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1 Asymptotic distributions for weighted power

sums of extreme values

This chapter is based on a joint paper [9]. Here we considered proving the

asymptotic normality for the weighted power sums over the whole heavy-tail

model under some constraints on the weights di,n. The results obtained are

crucial in the construction of a new class of estimators for the parameter γ.

1.1 Formulation of the weighted power sums

Let X,X1, X2, . . . be independent random variables with a common distribution

function F (x) = P{X ≤ x}, x ∈ R, and for each integer n ≥ 1 let X1,n ≤
· · · ≤ Xn,n denote the order statistics pertaining to the sample X1, . . . , Xn. For

a constant γ > 0, let Rγ be the class of all probability distribution functions F

such that

1− F (x) = x−1/γL(x), 0 < x <∞,

where L is a function slowly varying at in�nity. Without loss of generality we

assume that F (1−) = 0 for all F ∈ Rγ. If Q(·) denotes the quantile function of

F de�ned as

Q(s) = inf{x : F (x) ≥ s}, 0 < s ≤ 1, Q(0) = Q(0+),

then F ∈ Rγ if and only if

Q(1− s) = s−γ`(s), (1)

where ` is a slowly varying function at 0. Let kn be a sequence of integers such

that

1 ≤ kn < n, kn →∞ and kn/n→ 0 as n→∞. (2)

For some constants di,n, 1 ≤ i ≤ n, consider the weighted power sums of the

extreme values Xn−kn+1,n, . . . , Xn,n:

Sn(p) :=
kn∑
i=1

dn+1−i,n logpXn+1−i,n,

where p > 0 is a �xed number. Our aim is to study the asymptotic behavior of

Sn(p) as n→∞ whenever F ∈ Rγ.

We will assume as in [13] that the weights di,n are of the form

di,n = n

∫ i/n

(i−1)/n
L̄(t)dt, 1 ≤ i ≤ n,

for some non-negative continuous function L̄ de�ned on (0,1).
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1.2 Main results

We state now the main limit theorem of this chapter.

Theorem 1.1. (i) Assume that F ∈ Rγ, (2) holds and suppose that condition L̄

is satis�ed for the weighs di,n. Then

1√
nan

{
kn∑
i=1

dn+1−i,n logpXn+1−i,n − µ̄n

}
D−→ N(0, 1). (3)

(ii) If in addition to the conditions of (i) we have (log n)/kεn → 0 for some

0 < ε < ρ+ 1/2, then (3) holds with µn replacing µ̄n.

The special case p = 1 of Theorem 1.1(i) was stated in Theorem 1.2 of [14].

Several estimators exist for the tail index γ among which Hill's estimator is the

most classical (see Hill [6]). Dekkers et al. [4] proposed a moment estimator

based on the statistics

1

kn

kn∑
i=1

(
log

Xn+1−i,n

Xn−kn,n

)j
, j = 1, 2. (4)

The case j = 1 yields the Hill estimator.

The next corollary describes the asymptotic behavior of the weighted norms

Rn(p) := (Sn(p))1/p.

Corollary 1.2. Assume the conditions of Theorem 1.1(ii). Then

1

γ
√

2

(
1 + 2ρ

1 + ρ

)1/2√
kn log

n

kn

{
1

α
1/p
n

Rn(p)−
(
µn
αn

)1/p
}

D−→ N(0, 1).

By Corollary 1.2,

γ̂n :=
1

α
1/p
n

Rn(p)

is an asymptotically normal estimator for γ. This is a generalization of the

estimator proposed in [15]. Asymptotic normality was proved for the Hill estimator

and for the estimators in [1] and [12] under general conditions but not for every

distribution in Rγ. However, γ̂n is asymptotically normal over the whole model

Rγ.

To investigate the asymptotic bias of the estimator γ̂n, we assume the following

conditions:

(B1)
√
kn log

n

kn
sup

0≤u≤kn/n

∣∣∣∣ log `(u)

log u

∣∣∣∣→ 0.

