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1 Introduction 

It is broadly accepted, that chirality is a universal phenomenon and chirality at the 

molecular level plays an essential role in biological systems. In this context, proteins, peptides, 

canonical amino acids (except glycine), saccharides, enzymes, and many metabolites are chiral 

products being present in living organisms. Under “chiral conditions” (e.g., in a living 

organism), enantiomeric compounds may behave in different ways. They may differ in their 

type and range of biological effects as well as their utilization, distribution, metabolism, etc. It 

is well established that pharmacological activity is mostly restricted to one of the enantiomers 

(eutomer). In several cases, unwanted side effects or even toxic effects may occur with the 

inactive enantiomer (distomer). Even if the side effects are not that drastic, the inactive 

enantiomer has to be metabolized; this, however, represents an unnecessary burden for the 

organism. An example of this is thalidomide, which was introduced as a sedative drug and 

painkiller in the late of 1950s. Another example is amphetamine, where the S-(+)-isomer is a 

few times more potent in central nervous system stimulation than R-(–)-amphetamine. The 

latter, in turn, is slightly more potent in the peripheral system, for example, in cardiovascular 

action. The administration of pure, pharmacologically active enantiomers is therefore of great 

importance. Therefore, regulatory authorities in Europe (EMA), USA (FDA), and Japan 

(PMDA) nowadays impose strict guidelines for the commercialization of chiral drug 

substances. Enantioselective identification and quantification methods should be developed for 

each active pharmaceutical ingredient with chiral properties. In addition, pharmacokinetic and 

toxicological assays should be executed with both pure enantiomers and racemates. Based on 

these fundamental findings, the life science industry has to pay attention to chirality-related 

phenomena when developing, e.g., biologically active chiral pharmacons. 

The separation of enantiomers is among the more challenging chromatographic 

modalities due to the fact that conventional strategies employed to separate achiral analytes are 

ineffective when applied to enantiomers. Chromatographic methods, including gas 

chromatography (GC), thin-layer chromatography (TLC), capillary electrophoresis (CE), 

capillary electrochromatography (CEC), supercritical fluid chromatography (SFC), and high-

performance liquid chromatography (HPLC) are the most popular techniques. Researchers have 

explored various column screening methods to reduce method development time, and they 

utilized smaller particle sizes of fully porous particles (FPPs) and superficially porous particles 

(SPPs) to improve efficiencies and analysis times, which are typical constraints in enantiomeric 

separations. The last quarter of the century has seen a vast growth of diverse chiral technologies, 



2 
 

including stereocontrolled synthesis and enantioselective separation and analysis concept. As 

the introduction of effective, new classes of chiral selectors has slowed, other important factors 

such as efficiency and analysis time have started to garner attention from the chromatography 

community. 

Recently, SFC has become an alternative technique to HPLC for routine applications in 

enantioresolution of pharmaceutical compounds, because it may offer several advantages over 

HPLC in certain circumstances, including improved resolution, faster separations, and higher 

throughput. These benefits arise from the characteristics of supercritical fluids (SCFs), which 

are considered green mobile phases. Characteristic features are limited environmental impact, 

low disposal costs, reduced consumption of toxic solvents and additives, lack of toxicity (in 

most cases), residue-free removal of the solvent from the extract and the raffinate, and the 

ability to recover the solvent almost completely. The reduction in the use of organic solvents 

results in cost, health, and safety benefits, and faster, cleaner sample recovery during 

experimental procedures. Moreover, SFC is suitable for non-polar pharmaceuticals but cannot 

be applied to very polar compounds. However, the addition of an organic modifier into the 

mobile phase (possibly, with the addition of a third component at low concentration) may afford 

elution of polar drugs. Furthermore, compression of solvents requires elaborate recycling 

measures to reduce energy costs and high capital investment for equipments. 

 

1.1 The aim of this work 

The primary aim of this work was to develop chiral separation methods for 19 Nα-Fmoc-

protected protein amino acids on Cinchona alkaloid-based zwitterionic and anion-exchanger 

type chiral stationary phases (CSPs). Two different types of techniques were used for 

separation. One of them is the well-known high-performance liquid chromatography (HPLC) 

technique, which is the most straightforward and efficient mode used widely. The other 

separation technique, which uses supercritical fluid as the main component of the mobile phase, 

is supercritical fluid chromatography (SFC). 

The effect of the nature and concentration of bulk solvent components, the role of water 

content in the mobile phase, the nature and concentration of base and acid additives, and the 

temperature on chromatographic parameters were investigated applying Cinchona alkaloid-

based chiral stationary phases (CSPs). Thermodynamic parameters were calculated utilizing 

temperature dependence studies. 
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2 Literature Review 

Various methods are available for chiral separation. Direct crystallization affords high 

optical purity (in cases, up to 90%), but development time is long. Enzymatic reactions 

destroying the unwanted enantiomer are difficult, because the appropriate enzyme, which 

should be available on a large scale, need to be identified. Finally, high-performance liquid 

chromatography (HPLC) represents the most popular, rapid, and highly applicable technology 

in the field of varied chiral analyses of racemic and scalemic mixtures. 

While HPLC has long been in the lead, now supercritical fluid chromatography (SFC) 

is gaining ground and is progressively becoming the first choice in enantioseparation and 

purification in the pharmaceutical industries. 

 

2.1 Chiral chromatography 

Chiral recognition and enantiomer distinction are significant phenomena in both nature 

and chemical systems. It has high impact in various fields dealing with bioactive compounds, 

in particular, in drug discovery, development of agrochemicals, research on food additives, 

chiral pollutants, etc. However, the most significant developments in chiral recognition were 

triggered by demand of drug discovery in pharmaceutical industries. Among the analytical 

techniques, the most important chromatographic methods are thin layer chromatography (TLC), 

gas chromatography (GC), high-performance liquid chromatography (HPLC) as well as 

supercritical fluid chromatography (SFC). 

In chiral chromatography, two different procedures can be used for the separation of 

enantiomers: indirect and direct methods. Each of these techniques has advantages and 

drawbacks. Historically, indirect methods were developed first. This separation was based on 

the formation of diastereoisomeric complexes between the enantiomers and one of the 

antipodes of the chiral derivatizing agents (CDAs) followed by their subsequent separation by 

an achiral liquid chromatographic method. Numerous CDAs are available on the market with a 

comparatively wide selection of chromatographic conditions [1]. This method is not very 

practical, because derivatization is an additional step, which can involve undesirable side 

reactions, formation of decomposition products, racemization, and kinetic resolution. 

Furthermore, the chiral derivatization reagent has to be of high enantiomeric purity and the 

presence of derivatizable groups in the analyte is a prerequisite. 

The other and, in fact, one of the best methods of enantioseparation is the direct 

chromatographic method, which involves two modes. One of them is the chiral mobile phase 
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additive (CMPA) mode, when a chiral compound is added to the mobile phase in an appropriate 

concentration. Separation can be achieved on an achiral stationary phase through the formation 

of a diastereomeric complex. The other mode is the direct liquid chromatographic 

enantioseparation with chiral stationary phases (CSP). Nowadays, this is the most 

straightforward and efficient mode used widely [2–4]. 

 

2.2 Chiral stationary phases 

In separation science, the reversible formation of diastereomers between the 

enantiomers of analyte (R/S)-A and the chiral selector (R)-S or (S)-S is the basis for direct 

enantioseparation. The equilibria can be characterized by the equations assuming (R)-

configuration of the selector S: 

 

(R)–A + (R)–S    [(R)–A --- (R)–S] 

 

(S)–A + (R)–S    [(S)–A --- (R)–S] 

The association constants KR and KS represent the physico-chemical basis for the stereoselective 

recognition of enantiomers by chiral selectors [5]. 

For CSPs the degree of separation depends on different interactions of the enantiomers 

with the chiral selector (e.g., hydrogen bonding, π–π, dipole–dipole, ionic, electrostatic, 

hydrophobic or hydrophilic interactions, steric effects, etc.). The most widespread structural 

model to explain the stereoselective binding of chiral molecules and selector is the three-point 

interaction model, which was postulated by Easson and Stedman in 1933 [6]. It was later 

adapted by Ogsten for enzyme–substrate interaction [7]. Dalgliesh has interpreted this model 

for the separation of amino acids by thin layer chromatography (TLC) [8]. He found that it is 

necessary to have three attractive interaction sites between the selector (SO) and selectand (SA). 

Pirkle and Pochapsky [9], and then Davankov [10] in their milestone announcements in this 

area refined the model with various additions through a summary of the results. In addition to 

attractive interactions, they also recognized the possible role of repulsive interactions (e.g., 

steric inhibition) and determined, that at least one of the three necessary interactions must be 

stereoselective. The three-point interaction model (Figure 1) is the most reliable model and it 

is still utilized frequently to explain the process of chiral recognition [11,12]. 

 

KR 

Ks 



5 
 

 

Figure 1. The three-point-interaction model 

 

Effective binding can be achieved if there is: 

o steric fit – size and shape complementarity; the binding guest sterically fit to the binding 

site of the chiral selector, 

o electrostatic fit – favorable geometric and spatial orientation of complementary 

functional groups, 

o hydrophobic fit – if hydrophobic regions of both binding partners can spatially match 

each other, 

o dynamic fit and induced fit – maximize binding interactions by dynamic and 

conformational adaptation in the course of complex formation. 

 

CSPs can be grouped in several ways, depending on their separation principle. The most 

frequent stationary phases are summarized by their selector and major interactions (Table 1). 

 

Table 1. Groups of chiral stationary phases 

 Stationary phases Selector Major interaction 

I 
Ligand-exchange 

(Davankov) 
amino acid–metal complexes complex formation 

II 
Donor–acceptor 

(Pirkle-type CSP) 
π-acidic and π-basic groups 

H-bonding, π–π, and 
dipole–dipole 

 

III Polysaccharide-based modified cellulose and amylose polar, π–π, and steric 

IV Inclusion complexes 

cyclodextrin 

chiral crown ether 
cyclofructan 

complexation, π–π, H-

bonding, and steric effects 
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V Macrocyclic antibiotics macrocyclic glycopeptides 

electrostatic, H-bonding, 

hydrophobic, π–π 

interaction, steric effects 

 Stationary phases Selector Major interaction 

VI Ion-exchanger 
anion-, cation-, and zwitter-ion- 

based selectors 
ionic, polar, π–π, and steric 

VII Protein natural proteins ionic and hydrophobic 

VIII Molecular imprinted 

selective sorbents 

(e.g., macromolecules, organic 

molecules) 

steric 

 

2.2.1 Ligand-exchange CSPs 

In the late 1960s, the first full separation of a racemic amino acid by chiral ligand-

exchange chromatography (CLEC) could be achieved by Davankov [13,14]. He used the amino 

acid proline as SO immobilized onto a polystyrene support in combination with a metal ion 

(Cu2+). The technique is based on the formation of a reversible ternary diastereomeric 

coordination complex between SO, a metal ion, and SA. During the chromatographic process, 

the coordinated ligands are reversibly replaced by other ligands from the mobile phase such as 

water, ammonia or other components of the eluent. The resulting diastereomeric chelate 

possesses a different thermodynamic stability. 

This CSP was used not only for the separation of both α-amino acids and β-amino acids 

[15,16]. Nowadays, the commercially available ligand-exchange CSPs include immobilized 

derivatives of proline [17], hydroxyproline [18] or penicillamine [19]. For a long time, CLEC 

was the only separation method that enabled the direct enantiomer separation of amino acids 

without derivatization. Nowadays, it is less important due to attractive alternatives. 

 

2.2.2 Macrocyclic antibiotics CSPs 

Macrocyclic antibiotics have been introduced as chiral selectors for HPLC in 1994 by 

Armstrong and coworkers [20,21]. They used many macrocyclic antibiotic compounds as chiral 

selectors in HPLC, including glycopeptides vancomycin (Chirobiotic V) [20], teicoplanin 

(Chirobiotic T) [22], teicoplanin aglycon (Chirobiotic TAG) [23], ristocetin A (Chirobiotic R) 

[24], and avoparcin [25], the polypeptide thiostrepton, as well as ansamycin and rifamycins 

(Figure 2). The common structural feature of these selectors is a set of interconnected amino 

acid-based macrocycles, each macrocycle containing two aromatic rings and a peptide 

sequence. Vancomycin contains three macrocycles, while teicoplanin and ristocetin A are 

composed of four. The macrocycles form a three-dimensional, C-shaped basketlike structure. 
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The carbohydrate moieties are positioned at the surface and ionizable groups such as a 

carboxylic acid group or amino groups are also present. Thus, a large number of interactions 

between analyte molecules and glycopeptide antibiotics are possible including hydrogen bonds, 

π–π, dipole–dipole, and ionic interactions depending on the experimental conditions. The main 

reasons of the versatility of CSPs are their multi-modal applicability in normal phase (NP), 

polar organic (PO), polar ionic (PI), and reversed phase (RP) modes. Macrocyclic glycopeptide 

CSPs are also used for chiral separation in SFC [26]. Armstrong et al. had compared the chiral 

recognition capabilities of three glycopeptide-based columns (Chirobiotic T, Chirobiotic TAG, 

and Chirobiotic R) in SFC for a set of 111 chiral compounds, including heterocycles, analgesics 

(nonsteroidal anti-inflammatory compounds), β-blockers, sulfoxides, as well as N-protected 

and native amino acids [27]. 

