT output. In cases of Closure Compiler, WALA, and ACG, we im-
plemented or modified the line information extraction. Unfortunately, WALA was only
able to report line numbers, but no column information, thus we manually refined the
JSON outputs it produced. In the case of npm callgraph, the reported line information
was not precise (neither line, nor column information), thus we went through all the
cases manually and added them to the produced JSON files.

Table 3.4. SunSpider results

npm callgraph ACG WALA Closure Compiler TAJS
File nodes edges nodes edges nodes edges nodes edges nodes edges
3d-cube 15 23 15 22 17 24 15 23 15 23
3d-morph 2 1 2 1 0 0 2 1 2 1
3d-raytrace 22 29 28 40 21 22 27 40 28 39
access-binary-trees 3 3 4 3 4 5 4 5 4 5
access-fannkuch 2 1 2 1 3 2 2 1 2 1
access-nbody 8 11 12 15 8 11 11 14 12 15
access-nsieve 3 2 3 2 2 1 3 2 3 2
bitops-3bit-bits-in-byte 2 1 2 1 3 2 2 1 3 2
bitops-bits-in-byte 2 1 2 1 3 2 2 1 3 2
bitops-bitwise-and 0 0 0 0 0 0 0 0 0 0
bitops-nsieve-bits 3 2 3 2 3 2 3 2 3 2
controlflow-recursive 4 6 4 3 4 6 4 6 4 6
crypto-aes 17 16 17 16 13 16 17 16 13 14
crypto-md5 21 30 21 30 3 2 21 30 12 15
crypto-sha1 18 23 18 23 3 2 18 23 9 8
date-format-tofte 18 18 19 20 2 1 3 2 3 2
date-format-xparb 0 0 14 14 13 17 14 14 5 5
math-cordic 5 5 5 5 5 5 5 5 5 5
math-partial-sums 2 1 2 1 2 1 2 1 2 1
math-spectral-norm 6 6 6 6 6 6 6 6 6 6
regexp-dna 0 0 0 0 0 0 0 0 0 0
string-base64 3 2 3 2 3 2 3 2 3 2
string-fasta 5 4 5 4 5 4 5 4 5 4
string-tagcloud 4 4 12 15 2 1 11 17 3 2
string-unpack-code 0 0 5 4 5 8 12 64 5 20
string-validate-input 4 3 5 4 5 4 5 4 5 4∑ 169 192 209 235 135 146 197 284 155 186

3.3.6 Manual evaluation
As part of the qualitative analysis of the results, we evaluated all the 348 call edges
found by the five tools on the 26 SunSpider benchmark programs. The manual eval-
uation was performed by two researchers - who participated in this research - going
through all the edges in the merged JSON files and looking at the JavaScript sources to
identify the validity of those edges. As an output, each edge of the JSON has been ex-
tended with a “valid” flag that is either true or false. After both researchers evaluated
the edges, they compared their validation results and resolved those two cases where
they disagreed initially. Upon consensus, the final validated JSON has been created.

As for the Node.js modules, the large number of edges made it impossible to val-
idate all of them. In this case, we selected a statistically significant representative
random sample of edges (exact numbers can be found in Section 3.4.2) to achieve a
95% confidence level with a 5% margin of error. A researcher - who participated in
this research - manually checked all these selected edges in the Node.js sources.

34

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

3.3.7 Performance measurement
For our performance measurements, we ran the tools on an average personal computer
with Windows 7. The main hardware characteristics were Intel Core i7-3770 processor
(at 3.90 GHz), 16 Gb RAM, and 1 Tb HDD (7200 rpm). We note that besides TAJS
(which can measure the time of its analysis phases), neither of the tools can measure
their own running time and/or memory usage.

To measure the memory usage of the tools uniformly, we implemented a small tool
that queries the operating system’s memory usage at regular intervals and stores the
acquired data for each process. In order to acquire running time data, we modified
each tool’s source code. For the two Node.js tools (ACG and npm callgraph), we used
the process.hrtime() method to calculate running time. We also had to set the
maximum heap size to 6 Gb for the Node.js based tools.

For the three Java-based tools (WALA, Closure Compiler, and TAJS), we set the
maximum heap size to 11 Gb. For running time measurement, we used the timestamps
from the System.nanoTime() method.

3.4 Results

3.4.1 Quantitative analysis
SunSpider benchmark results.

To evaluate the basic capabilities of the selected tools, we used the SunSpider bench-
mark for the WebKit browser engine (i.e. the first test program group). This package
contains 26 files which we analyzed one at a time with each tool. After the analysis, we
collected the different outputs and we converted them to our previously defined JSON
format (see Section 3.3.1). We calculated some basic statistics from the gathered data
that can be seen in Table 3.4. The table shows the number of nodes (functions) and
edges (possible calls between two functions) found by each tool for every benchmark
program. As can be seen, there are programs for which the number of nodes and edges
are the same for all tools (e.g. bitops-bitwise-and.js, math-partial-sums.js). There
are also programs for which the results are very close, but not exactly the same (e.g.
bitops-3bit-bits-in-byte.js, string-validate-input.js) and consensus could be made eas-
ily. We should note, however, that tools typically produce similar call graphs for small
programs with only a few functions, as there is only a small room for disagreement.
Finally, there are programs where the numbers show a relatively large variance across
the call graph building tools (e.g. 3d-raytrace.js, date-format-tofte.js).

Node.js module results.

To evaluate the practical capabilities of the selected tools, we chose six popular, real-
world open-source Node.js modules. Details about the subject programs can be found
in Section 3.3.3.

Unfortunately, npm callgraph and WALA were unable to analyze whole, multi-
file projects because they cannot resolve calls among different files (e.g., requiring a
module). TAJS supports the require command, nonetheless, it was still unable to
detect call edges in multi-file Node.js projects. On the other hand, Closure Compiler

35

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

and ACG were able to recognize these kinds of calls. Thus, we only used these two
tools to perform the analysis on the selected Node.js modules.

Table 3.5. Basic statistics gathered from Node.js results

ACG Closure Compiler
Program nodes edges nodes edges
debug 19 15 12 8
doctrine 85 175 53 174
express 82 186 118 239
jshint 349 1001 320 1236
passport 41 40 39 49
request 122 223 123 239∑ 698 1640 665 1945

We calculated some basic statistics from the gathered data that is shown in Ta-
ble 3.5. The table displays the number of nodes (functions) and edges (possible calls
between two functions) found by the tools. As can be seen, the results show resem-
blance; the correlation between nodes and edges found by the two tools is high. How-
ever, not surprisingly, there are no exact matches in the number of nodes and edges for
such complex input programs. It is interesting though, that for doctrine the number of
edges found by ACG and Closure Compiler is very close (175 and 174, respectively),
but there is a large difference in the number of nodes found by the tools.

3.4.2 Qualitative analysis
For qualitatively comparing the results, we applied our exact line information based
call graph comparison tool described in Section 3.3.5. With this, we could identify
which call edges were found by the various tools and compare the amount of common
edges by all tools, or the edges found only by a subset of the tools.

SunSpider benchmark results.

First, we present the qualitative analysis on the single file SunSpider JavaScript bench-
mark programs. All the Venn diagrams are available in an interactive version [124] as
well in the online appendix package, where one can query the list of edges belonging
to each area.

Figure 3.2 presents the Venn diagram of the found call edges in the total of 26
benchmark programs by the five tools. The first numbers show the true edges according
to our manual evaluation (see Section 3.3.6), while the second numbers are the number
of total edges. The percentages below the two numbers display the ratio of true edges
in that area compared to the total number of true edges found by the tools (which
is 257 out of 348). This representation highlights the number of edges found by all
possible sub-sets of the five tools.

In total, 93 edges were found by all the five subject tools, all of them being true
positive calls. However, four of the tools found edges that the others missed. Although
WALA, Closure Compiler, and npm callgraph (npm-cg) reported a significant amount

36

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

Figure 3.2. Venn diagram of the true/total number of edges found by the tools

of edges that no other tools recognized, most of them turned out to be false positives
during their manual evaluation.

Edges found by npm callgraph only The manual analysis of the 18 unique edges
found only by the npm callgraph tool showed that all of these are false positive edges.
Every edge represents a call from the global scope of the program to a function. Even
though the reported calls exist, all of the call sites are within another function and not
in the global scope. Listing 3.2 shows a concrete example3 from the access-nbody.js
benchmark program. The tool reports a call of Sun function (line 1) from the global
scope, but it is called within an anonymous function (line 8) from line 10. This call is
properly recognized by all the other tools, however.

3toplevel:1:1->access-nbody.js:74:1

37

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

Listing 3.2. A false call edge found by npm-cg
1 function Sun (){
2 return new Body (0.0 , 0.0, 0.0, 0.0, 0.0, 0.0, SOLAR_MASS);
3 }
4 ...
5 var ret = 0;
6
7 for (var n = 3; n <= 24; n *= 2) {
8 (function (){
9 var bodies = new NBodySystem (Array(
10 Sun (),Jupiter (),Saturn (),Uranus (),Neptune ()
11));
12 ...
13 }
14 }

Edge found by ACG only There is only one edge found by ACG and no one else,
which is true positive. It is a call4 to a function added to the built-in Date object via
its prototype property in date-format-tofte.js. Listing 3.3 shows the excerpt of this call.

Listing 3.3. A true call edge found by ACG
1 Date. prototype . formatDate = function (input ,time) {
2 ...
3 function W() {
4 ...
5 var prevNY = new Date(" December 31 " + (Y() -1) + " 00:00:00 ");
6 return prevNY . formatDate ("W");
7 }
8 ...
9 }

Edges found by WALA only In the case of WALA, all the 19 unique edges are
false positive, but for different reasons.

5 of the 19 edges have a target function of “unknown”, thus WALA was not able
to retrieve the target node of the call edge. We checked these instances manually and
found that all these unknown nodes are implied by Array() calls. As all the built-ins
and external calls are omitted from the analysis, these edges are clearly false ones.

Another group of ten false edges comes from the date-format-xparb.js program.
This program contains a large switch-case statement that builds up calls to various
functions as strings. These dynamically created strings are then executed using the
eval() command to extend the prototype of the Date object with generated formatting
functions. These formatting functions are then called from a function named dateFor-
mat. WALA recognizes direct edges from dateFormat to the functions generated into
the body of the formatting functions, which is invalid, as the functions are called from
the dynamically created formatting functions that are called by dateFormat.

4date-format-tofte.js:186:5->date-format-tofte.js:8:29

38

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

The last four false edges are due to invalid recursive call edges reported in the string-
unpack-code.js program. There are several functions identified by the same name in
different scopes, but WALA was unable to differentiate between them.

Edges found by Closure only Closure found a couple of recursive edges that
no other tool did. For example, Listing 3.4 shows an edge5 in the string-tagcloud.js
program, where the toJSONString function is called from its body (line 8).

Listing 3.4. A true recursive call edge found by Closure
1 Object . prototype . toJSONString = function (w) {
2 ...
3 switch (typeof v) {
4 case ’object ’:
5 if (v) {
6 if (typeof v. toJSONString === ’function ’) {
7 a.push(k. toJSONString () + ’:’ +
8 v. toJSONString (w));
9 }

48 out of the 50 unique edges by Closure is in the string-unpack-code.js program.
All of them are false positive edges. The reason is that Closure seems to ignore the
visibility of identifiers within scopes (similarly to what was observed in the case of
WALA). Listing 3.5 shows a sketch of the problematic calls.

Listing 3.5. A confusing code part from string-unpack-code.js
1 var decompressedMochiKit = function (p,a,c
2 ,k,e,d){e= function (c){ return (c<a?"":
3 e(parseInt (c/a)))+((c=c%a) >35? String .
4 fromCharCode (c+29):c. toString (36))}
5 ...
6 }(...) ;
7 var decompressedDojo = function (p,a,c
8 ,k,e,d){e= function (c){ return (c<a?"":
9 e(parseInt (c/a)))+((c=c%a) >35? String .

10 fromCharCode (c+29):c. toString (36))}
11 ...
12 }(...) ;

The inner function redefining parameter e of the outer function (line 2) is called
within itself (line 3), which is correctly identified by Closure and TAJS, but no other
tool. However, Closure reports edges from the same location to all the other places
where a function e is called (e.g. line 9), which is false, because that e is not the same
e as it is already in another body block referring to another locally created function
denoted by e. The string-unpack-code.js defines four deeply embedded functions with
the same parameter names, hence most of the found edges are false.

Interesting edges found by TAJS TAJS did not find any edges that were missed
by all the other tools. However, it did find some interesting edges detected only by one

5string-tagcloud.js:99:37->string-tagcloud.js:99:37

39

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

other tool. One such call edge is through a complex control flow that was missed by
the tools except for TAJS and ACG.

Moreover, TAJS was the only tool besides WALA that detected edges coming from
higher-order function calls. Listing 3.6 shows such a call6 in bitops-3bit-bits-in-byte.js.

Listing 3.6. A true call edge found by WALA and TAJS
1 function fast3bitlookup (b) {
2 ...
3 }
4 ...
5 function TimeFunc (func) {
6 ...
7 for(var y=0; y <256; y++) sum += func(y);
8 ...
9 }
10 sum = TimeFunc (fast3bitlookup);

Validated and combined tool results As we systematically evaluated all 348
found call edges, we could also calculate the well-known information retrieval metrics
(precision and recall) for each tool and their arbitrary combinations. We would like to
note, however, that evaluation and comparison were done for simple call edges; paths
along these edges were not taken into consideration. Missing or extra edges might
have different impacts depending on the number of paths that go through them, thus
precision and recall values might be different for the found call chain paths.

Table 3.6 contains the detailed statistics of the tools. The first column (Tool(s)) is
the name of the tool or combination of tools. The second column (TP) shows the total
number of true positive instances found by the appropriate tool or tool combination. In
the third column (All), we display the total number of edges found by the appropriate
tool or tool combination. The fourth column (TP∗) shows the total number of true
edges as per our manual evaluation (i.e. it is 257 in each row). The fifth (Prec.), sixth
(Rec.∗), and seventh (F) columns contain the precision (TP / All), recall (TP∗ / TP)
and F-measure values, respectively.

We must note that Rec.∗ is not the classical recall measure. We did not strive to
discover all possible call edges during manual validation, rather simply checked whether
an edge reported by a tool is true or not. Thus we used the union of all true edges
found by the five tools as our golden standard. This is just a heuristic, but it provides
a good insight into the actual performances of the tools compared to each other.

From the individual tools, ACG stands out with its almost perfect (99%) preci-
sion and quite high recall (91%) values. While TAJS and npm-cg maintain similarly
high precision (98% and 91%, respectively), their recalls (71% and 68%) are far below
ACG’s. Closure’s recall (89%) is very close to that of ACG, but it has significantly
lower precision (81%). WALA has a moderate precision (87%), but the worst recall
(49%) in our benchmark test.

Looking at the two tool combinations, ACG+TAJS stand out based on F-measure;
together they perform almost perfectly (98% precision and 99% recall). It looks like
they complement each other quite well. In fact, they seem to be a perfect combination
as there are no other three, four, or five tool combinations that would even come close

6bitops-3bit-bits-in-byte.js:28:1->bitops-3bit-bits-in-byte.js:7:1

40

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

to this F-measure score. ACG, TAJS, and Closure reach the maximum recall together,
while maintaining a precision of 83%. Taking all the tools into consideration, the
combined precision decreases to 74% with a perfect recall.

Table 3.6. Precision and recall measures for tools and their combinations

Tool(s) TP All TP∗ Prec. Rec.∗ F
npm-cg 174 192 257 91% 68% 77%
ACG 233 235 257 99% 91% 95%
WALA 127 146 257 87% 49% 63%
Closure 230 284 257 81% 89% 85%
TAJS 182 186 257 98% 71% 82%
npm-cg+ACG 239 259 257 92% 93% 93%
npm-cg+WALA 203 219 257 93% 79% 85%
npm-cg+Closure 247 319 257 77% 96% 86%
npm-cg+TAJS 233 255 257 91% 91% 91%
ACG+WALA 241 262 257 92% 94% 93%
ACG+Closure 255 309 257 83% 99% 90%
ACG+TAJS 254 260 257 98% 99% 98%
WALA+Closure 238 311 257 77% 93% 84%
WALA+TAJS 187 210 257 89% 73% 80%
Closure+TAJS 239 293 257 82% 93% 87%
npm-cg+ACG+WALA 242 281 257 86% 94% 90%
npm-cg+ACG+Closure 255 327 257 78% 99% 87%
npm-cg+ACG+TAJS 255 279 257 91% 99% 95%
npm-cg+WALA+Closure 255 346 257 74% 99% 85%
npm-cg+WALA+TAJS 238 258 257 92% 93% 92%
npm-cg+Closure+TAJS 256 328 257 78% 99% 88%
ACG+WALA+Closure 257 330 257 78% 100% 88%
ACG+WALA+TAJS 254 279 257 91% 99% 95%
ACG+Closure+TAJS 257 311 257 83% 100% 90%
WALA+Closure+TAJS 239 312 257 77% 93% 84%
npm-cg+ACG+WALA+Closure 257 348 257 74% 100% 85%
npm-cg+ACG+WALA+TAJS 255 298 257 86% 99% 92%
npm-cg+ACG+TAJS+Closure 257 329 257 78% 100% 88%
npm-cg+TAJS+WALA+Closure 256 347 257 74% 99% 85%
TAJS+ACG+WALA+Closure 257 330 257 78% 100% 88%
ALL 257 348 257 74% 100% 85%

Node.js module results.

As we already described, only ACG and Closure were able to analyze the state-of-the-
art Node.js modules listed in Table 3.2. From the 2281 edges found together by the
two tools in the six modules, 1304 are common, which is almost 60%. It is quite a high
number considering the complexity of Node modules coming from structures like event
callbacks, module exports, requires, etc. There were 336 edges (14.7%) found only by
ACG and 641 (28.1%) found only by Closure.

41

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

As the amount of edges here is an order of magnitude larger than in the case of
SunSpider benchmarks, we were not able to entirely validate the found calls manually.
However, we evaluated a statistically significant amount of random samples. To achieve
a 95% confidence level with a 5% margin of error, we evaluated 179 edges that were
uniquely found by ACG, 240 edges from those found only by Closure, and 297 from
the common edges. We found that 149 out of 179 (83.24%) edges were true for ACG,
40 out of 240 (16.66%) edges were true for Closure, and 248 out of 297 (83.5%) were
true for the common edges.

3.4.3 Performance analysis

In this section, we present the results of the performance testing. We would like to
note that the measurement results contain every step of call graph building, including
reading the input files and writing the output. That was necessary because different
tools implement call graph building in different ways, but reading input and writing
output is a common point. We ran the tools ten times on each of the generated inputs
and used the averages as a result (see Table 3.7). We highlighted the best runtime and
memory consumption in each line.

Table 3.7. Performance measurements (memory in megabytes, runtime in seconds)

npm callgraph ACG WALA Closure Compiler TAJS
Category File Memory Runtime Memory Runtime Memory Runtime Memory Runtime Memory Runtime

Simple
s_small.js 404 13.33 237 3.11 1151 16.55 519 6.41 718 5.18
s_medium.js 2234 175.76 1168 49.35 2537 181.62 1338 17.28 1671 23.83
s_large.js 5702 1401.88 3338 636.49 8784.22 1085 3277 50.16 3132 102.91

Complex c_medium.js 281 4.76 239 2.56 826 8.27 411 4.92 370 2.74
c_large.js 3283 76.49 1452 39.63 4010 210.45 1388 27.29 2067 23.79

In general, Closure, ACG, and TAJS performed best in all cases. The npm callgraph
module was generally faster than WALA. But when it comes to large inputs, WALA
was 30% faster than npm callgraph. On the other hand, it used more than one and
a half times as much memory. The differences may vary with the sizes of the inputs;
in some cases, a tool was ~28 times faster (npm callgraph vs. Closure, s_large.js),
and for another input only ~3% better than the other tool (npm callgraph vs. WALA,
s_medium.js).

On the medium-sized test set in the complex category, ACG performed the best
closely followed by TAJS. On the large set, Closure used the least memory, however,
TAJS produced the call graph in the shortest time. It is clearly visible that the more
complex problems are considered (more similar to real-world applications) the more
variance is present in the runtimes and memory consumptions. We suppose it is due
to the different inner representations the tools have to build up in order to obtain
a call graph. We assume that Closure and ACG keep their inner representations as
simple as possible, consequently, call edges are easily located by them in the case of
simple programs. For complex cases, this behavior could be less effective and the more
complex inner representations will pay off.

We would like to stress that these results do not say anything about the correctness
and accuracy of the produced output, they are simply approximate measurement data
of the memory usage and running time performances.

42

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

3.4.4 Discussion of the results.
Each approach and tool has its pros and cons. During this comparative study, we
distilled the following statements.

• Recursive calls are not handled in every tool; Closure Compiler seems to be the
most mature in this respect.

• Edges pointing to inner function (function in a function) declarations are not
handled by every tool, e.g. WALA produces a lot of false edges because of this.

• Only WALA and TAJS can detect calls of function arguments (i.e., higher-order
functions).7

• ACG and TAJS are able to track complex control flows and detect non-trivial
call edges.

• Closure often relies on simple name-matching only, which can cause false or miss-
ing edges.

• It seems that WALA can analyze eval() constructions and dynamically built calls
from strings to some extent.

• The calls from anonymous functions defined in the global scope are mistreated
by npm-cg, which detects a call edge directly coming from the global scope in
such cases.

• Closure has a superior runtime performance for very large inputs with high recall
at the expense of lower precision.

• ACG consumes the least amount of memory and runs the fastest among all the
tools on small to medium-sized inputs.

• WALA and npm-cg are practically unusable for analyzing code at the scale of
millions of code lines.

3.5 Threats to Validity
A lot of factors might have affected our measurements. Some of the tools might perform
additional tasks during call graph construction, which we could not omit from the
measurement. Nonetheless, we treat our performance measurement with proper care;
they are only used to assess the orders of magnitudes for memory consumption and
running times.

Our modifications in the tools for call graph extraction mechanism may have intro-
duced some inconsistencies. However, we only made slight changes and most of them
only affected the reporting of edges, thus this threat has a limited effect.

We ran all the tools with default configurations. Various parameters might have
affected the performance and precision of the tools. Nonetheless, we do not expect the
main results to be much affected by these parameters.

7We should note, however, that according to its documentation ACG might be able to identify
higher-order functions in the optimistic configuration, at the cost of lower precision.

43

Chapter 3. A Comparative Study on Static JavaScript Call Graph Algorithms

We might have missed some good candidate tools from the comparison. However,
the presented evaluation strategy and insights are useful regardless of this. Neverthe-
less, it is always possible to replicate and extend a comparative study like this.

Regarding the manual evaluation of the call edges, the subjectivity of evaluators is
also a threat. We tried to mitigate this by having two participating researchers validate
all the edges for the 26 SunSpider benchmark test cases. There were preliminary
disagreements in only 2 out of 348 cases between the evaluators that they could resolve
in the end. Thus, we think the possible bias due to evaluation errors is negligible.

3.6 Summary
Code analysis of JavaScript programs has gained a large momentum during the past
few years. Many algorithms for vulnerability analysis, coding issue detection, or type
inference rely on the call graph representation of the underlying program.

We presented a comparative study of five state-of-the-art static algorithms for build-
ing JavaScript call graphs on 26 WebKit SunSpider benchmark programs and 6 real-
world Node.js modules. Our purpose was not to declare a winner, rather to gain
empirical insights to the capabilities and effectiveness of the state-of-the-art static call
graph extractors.

Each tool had its strengths and weaknesses. For example, Closure recognized re-
cursive calls and had an overall good performance both in terms of running time and
memory consumption, but it introduced errors due to shallow name-matching. It also
had a relatively low recall. ACG tracked complex control flows to find call edges and
had high precision and recall at the same time with great memory consumption and
runtime, but missed higher-order function calls. WALA had the capability to detect
higher-order function calls (callbacks), but produced some edges with unknown nodes,
and had the lowest recall and highest memory consumption of all tools. The npm
callgraph tool had very high precision, but poor performance, and found no unique
true call edges. TAJS provided very conservative results, meaning that it had almost
perfect precision, but very low recall, while having a very good overall performance.

It is also evident from the results that the combined power of various tools is
superior to those of individual call graph extractors. Thus, we would encourage the
development of algorithms that combine these state-of-the-art approaches.

Our future plan is to extend and replicate the presented study by adding more static
tools (e.g. taking commercial tools and IDEs into consideration) as well as including
some dynamic call graph extraction approaches.

44

4
Combining Static and Dynamic Code

Analysis with Machine Learning to Detect
Software Issues in JavaScript Programs

4.1 Overview
JavaScript is getting traction not just in client-side web development, but as a desktop
and server language (Node.js), mobile app language (React Native), or even as an
IoT (e.g. JerryScript or the Espruino framework [4, 60]) implementation language.
Therefore, programs written in JavaScript are more and more exposed to possible
risks. Regardless of the rapid rise of cyber-crime activities and the growing number
of devices threatened by them place software security issues in the spotlight, security
concerns of programs are still neglected from time to time. According to past studies,
around 90% of all attacks exploit known types of security issues [105].

Due to the dynamic behavior of JavaScript, the source code may not be as easy
to understand (and follow) as other, stricter languages. For example, a function with
several parameters can be called even without specifying a single parameter. A function
without any formal parameters can be called with various parameters, and the function
itself can use an object called arguments1 to access the parameters in its body. These
and similar constructions exist and are used often in JavaScript programs. Using static
code analyzers might help the developers to catch defects in the source code, however,
the dynamic nature of JavaScript makes the analysis hard (even building a call graph
from JavaScript source code is not unequivocal, as we already discussed in Chapter 3).