(B2)
√
kn/ log n→ 0.

(B3) (log n)/k
ρ+ 1

2
n n→ 0.

(B4) J(s) = sρ, 0 < s < 1.

3



Corollary 1.3. Assume the conditions (B1)�(B4), and the conditions of Theorem

1.1(i), and set tn := (ρ+ 1) log(n/kn). Then we have

(i)

1

γpp
√

2

(
1 + 2ρ

1 + ρ

)1/2√
kn log

n

kn

{
Sn(p)

αn
− γp

(
1 + pt−1n

)} D−→ N(0, 1),

(ii)

1

γ
√

2

(
1 + 2ρ

1 + ρ

)1/2√
kn log

n

kn

{
γ̂n − γ

(
1 + t−1n

)} D−→ N(0, 1). (5)

1.3 Simulation results

This section evaluates the performance of the estimator γ̂n through simulations.

In the �rst simulation study, we compare γ̂n to the Hill, Pickands ([10]) and

moment estimators. For the simulation we use the following model proposed by

Hall [5]:

Q(1− s) = s−γD1[1 +D2s
β(1 + o(1))] as s→ 0, (6)

where D1 > 0, D2 6= 0 and β > 0 are constants. The Hall model satis�es

condition (B1) if D1 = 1 and k
β+ 1

2
n /nβ → 0.

We repeated the simulations 1000 times and we assumed n = 1000 for the

sample size and kn = 136 for the sample fraction size. We used ¯̀ ≡ 1 for the

weights di,n. We examined the following two cases of the Hall model:

Case 1: β = 2, D2 = 1 and D1 = 1/
√
e.

Case 2: β = 1, D2 = 4/3 and D1 = e−2/3.

In both cases we assume o(1) ≡ 0 in (6). Tables 1 and 2 contain the average

simulated estimates (mean) and the calculated empirical mean square errors

(MSE) for Case 1. Using the mean square error as criterion, we see that for

ρ ≤ 1 the performance of γ̂n generally increases as γ decreases from 2 to 0.5. For

γ ≥ 1 the weights improve the performance of γ̂n signi�cantly (ρ = 0.5, 1, 2). For

the thin tail pertaining to γ = 0.5 we also see a trend that the performance of γ̂n

improves as the value of p increases from 1 to 3. The same conclusion holds for

γ = 1 when ρ = 2. It can be also seen that γ̂n with p = 1, 2, 3 and appropriate

ρ value performs better than the Pickands and the moment estimator. The

Pickands estimator has poor performance for γ = 2. Nonetheless, the Hill and

the moment estimator tend to have good estimates.
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Table 1: Mean in the Hall model for Case 1.

mean

γ̂n
Hill Pickands Moment

ρ γ p = 1 p = 2 p = 3

0 0.5 0.502461 0.5598067 0.6278012 0.4874154 0.5388793 0.4832535

1 1.252406 1.347012 1.461455 0.9872326 1.021725 0.9745838

1.5 2.002351 2.136447 2.299039 1.48705 1.52004 1.471576

2 2.752296 2.926308 3.137432 1.986867 2.022467 1.969981

0.5 0.5 0.4207121 0.4523482 0.4918764 0.4874154 0.5388793 0.4832535

1 1.088022 1.138332 1.200928 0.9872326 1.021725 0.9745838

1.5 1.755332 1.826024 1.913608 1.48705 1.52004 1.471576

2 2.422641 2.514022 2.626971 1.986867 2.022467 1.969981

1 0.5 0.37965551 0.3994002 0.4240878 0.4874154 0.5388793 0.4832535

1 1.005246 1.03595 1.073641 0.9872326 1.021725 0.9745838

1.5 1.630837 1.673773 1.726098 1.48705 1.52004 1.471576

2 2.256427 2.311814 2.379069 1.986867 2.022467 1.969981

2 0.5 0.33886111 0.3486395 0.3606289 0.4874154 0.5388793 0.4832535

1 0.9227323 0.9375759 0.9552161 0.9872326 1.021725 0.9745838

1.5 1.506604 1.527265 1.551595 1.48705 1.52004 1.471576

2 2.090475 2.117078 2.148269 1.986867 2.022467 1.969981

Table 2: MSE in the Hall model for Case 1.