Dozens of papers have demonstrated their capability of enantiomeric separation and 

their broad applicability profiles, comprising chiral acids, bases, amphoteric, and neutral 

compounds, as well as small peptides [28–32]. 

A, Teicoplanin    B, Teicoplanin aglycon 

 

C, Ristocetin A    D, Vancomycin 

 

Figure 2. Structures of teicoplanin and its structurally related analogs 
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2.2.3 Polysaccharide-based CSPs 

Polysaccharide selectors have a long tradition in enantioselective liquid 

chromatography. In the 1970s Hessel and Hagel applied microcrystalline cellulose triacetate 

(MTCA) as a polymeric selector material [33]. Okamoto et al. in 1984 coated macroporous 

aminopropyl-silanized silica gel with cellulose triacetate [34]. Such coated polysaccharide 

CSPs based on cellulose and amylose (Figure 3) derivatives (carbamates and esters) have set 

the state-of-the-art for several decades and have since been available from several suppliers. 

The immobilized polysaccharide CSPs have further expanded the versatility and 

application area via their extended choice of mobile phases. It can be operated in NP mode, PO 

mode, RP mode, and SFC mode. This widespread applicability offers the possibility to develop 

more complex systematic methods and automated screening procedures. It should be 

emphasized that polysaccharide CSPs are also a good choice for preparative enantiomer 

separation, because they have the highest loadabilities [35]. 

 

O
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Figure 3. Structures of cellulose (left) and amylose (right) and some coating structure 

moieties 
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The exceptional chiral recognition properties of polysaccharide CSPs originate from a 

number of structural peculiarities: 

o molecular chirality – due to the presence of several stereogenic centers of the 

glucopyranose units,  

o conformational chirality – due to the helical twist of the polymer backbone, and  

o supramolecular chirality – resulting from the alignment of adjacent polymer 

chains forming ordered regions [36]. 

 

Recently, West et al. investigated chiral recognition mechanisms in SFC with tris-(3,5-

dimethyphenylcarbamate) amylose and cellulose CSPs by quantitative structure–retention 

relationships [37,38]. 

 

2.2.4 Chiral ion-exchange CSPs 

Chiral ion-exchange stationary phases are often considered as a subgroup of donor–

acceptor (Pirkle-type) phases. These selectors interact with ionizable analytes via ionic 

interactions, but π–π interactions and hydrogen bonding also contribute to the stabilization of 

the complex. Popular chiral ion-exchange stationary phases for separation of anionic racemates 

are based on Cinchona alkaloids. The native Cinchona alkaloids, quinine (QN) and its pseudo-

enantiomeric isomer quinidine (QD), are the most significant representatives of alkaloids. They 

were isolated from the bark of the cinchona tree (Cinchona ledgeriana) by Pelletier in 1820 

[39]. They have five stereogenic centers both with (1S, 3R, 4S) configurations and opposite 

configurations at carbons 8 and 9, which are (8S, 9R) for QN and (8R, 9S) for QD (Figure 4). 

Although they are actually diastereomers, QN and QD in chromatographic systems behave like 

enantiomers, that is they are called „pseudo-enantiomers”. It means that, in separation 

technologies, they show reversed affinity towards the enantiomers of an analyte, which then 

translates into reversed elution orders. In most cases, the stereoselectivity is under C-8 and C-

9 control [40].  

 

A: methoxy group 

B: quinoline ring 

C: amine nitrogen 

D: hydroxy group 

E: amine nitrogen 

F: quinuclidine ring 

G: vinyl group 

Figure 4. Structure of Cinchona alkaloids 

8

9

N

N

MeO

OH

3R 4S

A
B

C

D

E
F

GQN (8S,9R)

QD (8R,9S)
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The first silica-supported CSP with Cinchona alkaloids was applied in the 1980s for 

enantiomer separation by Rosini et al. [41]. They immobilized native QN and QD via a spacer 

at the vinyl group of the quinuclidine ring. Cinchona alkaloids have a unique combination of 

characteristics of structural features. Due to the combination of numerous functional groups, 

the application of Cinchona alkaloids are potentially unlimited in chiral recognition systems. 

The vinyl group (G) is often used for immobilization. The aromatic heterocycle quinoline (B) 

may participate in π–π and steric interactions. The methoxy group (A) is sometimes used for 

immobilization. The secondary OH group (D) at C-9 can act as a H-bond donor or a metal 

coordination site. The bulky quinuclidine ring system (F) containing a basic nitrogen atom (E),  

when protonated, can be involved in electrostatic interactions [42]. 

In the 1990s, Lindner et al. modified the secondary hydroxyl group at C-9 with the tert-

butyl-carbamoyl moiety (Figure 5). This newly created H-bonding site resulting from 

carbamate modification significantly enhanced the enantiorecognition capabilities of the weak 

anion-exchange-type CSPs. These new chiral SOs are classified as anion-exchanger CSPs, due 

to the presence of the basic amino group of the quinuclidine ring [40,43]. 

 

 

 

Figure 5. The structure of anion-exchanger Chiralpak QN-AX and QD-AX CSPs 

 

Hoffmann and Lindner synthesized a new selector by the fusion of quinine or quinidine 

with enantiomerically pure trans-2-aminocyclohexanesulfonic acid [(R,R)- or (S,S)-ACHSA] 

through a carbamoyl group at the C-9 position. This modification gave new zwitterionic chiral 

selectors Chiralpak ZWIX(+)™ and ZWIX(–)™ [44,45] (Figure 6). 
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Figure 6. The structure of zwitterionic Chiralpak ZWIX(+)™ and ZWIX(–)™ CSPs 

 

In the case of ion-exchange separation, the retention is primarily based on ionic 

interactions between the ions in solution and the fixed charged functional groups of the 

stationary phase (Figure 7). In addition to ionic interaction, chiral discrimination is promoted 

by H-bonding, π–π, dipole–dipole, and other van der Waals interactions. In order to the SO and 

SA to be charged, acid and base modifiers should be added to the mobile phase. 

 

 

Figure 7. Chiral interactions between the zwitterionic CSP and analyte 

 

2.3 Supercritical fluid chromatography 

 The separation technique, using supercritical fluid as the main component of the mobile 

phase, is widely accepted as SFC, despite the fact that the majority of SFC separations take 

place in the subcritical region due to the addition of organic modifiers. This technique uses 

pressurized liquid carbon dioxide (CO2) as mobile phase component together with organic co-
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solvent. Light hydrocarbons, N2O, ammonia, and chlorofluorocarbons have been quite 

successfully used as supercritical mobile phases. Nowadays, however, CO2 is the most 

commonly applied supercritical mobile phase, because of its numerous positive features, such 

as low cost, non-flammability, abundance, adequate purity, inertness toward most compounds, 

moderate critical pressure and temperature values, and weak UV absorbance at low wavelength. 

Methanol, ethanol, 2-propanol or acetonitrile are polar modifiers used most frequently. The 

mobile phase enables high flow rates and, therefore, rapid analyses. A supercritical fluid is a 

physico-chemical state of a substance that occurs when temperature and pressure are elevated 

above their thermodynamic critical point. In the case of CO2, the critical point is above TC = 31 

°C and PC = 73.8 bar (Figure 8). 

 

 

Figure 8. Phase diagram of pure carbon dioxide [46] 

 

SFC was introduced more than 50 years ago, but only a few papers were published in 

the two early decades. Unfortunately, the development of SFC was shaded by the rapid 

development of HPLC taking place in the late 1960s and early 1970s. Klesper et al. were the 

first to propose the use of supercritical fluids as eluents for chromatographic separation in 1962. 

They described the separation of thermo-labile porphyrin derivatives using supercritical 

chlorofluoromethanes as the mobile phase [47]. SFC attracted attention in the 1980s thanks to 

its recognized benefits for enantioseparation often providing improved resolution at higher rate 

than in HPLC. In 1982, Gere et al. modified a Hewlett-Packard (HP) HPLC system to operate 
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as an SFC system [48]. Mourier et al. were the first, who separated enantiomers by SFC in 

1985 [49]. In 1986, Hara et al. demonstrated the chiral separation of D,L-amino acid derivatives 

on a chiral diamide stationary phase [50]. Röder and co-workers reported the first example of 

a chiral separation performed by an open tubular SFC column in 1987. Recently, Guiochon and 

Tarafder summarized the history of supercritical fluids and thoroughly described the physical 

characteristics of these fluids [51]. They focused maily on pure carbon dioxide, which allowed 

a good modeling of their physical properties, especially for preparative chromatography. In 

another paper, Saito reviewed the history of the instrumental development of SFC, from 

capillary to modern packed columns [52]. They developed an electronically controlled 

backpressure regulator, which allows pressure control independent of mobile phase flow rate 

[53]. While open tubular capillary column SFC was a GC-like application, packed-column SFC 

is more similar to LC. In 2013 a new SFC apparatus was introduced by Waters as ultra-

performance convergence chromatography UPC2, which opened a new dimension of analytical 

instrumentation. SFC has become a widely accepted and used technique in both academic and 

commercial spheres. 

Nowadays, packed-column SFC is widely accepted. It uses the same configuration 

(injector and packed column) applied in HPLC. The advantages of packed-column SFC over 

HPLC methodologies are clear: 

o supercritical mobile phases have relatively lower viscosity and higher diffusivity 

than liquids resulting in faster and more efficient separations per unit time and 

shorter turnaround times between injections, 

o carbon dioxide is an inert, environmentally “green”, and volatile mobile phase 

for large-scale separations and energy-efficient isolation of the desired product, 

o adaptable longer, stacked columns with the same or multiple phases with total 

theoretical plates excessing 100,000, 

o HPLC applications can be run on SFC instrumentation [38,54–56]. 

 

Growing popularity of SFC in both chiral and achiral analyses comes towards faster, 

more economic, and greener separations. This growing trend is shown in the number of related 

scientific publications (Figure 9). For example, some applications are enantioselective 

separation (Kalikova et al. [57], West [58], Klerck et al. [59]), metabolite analysis (Taguchi et 

al. [60], Matsubara et al. [61]), food analysis (Bernal et al. [62]), polymer analysis (Takahashi 

[63]), peptide and ionic analyte analysis (Taylor [64,65]), clinical analysis (Abbott et al. [66]), 

carbohydrate analysis [67], etc. 
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Figure 9. Number of scientific publications related to SFC between 1985 and 2018 

Articles searched in ScienceDirect containing (in keywords, abstract or title) the words referred to "supercritical 

fluid" or "SFC" and "Chromatography" in Review articles, Research articles and Short Communications. 

 

 

2.4 Thermodynamic considerations 

Enantiomeric separation by chromatography is only possible, when the difference in 

the Gibbs energy of the diastereomeric complexation equilibria between the SO–SA is not 

zero. 

The equilibrium constant Ki of the SA–SO association is related to the standard Gibbs 

energy according to the following equation: 

∆𝐺° = ∆𝐻° − 𝑇∆𝑆° = −𝑅𝑇𝑙𝑛𝐾𝑖     (1) 

where ∆H° is the standard change of enthalpy, ∆S° is the standard change of entropy, R is the 

universal gas constant, and T is the absolute temperature in K. 

The relationship between retention factor k and Ki is: 

𝑘 = 𝐾𝑖𝜙      (2) 

𝜙 = 𝑉𝑠/𝑉𝑚       (3) 

where k is the retention factor and ϕ is the phase ratio [the ratio of the volumes of the stationary 

(Vs) and the mobile phase (Vm)]. 

The dependence of the retention of the SA on temperature can be expressed by the van’t Hoff 

equation, which may be interpreted in terms of the mechanistic aspect of chiral recognition. 
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𝑙𝑛𝑘 = −
∆𝐻°

𝑅𝑇
+
∆𝑆°

𝑅
+ 𝑙𝑛ϕ 

The difference in the change of standard free energy of the two enantiomers can be written as: 

∆(∆𝐺°)2,1 = ∆𝐺°2 − ∆𝐺°1 = 𝑙𝑛
𝑘2

𝑘1
= −𝑅𝑇𝑙𝑛𝛼   (4) 

𝑙𝑛 𝛼 = −
∆(∆𝐻)°

𝑅𝑇
+

∆(∆𝑆)°

𝑅
                                           (5) 

This expression relates the temperature and the experimentally easily available α value to the 

molar differential enthalpy and entropy of enantioselective adsorption. Provided that these 

quantities are temperature independent, which is usually the case, graphical analysis of ln α vs. 

1/T gives linear plots, from which ∆(∆H)° and ∆(∆S)° can be extracted from the slope and 

intercept, respectively. 

 

2.5 Nα-Fmoc proteinogenic amino acids 

The 19 proteinogenic α-amino acids are the building blocks of the proteomes found in 

mammals [68,69]. These are organic compounds belonging to carboxylic acids, in which a 

hydrogen atom in the side chain (usually at the α-carbon) has been replaced by an amino group. 