On the other hand, we already have a great deal of already fixed issues in the world
of JavaScript. Hence involving machine learning might be a good approach to predict
possible issues in the early stages; finding vulnerable components for applying existing
mitigation techniques on them might be a viable practical approach when it comes to
fighting against cyber-crime.

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/
arguments

45

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Issue prediction aims at finding source code elements in a software system that are
likely to contain defects. Being aware of the most error-prone parts of the program,
one can efficiently allocate the limited amount of testing and code review resources.
Therefore, the prediction can support software maintenance and evolution to a great
extent. Nevertheless, practical adoption of such prediction models always depends
on their real-world performance and the level of annoying misclassification (i.e., false-
positive hits) they produce. Despite the relative maturity of the defect prediction
research area (in general), the practical utilization of the state-of-the-art models is still
very low due to the reasons mentioned above.

Prediction models can use a diverse set of features to build effective prediction
models. The most common types of such features are static source code metrics [67,
93, 66, 57], process metrics [70, 144, 96], natural language features [29, 69], and their
combination [18, 44, 64]. All these metrics proved to be useful in different contexts, but
the performance of these models may vary based on, for example, the language of the
project, the composition of the project team, the type of issues one would like to predict,
or the domain of the software product. We need further studies to better understand
how and when these models work best in certain situations. Additionally, we can
refine source code metrics by using static and dynamic analysis in combination, which
has a yet unknown impact on the performance of bug prediction models (especially in
dynamic languages like JavaScript).

Security vulnerabilities are similar to bugs (i.e. most of them can be seen as special
types of bugs, though not functional), however, many studies show that bug prediction
models cannot be applied for finding vulnerabilities as is [143, 163]. Although this
suggests that specific prediction models are needed for finding vulnerable software
components, we can still leverage the abundance of knowledge already accumulated in
the area of bug prediction. Moreover, most of the bug prediction models find fault-
prone files or classes [78, 120, 141, 162, 112, 39, 163], while rarely working at a finer
granularity level (e.g. for methods, functions, or statements [142]). These approaches
are less effective in the case of JavaScript, as source code is often structured in only
a few files (even into one single js file) and usually there are no higher-level logical
constructs (like classes) above functions. Prediction models for vulnerable source files
would not really be useful in such contexts; we need at least function level vulnerability
information and prediction models, so that they can be adopted in practice.

In this chapter, we propose two prediction models using different datasets and dif-
ferent features to predict software issues, namely security vulnerabilities and generic
software bugs. We investigate whether predicting defects in functions is feasible based
on various software metrics. We compare the performances of the most widely used
machine learning algorithms on this prediction task, including two deep neural network
variants, the K-Nearest Neighbors algorithm (KNN), a decision tree classifier (Tree),
the C-Support Vector Classification variant of the Support Vector Machine algorithm
(SVM), Random Forest (Forest), Logistic regression (Logistic), Linear regression (Lin-
ear), and the Gaussian Naive Bayes algorithm (Bayes). We apply various re-sampling
strategies to handle the imbalanced nature of the dataset.

In Section 4.3, we investigate how the state-of-the-art machine learning techniques
perform in predicting functions with possible security vulnerabilities in JavaScript pro-
grams. To the best of our knowledge, there are no existing vulnerability datasets for
JavaScript programs specifically, which would contain vulnerability information at the
level of functions. VulinOSS [61] and VulData7 [78] are very useful proposals with

46

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

the aim of collecting general vulnerability datasets together with fixing patches. How-
ever, they are not specific to JavaScript and do not map the fixed vulnerabilities to
individual functions.

In order to overcome this problem, we created a fine-grained, public JavaScript
vulnerability dataset with data extracted from nsp (Node Security Platform [7]) and
the Snyk Vulnerability Database [12] automatically matched with information available
on GitHub (i.e fixing commits and patches). The new function level vulnerability
dataset contains 12,125 functions from which 1,496 are vulnerable. It includes static
code metrics provided by the OpenStaticAnalyzer [8] and escomplex [3] tools as well.

Given the highly dynamic nature of JavaScript, we got encouraging results using
only static code metrics as predictors. However, static code analysis may not be very
precise due to the dynamism described above. Although static source code metrics
proved to be very efficient in bug prediction (in general), the imprecision due to the
lack of dynamic information might affect the defect prediction models using them.

In Section 4.4 we propose a function level JavaScript issue prediction model based
on static source code metrics with the addition of hybrid (static and dynamic) code
analysis based metrics of the number of incoming and outgoing function calls. To
support the hybrid code analysis of JavaScript programs, we created a hybrid call
graph framework, called hcg-js-framework2 that can extract the call graph information
of JavaScript functions using both static and dynamic analysis.

Unfortunately, the database we proposed in Section 4.3 could not be used for this
particular task. The vulnerabilities and their fixes came from 93 different programs.
In order to gather dynamic traces of the execution from each software, we would have
needed a much more complex workflow. Furthermore, we would have needed to ensure
that all of the software can be tested with the "npm test" command; to install and
manage all of the external dependencies (besides the ones mentioned in package.json);
to ensure that each and every program has sufficient test coverage. Providing these
conditions requires a huge effort. We also would like to apply our machine learning
approach to a slightly different, wider field, namely to predict generic bugs. For that,
we used a publicly available bug dataset, BugsJS [68]. It consists of 453 real, manually
validated bugs and their fixing patches from 10 popular JavaScript projects. From
this dataset, we selected the ESLint3 project to test our hybrid model approach, which
contains 333 bugs. Based on the hybrid call graph results of ESLint, which we used as
a subject system for bug prediction, we refined the Number of Incoming Invocations
(NII) and Number of Outgoing Invocations (NOI) metrics. We added them to a set
of common static source code metrics to form the predictor features in a training
dataset consisting of 824 buggy and 1943 non-buggy functions extracted from BugsJS.
These invocation metrics are typically very imprecise in JavaScript, calculated solely
based on static analysis, as a great number of calls happen dynamically, like higher-
order function calls, changes in prototypes, or executing the eval() function, which is
impossible to capture statically. We analyzed the impact of these additional hybrid
source code metrics on the function-level bug prediction models trained on this dataset.

We found that using invocation metrics calculated by a hybrid code analysis as bug
prediction features consistently improves the performance of the ML prediction models.
Depending on the ML algorithm, applied hyper-parameters, and target measure we
consider, hybrid invocation metrics bring a 2-10% increase in model performances

2https://github.com/sed-szeged/hcg-js-framework
3https://eslint.org/

47

https://github.com/sed-szeged/hcg-js-framework
https://eslint.org/

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

(i.e., precision, recall, F-measure). Interestingly, even though replacing static NOI and
NII metrics with their hybrid counterparts HNOI and HNII in itself improve model
performances, keeping them all together yields the best results. It implies that hybrid
call metrics indeed add some complementary information to bug prediction.

Our main contribution in this chapter is the publicly released vulnerability dataset
consisting of the static analysis results of 12,125 JavaScript functions complemented
with the information of whether the functions contain a vulnerability or not. We
presented a comprehensive comparison of 8 well-known machine learning algorithms for
predicting vulnerable JavaScript functions. We created a hybrid call graph framework,
called hcg-js-framework in order to support the hybrid analysis of JavaScript programs.
We introduced HNII and HNOI metrics and investigated whether the combination of
static and dynamic analysis improves the 8 well-known machine learning algorithms
on predicting buggy JavaScript functions.

The chapter is organized as follows. In the next section (Section 4.2), we summarize
the works that are related to ours. In Section 4.3, we present the approach we used
to collect and process data, the used machine learning models, and we present the
comparison of the machine learning models with various hyper parameters on predicting
vulnerable JavaScript functions. Afterwards, we describe how we collected and mapped
ESLint bugs to functions, the extraction of hybrid call graphs, the assembling of the
training dataset, and the obtained results in Section 4.4. We enlist the possible threats
to our work in Section 4.5. Finally, we summarize the chapter in Section 4.6.

4.2 Related Work
Using source code metrics for predicting software issues is quite a mature technique [132,
135, 34, 119]. Malhotra [99] concluded in his systematic literature review that machine
learning techniques have the ability to predict software faults.

4.2.1 Issue prediction using software metrics
In their preliminary study, Siavvas et al. [145] investigated if a relationship exists
among software metrics and specific vulnerability types. They used 13 metrics and
found that software metrics may not be sufficient indicators of specific vulnerability
types, but using novel metrics could help. In our study, we used a lot more (namely 35)
static source code metrics, including various Halstead variants, and found that they
can effectively predict vulnerable functions in JavaScript.

In their work, Jimenez et al. [78] proposed an extensible framework (VulData7) and
dataset of real vulnerabilities, automatically collected from software archives. Although
it is similar to our work, VulData7 is general, i.e., it contains vulnerabilities for various
languages at the file level. Even though it contains JavaScript vulnerabilities, using
them in our study was infeasible, as JavaScript files could contain a lot of functions.
The database we presented in this work is more fine-grained; every piece of information
is available at the function level, thus enabling more accurate experiments.

Neuhas et al. [120] introduced a new approach (and the corresponding tool) called
Vulture, which can predict vulnerable components in the source code, mainly relying
on the dependencies between the files. They presented a fully automatic way of map-
ping vulnerabilities to software components. They analyzed the Mozilla code base to
evaluate their approach using SVM for classification. Although their results are very

48

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

promising, we could not locate their tool online. Contrary to this work, we predict vul-
nerabilities at the level of JavaScript functions and we also applied multiple machine
learning approaches.

Shin et al. [142] created an empirical model to predict vulnerabilities from source
code complexity metrics. Their model was built on the function level similar to ours,
but they consider only the complexity metrics. They concluded that vulnerable func-
tions have distinctive characteristics separating them from “non-vulnerable but faulty”
functions. They studied the JavaScript Engine from the Mozilla application frame-
work. We use several metrics (including complexity metrics) as predictors and build
our prediction models specifically for JavaScript programs. They performed an empir-
ical case study [141] on two large code bases: Mozilla Firefox and Red Hat Enterprise
Linux kernel, investigating if software metrics can be used in vulnerability prediction.
They considered complexity, code churn, and developer activity metrics. The results
showed that the metrics are discriminative and predictive of vulnerabilities. However,
their model was also built on file level, while we are predicting vulnerable functions.

Chowdhury et al. [39] created a framework that can predict vulnerabilities mainly
relying on the CCC (complexity, coupling, and cohesion) metrics [38]. They compared
four statistical and machine learning techniques (namely C4.5 Decision Tree, Random
Forests, Logistic Regression, and Naive Bayes classifier). Their case study was also
built on the code-base of Mozilla Firefox and used file-level granularity. The authors
concluded that decision-tree-based techniques outperformed statistical models in their
case. We also found that tree-based classifiers perform well for vulnerable JavaScript
function prediction.

Morrison et al. [112] built a model – replicating the vulnerability prediction model
by Zimmermann et al [163] – for both binaries and source code at the file level. They
figured out that vulnerability prediction at the binary level is not actionable as it would
take too much time to inspect the flagged binaries. The authors checked several learning
algorithms including SVM, Naive Bayes, Random Forests, and Logistic Regression. On
their dataset, Naive Bayes and Random Forests performed the best. In our setup, the
Naive Bayes algorithm was the worst performer, while Random Forest achieved good
results.

Yu et al. introduced HARMLESS [162], a cost-aware active learner approach to
predict vulnerabilities. They used a support vector machine based prediction model
with under-sampled training data, and a semi-supervised estimator to estimate the
remaining vulnerabilities in a codebase. HARMLESS suggests which source code files
are most likely to contain vulnerabilities. They also used Mozilla’s codebase in their
case study, with 3 different feature sets: metrics, text, and the combination of text
mining and crash dump stack traces. The same set of source code metrics were used
as that of Shin et al. [141].

In their literature review, Catal et al. [33] concluded that there is a lack of usage
of deep neural networks in the field of software vulnerability prediction. We compare
many machine learning algorithms for vulnerability prediction, including deep neural
networks.

4.2.2 Issue prediction using call graphs
The first papers dealing with call graphs date back to the 1970s [52, 139, 65]. Call-
graphs can be divided into two subgroups based on the method used to construct them:

49

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

dynamic [158] and static [116].
Dynamic call graphs can be obtained by the actual run of the program. During

the run, several runtime information is collected about the interprocedural flow [50].
Techniques, such as instrumenting the source code, can be used for dynamic call graph
creation [65, 46].

In contrast, there is no need to run the program in the case of static call graphs, as
they are produced by a static analyzer that analyzes the source code of software without
actually running it [65]. On the other hand, static call graphs might include false edges
(calls) since a static analyzer identifies several possible calls between functions that are
not feasible in the actual run of a program; or they might miss real edges. Static call
graphs can be constructed from the source code in almost any case, even if the code
itself is not runnable.

Different analysis techniques are often combined to obtain a hybrid solution, which
guarantees a more precise call graph, thus a more precise analysis [51]. In our work, we
also followed this approach as we experienced that using only static call graphs might
be imprecise.

With the spread of scripting languages, such as Python and JavaScript, the need for
analyzing programs written in these languages also increased [54]. However, construct-
ing precise static call graphs for dynamic scripting languages is a very hard task that is
not fully solved yet [161]. The eval(), apply(), and bind() constructions of the languages
make it especially hard to analyze the code statically. There are several approaches to
construct such static call graphs for JavaScript with varying success [54, 32, 58, 165].
However, the most reliable method is to use dynamic approaches to detect such call
edges. We decided to use both dynamic and static analysis to ensure better precision,
even though it increases the analysis time, and the code should be in a runnable state
due to the dynamic analysis.

Wei and Ryder presented blended taint analysis for JavaScript, which uses a com-
bined static-dynamic analysis [155]. By applying dynamic analysis, they could collect
information for even those situations that are hard to analyze statically. Dynamic re-
sults (execution traces) are propagated to a static infrastructure, which embeds a call
graph builder as well. This call graph builder module makes use of the dynamically
identified calls. However, in the case of pure static analysis, they wrapped the WALA
tool 4 to construct a static call graph. As previously said, our approach works similarly
and also supports additional call graph builder tools to be included in the flow of the
analysis.

Feldthaus et al. presented an approximation method to construct a call graph [54]
by which a scalable JavaScript IDE support could be guaranteed.

We used a static call graph builder tool in our toolchain, which is based on this
approximation method.5 Additional static JavaScript call graph building algorithms
were evaluated by Dijkstra [45]. Madsen et al. focused on the problems induced by
libraries used in the project [97]. They used pointer analysis and a novel “use analysis”
to enhance scalability and precision.

There are also works intending to create a framework for comparing call graph
construction algorithms [91, 17]. However, these are done for algorithms written in
Java and C. Call-graphs are often used for preliminary analysis to determine whether
an optimization can be done on the code or not. Unfortunately, as they are specific to

4https://github.com/wala/WALA
5https://github.com/Persper/js-callgraph

50

https://github.com/wala/WALA
https://github.com/Persper/js-callgraph

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Java and C, we could not use these frameworks for our paper.
Clustering call graphs can have advantages in malware classification [83]. They can

help to localize software faults [49], not to mention the usefulness of call graphs in
debugging [136].

Musco et al. [117] used four types of call graphs to predict the software elements that
are likely to be impacted by a change in the software. However, they used mutation
testing to assess the impact of a change in the source code. The same methodology
could have been used but with a slight change: instead of using an arbitrary change,
it can be a vulnerability introducing or a vulnerability mitigating change.

Nuthan Munaiah and Andrew Meneely [115] introduced two novel attack surface
metrics with their approach, which are the "Proximity" and "Risky Walks" metrics.
Both of them are defined by the call graph representation of the program. Their
empirical study proved that using their metrics to build a prediction model can help to
predict more accurately, as their metrics are statistically significantly associated with
the vulnerable functions.

Nguyen et al. [121] proposed a model to predict vulnerable components based on a
metric set generated from the component dependency graph of a software.

Cheng et al. [37] presented a new approach to detect control-flow-related vulnerabil-
ities called VGDetector. They applied a recent graph convolutional network to embed
code fragments in a compact representation (while the representation still preserves
the high-level control-flow information).

Lee at al. [89] proposed a new approach to generate semantic signatures from pro-
grams to detect malware. They extracted the call graph of the API call sequence that
would be generated by the malware, called code graph. This graph is used for the
semantic signature. They used semantic signatures to detect malware even if the mal-
ware is obfuscated or if it slightly differs from its previous versions (these are the main
reasons why a commercial anti-virus does not detect them as malware).

Punia et al. [131] presented a call graph based approach to predict and detect
defects in a given program. They also defined call graph based metrics such as Fan
In, Fan Out, Call-Graph Based Ranking (CGBR) and Information Flow Complexity
(IFC). They investigated the correlation between their metrics and several types of
bugs. They proved the hypothesis that there is a correlation between call graph based
metrics and bugs in software design. The authors performed their study in the Java
domain; contrarily, we focused on JavaScript systems. Besides J84, LMT, and SMO,
we applied additional machine learning algorithms and also evaluated deep learning
techniques to find potential bugs in the software.

Like many studies, we also focus on different source code metrics, however, we use
dynamic analysis (to produce dynamic call graphs) to enhance our model in predicting
software issues, we adopt coupling metrics for the so-called hybrid call graph.

51

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

4.3 Vulnerability Prediction with Static Source Code
Metrics Only

In this section, we present the methodology and the results we obtained in predict-
ing vulnerable JavaScript functions. To build machine learning models, we needed a
training dataset with features of JavaScript functions manually labeled as vulnerable
or non-vulnerable. The overview of the data mining process we performed is shown in
Figure 4.1.

4.3.1 Approach

Figure 4.1. Data processing overview

Processing nsp and Snyk and linking them with GitHub We leveraged two
publicly available vulnerability databases, nsp (the Node Security Platform, which
is now part of npm) [7] and the Snyk Vulnerability Database [12]. Both of these
projects aim to analyze programs for vulnerable third party module usages. They have
command line and/or web-based interfaces, which can inspect an arbitrary Node.js
module to find external dependencies with known vulnerabilities. To achieve this, they
utilize a list of known vulnerabilities to look for security issues in the particular version
of an external module the programs depend on. We extracted and processed these
vulnerability databases.

As for nsp, we used its command line interface to collect vulnerability data. It
provides a gather command that saves its internal list of vulnerabilities into a JSON
file. Snyk has an online repository of known vulnerabilities, but there is no possibility
for downloading the entries. Nonetheless, Snyk maintains a GitHub mirror6 of its
vulnerability database with monthly synchronization. We used the content of this
GitHub repository in the case of Snyk (accessed on 27/05/2018).

6https://github.com/snyk/vulnerabilitydb

52

https://github.com/snyk/vulnerabilitydb

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

The main issue with these extracted raw vulnerability sources is that they contain
unstructured data. The entries include human-readable descriptions of vulnerabilities
with URLs of fixing commits, pull requests or issues in GitHub or other repositories.
However, these URLs are somewhat arbitrary; they can appear in multiple places
within the entries and any of them might be missing entirely. To handle this, we wrote
a set of Python scripts to process these vulnerability entries and create an internal
augmented and structured representation of them. The scripts collected all the URLs
from each entry vulni and kept all those pointing to GitHub. Traversing these URLs,
we derived a set of fixing commits (commits pointing to the state of the system where
a security vulnerability has been fixed, thus they already contain the mitigation code)
for each vulni using the GitHub REST API following these steps:

1. If the URL pointed to a particular commit, we put the appropriate commit hash
to the fixing list (fixi)

2. If the URL pointed to a pull request or merge request, we put all the commit
hashes in the request to fixi

3. If the URL pointed to an issue, we traversed through the comments of the issue
and collected all mentioned URLs into a separate list for manual validation.

If the separate list for manual validation was not empty, we manually checked all the
commit URLs in it and put only those commits into fixi that were indeed related to
the fix of the original vulnerability issue (vulni). The manual validation was performed
by one of the researchers who participated in this study, while another researcher of
the team participated in the discussion and resolution of problematic cases. The added
commits usually introduced unit tests or some corrections if the first fix was incomplete.

We note that it is possible that a commit that was referenced in the dataset entry
(i.e. fixi) contained tangled code changes (i.e. pull or merge requests). To lower the
risk, we performed a random cross-check on several of these large commits, but found
no tangled changes in our sample.

Upon finalizing the fixing commit lists for each entry, we collected all their code
modifications in the form of a combined patch file (patchi) that contained all the
modifications from the fixing commits. We used the GitHub API again to collect this
information. Moreover, we identified the parent commit of the first commit in time
belonging to the vulnerability fix (shapre) for each system. Version shapre was used
to assign the labels 1 or 0 to functions indicating whether the function contained a
vulnerability or not. The final dataset was assembled from all the shapre versions of
the functions in the systems. We marked all functions that were affected by any of the
vulnerability fixing modifications (i.e. patchi changed those functions) as vulnerable.
All the other functions of the JavaScript programs were marked as non-vulnerable. We
note that all the test functions (i.e. functions contained in files under “test” folders)
have been filtered out as these would only distort the prediction models.

Mapping patches with JavaScript functions To perform the mapping of patches
to functions, we used the patch files (patchi for each vulnerability vulni collected by the
process described in Section 4.3.1) of the vulnerability-fixing commits in a unified diff
format. Each diff contains a header information specifying the name of the original and
the new files. After that, there are one or more change hunks that contain the actual
line differences and each hunk begins with range information about the modification.

53

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

We checked whether any function falls into this range. We achieved this by using
the source code positions of the functions – begin and end line numbers, which were
produced by the OpenStaticAnalyzer tool – and checked whether these two ranges
intersect or not. An example is shown in Listing 4.1.

Listing 4.1. Example diff file
1 --- /path/to/ original .js timestamp
2 +++ /path/to/new.js timestamp
3 @@ -4,1 +4,2 @@
4 + var tmp = bar(i);
5 + return tmp;
6 - return bar(i);

Listing 4.2. Example JavaScript function
1 function foo(a) {
2 var i = 4 * a;
3 // call bar
4 var tmp = bar(i);
5 return tmp;
6 }

The source position of the foo function is [1,6] and the range from the diff is [4,5].
They intersect, so our method incorporates the foo function into the dataset. With
this algorithm, we found all the functions that were changed by each vulnerability
fixing commit, which we mapped to their previous versions (in shapre) to mark them
vulnerable in the version prior to the first fixing commit.

Static source code metrics For predictors (or, features), we used static source
code metrics. We calculated the metrics for the functions included in the final dataset
using two tools, escomplex [3] and OpenStaticAnalyzer (OSA) [8]. Both OpenStati-
cAnalyzer [125] and escomplex [35, 101] were used and referenced in related research
works, thus we consider them to be reliable. The list of calculated metrics is shown
in Table 4.1. Please note that similar metrics are grouped together in one line, so the
total number of calculated metrics is 35.

Dataset structure The final dataset structure follows a simple CSV format that
is easy to feed into many machine learning frameworks. Each line of the CSV file
represents a function from a Node.js program. The 1st column is a short name, while
the 2nd is the qualified name of the function generated by the algorithm described in
Section 4.3.1. The 3rd column shows the path of the containing JavaScript source file,
while the 4th column contains a GitHub URL to the analyzed JavaScript source file (in
the shapre version). The 5th and 6th columns contain the starting, while the 7th and
8th the ending line and column information, respectively. Columns 9 to 43 contain the
calculated metric values listed in Table 4.1. The last column (column 44) contains the
flag indicating whether the function is vulnerable or not.

7Total means that the metric is calculated for the actual code element including all the contained
elements recursively.

54

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Table 4.1. Calculated static source code metrics

Metric Description Tool
CC Clone Coverage OSA
CCL Clone Classes OSA
CCO Clone Complexity OSA
CI Clone Instances OSA
CLC Clone Line Coverage OSA
LDC Lines of Duplicated Code OSA
McCC, CYCL Cyclomatic Complexity OSA, escomplex
NL Nesting Level OSA
NLE Nesting Level without else-if OSA
CD, TCD (Total7) Comment Density OSA
CLOC, TCLOC (Total) Comment Lines of Code OSA
DLOC Documentation Lines of Code OSA
LLOC, TLLOC (Total) Logical Lines of Code OSA
LOC, TLOC (Total) Lines of Code OSA
NOS, TNOS (Total) Number of Statements OSA
NUMPAR, PARAMS Number of Parameters OSA, escomplex
HOR_D Nr. of Distinct Halstead Operators escomplex
HOR_T Nr. of Total Halstead Operators escomplex
HON_D Nr. of Distinct Halstead Operands escomplex
HON_T Nr. of Total Halstead Operands escomplex
HLEN Halstead Length escomplex
HVOC Halstead Vocabulary Size escomplex
HDIFF Halstead Difficulty escomplex
HVOL Halstead Volume escomplex
HEFF Halstead Effort escomplex
HBUGS Halstead Bugs escomplex
HTIME Halstead Time escomplex
CYCL_DENS Cyclomatic Density escomplex

The created vulnerability dataset8 consists of 12,125 JavaScript functions from
which 1,496 are vulnerable.

Dataset analysis approach

We employed 8 different types of machine learning algorithms on the vulnerability
dataset. These algorithms were

• Logistic Regression Classifier (Logistic) – Logistic regression is a statistical model
that uses a logistic function to model a binary dependent variable.
– Implemented by sklearn.linear_model.LogisticRegression

• Naive Bayes Classifier (Bayes) – Naive Bayes classifier is a simple “probabilistic
classifier” based on applying Bayes’ theorem with strong (naïve) independence
assumptions between the features.