MSE

γ̂n
Hill Pickands Moment

ρ γ p = 1 p = 2 p = 3

0 0.5 0.008489717 0.004758226 0.01848487 0.001920372 0.1238975 0.008732585

1 0.06713682 0.124994 0.2205786 0.007254561 0.1510138 0.01456819

1.5 0.2601122 0.415274 0.6550551 0.01616043 0.191689 0.02365229

2 0.579775 0.8761246 1.322759 0.02863798 0.2457045 0.0362088

0.5 0.5 0.006915487 0.002963965 0.0009153005 0.001920372 0.1238975 0.008732585

1 0.01033168 0.02195434 0.04367552 0.007254561 0.1510138 0.01456819

1.5 0.07105951 0.1126648 0.1784538 0.01616043 0.191689 0.02365229

2 0.189099 0.2755773 0.4061787 0.02863798 0.2457045 0.0362088

1 0.5 0.01503467 0.01069469 0.006382895 0.001920372 0.1238975 0.008732585

1 0.002311005 0.003667682 0.007952766 0.007254561 0.15101382 0.01456819

1.5 0.02231372 0.03559411 0.05684494 0.01616043 0.191689 0.02365229

2 0.07504283 0.1068695 0.1538997 0.02863798 0.2457045 0.0362088

2 0.5 0.02645074 0.02340072 0.01992387 0.001920372 0.1238975 0.008732585

1 0.007996087 0.005951954 0.004100054 0.007254561 0.1510138 0.01456819

1.5 0.004666964 0.005432634 0.007437678 0.01616043 0.191689 0.02365229

2 0.01646337 0.02210106 0.03052874 0.02863798 0.2457045 0.0362088

5



By Corollary 1.3(ii) we infer that

Zn :=
1

γ̂n
√

2

(
1 + 2ρ

1 + ρ

)1/2√
kn log

n

kn

{
γ̂n − γ

(
1 + t−1n

)} D−→ N(0, 1). (7)

Asymptotic con�dence intervals for γ can be constructed using either (5) or

(7). In the second simulation study we investigated how fast the distribution

result (7) kicks in. We simulated the quantity Zn 5000 times. According to

condition (B2), we used kn values less than log2 n. First, we investigated the

Fréchet distribution with shape parameter 1/γ that belongs to the Hall model

with parameters D1 = 1, D2 = −γ/2 and β = 1. The simulation was done for

γ = 1, ρ = 1, p = 1, n = 900 and kn = 10. We found empirically that n = 900 is

the threshold sample size to obtain a good normal approximation in (7). Figure

1 contains the histogram with the �tted normal curve and the Q�Q plot of the

simulated Zn quantities with estimated parameters. The mean of the simulated

Zn values is -0.06, the simulated standard deviation is 0.8974. The mean of the

simulated γ̂n values is 1.1116. The bias of the mean is in accordance with the bias

term γt−1n in (7). Due to the biased estimator in the leading factor 1/(γ̂n
√

2) of

Zn, the simulated standard deviation of Zn is smaller than the asymptotic value

1. We performed the chi-square test for normality, and we obtained the p-value

0.2965.

Figure 1: Histogram (a) and Q-Q plot (b) for Fréchet Distribution, n = 900, kn = 10.

We investigated two more distributions from the Hall model: Case 1: γ = 1,

D1 = 1 and D2 = 1/2, β = 3/4; Case 2: γ = 2, D1 = 1 and D2 = 1, β = 1.