On the basis of the number of carboxylic groups (COOH) as acidic and amino groups (NH2) as 

basic in the molecule, amino acids are divided into three groups: neutral (e.g., serine), acidic 

(e.g., glutamic acid), and basic (e.g., arginine). An asymmetric carbon atom in amino acids 

plays a role of a chiral center. For this reason, amino acid molecules are optically active and 

exist in the form of respective enantiomers, which are designated by the symbols D and L 

(nomenclature developed by Fischer and determined on the basis of D-glyceralaldehyde 

structure) [70,71]. The natural protein amino acids are generally L-enantiomers. D-Enantiomers 

can be found in plants, bacterial cells or in several antibiotics [72]. All of them, except glycine, 

contain at least one stereogenic center. Amino acid enantiomers have identical chemical and 

physical properties (except the direction of the rotation of plane polarized light), but possess 

different biological activities in living systems [73]. Therefore, the separation of enantiomers 

is important for pharmaceutical (e.g., drugs, antibiotics), industrial (e.g., chiral catalysts), and 

toxicological (e.g., xenobiotics) applications [74]. 

The 9-fluorenylmethoxycarbonyl moiety (Fmoc) is widely used as an amine-protecting 

group in peptide synthesis. It is well-known, that the intrinsic hydrophobicity and aromaticity 

of the Fmoc group affect the hydrophobic and π–π stacking interaction of the fluorenyl rings. 

That is the reason why many Fmoc amino acids and short peptides possess relatively rapid self-

assembly kinetics and remarkable physicochemical properties along with wide application 
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potentials in many fields [75–78]. An increasing number of Fmoc-modified amino acids have 

been reported to be able to self-assemble and some of them, mostly those with aromatic side 

chains, can even form extended three-dimensional networks, trapping solvent molecules and 

forming gels. 

Using Fmoc-based synthesis, long peptides can be prepared in high yields from 

micromolar (mg) up to molar scale (kg). As the number of amino acid residues increases, the 

final purity and overall yield of the peptide produced depend on the chemical and chiral purity 

of the protected amino acids used. Currently, for the most common commercially available 

Fmoc-protected -amino acids, the expected enantiomeric purity is > 99.0% for the L form. 

Moreover, sometimes the purity required must be higher than 99.8% enantiomeric excess (ee) 

[79]. This level of precision can only be achieved by very few analytical techniques and chiral 

HPLC is one of them. 
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3 Experimental  

3.1 Apparatus and chromatography 

 Measurements were carried out on two HPLC systems and one SFC system. 

System I: 

 Liquid chromatographic experiments were performed on a Waters Breeze system 

containing a 1525 binary pump, a 2487 dual-channel absorbance detector, a 717 plus 

autosampler, and Empower 2 data manager software (Waters Chromatography, Milford, MA, 

USA).  

System II: 

 A 1100 Series HPLC system consisted of a solvent degasser, a pump, an autosampler, a 

column thermostat, and a multiwavelength UV-Vis detector from Agilent Technologies 

(Waldbronn, Germany) as well as a corona-charged aerosol detector from ESA Biosciences, 

Inc. (Chelmsford, MA, USA). Data acquisition and analysis were carried out with Chemstation 

chromatographic data software from Agilent Technologies. 

 Both chromatographic systems were equipped with Rheodyne Model 7125 injectors 

(Cotati, CA, USA) with 20 μl loops. The columns were thermostated in a Spark Mistral column 

thermostat (Spark Holland, Emmen, The Netherlands) or Lauda Alpha RA8 thermostat (Lauda 

Dr. R. Wobser Gmbh, Lauda-Königshofen, Germany). The precision of temperature adjustment 

was ±0.1 °C. For determination of the columns’ dead-times (t0), a methanolic solution of 

acetone was applied. 

System III: 

 The Waters Acquity Ultra Performance Convergence Chromatography™ (UPC2, 

Waters Chromatography) system was equipped with a binary solvent delivery pump, an 

autosampler with a partial loop volume injector system, a backpressure regulator, a column 

oven, and a PDA detector. The system control and data acquisition Empower 2 software 

(Waters Chromatography) was used. Experiments were executed with mobile phases composed 

of liquid CO2/MeOH in different ratios with various additives. The outlet pressure was 

maintained at 150 bar. The dead time (t0) was determined by injecting a solution of acetone in 

MeOH. 
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3.2 Applied columns  

 The four Cinchona alkaloid-based CSPs ZWIX(+)™, ZWIX(–)™, QN-AX, and QD-

AX were provided by Chiral Technologies Europe (CTE, Illkirch, France). All CSPs comprised 

3 μm particles packed into 150 x 3.0 mm I.D. columns. 

 

3.3 Chemicals and reagents  

 The applied methanol (MeOH) and acetonitrile (MeCN) of HPLC grade, ammonia 

(NH3), ethylamine (EA), diethylamine (DEA), triethylamine (TEA), propylamine (PA), 

butylamine (BA), glacial acetic acid (AcOH), and formic acid (FA) of analytical reagent grade 

were purchased from VWR International (Arlington Heights, IL, USA) and Sigma-Aldrich (St. 

Louis, MO, USA). Ultrapure water was obtained from the Ultrapure Water System, Puranity 

TU UV/UF (VWR International bvba, Leuven, Belgium). 

 All eluents were degassed in an ultrasonic bath, and helium gas was purged through 

them during HPLC analysis. Stock solutions of analytes (1.0 mg/mL) were prepared by 

dissolution in the mobile phase, or MeOH in the case of SFC. 

 

3.4 Investigated analytes  

 Besides Nα-Fmoc protection, the other reactive site of proteinogenic amino acids 

possesses additional protecting groups to make them the most appropriate for peptide synthesis 

protocol: tert-butyloxycarbonyl (Boc) for Lys, tert-butyl (tBu) for Ser, Thr, and Tyr, O-tert-

butyl (OtBu) for Asp and Glu, triphenylmethyl (trityl, Trt) for Cys and His, and Nω-2,2,4,6,7-

pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) for Arg (Figure 10). The protected amino acid 

derivatives were obtained from different sources. L-amino acids 1 and 2 were purchased from 

Reanal (Budapest, Hungary), 3–14 and 16 from Orpegen Pharma Gmbh (Heidelberg, 

Germany), 15 from GL Biotech Gmbh (Marktredwitz, Germany), and 18 from Merck 

(Darmstadt, Germany). D-amino acids 3, 4, 6, 9, 10, 12–14, 16, 18, and 19 were obtained from 

Bachem AG (Bubendorf, Switzerland), 1, 2, 7, 8, 11, 15, and 17 from AK Scientific, Inc (Union 

City, CA, USA), and 5 from Advanced ChemTech (Louisville, KY, USA). 
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Figure 10. Structure of Nα-Fmoc-protected proteinogenic amino acids 
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4 Results and Discussion 

In my thesis, chromatographic results for 19 Fmoc-protected protein amino acids on 

Cinchona alkaloid-based zwitterionic [ZWIX(+)™, ZWIX(-)™] and anion-exhanger type 

(QN-AX, QD-AX) chiral stationary phases in HPLC and SFC technics are presented and 

discussed. 

 To study the effect of experimental conditions, of the investigated 19 Nα-Fmoc protein 

amino acids with an overall acidic character, five analytes representing the spectrum of acidic 

[Fmoc-Asp(OtBu)-OH (15)], basic [Fmoc-Lys(Boc)-OH (17)], aliphatic [Fmoc-Leu-OH (3)], 

aromatic [Fmoc-Phe-OH (6)], and polar [Fmoc-Tyr(tBu)-OH (12)] α-amino acids have been 

selected. 

 

4.1 Influence of mobile phase composition on chromatographic parameters 

 Variation of the mobile-phase composition is always the first choice to achieve 

resolution in the method development. In most cases,  Cinchona alkaloid-based CSPs afforded 

an excellent separation ability in PIM (polar ionic mode), when using a mixture of MeOH as a 

protic solvent (which can suppress H-bonding interaction) and MeCN as an aprotic, but polar 

bulk solvent component (which supports ionic interaction, but interfere with π–π interaction). 

In order to promote ionic interaction and constant ionic strength, acid and base additives are 

needed in the mobile phase. The acid-to-base ratio was kept at a constant value of 2:1 providing 

weak acidic conditions. A slight excess of acids ensures that the quinuclidine moiety of the SO 

is protonated and the carboxyl group of the SA is deprotonated to some extent. In this way the 

ionizable state of both the SO and SA may facilitate the ion-pairing process. 

 

4.1.1 Effect of bulk solvent composition in LC mode 

 In LC mode, a mixture of MeOH/MeCN (50/50, 75/25, and 85/15 v/v) as the bulk 

solvent containing 25 mM TEA and 50 mM FA on anion-exchanger CSPs was used. The 

corresponding solvent composition applied on zwitterionic CSPs is MeOH/MeCN (75/25, 

50/50, and 25/75 v/v) containing 30 mM TEA and 60 mM FA. The effect of the bulk solvent 

on chromatographic parameters on quinine-based zwitterionic ZWIX(+)™ and anion-

exchanger type QN-AX CSP on selected five model componds is depicted in (Figure 11). 

 Applying the MeOH/MeCN mobile phase on ZWIX-type CSPs gave very low k values. 

Furthermore, k1 varied between 0.16 and 0.56 and it increased with increasing MeCN content. 

In the case of the studied model compounds, the primary interaction, decisive in retention, is 
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the ionic interaction between the cation site of the SO and anion site of the SA, with additional 

intermolceular SO–SA interaction responible for chiral discrimination. 

 Due to the Fmoc-protection of the amino group, only a single ion-pair process is active. 

For this reason, the double ion-paring process is not possible, resulting in rather low retention. 

However, at least partial resolution could be obtained in many cases with RS values lower than 

1.0, with the exception Fmoc-Phe-OH. 

 

 

Figure 11. The effect of bulk solvent composition on k1, α, and RS in LC mode 

Chromatographic conditions: mobile phase on ZWIX(+)™ MeOH/MeCN (75/25, 50/50, and 25/75 v/v) 

containing 25 mM TEA and 50 mM FA; mobile phase on QN-AX MeOH/MeCN (85/15, 75/25, and 50/50 v/v) 

containing 30 mM TEA and 60 mM FA; flow rate: 0.6 mL/min; detection: 262 nm 

 

 On aninon-exchanger CSPs, separations were carried out in MeOH/MeCN (85/15, 

75/25, and 50/50 v/v) mobile phase containing 30 mM TEA and 60 mM FA. The k1 values 

ranged between 1.4–4.2 and retention slightly decreased for each of the selected analytes with 
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increasing MeCN content. The selectivity changed between 1.4–1.9 and it also decreased with 

increasing MeCN content in the mobile phase. Resolution in most cases also decreased with 

increasing MeCN concentrations. However, for Fmoc-Phe-OH and Fmoc-Lys(Boc)-OH, 

maximum values were registered. In summary, k, α, and RS values decreased slightly with 

increasing MeCN content in contrast to the tendency observed on zwitterionic selectors. 

 

4.1.2 Effect of bulk solvent composition in SFC mode 

 In the SFC mode the polarity and elution strenght of liquid CO2 is varied most 

significantly by the addition of the MeOH as organic modifier. However, it should be noted 

that in most cases subcritical conditions rather than supercritical state were applied, because of 

added MeOH. SFC experiments were accomplished with mobile phases containing liquid 

CO2/MeOH in different ratios (v/v) with additives (acid or base) at a flow rate of 2.0 mL/min. 

The outlet pressure was maintained at 150 bar and the colomn temperature was 40 °C. 

Depending on the concentration of MeOH in the mobile phase, several comments should be 

added: 

o at SFC conditions, the more polar mobile phase components adsorb on the surface of 

the stationary phase and, consequently, the co-solvent concentration can be significantly 

higher in this adsorbed layer than in bulk solvent, 

o increasing the polar MeOH content in the apolar CO2 solvent promotes the interaction 

between the polar SAs and the mobile phase, 

o reaction between pressurized CO2 and the added MeOH leads to the formation of methyl 

hydrogen carbonate and carbonic acid, which permits the use of chiral ion-exchange 

type CSPs under SFC conditions even without addition of buffers, 

o the increase in co-solvent concentration affects fluid viscosity by increasing fluid 

density, which contributes to the enhanced elution strength, 

o although it is less significant, but the co-solvent concentration also influences critical 

temperature and pressure values. 

In all cases, retentions decreased drastically on the increase of the MeOH content from 10 

to 20 v%, especially for Fmoc-Phe and Fmoc-Lys(Boc)-OH. Further increase in MeOH 

content (from 30 to 40 v%), however, was accompanied by lower decrease in retention. 

These results can be attributed to the more efficient solvation of the SAs in a mobile phase 

at a higher MeOH content and, therefore, the retention is significantly reduced. Similar to 

retention, RS also decreased with increasing MeOH content on both types of CSPs. In 

contrast, α increased slightly with higher MeOH content (Figure 12). 
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Figure 12. The effect of bulk solvent composition on k1, α, and RS in SFC mode 

Chromatographic conditions: mobile phase on ZWIX(+)™ CO2/MeOH (90/10–60/40 v/v) containing 25 mM 

TEA and 50 mM FA; mobile phase on QN-AX CO2/MeOH (90/10–60/40 v/v) containing 25 mM TEA and 50 mM 
FA; flow rate: 2.0 mL/min; Tcol: 40 °C; back pressure: 150 bar; detection: 262 nm 

 

4.2 Role of water content of the mobile phase 

Most chiral separations on Cinchona CSPs were carried out by using water-free polar 

organic mobile phases, consisting of MeOH or a mixture of MeOH/MeCN as bulk solvent. 