8http://www.inf.u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet/

55

http://www.inf.u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet/

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

– Implemented by sklearn.naive_bayes.GaussianNB

• Decision Tree Classifier (Tree) – Decision Trees (DTs) are a non-parametric su-
pervised learning method used for classification and regression, where the goal is
to create a model that predicts the value of a target variable by learning simple
decision rules inferred from the data features.
– Implemented by sklearn.tree.DecisionTreeClassifier, an optimized

version of the CART algorithm
• Linear Regression Classifier (Linear) – Linear regression is a linear approach to

modeling the relationship between a scalar response and one or more explanatory
variables also known as dependent and independent variables.
– Implemented by sklearn.linear_model.LinearRegression

• Standard DNN Classifier (DNNs) – A deep neural network (DNN) is an artificial
neural network (ANN) with multiple layers between the input and output layers.

– Implemented by tensorflow.layers.dense

• Customized DNN Classifier (DNNc) – A custom version of the standard DNN
implementing the early stopping mechanism, where we do not train the models
for a fixed number of epochs, rather stop when there is no more reduction in the
loss function.
– Implemented by tensorflow.layers.dense

• Support Vector Machine Classifier (SVM) – Support-vector machine is a super-
vised learning model, which is a representation of the examples as points in space,
mapped so that the examples of the separate categories are divided by a clear
gap that is as wide as possible.
– Implemented by sklearn.svm.SVC

• K Nearest Neighbors Classifier (KNN) – The k-nearest neighbors algorithm (k-
NN) is a non-parametric method for classification and regression, where the input
consists of the k closest training examples in the feature space.
– Implemented by sklearn.neighbors.KNeighborsClassifier

• Random Forest Classifier (Forest) – Random forest is an ensemble learning
method for classification, regression and other tasks that operates by construct-
ing a multitude of decision trees at training time and outputting the class that is
the mode of the classes (classification) or mean/average prediction (regression)
of the individual trees.
– Implemented by sklearn.ensemble.RandomForestClassifier

The deep neural network algorithms were implemented in the TensorFlow [14]
framework9, while we used scikit-learn10 to run all the other algorithms. Both frame-
works were used in a Python environment. We could not use only one of them because
while TensorFlow has a strong support for deep learning, it does not contain all the
classic algorithms. In contrast, scikit-learn is very strong in classic machine learning
algorithms, but it is not a deep learning framework in itself.

9https://www.tensorflow.org/
10http://scikit-learn.org/stable/

56

https://www.tensorflow.org/
http://scikit-learn.org/stable/

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

DNNs stands for the base DNN algorithm implemented in TensorFlow. We used
it without any modifications except for changing the parameters it provides (see Sec-
tion 4.3.1). DNNs learning runs for a fixed number of iterations over all the training
instances (i.e. epochs). DNNc is our own modified strategy for training a DNN. It uses
an adaptive learning rate method where the learning rate parameter is not constant
over the course of training. We start with a relatively high learning rate parameter
and continue the classic back propagation algorithm until there is no improvement in
the value of F-measure (we call this a miss). Then we reduce the learning rate pa-
rameter to half, restore the previous model state, and continue the learning process
from there. We repeat these steps until we get 4 misses in succession, then terminate
the algorithm and return the last, best performing model. This strategy reduces the
likelihood of the algorithm getting “stuck” in a local optimum. Regarding KNN, Tree,
SVM, Forest, Logistic and Linear regression, and the Naive Bayes algorithm, we used
their scikit-learn implementation.

Grid search for the best parameters To find the best performing configuration
of each algorithm, we applied a grid search approach [27] on the hyper parameters of
the learning algorithms. It means that we defined various values for machine learning
algorithm parameters and trained multiple models using various combinations of hyper
parameters. After having multiple results for each model, we could select the best
performing ones.

For all training sessions, we divided the training data into three sets, train, dev, and
test in a 80%, 10%, 10% proportion, respectively, and used 10-fold cross-validation. At
the end of the 10 folds, we calculated the precision, recall, and F-measure values. For
selecting the best performing parameter configurations, we relied only on the results
of the dev set. This ensured that we did not use the information for selecting the
best parameters from our final test set in any way. We used F-measure as our pri-
mary performance indicator, as in the security domain both precision and recall are
important.

Sampling strategies In our assembled vulnerability dataset, only slightly more than
10% of the functions were marked as vulnerable. This highly imbalanced nature of the
training set is usually unwanted, as prediction models might be distorted by these
skewed distributions.

A common way of handling such situations is the usage of random under or over-
sampling strategies [24]. Random under-sampling means we randomly throw away
training instances from the larger set until we reach a pre-defined ratio between the
two classes. Random over-sampling is when we randomly repeat training instances
from the smaller set until we reach a pre-defined ratio between the two classes.

We repeatedly ran our algorithm parameter grid search with the following re-
sampling strategies: no re-sampling (None); over-sampling (↑) with ratios 25%, 50%,
75% and 100%; under-sampling (↓) with ratios 25%, 50%, 75% and 100%. For instance,
a 50% over-sampling strategy means that we randomly repeat training instances from
the vulnerable class until we reach 50% in number compared to the training instances
in the non-vulnerable class. Analogously, a 50% under-sampling strategy means we
leave out training instances from the non-vulnerable class until it contains only twice
as many instances as the vulnerable class. It is important to note here that while over-
sampling does not result in loss of training data, under-sampling reduces the number

57

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

of used training samples.

4.3.2 Results
We trained 9 different prediction models on the created vulnerability dataset (8 different
algorithms, but two variants of DNN) on a desktop PC11 using both CPU and GPU.
The running times varied between 6-12 hours for a complete hyper-parameter grid-
search of all algorithms. We repeated these grid-search sessions for all the separate
over and under-sampling strategies (described in Section 4.3.1), thus building all the
models took a considerable amount of time and computing resources.

Results on the imbalanced dataset

First, we ran our grid-search without applying any re-sampling on the vulnerability
dataset, which is highly imbalanced (out of 12,125 functions only 1,496 are vulnerable).
The performances of the 9 models with their best parameter combinations are displayed
in Figure 4.2.

Figure 4.2. Results on the imbalanced dataset

The overall results are surprisingly good given the fact that JavaScript is a highly
dynamic language and we only used static source code metrics as predictors. Five
out of the 9 models (DNNs, DNNc, Forest, KNN, and Tree) achieved an F-measure
of over 0.70 and SVM was also very close with 0.67. It is interesting to note that
for all algorithms, precision values were significantly higher than recall, except for the
decision tree classifier, which had a precision of 0.74, a recall of 0.7 and an F-measure
of 0.72.

Only the Naive Bayes algorithm was clearly incapable of producing a viable pre-
diction model using the original, imbalanced vulnerability dataset. Logistic and linear
regression achieved a precision of 0.75 and 0.84, respectively, which are relatively high
values, however, they had a very low recall (0.21 and 0.15, respectively) that decreased
the F-measure values.

118 core 2.4GHz CPU, NVIDIA Titan Xp GPU, 8GB RAM

58

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

As a simple baseline, we also ran the ZeroR algorithm with the setup that made it
predict all instances to be vulnerable (and not vice versa as the default setup would do,
because if we predicted every instance to be non-vulnerable, all our IR metrics would
have been 0). ZeroR achieved a precision of 0.12 and a perfect recall of 1 (as it found
all the vulnerable instances), which adds up to an F-measure of 0.21. This result is
much worse than those of the other algorithms’ except for the Naive Bayes.

Therefore, by choosing a suitable algorithm with proper parameters, it is possible
to create efficient function level vulnerability prediction models using only static source
code metrics as predictors. The DNN, KNN, Forest, and Tree algorithms all achieved
F-measures above 0.70 without any re-sampling on the dataset.

Table 4.2. F-measures achieved by the machine learning algorithms

Alg. None ↑25% ↑50% ↑75% ↑100% ↓25% ↓50% ↓75% ↓100% Rand
DNNs 0.71 0.71∗ 0.71 0.65 0.68 0.70 0.71 0.69 0.59 0.05
DNNc 0.71 0.70 0.71 0.68 0.65 0.71∗ 0.71 0.68 0.66 0.01
Forest 0.71 0.74∗ 0.74 0.73 0.72 0.72 0.72 0.72 0.65 0.05
KNN 0.76∗ 0.75 0.72 0.6935 0.6817 0.76 0.75 0.74 0.64 0.14
Linear 0.26 0.48 0.55∗ 0.49 0.45 0.30 0.37 0.51 0.44 0.02
Logistic 0.33 0.50 0.57∗ 0.55 0.49 0.38 0.45 0.53 0.49 0.01
SVM 0.67 0.70 0.72∗ 0.70 0.68 0.67 0.67 0.67 0.65 0.16
Tree 0.72∗ 0.71 0.71 0.71 0.70 0.70 0.69 0.67 0.59 0.15
Bayes 0.15 0.16 0.16 0.21∗ 0.20 0.16 0.16 0.18 0.17 0.07
Median 0.71 0.70 0.71∗ 0.68 0.68 0.70 0.69 0.67 0.59 0.05

Comparison of the models based on the complete results

The best performing model results based on the complete grid-search using various
re-sampling strategies are summarized in Table 4.2. Each column of the table contains
model results (in terms of F-measure12) using a particular re-sampling strategy (see
Section 4.3.1) with the best parameters found by the grid-search method. The first
column shows the results on the original imbalanced dataset without re-sampling (in
line with Figure 4.2). The next four columns display the results on the over-sampled,
while the following four on the under-sampled dataset. The last column presents results
on a random sanity check. To make sure that having these strong prediction results is
not coincidental, we created a new training dataset by reassigning the 1,496 vulnerable
labels randomly. The training results on this randomly labeled dataset show that
models cannot learn to distinguish an arbitrary set of functions based on their static
source code metrics, thus our prediction results are unlikely to be the consequences of
random factors.

The gray cells in the table mark the best performing algorithm with the given re-
sampling strategy. KNN is the best in five different re-sampling configurations, Forest
in three, while DNNc in one. The values indicated in bold and with an asterisk are
the best F-measure values for a given machine learning algorithm (i.e. the highest
value in the row). The most important thing to note here compared to the results
on the imbalanced training set is that even SVM achieved a result above 0.70 with
an appropriate over-sampling strategy (↑50%, ↑75%). Seven out of the nine models

12Matthews correlation coefficients (MCC) were slightly smaller in general, but they showed the
same tendency, see the shared dataset for details.

59

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

achieved better performances in some of the re-sampling configurations than on the
original, imbalanced dataset. The exact composition of precision and recall values
leading to these F-measures are visualized in Figure 4.3.

Figure 4.3. Impact of re-sampling on the learning precision and recall

The best performing algorithm for predicting vulnerable JavaScript functions in
terms of F-measure was KNN with an F-measure of 0.76 (0.91 precision and 0.66
recall). The best precision (0.95) was achieved by SVM, while the best recall (0.80) by
KNN. Overall, KNN, DNN, SVM, Tree, and Forest are equally well-suited for the task,
while the regressions, as well as the Naive Bayes algorithm perform much worse.

60

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

4.4 Enhancing Bug Prediction with Hybrid Call-
Graphs

We got encouraging results using only static code metrics as predictors, despite the
highly dynamic nature of JavaScript. The imprecision due to the lack of dynamic in-
formation might affect the defect prediction models used on them. We assume that
combining static and dynamic analysis improves the performance of the defect predic-
tion models. In this section, we propose a function level JavaScript issue prediction
model based on static source code metrics with the addition of hybrid (static and dy-
namic) code analysis based metrics of the number of incoming and outgoing function
calls (HNII and HNOI).

We also created a hybrid call graph framework, namely the hcg-js-framework13.
The framework supports the hybrid code analysis by extracting call graph information
of JavaScript functions using both static and dynamic analysis.

Our previously proposed database (introduced in Section 4.3) contains the vulner-
abilities and their fixes from 93 different programs. In order to gather dynamic traces
of the execution from each software, we would have needed a much more complex
workflow. Furthermore, we would have needed to ensure the following conditions:

• All 93 different software can be tested with the "npm test" command.
• Install and manage all of the external dependencies (besides the ones mentioned

in package.json).
• Each and every program has sufficient test coverage.

Providing these conditions requires a huge effort. We also would like to apply our
machine learning approach to a slightly different, wider field, namely to predict generic
software bugs.

For that, we used a publicly available bug dataset, BugsJS [68]. It consists of
453 real, manually validated bugs and their fixing patches from 10 popular JavaScript
projects. From this dataset, we selected the ESLint14 project to test our hybrid model
approach, which contains 333 bugs.

4.4.1 Approach
Our approach consists of numerous steps, which we present in detail in this section.
Figure 4.4 shows the steps required to produce input for the machine learning algo-
rithms.

BugsJS Dataset

BugsJS [68] is a bug dataset inspired by Defects4J [80], however, it provides bug related
information for popular JavaScript-based projects instead of Java projects. Currently,
BugsJS includes bug information for ten projects that are actively maintained Node.js
server-side programs hosted on GitHub. Most importantly, BugsJS includes projects
which adopt the Mocha testing framework; consequently, we can implement dynamic
analysis experiments easier.

BugsJS stores the forks of the original repositories and extends them by adding
tags to their custom commits in the form of:

13https://github.com/sed-szeged/hcg-js-framework
14https://eslint.org/

61

https://github.com/sed-szeged/hcg-js-framework
https://eslint.org/

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Figure 4.4. The schematic view of our approach

• Bug-X: The parent commit of the revision in which the bug was fixed (i.e., the
buggy revision)

• Bug-X-fix: A revision (commit) containing only the production code changes
(test code and documentation changes were excluded) introduced in order to fix
the bug

, where X denotes a number associated with a given bug. As out of the total 453 bugs,
ESLint 15 itself contains 333 bugs, we chose this project as input in our study.

Hybrid Invocation Metrics Calculation

As a first step, we have to produce the so-called hybrid call graphs from which we can
calculate the hybrid invocation metrics (i.e., HNII and HNOI). In order to understand
what a hybrid call graph is, let us consider Figure 4.5, which shows the details of the
node "hcg-js-framework" presented earlier in Figure 4.4.

As can be seen, the input of the hcg-js-framework is the JavaScript source code that
we want to analyze, which can be either a Git repository or a local folder. Then we
analyze the source code with various static and dynamic tools. Following the analyses,
the framework converts all the tool-specific outputs to a unified JSON format. Once we
have the JSON files, the framework combines them into a merged JSON. This merged
JSON contains every node and edge (JavaScript function nodes and call edges between
them) that either of the tools found.

After this step, we augment this merged JSON with confidence levels for the edges.
The confidence levels are calculated based on a manual evaluation of 600 out of 82,791
call edges found in 12 real-world Node.js modules. We calculated the True Positive
Rate for each tool intersection. We estimate the confidence of a call edge with these
rates. For instance, if a call edge was found by tools A and B, and in the manually
evaluated sample, there were ten edges found by only these tools, from which five
turned out to be a valid call edge, we add confidence of 0.5 to all these edges.

Figure 4.6 shows a Venn diagram of the call edges found in 12 Node.js modules.
We have an evaluation ratio for each intersection, which the framework uses for edge
confidence level estimation.

To sum it up, a hybrid call graph is a call graph (produced by combining the results
of both static and dynamic analysis) which associates a confidence factor to each call

15https://github.com/eslint/eslint

62

https://github.com/eslint/eslint

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Figure 4.5. Hybrid call graph framework architecture

63

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Figure 4.6. Venn diagram of found edges

64

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

edge, which shows how likely an edge is to be valid (higher confidence means higher
validity).

This hybrid call graph is the input of the HNII, HNOI Counter which is responsible
for calculating the exact number of incoming and outgoing invocations (i.e., NII, NOI).
At this point, we have to specify the threshold value, which defines the lower limit from
which we consider a call edge to be a valid call edge, thus contributing to the value of
the number of incoming and outgoing invocations. We considered four threshold values:
0.00, 0.05, 0.20 and 0.30. In the case of the first one, all edges are considered as possibly
valid call edges, while the latter ones only include edges with a higher confidence factor.
We name these two new metrics as HNII (Hybrid Number of Incoming Invocations)
and HNOI (Hybrid Number of Outgoing Invocations) to differentiate them from the
original static NII and NOI metrics.

The HNII, HNOI Counter traverses all call edges and considers those edges where
the confidence level is above the given threshold. The edges fulfilling this threshold
criteria contribute to the HNOI metric of the source node and the HNII metric of the
target node. As a result, the tool produces a JSON file as its output, which contains
only the nodes (i.e., the JavaScript functions) with their corresponding HNII, HNOI
metric values, and additional information about their position in the system, such as
source file, line, and column. Listing 4.3 shows an example of a single node output.

Listing 4.3. Sample output from the HNII, HNOI Counter
1 {
2 "pos": " eslint /lib/ast - utils.js :169:25",
3 "entry": false ,
4 "final": false ,
5 "hnii": 1,
6 "hnoi": 3
7 }

OpenStaticAnalyzer and Patch Extraction

Besides computing the hybrid metrics, HNII and HNOI, a standard set of metrics is
provided by a static source code analyzer named OpenStaticAnalyzer (OSA) [8]. Open-
StaticAnalyzer also takes JavaScript source code as input, and outputs (amongst oth-
ers) different CSV files for different source code elements (functions, methods, classes,
files, system).

In this study, we used the resulting CSV file that contains function level entries,
which includes static size metrics (LOC, LLOC, NOS), complexity metrics (McCC,
NL), documentation metrics (CD, CLOC, DLOC), and traditional coupling metrics
(NII, NOI) as well. The exact definition of the metrics can be found in Table 4.1.
These metrics are calculated for all the 333 bugs in ESLint before and after the bug is
fixed, which means 666 static analyses in total. Similarly, we extracted the patches for
these 333 bug fixing commits, which is done by Patch Extractor.

Composing Buggy Entries

At this point, we have all the necessary inputs to combine them in one CSV, which
contains the buggy entries with their static source code metrics extended with the

65

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

HNII and HNOI metrics. The core of the algorithm is the following. We traverse all
the bugs one-by-one. For bugi, we retrieved a set of entries from the ith static analysis
results, which were touched by the fixing patchi (determined based on entry name and
positional information), and extended these entries with the corresponding HNII and
HNOI metric values. We included the before-fix state (i.e., the buggy) for the touched
JavaScript functions, and used the date of the latest bug to select non-buggy instances
from that corresponding version of the code (i.e., Bug-79 fixed at 2018-03-21 17:23:34).
For non-buggy entries, we also extracted the corresponding HNII and HNOI values
also from the latest buggy version.

4.4.2 Results
To calculate the HNOI and HNII metrics, one needs to apply a threshold to the call
edges (to decide which edges to consider as valid) in the underlying hybrid (also called
fuzzy) call graph produced by the hcg-js-framework (see Section 4.4.1). We calculated
the metric values16 with four different thresholds: 0, 0.05, 0.20, and 0.30. Table 4.3
shows the descriptive statistics of the metrics on our ESLint dataset.

Table 4.3. Descriptive statistics of the HNII and HNOI metrics calculated using
different thresholds

HNII HNOI
Threshold Avg. Median Std.dev. Avg. Median Std.dev.
0.00 7.026021 1 26.95583 5.341887 2 27.27586
0.05 6.961330 1 26.95997 5.243224 2 26.91228
0.20 0.840622 1 2.823739 1.018793 0 9.236607
0.30 0.840622 1 2.823739 1.018793 0 9.236607

As can be seen, thresholds 0.20 and above significantly reduces the number of
considered edges for HNII and HNOI calculation. We wanted to use as many of the
extracted call edges as possible, so we opted to use the 0.00 threshold later on (i.e., we
considered each edge in the fuzzy call graph where the weight/confidence is greater or
equal to zero).

We trained several models (the models are described in Section 4.3.1) on the dataset
with three different configurations for the features:

• Purely static metrics (S−0_00_s.csv): the dataset contains only the pure static
source code metrics (i.e., original versions of NOI and NII plus all the provided
metrics by OpenStaticAnalyzer, see Section 4.4.1).

• Static metrics with only hybrid NOI and NII versions (H − 0_00_h.csv): the
dataset contains all the static metrics except NOI and NII, which are replaced
by their hybrid counterparts (HNOII and HNII) calculated on the output of hcg-
js-framework.

• Both static and hybrid metrics (S + H − 0_00_s + h.csv): the dataset contains
all the static metrics plus the hybrid counterparts of NOI and NII (HNOII and
HNII) calculated on the output of hcg-js-framework.

16All the data used in this study is available online [20]

66

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

With the various hyper-parameters, the trained models added up to a total of 36
configurations. We executed all these 36 training tasks on all three feature sets, so
we created 108 different machine learning models for comparison. To cope with the
highly imbalanced nature of the dataset (i.e., there are significantly more non-buggy
functions than buggy ones), we applied a 50% oversampling on the minority class. We
also standardized all the metric values to bring them to the same scale. For the model
training and evaluation, we used the open-source DeepWater Framework17 [56], which
contains the implementation of all the used algorithms.

To ensure that the results are robust against the chosen threshold, we trained the
same 108 models with the threshold value of 0.30 for HNII and HNOI calculation.
We found that the differences among S, H, and S + H feature sets became smaller,
but the general tendency that H and especially S + H features achieved better results
remained. Therefore, in the rest of the chapter, we can use the HNII and HNOI metrics
calculated with the 0.00 threshold without the loss of generality. In the rest of this
chapter, we present our findings. We would like to note that the abbreviations in the
tables are the same as we defined earlier in this chapter, in Section 4.3.1).

The Best Performing Algorithms

Table 4.4. Top 10 recall measures

Alg. Feat. Accuracy Precision Recall ↓ F-measure MCC
Set

DNNc S+H 0.763 (±0.031) 0.595 (±0.056) 0.642 (±0.074) 0.618 (±0.043) 0.447 (±0.063)
KNN S+H 0.788 (+0.025) 0.646 (+0.051) 0.635 (-0.007) 0.641 (+0.023) 0.490 (+0.043)
KNN H 0.776 (+0.012) 0.621 (+0.026) 0.631 (-0.011) 0.626 (+0.008) 0.466 (+0.019)
DNNs H 0.749 (−0.014) 0.571 (−0.024) 0.631 (−0.011) 0.600 (−0.018) 0.419 (−0.028)
KNN S+H 0.772 (+0.009) 0.617 (+0.022) 0.619 (−0.023) 0.618 (+0.000) 0.455 (+0.008)
KNN S 0.763 (+0.000) 0.599 (+0.004) 0.619 (−0.023) 0.609 (−0.009) 0.439 (−0.008)
KNN S+H 0.787 (+0.024) 0.650 (+0.055) 0.619 (−0.023) 0.634 (+0.016) 0.484 (+0.037)
KNN S 0.769 (+0.006) 0.613 (+0.018) 0.614 (−0.028) 0.613 (−0.004) 0.449 (+0.002)
KNN H 0.778 (+0.014) 0.630 (+0.035) 0.613 (−0.029) 0.622 (+0.004) 0.464 (+0.017)
KNN H 0.768 (+0.004) 0.610 (+0.015) 0.609 (−0.033) 0.610 (−0.008) 0.444 (−0.003)

Table 4.4 contains data about the top 10 models’ results based on their recall values.
We ranked all 108 models, meaning that all three feature sets are on the same list.

We can measure recall with the following formula:

Recall = TP

TP + FN

, where TP means True Positive samples, while FN means False Negatives. As we
can see, DNNc (0.642) and KNN (0.635) models achieve the best recall values on the
S + H feature set. The same models produce almost as high recall values (0.631)
using only the H feature set. The best performing model on the S feature set is KNN,
with a significantly lower (0.619) recall value. It shows that hybrid invocation metrics
do increase the performance of machine learning models in terms of recall. The best
values are achieved by keeping both the original NOI and NII metrics and adding their
hybrid counterparts HNOI and HNII, but using only the latter ones as substitutes for
the static metrics still improves recall values.

67

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Figure 4.7. The best Deep Neural Network (DNN) configurations for all three feature
sets

Figure 4.8. The best Deep Neural Network (DNN) configurations for all three feature
sets

To visualize the difference in the various performance measures, we plotted a bar-
chart (Figures 4.7 and 4.8) with the best DNN configurations (i.e., applying the set
of hyper-parameters with which the model achieves the best performance) for all three
feature sets. Blue marks the results using the S + H feature set, cyan the H feature
set, while yellow the S feature set. S + H results are superior, while H results are
better than the S results except for the False Positive and True Negative instances.
The chart shows that there is a constant 3-4% improvement in all aspects of the DNN
model results if we add the hybrid metrics to the feature sets.

Table 4.5. Top 10 precision measures

Alg. Feat. Accuracy Precision ↓ Recall F-measure MCC
Set

SVM H 0.756 (±0.019) 0.829 (±0.069) 0.229 (±0.055) 0.359 (±0.073) 0.348 (±0.069)
SVM S 0.757 (+0.000) 0.827 (−0.002) 0.232 (+0.002) 0.362 (+0.003) 0.349 (+0.001)
SVM S+H 0.759 (+0.003) 0.824 (−0.005) 0.244 (+0.015) 0.376 (+0.017) 0.358 (+0.010)
SVM S 0.759 (+0.003) 0.767 (−0.062) 0.275 (+0.046) 0.405 (+0.046) 0.355 (+0.007)
SVM H 0.755 (−0.001) 0.762 (−0.067) 0.260 (+0.030) 0.387 (+0.028) 0.341 (−0.007)
SVM S+H 0.760 (+0.004) 0.756 (−0.073) 0.289 (+0.059) 0.418 (+0.059) 0.359 (+0.011)
Forest S+H 0.816 (+0.060) 0.753 (−0.076) 0.569 (+0.340) 0.648 (+0.289) 0.536 (+0.188)
Forest H 0.814 (+0.057) 0.743 (−0.086) 0.573 (+0.343) 0.647 (+0.288) 0.532 (+0.184)
Forest S+H 0.808 (+0.052) 0.731 (−0.098) 0.564 (+0.335) 0.637 (+0.278) 0.518 (+0.170)
Forest H 0.810 (+0.053) 0.726 (−0.103) 0.579 (+0.350) 0.644 (+0.285) 0.523 (+0.174)

17https://github.com/sed-inf-u-szeged/DeepWaterFramework

68

https://github.com/sed-inf-u-szeged/DeepWaterFramework

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Table 4.5 presents the top 10 model results based on their precision values. We
ranked all 108 models, meaning that all three feature sets are on the same list. We can
measure precision with the following formula:

Precision = TP

TP + FP

, where TP means True Positive samples, while FP means False Positives. As we can
see, the SVM model (0.829) achieves the best precision values on the H feature set.
Interestingly, SVM produces an almost as high precision value (0.827) using only the
S feature set as well. Based on the S + H feature set, SVM achieves a precision value
of 0.824. It shows that hybrid invocation metrics do increase the performance of ML
models in terms of precision, but not as significantly as in the case of recall values.
Nonetheless, for algorithms other than SVM, the increase is more significant.

