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Introduction
Switching models have been used recently in the compartmental models of math-
ematical epidemiology to analyze the impact of control measures on the disease
dynamics. For example, it has been observed that if the treatment rate [10] or the
incidence function [1] is non-smooth, that may lead to various bifurcations. These
sharp changes occur in [1] and [10] when the total population, or the infected popula-
tion reaches a threshold level. Such a sudden change may even be discontinuous, for
example due to the implementation and termination of an intervention policy such
as vaccination or school closures. Mathematically, such situations are described by
Filippov systems, when the phase space is divided into two (or more) parts and the
system is given by different vector fields in each of those parts. Examples include
sudden changes in vaccination [6, 8], hospitalization [11], transmission [12], travel
patterns [4], or the combination of several effects [9]. They have been used for vec-
tor borne diseases as well [13]. An overview of the basic theory and applications of
switching epidemiological models can be found in [5]. Many of the mathematical
challenges appear due to the incompatible behaviours of the vector fields at their
interfaces, on the so-called switching manifold.

This thesis aims to propose a family of temporary intervention strategies. For
the sake of simplicity, we work in the basic SIR-framework. An intervention strategy
will be defined by two parameters which determine the time interval it is applied as
well as the intensity of intervention. Our goal is to find out which strategy is the
most cost-efficient, where costs are assigned to cases of infections and intervention.
Furthermore, we construct a final size system for each strategy and investigate which
strategy is better to minimize the final epidemic size. In addition we propose and
analyze a mathematical model for infectious disease dynamics with a discontinuous
control function, where the control is activated with some time delay after the density
of the infected population reaches a threshold. Our results provide insight into
disease management, by exploring the effect of the interplay of the control efficacy,
the triggering threshold and the delay in implementation. This thesis is based on
the following publications:
• Muqbel, K., Dénes, A. and Röst, G., 2019. Optimal Temporary Vaccination

Strategies for Epidemic Outbreaks. In Trends in Biomathematics: Mathemat-
ical Modeling for Health, Harvesting, and Population Dynamics, pp. 299-307.
Springer, Cham;
• Muqbel, K., Vas, G. Röst, G., 2020. Periodic Orbits and Global Stability for

a Discontinuous SIR Model with Delayed Control. Qual. Theory Dyn. Syst.
19, 59.
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Optimal temporary vaccination strategies for epi-
demic outbreaks
We consider a constant population divided into susceptible (S(t)), infected (I(t)),
and removed (R(t)) compartments. New infections occur with transmission coeffi-
cient β and infected individuals recover with rate α. Upon recovery, full immunity is
assumed. Vaccination of susceptibles is included in the model with time dependent
vaccination rate v(t), to be specified later. Vaccination is assumed to be fully pro-
tective, thus vaccinated individuals are placed in the R-compartment as well. Hence,
we consider the following system of differential equations:

S ′(t) = −βS(t)I(t)− v(t)S(t),
I ′(t) = βS(t)I(t)− αI(t), (1)
R′(t) = αI(t) + v(t)S(t),

with the initial data S(0) = S0, I(0) = I0, R(0) = 0, where I0 is relatively small
compared to the total population size N = S + I + R. The basic reproduction
number is given by R0 = βS0/α, however by normalizing the population size at
N = 1 and with I0 << 1, we have S0 ≈ 1 hence the reproduction number simplifies
to R0 = β/α. Epidemic outbreak occurs when R0 > 1.

The total cost (TC) of an outbreak will be assessed by considering two compo-
nents, the disease burden and the cost of vaccination. Disease burden is calculated
as the total number of infections during the course of the outbreak (denoted by Ĩ)
multiplied by the cost C1 of a single infection. Vaccination cost is calculated as the
total number of administered vaccines (denoted by Ṽ ) multiplied by the cost C2 of
a single vaccination. This way, for the total cost we have

TC := C1Ĩ + C2Ṽ , (2)

where

Ĩ :=
∫ ∞

0
βS(t)I(t)dt = α

∫ ∞
0

I(t)dt, (3)

Ṽ :=
∫ ∞

0
v(t)S(t)dt. (4)

We call such an intervention a VUHIA-strategy of (k, p)-type, referring to vacci-
nate until herd immunity achieved with parameters (k, p).