However, the presence of water in a low percentage is beneficial for peak shape, resolution, 

analysis time as well as sample and solubility performance. Water is on the top of the protic 

solvent list due to its powerful proton activity. Hoffmann et al. investigated the chromatographic 

behavior of zwitterionic CSPs in RP mode for aromatic amino acids [80]. Zhang et al. used 

high water (2–20%) content for separation of free amino acids [45]. Based on these results, our 

invetigations were extended to hydro-organic (HO) mode, because solvation of the ionic 
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compounds in the HO mobile phase can play an important role in enantioseparations on ion-

exchange type CSPs. 

 

4.2.1 Effect of water content in mobile phase in LC mode 

 The addition of small amounts of water into the polar ionic mobile phase shifts the 

elution system from a nonaquesous PI mode to an HO mode. A few percentage points of H2O 

affect solvation of both SO and SA and might reduce the strength of the ionic interactions. 

 Studies were carried out on zwitterionic CSPs in HO mobile phase with H2O contents 

varying between 1.0–5.0 v%. The changes of chromatographic parameters were not significant 

(data not shown). In most cases 1.0–2.0% H2O in the eluent was advantageous, yielding better 

peak shapes and higher resolution. Utilizing the mobile phase H2O/MeOH (1/99 v/v) containing 

30 mM TEA 60 mM FA, k1 values were slightly higher than in the MeOH/MeCN mobile phase. 

 

4.2.2 Effect of water content in mobile phase in SFC mode 

Water as a polar modifier in SFC separation was first used in the late 1980s to promote 

elution of polar compounds and to improve peak shapes. Geiser et al. reported the separation 

of underivatized fatty acids using water as modifier in CO2 [81]. Taylor and co-workers 

investigated four nucleobases via SFC with CO2 modified with alcohol and water [82]. Welch 

et al. used a water-rich modifier for the separation of several hydrophilic compounds by SFC 

[83]. 

To investigate  the effect of water content, mobile phases composed of CO2/MeOH/H2O 

in different ratios were applied by keeping the amount of CO2 constant and varying the water 

content in the MeOH phases. On zwitterionic columns, the mobile phase composition of 

CO2/MeOH (70/30 v/v) containing 30 mM TEA and 60 mM FA, whereas on anion-exchanger 

columns, CO2/MeOH (60/40 v/v) containing 30 mM TEA and 60 mM FA were applied. The 

concentraiton of H2O in the MeOH part of the mobile phase was varied between 0.0–8.0 v% 

(Figure 13). Upon increasing  the water content, k1 values of selected analytes decreased 

slightly. On ZWIX(+)™ k1 values varied between 1.32–3.35, while the changes on QN-AX 

were between 3.18–9.89. The observed decrease in retention time can be partially explained by 

the increased formation of the counter-ion via the reaction of CO2 and H2O, yielding carbonic 

acid, which dissociates to hydrogen carbonate and proton. The latter species act as additional 

counter-ions in anion chromatography systems. Similar to this behaviour, both α and RS 

decreased slightly with increasing water content. 
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ZWIX(+)™     QN-AX 

 

 

Figure 13. The effect of water content in mobile phase on k1, α, and RS on quinine-based 

CSPs 

Chromatographic conditions: mobile phase on ZWIX(+)™ CO2/MeOH/H2O containing 30 mM TEA and 60 mM 

FA; and mobile phase on QN-AX CO2/MeOH/H2O containing 30 mM TEA and 60 mM FA; 

flow rate: 2.0 mL/min; detection: 262 nm 
 

4.3 Role of the nature of base and acid as mobile phase additives 

The nature of various acid and base additives in the mobile phase may significantly 

influence the chromatographic parameters and play an important role in the optimization of 

enantioseparations on Cinchona alkaloid-based CSPs. In zwitterionic CSPs, both anion- and 

cation-exchange phenomena occur in the ion-exchange process. Therefore, both acid and base 

0 2 4 6 8

1.5

2.0

2.5

3.0

3.5

 v % H
2
O

 k
1

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH

 Fmoc-Tyr(tBu)-OH

0 2 4 6 8

3

4

5

6

7

8

9

10

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH

k
1

v % H
2
O

0 2 4 6 8

1.10

1.15

1.20

1.25

1.30

1.35

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH

 Fmoc-Tyr(tBu)-OH

 

v % H
2
O

0 2 4 6 8

1.3

1.4

1.5

1.6

1.7

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH



v % H
2
O

0 2 4 6 8

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH

 Fmoc-Tyr(tBu)-OH

 R
S

v % H
2
O

0 2 4 6 8

6.0

6.5

7.0

7.5

8.0

8.5

9.0

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH

R
S

v % H
2
O



26 
 

additives act as competitors for the ion pairing of SA and SO in the ion-exchange equilibrium. 

The additives in nonaqueous polar organic solvents greatly influence the solvation of both SO 

and SA. Consequently, the anions and cations of acid and base additives have great effects on 

the elution strength of the mobile phase, inversely acting as displacers at the cation- and anion-

exchanger sites. For this reason, acid and base additives (counter-ions) in the mobile phase will 

play a crucial role. A number of studies demonstrated that the nature of co- and counter-ions 

have opposite effects at the anionic and cationic exchanger parts of the zwitterionic CSPs 

(Figure 14) [45,80,84]. 

 

Figure 14. Elution strength of co- and counter-ion additives on retention applying single ion-

exchange-type CSPs [80] 

 

4.3.1 Effect of base and acid as mobile phase additives in LC mode 

To study the effect of the nature of acid and base additives on the chromatographic 

performance of zwitterionic CSPs in LC mode, FA or AcOH as acid additives as well as EA, 

DEA, TEA, PA, and BA as base additives were selected. Experiments were carried out in 

H2O/MeOH mobile phases containing 3.75 mM base and 7.5 mM FA, keeping the acid-to-base 

ratio at 2:1. Acid excess in the mobile phase guaranteed that the bases (amines) were present in 

their protonated „ammonium ion” form. The amines differed in the degree and nature of their 

alkyl substitution on the nitrogen atom, while the acids (FA and AcOH) had different strengths. 

The experimental results revealed that for the same analyte, k1 values differ only slightly on 

varying the base additives (Figure 15). For Fmoc-Asp(OtBu)-OH, k1 varied between 0.47–

0.56, for Fmoc-Lys(Boc)-OH between 0.32–0.37, for Fmoc-Leu-OH between 0.28–0.38, for 

Fmoc-Phe-OH between 0.59–0.70, and for Fmoc-Tyr(tBu)-OH between 0.53–0.64. However, 

no general trend was observed in the variation of the nature of the base. It was also found that 

slightly higher retentions were obtained with the application of DEA or TEA. The nature of the 
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acids have a slight effect on retention. Comparing the effect of FA and AcOH, with a few 

exceptions, slightly smaller k1 values were obtained for AcOH (data not shown). In summary, 

optimization of the base and acid additives, DEA, TEA, and FA appear to be more favorable 

concerning retention and selectivity. 

 

ZWIX(+)™     ZWIX(-)™ 

 

  

Figure 15. The effect of nature of base additives on chromatographic parameters in LC mode 
Chromatographic conditions: columns, ZWIX(+)™ and ZWIX(-)™; mobile phase, H2O/MeOH (1/99 v/v) 

containing 3.75 mM Base and 7.5 mM FA; flow rate: 0.6 mL/min; detection: 262 nm 

EA DEA TEA PA BA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k
1

Base

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH

 Fmoc-Tyr(tBu)-OH

EA DEA TEA PA BA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Base

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH

 Fmoc-Tyr(tBu)-OH

k
1

EA DEA TEA PA BA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8



Base

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH

 Fmoc-Tyr(tBu)-OH

EA DEA TEA PA BA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH

 Fmoc-Tyr(tBu)-OH



Base

EA DEA TEA PA BA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH

 Fmoc-Tyr(tBu)-OH

R
S

Base

EA DEA TEA PA BA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 Fmoc-Asp(OtBu)-OH

 Fmoc-Lys(Boc)-OH

 Fmoc-Leu-OH

 Fmoc-Phe-OH

 Fmoc-Tyr(tBu)-OH

R
S

Base



28 
 

4.3.2 Effect of base and acid as mobile phase additives in SFC mode 

For the studies of the effects of acid and base additives in SFC modalities on ZWIX(+)™ 

and QN-AX phases, the bulk solvent composition was CO2/MeOH (60/40 v/v) containig the 

same FA or AcOH as acid additives, and EA, DEA, TEA, PA, and BA as base additives were 

selected (Figure 16), similar to those of LC modalities. For the same analytes, the nature of the 

base had a slight effect on k1 values. They were the highest for Fmoc-Phe-OH and Fmoc-

Tyr(tBu)-OH. Regarding selectivity, they varied in a relatively narrow range, while for RS 

values, the application of DEA or TEA was most promising. Similar to the bases, acid additives 

(FA or AcOH) had a slight effect on the chromatographic parameters. 
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ZWIX(+)™     QN-AX 

 

 

Figure 16. The effect of nature of base additives on chromatographic parameters in SFC mode 

Chromatographic conditions: columns, ZWIX(+)™ and QN-AX; mobile phase, CO2/MeOH (60/40 v/v) 

containing 30 mM Base and 60 mM FA; flow rate: 0.6 mL/min; detection: 262 nm 

 

 

4.4 The role of counter-ion concentration 

On the Cinchona alkaloid-based CSPs in PIM and RPM, an ion-pairing process between 

the SO and SA dominates the retention. This means that retention can be greatly influenced by 

changing the amounts of co-ions and counter-ions present in the mobile phase. The application 

of a higher counter-ion concentration should result in lower retention, according to the 

stoichiometric displacement model. As shown by Kopaciewicz et al., linear relationship can be 

found between the logarithm of the retention factor of the first-eluted enantiomer (log k1) and 

the logarithm of the counter-ion concentration (log ccounter-ion) [85,86]. The slopes of these plots 

are given by the ratio of the effective charges of SA and counter-ion. This slope was close to 

1.0 in the case of the single cation-exchanger type CSPs [87]. 

 

4.4.1 Effect of counter-ion concentration in LC mode 

In LC mode, the effect of concentration of the counter-ion was investigated for selected 

Fmoc amino acids on zwitterionic based CSPs. The mobile phase system was H2O/MeOH (1/99 

v/v) containing FA and TEA. Keeping the acid-to-base ratio at 2:1, concentrations were varied 

in the range 3.75–120 mM FA and 1.87–60 mM TEA. Under these conditions, zwitterionic 

CSPs should work in a „single cation-exchange mode”. Values of log k1 and log ccounter-ion gave 

straight lines with slopes varying between 0.29–0.36 on ZWIX(+)™ and between 0.19–0.28 on 

ZWIX(-)™. Experimental results are depicted in Figure 17. 
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On anion-exchanger QN-AX and QD-AX CSPs, we also suppose a „single ionic” ion-

exchange mechanism. Under the studied conditions, linear relationships were found between 

log k1 and log cFA. The slopes of the log k vs. log c plots were found around 0.7 for Fmoc-

amino-acids samples in LC mode (data from ref. [88]). 

 

ZWIX(+)™     ZWIX(-)™ 

 

Figure 17. The effect of counter-ion concentration in LC mode 

Chromatographic conditions: columns, ZWIX(+)™ and ZWIX(-)™; mobile phase, H2O/MeOH (1/99 v/v) 

containing TEA/FA in conentrations 1.87/3.75, 3.75/7.5, 7.5/15, 15/30, 30/60, and 60/120 mM/mM;  

flow rate: 0.6 mL/min; detection: 262 nm 
 

4.5 Effect of counter-ion concentration in SFC mode 

As described earlier, on the Cinchona alkaloid-based zwitterionic CSPs in LC mode in 

PI and HO mobile phases, an ion-pairing displacement process between the SO and SA 

dominates retention. To prove the ion-exchange mechanism in SFC mode, the displacement 

model was also applied. 

In SFC mode, liquid CO2 mobile phase with MeOH co-solvent was applied. The 

counter-ion concentration was varied in the range 15–120 mM, while the acid-base ratio was 

kept constant to ensure similar ionization states for the SO and SA. It was demonstrated that 

the displacement model exists in SFC conditions and, similar to LC conditions, higher slopes 

were registered on anion exchanger column than on zwitterionic phases (Figure 18). 
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ZWIX(+)™      ZWIX(-)™ 

  

 

QN-AX      QD-AX 

   

Figure 18. The effect of counter-ion concentration in SFC mode 

Chromatographic conditions: columns, ZWIX(+)™, ZWIX(-)™ QN-AX and QD-AX; mobile phase on ZWIX 

columns, CO2/MeOH (70/30 v/v) and on anion-exchanger columns, CO2/MeOH (60/40 v/v) containing TEA/FA 

in conentrations 7.5/15, 15/30, 30/60, and 60/120 mM/mM; flow rate: 2.0 mL/min; detection: 262 nm; 
TCOL: 40 °C; back pressure: 150 bar 

 

4.6 Enantioseparation of Nα-Fmoc proteinogenic amino acids 

Table 2 and Table 3 present a comprehensive set of data of the 19 Nα-Fmoc-protected 

amino acids on all four Cinchona alkaloid-based CSPs in LC and SFC mode. On ZWIX(+)™ 

and ZWIX(-)™, H2O/MeOH (1/99 v/v) as mobile phase was used in LC mode, and the mobile 

phase applied in SFC mode was CO2/MeOH (70/30 v/v). On QN-AX and QD-AX columns in 

LC MeOH/MeCN (75/25 v/v) and in SFC mode CO2/MeOH (60/40 v/v) mobile phases were 

used. 