Figure 4.9. The best Support Vector Machine (SVM) configurations for all three
feature sets

Figure 4.10. The best Support Vector Machine (SVM) configurations for all three
feature sets

To visualize the difference in the various performance measures, we plotted a bar-
chart (Figures 4.9 and 4.10) with the best SVM configurations for all three feature
sets. Blue marks the results using the S + H feature set, cyan the H feature set, while
yellow the S feature set. S+H results are superior, while H results are still better than
S results for all measures. The chart shows that there is a constant 1-2% improvement
in all aspects of the SVM model results if we add the hybrid metrics to the feature
sets.

Table 4.6 shows the top 10 model results based on their F-measure values. We
ranked all 108 models, meaning that all three feature sets are on the same list. We can

69

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Table 4.6. Top 10 F-measures

Alg. Feat. Accuracy Precision Recall F-measure ↓ MCC
Set

Forest S+H 0.816 (±0.024) 0.753 (±0.046) 0.569 (±0.068) 0.648 (±0.054) 0.536 (±0.064)
Forest H 0.814 (−0.002) 0.743 (−0.010) 0.573 (+0.004) 0.647 (−0.001) 0.532 (−0.005)
Forest H 0.810 (−0.007) 0.726 (−0.027) 0.579 (+0.010) 0.644 (−0.004) 0.523 (−0.014)
KNN S+H 0.788 (−0.028) 0.646 (−0.106) 0.635 (+0.066) 0.641 (−0.008) 0.490 (−0.046)
Forest S+H 0.805 (−0.011) 0.712 (−0.041) 0.579 (+0.010) 0.639 (−0.010) 0.512 (−0.024)
Forest H 0.799 (−0.017) 0.690 (−0.063) 0.592 (+0.023) 0.637 (−0.011) 0.503 (−0.034)
Forest S+H 0.808 (−0.008) 0.731 (−0.022) 0.564 (−0.005) 0.637 (−0.011) 0.518 (−0.019)
Forest S+H 0.799 (−0.017) 0.690 (−0.062) 0.587 (+0.018) 0.635 (−0.013) 0.500 (−0.036)
KNN S+H 0.787 (−0.029) 0.650 (−0.103) 0.619 (+0.050) 0.634 (−0.014) 0.484 (−0.052)
KNN H 0.776 (−0.040) 0.621 (−0.132) 0.631 (+0.062) 0.626 (−0.022) 0.466 (−0.071)

calculate F-measure with the following formula:

F −measure = 2 · Precision ·Recall

Precision + Recall
.

As we can see, Random Forest (0.648) and KNN (0.641) models achieve the best F-
measures on the S+H feature set. The same Random Forest models produce almost as
high F-measures (0.647) using only the H feature set. The best performing model on
the S feature set is not even in the top 10. It shows that hybrid invocation metrics do
increase the performance of ML models in terms of F-measure, meaning they improve
the models’ overall performance. The best values are achieved by keeping both the
original NOI and NII metrics and adding their hybrid counterparts HNOI and HNII,
but using only the latter ones as substitutes for the static metrics still improves F-
measure significantly.

Figure 4.11. The best Random Forest (Forest) configurations for all three feature
sets

To visualize the difference in the various performance measures, we plotted a bar-
chart (Figures 4.11 and 4.12) with the best Random Forest configurations for all three
feature sets. Blue marks the results using the S + H feature set, cyan the H feature
set, while yellow the S feature set. S +H and H results are better than S results for all
measures except for recall, but the difference there is only marginal. The chart shows
that there is a constant 1-2% improvement in all aspects of the Random Forest model
results, but precision is higher by approximately 10% if we add the hybrid metrics to
the feature sets.

70

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Figure 4.12. The best Random Forest (Forest) configurations for all three feature
sets

The Most Balanced Algorithm

K-nearest neighbors models stand out in that they produce the most balanced perfor-
mance measures. As can be seen in Figures 4.13 and 4.14, both precision and recall
values are above 0.6, therefore, F-measure is above 0.6 as well. For this model, the H
feature set brings a 1-2% improvement over the S feature set, while the S + H feature
set results in a 2-5% increase in performance.

Figure 4.13. The best K-Nearest Neighbors (KNN) configurations for all three feature
sets

Significance Analysis of the Performance Measures

Despite a seemingly consistent increase in every model performance measure caused
by adding hybrid source code metrics to the features, we could not be sure that this
improvement is statistically significant. Therefore, we performed a Wilcoxon signed-
rank test [157] on the model F-measure values between each pair of feature sets (S vs.
H, S vs. S + H, H vs. S + H). The detailed results (T statistics and p-values) are
shown in Table 4.7.

As can be seen, the F-measure values achieved by the models differ significantly
(p-value is less than 0.05) depending on the feature sets we used for training them. It is
interesting to observe that there is a significant difference in performances even between
the models using the hybrid and static+hybrid features and not just between models
using static features only and models using hybrid features as well. These results
confirm that even though hybrid source code metrics provide additional prediction
power to bug prediction models, they do not substitute static source code metrics

71

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Figure 4.14. The best K-Nearest Neighbors (KNN) configurations for all three feature
sets

Table 4.7. Wilcoxon signed-rank test results of F-measures between models using
different feature sets

Hybrid Static+Hybrid
Features T p-value T p-value
Static 95.5 0.00032 74 0.00004
Hybrid - - 116 0.0019

but complement them. Therefore, according to our empirical data, we could achieve
the best performing JavaScript bug prediction models by keeping static call-related
metrics and adding their hybrid counterparts to the model features. We note that the
Wilcoxon signed-rank test showed significant results in the case of precision and recall
performance measures as well.

Discussion

In the previous sections, we analyzed the best performing algorithms with a focus on the
improvements caused by the hybrid source code metrics. However, to have a complete
picture of the results, we summarize the performances of all nine machine learning
algorithms here. Table 4.8 shows the best prediction performances (i.e., models with
best performing hyper-parameters and feature sets) of all nine algorithms according to
their F-measures.

Table 4.8. The best results of the nine ML models according to their F-measure

ML algorithm Feature set Accuracy Precision Recall F-measure MCC
Random Forest S+H 0.816 0.753 0.569 0.648 0.54
K Nearest Neighbors S+H 0.788 0.646 0.635 0.641 0.49
Customized DNN S+H 0.784 0.649 0.601 0.624 0.47
Decision Tree S+H 0.781 0.649 0.58 0.612 0.46
Standard DNN H 0.774 0.634 0.569 0.6 0.44
Logistic Regression S+H 0.787 0.682 0.533 0.598 0.46
Support Vector Machine S+H 0.789 0.699 0.515 0.593 0.47
Linear Regression S+H 0.769 0.67 0.443 0.533 0.4
Naive Bayes S+H 0.772 0.713 0.394 0.508 0.4

72

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

There are several properties to observe in the table. First, all but one machine
learning model achieves the best results in terms of F-measure using the S + H feature
set. The only exception is the Standard DNN Classifier, which performs best using
only the hybrid version of call metrics (i.e., H feature set). Second, the Random Forest
Classifier not only has the best F-measure (0.648), but also the best accuracy (0.816),
precision (0.753), and MCC (0.54) metrics, which mean it performs the best overall
for predicting software bugs in the studied JavaScript program. However, there is a
trade-off between precision and recall; therefore, the Random Forest Classifier only
has the third highest recall metric (0.569). Third, the K Nearest Neighbors Classifier
has the second to last lowest precision (0.646) and only the third-highest accuracy
(0.788); still, its recall (0.635) is the highest among all the models and in terms of
F-measure (0.641) and MCC (0.49) it is a very close second behind the Random Forest
Classifier. This implies that the K Nearest Neighbors Classifier achieves the most
balanced performance, not the best in every aspect but very high performance measures
with no large variance. Fourth, the deep neural networks (Standard DNN Classifier
and Customized DNN Classifier) do not outperform the simpler, classical models in
this prediction task. The most likely cause of this is the relatively small amount of
training samples, so the real strength of deep learning cannot be exploited. Fifth,
the models struggle to achieve high recall values in general, which seems to be the
bottleneck of the maximum F-measures. Even the worst-performing models (Linear
Regression Classifier and Naive Bayes Classifier) have an acceptable accuracy (0.769
and 0.772, respectively) and precision (0.67 and 0.713, respectively), but very low recall
(0.443 and 0.394, respectively), which results in a very low F-measure (0.533 and 0.508,
respectively).

To sum up our experiences, it is worthwhile to add hybrid call metrics to the set
of standard static source code metrics for training a JavaScript bug prediction model.
To achieve the highest accuracy and precision, one should choose the Random Forest
Classifier method, but if the recall is also important and one wants to have as balanced
results as possible, the K Nearest Neighbors Classifier is the best possible option.

4.5 Threats to Validity
In their work, Basili et al. [23] stated that generalizing results from empirical studies
in software engineering is difficult. This is because any process, any study depends on
quite a lot of context variables. Our results might be affected by this phenomenon as
well and might change with context (e.g. building defect prediction models for other
languages).

Our data collection process (described in Section 4.3.1) might not be 100% accu-
rate, as only the additional candidate commits collected from issue comments were
validated manually. The original data sources might contain errors as well, and our
automatic patch collection and patch-to-function mapping algorithms might introduce
inconsistencies. We tried to mitigate this problem by thorough code review of our
scripts and programs. In the case of BugsJS, the dataset and the corresponding paper
are already published [68]. Therefore, we consider them to be correct.

We mapped static source code analysis results of various tools and functions iden-
tified in patches by line information. This is another source of possible errors, but we
performed a small evaluation on 20 randomly selected JavaScript functions from the
dataset and found no multiple functions in the same line. Based on this and our past

73

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

experience, we believe it is a safe assumption that multiple functions in the same code
line are very rare in a non-minified JavaScript program. As we used line information
only within the same version of the programs, the likelihood of mismatching functions
is even more negligible.

The extraction of features (i.e. static source code metrics) is heavily dependent on
the accuracy of the tools used, which may threaten the extraction process. However,
there are numerous related works using the same tools, thus they can be considered
stable. Moreover, we manually double-checked some of the calculated metric values
and found no problems in their calculation.

As a training set in Section 4.4 we used 333 bugs from one system. Therefore, the
results might be specific to this system and might not generalize well. However, ESLint
is a large and diverse program containing a representative set of issues. Additionally,
bugs are manually filtered, thus do not introduce noise in the prediction models. As a
result, we believe that our study is meaningful, though replication with more subject
systems would be beneficial.

The threshold value chosen for calculating the hybrid call edges might affect the
ML model performances. We selected a threshold of 0 (i.e., counted every edge with
a weight greater than zero) in our case study, however, we carried out a sensitivity
analysis with different thresholds as well. Even though the calculated HNOI and HNII
values changed based on the applied threshold, the model improvements using these
values proved to be consistent with the ones presented in the study. Therefore, we
believe that the essence of the results is independent of the choice of the particular
threshold value.

Finally, the provided thresholds might be inaccurate as we derived them from a
manual evaluation of a small sample of real call edge candidates. To minimize the risk
of human error, two senior researchers evaluated all the edges who had to agree on
each call label. For sampling, we applied a stratified selection strategy, so we evaluated
more call samples from subsets of tools finding more edges in general, thus increasing
the confidence of the derived weights.

4.6 Summary
In this chapter, we proposed two, function level JavaScript issue prediction models
by challenging 8 well-known, widely used machine learning algorithms, and enhanced
the issue prediction with the addition of hybrid (static and dynamic) code analysis
based metrics for incoming and outgoing function calls. JavaScript is a highly dynamic
scripting language for which static code analysis might be very imprecise, therefore,
combining static and dynamic analysis to extract features is a promising approach.

In order to achieve this goal, we created and published a novel JavaScript vulnera-
bility dataset to be used for building prediction models. The dataset contains various
JavaScript functions together with their static source code metrics and a flag indicating
whether the function contains a vulnerability or not. This information was assembled
by mining the public vulnerability data sources, nsp and Snyk, and collecting fixing
patches from GitHub. We presented an assessment of existing machine learning algo-
rithms for building function level vulnerability prediction models using this dataset.
We analyzed the performances of 8 different types of algorithms using the training set
as-is, and also by applying various re-sampling strategies.

74

Chapter 4. Combining Static and Dynamic Code Analysis with Machine Learning to
Detect Software Issues in JavaScript Programs

Our preliminary results show that even for such a highly dynamic language as Ja-
vaScript, static source code metrics are suitable predictors of vulnerabilities. However,
we experienced large variances in prediction performances depending on the applied
sampling strategy and hyper-parameters. Using the appropriate machine learning algo-
rithm (DNN, KNN, Tree, Forest, or SVM) and suitable hyper-parameters, a prediction
with an F-measure of 0.7 and above can be achieved. Nonetheless, there is a clear
trade-off between precision and recall; over-sampling tends to improve recall, but de-
creases precision, while intensive under-sampling improves precision, but reduces recall
significantly.

As our first results were promising, we decided to add hybrid source code metrics
to the feature set. However, using our proposed vulnerability dataset was not feasible
in this particular case (the reasons were explained earlier, in Section 4.1). To solve this
problem, we used the BugsJS public dataset to find, extract, and map buggy functions
in ESLint. We created three versions of a training dataset from the functions of the
ESLint project. We ended up with a dataset containing 824 buggy and 1943 non-
buggy functions with three sets of features: static metrics only, static metrics where
the invocation metrics (NOI and NII) are replaced by their hybrid counterparts (HNOI
and HNII), and static metrics with the addition of the hybrid metrics.

We trained nine different models in 108 configurations and compared their results.
We found that using invocation metrics calculated by a hybrid code analysis as bug
prediction features consistently improves the performance of the ML prediction models.
Depending on the ML algorithm, applied hyper-parameters, and target measure we
consider, hybrid invocation metrics bring a 2-10% increase in model performances
(i.e., precision, recall, F-measure). Interestingly, even though replacing static NOI and
NII metrics with their hybrid counterparts HNOI and HNII in itself improves model
performances, most of the time, keeping them both yields the best results. It means
that they hold somewhat complementary information to each other.

To achieve the highest accuracy and precision, one should choose the Random
Forest Classifier method, but if the recall is also important and one wants to have an
as balanced results as possible, the K Nearest Neighbors Classifier may be the best
possible option. In the future, we plan to extend the set of predictors with various
history and textual metrics, as well as other hybrid metrics in order to further improve
the issue prediction at the level of JavaScript functions.

75

5
Studying Typical Security Issues and Their

Mitigation in Open-Source Projects

5.1 Overview
Software security is one of the most striking problems of today’s software systems.
With the advent of low-cost mobile/IoT devices connected to the Internet, the problem
of insecure applications has risen sharply. Large impact security vulnerabilities are
explored on a daily basis, for example, a serious flaw [149] has been discovered in
’Sudo’, a powerful utility used in macOS this February. Security problems can cause
not just financial damage [19], but can compromise vital infrastructure, or can be used
to threaten entire countries. Security issues can also be dangerous to humanity, for
example, in a pandemic situation [118, 82, 87].

As security issues can mean a lot of things, we would like to note that in this
chapter, we use CVEs as the definition of vulnerabilities. CVEs (short for Common
Vulnerabilities and Exposures) [42] are publicly disclosed cyber-security vulnerabilities
and exposures that are stored online and are freely browsable. These can be catego-
rized into CWEs (short for Common Weakness Enumeration) [111], which is a widely
adopted categorization for vulnerabilities.

Our focus in this chapter is to examine vulnerability mitigation (i.e. corrective code
changes to resolve security vulnerabilities) within the open-source community, their
typical types, and their other characteristics. By reacting to emerging security vulner-
abilities an open-source community can contribute to building more secure solutions,
as a lot of industrial applications rely on open-source libraries. By getting a detailed
picture of what security vulnerabilities are mitigated and when in the open-source
community of these languages, we can identify vulnerability categories that are not
sufficiently addressed, explore patterns that might help to build more efficient vulnera-
bility prediction models, or even discover some patterns that may help in generalizing
the models. Moreover, we can create educational materials that can help individuals
in becoming more prepared for vulnerabilities, we can emphasize the poorly addressed
vulnerability categories. These and similar studies help developers to be more aware

77

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

of the security issues that might occur in the programming languages in which they
work.

In Section 5.3, we used the rich dataset of the Software Heritage Graph Dataset [127].
We investigated the typical security vulnerabilities in the JavaScript and Python open-
source communities, the mitigated issues’ types, and how they relate to each other.
We examined the speed of the JavaScript and Python communities, i.e. how quickly
the communities mitigate a newly published security vulnerability. We found that the
JavaScript projects refer to security vulnerabilities falling into 87 different categories,
the Python projects to 71, out of which 55 security vulnerability categories are com-
mon. Despite the large intersection in the security vulnerability types, the number of
mitigated vulnerabilities differ significantly depending on the language of the projects.
For example, Cross-site Scripting (CWE-79), Path Traversal (CWE-22), Improper In-
put Validation (CWE-20) and Uncontrolled Resource Consumption (CWE-400) type
of vulnerabilities are mitigated mostly in JavaScript projects, while Resource Manage-
ment Errors (CWE-399) and Permissions, Privileges, and Access Controls (CWE-264)
are mitigated mostly in Python. The growing number of vulnerability mitigating com-
mits is a common tendency in both languages, but it is proportionate to the growth
of the total number of commits. The vulnerability mitigation per total commit ratio
increases only slowly, however, there was a significant increase in the amount of vul-
nerability mitigation in the year 2018 for both JavaScript and Python projects (see
Figure 5.2). Regarding the number of days elapsing between the publish date of a
particular security vulnerability and the date of the first commit with its mitigation is
varies to a large extent. Typically, Python commits mitigate vulnerabilities no older
than 100 days, while some JavaScript commits mitigate vulnerabilities older than a
year.

Next to the Software Heritage Graph Dataset, which is a very valuable source of
data, we also applied data mining techniques to collect security issues. Mining data on
our own allows us to investigate interesting questions that were unfeasible using the
Software Heritage Graph Dataset. We also created several tools to support researches
like this one, the tools used are publicly available on GitHub.

In Section 5.4, we present the approach we used to gather data from GitHub, and
the results of a small-scale, open-source study that aims to show the differences between
programming languages, based on their activity when it comes to fixing security issues.
We follow the basic ideas laid out by the work of Matt Bishop [30] with the design of our
study approach. Our choice is to use data from as many languages as we can, including
C, C++, BitBake, Go, Java, JavaScript, Python, Ruby, and Scheme programs, so we
have the advantage of not constraining our field of view to only certain kinds of projects.
And probably, the more languages we study, the more general results we obtain. For
numerous programs written in these different languages we extracted and analyzed the
type of vulnerabilities found and fixed in the programs, the time it took for the fix
to occur, the number of people working on a given project while an issue was active,
and the number of changes to the code and files required to eliminate the issue. The
results show that while the severity of an issue may correlate with the time it takes
to fix it, that is not the case in general. Averages show a similar pattern, which is
likely because of the reintroduction of the same issues several times in larger projects.
We found that smaller and more user interface-focused projects rarely document CVE
fixes, however, larger-scale projects, especially those concerning backend solutions and
operating systems (package managers, etc.) are more inclined to state major bug fixes.

78

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

We also found that in some projects, the developers prefer to only mention CVEs at
larger milestones or releases, while in others, they were present in the exact commit
they were fixed in. We also look at CWEs more specifically, their prevalence in different
languages. Some of these are language-specific, while others are more general.

The chapter is organized as follows. We review works similar to ours in Section 5.2.
Afterwards, we present our approach to mining data from the Software Heritage Graph
Dataset in Section 5.3, as well as the results we obtained. In Section 5.4, we present
our developed tools and the methodology we used to collect data from Git. We also
present the results we could achieve from the collected data. We enlist the possible
threats to our work in Section 5.5. Finally, we summarize the chapter in Section 5.6.

5.2 Related Work
There are plenty of previous works investigating different aspects of security vulner-
abilities. By exploring the life-cycle of the vulnerabilities, one can understand their
nature better, which helps to prevent, find, or predict them.

Li and Paxson [92] conducted a large-scale empirical study of security patches. They
investigated more than 4,000 security patches that affected more than 3,000 vulnera-
bilities in 682 open-source software projects. They also used the National Vulnerability
Database (NVD) as a basis, but they used external sources (for example GitHub) to
collect information about security issues. We rely only on data provided by NVD [123]
or MITRE [42, 111]. In their work, they investigated the life-cycle of both security
and non-security patches, compared their impact on the code base, and their charac-
teristics. They found out that security patches have a lower footprint in codebases
than non-security fixes; a third of all security issues were introduced more than 3 years
before the fixing patch, and there were also cases when a security patch failed to fix
the corresponding security issue.

Frei et al. [59] presented a large-scale analysis of vulnerabilities, mostly concen-
trated on discovery, disclosure, exploit, and patch dates. The authors have found that
until 2006, the hackers reacted faster to an exposed vulnerability than the vendors.

Similar to the previous work, Shahzad et al. [140] presented a large-scale study
about various aspects of software vulnerabilities during their life cycle. They created a
large software vulnerability dataset with more than 46,000 vulnerabilities. The authors
also identified the most exploited forms of vulnerabilities (for example DoS, XSS). In
our research, we also use categories, however, our categories are defined by CWE which
is a widely used and accepted categorization. They found that since 2008, the vendors
have become more agile in patching security issues. They also validated the fact the
vendors are getting faster than the hackers since then. Moreover, the patching of
vulnerabilities in closed-source software is faster than in open-source software.

Kuhn et al. [85] analyzed the vulnerability trends between 2008 and 2016. They
also analyzed the severity of the vulnerabilities as well as the categories. Their study
showed that the number of design-related vulnerabilities is growing while there are
several other groups (for example CWE-89 (SQL Injection)) that show a decreasing
trend.

In their work, Wang et al. [154] used Bayesian networks to categorize CVEs. They
used the vulnerable product and CVSS 1 base metric scores as the observed variables.

1Common Vulnerability Scoring System, as presented by Mell et al. [106]

79

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

Although we do not use any machine learning methods in this study, our long-term
goal is to use various machine learning methods using the data presented in this study.
Wang et al. proved that categorizing CVEs is possible and machine learning can do
that.

Gkortzis et al. [61] presented VulinOSS, a vulnerability dataset containing the vul-
nerable open-source project versions, the details about the vulnerabilities, and nu-
merous metrics related to their development process (e.g. whether they have tests or
numerous static code metrics).

In their work, Massacci et al. [103] analyzed several research problems in the field of
vulnerability and security analysis, the corresponding empirical methods, and vulnera-
bility prediction. They summarized the databases used by several studies and identified
the most common features used by researchers. They also conducted an experiment
in which they integrated several data sources on Mozilla Firefox. The authors also
showed that different data sources might lead to different answers to a specific ques-
tion. Therefore, the quality of the database is a key component. In our paper, we try
our best to provide a usable, good quality database for further researches.

Abunadi et al. [15] presented an empirical study aiming to clarify how useful cross-
project vulnerability prediction could be. They conducted their research on a publicly
available dataset in the context of cross-project vulnerability prediction. In our re-
search, we collected data from several programming languages. Hence we believe that
our dataset can be useful in cross-project vulnerability prediction.

Xu et al. [159] presented a low-level (binary-level) patch analysis framework, that
can identify security and non-security related patches by analyzing the binaries. Their
framework can also detect patterns that help to find similar patches/vulnerabilities in
the binaries. In contrast to their work, we use data mining and static process metrics.
Therefore, our approach does not need any binaries, it does not require the project to
be in an executable state, which can be extremely useful when a project’s older version
could not be compiled.

Vásquez et al. [153] analyzed 660 Android-related vulnerabilities and their corre-
sponding patches. Their approach uses NVD and Google Android security bulletins
to identify security issues. Despite the fact that we do not include Android security
bulletins in this research, we plan to extend our scope in the future and include those
vulnerabilities too, as our framework is extensible.

5.3 Exploring the Security Awareness of the Python
and JavaScript Open Source Communities Us-
ing The Software Heritage Graph Dataset

In this section, we investigate the typical security issues and their mitigation in Java-
Script and Python open-source communities. We used the Software Heritage Graph
Dataset as our data source. The mission of Software Heritage is to collect, preserve
and share all source code and its development history that can be found on the inter-
net [43]. The dataset contains information about tens of millions of software projects,
and it grows day by day.

80

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

5.3.1 The Software Heritage Graph Dataset
This dataset is a fully-deduplicated Merkle Distributed Acyclic Graph (DAG) [107]
representation of the Software Heritage archive; it links together the source trees (di-
rectories and source code files), the Version Control System (VCS) commits and re-
leases (tags), and some other meta information about crawling (when and where the
data comes from). The content of the dataset comes from various platforms: source
code hosting platforms (e.g., GitHub, GitLab.com); FOSS distributions (e.g., Debian);
and package managers for specific programming languages (e.g., PyPI, npm).