We used ρ = 3, p = 2, n = 500 and kn = 7 for Case 1, and ρ = 1, p = 1,

n = 900 and kn = 10 for Case 2. These n values are the threshold sample

sizes to obtain a good normal approximation in (7). We obtained the following

numerical results. Case 1: mean of the simulated Zn values: 0.0013, standard

deviation of the Zn values: 0.9127, mean of the simulated γ̂n values: 1.0667; Case

2: mean of the simulated Zn values: -0.0393, standard deviation of the Zn values:
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0.8878, mean of the simulated γ̂n values: 2.2267. The p-value of the chi-square

test for normality is 0.323 for Case 1, and 0.6428 for Case 2. Figures 2 contain

the histograms with the �tted normal curves and the Q�Q plots of the simulated

quantities for Case 2.

Figure 2: Histogram (a) and Q-Q plot (b) for Hall Model Case1, at n = 500, kn = 7.

2 Limit laws for the norms of extremal samples

This chapter is based on the paper [7]. We considered a class of estimator γ̂(n)

which is an extension of the Hill estimator. We investigated the asymptotic

properties of γ̂(n) under conditions of regular varying upper tail.

2.1 Introduction

For p > 0 introduce the notation

Sn(p) =
1

kn

kn∑
i=1

(
log

Xn+1−i,n

Xn−kn,n

)p
. (8)

Our main objective is to estimate

γ̂(n) =

(
Sn(p)

Γ(p+ 1)

) 1
p

(9)

of the tail index, where Γ is the usual gamma function. In what follows we

always assume that 1 ≤ kn ≤ n is a sequence of integers such that kn →∞ and

kn/n→ 0.

As a special case for p = 1, we obtain the well-known Hill estimator of the

tail index γ > 0 introduced by Hill in 1975 [6]. For p = 2, the estimator was

suggested by Dekkers et al. [4]. To the best of our knowledge the possibility

p = pn → ∞ in (9) was not considered before, which is the main focus of our
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study. The estimate γ̂(n) can be considered as pn →∞ as the limit law for the

norm of the extremal sample.

In this study, we investigate the asymptotic properties of Sn(pn) and γ̂(n)

both for p > 0 �xed and for p = pn →∞. Although the focus of the paper is to

obtain asymptotics for large p, in the course we obtain new results for p �xed.

2.2 Results for �xed p

In what follows, U,U1, U2, . . . are iid uniform(0, 1) random variables, and U1,n ≤
U2,n ≤ . . . ≤ Un,n stand for the corresponding order statistics. To ease notation

we frequently suppress the dependence on n and simply write k = kn. De�neX =

Q(1−U), Xi = Q(1−Ui) for i = 1, 2, . . .. According to the well-known quantile

representation,X,X1, X2, . . . is an iid sequence with common distribution function

F , which implies that Sn in (8) can be written as

Sn(p) =
1

k

k∑
i=1

(
log

Q(1− Ui,n)

Q(1− Uk+1,n)

)p
for each n ≥ 1, a.s. (10)

First we show strong consistency for Sn(p). Our assumption on the sequence kn

is the same as in Theorem 2.1 in [4]. This is not far from the optimal condition

kn/ log log n→∞, which was obtained by Deheuvels et al. [3] for p = 1. In what

follows any nonspeci�ed limit is meant as n→∞.

Theorem 2.1. Assume that (1) holds and kn/n→ 0, (log n)δ/kn → 0 for some

δ > 0. Then Sn(p)→ γpΓ(p + 1) a.s., that is for p > 0 �xed the estimator γ̂(n)

is strongly consistent.

Weak consistency holds under weaker assumption on kn. The following result

is a special case of Theorem 2.1 in [12], and it follows from representation (10)

and from the law of large numbers.

Theorem 2.2. Assume that (1) holds, and the sequence (kn) is such that kn →
∞, kn/n→ 0. Then Sn(p)

P−→ γpΓ(p + 1), that is for p > 0 �xed the estimator

γ̂(n) is weakly consistent.