In mathematical terms, the VUHIA-strategy of (k, p)-type is defined as follows.
Let

v(t) =

0, t /∈ J,
p, t ∈ J,
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where J is the intervention interval J = [Tstart, Tend] with

Tstart = min{t ≥ 0 : I(t) ≥ k} (5)

and
Tend = min{t ≥ 0 : βS(t)− α ≤ 0}. (6)

The time Tstart is well defined as long as k ∈ [I0, Imax], where Imax denotes the peak
of the SIR-epidemic in the absence of any intervention. It is well known for the SIR
model (with N = 1) that

Imax = 1−R−1
0 (1 + logR0). (7)

Clearly we have I ′(t∗) = 0 when S(t∗) = α/β, and I ′(t) < 0 for any t > t∗

regardless we vaccinate or not at some t > t∗. Since the epidemic eventually always
dies out, Tend is well defined, and (4) becomes

Ṽ := p
∫ Tend

Tstart
S(t)dt. (8)

The advantages of the VUHIA-strategy are the following. First, it has a clear and
meaningful definition: we start vaccinate with rate p when a threshold k is reached
in the level of infection, and we start the vaccination then the number of susceptibles
drops belowR−1

0 , that is herd immunity achieved the number of infected will decrease
anyway. Second, it is determined only by the parameters (k, p), hence all strategies
from this family can be explored in a two dimensional parameter space.

We have assigned a total cost to each strategy composed of cost of disease burden
and cost of vaccination, and systematically investigated the dependence of the total
cost on the parameters. Essentially, we have found three types of behaviours:
(a) vaccination cost is very low compared to the cost associated to disease burden:

in this case increasing the vaccination rate and start vaccination earlier reduce
the total cost;

(b) vaccination cost is very high compared to the cost associated to disease burden:
in this case the optimal strategy is to not vaccinate at all;

(c) vaccination cost and disease burden cost are of similar magnitudes: there
may be non-monotone relationships between the vaccination rate, the start-
ing threshold and the total cost.

These three typical behaviours are plotted into a heatmap in Figure 1. In case
(c), it may happen that a better strategy is to start earlier but only if we can start
sufficiently early, or, it better to increase vaccination rate but only if we can increase
it to a sufficiently high level. If we cannot meet those criteria, then the best decision is
to not vaccinate. The top plot of Figure 1 illustrates these intricate non-monotonicity
properties.
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Figure 1: Dependence of the total cost on (k, p) in three typical situations: C2 = 50�
C1 (bottom left), C2 = 500� C1 (bottom right), and C2 = 155 (top). Parameters are
R0 = 1.5, α = 6, β = 9, and C2 = 50, 155, 500 respectively. The bottom plots show
monotone cases, while in the top plot we can find non-monotonicity in both k and p.

Optimal temporary non-pharmaceutical interven-
tion strategies for epidemic outbreaks

In Chapter 4, we assume the following: At the beginning, an outbreak runs its natural
course, hence new infections occur with transmission coefficient β > 0. However, if
the number of infected individuals reaches a threshold level k, then the authorities
impose certain non-pharmaceutical interventions (NPIs) with control intensity u∗ ∈
(0, 1), resulting in a reduction in the transmission coefficient. This reduction is
included in the model with time dependent NPIs intensity rate u(t), to be specified
later. Infected individuals recovered with rate α. Upon recovery, full immunity is
assumed. Hence we consider the following system of differential equations:

S ′(t) = −[1− u(t)]βS(t)I(t),
I ′(t) = [1− u(t)]βS(t)I(t)− αI(t), (9)
R′(t) = αI(t),
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with the initial data S(0) = S0, I(0) = I0, R(0) = 0, where

u(t) =

0, t /∈ J,
u∗, t ∈ J,

and J = [Tstart, Tend] is the intervention interval. We call such an intervention a
ITHIR-strategy of (k, u∗)-type, referring to intervene till herd immunity reached
with parameters (k, u∗). Let S̃(k, u∗) := limt→∞ S(t) when (k, u∗) strategy applied.
Clearly, if S̃(k, u∗) < α/β, then the herd immunity is reached in the population, and
hence Tend is well defined and the length of intervention is T̃ := Tend − Tstart. Other-
wise, herd immunity will never be reached before a vaccine is available, and hence T̃
is unbounded. The quadratic total cost (TCqq) of an outbreak will be assessed as

TCqq := C1Ĩq + C2T̃ u
2
∗, (10)

where
Ĩq :=

∫ ∞
0

I2(t)dt. (11)

In addition, we define several structures of the total cost function that are mixed of
linear, quadratic, and exponential cost functions (see for example [3]). Overview of
cost functions we use can be found in Chapter 4 of the thesis. We systematically
investigated the dependence of the total cost on the parameters. We identified a
parameter region where the herd immunity will never reached before a vaccine is
available, in which case the intervention is not feasible as its cost exceeds any given
bound. Considering the feasible region of limited costs, we found the following:

(A) NPIs cost is very low compared to the cost associated to disease burden: in this
case the optimal strategy lies on the boundary between the two regions, which
is again not feasible. In this case we impose a restriction: we maximized the
possible length of intervention, and then we could find the optimal strategy
with such restriction;

(B) intervention cost and disease burden cost are of similar magnitudes: there
may be non-monotone relationships between the control intensity, the start-
ing threshold and the total cost, and in this case we can determine which
strategy gives the minimal total cost;

(C) intervention cost is very high compared to the cost associated to disease burden:
in this case the minimal cost is attained without controlling at all.

These three typical behaviors are plotted into a heatmap in Figure 2. In case (A) (see
Figure 2 bottom left), if, for example, we considered the maximized possible length
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Figure 2: Dependence of the quadratic total cost on (k, u∗) in three typical situations:
(A) C2 = 0.01� C1, (C) C2 = 200� C1, and (B) C2 and C1 are of similar magnitude.
The white regions represent the unbounded total cost. The plots A and C show the
monotone cases, while the plot B where C2 = 1 we can find non-monotonicity in both
k and u∗. In plot A the dotted black, dashed gray, and green curves represent the
duration of NPIs for 1.5, 1, 0.5 months respectively. The black point represents the
infimum of the total cost in plot A, and it represents the minimum of the total cost
in plot B and C.

of the intervention that represented by black dotted curve, which equals two months
in this example, then the boundary between the two bounded and unbounded cost
regions located outside this restricted domain, meaning that the optimal strategy lies
in the feasible region which we could find it. If we maximized the possible control
intensity to be in the feasible region, say that 0 < u∗ < umax then the optimal
strategy is to start the NPIs as early as possible with control intensity u∗ = umax.
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Furthermore, if we maximized both of the possible length of intervention and the
possible control intensity, then their intersected point is the optimal strategy. In
case (B), the black point in the Figure 2 (top) represents the global minimum of the
quadratic total cost of seasonal flu when C2 = 1, meaning that the optimal strategy
is to start NPIs when k = 0.005 with control intensity u∗ = 0.088. Depending on
the available resources and public health capacities, there may be constraints on the
parameters, such as kmin ≤ k ≤ Imax and u∗ ≤ umax in the feasible region. Finding
the optimal strategy with such constraints can be found.
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Figure 3: Effect of R0 on the monotonicity of the quadratic cost curve.