We performed our study using the compressed PostgreSQL format [126] of the full
Software Heritage Graph Dataset [127]. It took us several tries to correctly import the
dataset into a local database. With some modifications to the original load script (e.g.
removing concurrent index creation, as it is only justifiable in a production environ-
ment2, but introduces a huge overhead), we managed to import the whole database
into a local server.

The technical specifications of the database server we used were a 20-core Intel
CPU (2,6 GHz), 90 Gbs of RAM, 5 Tb SSD. Despite the quite strong hardware, the
data import and queries were rather slow due to the enormous size of the database.
To speed up the process, we created intermediate tables from the relevant information
in a filtered and transformed way.

5.3.2 Approach

SWHGD's
original revision

Revisions containing
CVE/CWE information

JavaScript
revisions

Python revisions

Python
application Results

Figure 5.1. The schematic view of our approach

Our approach is based on collecting the vulnerability mitigation commits for Java-
Script and Python projects from the dataset, which are potentially connected to a pub-
lic CVE [42] entry. To achieve this, we used a very simple but effective heuristics-based
approach, similar to those widely used in works related to bug data collection [68, 146].

Figure 5.1 depicts our overall approach. First, we searched for the commits contain-
ing the patterns “CVE-”, “CWE-”, “NVD-” (all of them are case insensitive) in their
commit messages using SQL queries. Referring to a CVE or CWE identifier in the
commit message is a widely used practice in case of vulnerability mitigation patches,
so the community can understand why the given commit is extremely important and
urgent to be merged. By filtering the revision table, we created a temporal table
called cve_revs with 357,757 rows (from the original 1.26 billion rows).

2According to the official documentation: https://www.postgresql.org/docs/11/
sql-createindex.html

81

https://www.postgresql.org/docs/11/sql-createindex.html
https://www.postgresql.org/docs/11/sql-createindex.html

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

After the first filtering step, we had to identify the programming language of the
project a given commit belongs to. Since the structure of the database did not provide
an effective way to do this, we used the information retrieved from the revisions’ root
directory:

• We considered a revision as a Python revision if its root directory contained
either __init.py__ or setup.py. Without at least one of these files, the project
cannot be used as a Python module [134, 128, 160] (nor published on PyPI [133]),
therefore, it is a viable heuristics to detect Python projects.

• We considered a revision to be a JavaScript revision if its root directory con-
tained either index.js, app.js, or server.js, as one of these files will most
likely be included in the root directory [122] of a JavaScript project. We did
not consider package.json for identifying a revision as a JavaScript revision be-
cause package.json is often used in other languages as well, such as PHP (e.g.,
Symfony uses package.json to manage tools that are necessary for packing the
application’s frontend [151]).

Based on this second round of filtering, we got 3,718 rows for Python and 4,136 rows
for JavaScript, which we stored in two new tables: cve_revs_py and cve_revs_js,
respectively. We analyzed the data collected in these instead of the original revision
table.

Tools and Queries for Data Mining

We processed the collected Python and JavaScript revisions using Python scripts and
the pandas [104] framework, and used regular expressions3 to find and extract the
CVE/CWE identifiers from the commit messages. All the used regular expressions
and extraction scripts for finding CVE/CWE and vulnerability mitigating revisions
are available in our online asset package.4 We also tried to filter commits for “NVD”,
but there were no matching commit messages. If a commit message contained more
than one CVE or CWE reference, we extracted all and considered them separately (i.e.
the commit contained mitigation for more than one vulnerability). Since a commit
message can contain the same CVE/CWE IDs several times (for example, it can be in
the first line of the commit message, and later it can appear in the description as well),
we had to remove the duplicates. Thus one CVE/CWE entry is considered only once
per revision.

Several rows have not been filtered out in the first step, but in the processing step
we could not find any CVE/CWE IDs in their commit messages. We examined and
validated all of these cases by hand. These revisions contained messages that could
pass our first filtering but did not mention any valid CVE/CWE IDs, for example,
execve-safe, Glennvd-patch-1, nvd-downloader, no CVE-id.

As we focused on the types of vulnerabilities which can be described by the CWE
identifier of the security problem category the vulnerability belongs to, we had to link
each CVE entry to the corresponding CWE category of the vulnerability. To achieve
this, we relied on the data provided by the National Vulnerability Database [123]

3(CV E − \d{4} − \d{4, }), (CWE − [\d]{1, 4}), and (NV D .+)
4https://doi.org/10.5281/zenodo.3699486

82

https://doi.org/10.5281/zenodo.3699486

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

and used a customized version of CVE manager by Atlasis 5 to parse the JSON data
files describing the CVE entries with meta-information, like its corresponding CWE
category. Besides the CWE group of a CVE entry, we also extracted the publishing
date, severity, and the base impact score of every CVE entry.

Some revisions contained references to CWE groups without mentioning any specific
CVE entries. These revisions were mapped directly to the referenced CWE categories.

5.3.3 Results
After all filtering steps, we identified a total number of 3,458 vulnerability mitigation
commits (i.e. commit messages containing valid CVE or CWE identifiers) for Java-
Script and 2,884 for Python to which we were able to resolve the corresponding CWE
category as well. Figure 5.2 shows the ratio of commits over the years in terms of the
average number of vulnerability mitigation commits per 100k commits.

Figure 5.2. Vulnerability mitigation ratio per year

While the Python vulnerability mitigation ratio is quite stable, the same ratio for
JavaScript projects grows consistently from 2015, with a large peak in 2018, but is
still lower than that of Python projects. As there are no JavaScript commits in the
Software Heritage Dataset before 2010, and the data for 2019 is still incomplete, we
omitted those years from the analysis.

Table 5.1 provides further details on the number of detected vulnerability mitigation
commits and the total number of commits in the analyzed years. The distribution of
the referenced CWE vulnerability types is depicted in Figure 5.3.

Typical Security Issue Types

We examined the extracted vulnerability mitigation commits with 103 different CWE
categories. From these 103, 55 CWE types occurred in both JavaScript and Python
commit messages, while 32 CWE groups were found only in JavaScript projects, and

5Our version is available on https://github.com/gaborantal/cve_manager, while the original
one can be found on https://github.com/aatlasis/cve_manager

83

https://github.com/gaborantal/cve_manager
https://github.com/aatlasis/cve_manager

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

Table 5.1. Commit statistics per year

Year Vuln. JS Vuln. PY Total JS Total PY
2010 0 225 102,525 1,597,160
2011 0 67 675,492 2,068,155
2012 6 343 2,078,887 2,663,836
2013 41 209 5,705,696 3,436,804
2014 84 291 12,692,836 4,440,660
2015 111 328 23,794,463 5,537,294
2016 239 453 38,990,699 6,527,350
2017 393 329 40,883,417 6,835,803
2018 2584 639 37,729,971 6,315,866

Figure 5.3. Number of security issues found with the given CWE types

16 only in Python projects (however, the number of vulnerabilities with such types
were very low).

We examined the most popular CWE categories in more detail. The CWEs having
at least 150 references in either of the analyzed languages are described in Table 5.2.

Interestingly, except for CWE-200, which is the type of vulnerability mitigated in
more than 200 commits in both languages, each of the other six CWE groups can be
attributed to either JavaScript or Python projects (i.e. one of the languages contain the
majority of the mitigation to these vulnerability types). On the one hand, Cross-site
Scripting (CWE-79), Path Traversal (CWE-22), Improper Input Validation (CWE-20),
and Uncontrolled Resource Consumption (CWE-400) type vulnerabilities are mitigated
mostly in JavaScript projects. All these vulnerability types are primarily relevant
for web applications, where JavaScript is heavily used at the client-side, thus it is
more probable that a JavaScript project encounters such vulnerabilities. On the other
hand, mitigation of Resource Management Errors (CWE-399), Permissions, Privileges,
and Access Controls (CWE-264), and Improper Restriction of Operations within the
Bounds of a Memory Buffer (CWE-119) type vulnerabilities occur in Python commits
mostly. These are more relevant at the server-side, where Python seems to dominate.
There is a significant overlap in these categories as well, so projects from both languages

84

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

have vulnerabilities with all these CWE types, but based on the data we have, it seems
that these are more typical for a particular language.

Table 5.2. Most referenced CWE categories and their description

CWE Identifier Description
CWE-79 Improper Neutralization of Input During Web Page Genera-

tion (Cross-site Scripting).
CWE-399 Resource Management Errors.
CWE-200 Information Exposure.
CWE-20 Improper Input Validation.
CWE-264 Permissions, Privileges, and Access Controls.
CWE-400 Uncontrolled Resource Consumption.
CWE-119 Improper Restriction of Operations within the Bounds of a

Memory Buffer.
CWE-22 Improper Limitation of a Path-name to a Restricted Directory

(Path Traversal).

Figure 5.4. Average number of days between mitigation commit date and CVE
publish date grouped by years

Reaction Times to Security Issues

We analyzed the average number of days elapsing between a mitigation commit date
and the publish date of a CVE entry mentioned in that commit. Figure 5.4 depicts
a general overview of these average number of days per year. We can see that it
takes about 100 days on average for both communities to start mitigating a public
vulnerability in their code-base, with some peaks in years 2010 and 2014 for Python
and 2017 for JavaScript. Therefore, we can conclude that at a very general level, neither
the JavaScript nor the Python communities react fast to appearing vulnerabilities in
their code. It would also be interesting to see if there are reported CVE entries that
are never mitigated in reality, but it would require an entirely different methodology
and could be good for future research.

We also examined the eight most prevalent CWE categories from the same aspect.
The average number of days elapsed between the publish date of a CVE entry and

85

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

the date of its mitigation commit for the top eight CWEs are shown in Figure 5.5.
The Python community reacts 1.5 − 14 times faster to these types of vulnerabilities
than the JavaScript community; most of the mitigation commits appear 50 days or less
after the publish date of the corresponding vulnerabilities. In the case of JavaScript,
only vulnerabilities from three CWE categories enjoy extra care (CWE-20, CWE-200,
CWE-400), all the others are mitigated after at least 100 days.

Figure 5.5. Average number of days between commit date and issue publish date for
the most common CWEs

The JavaScript community reacts exceptionally fast to information exposure (CWE-
200) type vulnerabilities (after only 32.5 days on average), while improper input valida-
tion (CWE-20) and uncontrolled resource consumption (CWE-400) are mitigated after
about 50 days on average. Interestingly, the vulnerabilities falling into the CWE cat-
egories characteristic to Python (CWE-264, CWE-399, and CWE-119) are mitigated
after 200 days or more.

5.4 A Data-Mining Based Study of Security Vul-
nerability Types and their Mitigation in Dif-
ferent Languages

Despite the Software Heritage Graph Dataset offering a huge amount of data, a lot
of information is missing, which we could benefit from in this particular case. To
overcome this, we designed our own data mining approach that – besides mining the
data – calculates several other, useful metrics, such as the line and file changes, or the
number of commits during the fixing of a CVE (the latter one was not used in this
study).

In this section, we present the mining approach we used to gather and process data
from several GitHub projects. First, we present our tools that define our approach,
then we present the results we obtained.

86

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

5.4.1 Approach
We created 3 separate tools that communicate with each other, although they are
designed and implemented to be usable as standalone tools as well. As a preliminary
step, we needed hundreds of input projects, so we used GHTorrent [63] to acquire
repositories that we can mine.

The overview of our approach is depicted in Figure 5.6. The approach we took can
be best explained through the tools we created to collect the necessary information.
We will use the described tools as bullet points to illustrate the flow of the entire study
and the inner workings of the miner program.

Figure 5.6. A schematic representation of our mining process

CVE Manager

CVE Manager6 is the backbone of most statistics and is essential to validating the
found CVE entries. It is a lightweight solution that downloads the CVE data from the
MITRE Corporation’s website 7. We store most of the collected data in a PostgreSQL8

database. The tool is used to query for CVE entries found by the miner and some of
their properties like their id, impact score, severity.

Git Log Parser

The other important tool used by our miner tool is our Git log parser9 solution. It simu-
lates user commands using the Python subprocess module, so that some of GitHub’s
API limitations are bypassed. However, our solution requires the download of the
source code repository (with git clone command, as the script is prepared to mine
local directories for data. The parser first navigates to the path provided by the user
(through command line input), then issues the git log command that lists every com-
mit and their meta-data. It then saves this information into a list that will later be

6https://github.com/gaborantal/cve_manager
7https://www.mitre.org/
8https://www.postgresql.org/about/
9https://github.com/gaborantal/git-log-parser

87

https://github.com/gaborantal/cve_manager
https://github.com/gaborantal/git-log-parser

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

written into a JSON file. This basic data is being extended with the line and file change
information by comparing each commit to its predecessor with the git diff command.

The reports generated by the Git log parser can be useful in a variety of situations
similar to ours, where an external utility needs the logs of a specific git repository. Some
of its results are not used by the miner but are intended for later use, for example, the
parser could check whether a commit is a merge, which is currently ignored in finding
CVEs.

CVE Miner

The main tool is the CVE Miner10, which uses both the CVE Manager and the Git log
parser to create a JSON file and a database entry for each CVE found, and presumably
fixed in the actual repository. Figure 5.6 represents the inner working of the miner and
its interaction with the other tools.

The miner requires some initial setup since the CVE data needs to be downloaded
and inserted into a local PostgreSQL database. This is done in two steps. In the first
step, the data is collected into a local directory (called NVD) from which we can read.
Then, the read data is inserted into the database.

There are multiple ways to start working with the CVE Miner. It can mine from
both local and online sources. These options can be accessed using the command line
interface. When an online source is provided, a directory called “repos” will be created
if it does not already exist, and the given repository will be automatically cloned into it.
Then the CVE Miner will continue as if a local directory had been provided. Multiple
targets can be specified at once using a JSON file and the appropriate command line
argument.

Afterwards, the miner processes the repositories by using the Git Log Parser tool.
After the JSON file is generated, the tool searches for CVE entries in the commits’
messages. If a CVE is mentioned once, the miner assumes that the associated commit
fixes the CVE. If it is mentioned multiple times, it is assumed that the first occurrence
implies that the CVE is found in the code, and any subsequent mentions are the fixes
for that vulnerability. During this process, other data is collected, including but not
limited to the contributors, the number of changed files, and the number of commits
between the finding and fixing of the CVE.

The next step is the calculation of statistics. The miner uses the previously acquired
information to calculate the average time between the commit that found the CVE and
the commit that fixed it. The tool also calculates the correlation between a CVE entry’s
severity and the time needed to fix it.

The last step is to store data. By default, the miner creates a JSON file containing
all the found CVEs and the calculated statistics. If chosen, the tool also uploads it to
an Airtable11 database. We implemented the database upload as a convenience feature,
so that multiple miners can run on multiple computers, while the stored data is being
collected into one single database. Other databases could easily be supported.

Approach Summary

Our main point of interest during this study was the collection of security-related data,
thus a large emphasis has been put on it. We focused mainly on creating useful utilities

10https://github.com/gaborantal/cve-miner
11https://airtable.com/product

88

https://github.com/gaborantal/cve-miner

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

for later research, and we trust we succeeded when it comes to most of the tools created.
We took the approach of looking only for mentions of the text “CVE” in commit

logs as it is a fast solution providing sufficiently good approximation. The best way to
improve current data is of course to collect a much larger amount of it.

5.4.2 Results
In this section, we present our findings. First of all, we needed to select the projects we
want to include in this study. It is mentioned in Section 5.4.1 that we used GHTorrent
to collect repositories. From hundreds of repositories, we manually picked several to
test whether they contain any CVEs at all. If a project did not contain any CVEs, we
dropped it from our list.

Due to our resource and time limitations, we included 5 projects from each language.
Our main constraint was to choose both smaller projects with fewer developers, as well
as larger projects with larger developer communities. Finally, we managed to select 5
projects from each language, in different sizes, and with different purposes.

Time-Based Statistics

Time elapsed between the finding and fixing commit. These statistics can
be interpreted in several ways. First, we address the intended purpose, showing how
much time it takes to fix a CVE entry on average. This is more accurate on projects
on a smaller scale with shorter lifespans since those have a lower chance of having false
fixing claims and reoccurring issues.

Figure 5.7. The average time elapsed between finding and fixing a CVE (in days)

The second way the statistics can be interpreted is, as we mentioned previously, an
indication of reoccurring vulnerabilities. Most of the time a CVE entry is mentioned
in the context where it is claimed to be fixed, which is not surprising since one does
not want to disclose an actual vulnerability in their program before fixing it. Based
on this fact, most of the CVEs should only be mentioned once, when they are getting
fixed. However, this is not the case in most large scale projects. We assume that this
happens because later changes may reintroduce a previously fixed vulnerability, which

89

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

is likely because in larger systems it is a lot harder to foresee every possible outcome a
change might cause. During our manual inspection, we experienced that projects with
a longer code history usually have more reoccurring issues than others.

When it comes to languages, a similar pattern can be observed (as can be seen in
Figure 5.7). The differences are drastic since the scale and age of the analyzed projects
vary. Most of the C++ and Scheme projects we looked at were quite large projects,
hence the reason for their dominance in the chart. Ruby is an outlier, where it is
common that an already fixed vulnerability resurfaces years after the initial fix. The
other reason vulnerabilities in some languages are more prevalent than in the others
also has to do with the fact that larger systems usually do not allow developers to
make changes directly to the working tree; merges that happen later can also increase
this fixing time. This is not an issue since an error being fixed in a branch should not
be considered fixed in the application until it has been merged.

Time elapsed between the publication and fixing of a CVE. The nature of
this result is similar to the previous one, however, it also takes into account the time
each CVE spent in the code unnoticed after its publication. The results are depicted
in Figure 5.8. Most of the languages show similar attributes compared to the previous
chart, however, when it comes to BitBake and Scheme, a clear bump is visible, implying
that it takes longer to come up with the first fix for an issue in programs written in
BitBake and Scheme. We would like to note that BitBake and Scheme are not amongst
the most popular choices nowadays, according to TIOBE Index12. This might also cause
delays in fixing vulnerabilities, as their developer communities are quite small.

Figure 5.8. The average time elapsed between the publication and fixing of a CVE
(in days)

Correlation between time and severity. Figure 5.9 shows the correlation between
the aforementioned statistics and the severity of CVEs. The correlation between the
fixing and the finding of a CVE can be attributed to the difficulty of the issue at hand,
and the thoroughness of the testing.

12https://www.tiobe.com/tiobe-index/

90

https://www.tiobe.com/tiobe-index/

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

Figure 5.9. The correlation between the base score (severity) and time taken fixing
CVEs

The correlation between the publication date of CVEs and the time it took to fix
them shows how prepared developers were when it came to fixing these vulnerabilities.
For example, in the case of Python, the more severe problems were solved quicker than
the other, less severe issues. This might imply that they put a larger emphasis on
getting rid of the more severe issues.

Activity-Based Statistics

Active contributors and commit count during the fixing of a CVE. The
results in Figure 5.10 and Figure 5.11 showcase not only how quickly some issues
might get fixed, but the activity within the project during the process of fixing an
issue. Both charts show activities within the projects. Figure 5.10 presents the number
of contributors who were working on the project between the first and last commit
mentioning the same CVE. As we can see several tens of contributors (e.g. JavaScript,
Scheme) or even more than 100 (Ruby) contributors might work on a codebase in the
period of fixing a single vulnerability.

Figure 5.10. The average number of contributors between the finding and fixing
commit

91

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

Figure 5.11. The average number of commits between the finding and fixing of a
CVE

Table 5.3. Average total code changes

Language Average total lines changed Average total files changed
BitBake 153.25 2.5
Go 123.23 5.69
JavaScript 288.46 4.53
Python 84.16 5.7
Ruby 58.77 4.19

The number of commits in the vulnerability fixing period is depicted in Figure 5.11.
We can see that the highest number of commits during the issue fixing period happens
in Ruby and Scheme (almost 1400) projects. This implicates that a lot of code changes
happen until a security vulnerability is finally fixed.

Average File and Line Changes

The average changes to files and lines show how impactful an average CVE is in each
language. These numbers are of course extremely varied, not only per language but
per project as well, since some might use fewer but longer files to store the same code,
while others might separate code a bit more. They also might only mention CVEs
at larger milestones or merges, making some of the results disorderly high. Table 5.3
shows the average total line and file changes per language upon fixing a CVE.

Most Common CWEs by Language

The usefulness of CWEs. CWEs are a grouping used for CVEs based on the type
of weakness they cause. Knowing which CWE is most common in a language can
be extremely useful when it comes to finding, fixing, and looking out for problems.
This information is also helpful when it comes to trainings, so that companies can
focus on specific areas (of a given language, or a framework) in order to prevent the
vulnerabilities from occurring. This can reduce the time and energy needed to overcome

92

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

certain vulnerabilities, and can improve the code quality.
The data presented in Table 5.4 is of course not entirely indicative of each language

as our scope is very limited, however, it might still be helpful, and give ideas of what
types of security issues should be in focus.

Table 5.4. Most common CWEs per languages

Language CWE Percentage
BitBake CWE-119 21.40%

CWE-125 18.87%
CWE-20 11.74%

C CWE-20 50.00%
CWE-400 25.00%
CWE-125 25.00%

C++ CWE-119 92.39%
CWE-200 5.71%

Java CWE-502 45.00%
CWE-20 20.00%
CWE-200 15.00%

JavaScript CWE-400 15.05%
CWE-20 13.98%
CWE-200 12.90%
CWE-79 7.53%
CWE-119 6.45%
Other13 5.38%

Language CWE Percentage
Go CWE-400 25.00%
Python CWE-20 16.13%

CWE-79 16.13%
CWE-89 9.68%
CWE-200 9.68%
CWE-601 9.68%
CWE-185 6.45%

Ruby CWE-79 26.92%
CWE-20 15.38%
CWE-264 11.54%
CWE-89 9.62%
CWE-22 5.77%
CWE-200 5.77%

Scheme CWE-119 23.49%
CWE-20 8.29%
CWE-125 8.09%
CWE-416 7.70%

As an example, the most common CWE in C++ is CWE-119 14 which is basically
the category for incorrect memory management. An example of a more generic CWE
is CWE-20 15, a possible cause of this is an improper input validation in the code.

For some of the languages with a more diverse set of CWEs, we created Figure 5.12
to visually illustrate the distribution of the most common CWEs.

5.5 Threats to Validity
The main weakness of our results is the limited scale at which we operated. In Sec-
tion 5.3, we used the Software Heritage Graph Dataset, but we only searched for
Python and JavaScript projects. In Section 5.4, we only had the resources to mine a
few repositories for most languages. However, the obtained results were similar to each

13NVD-CWE-Other: the CVEs falling into this category have a non-specified category. However,
it can also happen that the actual CWE group is mentioned in the textual description of a given
CVE (e.g., CVE-2007-0838). We only consider the type that has been set, the descriptions are not
processed.

14https://cwe.mitre.org/data/definitions/119.html
15https://cwe.mitre.org/data/definitions/20.html

93

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/20.html

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

(a) Ruby

(b) BitBake

(c) Scheme

Figure 5.12. Most commons CWEs for Ruby, BitBake, Scheme

94

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

other (in the case of Python and JavaScript). Hence we believe that the scale at which
we operated did not affect the main results.

In Section 5.3, we had to apply heuristics to determine the language of the projects
(as the exact solution would have been practically infeasible due to the database struc-
ture). Due to this, we might have omitted some projects, and we might have also
identified some projects incorrectly. However, as our heuristics are based on widely
established guidelines and best practices that most of the projects follow, the number
of these projects should be minimal.

In Section 5.4, we developed tools to help collect and process data from Git reposi-
tories. The programs we created might contain bugs. We tried to mitigate this problem
by a thorough code review of our developed tools. We also created test suites for all of
our programs that run after every push, so that we can be certain that our program’s
output is never changed unintentionally.

One other major issue stems from the fact that we do not look at the code, but
rely on the commit messages left by the developers. This can be troublesome when it
comes to claiming that issues reappear, since it could be the case that they were never
fixed in the first place. We assume that the last commit at which a CVE is mentioned
is the last time it occurred, and has therefore been fixed. This might not be the case;
it is possible that a fix happened later, but the developer forgot to mention it.

In most of the cases, the committers mention CVE identifiers explicitly, however,
there are unusual references, for example “Fixed XSS (with CVE number 2020-100)”
or “CVE-2020-20500/330/34/345”. Also, there is a chance that a committer mentions
a CVE in a context that is not related to fixing its underlying security issue. In such
cases, we might drop valid vulnerability mitigation commits or include invalid ones.
To estimate the impact of this threat, we manually evaluated more than 800 randomly
selected commit messages from the identified revisions. In the vast majority of the
evaluated cases, the commit messages refer to CVE IDs as we anticipated, thus the
impact of this threat should be minimal.

We also do not account for merges, which can increase the number of lines needed
for a fix. We believe that an issue is not fixed until it is merged into the master branch.
However, if we count the lines in the commit that fixed the issue (commit fixa), and
we also count the same number of lines in a merge commit that merges commit fixa

among others, then the same commit gets taken into account twice, which might not
be indicative of the actual amount of work needed for the solution. In these cases,
we currently just count the lines twice, but this has caused some statistics to be left
out since they portrayed false information because of the practices the developers used
when they merged larger pieces of code at once.

5.6 Summary
In this chapter, we focused on analyzing security issues for several programming lan-
guages, using an already existing dataset, and a dataset we created. We also tried to
determine if there are vulnerability type characteristics of languages.