Assume that there exist a regularly varying function a and a Borel set B ⊂
[0, 1] of positive measure such that

lim
v↓0

a(v)

`(v)
= 0, lim sup

v↓0

|`(uv)− `(v)|
a(v)

<∞ for u ∈ B. (11)

Theorem 2.3. Assume that (1) holds, and kn →∞, kn/n→ 0. Then√
kn (Sn(pn)−mp(Uk+1,n))

D−→ N(0, σ2
p).
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If ` belongs to the de Haan class Π (de�ned at 0) then condition (11) holds.

Therefore, even in the special case p = 1, that is, for the Hill estimator, our

next result is a generalization of Theorem 3.1 in [4]. The asymptotic normality

of various generalizations of the Hill estimator are obtained under second-order

regular variation for `. Our conditions in the next result are weaker.

Theorem 2.4. Assume that (11) holds for `, and kn is such that kn → ∞,

kn/n→ 0, and √
kn
a(kn/n)

`(kn/n)
→ 0. (12)

Then, with σ2
p = γ2p(Γ(2p+ 1)− Γ2(p+ 1)),

√
kn
σp

(Sn(pn)− γpΓ(p+ 1))
D−→ N(0, 1),

and
p
√
kn

γ1/p−1σp
(γ̂(n)− γ)

D−→ N(0, 1).

2.3 Asymptotics for large p

Conditioned on Uk+1,n the sum knSn(pn) in (10) is the sum of kn iid random

variables distributed as Y (Uk+1,n). The limit theorems with random centering

and norming for Sn(pn) are obtained.

2.3.1 Weak laws and Gaussian limit

Let us de�ne the parameter ζ as

ζ = lim inf
n→∞

log kn
pn

. (13)

For ζ ≤ 2 we need precise assumption on the power sequence, and we assume

that

kn ∼ eζpn . (14)

Also de�ne the centering and norming functions for v ∈ [0, 1),

m̃p(v) =


0, ζ ∈ (0, 1),

m1
p(v), ζ = 1,

mp(v), ζ ∈ (1, 2),

σ̃p(v) =

σp(v), ζ > 2,

σ1
p(v), ζ = 2.

(15)

To ease notation put m1
p = m1

p(0), σ1
p = σ1

p(0), m̃p = m̃p(0), and σ̃p = σ̃p(0).

Weak consistency holds for ζ ≥ 1, while asymptotic normality holds for ζ ≥ 2.
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Theorem 2.5. Assume that kn →∞, kn/n→ 0, and pn →∞. If ζ > 1 in (13)

or ζ = 1 in (14) then

(m̃pn(Ukn+1,n))−1 Sn(pn)
P−→ 1. (16)

In both cases γ̂(n) is weakly consistent. Furthermore, if ζ > 2 in (13) or ζ = 2

in (14) then
√
kn

σ̃pn(Uk+1,n)
(Sn(pn)− m̃pn(Uk+1,n))

D−→ N(0, 1), (17)

and √
knm̃pn(Uk+1,n)

σ̃pn(Uk+1,n)
pn

[(
Sn(pn)

m̃pn(Uk+1,n)

)1/pn

− 1

]
D−→ N(0, 1). (18)

Theorem 2.6. Assume that for the slowly varying function ` (11) holds and

β1 > 0. If ζ > 1 in (13) or ζ = 1 in (14) then

(m̃pn)−1 Sn(pn)
P−→ 1. (19)

If ζ > 2 in (13) or ζ = 2 in (14) then assume additionally that for some ε > 0,

lim sup
n→∞

p−1n log

(√
kn

(
a(kn/n)

`(kn/n)

)(νβ−ε)∧1
)
< log 2.