Another interesting phenomenon is depicted in Figure 3, showing that for a fixed
u∗, the non-monotonicity of the total cost in k for seasonal influenza can be monotone
increasing for COVID-19 and pandemic influenza. In that particular situation of
Figure 3, for seasonal influenza, to minimize the cost we apply the strategy at the
minimum while for pandemic influenza the lowest cost comes from start NPIs as early
as possible. This important insight shows that pandemic influenza should be treated
differently than seasonal influenza by public health authorities. Another interesting
phenomenon is that for a fixed k, the monotonicity of the total cost in u∗ can be
reverse varying or nonmonotone depending on the cost function type.

Final epidemic size for temporary intervention strategies

The final epidemic size (Ĩ(k, p)) of VUHIA-strategy of (k, p)-type (with N = 1) is

Ĩ(k, p) := 1− S̃(k, p)− Ṽ (k, p) =
∫ ∞

0
βS(t)I(t)dt = α

∫ ∞
0

I(t)dt, (12)

where Ṽ (k, p) is the total number of vaccinated individuals during the course of the
epidemic and S̃(k, p) is the total number of remained susceptibles after the epidemic
dies out.
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Theorem 1. The final susceptible population size system for the VUHIA-strategy of
(k, p)-type is

k + S(Tstart)−R−1
0 logS(Tstart) = 1−R−1

0 logS0,

k + S(Tstart)−R−1
0 logS(Tstart) + p

β
log k = I(Tend) +R−1

0 −R−1
0 logR−1

0 + p

β
log I(Tend),

I(Tend) +R−1
0 −R−1

0 logR−1
0 = S̃(k, p)−R−1

0 log S̃(k, p).
(13)

Lemma 2. Let p > 0 be a fixed vaccination rate. The final susceptible population
size for VUHIA-strategy of (k, p)-type is decreasing in the threshold level k.

Lemma 3. Let k ∈ [I0, Imax] be a fixed threshold level of starting vaccination. The
final susceptible population size for VUHIA-strategy of (k, p)-type is increasing in the
vaccination rate p.

The final epidemic size of ITHIR-strategy of (k, u∗)-type (with N = 1) is

Ĩ(k, u∗) := 1− S̃(k, u∗) =
∫ ∞

0
(1− u∗)βS(t)I(t)dt = α

∫ ∞
0

I(t)dt. (14)

Theorem 4. If k ∈ [I0, Imax], then we distinguish two cases:
Case 1: If S̃(k, u∗) ≥ R−1

0 , then the final size system for ITHIR-strategy of NPIs is

k + S(Tstart)−R−1
0 logS(Tstart) = 1−R−1

0 logS0,

k + S(Tstart)−
R−1

0
(1− u∗)

logS(Tstart) = S̃(k, u∗)−
R−1

0
(1− u∗)

log S̃(k, u∗).
(15)

Case 2: If S̃(k, u∗) < R−1
0 , then the final size system for ITHIR-strategy of NPIs is

k + S(Tstart)−R−1
0 logS(Tstart) = 1−R−1

0 logS0,

k + S(Tstart)−
R−1

0
(1− u∗)

logS(Tstart) = I(Tend) +R−1
0 −

R−1
0

(1− u∗)
logR−1

0 ,

I(Tend) +R−1
0 −R−1

0 logR−1
0 = S̃(k, u∗)−R−1

0 log S̃(k, u∗).

(16)

Next we give a condition that determines whether we are in Case 1) or case 2) of
the previous theorem.

Set

η(k) := 1−R−1
0

log R−1
0

S(Tstart)

R−1
0 − k − S(Tstart)

. (17)

Proposition 1. Let k ∈ [I0, Imax] be a given threshold level. If R−1
0 ≤ S̃(k, u∗) <

S(Tstart), then η(k) ≤ u∗ ≤ 1.
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Figure 4: Dependence of the final epidemic size of NPIs on the control intensity
u∗ and on the threshold level k (left) and dependence of the final epidemic size of
vaccination interventions on the vaccination rate p and on k (right). The green solid
curve in the left plot represents the combination of (k, u∗ = η(k)) that making the
final epidemic size of NPIs equals the herd immunity threshold. That is Ĩ(k, u∗) =
1 −R−1

0 = 0.219531 where S̃(k, u∗) = R−1
0 . Herd immunity will never be reached in

the region above the green curve. The final epidemic size without any intervention is
1− S∞ = 0.406805.