Using the Software Heritage Graph Dataset, we analyzed the vulnerability mitiga-
tion commits in Python and JavaScript projects from two aspects. On the one hand, we
identified the types of vulnerabilities (in terms of CWE groups) referred to in commit
messages and compared their numbers within the two communities. The percentage of
vulnerability mitigation commits compared to the total number of commits in projects

95

Chapter 5. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

shows a growing tendency (sharper in the case of JavaScript, slower for Python). We
detected 103 different CWE groups out of which 55 appeared in the projects of both
languages. From the eight most prevalent vulnerability types, one was mitigated by
both communities in equal numbers (CWE-200), but four (CWE-20, CWE-22, CWE-
79, CWE-400) was typical to JavaScript, while three (CWE-399, CWE-264, CWE-119)
to Python projects.

On the other hand, we examined the average time elapsing between the publish
date of a vulnerability and the date of the commit mitigating it. We found that in
general, neither the JavaScript nor the Python community reacts very fast to appearing
vulnerabilities (i.e. it takes more than 100 days on average to mitigate a vulnerability
after its publish date). However, this reaction is 1.5-14 times faster in the Python
community for the most common CWE categories (even to the ones more typical to
JavaScript projects), while the JavaScript community only seems to take a special
interest in three CWE categories: CWE-200, CWE-20, and CWE-400.

In Section 5.4 we presented our approach for collecting data to this and similar stud-
ies; we also implemented several useful tools available on GitHub16. Using our tools,
we investigated several vulnerabilities for programming languages that are currently
popular, or were once widely used. We found that even at smaller sample sizes, specific
weaknesses showed a clear trend in most of the languages we studied. For example, in
the case of C++, CWE-119 (memory handling problems) was the most common issue
type that developers faced. This may not surprise those familiar with the language,
but for a new developer, it can be informative and show them what to pay attention to.
A great example of how interesting these findings truly are is Ruby. It is visible that
for Ruby developers, the biggest issue is CWE-79, improper neutralization of inputs 17.
These issues take less effort to fix than others, requiring on average about 60 lines of
code and 4 file changes, however, the same issue might reappear later, as shown in
Figure 5.7. It is also visible that while in Ruby it takes the least amount of lines to fix
an issue, more severe vulnerabilities take longer to get rid of, as seen in Figure 5.9.

In conclusion, each language has its share of common weaknesses, which depend
on a variety of factors, and being cautious of these is important. We also experience
that fixing already published issues takes a great amount of time, even if an issue has
already been noticed; and issues can reappear as time passes.

16https://cveminer.github.io
17https://cwe.mitre.org/data/definitions/79.html

96

https://cveminer.github.io

“Talent is cheaper than table salt. What sepa-
rates the talented individual from the successful
one is a lot of hard work.”

— Stephen King

6
Conclusions

In this thesis, we covered four topics and more than 6 years of research work. The
covered topics include supporting C++ legacy compilation environments while enabling
developers to use newer language standards, revealing the differences between static
JavaScript call graph algorithms, building bug prediction models to predict software
issues in JavaScript functions, and last, but not least, studying the typical security
issue types in several programming languages.

First, we created a solution for supporting legacy compilation environments in C++
projects, meaning that our tool transforms the code that contains a subset of the new
language features defined in C++11, to a functionally equivalent code that can be
compiled with any standard C++03 compiler. We also created a test suite, and tested
our tool on 6 real-world applications. Our results showed that the transformation
framework is capable of transforming projects containing millions of lines of code.

In the field of static JavaScript call graph algorithms, we presented a systematic
comparison of 5 state-of-the-art tools, using both a JavaScript benchmark and several
real-world Node.js modules. We revealed both the similarities and the differences
among the tools, and found that we cannot declare an absolute winner, as each tool
has its strengths and weaknesses. We also showed that the combination of various tools
yields the best results.

In software issue prediction, we presented a comparison of 8 well-known machine
learning algorithms on predicting vulnerable JavaScript functions, using a newly cre-
ated dataset that contains several static source code metrics on function level. As the
results were encouraging, we widened our scope, and extended the feature set with
two hybrid call graph based metrics, Hybrid Number of Outgoing Invocations (HNOI),
and Hybrid Number of Incoming Invocations (HNII), which besides static call edges
also use dynamic (run-time) function invocation information. We also created a hy-
brid call graph framework to ease future researches with hybrid analysis. We did a
comparison of 8 well-known machine learning algorithms on predicting software bugs
in JavaScript functions. We revealed that hybrid invocation-based metrics consistently
improve the performance of the prediction models; depending on the machine learning
algorithms, 2-10% increase in model performances (i.e., precision, recall, F-measure)

97

Chapter 6. Conclusions

can be achieved.
Finally, in the field of studying typical security issue types, we presented our ap-

proach on how to collect the required data from the Software Heritage Graph Dataset,
how one can mine data from any Git repository effectively. We created tools and a
database to help researchers in this field. Our results revealed that there are typical
vulnerability types in programming languages, and the mitigation process takes a lot
more time than we would think. However, as time goes by, the vulnerability fixing
process is getting faster and faster, which is reassuring.

Future Work
In spite of the achieved results, there are several opportunities for future work in all the
topics we mentioned. Supporting legacy environments has its potential; extending our
tool (both to support the C++11 as much as possible, and to support features from
the newer language standards (defined in C++17/C++20)), or using our approach in
other languages (for example, Java) could be very useful.

Our comparative study on static JavaScript call graph algorithms inspired others
to do studies similar to ours [161, 75, 86], to understand the available tools better.
We are currently working on an extension to our study, involving dynamic call graph
construction algorithms, so that we will have a better understanding of how accurate
static call graph tools are; and of the trade-off between using static or dynamic call
graph builders.

Understanding the typical security issues and their mitigation more in different
programming languages can help developers in many ways: we can create educational
materials that can help individuals in becoming more prepared for vulnerabilities; de-
velopers will be more aware of the security issues that might occur in the programming
languages in which they work. In addition, knowing the characteristics of the typical
security issues in a language helps researchers fine-tune their tools and their prediction
models. We also use the gathered knowledge to build more accurate vulnerability pre-
diction models. Our plan is to include as many projects as we can, in order to have a
bigger and better picture of the security issues in a given language.

The field of predicting software issues based on static and/or dynamic analysis
has countless opportunities, especially nowadays. Combining software metrics with
developer metrics or with process metrics has a lot of potential. We could use the
combination of all available metrics to further enhance prediction. As of today, most
of the prediction-related work uses class/file granularity. Quite a few studies deal with
finer granulation, most of them use function-level prediction. Using our presented
methodology to predict issues in other languages (e.g. Python, Ruby) could be very
useful. We plan to extend our methodology to other dynamic languages. Furthermore,
a prediction model that can predict vulnerable source code lines with a low false positive
ratio would greatly facilitate the practical application of such prediction models. We
plan to create a line-based prediction model that can accurately predict issues before
they find their way into the live version of a software. Our preliminary results [113]
are promising, however, there is a huge amount of work left to do in this field.

98

Appendices

99

A
Summary in English

After the outbreak of the new coronavirus, the number of daily cyber-attacks grew by
300%, causing more than 4,000 attacks a day [72]. The cyber-criminals are targeting the
whole populace, including hospitals, researchers, and people who work from home [82,
87].

In this thesis, we focus on topics that emphasize the importance of software quality
and security. First, we propose a solution to support elements defined in C++11
standard in a C++03 environment to enable developers to write less error-prone, more
expressive code. Then, we present our comparative study on static JavaScript call
graphs that demonstrates the similarities and differences between the most popular call
graph construction algorithms. As we assumed, for a highly dynamic language such
as JavaScript, there can be huge differences between the created call graphs. Next,
we present a comparison of 8 well-known machine learning algorithms on predicting
security issues in JavaScript functions. As a preliminary step, we only used static source
code metrics as features. As the results were promising, we extended the scope of the
research: we enhanced our model with invocation metrics coming from a hybrid (both
static and dynamic) analysis based call graph. Finally, we show a study on typical
security issues and their mitigation in open-source projects. The valuable information
we gathered in this topic helps researchers fine-tune their machine learning models, and
helps developers to know the possible vulnerabilities in their code more. The developed
tools can help lead developers choose between open-source libraries.

The results are grouped into four major thesis points. Table A.1 shows the relation
between the supporting publications and the thesis points.

I. Transforming C++11 Code to C++03 to Support Legacy Compilation
Environments
The contributions of this thesis point are discussed in Chapter 2.
Newer technologies (e.g. programming languages, environments, libraries) change
rapidly. However, various internal and external constraints often prevent projects
(and teams) from quickly adapting to these changes. Keeping up to date with
the newer technologies makes the software less error-prone and its performance

101

Appendix A. Summary in English

better, as more and more useful functions and features are being introduced in
each and every change set. Despite this, customers may require specific platform
compatibility from a software vendor, for example.
This thesis point deals with such an issue in the context of the C++ programming
language. An industrial partner of the Department of Software Engineering of
the University of Szeged is required to use Software Development Kits (SDKs)
that only support older C++ language editions. They, however, would like to
allow their developers to use newer language constructs in their code, and of
course, developers are eager to use elements defined in newer standards of C++.
To address this problem, first of all, we did a thorough research, and compared
all of the possible solutions that could be used in this particular case. We found
that using LLVM and clang was the best possible way to implement such a tool.
We designed and implemented a source code transformation framework to auto-
matically backport source code written according to the C++11 standard to its
functionally equivalent C++03 variant. With our framework, developers are free
to exploit a large portion of the latest language features, while the production
code (which is transformed with our framework) is still built by using a restricted
set of available language constructs, thus making it compilable with a standard
C++03 compiler. The tool is designed in such a way that it supports multi-
ple transformations in one run; it runs incrementally (only the changed files are
being transformed), we run the transformations in a specific order, so that mul-
tiple transformation can run in parallel. The transformations we implemented in
our frameworks are: In-class data member initialization; Auto type deduction;
Lambda functions; Attributes; Final and override modifiers; Range-based for
loop; Constructor delegation; Type aliases; Other transformations with limited
functionality. We also evaluated our framework on 4 open-source, and 2 closed-
source industrial projects. We reported the tool’s performance with different
parallelization settings.
Our solution is open-source, and available on GitHub: https://github.com/
sed-szeged/cppbackport.
The Author’s Contributions
The author performed the literature review in the field of code transforming.
He took part in defining the possible transformation scenarios, as well as taking
part in their evaluation. The author designed and implemented the incremental
framework. He designed the database scheme. He took part in implementing the
transformations. The author also took part in the design and implementation of
the test suite. He designed, implemented, and tested the methodology on how to
use the framework as a pre-build step in developers’ environment.

♦ Gábor Antal, Dávid Havas, István Siket, Árpád Beszédes, Rudolf Ferenc,
and József Mihalicza. Transforming C++11 Code to C++03 to Support
Legacy Compilation Environments In Proceedings of the IEEE 16th Inter-
national Working Conference on Source Code Analysis and Manipulation
(SCAM 2016), Raleigh, NC, USA. Pages 177–186, IEEE, October, 2016.

II. A Comparative Study on Static JavaScript Call Graph Algorithms
The contributions of this thesis point are discussed in Chapter 3.

102

https://github.com/sed-szeged/cppbackport
https://github.com/sed-szeged/cppbackport

Appendix A. Summary in English

The popularity and wide adoption of JavaScript both at the client and server
side makes its code analysis more important than ever before. Most of the algo-
rithms for vulnerability analysis, coding issue detection, or type inference rely on
the call graph representation of the underlying program. Despite some obvious
advantages of dynamic analysis, static algorithms should also be considered for
call graph construction, as they do not require extensive test beds for programs;
or their costly execution and tracing.

We systematically compared five widely adopted static algorithms – implemented
by the npm call graph, IBM WALA, Google Closure Compiler, Approximate Call
Graph (ACG), and Type Analyzer for JavaScript tools (TAJS) – for building
JavaScript call graphs on 26 WebKit SunSpider benchmark programs and on 6
real-world Node.js modules. We provided a performance analysis as well as a
quantitative and qualitative evaluation of the results.

Our findings include that there was a relatively large intersection of the found call
edges among the algorithms, which proved to be 100% precise. However, most
of the tools found edges that were missed by all others. ACG had the highest
precision followed immediately by TAJS, but ACG found significantly more call
edges. As for the combination of tools, ACG and TAJS together covered 99%
of the found true edges by all algorithms, while maintaining a precision as high
as 98%. Unfortunately, only two of the tools were able to analyze up-to-date
multi-file Node.js modules due to incomplete language feature support. They
agreed on almost 60% of the call edges, but each of them found valid edges that
the other missed.

The Author’s Contributions

The author did the research work in order to find the candidate tools and algo-
rithms. He participated in designing the methodology. The author modified the
tools in order to extract call graphs. He was also the developer of the format con-
verter tool. Selecting the Node.js modules, and creating artificial large examples
to stress test the tools were also his work. He took part in evaluating the results,
and in their manual validation. He devised the methodology for the performance
measurement, as well as conducting the performance analysis.

♦ Gábor Antal, Péter Hegedűs, Zoltán Tóth, Rudolf Ferenc, and Tibor Gy-
imóthy. Static JavaScript Call Graphs: A Comparative Study. In Proceed-
ings of the 2018 IEEE 18th International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 177–186, IEEE, Sep. 2018

∗ Distinguished Research Paper Award

III. Combining Static and Dynamic Code Analysis with Machine Learning
to Detect Software Issues in JavaScript Programs
The contributions of this thesis point are discussed in Chapter 4.

Issue prediction aims at finding source code elements in a software system that
are likely to contain defects. Being aware of the most error-prone parts of the
program, one can efficiently allocate the limited amount of testing and code
review resources.

103

Appendix A. Summary in English

In this thesis point, we proposed two prediction models using different datasets
and different features to predict software issues. We investigated how the state-of-
the-art machine learning techniques, including a popular deep learning algorithm,
perform in predicting functions with defects, such as possible bugs or vulnerabil-
ities in JavaScript functions.

We applied 8 machine learning algorithms to build prediction models using a new
dataset that we constructed for this research. We used static source code metrics
as predictors and an extensive grid-search algorithm to find the best performing
models. We also examined the effect of various re-sampling strategies to han-
dle the imbalanced nature of the dataset. The best performing algorithm was
KNN, with an F-measure of 0.76. Moreover, deep learning, tree, and forest-based
classifiers, and SVM were competitive, with F-measures over 0.70. Although the
F-measures did not vary significantly with the re-sampling strategies, the distri-
bution of precision and recall did change.

We also proposed a function level JavaScript bug prediction model based on
static source code metrics with the addition of hybrid (static and dynamic) code
analysis based metrics of the number of incoming and outgoing function calls
(HNII and HNOI). Our motivation for this is that JavaScript is a highly dynamic
scripting language for which static code analysis might be very imprecise (as we
have already seen in the case of call graphs), therefore, using purely static source
code features for a prediction task might not be enough. We created a hybrid call
graph analysis framework that analyzes the source code with various static and
dynamic tools. We extracted 824 buggy and 1943 non-buggy functions from the
publicly available BugsJS dataset [68] for the ESLint JavaScript project. We can
confirm the positive impact of hybrid code metrics on the prediction performance
of the ML models. Depending on the ML algorithm, applied hyper-parameters,
and target measure we consider, hybrid invocation metrics bring a 2-10% increase
in model performances (i.e., precision, recall, F-measure). Interestingly, replacing
static NOI and NII metrics with their hybrid counterparts HNOI and HNII in
itself improve model performances, however, using them all together yields the
best results.

The created vulnerability dataset is available online: https://inf.u-szeged.
hu/~ferenc/papers/JSVulnerabilityDataSet, while the framework is avail-
able on GitHub: https://github.com/sed-szeged/hcg-js-framework.

The Author’s Contributions

The author participated in designing the methodology of this study. The liter-
ature review of the field was also done by the author. He took a major part in
implementing the data collecting and merging tools. He also took part in the
manual evaluation process. The design and the implementation of the hybrid
call graph analysis framework were mainly the author’s work. Creating the dif-
ferent feature sets was done by the author, He took part in the evaluation of the
machine learning models’ results.

♦ Rudolf Ferenc, Péter Hegedűs, Péter Gyimesi, Gábor Antal, Dénes Bán,
and Tibor Gyimóthy. Challenging machine learning algorithms in predicting
vulnerable JavaScript functions. In Proceedings of the 2019 IEEE/ACM

104

https://inf.u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet
https://inf.u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet
https://github.com/sed-szeged/hcg-js-framework

Appendix A. Summary in English

7th International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE 2019), pages. 8-14, IEEE, May 28, 2019

♦ Gábor Antal, Zoltán Tóth, Péter Hegedűs and Rudolf Ferenc. Enhanced
Bug Prediction in JavaScript Programs with Hybrid Call-Graph Based In-
vocation Metrics. In Technologies 9, no. 1: 3, MDPI.

IV. Studying Typical Security Issues and Their Mitigation in Open-Source
Projects

The contributions of this thesis point are discussed in Chapter 5.

Software security is undoubtedly a major concern in today’s software engineering.
Although the level of awareness of security issues is often high, practical expe-
riences show that neither preventive actions nor reactions to possible issues are
always addressed properly in reality. By analyzing large quantities of commits
in the open-source communities, we can categorize the vulnerabilities mitigated
by the developers and study their distribution, resolution time, etc. to learn and
improve security management processes and practices. Moreover, understanding
the typical vulnerabilities in programming languages helps researchers fine tune
their machine learning models in predicting vulnerable software components.

In this thesis point, we used two different databases to mine vulnerability data.
With the help of the Software Heritage Graph Dataset, we investigated the com-
mits of two of the most popular script languages, Python and JavaScript. We
distinguished the types of vulnerabilities (in terms of CWE groups) referred to
in commit messages and compared their numbers within the two communities.
We examined the average time elapsing between the publish date of a vulnera-
bility and the first reference to it in a commit. We found that there is a large
intersection in the vulnerability types mitigated by the two communities, but
the most prevalent vulnerabilities are specific to language. Moreover, neither
the JavaScript nor the Python community reacts very fast to appearing secu-
rity vulnerabilities in general with only a couple of exceptions for certain CWE
groups.

We also created several tools to help mine data needed for this and similar studies.
We used these tools and showcased their capability of collecting data; we mined
the most popular GitHub repositories and created our own database, which is
publicly available. Our goal was to find out if there are common patterns within
the most widely used programming languages in terms of security issues and
fixes. We found that the same security issues might appear differently in different
languages, and as such the provided solutions may vary just as much. We also
found that projects with similar sizes can produce extremely different results, and
have different common weaknesses, even if they provide a solution to the same
task. These statistics may not be entirely indicative of the projects’ standards
when it comes to security, but they provide a good reference point of what one
should expect.

The created tools and the dataset is available on GitHub: https://cveminer.
github.io.

The Author’s Contributions

105

https://cveminer.github.io
https://cveminer.github.io

Appendix A. Summary in English

The author devised the basic concepts of the study. He created and implemented
the approach of mining data from the Software Heritage Graph Dataset and
merging the results with the CVE/CWE data. Moreover, he laid the foundations
for the implementation of the published, open-source tools. He also lead the
further development of the tools. Merging and evaluating the results were done
by the author. He took part in the manual validation of the results.

♦ Gábor Antal, Márton Keleti, and Péter Hegedűs. Exploring the Secu-
rity Awareness of the Python and JavaScript Open Source Communities.
In Proceedings of the 17th International Conference on Mining Software
Repositories (MSR ’20). Association for Computing Machinery (ACM),
New York, NY, USA, 16–20.

♦ Gábor Antal, Balázs Mosolygó, Norbert Vándor and Péter Hegedűs A
Data-Mining Based Study of Security Vulnerability Types and Their Mitiga-
tion in Different Languages. In Proceedings of the International Conference
on Computational Science and Its Applications (ICCSA 2020), Published
in Lecture Notes in Computer Science (LNCS), vol 12252. Springer, Cham,
page 1019-1034, Cagliari, Italy, July 1-4, 2020.

Table A.1 summarizes the main publications and how they relate to our thesis points.

№ [164] [165] [169] [168] [166] [167]
I. ♦

II. ♦

III. ♦ ♦

IV. ♦ ♦

Table A.1. Thesis contributions and supporting publications

106

B
Magyar nyelvű összefoglaló

Az új típusú koronavírus kitörését követően a kibertámadások száma naponta 300%-
kal növekedett meg, így több, mint 4000 támadást követnek el minden nap [72]. A
kiberbűnözők könyörtelenül célbavesznek mindenkit, beleértve a kórházakat, kutatókat,
és az otthonról dolgozó embereket is [82, 87].

Ebben a disszertációban olyan témakörökre összpontosítunk, amelyek a szoftvermi-
nőség és szoftverbiztonság fontosságát hangsúlyozzák ki. Legelőször bemutatunk egy
megoldást, amely segítségével több C++11 szabvány-beli elemet támogathatunk, szab-
ványos C++03 környezetben. Ezt követően bemutatjuk összehasonlító vizsgálatunkat
a statikus JavaScript hívási gráfok témakörében, amely bemutatja a népszerűbb hívási
gráf építő algoritmusok közötti hasonlóságokat és különbségeket. Megmutattuk, hogy
egy olyan rendkívül dinamikus nyelv esetében, mint a JavaScript, jelentős különbségek
lehetnek az elkészült hívási gráfokban. Ezután bemutatjuk eredményeinket JavaScript-
függvények biztonsági hibáinak előrejelzésében, amelyhez 8 jól ismert gépi tanulási
algoritmust hasonlítottunk össze. Első lépésként csak statikus forráskód-metrikákat
használtunk jellemzőként. Mivel biztató eredményeket kaptunk, kibővítettük a kuta-
tásunk témakörét: bővítettük a modellünket hibrid (statikus és dinamikus) elemzésen
alapuló hívási gráfból származó hívási metrikákkal. Végezetül pedig bemutatjuk a nyílt
forrású rendszereken végzett tipikus sérülékenységekről és azok javításáról szóló tanul-
mányunkat. A témában összegyűjtött értékes információk segíthetnek a kutatóknak a
gépi tanulási modellek finomhangolásában, a fejlesztőknek pedig abban, hogy jobban
megismerjék a kódjukban lévő lehetséges sebezhetőségeket.

Az eredményeket négy tézispontba csoportosítottuk. A tézispontokhoz tartozó pub-
likációkat a B.1. táblázat foglalja össze.

I. C++11 kód átalakítása C++03-ra örökölt fordítási környezetek támo-
gatása érdekében
A tézisponthoz tartozó eredményeket a 2. fejezet tárgyalja.
Az újabb technológiák (pl.: programozási nyelvek, környezetek, függvénykönyv-
tárak) gyorsan változnak. Azonban különböző belső és külső megszorítások gyak-
ran megakadályozzák, hogy a projektek (és fejlesztői csapatok) alkalmazkodjanak

107

B. függelék. Magyar nyelvű összefoglaló

ezekhez a változásokhoz. Ha naprakészek maradunk az újabb technológiákkal, ak-
kor a szoftvereink kevésbé lesznek hibaérzékenyek, míg a teljesítményük javulni
fog, mivel minden egyes frissítés számos új szolgáltatást nyújthat. Ennek ellenére
előfordulhat, hogy az ügyfelek számára fontos az, hogy bizonyos platformokkal
kompatibilis legyen az elkészült szoftver.

Jelen tézispont ezzel a problémával foglalkozik, a C++ programozási nyelv vo-
natkozásában. A Szegedi Tudományegyetem Szoftverfejlesztés Tanszékének egyik
ipari partnere olyan fejlesztőkészleteket köteles használni, amelyek csak a C++
nyelv egy korábbi kiadását támogatják. A cég azonban szeretné lehetővé tenni a
fejlesztők számára, hogy újabb nyelvi elemeket is használhassanak a kódjukban,
és természetesen a fejlesztők is szívesen használnák a C++ újabb szabványait.

A probléma megoldásához először is alapos kutatást végeztünk, és összehason-
lítottuk a jelen esetben használható lehetséges megoldásokat. Megterveztünk és
megvalósítottunk egy olyan forráskód-transzformációs keretrendszert az LLVM
és clang infrastruktúrán alapulva, amely képes a C++11 szabvány szerint írt
forráskódot automatikusan átalakítani egy, az eredetivel funkcionálisan egyen-
értékű C++03 szabvány szerinti kódra. A keretrendszerünkkel a fejlesztőknek
kihasználhatják az újabb nyelvi szabvány jelentős részét, miközben a termék éles
(keretrendszerünkkel átalakított) változatának forráskódja továbbra is fordítható
szabványos C++03 fordítóval. Az eszközt úgy terveztük meg, hogy egy prog-
ramfutás során több transzformációt is képes legyen végrehajtani; támogatja az
inkrementális futtatást (mindig csak az előző transzformáció óta módosult fáj-
lok kerülnek átalakításra), a transzformációkat meghatározott sorrendben futtat-
juk, így több transzformáció is képes párhuzamos futni. A keretrendszerünkben
megvalósított transzformációk: Osztálydeklarációban történő adattag inicializá-
lás; Fordításidejű típus következtetés (auto kulcsszó); Lambda függvények; Attri-
bútumok; Final és override kulcsszavak; Intervallum-alapú számláló ciklus (for);
Konstruktor delegálás; Típus elnevezés; Kísérleti jelleggel megvalósított transz-
formációk. A keretrendszerünket 4 nyílt és 2 zárt forráskódú ipari rendszeren is
kiértékeltük. Bemutattuk az eszközünk teljesítményét különböző párhuzamosítási
beállításokkal.

A megvalósításunk nyílt forráskódú és szabadon elérhető a GitHubon: https:
//github.com/sed-szeged/cppbackport.