Then √
kn
σ̃pn

(Sn(pn)− m̃pn)
D−→ N(0, 1), (20)

and √
knm̃pn

γσ̃pn
pn (γ̂(n)− γ)

D−→ N(0, 1). (21)

Note that mp/σp ∼ 2−p(pπ)1/4 as p→∞.

2.4 Non-Gaussian stable limits

Next, we explore the regime ζ < 2. Here we need the precise asymptotic

assumption (14) on the power sequence pn. We obtain non-Gaussian limits,

where the characteristic exponent of the stable law equals ζ, coming from the

growth rate of the power sequence pn. Therefore, in what follows we use the

notation ζ = α.

Let Zα denote a one-sided α-stable random variable with characteristic function

EeitZα =

exp
{
−Γ(1− α)|t|αe−iπα2 sgnu

}
,

exp
{
it(1− a)− π

2
|t|
(
1 + isgnu 2

π
log |t|

)}
,

where a = 0.577 . . . stands for the Euler�Mascheroni constant.
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Theorem 2.7. Assume that kn → ∞, kn/n → 0, and pn → ∞ such that (14)

holds for some ζ = α ∈ (0, 2). Then

kn
ηUkn+1,n

(pn)pn
(Sn(pn)− m̃pn(Uk+1,n))

D−→ Zα.

Moreover, for ζ = α ∈ (0, 1),

pn

(
[knSn(pn)]1/pn

ηUkn+1,n
(pn)

− 1

)
D−→ logZα, (22)

in particular,

γ̂(n)
P−→ γ αe1−α. (23)

While for α ∈ [1, 2),

pn
knm̃pn(Ukn+1,n)

ηUkn+1,n
(pn)pn

[(
Sn(pn)

m̃pn(Ukn+1,n)

)1/pn

− 1

]
D−→ Zα. (24)

Theorem 2.8. Assume (14) and that (11) holds. Furthermore, kn → ∞,

kn/n→ 0, and ˜̀(nγ`(k/n)) ∼ ˜̀((n/k)γ`(k/n)) (25)

and for α ∈ [1, 2) assume that

νββ1 > α− 1− logα = H(α). (26)

Then for α ∈ (0, 2),

kn
(αγpn)pn

(Sn(pn)− m̃pn)
D−→ Zα. (27)

For the estimator γ̂(n) if α ∈ (0, 1),

eα−1

αγ
pn

[
γ̂(n)

(
1 +

log pn
2pn

)
− γαe1−α

]
D−→ logZα −

log 2π

2
. (28)

while for α ∈ (1, 2),

√
2π

γ
epn(α−1−logα)p3/2n [γ̂(n)− γ]

D−→ Zα, (29)

and for α = 1, √
2π

2γ
p3/2n

[
γ̂(n)

(
1 +

log 2

pn

)
− γ
]
D−→ Z1. (30)
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2.5 Simulation study

The purpose of this simulation study is to show that the use of larger p values

sometimes is bene�cial in practical situation. Note that for p = 1 we obtain the

usual Hill estimator. We also see from (21) that the asymptotic variance increases

with p. However, in practical situation higher p values turns out to be useful.

It is more common that the large values �t to a Pareto-type distribution, while

the smaller values behave as a light-tailed distribution. Consider the quantile

function

Q(1− s) =

s−γ, if s ≤ 0.1,

10γ

log 10
log s−1, if s ≥ 0.1,

(31)

which is a mixture of an exponential quantile and a strict Pareto quantile. The

parameter of the exponential is chosen such that Q is continuous. Figures 3 and

4 contain the simulation results for γ = 1 and γ = 2. In this simple model

we already see the advantage of larger p values. Note that the Hill estimator is

very sensitive to the change of kn for those values where the quantile function

changes. Indeed, for kn ≤ 100 we basically have a sample from a strict Pareto

distribution, and for those values the Hill estimator is the best. For kn = 200 we

already see the exponential part of the sample, and the Hill estimator changes

drastically (for γ = 1 from 0.98 to 0.76), while for p = 5 the change is not as

large (from 0.92 to 0.88).