The mobile phase, in all cases, contained FA (60 mM) as acid and TEA (30 mM) as 

base additive keeping the constant acid-base ratio of 2:1. It should be noted that the same 

acid/base concentration level does not mean the same ionic strength, because of the different 

activity coefficients existing in H2O/MeOH and MeOH/MeCN mobile phases. 
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4.6.1 LC separation of Nα-Fmoc proteinogenic amino acids 

The experimental results in Table 2 show that the separation performance of the 

zwitterionic CSPs ZWIX(+)™ and ZWIX(-)™ was unsatisfactory under HO mobile phase 

conditions. Of the 19 Nα-Fmoc-proteinogenic amino acids, only a few exhibited just partial or, 

in some cases, baseline separations. k1, α, and RS values were much lower than those obtained 

under SFC conditions (data shown in Table 3). k1 ranged between 0.18– 0.99 and higher values 

(k1 > 0.4) were obtained for polar amino acids. Exceptions are Fmoc-Thr(tBu)-OH) and for SAs 

and compounds possessing additional aromatic rings (Fmoc-Trp-OH; Pbf or Trt protecting 

group). Selectivity and resolution also changed in parallel with k1 values. Fmoc-Asp(OtBu)-

OH, Fmoc-Glu(OtBu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Ala-OH, Fmoc-Leu-OH, Fmoc-Ile-

OH, and Fmoc-Ser(tBu)-OH were separated only on ZWIX(+)™, and the separation efficiency 

was better on ZWIX(+)™ than on ZWIX(-)™. Interestingly, despite lower k1 values, better 

resolution was obtained for Fmoc-Cys(Trt)-OH under LC conditions than at SFC conditions. 

On the other hand, Fmoc-Pro-OH and Fmoc-Thr(tBu)-OH were not separable on ZWIX phases. 

The anion-exchanger type QN-AX and QD-AX CSPs in PIM mode exhibited very 

different separation performances. Under LC condition, the parameters were much higher than 

in zwitterion mode with k1 ranging between 1.32–6.77 and α between 1.05–2.22. For most 

amino acids, Rs was higher than 5.0 and only Fmoc-Pro-OH and Fmoc-Thr(tBu)-OH exhibited 

partial resolution. 

As mentioned earlier, the primary interaction is the ionic interaction between the 

cationic site of the SO and the anionic site of the SA with additional intermolecular SO–SA 

interaction responsible for chiral discrimination. Because of the presence Fmoc-protection, the 

cation site of the amino acid is blocked shifting the double ion pairing notion towards an anion 

exchanger (mono ion pairing) concept. This is the possible reason of the poor separation ability 

of zwitterionic CSPs using the HO mobile phase. 

 

Table 2. Chromatographic data, separation factor (k), selectivity factor (), resolution (RS), 

and elution sequence of Nα-Fmoc proteinogenic amino acids at LC condition 

 Compound ZWIX(+)™ ZWIX(-)™ QN-AX QD-AX 

A
c
id

ic
 Fmoc-Asp(OtBu)-OH 

k1 0.36 (D) 0.22 (L)        2.38 (D) 2.45 (L) 

α 1.32 1.00 1.82 1.78 

RS 1.16 0.00 8.77 9.26 

Fmoc-Glu(OtBu)-OH 

k1 0.22 (D) 0.24 (L) 1.97 (D) 2.02 (L)  

α 1.32 1.00 1.88 1.66 

RS 0.64 0.00 9.54 7.86 

B
a

si
c 

Fmoc-Lys(Boc)-OH 

k1 0.19 (D) 0.20 (L) 1.32 (D) 1.54 (L) 

α 1.43 0.00 1.80 1.39 

RS 1.01 0.00 6.20 5.00 
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Table 2. (continued) Chromatographic data, separation factor (k), selectivity factor (), 

resolution (RS), and elution sequence of Nα-Fmoc proteinogenic amino acids at LC condition 
 Compound ZWIX(+)™ ZWIX(-)™ QN-AX QD-AX 

B
a
si

c 

Fmoc-Arg(Pbf)-OH 

k1 0.99 (D) 0.71 (L) 2.74 (D) 2.74 (L) 

α 1.91 1.50 1.59 1.42 

RS 4.67 2.52 7.87 4.00 

Fmoc-His(Trt)-OH 

k1 0.63 (D) 0.43 (L) 1.85 (D) 2.09 (L) 

α 1.66 1.47 1.99 1.62 

RS 2.89 1.50 10.49 6.27 

H
y
d

ro
p

h
o
b

ic
 

Fmoc-Ala-OH 

k1 0.25 (D) 0.27 (L) 2.18 (D) 2.10 (L) 

α 1.36 1.00 1.50 1.59 

RS 0.88 0.00 6.67 6.89 

Fmoc-Val-OH 

k1 0.20 (D) 0.21 (L) 1.88 (D) 1.79 (L) 

α 1.54 1.13 2.06 2.06 

RS 0.77 0.20 12.66 10.78 

Fmoc-Leu-OH 

k1 0.18 (D) 0.18 (L) 1.58 (D) 1.56 (L) 

α 1.36 1.00 1.83 1.82 

RS 0.70 0.00 8.53 9.73 

Fmoc-Ile-OH 

k1 0.18 (D) 0.22 (L) 1.80 (D) 1.55 (L) 

α 1.43 1.00 2.05 2.22 

RS 0.69 0.00 10.62 12.3 

Fmoc-Phe-OH 

k1 0.38 (D) 0.40 (L) 3.26 (D) 3.46 (L) 

α 1.63 1.31 1.55 1.62 

RS 2.11 1.09 7.74 8.47 

Fmoc-Trp-OH 

k1 0.80 (D) 0.65 (L) 4.11 (D) 4.50 (L) 

α 2.36 1.67 1.64 1.50 

RS 6.82 3.15 8.70 7.02 

Fmoc-Met-OH 

k1 0.33 (D) 0.32 (L) 2.84 (D)  2.90 (L) 

α 1.41 1.19 1.67 1.78 

RS 1.31 0.30 9.83 10.22 

Fmoc-Pro-OH 

k1 0.27 (D) 0.28 (L) 1.88 (D) 1.61 (L) 

α 1.00 1.00 1.06 1.15 

RS 0.00 0.00 1.06 2.03 

P
o
la

r 

Fmoc-Ser(tBu)-OH 

k1 0.22 (D) 0.23 (L) 2.14 (D) 1.97 (L) 

α 1.41 1.00 1.35 1.37 

RS 0.87 0.00 5.42 5.02 

Fmoc-Thr(tBu)-OH 

k1 0.19 (D)  0.18 (L) 1.72 (D)  1.31 (L) 

α 1.00 1.00 1.05 1.11 

RS 0.00 0.00 0.52 1.42 

Fmoc-Cys(Trt)-OH 

k1 0.59 (D)  0.41 (D) 6.77 (D)  4.26 (L) 

α 1.49 1.63 1.14 1.33 

RS 2.36 2.29 2.68 5.26 

Fmoc-Tyr(tBu)-OH 

k1 0.52 (D)  0.48 (L) 3.89 (D)  2.88 (L) 

α 1.00 1.92 1.17 2.11 

RS 0.00 3.58 2.11 12.14 

Fmoc-Asn-OH 

k1 0.73 (D)  0.48 (L) 3.45 (D)  3.32 (L) 

α 2.06 1.84 1.33 1.26 

RS 5.50 3.19 5.47 4.37 

Fmoc-Gln-OH 

k1 0.45 (D)  0.46 (L) 2.75 (D)  3.70 (L) 

α 1.54 1.08 1.98 1.39 

RS 2.11 0.20 10.61 5.64 

Chromatographic conditions: column, ZWIX(+)™, ZWIX(-)™,QN-AX and QD-AX; mobile phase, on ZWIX(+)™ 

and ZWIX(-)™ H2O/MeOH (1/99 v/v) containing 30 mM TEA and 60 mM FA and on QN-AX and QD-AX 

MeOH/MeCN (75/25 v/v) containing 30 mM TEA and 60 mM FA; flow rate, 0.6 mL/min; detection, 262 nm; 

temperature, ambient; configuration (D and L) in parenthesis represents the configuration of the first eluting 

enantiomer 
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4.6.2 SFC separation of Nα-Fmoc proteinogenic amino acids  

Table 3 depicts the enantioseparation of 19 Nα-Fmoc-protected amino acids under SFC 

conditions on all four Cinchona-based CSPs. In SFC mode both zwitterionic and anion-

exchanger type CSPs are suitable for enantioseparation. The only exception is Fmoc-Pro-OH, 

which can be separated only on QD-AX column. The most obvious phenomeon is that in all 

cases higher k1 values were registered under SFC conditions. Despite the higher MeOH content 

applied on anion-exchanger column [CO2/MeOH (60/40 v/v)], higher k1 values were obtained 

in all cases, except for Fmoc-Thr(tBu)-OH. In most cases α and RS values were also higher than 

on zwitterionic CSPs. High retentions were registered – especially on anion exchangers – for 

the so-called polar amino acids like Fmoc-Asn-OH and Fmoc-Gln-OH, and also for amino acids 

containing additional large or aromatic protecting groups (tBu, Pbf, and Trt), such as Fmoc-

Arg(Pbf)-OH, Fmoc-His(Trt)-OH, Fmoc-Cys(Trt)-OH, and Fmoc-Tyr(tBu)-OH. This is also 

valid for amino acids containing an aromatic side chain (e.g., Fmoc-Phe-OH and Fmoc-Trp-

OH). It is probable, that the presence of the additional aromatic group (Trt) on Cys and His 

contributes to higher retention. 

 

Table 3. Chromatographic data, separation factor (k), selectivity factor (), and resolution (RS) 

of Nα-Fmoc proteinogenic amino acids at SFC conditions 

 

Compound ZWIX(+)™ ZWIX(-)™ QN-AX QD-AX 

A
c
id

ic
 Fmoc-Asp(OtBu)-OH 

k1 1.76 (D) 1.63 (L) 5.07 (D) 4.75 (L) 

α 1.18 1.15 1.58 1.58 

RS 2.43 1.88 8.33 7.95 

Fmoc-Glu(OtBu)-OH 

k1 1.66 (D) 1.69 (L) 5.01 (D) 4.84 (L) 

α 1.17 1.12 1.64 1.48 

RS 2.13 1.50 8.86 6.72 

B
a
si

c 

Fmoc-Lys(Boc)-OH 

k1 2.22 (D) 2.07 (L) 4.78 (D) 4.86 (L) 

α 1.21 1.18 1.51 1.42 

RS 2.63 2.04 7.11 5.79 

Fmoc-Arg(Pbf)-OH 

k1 24.39 (D) 23.31 (L) 27.50 (D) 23.74 (L) 

α 1.65 1.54 1.33 1.38 

RS 9.95 7.78 5.26 5.71 

Fmoc-His(Trt)-OH 

k1 5.19 (D) 4.48 (L) 8.20 (D) 7.90 (L) 

α 1.31 1.26 1.47 1.48 

RS 4.36 3.53 4.64 5.43 

H
y
d

ro
p
h

o
b
ic

 

Fmoc-Ala-OH 

k1 2.20 (D) 2.03 (L) 5.86 (D) 5.12 (L) 

α 1.15 1.15 1.40 1.47 

RS 2.03 1.87 6.49 6.89 

Fmoc-Val-OH 

k1 1.60 (D) 1.51 (L) 4.46 (D) 3.81 (L) 

α 1.24 1.21 1.71 1.75 

RS 2.79 2.22 9.87 9.59 

Fmoc-Leu-OH 

k1 1.62 (D) 1.52 (L) 4.05 (D) 3.94 (L) 

α 1.20 1.18 1.64 1.68 

RS 2.11 1.68 8.95 8.89 
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Table 3. (continued) Chromatographic data, separation factor (k), selectivity factor (), and 

resolution (RS) of Nα-Fmoc proteinogenic amino acids at SFC conditions 

 

Compound ZWIX(+)™ ZWIX(-)™ QN-AX QD-AX 

H
y
d
ro

p
h

o
b
ic

 

Fmoc-Ile-OH 

k1 1.42 (D) 1.43 (L) 4.20 (D) 3.60 (L) 

α 1.21 1.19 1.72 1.77 

RS 1.49 1.33 9.82 9.67 

Fmoc-Phe-OH 

k1 3.35 (D) 3.08 (L) 9.89 (D) 8.98 (L) 

α 1.31 1.27 1.36 1.45 

RS 4.53 3.96 6.04 6.91 

Fmoc-Trp-OH 

k1 16.40 (D) 14.10 (L) 26.98 (D) 23.05 (L) 