A szerző hozzájárulása

A disszertáció szerzője végezte el a kódtranszformációval kapcsolatos szakiroda-
lom feldolgozását. A szerző részt vett a lehetséges transzformációs forgatóköny-
vek meghatározásában, valamint azok kiértékelésében. Az inkrementalitást és
transzformációfuttatást biztosító keretrendszert is a szerző készítette. Az adat-
bázissémát is ő tervezte meg. A transzformációs algoritmusok megvalósításában
is aktívan részt vett. A szerző részt vett a teszteléshez szükséges keretrendszer
és az általa futtatott tesztek megtervezésében és megvalósításában. Megtervezte,
megvalósította és tesztelte azt a módszertant, amellyel a keretrendszer pre-build
lépésként integrálható a fejlesztési folyamatokba.

♦ Gábor Antal, Dávid Havas, István Siket, Árpád Beszédes, Rudolf Ferenc,
and József Mihalicza. Transforming C++11 Code to C++03 to Support

108

https://github.com/sed-szeged/cppbackport
https://github.com/sed-szeged/cppbackport

B. függelék. Magyar nyelvű összefoglaló

Legacy Compilation Environments In Proceedings of the IEEE 16th Inter-
national Working Conference on Source Code Analysis and Manipulation
(SCAM 2016), Raleigh, NC, USA. Pages 177–186, IEEE, October, 2016.

II. Statikus JavaScript hívási gráf építő algoritmusok összehasonlítása
A tézisponthoz tartozó eredményeket a 3. fejezet tárgyalja.
A JavaScript népszerűsége és széles körű elterjedtsége a kliens- és a szerverolda-
lon, minden eddiginél fontosabbá teszi az elemzését. A forráskódból kinyerhető
hívási gráf számos sérülékenységvizsgáló programnak, kódolási szabálysértés el-
lenörzőnek, valamint típuskövetkeztető algoritmusnak az alapja. A dinamikus
elemzés nyújtotta előnyök ellenére a statikus elemzés is megfontolandó, ha hívási
gráf építésről van szó, ugyanis a statikus hívási gráf készítéséhez nem szükséges
a program idő- és erőforrásigényes futtatása.
Összehasonlítottunk öt széles körben elterjedt statikus hívási gráf készítő algo-
ritmust, amelyeket az npm call graph, IBM WALA, Google Closure Compiler,
Approximate Call Graph (ACG), és a Type Analyzer for JavaScript (TAJS) esz-
közök valósítanak meg. Az összehasonlítást az eszközök által 26 WebKit SunS-
pider benchmark programon és 6 valós, nyílt forrású ipari Node.js rendszeren
végeztük el. Elemeztük az eszközök teljesítményét, valamint elvégeztük az ered-
mények mennyiségi és minőségi kiértékelését.
Megállapítottuk, hogy az algoritmusok által megtalált hívási élek között viszony-
lag nagy átfedés van, ezek 100%-ban valós élek. A legtöbb eszköz azonban olyan
éleket is talált, amelyet semelyik másik eszköz sem. Az ACG volt a legpontosabb,
amelyet a TAJS követett, de az ACG lényegesen több hívási élt talált. Ami az
eszközök kombinációját illeti, az ACG és a TAJS együttesen az összes algorit-
mus által talált valódi hívási élek 99%-át találta meg, 98%-os pontosság mellett.
Sajnos csak két eszköz volt képes elemezni a több fájlból álló, modern Node.js
projekteket, mivel a többi eszköz nem támogatta az újabb nyelvi elemeket. A
hívási élek 60%-ban megegyeztek a két program által készített hívási gráfokban,
de mindkét eszköz talált olyan valós hívási éleket, melyeket a másik eszköz nem.
A szerző hozzájárulása
A szerző kutatta fel a lehetséges hívási gráf készítő eszközöket. A szerző aktívan
részt vett a kutatás módszertanának megtervezésében. Az eszközök módosítá-
sát is a szerző végezte el a hívási gráfok kinyerésének érdekében. Ő készítette
el az eszközök kimenetét egységes formátumra konvertáló eszközt is. A Node.js
modulok kiválasztása és az eszközök stresszteszteléséhez szükséges mestersége-
sen létrehozott nagy példák elkészítése is a szerző munkája volt. A disszertáció
szerzője részt vett az eredmények kiértékelésében is, valamint azok manuális vali-
dációjában is. A szerző dolgozta ki a performanciamérés módszertanát, valamint
annak elvégzése is a szerző saját munkája.

♦ Gábor Antal, Péter Hegedűs, Zoltán Tóth, Rudolf Ferenc, and Tibor Gyi-
móthy Static JavaScript Call Graphs: A Comparative Study. In Proceedings
of the 2018 IEEE 18th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 177–186, Sep. 2018

∗ Distinguished Research Paper Award

109

B. függelék. Magyar nyelvű összefoglaló

III. Statikus és dinamikus kódelemzés ötvözése gépi tanulással a JavaScript
programok hibáinak felderítésére
A tézisponthoz tartozó eredményeket a 4. fejezet tárgyalja.
A hiba-előrejelző rendszerek célja, hogy megtalálják a szoftverrendszer azon része-
it, amelyek valószínűleg hibát tartalmaznak. A program leginkább hibaérzékeny
részeinek ismeretében hatékonyabban eloszthatjuk a korlátozott mennyiségben
rendelkezésre álló tesztelési és kód review erőforrásokat.
Ebben a tézispontban két előrejelzési modellt készítettünk a szoftverproblémák
előrejelzésére, melyek különböző adathalmazokon és különböző jellemzőkkel dol-
goznak. Megvizsgáltuk, hogy a legkorszerűbb gépi tanulási technikák (köztük
egy népszerű mélytanuló algoritmus) hogyan teljesítenek JavaScript függvények
lehetséges sérülékenységeinek, valamint hibáinak előrejelzésében.
8 gépi tanulási algoritmust használtunk hiba előrejelzési modellek készítésére
egy új, jelen kutatáshoz készített adathalmaz felhasználásával. Statikus forrás-
kód metrikákat használtunk prediktorként és mindenre kiterjedő grid-search al-
goritmust használtunk a legjobban teljesítő modellek megtalálásának céljából.
Az adathalmaz kiegyensúlyozatlanságának kezelésére megvizsgáltuk a különbö-
ző újramintavételezési (re-sampling) stratégiák hatását is. A legjobban teljesítő
algoritmus a KNN volt, 0.76-os F-mértékkel (F-measure). Továbbá, a mélytanu-
lás, a döntési fa, az erdő-alapú osztályozók, és az SVM is versenyképes volt, 0.70
feletti F-mértékkel. Annak ellenére, hogy az F-mértékek nem változtak jelentő-
sen az újramintavételezési stratégiák változtatásával, a pontosság és fedés értékek
változtak.
Továbbá megvalósítottunk egy függvény-szintű hiba-előrejelző modellt, amely Ja-
vaScript függvényekben található általános szoftverhibákat képes előrejelezni; eh-
hez a statikus forráskód metrikákon kívül bővítettük a jellemzők halmazát hibrid
(statikus és dinamikus) kódelemzésen alapuló hívási metrikákkal (HNII (hibrid
bejövő függvényhívások száma), HNOI (hibrid kimenő függvényhívások száma)).
Mivel a JavaScript rendkívül dinamikus szkriptnyelv, így a statikus kódelemzé-
si módszerek pontatlanok lehetnek. Ebből kifolyólag a pusztán statikus forrás-
kódjellemzők használata a hiba-előrejelzési feladatokra nem biztos, hogy elegen-
dő. Létrehoztunk egy hibrid hívásigráf-elemző keretrendszert, amely a forráskó-
dot különböző statikus és dinamikus eszközökkel elemzi. Tanulmányunk alapján,
amelyben az ESLint projekt 824 hibás és 1943 nem hibás függvényét választottuk
ki a nyilvánosan elérhető BugsJS adathalmazból [68], megerősíthetjük a hibrid
kódmetrikák pozitív hatását a modellek előrejelzési teljesítményére. A tanulóalgo-
ritmustól, az alkalmazott hiperparaméterektől, valamint a vizsgált célmetrikától
függően a hibrid hívási metrikák 2-10% javulást hoznak a modellek teljesítmé-
nyében. Érdekes módon, a statikus NOI és NII metrikák helyettesítése hibrid
megfelelőikkel már önmagában javítja a modellek teljesítményét, azonban a leg-
jobb eredményt az összes metrika együttes használata adja.
A létrehozott sérülékenység adathalmaz nyilvánosan elérhető: http://www.inf.
u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet/, míg a megvalósított
keretrendszer a GitHubon található:
https://github.com/sed-szeged/hcg-js-framework.
A szerző hozzájárulása

110

http://www.inf.u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet/
http://www.inf.u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet/
https://github.com/sed-szeged/hcg-js-framework

B. függelék. Magyar nyelvű összefoglaló

A szerző részt vett a tanulmány módszertanának kialakításában. A szakterület
irodalmának feldolgozása is a szerző munkája. Jelentős részt vállalt az adatgyűjtő
és összevonó rendszer megtervezésében és kialakításában. A szerző részt vett a
manuális kiértékelésben is. A hibrid hívási gráf elemzési keretrendszer megtervezé-
se és megvalósítása főként a szerző munkája volt. A különböző jellemzőhalmazok
kialakítása a szerző munkája. A gépi tanulási modellek eredményeinek kiértéke-
lésében a szerző aktívan részt vett.

♦ Rudolf Ferenc, Péter Hegedűs, Péter Gyimesi, Gábor Antal, Dénes Bán,
and Tibor Gyimóthy Challenging machine learning algorithms in predicting
vulnerable JavaScript functions. In Proceedings of the 2019 IEEE/ACM
7th International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE 2019), pages. 8-14, IEEE, May 28, 2019

♦ Gábor Antal, Zoltán Tóth, Péter Hegedűs and Rudolf Ferenc. Enhan-
ced Bug Prediction in JavaScript Programs with Hybrid Call-Graph Based
Invocation Metrics. In Technologies 9, no. 1: 3, MDPI.

IV. Tipikus biztonsági hibák és javításuk vizsgálata nyílt forrású rendsze-
rekben
A tézisponthoz tartozó eredményeket az 5. fejezet tárgyalja.
A szoftverbiztonság kétségtelenül napjaink egyik legfontosabb szempontja a szoft-
verfejlesztés területén. Annak ellenére, hogy a biztonsági sérülékenységekre gyak-
ran nagyon ügyelnek a fejlesztők, a gyakorlat azt mutatja, hogy egy lehetséges
hibára sem a megelőző, sem pedig a reakciós lépéseket sem feltétlenül hajtják
végre helyesen. A nyílt forrású fejlesztőközösségek nagy mennyiségű commitjának
elemzésével kategorizálhatjuk a fejlesztők által javított sebezhetőségeket, és ta-
nulmányozhatjuk azok eloszlását, javítási idejét, és további jellemzőket a bizton-
ságkezelési folyamatok és gyakorlatok megismerése és javítása érdekében. Ezen-
kívül a programozási nyelvek jellemző sérülékenységeinek megértése segítheti a
kutatókat a sérülékenységeket előrejelző gépi tanulási modelleik finomhangolásá-
ban. Ebben a tézispontban két különböző adatbázist használtunk a sérülékenységi
adatok bányászatához.
A Software Heritage Graph Dataset segítségével megvizsgáltuk két népszerű
szkriptnyelv, a Python és a JavaScript projektjeinek commitjait. Megvizsgáltuk a
commit-üzenetben említett sérülékenységek típusait (a CWE csoportok szerint)
és összehasonlítottuk ezek számát a két közösségen belül. Megvizsgáltuk, az átla-
gosan eltelt időt egy sérülékenység publikálása és a commitokban való első hivat-
kozása között. Megállapítottuk, hogy a két közösség által javított sérülékenységtí-
pusok között nagy átfedés van, de a leggyakoribb sebezhetőségtípusok jellemzőek
egy adott nyelvre. Általánosságban elmondható, hogy egyik közösség nem reagál
túl gyorsan a biztonsági problémákra. Azonban mindkét nyelv esetében találha-
tunk kivételeket, vagyis olyan CWE csoportokat, amikre a közösség gyorsabban
reagál, mint más típusú sérülékenységekre. Létrehoztunk több eszközt, amelyek
segítik a jelen és az ehhez hasonló tanulmányokhoz szükséges adatok bányásza-
tát. Az általunk fejlesztett eszközök képességeit is bemutattuk; adatbányászat
segítségével a legnépszerűbb GitHub repository-k felhasználásával létrehoztuk a
saját adatbázisunkat, amely publikusan elérhető. Célunk az volt, hogy kiderít-
sük, vannak-e közös minták a programozási nyelveken belül a sérülékenységek

111

B. függelék. Magyar nyelvű összefoglaló

és javításuk tekintetében. Megállapítottuk, hogy ugyanazok a sérülékenységek
különböző nyelvekben másképp jelenhetnek meg, így azok megoldási módja is
eltérhet. Azt is megállapítottuk, hogy hasonló méretű projektek rendkívül eltérő
eredményeket produkálhatnak, és különbözhetnek a jellemző sérülékenységtípu-
sok még akkor is, ha a szoftverek ugyanarra a problémára nyújtanak megoldást.
Habár ezek a statisztikák nem feltétlenül tükrözik teljes mértékben a projektek
színvonalát a biztonság tekintetében, de jó kiindulási pontot nyújthatnak ahhoz,
hogy mire lehet számítani egy adott projekt esetében.
A létrehozott eszközök és az adathalmaz elérhető a GitHubon: https://cveminer.
github.io.
A szerző hozzájárulása
A disszertáció szerzője dolgozta ki a tanulmány alapvető koncepcióját. A Software
Heritage Graph Dataset adatainak bányászata és az eredmények CVE/CWE ada-
tokkal való összevonása is a szerző saját munkája. Ezenkívül ő fektette le a nyílt
forrású adatbányászati eszközök megvalósításának alapjait. Az eszközök tovább-
fejlesztéséért is a szerző volt felelős. Az eredmények kiértékelése is főként a szerző
munkája. Az eredmények kézi validálásában is aktívan részt vett a disszertáció
szerzője.

♦ Gábor Antal, Márton Keleti, and Péter Hegedűs. Exploring the Security
Awareness of the Python and JavaScript Open Source Communities. In
Proceedings of the 17th International Conference on Mining Software Re-
positories (MSR ’20). Association for Computing Machinery (ACM), New
York, NY, USA, 16–20.

♦ Gábor Antal, Balázs Mosolygó, Norbert Vándor and Péter Hegedűs A
Data-Mining Based Study of Security Vulnerability Types and Their Mitiga-
tion in Different Languages. In Proceedings of the International Conference
on Computational Science and Its Applications (ICCSA 2020), Published
in Lecture Notes in Computer Science (LNCS), vol 12252. Springer, Cham,
page 1019-1034, Cagliari, Italy, July 1-4, 2020.

№ [164] [165] [169] [168] [166] [167]
I. ♦

II. ♦

III. ♦ ♦

IV. ♦ ♦

B.1. táblázat. A tézispontokhoz kapcsolódó publikációk

112

https://cveminer.github.io
https://cveminer.github.io

Acknowledgement

Large part of the results of this dissertation were obtained in the SETIT Project (2018-
1.2.1-NKP-2018-00004)1.

The research was supported by the Ministry of Innovation and Technology NRDI
Office within the framework of the Artificial Intelligence National Laboratory Program
(MILAB).

1Project no. 2018-1.2.1-NKP-2018-00004 has been implemented with the support provided from
the National Research, Development and Innovation Fund of Hungary, financed under the 2018-1.2.1-
NKP funding scheme.

113

Bibliography

[1] The callgraphjs tool. https://github.com/asgerf/callgraphjs.dart. Ac-
cessed: 2018-10-16.

[2] The code2flow tool. https://github.com/scottrogowski/code2flow. Ac-
cessed: 2018-10-16.

[3] escomplex - GitHub. https://github.com/escomplex/escomplex. Accessed:
2018-10-16.

[4] Espruino Website. https://www.espruino.com/. Accessed: 2018-10-16.

[5] Facebook Flow tool. https://github.com/facebook/flow. Accessed: 2018-10-
16.

[6] GitHub octoverse website. https://octoverse.github.com. Accessed: 2018-
10-16.

[7] Node Security Platform - GitHub. https://github.com/nodesecurity/nsp.
Accessed: 2018-10-16.

[8] OpenStaticAnalyzer - GitHub. https://github.com/sed-inf-u-szeged/
OpenStaticAnalyzer. Accessed: 2021-04-29.

[9] Sunspider 1.0.2 benchmark. https://github.com/WebKit/webkit/tree/
master/PerformanceTests/SunSpider/tests/sunspider-1.0.2. Accessed:
2018-10-16.

[10] The JavaScript Explorer Callgraph tool. https://github.com/
shrivastava-apurva/Javascript-Explorer---Callgraph. [Online; ac-
cessed 04-February-2020].

[11] The v8 javascript engine website. https://v8.dev. [Online; accessed 29-April-
2021].

[12] Vulnerability DB | Snyk. https://snyk.io/vuln. Accessed: 2018-10-16.

[13] Partial list of publications that rely on the WALA. http://wala.sourceforge.
net/wiki/index.php/Publications, 2018. Accessed: 2018-10-16.

[14] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: a system for large-scale machine learning. In OSDI, volume 16, pages
265–283, 2016.

115

https://github.com/asgerf/callgraphjs.dart
https://github.com/scottrogowski/code2flow
https://github.com/escomplex/escomplex
https://www.espruino.com/
https://github.com/facebook/flow
https://octoverse.github.com
https://github.com/nodesecurity/nsp
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
https://github.com/WebKit/webkit/tree/master/PerformanceTests/SunSpider/tests/sunspider-1.0.2
https://github.com/WebKit/webkit/tree/master/PerformanceTests/SunSpider/tests/sunspider-1.0.2
https://github.com/shrivastava-apurva/Javascript-Explorer---Callgraph
https://github.com/shrivastava-apurva/Javascript-Explorer---Callgraph
https://v8.dev
https://snyk.io/vuln
http://wala.sourceforge.net/wiki/index.php/Publications
http://wala.sourceforge.net/wiki/index.php/Publications

Bibliography

[15] Ibrahim Abunadi and Mamdouh Alenezi. Towards cross project vulnerability
prediction in open source web applications. In Proceedings of the The Interna-
tional Conference on Engineering MIS 2015, ICEMIS ’15, New York, NY, USA,
2015. Association for Computing Machinery.

[16] Gerald Aigner and Urs Hölzle. ECOOP ’96 — Object-Oriented Programming:
10th European Conference Linz, Austria, July 8–12, 1996 Proceedings, chapter
Eliminating virtual function calls in C++ programs, pages 142–166. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1996.

[17] Karim Ali and Ondřej Lhoták. Application-Only Call Graph Construction. In
James Noble, editor, ECOOP 2012 – Object-Oriented Programming, pages 688–
712, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[18] Yasser Ali Alshehri, Katerina Goseva-Popstojanova, Dale G Dzielski, and
Thomas Devine. Applying machine learning to predict software fault prone-
ness using change metrics, static code metrics, and a combination of them. In
SoutheastCon 2018, pages 1–7. IEEE, 2018.

[19] Ross Anderson, Chris Barton, Rainer Böhme, Richard Clayton, Michel J. G.
van Eeten, Michael Levi, Tyler Moore, and Stefan Savage. Measuring the Cost
of Cybercrime, pages 265–300. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[20] Gábor Antal, Zoltán Gábor Tóth, Péter Hegedűs, and Rudolf Ferenc. Enhanced
Bug Prediction in JavaScript Programs with Hybrid Call-Graph Based Invocation
Metrics (Training Dataset), November 2020.

[21] ASF+SDF meta-environment. http://www.meta-environment.org/. Accessed:
2016-06-21.

[22] Otto Skrove Bagge, Magne Haveraaen, and Eelco Visser. CodeBoost: A frame-
work for the transformation of C++ programs. Technical report, 2001.

[23] Victor R Basili, Forrest Shull, and Filippo Lanubile. Building knowledge through
families of experiments. IEEE Transactions on Software Engineering, 25(4):456–
473, 1999.

[24] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. A
study of the behavior of several methods for balancing machine learning training
data. SIGKDD Explor. Newsl., 6(1):20–29, June 2004.

[25] Mihai Bazon. UglifyJS. 2016. Accessed: 2018-10-16.

[26] K. Bennett. Legacy systems: coping with success. IEEE Software, 12(1):19–23,
Jan 1995.

[27] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms
for hyper-parameter optimization. In Advances in neural information processing
systems, pages 2546–2554, 2011.

116

http://www.meta-environment.org/

Bibliography

[28] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos. Graph-based Analy-
sis and Prediction for Software Evolution. In 2012 34th International Conference
on Software Engineering (ICSE), pages 419–429, June 2012.

[29] David Binkley, Henry Feild, Dawn Lawrie, and Maurizio Pighin. Increasing
diversity: Natural language measures for software fault prediction. Journal of
Systems and Software, 82(11):1793–1803, 2009.

[30] Matt Bishop. Introduction to computer security, volume 50. Addison-Wesley
Boston, 2005.

[31] François Bodin, Peter Beckman, Dennis Gannon, Jacob Gotwals, Srinivas
Narayana, Suresh Srinivas, and Beata Winnicka. Sage++: An Object-Oriented
Toolkit and Class Library for Building Fortran and C++ Restructuring Tools.
In In The second annual object-oriented numerics conference (OON-SKI, pages
122–136, 1994.

[32] Michael Bolin. Closure: The Definitive Guide: Google Tools to Add Power to
Your JavaScript. " O’Reilly Media, Inc.", 2010.

[33] Cagatay Catal, Akhan Akbulut, Sašo Karakatič, Miha Pavlinek, and Vili Pod-
gorelec. Can we predict software vulnerability with deep neural network? In
Conference: Conference: 19th International Multiconference INFORMATION
SOCIETY - IS 2016, At Ljubljana, Slovenia, 10 2016.

[34] Cagatay Catal and Banu Diri. A systematic review of software fault prediction
studies. Expert systems with applications, 36(4):7346–7354, 2009.

[35] Kyriakos C. Chatzidimitriou, Michail D. Papamichail, Themistoklis Diaman-
topoulos, Michail Tsapanos, and Andreas L. Symeonidis. Npm-miner: An in-
frastructure for measuring the quality of the npm registry. In Proceedings of the
15th International Conference on Mining Software Repositories, MSR ’18, pages
42–45, New York, NY, USA, 2018. ACM.

[36] Ajay Chawla. Coronavirus (covid-19)–‘zoom’application boon or bane. Available
at SSRN 3606716, 2020.

[37] X. Cheng, H. Wang, J. Hua, M. Zhang, G. Xu, L. Yi, and Y. Sui. Static detection
of control-flow-related vulnerabilities using graph embedding. In 2019 24th Inter-
national Conference on Engineering of Complex Computer Systems (ICECCS),
pages 41–50, 2019.

[38] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented
design. IEEE Transactions on software engineering, 20(6):476–493, 1994.

[39] Istehad Chowdhury and Mohammad Zulkernine. Using complexity, coupling,
and cohesion metrics as early indicators of vulnerabilities. Journal of Systems
Architecture, 57(3):294–313, 2011.

[40] Clang Tools. https://github.com/llvm-mirror/clang-tools-extra. Ac-
cessed: 2016-04-17.

117

https://github.com/llvm-mirror/clang-tools-extra

Bibliography

[41] Michael L Collard, Jonathan I Maletic, and Brian P Robinson. A lightweight
transformational approach to support large scale adaptive changes. In Soft-
ware Maintenance (ICSM), 2010 IEEE International Conference on, pages 1–10.
IEEE, 2010.

[42] Common Vulnerabilities and Exposures. https://cve.mitre.org/, 2020. Ac-
cessed: 2020-02-04.

[43] Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why and how to
preserve software source code. In iPRES 2017-14th International Conference on
Digital Preservation, pages 1–10, 2017.

[44] Dario Di Nucci, Fabio Palomba, Giuseppe De Rosa, Gabriele Bavota, Rocco
Oliveto, and Andrea De Lucia. A developer centered bug prediction model.
IEEE Transactions on Software Engineering, 44(1):5–24, 2018.

[45] J Dijkstra. Evaluation of Static JavaScript Call Graph Algorithms. PhD thesis,
Software Analysis and Transformation, 2014.

[46] Mikhail Dmitriev. Profiling Java Applications Using Code Hotswapping and
Dynamic Call Graph Revelation. SIGSOFT Softw. Eng. Notes, 29(1):139–150,
January 2004.

[47] DMS software reengineering toolkit by Semantic Designs. https://www.
semanticdesigns.com/Products/DMS/DMSToolkit.html. Accessed: 2016-06-
21.

[48] EDG C++ Front End. https://www.edg.com/c. Accessed: 2016-04-17.

[49] Frank Eichinger, Klemens Böhm, and Matthias Huber. Mining Edge-Weighted
Call Graphs to Localise Software Bugs. In Machine Learning and Knowledge
Discovery in Databases, pages 333–348, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[50] Frank Eichinger, Victor Pankratius, Philipp WL Große, and Klemens Böhm.
Localizing Defects in Multithreaded Programs by Mining Dynamic Call Graphs.
In Testing–Practice and Research Techniques, pages 56–71. Springer, 2010.

[51] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Aiding Program Com-
prehension by Static and Dynamic Feature Analysis. In Proceedings of the IEEE
International Conference on Software Maintenance (ICSM’01), page 602. IEEE
Computer Society, 2001.

[52] Allen F. Interprocedural Data Flow Analysis. In Information Processing 74 (Soft-
ware), pages 398–402. North-Holland Publishing Co., Amsterdam, The Nether-
lands, 1974.

[53] Asger Feldthaus, Todd Millstein, Anders Møller, Max Schäfer, and Frank Tip.
Tool-supported Refactoring for JavaScript. SIGPLAN Not., 46(10):119–138, Oc-
tober 2011.