Figure 3: Mean and MSE for a sample with quantile function (31) with γ = 1.
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Figure 4: Mean and MSE for a sample with quantile function (31) with γ = 2.

We also apply the estimator with di�erent p values to real data. We chose

the data set of Danish �re insurance losses. In Figure 5 we plotted the estimate

for 1/γ, i.e. we plotted 1/γ̂(n) against kn, to obtain the Hill plot in [11] for p = 1.

In our setting larger p values naturally produce smoother plots.

Figure 5: Hill type plots of γ̂(n)−1 for the Danish �re insurance claim with

di�erent p values.

3 A statistical approach to partition lattices with

some theoretical "by-products"

3.1 Introduction

This chapter is based on papers [2] and [8] which entails investigating four-element

generating sets of a partition lattice and establishing a lower bound for the

number of four-element generating sets of direct products of two neighbouring

partition lattices.
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3.2 Zádori's problem on (1 + 1 + 2)-generation

We know from Zádori [16] that, for n ≥ 7, the lattice Part(n) of all partitions

of the n-element set 1,...,n has a so-called (1 + 1 + 2)-generating set, that is, a

four-element generating set of which two elements (and only two elements) are

comparable. The question whether Part(5) and Part(6) have (1+1+2)-generating

sets was left open in Zádori [16]. The purpose of this section is to prove the

following two statements, which solve Zádori's problem.

Proposition 3.1. The partition lattice Part(6) has a (1 + 1 + 2)-generating set.

Proposition 3.2. Every four-element generating set of Part(5) is an antichain.

Hence, Part(5) has no (1 + 1 + 2)-generating set.

Figure 6: With β := α+ε, the set {α, β, γ, δ} is a (1+1+2)-generating set of Equ(6).

Each edge of the graph is colored by one of the colors α, β, γ, δ, and ε.

On the vertex set of such a graph A, With A = u1, ..., u6, Figure 6 de�nes an

equivalence (relation) α ∈ Equ(A) in the following way: deleting all edges but

the α-colored ones, the components of the remaining graph are the blocks of the

partition associated with α. In other words, 〈x, y〉 ∈ α if and only if there is

an α-coloured path from vertex x to vertex y in the graph, that is, a path (of

possibly zero length) all of whose edges are α-colored. The equivalences γ and δ

are de�ned analogously while β := α + ε.

We have a mathematical proof for Proposition 3.1. However, we used computer

programs on the websites 1 that list all four-element generating sets of Part(5);

there are exactly 5305 such sets. And we have another program that checks if

these 5305 sets are antichains. Note that Proposition 3.1 can also be proved by

these programs.

3.3 Computer assisted results and statistical analysis

3.3.1 Estimating con�dence intervals

Assume that an experiment has only two possible outcomes: �success� with

probability p and �failure� with probability q := 1 − p but none of p and q

is known. In order to obtain some information on p, a random sample is taken,

1http://www.math.u-szeged.hu/~czedli/ and http://www.math.u-szeged.hu/~oluoch/
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that is, the experiment is repeated N times independently. Let s denote the

number of those experiments that ended up with �success�. Then, of course,

we estimate p by p̂ := s/N, (32)

but we would also like to know how much we can rely on this estimation.

Therefore, let q̂ := 1 − p̂, pick a �con�dence level� 1 − αconf ∈ (0, 1) ⊂ R,
we let

σ̂ :=

√
p̂ · q̂
N − 1

, (33)

and determine the positive real number z(αconf) from the equation

1− αconf =

∫ z(αconf)

−z(αconf)

1√
2π
· e−x2/2dx. (34)

Note that the function to be integrated in (34) is the density function of the

standard normal distribution and the z(αconf) for many typical values of αconf are

given in practically all books on statistics. We de�ne the

con�dence interval I(αconf) to be [ p̂− z(αconf)σ̂, p̂+ z(αconf)σ̂ ]. (35)

Let us emphasize that while p is a concrete real number, the con�dence interval

is random, because it depends on a randomly chosen sample. Taking another

N -element sample with the same N (that is, repeating the experiments N times

again), then (with very high probability in general) a di�erent con�dence interval

is obtained.