α 2.02 1.99 1.45 1.39 

RS 10.70 9.30 7.42 6.43 

Fmoc-Met-OH 

k1 2.95 (D) 2.74 (L) 8.55 (D) 7.54 (L) 

α 1.23 1.21 1.52 1.62 

RS 3.41 3.17 8.13 8.77 

Fmoc-Pro-OH 

k1 1.66 (D) 1.59 (L) 4.04 (D) 3.47 (L) 

α 1.00 1.00 1.00 1.11 

RS 0.00 0.00 0.00 1.70 

P
o

la
r 

Fmoc-Ser(tBu)-OH 

k1 1.26 (D) 1.23 (L) 3.98 (D) 3.47 (L) 

α 1.13 1.11 1.23 1.23 

RS 0.96 0.99 3.64 3.51 

Fmoc-Thr(tBu)-OH 

k1 3.67 (D) 3.52 (L) 2.73 (D) 2.45 (L) 

α 1.95 1.92 1.17 1.00 

RS 9.42 9.04 2.70 0.00 

Fmoc-Cys(Trt)-OH 

k1 7.92 (D) 6.95 (L) 15.84 (D) 10.29 (L) 

α 1.07 1.06 1.73 1.99 

RS 1.20 1.13 10.49 12.20 

Fmoc-Tyr(tBu)-OH 

k1 2.67 (D) 2.50 (L) 10.63 (D) 7.08 (L) 

α 1.33 1.27 1.94 3.27 

RS 4.39 3.43 12.36 19.82 

Fmoc-Asn-OH 

k1 8.95 (D) 7.42 (L) 14.54 (D) 11.65 (L) 

α 1.35 1.54 1.23 1.29 

RS 5.73 7.58 3.94 4.69 

Fmoc-Gln-OH 

k1 6.57 (D) 7.41 (L) 13.04 (D) 14.86 (L) 

α 1.49 1.32 2.31 1.97 

RS 7.41 5.27 15.10 11.89 

Chromatographic conditions: column, ZWIX(+)™, ZWIX(-)™,QN-AX and QD-AX; mobile phase, on ZWIX(+)™ 

and ZWIX(-)™ CO2/MeOH (70/30 v/v) containing 30 mM TEA and 60 mM FA and on QN-AX and QD-AX 

CO2/MeCN (60/40 v/v) containing 30 mM TEA and 60 mM FA; flow rate, 2.0 mL/min; detection, 262 nm; Tcol, 40 °C; 

back pressure, 150 bar; configuration (D and L) in parenthesis represents the configuration of the first eluting 

enantiomer 
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4.7 Influence of temperature on the separation of Nα-Fmoc proteinogenic amino acids 

The effect of temperature on the separation mechanism is complex. Thermodynamic 

studies are often performed in order to understand the mechanistic aspect of chiral recognition. 

Enantioselective retention mechanisms are sometimes influenced by temperature to a greater 

extent when compared to non-chiral separations. Accordingly, the effect of column temperature 

has often been investigated and optimized in enantioselective chromatographic separations. In 

the past decade several paper were published addressing the effect of temperature in 

enantioseparations on Cinchona alkaloid-based CSPs [89–94]. 

There are two main temperature effects governing the chromatographic performance of 

a CSP. One is the thermodynamic effect. This effect is the changes in the selectivity (α), which 

is related to the peak-to-peak separation distance. The selectivity usually decreases with 

increasing temperature. This occurs because of the partition coefficient; therefore, the free 

energy change (ΔGº) of the transfer of the analyte between the mobile phase and the stationary 

phase varies with temperature. The effect of temperature on selectivity is controversial. It is, in 

part, due to the lack of our understanding how the ΔG° of the compound would change in the 

course of the mass-transfer process. Another completely different effect is the influence on 

viscosity and diffusion coefficient of the analyte in the two phases. This is called kinetic effect. 

At higher temperature viscosity decreases. However, the diffusion coefficient of the solute 

increases, thereby affecting the mass transfer between the mobile and stationary phases. As a 

result of this two effects, the temperature increase often produces a trade-off for resolution. 

Namely, the increased efficiency is good for resolution, while the decreasing peak-to-peak 

separation is disadvantageous for resolution [95–97]. 

For the investigation of the temperature effect, the van’t Hoff plots approach was 

applied. The differences of the standard enthalpy and entropy changes calculated from the ln α 

vs. 1/T curves give Δ(ΔHº) as the slope and Δ(ΔSº) as the intercept (Eq. 5). The Δ(ΔHº) values 

present the difference of enthalpy changes accompanying the transfer of the analytes from the 

mobile to the stationary phase. High negative Δ(ΔHº) values indicate an exothermic process, 

i.e. a stronger interaction of the enantiomers with the stationary phase or more efficient 

enantiomer transfer between the mobile and the stationary phases. The trend in the change of 

Δ(ΔSº) is similar as in Δ(ΔHº). If Δ(ΔHº) values are negative, Δ(ΔSº) values are also negative 

and the largest negative Δ(ΔHº) values are accompanied by the largest negative Δ(ΔSº) values. 

The more negative Δ(ΔSº) values suggest an enhanced increase of order or stronger interactions 

of the SA–SO complex resulting in a significant loss of freedom. In chiral separation – similar 

to achiral chromatography – retention and selectivity decrease with increasing temperature, 
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Δ(ΔHº) and Δ(ΔSº) values are negative, i.e. the enantioseparation is enthalpically controlled. 

However, in some cases, retention decreases but selectivity increases with increasing 

temperature. In that case, both Δ(ΔHº) and Δ(ΔSº) exhibit positive values, i.e. the 

enantioseparation is entropically controlled [90,94,98,99]. 

 

4.7.1 Influence of temperature on the separation of Nα-Fmoc proteinogenic amino acids 

on quinine-based CSPs in HO, PI, and SFC mode 

In order to investigate the effect of temperature on chromatographic parameters, a 

variable temperature study was carried out for selected Nα-Fmoc amino acids on both quinine- 

and quinidine-based CSPs in HO, PI, and SFC modes. The temperature range varied between 

5–40 ºC and 20–50 ºC, respectively. The applied mobile phases for HO-LC contained 

H2O/MeOH (1/99 v/v), 3.75 mM TEA, and 7.5 mM FA on ZWIX(+)™. For PIM, 

MeOH/MeCN (75/25 v/v) contained 30 mM TEA and 60 mM FA on QN-AX. For SFC we 

chose the condition CO2/MeOH (70/30 v/v) containing 30 mM TEA and 60 mM FA for 

ZWIX(+)™, and CO2/MeOH (60/40 v/v) containing 30 mM TEA and 60 mM FA for QN-AX. 

Chromatographic data received at various temperatures are depicted in Appendix Table S1. 

Increasing temperature, in all cases, resulted in a decrease in k1 and α values, while RS 

in most cases also decreased. However, minimum or maximum values of RS were registered in 

a few cases. All thermodynamic data are presented in Table 4. 

 

Table 4. Thermodynamic parameters, (H), (S), Tx(S), (G), and Q values of Nα-

Fmoc-protected proteinogenic amino acids on ZWIX(+)TM and QN-AX CSP in liquid 

chromatographic and SFC mode 

Compound 

 
Column 

Mode/

mobile  

phase 

-(H) 
(kJ mol–1) 

-(S) 
(J mol–1 K–1) 

-Tx(S)298K 

(kJ mol–1) 

-(G)298K 

(kJ mol–1) 
Q 

Fmoc-

Asp(OtBu)

-OH 

ZWIX(+)TM HO 5.6 16.7 5.0 0.6 1.1 

QN-AX  PIM 5.5 13.5 4.0 1.5 1.4 

ZWIX(+)TM SFC 0.8 1.3 0.4 0.4 2.0 

QN-AX  SFC 3.6 7.5 2.2 1.4 1.6 

Fmoc-

Lys(Boc)-

OH 

ZWIX(+)TM HO 3.5 10.1 3.0 0.5 1.2 

QN-AX  PIM 3.8 7.8 2.3 1.5 1.7 

ZWIX(+)TM SFC 1.4 2.7 0.8 0.6 1.8 

QN-AX SFC 1.9 2.5 0.7 1.2 2.7 

Fmoc-Leu-

OH 

ZWIX(+)TM HO 2.8 7.0 2.1 0.7 1.2 

QN-AX PIM 4.2 9.1 2.7 1.5 1.6 
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Table 4. (continued) Thermodynamic parameters, (H), (S), Tx(S), (G), and Q 

values of Nα-Fmoc-protected proteinogenic amino acids on ZWIX(+)TM and QN-AX CSP in 

liquid chromatographic and SFC mode 

Compound 

 
Column 

Mode/

mobile  

phase 

-(H) 
(kJ mol–1) 

-(S) 
(J mol–1 K–1) 

-Tx(S)298K 

(kJ mol–1) 

-(G)298K 

(kJ mol–1) 
Q 

Fmoc-Leu-

OH 

ZWIX(+)TM SFC 0.8 1.1 0.3 0.5 2.7 

QN-AX  SFC 5.1 12.1 3.6 1.5 1.4 

Fmoc-Phe-

OH 

ZWIX(+)TM HO 7.1 19.7 5.9 1.2 1.2 

QN-AX  PIM 4.0 9.6 2.9 1.1 1.4 

ZWIX(+)TM SFC 2.0 4.2 1.3 0.7 1.5 

QN-AX SFC 2.1 4.3 1.3 0.8 1.6 

Fmoc-

Tyr(tBu)-

OH 

ZWIX(+)TM HO 7.5 23.7 7.1 0.4 1.1 

QN-AX PIM 2.6 7.3 2.2 0.4 1.2 

ZWIX(+)TM SFC 2.7 6.2 1.8 0.9 1.5 

QN-AX SFC 2.4 2.4 0.7 1.7 3.4 

Chromatographic conditions: column, ZWIX(+)TM and QN-AX; mobile phase in HO-LC mode, H2O/MeOH (1/99 
v/v) containing 3.75 mM TEA and 7.5 mM FA and in PIM MeOH/MeCN (75/25 v/v) containing 30 mM TEA and 

60 mM FA, in SFC mode CO2/MeOH (70/30 v/v) containing 30 mM TEA and 60 mM FA on ZWIX(+)TM; and 

CO2/MeOH (60/40 v/v) containing 30 mM TEA and 60 mM FA on QN-AX; flow rate, 0.6 mL/min or  

2.0 mL/min (SFC); detection, 262 nm; Q = (H°) / 298 × (S°) 

 

According to data summarized in Table 4, all (H) values are negative ranging from 

–0.8 to –7.5 kJ mol–1. This reflects the relative ease of the transfer of SAs from the mobile to 

the stationary phase, and a negative (H) value relates to a favorable exothermic process. It 

was generally observed that (H) values were more negative on both ZWIX(+)™ and QN-

AX under LC condition than under SFC condition (except for Fmoc-Leu-OH). The trend in the 

change in Δ(ΔSº) was found to be similar to that in (H). Under the applied conditions, 

(S) ranged from –1.1 to –23.7 J mol–1 K–1. In most cases the (S) values on ZWIX(+)™ 

and QN-AX were more negative under LC condition, than under SFC condition, again with the 

exception of Fmoc-Leu-OH. In the case of negative (S), the adsorbed enantiomers exhibited 

increased order of the SO–SA complex formed on the stationary phase resulting in a significant 

loss of freedom, indicating a thermodynamically unfavorable process. A comparison of Δ(ΔHº) 

and Δ(ΔSº) in LC condition revealed that they are more negative on ZWIX(+)™ (HO modality) 

than on QN-AX. In conrast, the values at SFC condition show a reverse order, i.e. more negative 

values were obtained on QN-AX than on ZWIX(+)™. The more negative (G) values 

calculated at 298 K were generally obtained on QN-AX rather than on ZWIX(+)™ working 

either in liquid chromatographic or SFC mode. 
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The relative contribution of the enthalphic and entropic terms to the free energy of 

adsorption can be visualized through the enthalpy/entropy ratio Q {Q = (H) / [298 

×(S)]} calculated at 298 K. A comparison of the Q values for the individual analytes 

revealed that, in all cases, the enantioselective discrimination was enthalpically driven (Q > 

1.0) and, with a few exceptions, the highest Q values were most often obtained on QN-AX. 

 

4.7.2 Influence of temperature on the separation of Nα-Fmoc proteinogenic amino acids 

on quinidine-based CSPs in LC and SFC mode 

To explore the temperature effect of selected Nα-Fmoc amino acids on both quinidine-

based CSPs, the same mobile phases as on quinine-based CSPs (4.6.1) in LC and SFC mode 

were chosen. We used also the same temperature range as before. The chromatographic data 

obtained at varied temperatures are depicted in Appendix Table S2. 

All (H) and (S) data are presented in Table 5. The (H) values measured on 

ZWIX(-)™ and QD-AX ranged from –1.0 and –3.7 kJ mol–1 and between –2.7 and –6.6 kJ mol–

1, respectively. It was generally observed that (H) values were more negative on both 

columns under LC condition compared to SFC condition (the only exception was Fmoc-Phe-

OH on ZWIX(-)™). Comparing the (H) values on the studied columns, in all cases, more 

negative values were registered on anion-exchanger type QD-AX than on ZWIX(-)™. 