118

https://cve.mitre.org/
https://www.semanticdesigns.com/Products/DMS/DMSToolkit.html
https://www.semanticdesigns.com/Products/DMS/DMSToolkit.html
https://www.edg.com/c

Bibliography

[54] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip.
Efficient Construction of Approximate Call Graphs for JavaScript IDE Services.
In Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pages 752–761, Piscataway, NJ, USA, 2013. IEEE Press.

[55] Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy. Colum-
bus – Reverse Engineering Tool and Schema for C++. In Proceedings of the 18th
International Conference on Software Maintenance (ICSM’02), pages 172–181.
IEEE Computer Society, October 2002.

[56] Rudolf Ferenc, Tamás Viszkok, Tamás Aladics, Judit Jász, and Péter Hegedűs.
Deep-water framework: The swiss army knife of humans working with machine
learning models. SoftwareX, 12:100551, 2020.

[57] Javed Ferzund, Syed Nadeem Ahsan, and Franz Wotawa. Analysing bug pre-
diction capabilities of static code metrics in open source software. In Software
Process and Product Measurement, pages 331–343. Springer, 2008.

[58] Stephen Fink and Julian Dolby. WALA–The TJ Watson Libraries for Analysis,
2012.

[59] Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. Large-scale
vulnerability analysis. In Proceedings of the 2006 SIGCOMM Workshop on Large-
Scale Attack Defense, LSAD ’06, page 131–138, New York, NY, USA, 2006.
Association for Computing Machinery.

[60] Evgeny Gavrin, Sung-Jae Lee, Ruben Ayrapetyan, and Andrey Shitov. Ultra
lightweight javascript engine for internet of things. In Companion Proceedings of
the 2015 ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity, pages 19–20, 2015.

[61] Antonios Gkortzis, Dimitris Mitropoulos, and Diomidis Spinellis. VulinOSS: a
dataset of security vulnerabilities in open-source systems. In Proceedings of the
15th International Conference on Mining Software Repositories, pages 18–21.
ACM, 2018.

[62] GCC, the GNU Compiler Collection. https://gcc.gnu.org/. Accessed: 2016-
04-24.

[63] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR ’13, pages 233–236,
Piscataway, NJ, USA, 2013. IEEE Press.

[64] Rinkaj Goyal, Pravin Chandra, and Yogesh Singh. Impact of interaction in the
combined metrics approach for fault prediction. Software Quality Professional,
15(3), 2013.

[65] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A Call
Graph Execution Profiler. SIGPLAN Not., 17(6):120–126, June 1982.

[66] David Gray, David Bowes, Neil Davey, Yi Sun, and Bruce Christianson. Using the
support vector machine as a classification method for software defect prediction

119

https://gcc.gnu.org/

Bibliography

with static code metrics. In International Conference on Engineering Applications
of Neural Networks, pages 223–234. Springer, 2009.

[67] David Philip Harry Gray. Software defect prediction using static code metrics:
formulating a methodology. 2013.

[68] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Árpád
Beszédes, Rudolf Ferenc, and Ali Mesbah. BugsJS: a benchmark of javascript
bugs. In Proceedings of 12th IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 90–101, 2019.

[69] Sonia Haiduc, Venera Arnaoudova, Andrian Marcus, and Giuliano Antoniol. The
use of text retrieval and natural language processing in software engineering. In
Proceedings of the 38th International Conference on Software Engineering Com-
panion, pages 898–899, 2016.

[70] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. Bug prediction based on
fine-grained module histories. In 2012 34th international conference on software
engineering (ICSE), pages 200–210. IEEE, 2012.

[71] Include What You Use. http://include-what-you-use.org/. Accessed: 2016-
04-17.

[72] Internet Crime Complaint Center (IC3) of US Federal Bureau of Investigation and
United States of America. Internet Crime Report 2020. https://www.ic3.gov,
2020. Accessed: 2021-04-29.

[73] ISO/IEC 14882:2003 - Programming languages – C++. http://www.iso.org/
iso/catalogue_detail.htm?csnumber=38110. Accessed: 2016-04-23.

[74] ISO/IEC 14882:2011 - Information technology – Programming languages –
C++. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=50372. Accessed: 2016-04-23.

[75] Judit Jász, István Siket, Edit Pengő, Zoltán Ságodi, and Rudolf Ferenc. System-
atic comparison of six open-source java call graph construction tools. 2019.

[76] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type Analysis for
Javascript. In International Static Analysis Symposium, pages 238–255. Springer,
2009.

[77] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type Analysis for
JavaScript. In Proc. 16th International Static Analysis Symposium (SAS), volume
5673 of LNCS. Springer-Verlag, August 2009.

[78] Matthieu Jimenez, Yves Le Traon, and Mike Papadakis. Enabling the Conti-
nous Analysis of Security Vulnerabilities with VulData7. In IEEE International
Working Conference on Source Code Analysis and Manipulation, pages 56–61,
2018.

[79] JSON Compilation Database Format Specification. http://clang.llvm.org/
docs/JSONCompilationDatabase.html. Accessed: 2016-04-23.

120

http://include-what-you-use.org/
https://www.ic3.gov
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38110
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38110
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://clang.llvm.org/docs/JSONCompilationDatabase.html
http://clang.llvm.org/docs/JSONCompilationDatabase.html

Bibliography

[80] René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A Database of
existing faults to enable controlled testing studies for Java programs. In ISSTA
2014, Proceedings of the 2014 International Symposium on Software Testing and
Analysis, pages 437–440, San Jose, CA, USA, July 2014. Tool demo.

[81] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gib-
bons, John Sarracino, Ben Wiedermann, and Ben Hardekopf. JSAI: A Static
Analysis Platform for JavaScript. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014,
pages 121–132, New York, NY, USA, 2014. ACM.

[82] Navid Ali Khan, Sarfraz Nawaz Brohi, and Noor Zaman. Ten deadly cyber
security threats amid covid-19 pandemic, May 2020.

[83] Joris Kinable and Orestis Kostakis. Malware Classification Based on Call Graph
Clustering. Journal in computer virology, 7(4):233–245, 2011.

[84] Olaf Krzikalla, Kim Feldhoff, Ralph Müller-Pfefferkorn, and Wolfgang E. Nagel.
Euro-Par 2011: Parallel Processing Workshops: CCPI, CGWS, HeteroPar,
HiBB, HPCVirt, HPPC, HPSS, MDGS, ProPer, Resilience, UCHPC, VHPC,
Bordeaux, France, August 29 – September 2, 2011, Revised Selected Papers, Part
II, chapter Scout: A Source-to-Source Transformator for SIMD-Optimizations,
pages 137–145. Springer Berlin Heidelberg, 2012.

[85] D. Kuhn, Mohammad Raunak, and Raghu Kacker. An analysis of vulnerability
trends, 2008-2016. pages 587–588, 07 2017.

[86] S. Kummita, G. Piskachev, J. Späth, and E. Bodden. Qualitative and quantita-
tive analysis of callgraph algorithms for python. In 2021 International Conference
on Code Quality (ICCQ), pages 1–15, 2021.

[87] Harjinder Singh Lallie, Lynsay A. Shepherd, Jason R.C. Nurse, Arnau Erola,
Gregory Epiphaniou, Carsten Maple, and Xavier Bellekens. Cyber security in
the age of covid-19: A timeline and analysis of cyber-crime and cyber-attacks
during the pandemic. Computers & Security, 105:102248, 2021.

[88] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. SAFE:
Formal Specification and Implementation of a Scalable Analysis Framework for
ECMAScript. In FOOL 2012: 19th International Workshop on Foundations of
Object-Oriented Languages, page 96. Citeseer, 2012.

[89] Jusuk Lee, Kyoochang Jeong, and Heejo Lee. Detecting metamorphic malwares
using code graphs. In Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, page 1970–1977, New York, NY, USA, 2010. Association
for Computing Machinery.

[90] Sang-Ik Lee, Troy A. Johnson, and Rudolf Eigenmann. Languages and Compilers
for Parallel Computing (LCPC 2003), TX, USA, October 2-4, 2003. Revised
Papers, chapter Cetus – An Extensible Compiler Infrastructure for Source-to-
Source Transformation, pages 539–553. Springer Berlin Heidelberg, 2004.

121

Bibliography

[91] Ond Lhoták et al. Comparing Call Graphs. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engi-
neering, pages 37–42. ACM, 2007.

[92] Frank Li and Vern Paxson. A large-scale empirical study of security patches.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, page 2201–2215, New York, NY, USA, 2017.
Association for Computing Machinery.

[93] Lianfa Li and Hareton Leung. Mining static code metrics for a robust prediction
of software defect-proneness. In 2011 International Symposium on Empirical
Software Engineering and Measurement, pages 207–214. IEEE, 2011.

[94] LLVM C Backend. https://github.com/draperlaboratory/llvm-cbe. Ac-
cessed: 2016-04-17.

[95] LLVM clang compiler infrastructure. http://clang.llvm.org. Accessed: 2016-
04-17.

[96] Lech Madeyski and Marian Jureczko. Which process metrics can significantly
improve defect prediction models? an empirical study. Software Quality Journal,
23(3):393–422, 2015.

[97] Magnus Madsen, Benjamin Livshits, and Michael Fanning. Practical Static Anal-
ysis of Javascript Applications in the Presence of Frameworks and Libraries. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineer-
ing, pages 499–509. ACM, 2013.

[98] Alberto Magni, Christophe Dubach, and Michael F. P. O’Boyle. A Large-scale
Cross-architecture Evaluation of Thread-coarsening. In Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’13, pages 11:1–11:11, New York, NY, USA, 2013. ACM.

[99] Ruchika Malhotra. A systematic review of machine learning techniques for soft-
ware fault prediction. Applied Soft Computing, 27:504 – 518, 2015.

[100] Marangoni, Matthew, Wischgoll, and Thomas. Paper: Togpu: Automatic Source
Transformation from C++ to CUDA using Clang/LLVM. Electronic Imaging,
2016(1):1–9, 2016-02-14T00:00:00.

[101] Carl Lawrence Mariano. Benchmarking JavaScript Frameworks. PhD thesis,
Dublin Institute of Technology, 2017.

[102] Robert C. Martin. The Clean Coder: A Code of Conduct for Professional Pro-
grammers. Prentice Hall Press, Upper Saddle River, NJ, USA, 1st edition, 2011.

[103] Fabio Massacci and Viet Hung Nguyen. Which is the right source for vulnera-
bility studies? an empirical analysis on mozilla firefox. In Proceedings of the 6th
International Workshop on Security Measurements and Metrics, MetriSec ’10,
New York, NY, USA, 2010. Association for Computing Machinery.

122

https://github.com/draperlaboratory/llvm-cbe
http://clang.llvm.org

Bibliography

[104] Wes McKinney et al. Pandas: a Foundational Python Library for Data Analysis
and Statistics. Python for High Performance and Scientific Computing, 14(9),
2011.

[105] Nancy R Mead, Julia H Allen, Mark Ardis, Thomas B Hilburn, Andrew J Ko-
rnecki, Richard Linger, and James McDonald. Software assurance curriculum
project volume 1: Master of software assurance reference curriculum. Techni-
cal report, CARNEGIE-MELLON UNIV. PITTSBURGH PA SOFTW. ENG.
INST., 2010.

[106] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring system.
IEEE Security Privacy, 4(6):85–89, 2006.

[107] Ralph C Merkle. A digital signature based on a conventional encryption function.
In Conference on the theory and application of cryptographic techniques, pages
369–378. Springer, 1987.

[108] Scott Meyers. Effective Modern C++: 42 Specific Ways to Improve Your Use of
C++11 and C++14. O’Reilly Media, Inc., 1st edition, 2014.

[109] József Mihalicza. Analysis and Methods for Supporting Generative Metaprogram-
ming in Large Scale C++ Projects. PhD thesis, Eötvös Loránd University, 2014.

[110] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Efficient Javascript Muta-
tion Testing. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, pages 74–83, March 2013.

[111] MITRE Corporation. CWE - Common Weakness Enumeration. https://cwe.
mitre.org/, 2020. [Online; accessed 29-April-2020].

[112] Patrick Morrison, Kim Herzig, Brendan Murphy, and Laurie A. Williams. Chal-
lenges with applying vulnerability prediction models. In HotSoS, 2015.

[113] B. Mosolygó, N. Vándor, G. Antal, P. Hegedűs, and R. Ferenc. Towards a pro-
totype based explainable javascript vulnerability prediction model. In 2021 In-
ternational Conference on Code Quality (ICCQ), pages 15–25, 2021.

[114] M. Mossienko. Automated cobol to java recycling. In Seventh European Con-
ference onSoftware Maintenance and Reengineering, 2003. Proceedings., pages
40–50, 2003.

[115] Nuthan Munaiah and Andrew Meneely. Beyond the attack surface: Assessing
security risk with random walks on call graphs. In SPRO ’16, 2016.

[116] Gail C. Murphy, David Notkin, William G. Griswold, and Erica S. Lan. An
Empirical Study of Static Call Graph Extractors. ACM Trans. Softw. Eng.
Methodol., 7(2):158–191, April 1998.

[117] Vincenzo Musco, Martin Monperrus, and Philippe Preux. A large scale study
of call graph-based impact prediction using mutation testing. Software Quality
Journal, 25, 07 2016.

123

https://cwe.mitre.org/
https://cwe.mitre.org/

Bibliography

[118] LLB Muthuppalaniappan, Menaka and Kerrie Stevenson. Healthcare cyber-
attacks and the COVID-19 pandemic: an urgent threat to global health. In-
ternational Journal for Quality in Health Care, 33(1), 09 2020. mzaa117.

[119] Jaechang Nam. Survey on software defect prediction. Department of Compter
Science and Engineerning, The Hong Kong University of Science and Technology,
Tech. Rep, 2014.

[120] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller.
Predicting vulnerable software components. In Proceedings of the ACM Confer-
ence on Computer and Communications Security, pages 529–540, 01 2007.

[121] Viet Hung Nguyen and Le Minh Sang Tran. Predicting vulnerable software
components with dependency graphs. In Proceedings of the 6th International
Workshop on Security Measurements and Metrics, page 3. ACM, 2010.

[122] Modules | Node.js v13.7.0 Documentation. https://nodejs.org/api/modules.
html#modules_folders_as_modules, 2020. Accessed: 2020-02-04.

[123] National Vulnerability Database. https://nvd.nist.gov/, 2020. Accessed:
2020-02-04.

[124] Juan C. Oliveros. VENNY. An interactive tool for comparing lists with Venn
diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html.

[125] Edit Pengő and Péter Gál. Grasping primitive enthusiasm - approaching prim-
itive obsession in steps. In Proceedings of the 13th International Conference on
Software Technologies (ICSOFT), pages 423–430, 2018.

[126] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. The software heritage
graph dataset: Public software development under one roof. In MSR 2019: The
16th International Conference on Mining Software Repositories, pages 138–142.
IEEE, 2019.

[127] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. The Software Heritage
Graph Dataset: Large-scale analysis of public software development history. In
MSR 2020: The 17th International Conference on Mining Software Repositories.
IEEE, 2020.

[128] Mark Pilgrim and Simon Willison. Dive Into Python 3, volume 2. Springer, 2009.

[129] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2005.

[130] Michael Pradel, Parker Schuh, and Koushik Sen. Typedevil: Dynamic Type
Inconsistency Analysis for Javascript. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE ’15, pages 314–324, Pis-
cataway, NJ, USA, 2015. IEEE Press.

[131] Sanjeev Kumar Punia, Anuj Kumar, and Amit Sharma. Evaluation the quality of
software design by call graph based metrics. Global Journal of Computer Science
and Technology, 2014.

124

https://nodejs.org/api/modules.html#modules_folders_as_modules
https://nodejs.org/api/modules.html#modules_folders_as_modules
https://nvd.nist.gov/

Bibliography

[132] K Punitha and S Chitra. Software defect prediction using software metrics-a
survey. In 2013 International Conference on Information Communication and
Embedded Systems (ICICES), pages 555–558. IEEE, 2013.

[133] Python Package Index. https://pypi.org/, 2020. Accessed: 2020-02-04.

[134] Packaging and distributing projects - Python Packaging User Guide. https:
//packaging.python.org/tutorials/packaging-projects, 2020. Accessed:
2020-02-04.

[135] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. Soft-
ware fault prediction metrics: A systematic literature review. Information and
software technology, 55(8):1397–1418, 2013.

[136] Abhijit Rao and Steven J Steiner. Debugging From a Call Graph, January 22
2013. US Patent 8,359,584.

[137] Mozilla Rhino. JavaScript for Java. http://www.mozilla.org/rhino, 2018.
Accessed: 2018-10-16.

[138] ROSE compiler infrastructure. http://rosecompiler.org/. Accessed: 2016-
06-21.

[139] B. G. Ryder. Constructing the call graph of a program. IEEE Transactions on
Software Engineering, SE-5(3):216–226, 1979.

[140] M. Shahzad, M. Z. Shafiq, and A. X. Liu. A Large Scale Exploratory Analysis
of Software Vulnerability Life Cycles. In Proceedings of the 34th International
Conference on Software Engineering (ICSE), pages 771–781, June 2012.

[141] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne. Evalu-
ating complexity, code churn, and developer activity metrics as indicators of soft-
ware vulnerabilities. IEEE Trans. Softw. Eng., 37(6):772–787, November 2011.

[142] Yonghee Shin and Laurie Williams. An empirical model to predict security vul-
nerabilities using code complexity metrics. In Proceedings of the Second ACM-
IEEE international symposium on Empirical software engineering and measure-
ment, pages 315–317. ACM, 2008.

[143] Yonghee Shin and Laurie A. Williams. Can traditional fault prediction models
be used for vulnerability prediction? Empirical Software Engineering, 18:25–59,
2011.

[144] Shivkumar Shivaji, E James Whitehead, Ram Akella, and Sunghun Kim. Reduc-
ing features to improve code change-based bug prediction. IEEE Transactions
on Software Engineering, 39(4):552–569, 2012.

[145] Miltiadis Siavvas, Dionisis Kehagias, and Dimitrios Tzovaras. A preliminary
study on the relationship among software metrics and specific vulnerability types.
In 2017 International Conference on Computational Science and Computational
Intelligence – Symposium on Software Engineering (CSCI-ISSE), 12 2017.

125

https://pypi.org/
https://packaging.python.org/tutorials/packaging-projects
https://packaging.python.org/tutorials/packaging-projects
http://www.mozilla.org/rhino
http://rosecompiler.org/

Bibliography

[146] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes
induce fixes? In Proceedings of the 2005 International Workshop on Mining Soft-
ware Repositories, MSR ’05, page 1–5, New York, NY, USA, 2005. Association
for Computing Machinery.

[147] H. M. Sneed. Migrating from cobol to java. In 2010 IEEE International Confer-
ence on Software Maintenance, pages 1–7, 2010.

[148] Stratego/XT program transformation language. http://strategoxt.org/. Ac-
cessed: 2016-06-21.

[149] Sudo vulnerability in macOS. https://www.techradar.com/news/
linux-and-macos-pcs-hit-by-serious-sudo-vulnerability, 2020. [Online;
accessed 04-February-2020].

[150] Brian J Sullivan. Method and apparatus for converting cobol to java, Septem-
ber 17 2002. US Patent 6,453,464.

[151] Installing Encore (Symfony Docs). https://symfony.
com/doc/current/frontend/encore/installation.html#
installing-encore-in-non-symfony-applications, 2020. [Online; ac-
cessed 04-February-2020].

[152] The TXL programming language. http://www.txl.ca/. Accessed: 2016-06-21.

[153] Mario Linares Vásquez, Gabriele Bavota, and Camilo Escobar-Velasquez. An
empirical study on android-related vulnerabilities. Proceedings of the IEEE/ACM
14th International Conference on Mining Software Repositories (MSR), pages 2–
13, 2017.

[154] Ju An Wang and Minzhe Guo. Vulnerability categorization using bayesian net-
works. In Proceedings of the Sixth Annual Workshop on Cyber Security and
Information Intelligence Research, CSIIRW ’10, New York, NY, USA, 2010. As-
sociation for Computing Machinery.

[155] Shiyi Wei and Barbara G Ryder. Practical blended taint analysis for javascript.
In Proceedings of the 2013 International Symposium on Software Testing and
Analysis, pages 336–346. ACM, 2013.

[156] Tim Weil and San Murugesan. It risk and resilience-cybersecurity response to
covid-19. IT Prof., 22(3):4–10, 2020.

[157] FrankWilcoxon, SK Katti, and Roberta AWilcox. Critical values and probability
levels for the wilcoxon rank sum test and the wilcoxon signed rank test. Selected
tables in mathematical statistics, 1:171–259, 1970.

[158] Tao Xie and David Notkin. An Empirical Study of Java Dynamic Call Graph
Extractors. University of Washington CSE Technical Report 02-12, 3, 2002.

[159] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song. Spain: Security patch
analysis for binaries towards understanding the pain and pills. In Proceedings of
the IEEE/ACM 39th International Conference on Software Engineering (ICSE),
pages 462–472, May 2017.

126

http://strategoxt.org/
https://www.techradar.com/news/linux-and-macos-pcs-hit-by-serious-sudo-vulnerability
https://www.techradar.com/news/linux-and-macos-pcs-hit-by-serious-sudo-vulnerability
https://symfony.com/doc/current/frontend/encore/installation.html#installing-encore-in-non-symfony-applications
https://symfony.com/doc/current/frontend/encore/installation.html#installing-encore-in-non-symfony-applications
https://symfony.com/doc/current/frontend/encore/installation.html#installing-encore-in-non-symfony-applications
http://www.txl.ca/

Bibliography

[160] Jeff Younker. Foundations of agile Python development. Apress, 2009.

[161] L. Yu. Empirical study of python call graph. In 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages 1274–1276,
2019.

[162] Zhe Yu, Christopher Theisen, Hyunwoo Sohn, Laurie Williams, and Tim Men-
zies. Cost-aware vulnerability prediction: the HARMLESS approach. CoRR,
abs/1803.06545, 2018.

[163] Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. Search-
ing for a needle in a haystack: Predicting security vulnerabilities for windows
vista. In 2010 Third International Conference onSoftware Testing, Verification
and Validation (ICST), pages 421–428. IEEE, 2010.

127

Bibliography

Corresponding Publications of the Author

[164] G. Antal, D. Havas, I. Siket, Á. Beszédes, R. Ferenc, and J. Mihalicza. Trans-
forming c++11 code to c++03 to support legacy compilation environments. In
2016 IEEE 16th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 177–186, 2016.

[165] G. Antal, P. Hegedus, Z. Tóth, R. Ferenc, and T. Gyimóthy. Static javascript
call graphs: A comparative study. In 2018 IEEE 18th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 177–186,
Sep. 2018.

[166] Gábor Antal, Márton Keleti, and Péter Hegedűs. Exploring the security aware-
ness of the python and javascript open source communities. In Proceedings of the
17th International Conference on Mining Software Repositories, MSR ’20, page
16–20, New York, NY, USA, 2020. Association for Computing Machinery.

[167] Gábor Antal, Balázs Mosolygó, Norbert Vándor, and Péter Hegedűs. A data-
mining based study of security vulnerability types and their mitigation in dif-
ferent languages. In International Conference on Computational Science and Its
Applications, pages 1019–1034. Springer, 2020.

[168] Gábor Antal, Zoltán Tóth, Péter Hegedűs, and Rudolf Ferenc. Enhanced bug
prediction in javascript programs with hybrid call-graph based invocation met-
rics. Technologies, 9(1):3, 2021.

[169] R. Ferenc, P. Hegedűs, P. Gyimesi, G. Antal, D. Bán, and T. Gyimóthy. Challeng-
ing machine learning algorithms in predicting vulnerable javascript functions. In
2019 IEEE/ACM 7th International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE), pages 8–14, 2019.

128

	Preface
	Introduction
	Structure of the dissertation

	Transforming C++11 Code to C++03 to Support Legacy Compilation Environments
	Overview
	Related Work
	Approach
	Source Code Transformation Framework
	Source code transformation
	Incrementality
	Operation of the Transformation Framework
	First analysis
	Tracing the transformed code back to the original one

	Transformation Catalog
	In-class data member initialization
	Auto type deduction
	Lambda functions
	Attributes
	Final and override modifiers
	Range-based for loop
	Constructor delegation
	Type aliases

	Evaluation
	Functional testing
	Performance testing

	Limitations
	Summary

	A Comparative Study on Static JavaScript Call Graph Algorithms
	Overview
	Related Work
	Approach
	Overview of the study process
	Call graph extraction tools
	Comparison subjects
	Output format
	Graph comparison
	Manual evaluation
	Performance measurement

	Results
	Quantitative analysis
	Qualitative analysis
	Performance analysis
	Discussion of the results.

	Threats to Validity
	Summary

	Combining Static and Dynamic Code Analysis with Machine Learning to Detect Software Issues in JavaScript Programs
	Overview
	Related Work
	Issue prediction using software metrics
	Issue prediction using call graphs

	Vulnerability Prediction with Static Source Code Metrics Only
	Approach
	Results

	Enhancing Bug Prediction with Hybrid Call-Graphs
	Approach
	Results

	Threats to Validity
	Summary

	Studying Typical Security Issues and Their Mitigation in Open-Source Projects
	Overview
	Related Work
	Exploring the Security Awareness of the Python and JavaScript Open Source Communities Using The Software Heritage Graph Dataset
	The Software Heritage Graph Dataset
	Approach
	Results

	A Data-Mining Based Study of Security Vulnerability Types and their Mitigation in Different Languages
	Approach
	Results

	Threats to Validity
	Summary

	Conclusions
	Appendices
	Summary in English
	Magyar nyelvű összefoglaló

	Bibliography