In particular, if k = I0, then S(Tstart) = S0 and the control intensity u∗ in which
S̃ = R−1

0 is
u∗ = 1− ρ 1

1− ρ log S0

ρ
, where ρ = α

β
= R−1

0 .

As a consequence of Proposition 1, 0 ≤ u∗ < η(k) if S̃(k, u∗) < R−1
0 .

Lemma 5. Let 0 < u∗ ≤ 1 be a fixed control intensity. Then the final epidemic size
Ĩ(k, u∗) of ITHIR-strategy of NPIs is increasing in the threshold value k.

Lemma 6. Let k ∈ [I0, Imax] be a fixed threshold level. Then the final epidemic size
Ĩ(k, u∗)) of ITHIR-strategy of NPIs is decreasing in control intensity u∗.

Figure 4 depicts the dependence of the final epidemic size of intervention strategies
on the parameters where the plots are heatmaps. From this figure we can see that
the FES is increasing in k while decreasing in u∗ and decreasing in p. The minimal
FES is attained by starting intervention as early as possible as high rate as possible.
The green solid curve in the left plot represents the herd immunity threshold. The
herd immunity will never be reached in the region above the green curve on contrast
the other region below the green curve. Handel found that the best control strategy
is the strategy that achieves this condition (S̃, I∞) → (R−1

0 , 0) (see [2]). According
to our finding w.r.t NPIs this occurs at the combination of (k, u∗) represented by the
green solid curve and determined by the formula (17).
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Periodic orbits and global stability for a discontin-
uous SIR model with delayed control
In Chapter 6 we consider the following SIR model with a delay τ > 0:

dS(t)
dt

= µ− µS(t)− [1− u(I(t− τ))]βS(t)I(t),

dI(t)
dt

= [1− u(I(t− τ))]βS(t)I(t)− γI(t)− µI(t),

dR(t)
dt

= γI(t)− µR(t),

(18)

where

u(I) =

0 if I < k,

u∗ if I ≥ k,
(19)

k ∈ (0, 1), u∗ ∈ (0, 1), the reduction in transmission takes place with a time delay
τ > 0, γ > 0 is the recovery rate, and µ > 0 is the birth and death rate.

In the special case τ = 0 we obtain a model studied in [12].
Let (Sysd) denote the system consisting of the first two equations of (18), (Sysf )

denotes the free system (u(I) = 0), and (Sysc) is for the control system (u(I) = u∗).
As it is well-known, the set ∆ = {(S, I) ∈ [0, 1]2 : S + I ≤ 1} is positively

invariant for both (Sysf ) and (Sysc). In other words, ∆1 = {(S, I) ∈ ∆ : I > 0} is
positively invariant w.r.t. both (Sysf ) and (Sysc).

Because of the delay τ , the phase space for (Sysd) has to be chosen as

X = {(S0, ϕ) ∈ [0, 1]× C([−τ, 0], [0, 1]) : S0 + ϕ(0) ≤ 1}.

Consider the following subset of X:

X0 = {(S0, ϕ) ∈ X : [−τ, 0] 3 t 7→ ϕ(t)−k ∈ R has a finite number of sign changes}.

Chapter 6 only studies solutions with initial data in X0. A further subset of X is

X1 = {(S0, ϕ) ∈ X0 : ϕ(0) > 0},

the collection of endemic states, when the disease is present in the population.
In case of the free system (Sysf ), the basic reproduction number is R0 = β/(γ+

µ). The reproduction number of the control system (Sysc), what we call the control
reproduction number, is given by Ru∗ = (1− u∗)β/(γ + µ) = (1− u∗)R0.