Regarding the (S) values, they ranged on ZWIX(-)™ between –1.1 and –9.2 J mol–1 K–1 

and on QD-AX between –5.8 and –16.6 J mol–1 K–1. The trend was similar for (H) values: 

more negative values were observed on QD-AX than on ZWIX(-)™ and under LC condition 

compared to SFC condition. (G) values calculated at 298 K were more negative on QD-AX 

CSP in both LC and SFC modalities. 

 

Table 5. Thermodynamic parameters, (H), (S), Tx(S), (G), and Q values of Nα-

Fmoc-protected proteinogenic amino acids on ZWIX(-)TM and QD-AX CSP in liquid 

chromatographic and SFC mode 

Compound 

 
Column 

Mode/

mobile 

phase 

-(H) 
(kJ mol–1) 

-(S) 
(J mol–1 K–1) 

-Tx(S)298K 

(kJ mol–1) 

-(G)298K 

(kJ mol–1) 
Q 

Fmoc-

Asp(OtBu)

-OH 

ZWIX(-)TM HO 2.4 6.6 2.0 0.4 1.2 

QD-AX  PIM 6.0 15.0 4.5 1.5 1.3 

ZWIX(-)TM SFC 1.0 2.0 0.6 0.4 1.7 

QD-AX  SFC 3.9 8.6 2.6 1.3 1.5 
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Table 5. (continued) Thermodynamic parameters, (H), (S), Tx(S), (G), and Q 

values of Nα-Fmoc-protected proteinogenic amino acids on ZWIX(-)TM and QD-AX CSP in 

liquid chromatographic and SFC mode 

Compound 

 
Column 

Mode/

mobile 

phase 

-(H) 
(kJ mol–1) 

-(S) 
(J mol–1 K–1) 

-Tx(S)298K 

(kJ mol–1) 

-(G)298K 

(kJ mol–1) 
Q 

Fmoc-

Lys(Boc)-

OH 

ZWIX(-)TM HO 3.1 9.2 2.7 0.4 1.1 

QD-AX  PIM 4.3 10.8 3.2 1.1 1.3 

ZWIX(-)TM SFC 2.0 5.2 1.6 0.4 1.3 

QD-AX  SFC 2.7 5.8 1.7 1.0 1.6 

Fmoc-Leu-

OH 

ZWIX(-)TM HO 1.9 5.4 1.6 0.3 1.2 

QD-AX  PIM 6.6 16.6 4.9 1.7 1.3 

ZWIX(-)TM SFC 1.4 3.1 0.9 0.5 1.6 

QD-AX  SFC 4.3 9.7 2.9 1.4 1.5 

Fmoc-Phe-

OH 

ZWIX(-)TM HO 1.0 1.1 0.3 0.7 3.3 

QD-AX  PIM 5.0 12.6 3.8 1.2 1.3 

ZWIX(-)TM SFC 2.4 5.8 1.7 0.7 1.4 

QD-AX  SFC 3.1 6.7 2.1 1.1 1.5 

Fmoc-

Tyr(tBu)-

OH 

ZWIX(-)TM HO 3.7 7.5 2.2 1.5 2.5 

QD-AX PIM 6.6 16.0 4.8 1.8 1.4 

ZWIX(-)TM SFC 2.9 7.3 2.2 0.7 1.3 

QD-AX  SFC 5.7 8.1 2.4 3.3 2.4 

Chromatographic conditions: column, ZWIX(-)TM and QD-AX; mobile phase in LC mode, H2O/MeOH (1/99 v/v) 

containing 3.75 mM TEA and 7.5 mM FA and MeOH/MeCN (75/25 v/v) containing 30 mM TEA and 60 mM FA, 
in SFC mode CO2/MeOH (70/30 v/v) containing 30 mM TEA and 60 mM FA; and CO2/MeOH (60/40 v/v) 

containing 30 mM TEA and 60 mM FA; flow rate, 0.6 mL/min or 2.0 mL/min (SFC); detection, 262 nm;  

Q = (H°) / 298 × (S°) 

 

4.8 Determination of elution sequences on Cinchona alkaloid-based zwitterionic and 

anion-exchanger type CSPs 

In chromatography, it is important to determine the elution sequence of enantiomers, in 

particular, to reveal impurity profile and enantiomer excess. Cinchona alkaloids (QN and QD) 

and trans-2-aminocyclohexanesulfonic acid-based chiral SOs and CSPs behave as 

pseudoenantiomeric CSPs; actually, they are like diastereomeres. Therefore, switching from 

ZWIX(+)™ to ZWIX(-)™ or from QN-AX to QD-AX, the sequence of the enantiomers of the 

SAs might be reveresed (Figure 19). The molecular part of the anion-exchanger site of the 

ZWIX(+)™ selector is based on QN, while the cation-exchange site is based on (1S,2S)-

cyclohexyl-1-amino-2-sulfonic acid, and the two charged molecular moieties are bridged via 
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the carbamoyl group. According to the pseudo-enantiomer concept outlined above, the ZWIX 

(-)™ selector is composed of QD and (1R,2R)-cyclohexyl-1-amino-2-sulfonic acid. 

 

 

Figure 19. The relationship between the elution sequence and the structure of selectors 

 

Elution sequences were determined in all cases. On ZWIX(+)™ and QN-AX, the elution 

order was D < L (Fmoc-Pro-OH was not separable on ZWIX(+)™), while on ZWIX(-)™ and 

QD-AX, a reversed elution order L < D was obtained. Exceptions were Fmoc-Cys(Trt)-OH and 

Fmoc-Asn-OH on QD-AX CSP, where the elution order was D < L. 

It seems that the configuration of carbon atoms C-8 and C-9 in the core of quinine and 

quinidine determine the elution sequence. If the configuration of C-8 and C-9 is 8S,9R, the 

elution sequence is D < L, while the 8R,9S configuration gives the elution sequence L < D. In 

any other combinations, 8S,9R and 8R,9S resulted in a reversal of the elution sequence, i.e. 

selectors indeed work like pseudo-enantiomers. 

 

4.9 Analysis of minor components in the presence of major one on Cinchona alkaloid-

based zwitterionic CSPs 

 

The enantiomeric purity of Nα-Fmoc-protected amino acids is crucial from the viewpoint 

of peptide synthesis. The enantiomeric excess is a measurement used in chemistry to 

characterize the composition of enantiomeric mixtures, that is it shows the purity of a substance. 

The determination of the enantiomeric excess (ee values) of the starting free amino acids and 

of the N-protected derivatives is carried out mainly with gas and liquid chromatographic 

methods. However, various modalities are available for the enantioseparation of free and N-
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protected proteinogenic and unusual amino acids and results have been summarized in 

numerous review articles. 

A fast and sensitive chromatographic protocol was developed for the identification and 

quantitation of enantiomeric impurities of commercially available Nα-Fmoc-protected amino 

acids on Cinchona alkaloid QN- and QD-based zwitterionic stationary phases. Selected 

chromatograms collected in Figure 20 exhibit examples for the enantioseparation of Nα-Fmoc 

proteinogenic amino acids containing 0.1% chiral impurity in the presence of the major one. To 

quantify the amount of enantiomeric impurities, analyses were performed for the five selected 

analytes. Measurements were carried out in SFC modality with a mobile liquid phase of 

CO2/MeOH (70/30 v/v) containing 30 mM TEA and 60 mM FA. Determination of the minor 

D-enantiomer component was performed on ZWIX(+)™, whereas ZWIX(-)™ CSP was applied 

for the minor L-enantiomer. Figure 20 depicts the chromatograms and peak areas of the minor 

components of the selected Fmoc amino acids. The concentration level of minor component, 

D-amino acids (on ZWIX(+)™) or L-amino acids (on ZWIX(-)™) was 10.0 g/mL (with 7 µL 

injected volume, 70 ng, ca. 0.1–0.2 nmol). Chromatograms demonstrate that 0.1% of the minor 

enntiomer can be detected in the presence of the major one. One year later, on the basis of these 

results, the same research group successfully determined 0.01% of the minor component in the 

presence of the major one under LC conditions applying anion-exchanger CSP QN-AX for 

determination of the D-enantiomer and QD-AX for determination of the L-enantiomer [88]. The 

determination levels (LOQ values) ranged between 3.0–5.4 pmol. 
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ZWIX(+)™     ZWIX(-)™ 

   

   

   

   

   
Figure 20. Chromatograms of selected SAs when present in an excess of the major isomer 

Chromatographic conditions: column, ZWIX(+)TM or ZWIX(−)TM; mobile phase,CO2/MeOH (70/30 v/v) 

containing 30 mM TEA and 60 mM FA; flow rate, 2.0 mL/min; detection, 262 nm; Tcol, 40 °C; 

back pressure, 150 bar; concentration of minor component,10.0 g/mL  
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4.10 Selected Chromatograms 

Selected chromatograms of Nα-Fmoc proteinogenic amino acids on ZWIX(+)TM and QN-AX column under SFC and LC conditions are collected 

in Figure 21. 

SFC condition:       ZWIX(+)™ 

 

 

SFC condition:       QN-AX 
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LC condition:       ZWIX(+)™ 

 

 

 

Figure 21. Selected chromatograms of Nα-Fmoc proteinogenic amino acids 

Chromatographic conditions: column, ZWIX(+)TM and QN-AX; mobile phase in LC mode, H2O/MeOH (1/99 v/v) containing 30 mM TEA and 60 mM FA 

mobile phase in SFC mode, CO2/MeOH (70/30 v/v) containing 30 mM TEA and 60 mM FA on ZWIX(+)TM and CO2/MeOH (60/40 v/v) containing 30 mM TEA and 60 mM FA 

on QN-AX; flow rate, 2.0 mL/min; detection, 262 nm; Tcol, 40 °C; back pressure, 150 bar 
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5 Summary 

In my research work, methods were developed utilizing zwitterionic and anion-

exchanger type chiral CSPs based on Cinchona alkaloids for the separation of Nα-Fmoc 

proteinogenic amino acid enantiomers in LC and SFC mode. In the course of method 

optimization, several mobile phase compositions and conditions as well as different 

temperatures affecting the chromatographic parameters were investigated. 

 

1) Effect of mobile phase composition 

Experiments were performed at various mobile phase compositions, involving mixtures of 

MeOH and MeCN in LC mode, and liquid CO2 and MeOH in the SFC mode with constant ionic 

strength (the acid-to-base ratio was kept at a constant value of 2:1). The presence of a polar 

solvent had a strong effect on retention, selectivity, and resolution. These values changed 

(generally decreased) significantly at higher MeOH content in MeCN or CO2 as bulk solvent. 

With increasing MeOH content in the mobile phase, the polarity of the mobile phase increased 

promoting the interaction between the mobile phase and SA; therefore, retentions decreased in 

all cases. It is important to note that under all chromatographic conditions applied, ionic 

interactions between the SO and SA have a decisive role regarding retention. Enantioselectivity 

is influenced by additional hydrogen bonding as well as aromatic π–π and van der Waals 

interactions. 

 

2) Role of water content of the mobile phase 

The effects of the water content in the mobile phase on the retention, selectivity, and 

resolution were investigated. The influence of water applied in lower concentrations (≤10 v%) 

in the eluent turned out to be favorable on separation factors. Water in a low percentage is 

beneficial for peak shape, resolution, analysis time, sample, and solubility performance. The 

addition of small amounts of water to the polar ionic mobile phase shifts the elution system 

from a nonaquesous PI mode to a HO mode. A few percentage points of H2O affect solvation 

of both SO and SA and might reduce the strength of ionic interactions. In LC mode, in most 

cases, 1.0–2.0% H2O content in the eluent was advantageous, yielding better peak shapes and 

higher resolution. In SFC mode, increasing the water content resulted in slightly decreased 

rentention times. This can be partially explained by the increase in the formation of counter-

ions via the reaction of CO2 and H2O, yielding carbonic acid, which dissociates to hydrogen 

carbonate and proton. Formed hydrogen carbonate and proton act as additional counter-ions in 
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anion chromatographic system. Similar to this behaviour, both α and RS decreased slightly with 

increasing water content. 

 

3) Role of nature of base and acid as mobile phase additives 

To investigate the effect of the nature of acid and base additives, separations are generally 

carried out with constant bulk solvent composition and using an excess of the acid to the base 

component in the mobile phase ensuring that the base is present in its protonated „ammonium 

ion” form.To study the effects of acid and base additives, FA and AcOH were selected as acid 

additives, and EA, DEA, TEA, PA, and BA served as base additives. The amines differed in 

the degree and nature of their alkyl substitution on the nitrogen atom, while acids FA and AcOH 

have different strength. The nature of the various acid and base additives in the mobile phase 

may affect chromatographic parameters and play an important role in the optimization of the 

enantioseparation on Cinchona alkaloid-based CSPs. 

 

4) Effect of the counter-ion concentration 

Retention can be controlled by the type of the counter-ion, but the concentration of the 

counter-ion can also affect chromatographic behavior. This means that retention can be greatly 

influenced by the amounts of co-ions and counter-ions present in the mobile phase. The 

application of a higher counter-ion concentration should result in lower retention, as the 

stoichiometric displacement model described. According to this model, linear relationship was 

found between the logarithm of the retention factor of the first-eluted enantiomer (log k1) and 

the logarithm of the counter-ion concentration (log ccounter-ion). On anion-exchanger QN-AX and 

QD-AX CSPs, a „single ionic” ion-exchange mechanism was also suggested. Under the studied 

conditions, linear relationships were found between log k1 and log cFA. 