We cannot claim that the con�dence interval I(αconf) surely contains the

unknown probability p. Furthermore, as it has been pointed by an anonymous

referee, it may even happen that I(αconf) contains p only with very little probability.

For example, if p = 10−100 and N = 2, then a random N -element sample yields

that p̂ = 0 and p /∈ I(αconf) = [0, 0] with probability q2 = 1−2·10−100+10−200 ≈ 1.

However, the Moivre-Laplace theorem, which is a particular case of the central

limit theorem, implies that whenever p /∈ {0, 1}, then

the probability of p ∈ I(αconf) tends to 1− αconf as N →∞. (36)

3.3.2 Computer programs

Two disjoint sets of computer programs were developed and all data to be

reported in (this) Section 3.3 were achieved by these programs. Furthermore,

a su�cient amount of these data, including ν(4) = 50 and ν(5) = 5 305 from

Table 3, were achieved independently by di�erent persons (namely, by both

authors of [2], with di�erent programs, di�erent computers, and di�erent attitudes
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to computer programming. This fact gives us a lot of con�dence in our programs

and the results obtained by them even if some results that needed too much

performance from our computers and programs were achieved only by one of the

above-mentioned two settings.

3.3.3 Data obtained by computer programs

The results obtained by computers are given in Table 3 which gives the number

ν(n) of four-element generating sets for n ∈ {4, 5, 6}. Clearly, ν(7) cannot be

determined by our programs and computers, although this task might be possible

with thousands or millions of similar computers working jointly for a few years

or so.

n 4 5 6(
Bell(n)

4

)
1 365 270 725 68 685 050

ν(n) 50 5 305 1 107 900

%, i.e., 100p(n) 3.663003663 1.959553052 1.613014768

computer time 0.11sec 68 sec 38 hours

Table 3: The (exact) number ν(n) of the four-element generating sets of Part(n)

for n ∈ {4, 5, 6}

Using (35), a �fteen million element sample yielded that, for n ≥ 7

p(7) ∈ [0.0157753, 0.0159877] with approximate probability 0.999 and (37)

ν(7) ∈ [3.86180 · 108, 3.91381 · 108] with approximate probability 0.999. (38)

Analogous results based on smaller samples have been obtained for n = 8

and n = 9.

3.4 Direct products of two neighbouring partition lattices

This section is taken from [8], but we follow closely the approach presented in

[2], where Theorem 4.4 states that certain direct products of direct powers of

partitions lattices are still 4-generated. In particular, for any integer 5 ≤ n, the

direct product Part(n)×Part(n+ 1) is four-generated. Of course, a much larger

lower bound is presented here for large values of n.

From the main result of [2], we could derive the following lemma, which plays

an important role in the proof of the theorem that comes thereafter.
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Lemma 3.3. With t∗ =
(

n−6
(n−5)/2

)
, if n ≥ 7 and n is odd, then the lattice

Part(n)t
∗ × Part(n+ 1)t

∗
is 4-generated.

The exponent t∗ given above is not the best (=largest) possible value; simply

because the exponent supplied by Theorem 4.4 of [2] is not the best either. Now

we state the main result of this section.

Theorem 3.4. Let n ≥ 7 be an integer number and de�ne

tn :=



(
n− 6

(n− 5)/2

)
, if n is odd, and

min

(
(n− 2)(n− 4)/8,

(
n− 6

n/2− 3

))
, if n is even.

(39)

Then Part(n) × Part(n+ 1) has at least t2n · n! · (n + 1)!/2 many 4-element

generating sets.
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