The disease-free equilibrium for both (Sysf ) and (Sysc) is

E∗0 = (S∗0 , I∗0 ) ∈ ∆, where S∗0 = 1 and I∗0 = 0.

11



The endemic equilibrium for (Sysf ) is

E∗1 = (S∗1 , I∗1 ) ∈ ∆, where S∗1 = 1
R0

and I∗1 = µ

β
(R0 − 1).

It exists only if R0 > 1. The endemic equilibrium for (Sysc) is

E∗2 = (S∗2 , I∗2 ) ∈ ∆, where S∗2 = 1
Ru∗

and I∗2 = µ

(1− u∗)β
(Ru∗ − 1).

It exists for Ru∗ > 1. Proposition 2 examined what are the equilibria for (Sysd).

Proposition 2.
The unique disease-free equilibrium for the delayed relay system (Sysd) is E∗0 ∈ X0,
and it exists for all choices of parameters.
If R0 ≤ 1, then there is no endemic equilibrium for (Sysd). If R0 > 1, then we
distinguish three cases.
(a) If

R0 > 1 and R0[µ− (µ+ γ)k] < µ, (C.1)

then E∗1 ∈ X0 is the unique endemic equilibrium for (Sysd).
(b) If

µ ≤ R0[µ− (µ+ γ)k] < µ/(1− u∗), (C.2)

then there is no endemic equilibrium for (Sysd).
(c) If

R0[µ− (µ+ γ)k] ≥ µ/(1− u∗), (C.3)

then E∗2 ∈ X0 is the unique endemic equilibrium.

Note that if either (C.2) or (C.3) holds, then necessarily R0 > 1. In addition,
conditions (C.1), (C.2) and (C.3) together cover the case R0 > 1.

In Fig. 5 we divide the (k, u∗) plane into three regions according to Cases (a)-(c)
of Proposition 2 in order to show the interplay between threshold level k and control
intensity u∗.

In Section 6.3 of the thesis we showed that if (S0, ϕ) ∈ X0 ((S0, ϕ) ∈ X1), then
the solution (S, I) exists, and (S(t), It) ∈ X0 ((S(t), It) ∈ X1) for each t ≥ 0.

Theorem 7. If R0 ≤ 1, then E∗0 is globally asymptotically stable for the delayed relay
system (Sysd) (that is, E∗0 is asymptotically stable and attracts X0). If R0 > 1, then
E∗0 is unstable w.r.t. (Sysd), and the disease uniformly persists in the population.

12
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Figure 5: A 2-parameter bifurcation diagram giving the endemic equilibria in the
(k, u∗) plane for R0 > 1. The parameters are γ = 0.25, β = 2.5 and µ = 0.4.

Theorem 8. If R0 > 1 and k > k0 = 1 − 1/R0, then E∗1 is asymptotically stable
with respect to (Sysd), and it attracts the set X1.

Recall from Proposition 2 that (Sysd) has no endemic equilibria if

µ < R0[µ− (µ+ γ)k] < µ/(1− u∗). (20)

Theorem 9. If (20) holds and τ is small enough, then the delayed relay system
(Sysd) has a periodic solution.

Theorem 9 is the consequence of the Proposition 3. Now consider the subset

A = {(S0, ϕ) ∈ X1 : S0 ∈ [S∗1 , 1− k], ϕ(θ) < k for θ ∈ [−τ, 0) and ϕ(0) = k}.

Proposition 3. If (S0, ϕ) ∈ A, then the solution (S, I) = (S(.;S0, ϕ), I(.;S0, ϕ)) of
(Sysd) is independent of ϕ. If (20) holds and τ is small enough, then there exists
a smallest t1 = t1(S0) > 0 such that (S(t1), It1) ∈ A. Moreover, S(t1) depends
continuously on S0.