 

5) Temperature dependence and thermodynamic parameters  

The influence of temperature on the separation mechanism is complex. Thermodynamic 

studies are often performed in order to understand the mechanistic aspects of  chiral recognition. 

There are two completely different effects governing the chromatographic performance of 

CSPs. One of these is the thermodynamic effect, and the other is the kinetic effect. 

 For the investigation of the temperature effect, the van’t Hoff plots approach was 

applied. The temperature range varied between 5–40 ºC in LC mode and between 20–50 ºC in 

SFC mode. The differences of the standard enthalpy and entropy changes were calculated from 

the ln α vs. 1/T curves, where the slope gives Δ(ΔHº) and the intercept gives Δ(ΔSº) values. It 
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should be noted, that in all cases the selectivity decreased with increasing temperature and both 

Δ(ΔHº) and Δ(ΔSº) exhibited negative values, i.e. the enantioseparation was enthalpically 

driven. The relative contribution of the enthalphic and entropic terms to the free energy of 

adsorption can be visualized through the enthalpy/entropy ratio Q {Q = (H) / [298 

×(S)]} calculated at 298 K. A comparison of the Q values for the individual analytes 

revealed that the enantioselective discrimination was enthalpically driven (Q > 1.0) in all cases 

and, with a few exceptions, the highest Q values were most often obtained on QN-AX CSP. 

 

6) Determination of elution sequence on different types of Cinchona alkaloids 

Cinchona alkaloids (QN and QD) and trans-2-aminocyclohexanesulfonic acid-based chiral 

SOs and CSPs behave as pseudoenantiomeric CSPs. In fact, they are diastereomers. Elution 

sequences were determined for all studied analytes and a general rule could be observed: D 

enantiomers eluted first before the L ones on QN-based ZWIX(+)™ and QN-AX CSPs in both 

LC and SFC modes. On the other hand, on QD-based ZWIX(-)™ and QD-AX CSPs, the L 

enantiomers eluted first before D ones in both chromatographic modes. 

 

7) Method development for the enantiomeric purity determination of Nα-Fmoc 

proteinogenic amino acids 

Determination of the enantiomeric excess (ee values) of the starting free amino acids and 

of the N-protected amino acids is highly important in peptide synthesis. Nowadays various 

methods are available in the literature. The enantiomeric excess used in chemistry is a 

measurement to characterize the composition of mixtures of enantiomers indicating the 

enantiomeric purity of a substance. A rapid and sensitive chromatographic method protocol was 

developed for the identification and quantitation of enantiomeric impurities of commercially 

available Nα-Fmoc-protected amino acids on Cinchona alkaloid QN- and QD-based 

zwitterionic stationary phases. To quantify the amount of enantiomeric impurities, analyses 

were carried out for the determination of the minor enantiomers in the case of five selected 

analytes. 
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APPENDIX 

Table S1 
Temperature dependence of retention factor of first eluting enantiomer (k1), separation factor (α) and 

resolution (RS) of Nα-Fmoc-protected proteinogenic amino acids on ZWIX(+)TM and QN-AX CSPs in 
liquid chromatographic conditions 

 

Compound Column Eluent 
k1, α, 

RS 

Temperature (°C) 

5 10 20 30 40 

 

Fmoc-

Asp(OtBu)-

OH 

ZWIX(+)TM 

a 

k1 0.46 0.45 0.44 0.41 0.37 

 1.50 1.40 1.32 1.22 1.14 

RS 1.30 1.04 1.04 1.08 0.91 

ZWIX(-)TM 

k1 0.57 0.55 0.50 0.44 0.40 

 1.26 1.24 1.20 1.16 1.13 

RS 0.92 0.83 0.78 0.68 0.42 

QN-AX 

b 

k1 3.27 2.67 2.57 2.36 2.16 

 2.15 2.03 1.89 1.76 1.63 

RS 11.50 11.33 10.88 10.39 9.25 

QD-AX 

k1 2.56 2.50 2.49 2.24 2.08 

 2.16 2.08 1.91 1.76 1.63 

RS 10.43 9.90 7.83 8.18 7.50 

Fmoc-

Lys(Boc)-

OH 

 

ZWIX(+)TM 

a 

k1 0.30 0.30 0.30 0.29 0.26 

 1.37 1.33 1.27 1.21 1.15 

RS 1.03 0.93 0.94 0.65 0.76 

ZWIX(-)TM 

k1 0.44 0.42 0.37 0.28 0.25 

 1.25 1.23 1.16 1.13 1.08 

RS 0.57 0.53 0.27 0.44 0.20 

QN-AX 

b 

k1 1.85 1.69 1.48 1.35 1.25 

 1.99 1.95 1.86 1.76 1.66 

RS 10.11 10.95 10.53 7.29 7.91 

QD-AX 

k1 1.39 1.38 1.35 1.33 1.28 

 1.72 1.67 1.59 1.48 1.41 

RS 5.90 6.08 5.85 5.00 4.29 

 

Fmoc-Leu-

OH 

ZWIX(+)TM 

a 

k1 0.30 0.30 0.30 0.29 0.26 

 1.47 1.43 1.38 1.33 1.27 

RS 0.57 0.53 0.27 0.44 0.20 

ZWIX(-)TM 

k1 0.29 0.29 0.28 0.26 0.24 

 1.19 1.17 1.14 1.12 1.08 

RS 0.35 0.31 0.36 0.38 0.20 
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Table S1 (continued) Temperature dependence of retention factor of first eluting enantiomer (k1), 

separation factor (α) and resolution (RS) of Nα-Fmoc-protected proteinogenic amino acids on 
ZWIX(+)TM and QN-AX CSPs in liquid chromatographic conditions 

 

Compound Column Eluent 
k1, α, 

RS 

Temperature (°C) 

5 10 20 30 40 

 

Fmoc-Leu-

OH 

QN-AX 

b 

k1 2.04 1.85 1.63 1.55 1.41 

 2.06 1.98 1.88 1.77 1.68 

RS 9.33 9.25 10.00 7.62 7.57 

QD-AX 

k1 1.38 1.38 1.36 1.35 1.30 

 2.38 2.29 2.10 1.89 1.75 

RS 10.00 10.24 9.67 8.95 6.59 

Fmoc-Phe-

OH 

ZWIX(+)TM 

a 

k1 0.61 0.59 0.55 0.53 0.49 

 2.02 1.90 1.73 1.55 1.43 

RS 3.15 3.06 2.62 1.75 2.05 

ZWIX(-)TM 

k1 0.74 0.72 0.66 0.59 0.52 

 1.35 1.35 1.32 1.31 1.29 

RS 1.75 1.76 1.67 1.49 1.28 

QN-AX 

b 

k1 5.03 3.54 3.44 3.20 2.88 

 1.75 1.72 1.60 1.53 1.45 

RS 8.76 9.29 8.85 8.16 7.33 

QD-AX 

k1 3.50 3.43 3.22 3.05 2.70 

 1.94 1.87 1.74 1.63 1.53 

RS 9.53 9.43 8.62 8.33 6.71 

Fmoc-

Tyr(tBu)-

OH 

 

ZWIX(+)TM 

a 

k1 0.77 0.74 0.66 0.59 0.57 

 1.47 1.38 1.26 1.12 1.02 

RS 1.49 1.21 1.06 0.20 0.20 

ZWIX(-)TM 

k1 0.65 0.64 0.61 0.52 0.44 

 1.98 1.91 1.82 1.73 1.66 

RS 4.00 3.92 3.36 3.79 3.30 

QN-AX 

b 

k1 5.33 4.21 4.06 3.68 3.23 

 1.27 1.25 1.20 1.16 1.12 

RS 3.87 3.58 3.31 2.75 2.18 

QD-AX 

k1 2.94 2.89 2.72 2.57 2.36 

 2.54 2.42 2.23 2.04 1.83 

RS 17.65 12.74 11.67 10.00 9.29 

Chromatographic conditions: column, ZWIX(+)TM, ZWIX(-)TM, QD-AX and QN-AX; mobile phase, a, 

H2O/MeOH (1/99 v/v) containing 3.75 mM TEA and 7.5 mM FA, b, MeOH/MeCN (75/25 v/v) containing 30 

mM TEA and 60 mM FA; flow rate, 0.6 mL/min; detection, 262 nm 
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Table S2 
Temperature dependence of retention factor of first eluting enantiomer (k1), separation factor (α) and 

resolution (RS) of Nα-Fmoc-protected proteinogenic amino acids on ZWIX(-)TM and QD-AX CSPs in 
supercritical fluid chromatographic conditions 

 

Compound Column Eluent 
k1, α, 

RS 

Temperature (°C) 

20 30 40 50 

 

Fmoc-

Asp(OtBu)-

OH 

ZWIX(+)TM 

a 

k1 1.74 1.75 1.76 1.77 

 1.21 1.19 1.18 1.17 

RS 2.54 2.59 2.43 2.26 

ZWIX(-)TM 

k1 1.64 1.63 1.63 1.62 

 1.18 1.16 1.15 1.13 

RS 1.84 1.87 1.88 1.68 

QN-AX 

b 

k1 5.83 5.41 5.06 4.68 

 1.72 1.67 1.59 1.50 

RS 8.61 8.59 8.03 7.36 

QD-AX 

k1 5.11 4.82 4.48 4.20 

 1.74 1.68 1.60 1.50 

RS 8.76 8.48 8.01 7.33 

Fmoc-

Lys(Boc)-

OH 

 

ZWIX(+)TM 

a 

k1 2.17 2.20 2.22 2.26 

 1.25 1.23 1.21 1.19 

RS 2.82 2.83 2.63 2.51 

ZWIX(-)TM 

k1 2.04 2.05 2.07 2.09 

 1.23 1.21 1.18 1.14 

RS 2.01 2.12 2.04 1.81 

QN-AX 

b 

k1 5.65 5.35 5.06 4.78 

 1.59 1.57 1.51 1.49 

RS 7.17 7.19 6.83 6.31 

QD-AX 

k1 5.07 4.69 4.48 4.22 

 1.50 1.47 1.42 1.35 

RS 6.54 6.16 5.74 5.25 

 

Fmoc-Leu-

OH 

ZWIX(+)TM 

a 

k1 1.65 1.64 1.62 1.60 

 1.23 1.22 1.20 1.19 

RS 2.48 2.56 2.11 2.25 

ZWIX(-)TM 

k1 1.56 1.54 1.52 1.49 

 1.22 1.20 1.18 1.15 

RS 1.76 1.87 1.68 1.61 
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Table S2 (continued)  Temperature dependence of retention factor of first eluting enantiomer (k1), 

separation factor (α) and resolution (RS) of Nα-Fmoc-protected proteinogenic amino acids on ZWIX 

(-)TM and QD-AX CSPs in supercritical fluid chromatographic conditions 
 

Compound Column Eluent 
k1, α, 

RS 

Temperature (°C) 

20 30 40 50 

 

Fmoc-

Leu-OH 

QN-AX 

b 

k1 5.51 5.07 4.68 4.14 

 1.57 1.55 1.54 1.53 

RS 8.99 9.21 8.76 8.02 

QD-AX 

k1 4.05 3.75 3.52 3.29 

 1.81 1.77 1.61 1.56 

RS 9.88 9.21 8.63 7.83 

Fmoc-

Phe-OH 

ZWIX(+)TM 

a 

k1 3.39 3.37 3.35 3.32 

 1.37 1.34 1.31 1.27 

RS 4.83 4.83 4.53 4.26 

ZWIX(-)TM 

k1 3.17 3.13 3.08 3.01 

 1.34 1.30 1.27 1.23 

RS 3.64 3.82 3.96 3.43 

QN-AX 

b 

k1 12.07 11.12 10.16 9.03 

 1.39 1.37 1.33 1.29 

RS 5.99 5.76 5.58 5.19 

QD-AX 

k1 10.19 9.54 8.63 7.72 

 1.56 1.50 1.45 1.39 

RS 7.95 7.39 6.92 6.43 

Fmoc-

Tyr(tBu)-

OH 

 

ZWIX(+)TM 

a 

k1 2.64 2.65 2.67 2.68 

 1.41 1.37 1.33 1.28 

RS 4.68 4.72 4.39 4.10 

ZWIX(-)TM 

k1 2.44 2.47 2.50 2.52 

 1.35 1.31 1.27 1.21 

RS 3.39 3.54 3.43 3.08 

QN-AX 

b 

k1 13.32 12.22 10.72 9.31 

 1.92 1.91 1.90 1.89 

RS 10.98 11.25 11.88 12.32 

QD-AX 

k1 7.59 7.27 6.73 6.36 

 3.86 3.60 3.43 3.08 

RS 20.37 19.95 20.08 20.28 

Chromatographic conditions: column, ZWIX(+)TM, ZWIX(-)TM, QD-AX and QN-AX; mobile phase, a, 

CO2/MeOH (70/30 v/v) containing 30 mM TEA and 60 mM FA, b, CO2/MeOH (60/40 v/v) containing 

30 mM TEA and 60 mM FA; 2 ml/min; detection, 262 nm; back pressure, 150 bar  

 

 