Theorem 10. Assume that
µ

µ+ γ
+ µ

β
< 2

√
µ

β
(21)
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Figure 6: The solution (S, I) = (S(.;S0, ϕ), I(.;S0, ϕ)) of (Sysd) for (S0, ϕ) ∈ A under
conditions (20) and Ru∗ > 1. The blue solid curves Γ1 and Γ3 represent (S, I) when
it follows (Sysf ). The solid red curve Γ2 represents (S, I) when it follows (Sysc).
The null-isoclines of (Sysf ) and (Sysc) are the dotted blue and dashed red curves,
respectively. The parameters are: k = 0.26, γ = 1.38, β = 15.8, µ = 1.3, τ = 1,
u∗ = 0.76, S0 = 0.58.

and
k1 = µ

µ+ γ
− S∗2 = µ

µ+ γ
− µ+ γ

β(1− u∗)
> 0. (22)

If k ∈ (0, k1), then E∗2 is the unique endemic equilibrium for (Sysd), it is asymptoti-
cally stable, and the region of attraction is X1.

Our results for (18)-(19) with delay τ > 0 are summarized in Table 1. We have
found that the behaviour of the system can be significantly different from switching
models without delay. This can be easily seen by comparing Table 1 to Table 2,
which lists the findings of [12] for system (18)-(19) in the case τ = 0.

Fig. 7 depicts how the maxima and minima of some solutions (calculated after
long time integration) change if parameter k increases. This numerically generated
diagram confirms the conjecture that a periodic orbit may coexist with a stable
equilibrium for some parameter configurations.

From our results we can draw some conclusions about the potential intervention
strategies. For a large threshold k, the control will eventually be turned off and
solutions converge to the endemic equilibrium of the free system, and the control
strategy has no effect whatsoever. If k < I∗1 , then the control effort u∗ also plays a
role. If the control effort is weak, then I∗2 > k (see Fig. 5) and we can expect the
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Figure 7: Plot of the maxima and minima of the I-terms after long time integration
for several initial data. The bifurcation parameter is k. The other parameters are
u∗ = 0.76, γ = 1.38, β = 15.8, µ = 1.3 and τ = 1. The solution converges to E∗2 for
small k, then to a periodic orbit as k increases, and then to E∗1 for large values of k.

control to be on for large times. Then the control strategy is reducing the infected
population. Interestingly, in the presence of time delay, a strong control effort can
induce periodic oscillations, and the peak of the periodic solution may be larger than
the endemic level what we could achieve by a weaker control. If we do not want to
tolerate high peaks in disease prevalence, we may choose a milder control strategy.
Alternatively, we may try to reduce the delay as that leads to smaller oscillations,
and then the periodic solution can be kept near the threshold k. Our results suggest
that it may be worthwhile to continue research to the directions we initiated here,
to have a better understanding of the effect of the interplay of control strategies and
delays in implementation on the long term transmission dynamics.
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Parameters Results for τ > 0
R0 ≤ 1 E∗0 is GAS. No endemic equilibria.

(a) R0 > 1 and R0[µ− (µ+ γ)k] < µ E∗0 is unstable.
E∗1 is the unique endemic equilib-
rium.
E∗1 attracts X1 for large k.

(b) µ < R0[µ− (µ+ γ)k] < µ/(1− u∗) E∗0 is unstable.
No endemic equilibria.
Periodic solution for small τ .

(c) R0[µ− (µ+ γ)k] > µ/(1− u∗) E∗0 is unstable.
E∗2 is the unique endemic equilib-
rium.
E∗2 attracts X1 for small k (under
certain technical conditions).

Table 1: A summary of our results.
Parameters Results for τ = 0

(a) R0 > 1 and R0[µ− (µ+ γ)k] < µ E∗1 is the unique endemic equilib-
rium,
it attracts ∆1.

(b) µ < R0[µ− (µ+ γ)k] < µ/(1− u∗) A new equilibrium appears on the
switching manifold attracting ∆1.

(c) R0[µ− (µ+ γ)k] > µ/(1− u∗) E∗2 is the unique endemic equilib-
rium,
it attracts ∆1.

Table 2: The results of Xiao, Xu, and Tang in [12] for τ = 0.
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